Overcoming the Achilles' heel of photodynamic therapy

Chemical Society Reviews 45, 6488-6519 DOI: 10.1039/c6cs00616g

Citation Report

#	Article	IF	CITATION
1	Photo-Cross-Linkable Polymer Dots with Stable Sensitizer Loading and Amplified Singlet Oxygen Generation for Photodynamic Therapy. ACS Applied Materials & Interfaces, 2017, 9, 3419-3431.	4.0	56
2	808 nm light responsive nanotheranostic agents based on near-infrared dye functionalized manganese ferrite for magnetic-targeted and imaging-guided photodynamic/photothermal therapy. Journal of Materials Chemistry B, 2017, 5, 1803-1814.	2.9	34
3	A core–shell metal–organic-framework (MOF)-based smart nanocomposite for efficient NIR/H ₂ O ₂ -responsive photodynamic therapy against hypoxic tumor cells. Journal of Materials Chemistry B, 2017, 5, 2390-2394.	2.9	83
4	Two-dimensional Pd-based nanomaterials for bioapplications. Science Bulletin, 2017, 62, 579-588.	4.3	45
5	Layered double hydroxide bio-composites toward excellent systematic anticancer therapy. Journal of Materials Chemistry B, 2017, 5, 3212-3216.	2.9	20
6	Biocompatible Cupâ€Shaped Nanocrystal with Ultrahigh Photothermal Efficiency as Tumor Therapeutic Agent. Advanced Functional Materials, 2017, 27, 1700605.	7.8	59
7	Functionalization of SiC/SiO _{<i>x</i>} nanowires with a porphyrin derivative: a hybrid nanosystem for X-ray induced singlet oxygen generation. Molecular Systems Design and Engineering, 2017, 2, 165-172.	1.7	11
8	Targeting Photochemical Scalpels or Lancets in the Photodynamic Therapy Field—The Photochemist's Role. Photochemistry and Photobiology, 2017, 93, 1139-1153.	1.3	20
9	Activatable Singlet Oxygen Generation from Lipid Hydroperoxide Nanoparticles for Cancer Therapy. Angewandte Chemie, 2017, 129, 6592-6596.	1.6	63
10	Activatable Singlet Oxygen Generation from Lipid Hydroperoxide Nanoparticles for Cancer Therapy. Angewandte Chemie - International Edition, 2017, 56, 6492-6496.	7.2	328
11	Enhanced Afterglow Performance of Persistent Luminescence Implants for Efficient Repeatable Photodynamic Therapy. ACS Nano, 2017, 11, 5864-5872.	7.3	136
12	pH-Triggered and Enhanced Simultaneous Photodynamic and Photothermal Therapy Guided by Photoacoustic and Photothermal Imaging. Chemistry of Materials, 2017, 29, 5216-5224.	3.2	170
13	Novel Silicon Phthalocyanines Bearing Triethylene Glycol Groups: Photophysical and Photochemical Properties as well as pH-Induced Spectral Behaviour. Journal of Fluorescence, 2017, 27, 1257-1266.	1.3	6
14	"One-for-All―Type, Biodegradable Prussian Blue/Manganese Dioxide Hybrid Nanocrystal for Trimodal Imaging-Guided Photothermal Therapy and Oxygen Regulation of Breast Cancer. ACS Applied Materials & Interfaces, 2017, 9, 13875-13886.	4.0	91
15	Selfâ€Assembled Carbon Dot Nanosphere: A Robust, Nearâ€Infrared Lightâ€Responsive, and Vein Injectable Photosensitizer. Advanced Healthcare Materials, 2017, 6, 1601419.	3.9	41
16	Highly Emissive Dye-Sensitized Upconversion Nanostructure for Dual-Photosensitizer Photodynamic Therapy and Bioimaging. ACS Nano, 2017, 11, 4133-4144.	7.3	342
17	Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy. Journal of Materials Chemistry B, 2017, 5, 4365-4392.	2.9	181
18	Two New Oxovanadium(IV) Compounds Containing Amino Acid Schiff Base and 1,10-Bathophenanthroline Ligands: Syntheses, Crystal Structures, and In Vitro Evaluation of the Anticancer Activities. Australian Journal of Chemistry, 2017, 70, 608.	0.5	5

#	Article	IF	CITATIONS
19	Ethylene glycol-mediated synthetic route for production of luminescent silicon nanorod as photodynamic therapy agent. Science China Materials, 2017, 60, 881-891.	3.5	10
20	Photothermal-triggered release of singlet oxygen from an endoperoxide-containing polymeric carrier for killing cancer cells. Materials Horizons, 2017, 4, 1185-1189.	6.4	50
21	Polysaccharides-Based Microcapsules. , 2017, , 63-84.		2
22	Nanotechnology for Multimodal Synergistic Cancer Therapy. Chemical Reviews, 2017, 117, 13566-13638.	23.0	1,392
23	Tannic Acid/Fe ³⁺ /Ag Nanofilm Exhibiting Superior Photodynamic and Physical Antibacterial Activity. ACS Applied Materials & Interfaces, 2017, 9, 39657-39671.	4.0	76
24	High performance photosensitizers with aggregation-induced emission for image-guided photodynamic anticancer therapy. Materials Horizons, 2017, 4, 1110-1114.	6.4	122
25	Photosensitization mechanism of Cu(<scp>ii</scp>) porphyrins. Physical Chemistry Chemical Physics, 2017, 19, 20533-20540.	1.3	9
26	Lightâ€Triggered Clustered Vesicles with Selfâ€5upplied Oxygen and Tissue Penetrability for Photodynamic Therapy against Hypoxic Tumor. Advanced Functional Materials, 2017, 27, 1702108.	7.8	108
27	Integration of IRâ€808 Sensitized Upconversion Nanostructure and MoS ₂ Nanosheet for 808 nm NIR Light Triggered Phototherapy and Bioimaging. Small, 2017, 13, 1701841.	5.2	117
28	A Highly Efficient and Photostable Photosensitizer with Nearâ€Infrared Aggregationâ€Induced Emission for Imageâ€Guided Photodynamic Anticancer Therapy. Advanced Materials, 2017, 29, 1700548.	11.1	373
29	Improving photocatalytic oxygenation mediated by polymer supported photosensitizers using semiconductor quantum dots as â€`light antennas'. RSC Advances, 2017, 7, 35154-35158.	1.7	9
30	Highly effective thieno[2,3-b]indole-diketopyrrolopyrrole near-infrared photosensitizer for photodynamic/photothermal dual mode therapy. Dyes and Pigments, 2017, 147, 270-282.	2.0	30
31	Enhanced cancer therapy by the marriage of metabolic alteration and mitochondrial-targeted photodynamic therapy using cyclometalated lr(<scp>iii</scp>) complexes. Chemical Communications, 2017, 53, 9878-9881.	2.2	63
32	808 nm light triggered black TiO2 nanoparticles for killing of bladder cancer cells. Materials Science and Engineering C, 2017, 81, 252-260.	3.8	46
33	Manipulating tumor hypoxia toward enhanced photodynamic therapy (PDT). Biomaterials Science, 2017, 5, 1500-1511.	2.6	254
34	Increasing Cancer Therapy Efficiency through Targeting and Localized Light Activation. ACS Applied Materials & Interfaces, 2017, 9, 23400-23408.	4.0	25
35	The development of anticancer ruthenium(<scp>ii</scp>) complexes: from single molecule compounds to nanomaterials. Chemical Society Reviews, 2017, 46, 5771-5804.	18.7	793
36	The development of ruthenium(<scp>ii</scp>) polypyridyl complexes and conjugates for <i>in vitro</i> cellular and <i>in vivo</i> applications. Chemical Society Reviews, 2017, 46, 7706-7756.	18.7	326

#	Article	IF	CITATIONS
37	Magnetic and pH dual-responsive mesoporous silica nanocomposites for effective and low-toxic photodynamic therapy. International Journal of Nanomedicine, 2017, Volume 12, 2733-2748.	3.3	37
38	A Tumor-pH-Responsive Supramolecular Photosensitizer for Activatable Photodynamic Therapy with Minimal <i>In Vivo</i> Skin Phototoxicity. Theranostics, 2017, 7, 2746-2756.	4.6	117
39	Study of the Photodynamic Activity of N-Doped TiO2 Nanoparticles Conjugated with Aluminum Phthalocyanine. Nanomaterials, 2017, 7, 338.	1.9	27
40	Light-Activated Core–Shell Nanoparticles for Spatiotemporally Specific Treatment of Metastatic Triple-Negative Breast Cancer. ACS Nano, 2018, 12, 2789-2802.	7.3	64
41	Stimuliâ€Responsive NO Release for Onâ€Demand Gasâ€Sensitized Synergistic Cancer Therapy. Angewandte Chemie - International Edition, 2018, 57, 8383-8394.	7.2	266
42	Stimuliresponsive NOâ€Freisetzung für die abrufbereite Gasâ€sensibilisierte synergistische Krebstherapie. Angewandte Chemie, 2018, 130, 8516-8528.	1.6	23
43	Mitochondria-localizing BODIPY–copper(<scp>ii</scp>) conjugates for cellular imaging and photo-activated cytotoxicity forming singlet oxygen. Dalton Transactions, 2018, 47, 5019-5030.	1.6	28
44	Metal–Organicâ€Frameworkâ€Assisted In Vivo Bacterial Metabolic Labeling and Precise Antibacterial Therapy. Advanced Materials, 2018, 30, e1706831.	11.1	242
45	Photophysical properties and photocytotoxicity of free and liposome-entrapped diazepinoporphyrazines on LNCaP cells under normoxic and hypoxic conditions. European Journal of Medicinal Chemistry, 2018, 150, 64-73.	2.6	21
46	Nanoparticle-Based Phototriggered Cancer Immunotherapy and Its Domino Effect in the Tumor Microenvironment. Biomacromolecules, 2018, 19, 1869-1887.	2.6	64
47	Timely coordinated phototherapy mediated by mesoporous organosilica coated triangular gold nanoprisms. Journal of Materials Chemistry B, 2018, 6, 3865-3875.	2.9	13
48	Combinational strategy for high-performance cancer chemotherapy. Biomaterials, 2018, 171, 178-197.	5.7	181
49	Phosphorescence Through Hindered Motion of Pure Organic Emitters. Chemistry - A European Journal, 2018, 24, 12221-12230.	1.7	60
50	Radioluminescence studies of colloidal oleate-capped β-Na(Gd,Lu)F ₄ :Ln ³⁺ nanoparticles (Ln = Ce, Eu, Tb). Nanoscale, 2018, 10, 7821-7832.	2.8	30
51	Simultaneous Monitoring of Cell-surface Receptor and Tumor-targeted Photodynamic Therapy via TdT-initiated Poly-G-Quadruplexes. Scientific Reports, 2018, 8, 5551.	1.6	14
52	Phosphorescent iridium(<scp>iii</scp>) complexes: a versatile tool for biosensing and photodynamic therapy. Dalton Transactions, 2018, 47, 7628-7633.	1.6	49
53	Photo-induced anticancer activity and singlet oxygen production of prodigiosenes. Photochemical and Photobiological Sciences, 2018, 17, 599-606.	1.6	4
54	Near-Infrared-Activated Fluorescence Resonance Energy Transfer-Based Nanocomposite to Sense MMP2-Overexpressing Oral Cancer Cells. ACS Omega, 2018, 3, 1627-1634.	1.6	7

#	Article	IF	CITATIONS
55	Cyclometalated iridium(III) luminescent complexes in therapy and phototherapy. Coordination Chemistry Reviews, 2018, 360, 34-76.	9.5	214
56	Thiol-capped Bi nanoparticles as stable and all-in-one type theranostic nanoagents for tumor imaging and thermoradiotherapy. Biomaterials, 2018, 161, 279-291.	5.7	113
57	Plasmonic Resonance Energy Transfer Enhanced Photodynamic Therapy with Au@SiO ₂ @Cu ₂ O/Perfluorohexane Nanocomposites. ACS Applied Materials & Interfaces, 2018, 10, 6991-7002.	4.0	74
58	Functionalized Cu ₃ BiS ₃ nanoparticles for dual-modal imaging and targeted photothermal/photodynamic therapy. Nanoscale, 2018, 10, 4452-4462.	2.8	55
59	Activating TiO ₂ Nanoparticles: Gallium-68 Serves as a High-Yield Photon Emitter for Cerenkov-Induced Photodynamic Therapy. ACS Applied Materials & Interfaces, 2018, 10, 5278-5286.	4.0	86
60	"Triple-Punch―Anticancer Strategy Mediated by Near-Infrared Photosensitizer/CpG Oligonucleotides Dual-Dressed and Mitochondria-Targeted Nanographene. ACS Applied Materials & Interfaces, 2018, 10, 6942-6955.	4.0	45
61	Lanthanide-Doped Core–Shell–Shell Nanocomposite for Dual Photodynamic Therapy and Luminescence Imaging by a Single X-ray Excitation Source. ACS Applied Materials & Interfaces, 2018, 10, 7859-7870.	4.0	87
62	A Magnetofluorescent Carbon Dot Assembly as an Acidic H ₂ O ₂ â€Driven Oxygenerator to Regulate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy. Advanced Materials, 2018, 30, e1706090.	11.1	385
63	In Situ Disinfection through Photoinspired Radical Oxygen Species Storage and Thermalâ€Triggered Release from Black Phosphorous with Strengthened Chemical Stability. Small, 2018, 14, 1703197.	5.2	127
64	Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chemical Society Reviews, 2018, 47, 357-403.	18.7	190
65	Toxic Reactive Oxygen Species Enhanced Synergistic Combination Therapy by Selfâ€Assembled Metalâ€Phenolic Network Nanoparticles. Advanced Materials, 2018, 30, 1704877.	11.1	311
66	Hypochlorous Acid Promoted Platinum Drug Chemotherapy by Myeloperoxidase-Encapsulated Therapeutic Metal Phenolic Nanoparticles. ACS Nano, 2018, 12, 455-463.	7.3	134
67	An Assembled Nanocomplex for Improving both Therapeutic Efficiency and Treatment Depth in Photodynamic Therapy. Angewandte Chemie, 2018, 130, 7885-7889.	1.6	24
68	Neutrophilâ€Based Drug Delivery Systems. Advanced Materials, 2018, 30, e1706245.	11.1	236
69	An Assembled Nanocomplex for Improving both Therapeutic Efficiency and Treatment Depth in Photodynamic Therapy. Angewandte Chemie - International Edition, 2018, 57, 7759-7763.	7.2	104
70	π-Extended Benzoporphyrin-Based Metal–Organic Framework for Inhibition of Tumor Metastasis. ACS Nano, 2018, 12, 4630-4640.	7.3	136
71	One-step assembly of CuMo ₂ S ₃ nanocrystals for the synergistic effect of photothermal therapy and photodynamic therapy. Dalton Transactions, 2018, 47, 5622-5629.	1.6	15
72	Metal-organic frameworks join hands to create an anti-cancer nanoplatform based on 808â€ ⁻ nm light driving up-conversion nanoparticles. Chemical Engineering Journal, 2018, 344, 363-374.	6.6	54

#	Article	IF	CITATIONS
73	Material Chemistry of Two-Dimensional Inorganic Nanosheets in Cancer Theranostics. CheM, 2018, 4, 1284-1313.	5.8	132
74	Carbonâ€Dotâ€Decorated TiO ₂ Nanotubes toward Photodynamic Therapy Based on Waterâ€Splitting Mechanism. Advanced Healthcare Materials, 2018, 7, e1800042.	3.9	49
75	Harnessing ruthenium(II) as photodynamic agents: Encouraging advances in cancer therapy. Coordination Chemistry Reviews, 2018, 363, 17-28.	9.5	158
76	Improved photodynamic efficiency for methylene blue from silica-methylene blue@tannic acid-Fe(III) ions complexes in aqueous solutions. Advanced Powder Technology, 2018, 29, 341-348.	2.0	14
77	Facile Supramolecular Approach to Nucleic-Acid-Driven Activatable Nanotheranostics That Overcome Drawbacks of Photodynamic Therapy. ACS Nano, 2018, 12, 681-688.	7.3	149
78	Use of silylmethoxy groups as inducers of efficient room temperature phosphorescence from precious-metal-free organic luminophores. Materials Chemistry Frontiers, 2018, 2, 347-354.	3.2	21
79	Enzyme-instructed self-assembly leads to the activation of optical properties for selective fluorescence detection and photodynamic ablation of cancer cells. Journal of Materials Chemistry B, 2018, 6, 2566-2573.	2.9	47
80	Phthalocyanineâ€Assembled Nanodots as Photosensitizers for Highly Efficient Typeâ€I Photoreactions in Photodynamic Therapy. Angewandte Chemie - International Edition, 2018, 57, 9885-9890.	7.2	307
81	C–O bond activation and splitting behaviours of CO ₂ on a 4H-SiC surface: a DFT study. Physical Chemistry Chemical Physics, 2018, 20, 26846-26852.	1.3	6
82	Improved efficiency and thermal stability of ternary all-small-molecule organic solar cells by NCBA as a third component material. Nanoscale, 2018, 10, 19524-19535.	2.8	24
83	Tandem fluorescence and Raman (fluoRaman) characterisation of a novel photosensitiser in colorectal cancer cell line SW480. Analyst, The, 2018, 143, 6113-6120.	1.7	13
84	Fluorinated polymeric micelles to overcome hypoxia and enhance photodynamic cancer therapy. Biomaterials Science, 2018, 6, 3096-3107.	2.6	53
85	Graphitic carbon nitride nanosheets as a multifunctional nanoplatform for photochemical internalization-enhanced photodynamic therapy. Journal of Materials Chemistry B, 2018, 6, 7908-7915.	2.9	28
86	A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis. Nature Communications, 2018, 9, 5044.	5.8	380
87	Mesenchymal stem cell-driven activatable photosensitizers for precision photodynamic oncotherapy. Biomaterials, 2018, 187, 18-26.	5.7	29
88	Mannoseâ€Functionalized Nanoscaffolds for Targeted Delivery in Biomedical Applications. Chemistry - an Asian Journal, 2018, 13, 3448-3459.	1.7	43
89	Near-Infrared Light-Initiated Molecular Superoxide Radical Generator: Rejuvenating Photodynamic Therapy against Hypoxic Tumors. Journal of the American Chemical Society, 2018, 140, 14851-14859.	6.6	442
90	Magnetic Targeting of Nanotheranostics Enhances Cerenkov Radiation-Induced Photodynamic Therapy. Journal of the American Chemical Society, 2018, 140, 14971-14979.	6.6	148

#	Article	IF	CITATIONS
91	Pyriplatin-Boron-Dipyrromethene Conjugates for Imaging and Mitochondria-Targeted Photodynamic Therapy. Inorganic Chemistry, 2018, 57, 14374-14385.	1.9	62
92	De Novo Design of Phototheranostic Sensitizers Based on Structure-Inherent Targeting for Enhanced Cancer Ablation. Journal of the American Chemical Society, 2018, 140, 15820-15826.	6.6	167
93	Combined photothermal and antibiotic therapy for bacterial infection via acidity-sensitive nanocarriers with enhanced antimicrobial performance. Applied Materials Today, 2018, 12, 415-429.	2.3	68
94	ROS-induced NO generation for gas therapy and sensitizing photodynamic therapy of tumor. Biomaterials, 2018, 185, 51-62.	5.7	187
95	New CeF ₃ –ZnO nanocomposites for self-lighted photodynamic therapy that block adenocarcinoma cell life cycle. Nanomedicine, 2018, 13, 2311-2326.	1.7	8
96	Blue Te Nanoneedles with Strong NIR Photothermal and Laserâ€Enhanced Anticancer Effects as "Allâ€inâ€One―Nanoagents for Synergistic Thermo hemotherapy of Tumors. Advanced Healthcare Materials, 2018, 7, e1800643.	3.9	39
97	Progress in the development of nanosensitizers for X-ray-induced photodynamic therapy. Drug Discovery Today, 2018, 23, 1791-1800.	3.2	58
98	Innovative Strategien für die photodynamische Therapie hypoxischer Tumore. Angewandte Chemie, 2018, 130, 11694-11704.	1.6	90
99	Innovative Strategies for Hypoxicâ€Tumor Photodynamic Therapy. Angewandte Chemie - International Edition, 2018, 57, 11522-11531.	7.2	849
100	Oxyhemoglobin-monitoring photodynamic theranostics with an 808â€⁻nm-excited upconversion optical nanoagent. Chemical Engineering Journal, 2018, 350, 108-119.	6.6	14
101	One-Pot Synthesis of Four Chlorin Derivatives by a Divergent Ylide. Journal of Organic Chemistry, 2018, 83, 6307-6314.	1.7	9
102	Platinum(IV) complex-based two-in-one polyprodrug for a combinatorial chemo-photodynamic therapy. Biomaterials, 2018, 177, 67-77.	5.7	82
103	Leveraging Spectral Matching between Photosensitizers and Upconversion Nanoparticles for 808 nm-Activated Photodynamic Therapy. Chemistry of Materials, 2018, 30, 3991-4000.	3.2	46
104	Enhanced DNA Binding and Photocleavage Abilities of β-Cyclodextrin Appended Ru(II) Complex through Supramolecular Strategy. Bioconjugate Chemistry, 2018, 29, 1829-1833.	1.8	21
105	Activatable Semiconducting Theranostics: Simultaneous Generation and Ratiometric Photoacoustic Imaging of Reactive Oxygen Species In Vivo. Advanced Materials, 2018, 30, e1707509.	11.1	165
106	Highly efficient organic photosensitizer with aggregation-induced emission for imaging-guided photodynamic ablation of cancer cells. Tetrahedron Letters, 2018, 59, 2704-2707.	0.7	12
107	A series of water-soluble photosensitizers based on 3-cinnamoylcoumarin for <i>in vitro</i> antimicrobial photodynamic inactivation. RSC Advances, 2018, 8, 17073-17078.	1.7	5
108	Multifunctional Electrospun Nanofibers for Enhancing Localized Cancer Treatment. Small, 2018, 14, e1801183.	5.2	52

#	Article	IF	CITATIONS
109	Polymerization-Enhanced Photosensitization. CheM, 2018, 4, 1937-1951.	5.8	227
110	Gd ₄ ³⁺ [AlPCS ₄] ₃ ^{4â^²} Nanoagent Generating ¹ O ₂ for Photodynamic Therapy. Advanced Functional Materials, 2018, 28, 1801074.	7.8	25
111	Exogenous/Endogenousâ€Triggered Mesoporous Silica Cancer Nanomedicine. Advanced Healthcare Materials, 2018, 7, e1800268.	3.9	48
112	Phthalocyanineâ€Assembled Nanodots as Photosensitizers for Highly Efficient Typeâ€I Photoreactions in Photodynamic Therapy. Angewandte Chemie, 2018, 130, 10033-10038.	1.6	56
113	Using X-rays in photodynamic therapy: an overview. Photochemical and Photobiological Sciences, 2018, 17, 1612-1650.	1.6	92
114	Synergized Multimodal Therapy for Safe and Effective Reversal of Cancer Multidrug Resistance Based on Low‣evel Photothermal and Photodynamic Effects. Small, 2018, 14, e1800785.	5.2	27
115	Near Infrared Boron Dipyrromethene Nanoparticles for Optotheranostics. Small Methods, 2018, 2, 1700370.	4.6	45
116	Photosensitizers with Aggregationâ€Induced Emission: Materials and Biomedical Applications. Advanced Materials, 2018, 30, e1801350.	11.1	611
117	Gas Therapy: An Emerging "Green―Strategy for Anticancer Therapeutics. Advanced Therapeutics, 2018, 1, 1800084.	1.6	43
118	Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. Advanced Science, 2018, 5, 1800518.	5.6	397
119	Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers. Theranostics, 2018, 8, 2939-2953.	4.6	87
120	Scintillator-Based Nanohybrids with Sacrificial Electron Prodrug for Enhanced X-ray-Induced Photodynamic Therapy. Nano Letters, 2018, 18, 5768-5774.	4.5	104
121	O ₂ -generating MnO ₂ nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia. Theranostics, 2018, 8, 990-1004.	4.6	233
122	Halogenated Azaâ€BODIPY for Imagingâ€Guided Synergistic Photodynamic and Photothermal Tumor Therapy. Advanced Healthcare Materials, 2018, 7, e1800606.	3.9	67
123	Construction of perfluorohexane/IR780@liposome coating on Ti for rapid bacteria killing under permeable near infrared light. Biomaterials Science, 2018, 6, 2460-2471.	2.6	28
124	Aptamer and IR820 Dualâ€Functionalized Carbon Dots for Targeted Cancer Therapy against Hypoxic Tumors Based on an 808 nm Laserâ€Triggered Threeâ€Pathway Strategy. Advanced Therapeutics, 2018, 1, 1800041.	1.6	24
125	The design, synthesis, and evaluation of organic dithienopyrrole-based D-Ï€-A dyes for use as sensitizers in photodynamic therapy. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3099-3104.	1.0	3
126	A Sizeâ€Reducible Nanodrug with an Aggregationâ€Enhanced Photodynamic Effect for Deep Chemoâ€Photodynamic Therapy. Angewandte Chemie, 2018, 130, 11554-11558.	1.6	29

#	Article	IF	CITATIONS
127	Responsive Assembly of Upconversion Nanoparticles for pHâ€Activated and Nearâ€Infraredâ€Triggered Photodynamic Therapy of Deep Tumors. Advanced Materials, 2018, 30, e1802808.	11.1	191
128	Bioinspired Hybrid Protein Oxygen Nanocarrier Amplified Photodynamic Therapy for Eliciting Anti-tumor Immunity and Abscopal Effect. ACS Nano, 2018, 12, 8633-8645.	7.3	301
129	Tumor Microenvironmentâ€Responsive Mesoporous MnO ₂ â€Coated Upconversion Nanoplatform for Selfâ€Enhanced Tumor Theranostics. Advanced Functional Materials, 2018, 28, 1803804.	7.8	261
130	A Sizeâ€Reducible Nanodrug with an Aggregationâ€Enhanced Photodynamic Effect for Deep Chemoâ€Photodynamic Therapy. Angewandte Chemie - International Edition, 2018, 57, 11384-11388.	7.2	196
131	Fluorescence Resonance Energy Transfer Based Highly Efficient Theranostic Nanoplatform for Two-Photon Bioimaging and Two-Photon Excited Photodynamic Therapy of Multiple Drug Resistance Bacteria. ACS Applied Bio Materials, 2018, 1, 298-309.	2.3	38
132	Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chemical Society Reviews, 2018, 47, 6454-6472.	18.7	537
133	Synthesis of carbon dots from Hypocrella bambusae for bimodel fluorescence/photoacoustic imaging-guided synergistic photodynamic/photothermal therapy of cancer. Journal of Colloid and Interface Science, 2018, 526, 302-311.	5.0	105
134	Light-driven transformable optical agent with adaptive functions for boosting cancer surgery outcomes. Nature Communications, 2018, 9, 1848.	5.8	286
135	Engineering of tungsten carbide nanoparticles for imaging-guided single 1,064 nm laser-activated dual-type photodynamic and photothermal therapy of cancer. Nano Research, 2018, 11, 4859-4873.	5.8	42
136	Dyeâ€Anchored MnO Nanoparticles Targeting Tumor and Inducing Enhanced Phototherapy Effect via Mitochondriaâ€Mediated Pathway. Small, 2018, 14, e1801008.	5.2	58
137	Targeted Maytansinoid Conjugate Improves Therapeutic Index for Metastatic Breast Cancer Cells. Bioconjugate Chemistry, 2018, 29, 2920-2926.	1.8	8
138	Biomineralized Enzyme-Like Cobalt Sulfide Nanodots for Synergetic Phototherapy with Tumor Multimodal Imaging Navigation. ACS Sustainable Chemistry and Engineering, 2018, 6, 12061-12069.	3.2	29
139	Dual excited state deactivation pathways in TPZ2: A centrosymmetric dye with both high fluorescence and triplet state quantum yield. Chinese Chemical Letters, 2018, 29, 1486-1488.	4.8	9
140	Reactive Oxygen Species-Responsive Nanoparticles Based on PEGlated Prodrug for Targeted Treatment of Oral Tongue Squamous Cell Carcinoma by Combining Photodynamic Therapy and Chemotherapy. ACS Applied Materials & Interfaces, 2018, 10, 29260-29272.	4.0	70
141	Quantum Dot–Dye Conjugates for Biosensing, Imaging, and Therapy. Advanced Healthcare Materials, 2018, 7, e1800252.	3.9	51
142	Biomimetic O2-Evolving metal-organic framework nanoplatform for highly efficient photodynamic therapy against hypoxic tumor. Biomaterials, 2018, 178, 83-94.	5.7	165
143	Synergizing Upconversion Nanophotosensitizers with Hyperbaric Oxygen to Remodel the Extracellular Matrix for Enhanced Photodynamic Cancer Therapy. ACS Applied Materials & Interfaces, 2018, 10, 22985-22996.	4.0	56
144	Polymer Dots as Effective Phototheranostic Agents. Photochemistry and Photobiology, 2018, 94, 916-934.	1.3	40

#	Article	IF	CITATIONS
145	Enhancing the efficacy of photodynamic therapy (PDT) <i>via</i> water-soluble pillar[5]arene-based supramolecular complexes. Chemical Communications, 2018, 54, 7629-7632.	2.2	40
146	Oxygen-independent combined photothermal/photodynamic therapy delivered by tumor acidity-responsive polymeric micelles. Journal of Controlled Release, 2018, 284, 15-25.	4.8	61
147	Application of metal oxide-based photocatalysis. , 2018, , 211-340.		13
148	Oxygen self-sufficient NIR-activatable liposomes for tumor hypoxia regulation and photodynamic therapy. Chemical Science, 2019, 10, 9091-9098.	3.7	81
149	Tumor-Specific Expansion of Oxidative Stress by Glutathione Depletion and Use of a Fenton Nanoagent for Enhanced Chemodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 30551-30565.	4.0	108
150	Recent advances in lysosome-targeting luminescent transition metal complexes. Coordination Chemistry Reviews, 2019, 398, 113010.	9.5	45
151	O ₂ -Cu/ZIF-8@Ce6/ZIF-8@F127 Composite as a Tumor Microenvironment-Responsive Nanoplatform with Enhanced Photo-/Chemodynamic Antitumor Efficacy. ACS Applied Materials & Interfaces, 2019, 11, 31671-31680.	4.0	131
152	A heavy atom-free copolymer for light triggered photodynamic and photothermal therapy of human prostate cancer cells. New Journal of Chemistry, 2019, 43, 13670-13674.	1.4	3
153	A glutathione responsive pyrrolopyrrolidone nanotheranostic agent for turn-on fluorescence imaging guided photothermal/photodynamic cancer therapy. Materials Chemistry Frontiers, 2019, 3, 2143-2150.	3.2	22
154	Sustained reactive oxygen species generation from percarbamide nanomedicine via a mechanism of X-Ray-initiated free radical chain reactions. Journal of Biomaterials Applications, 2019, 34, 728-738.	1.2	2
155	Covalent Organic Frameworkâ€5upported Molecularly Dispersed Nearâ€Infrared Dyes Boost Immunogenic Phototherapy against Tumors. Advanced Functional Materials, 2019, 29, 1902757.	7.8	106
156	Single NIR Laser-Activated Multifunctional Nanoparticles for Cascaded Photothermal and Oxygen-Independent Photodynamic Therapy. Nano-Micro Letters, 2019, 11, 68.	14.4	56
157	Fe@Fe ₃ Ge ₂ nanoparticles for MR imaging-guided NIR-driven photodynamic therapy <i>in vivo</i> . Journal of Materials Chemistry B, 2019, 7, 5661-5668.	2.9	7
158	Nitric Oxide-Activated "Dual-Key–One-Lock―Nanoprobe for in Vivo Molecular Imaging and High-Specificity Cancer Therapy. Journal of the American Chemical Society, 2019, 141, 13572-13581.	6.6	126
159	Reactive oxygen species-responsive nanoparticles based on a thioketal-containing poly(β-amino ester) for combining photothermal/photodynamic therapy and chemotherapy. Polymer Chemistry, 2019, 10, 4746-4757.	1.9	19
160	A dual-targeted theranostic photosensitizer based on a TADF fluorescein derivative. Journal of Controlled Release, 2019, 310, 1-10.	4.8	29
161	Mitochondria-targeted tri-triphenylphosphonium substituted <i>meso</i> -tetra(4-carboxyphenyl)porphyrin(TCPP) by conjugation with folic acid and graphene oxide for improved photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1028-1040.	0.4	8
162	Molecular Engineering of Near-Infrared Light-Responsive BODIPY-Based Nanoparticles with Enhanced Photothermal and Photoacoustic Efficiencies for Cancer Theranostics. Theranostics, 2019, 9, 5315-5331.	4.6	54

#	Article	IF	CITATIONS
163	<p>NIR-guided dendritic nanoplatform for improving antitumor efficacy by combining chemo-phototherapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 4931-4947.	3.3	25
164	Nanocatalytic Medicine. Advanced Materials, 2019, 31, e1901778.	11.1	396
165	Inhibition of breast cancer proliferation and metastasis by strengthening host immunity with a prolonged oxygen-generating phototherapy hydrogel. Journal of Controlled Release, 2019, 309, 82-93.	4.8	46
166	Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. Journal of Controlled Release, 2019, 309, 203-219.	4.8	107
167	Methylthio BODIPY as a standard triplet photosensitizer for singlet oxygen production: a photophysical study. Physical Chemistry Chemical Physics, 2019, 21, 20403-20414.	1.3	21
168	Turning solid into gel for high-efficient persistent luminescence-sensitized photodynamic therapy. Biomaterials, 2019, 218, 119328.	5.7	38
169	Diplatinum(II) Catecholate of Photoactive Boron-Dipyrromethene for Lysosome-Targeted Photodynamic Therapy in Red Light. Inorganic Chemistry, 2019, 58, 9067-9075.	1.9	38
170	Smart MMP2-Responsive Nanoprobe for Activatable Fluorescence Imaging-Guided Local Triple-Combination Therapies with Single Light. ACS Applied Bio Materials, 2019, 2, 2978-2987.	2.3	4
171	A chloroplast-inspired nanoplatform for targeting cancer and synergistic photodynamic/photothermal therapy. Biomaterials Science, 2019, 7, 3886-3897.	2.6	14
172	Tuning Polyamidoamine Design To Increase Uptake and Efficacy of Ruthenium Complexes for Photodynamic Therapy. Inorganic Chemistry, 2019, 58, 14586-14599.	1.9	15
173	Ultrasoundâ€Activated Oxygen and ROS Generation Nanosystem Systematically Modulates Tumor Microenvironment and Sensitizes Sonodynamic Therapy for Hypoxic Solid Tumors. Advanced Functional Materials, 2019, 29, 1906195.	7.8	160
174	Universal Scaffold for an Activatable Photosensitizer with Completely Inhibited Photosensitivity. Angewandte Chemie - International Edition, 2019, 58, 16601-16609.	7.2	71
175	NIR-Triggered Multifunctional and Degradable Nanoplatform Based on an ROS-Sensitive Block Copolymer for Imaging-Guided Chemo-Phototherapy. Biomacromolecules, 2019, 20, 4218-4229.	2.6	33
176	Manganese-Based Nanoplatform As Metal Ion-Enhanced ROS Generator for Combined Chemodynamic/Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 41140-41147.	4.0	81
177	Nanotherapeutics interfere with cellular redox homeostasis for highly improved photodynamic therapy. Biomaterials, 2019, 224, 119500.	5.7	51
178	Triggering Sequential Catalytic Fenton Reaction on 2D MXenes for Hyperthermia-Augmented Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & Interfaces, 2019, 11, 42917-42931.	4.0	74
179	Janus Nanobullets Combine Photodynamic Therapy and Magnetic Hyperthermia to Potentiate Synergetic Antiâ€Metastatic Immunotherapy. Advanced Science, 2019, 6, 1901690.	5.6	169
180	Smart H ₂ Sâ€Triggered/Therapeutic System (SHTS)â€Based Nanomedicine. Advanced Science, 2019, 6, 1901724.	5.6	55

CITATION REPORT ARTICLE IF CITATIONS Selfâ€Supply of O₂ and H₂O₂ by a Nanocatalytic Medicine to 181 5.6 257 Enhance Combined Chemo/Chemodynamic Therapy. Advanced Science, 2019, 6, 1902137. Synthesis and evolution of S-Porphin sodium as a potential antitumor agent for photodynamic therapy 2.3 against breast cancer. Organic Chemistry Frontiers, 2019, 6, 362-372. Targeting G-quadruplexes with Organic Dyes: Chelerythrine–DNA Binding Elucidated by Combining 183 2.2 15 Molecular Modeling and Optical Spectroscopy. Antioxidants, 2019, 8, 472. Advances in nanomedicine for cancer starvation therapy. Theranostics, 2019, 9, 8026-8047. 184 151 GSH-Activatable NIR Nanoplatform with Mitochondria Targeting for Enhancing Tumor-Specific 185 4.0 61 Therapy. ACS Applied Materials & amp; Interfaces, 2019, 11, 44961-44969. Engineering pH-Responsive BODIPY Nanoparticles for Tumor Selective Multimodal Imaging and Phototherapy. ACS Applied Materials & amp; Interfaces, 2019, 11, 43928-43935. 4.0 Massively Evoking Immunogenic Cell Death by Focused Mitochondrial Oxidative Stress using an AIE 187 11.1 348 Luminogen with a Twisted Molecular Structure. Advanced Materials, 2019, 31, e1904914. Reactive Oxygen Species–Activatable Liposomes Regulating Hypoxic Tumor Microenvironment for 188 124 Synergistic Photo/Chemodynamic Therapies. Advanced Functional Materials, 2019, 29, 1905013. Universal Scaffold for an Activatable Photosensitizer with Completely Inhibited Photosensitivity. 189 1.6 10 Angewandte Chemie, 2019, 131, 16754-16762. Advanced Nanotechnology Leading the Way to Multimodal Imagingâ€Guided Precision Surgical Therapy. 11.1 Advanced Materials, 2019, 31, e1904329. Defectâ€Rich Adhesive Nanozymes as Efficient Antibiotics for Enhanced Bacterial Inhibition. Angewandte 191 1.6 11 Chemie, 2019, 131, 16382-16388. Enhanced generation efficiency of singlet oxygen for methylene blue released from hydroxyapatite-MB@tannic acid-Fe(III) ions. Pigment and Resin Technology, 2019, 48, 185-196. 0.5 Associations between brain structural networks and neurological soft signs in healthy adults. 193 0.9 4 Psychiatry Research - Neuroimaging, 2019, 293, 110989. Study of the Combination of Self-Activating Photodynamic Therapy and Chemotherapy for Cancer 194 1.8 29 Treatment. Biomolecules, 2019, 9, 384. Precise Molecular Engineering of Photosensitizers with Aggregationâ€Induced Emission over 800 nm 195 7.8 100 for Photodynamic Therapy. Advanced Functional Materials, 2019, 29, 1901791. Defectâ€Rich Adhesive Nanozymes as Efficient Antibiotics for Enhanced Bacterial Inhibition. Angewandte 246 Chemie - International Edition, 2019, 58, 16236-16242. Synthesis and Anticancer Activity of Gold Porphyrin Linked to Malonate Diamine Platinum Complexes. 197 1.9 27 Inorganic Chemistry, 2019, 58, 12395-12406.

NIR-Activated "OFF/ON―Photodynamic Therapy by a Hybrid Nanoplatform with Upper Critical Solution 198 Temperature Block Copolymers and Gold Nanorods. Biomacromolecules, 2019, 20, 3873-3883.

#

#	Article	IF	Citations
199	Effects of gold nanoprism-assisted human PD-L1 siRNA on both gene down-regulation and photothermal therapy on lung cancer. Acta Biomaterialia, 2019, 99, 307-319.	4.1	63
200	Single-molecule chemiluminescent photosensitizer for a self-activating and tumor-selective photodynamic therapy of cancer. European Journal of Medicinal Chemistry, 2019, 183, 111683.	2.6	27
201	Size-Tunable Targeting-Triggered Nanophotosensitizers Based on Self-Assembly of a Phthalocyanine–Biotin Conjugate for Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 36435-36443.	4.0	40
202	Development of a novel anti-tumor theranostic platform: a near-infrared molecular upconversion sensitizer for deep-seated cancer photodynamic therapy. Chemical Science, 2019, 10, 10106-10112.	3.7	79
203	An epidermal growth factor receptor-targeted and endoplasmic reticulum-localized organic photosensitizer toward photodynamic anticancer therapy. European Journal of Medicinal Chemistry, 2019, 182, 111625.	2.6	31
204	Mitochondria-localized iridium(III) complexes with anthraquinone groups as effective photosensitizers for photodynamic therapy under hypoxia. Science China Chemistry, 2019, 62, 1639-1648.	4.2	24
205	Aptamer/photosensitizer hybridized mesoporous MnO2 based tumor cell activated ROS regulator for precise photodynamic therapy of breast cancer. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110536.	2.5	23
206	NaCeF ₄ :Gd,Tb Scintillator as an X-ray Responsive Photosensitizer for Multimodal Imaging-Guided Synchronous Radio/Radiodynamic Therapy. Nano Letters, 2019, 19, 8234-8244.	4.5	121
207	An Emerging Molecular Design Approach to Heavy-Atom-Free Photosensitizers for Enhanced Photodynamic Therapy under Hypoxia. Journal of the American Chemical Society, 2019, 141, 16243-16248.	6.6	267
208	Sn _x WO ₃ as a theranostic platform for realizing multi-imaging-guided photothermal/photodynamic combination therapy. Nanoscale, 2019, 11, 3300-3310.	2.8	21
209	Reactive oxygen species mediated theranostics using a Fenton reaction activable lipo-polymersome. Journal of Materials Chemistry B, 2019, 7, 314-323.	2.9	33
210	Photochemical property of two Ru(II) compounds based on 5-(2-pyrazinyl)tetrazole for cancer phototherapy by changing auxiliary ligand. Journal of Inorganic Biochemistry, 2019, 193, 124-129.	1.5	24
211	Molecular Theranostic Agents for Photodynamic Therapy (PDT) and Magnetic Resonance Imaging (MRI). Inorganics, 2019, 7, 10.	1.2	20
212	Reductive surfactant-assisted one-step fabrication of a BiOl/BiOlO ₃ heterojunction biophotocatalyst for enhanced photodynamic theranostics overcoming tumor hypoxia. Nanoscale Horizons, 2019, 4, 720-726.	4.1	58
213	Turn-On Supramolecular Host-Guest Nanosystems as Theranostics for Cancer. CheM, 2019, 5, 553-574.	5.8	87
214	Type I photodynamic therapy by organic–inorganic hybrid materials: From strategies to applications. Coordination Chemistry Reviews, 2019, 395, 46-62.	9.5	187
215	Singlet Oxygen Sensor Green is not a Suitable Probe for 1O2 in the Presence of Ionizing Radiation. Scientific Reports, 2019, 9, 8393.	1.6	29
216	Bioengineering of Metal-organic Frameworks for Nanomedicine. Theranostics, 2019, 9, 3122-3133.	4.6	108

#	Article	IF	CITATIONS
217	Reactive oxygen species-responsive theranostic nanoparticles for enhanced hypoxic tumor photodynamic therapy <i>via</i> synchronous HIF-1α inhibition and ATP depletion. Materials Chemistry Frontiers, 2019, 3, 1793-1799.	3.2	14
218	Guanidine-modified cyclometalated iridium(III) complexes for mitochondria-targeted imaging and photodynamic therapy. European Journal of Medicinal Chemistry, 2019, 179, 26-37.	2.6	48
219	Rejuvenated Photodynamic Therapy for Bacterial Infections. Advanced Healthcare Materials, 2019, 8, e1900608.	3.9	252
220	Sandwich-Structured Upconversion Nanoprobes Coated with a Thin Silica Layer for Mitochondria-Targeted Cooperative Photodynamic Therapy for Solid Malignant Tumors. Analytical Chemistry, 2019, 91, 8549-8557.	3.2	32
221	A Redox Stimulation-Activated Amphiphile for Enhanced Photodynamic Therapy. Biomacromolecules, 2019, 20, 2796-2808.	2.6	25
222	Sequential Protein-Responsive Nanophotosensitizer Complex for Enhancing Tumor-Specific Therapy. ACS Nano, 2019, 13, 6702-6710.	7.3	52
223	Tumor Reoxygenation and Blood Perfusion Enhanced Photodynamic Therapy using Ultrathin Graphdiyne Oxide Nanosheets. Nano Letters, 2019, 19, 4060-4067.	4.5	118
224	Boosting Cancer Therapy with Organelle-Targeted Nanomaterials. ACS Applied Materials & Interfaces, 2019, 11, 26529-26558.	4.0	159
225	X-ray-activated nanosystems for theranostic applications. Chemical Society Reviews, 2019, 48, 3073-3101.	18.7	231
226	Facile Phototherapeutic Nanoplatform by Integrating a Multifunctional Polymer and MnO ₂ for Enhancing Tumor Synergistic Therapy. Advanced Healthcare Materials, 2019, 8, e1900414.	3.9	34
227	ROS-sensitive biomimetic nanocarriers modulate tumor hypoxia for synergistic photodynamic chemotherapy. Biomaterials Science, 2019, 7, 3706-3716.	2.6	53
228	Light triggered oxygen-affording engines for repeated hypoxia-resistant photodynamic therapy. Journal of Controlled Release, 2019, 307, 44-54.	4.8	70
229	Ferroptosis Promotes Photodynamic Therapy: Supramolecular Photosensitizer-Inducer Nanodrug for Enhanced Cancer Treatment. Theranostics, 2019, 9, 3293-3307.	4.6	177
230	Monodispersed Copper(I)â€Based Nano Metal–Organic Framework as a Biodegradable Drug Carrier with Enhanced Photodynamic Therapy Efficacy. Advanced Science, 2019, 6, 1900848.	5.6	147
231	Development of a red absorbing Se-rhodamine photosensitizer and its application for bio-orthogonally activatable photodynamic therapy. Chemical Communications, 2019, 55, 7037-7040.	2.2	24
232	Photosensitizers for Photodynamic Therapy. Advanced Healthcare Materials, 2019, 8, e1900132.	3.9	637
233	Clinical efficacy of photodynamic therapy as an adjunct to scaling and root planing in the treatment of chronic periodontitis among cigarette smokers: A systematic review and meta-analysis. Photodiagnosis and Photodynamic Therapy, 2019, 26, 334-341.	1.3	54
234	Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chemical Society Reviews, 2019, 48, 2967-3014.	18.7	389

#	Article	IF	CITATIONS
235	Heavy atom free 1,1,4,4-tetraphenylbuta-1,3-diene with aggregation induced emission for photodynamic cancer therapy. New Journal of Chemistry, 2019, 43, 9183-9187.	1.4	8
236	Fabrication of red blood cell membrane-camouflaged Cu _{2â^`x} Se nanoparticles for phototherapy in the second near-infrared window. Chemical Communications, 2019, 55, 6523-6526.	2.2	31
237	A Bacteriochlorinâ€Based Metal–Organic Framework Nanosheet Superoxide Radical Generator for Photoacoustic Imagingâ€Guided Highly Efficient Photodynamic Therapy. Advanced Science, 2019, 6, 1900530.	5.6	105
238	Persistent Regulation of Tumor Microenvironment via Circulating Catalysis of MnFe ₂ O ₄ @Metal–Organic Frameworks for Enhanced Photodynamic Therapy. Advanced Functional Materials, 2019, 29, 1901417.	7.8	217
239	A Distinctive Spinachâ€Based Carbon Nanomaterial with Chlorophyllâ€Rich and Nearâ€Infrared Emission for Simultaneous In Vivo Biothiol Imaging and Dualâ€Enhanced Photodynamic Therapy of Tumor. Advanced Therapeutics, 2019, 2, 1900011.	1.6	13
240	Gold Cube-in-Cube Based Oxygen Nanogenerator: A Theranostic Nanoplatform for Modulating Tumor Microenvironment for Precise Chemo-Phototherapy and Multimodal Imaging. ACS Nano, 2019, 13, 5306-5325.	7.3	195
241	A fluorescence and photoactivity dual-activatable prodrug with self-synergistic magnification of the anticancer effect. Materials Chemistry Frontiers, 2019, 3, 1349-1356.	3.2	20
242	Cascadeâ€amplification of therapeutic efficacy: An emerging opportunity in cancer treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1555.	3.3	4
243	Pyridone-containing phenalenone-based photosensitizer working both under light and in the dark for photodynamic therapy. Bioorganic and Medicinal Chemistry, 2019, 27, 2201-2208.	1.4	12
244	Organic Photodynamic Nanoinhibitor for Synergistic Cancer Therapy. Angewandte Chemie, 2019, 131, 8245-8249.	1.6	20
245	Protein Shell-Encapsulated Pt Clusters as Continuous O ₂ -Supplied Biocoats for Photodynamic Therapy in Hypoxic Cancer Cells. ACS Applied Materials & Interfaces, 2019, 11, 17215-17225.	4.0	37
246	Recent advances in photodynamic therapy for cancer and infectious diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1560.	3.3	113
247	An oxygen self-sufficient NIR-responsive nanosystem for enhanced PDT and chemotherapy against hypoxic tumors. Chemical Science, 2019, 10, 5766-5772.	3.7	91
248	Listeria innocua Dps as a nanoplatform for bioluminescence based photodynamic therapy utilizing Gaussia princeps luciferase and zinc protoporphyrin IX. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 102005.	1.7	13
249	Organic Photodynamic Nanoinhibitor for Synergistic Cancer Therapy. Angewandte Chemie - International Edition, 2019, 58, 8161-8165.	7.2	183
250	Light-Enhanced O ₂ -Evolving Nanoparticles Boost Photodynamic Therapy To Elicit Antitumor Immunity. ACS Applied Materials & Interfaces, 2019, 11, 16367-16379.	4.0	90
251	Tuning photosensitized singlet oxygen production from microgels synthesized by polymerization in aqueous dispersed media. Polymer Chemistry, 2019, 10, 3170-3179.	1.9	12
252	Biodegradable Biomimic Copper/Manganese Silicate Nanospheres for Chemodynamic/Photodynamic Synergistic Therapy with Simultaneous Glutathione Depletion and Hypoxia Relief. ACS Nano, 2019, 13, 4267-4277.	7.3	513

#	Article	IF	CITATIONS
253	A Versatile Theranostic Nanoemulsion for Architectureâ€Đependent Multimodal Imaging and Dually Augmented Photodynamic Therapy. Advanced Materials, 2019, 31, e1806444.	11.1	124
254	Glucose Oxidaseâ€Instructed Multimodal Synergistic Cancer Therapy. Advanced Materials, 2019, 31, e1808325.	11.1	409
255	Synthesis of an Oxidation-Sensitive Polyphosphoester Bearing Thioether Group for Triggered Drug Release. Biomacromolecules, 2019, 20, 1740-1747.	2.6	42
256	Nanoliposomes Co-Encapsulating CT Imaging Contrast Agent and Photosensitizer for Enhanced, Imaging Guided Photodynamic Therapy of Cancer. Theranostics, 2019, 9, 1323-1335.	4.6	64
257	Semiconducting Perylene Diimide Nanostructure: Multifunctional Phototheranostic Nanoplatform. Accounts of Chemical Research, 2019, 52, 1245-1254.	7.6	138
258	Combating Multidrug Resistance through an NIR-Triggered Cyanine-Containing Amphiphilic Block Copolymer. ACS Applied Bio Materials, 2019, 2, 1862-1874.	2.3	6
259	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	23.0	1,519
260	Heavy atom-free semiconducting polymer with high singlet oxygen quantum yield for prostate cancer synergistic phototherapy. Materials Chemistry Frontiers, 2019, 3, 1123-1127.	3.2	37
261	Nanoscaled porphyrinic metal–organic framework for photodynamic/photothermal therapy of tumor. Electrophoresis, 2019, 40, 2204-2210.	1.3	22
262	Sequential catalytic nanomedicine augments synergistic chemodrug and chemodynamic cancer therapy. Nanoscale Horizons, 2019, 4, 890-901.	4.1	42
263	Breaking the Depth Dependence by Nanotechnologyâ€Enhanced Xâ€Rayâ€Excited Deep Cancer Theranostics. Advanced Materials, 2019, 31, e1806381.	11.1	125
264	Biomimetic Metal–Organic Framework Nanoparticles for Cooperative Combination of Antiangiogenesis and Photodynamic Therapy for Enhanced Efficacy. Advanced Materials, 2019, 31, e1808200.	11.1	307
265	Boron Dipyrromethene Nanoâ€Photosensitizers for Anticancer Phototherapies. Small, 2019, 15, e1804927.	5.2	135
266	Energyâ€Converting Nanomedicine. Small, 2019, 15, e1805339.	5.2	82
267	Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Materials Science and Engineering Reports, 2019, 137, 66-105.	14.8	119
268	Transferrin Receptorâ€Mediated Sequential Intercellular Nanoparticles Relay for Tumor Deep Penetration and Sonodynamic Therapy. Advanced Therapeutics, 2019, 2, 1800152.	1.6	24
269	Depletion of collagen by losartan to improve tumor accumulation and therapeutic efficacy of photodynamic nanoplatforms. Drug Delivery and Translational Research, 2019, 9, 615-624.	3.0	20
270	Evolution of Nanoparticle-Mediated Photodynamic Therapy: From Superficial to Deep-Seated Cancers. Molecules, 2019, 24, 520.	1.7	72

#	Article	IF	CITATIONS
271	Gold Nanoparticle-Decorated g-C ₃ N ₄ Nanosheets for Controlled Generation of Reactive Oxygen Species upon 670 nm Laser Illumination. ACS Applied Materials & Interfaces, 2019, 11, 10589-10596.	4.0	75
272	Thieno[3,2- <i>b</i>]thiophene-DPP based near-infrared nanotheranostic agent for dual imaging-guided photothermal/photodynamic synergistic therapy. Journal of Materials Chemistry B, 2019, 7, 2454-2462.	2.9	23
273	Assembly of upconversion nanophotosensitizer in vivo to achieve scatheless real-time imaging and selective photodynamic therapy. Biomaterials, 2019, 201, 33-41.	5.7	53
274	Effect of Tm3+ Concentration on the Generation of Reactive Oxygen Species in NaYb1–ÂxF4:\$\${ext{Tm}}_{x}^{{3 + }}\$ for the Multifunctional Photosensitizer. Russian Journal of Physical Chemistry A, 2019, 93, 2744-2748.	0.1	0
275	Photoswitchable phthalocyanine-assembled nanoparticles for controlled "double-lock― photodynamic therapy. Chemical Communications, 2019, 55, 12316-12319.	2.2	18
276	One-pot synthesis of carbon dots with intrinsic folic acid for synergistic imaging-guided photothermal therapy of prostate cancer cells. Biomaterials Science, 2019, 7, 5187-5196.	2.6	52
277	Recent progress in the augmentation of reactive species with nanoplatforms for cancer therapy. Nanoscale, 2019, 11, 19658-19683.	2.8	90
278	Natural-Origin Hypocrellin-HSA Assembly for Highly Efficient NIR Light-Responsive Phototheranostics against Hypoxic Tumors. ACS Applied Materials & Interfaces, 2019, 11, 44989-44998.	4.0	27
279	Selenadiazolobenzotriazole based near infrared dyes with enhanced intramolecular charge transfer and photothermal effect: Synthesis, characterization and photophysical properties. Dyes and Pigments, 2019, 160, 683-691.	2.0	15
280	Recent Advances in Subcellular Targeted Cancer Therapy Based on Functional Materials. Advanced Materials, 2019, 31, e1802725.	11.1	230
281	Investigating Dynamic Molecular Events in Melanoma Cell Nucleus During Photodynamic Therapy by SERS. Frontiers in Chemistry, 2018, 6, 665.	1.8	21
282	A Crossâ€linked Conjugated Polymer Photosensitizer Enables Efficient Sunlightâ€Induced Photooxidation. Angewandte Chemie, 2019, 131, 3094-3098.	1.6	7
283	The photodynamic activity and toxicity evaluation of 5,10,15-tris(ethoxylcarbonyl)corrole phosphorus(V) in vivo and in vitro. European Journal of Medicinal Chemistry, 2019, 163, 779-786.	2.6	25
284	A biomimetic cascade nanoreactor for tumor targeted starvation therapy-amplified chemotherapy. Biomaterials, 2019, 195, 75-85.	5.7	127
285	Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way. Advanced Healthcare Materials, 2019, 8, e1801381.	3.9	270
286	Hydrogen Peroxide Responsive Iron–Based Nanoplatform for Multimodal Imaging–Guided Cancer Therapy. Small, 2019, 15, e1803791.	5.2	58
287	Ultrasensitive redox-responsive porphyrin-based polymeric nanoparticles for enhanced photodynamic therapy. European Polymer Journal, 2019, 110, 344-354.	2.6	16
288	Superoxide Radical Photogenerator with Amplification Effect: Surmounting the Achilles' Heels of Photodynamic Oncotherapy. Journal of the American Chemical Society, 2019, 141, 2695-2702.	6.6	238

#	Article	IF	CITATIONS
289	Nearâ€Infraredâ€Light Activatable Nanoparticles for Deepâ€Tissueâ€Penetrating Wireless Optogenetics. Advanced Healthcare Materials, 2019, 8, e1801132.	3.9	94
290	Interference-free surface-enhanced Raman scattering nanosensor for imaging and dynamic monitoring of reactive oxygen species in mitochondria during photothermal therapy. Sensors and Actuators B: Chemical, 2019, 285, 84-91.	4.0	25
291	Heme metabolism as a therapeutic target against protozoan parasites. Journal of Drug Targeting, 2019, 27, 767-779.	2.1	8
292	Dual-photosensitizer coupled nanoscintillator capable of producing type I and type II ROS for next generation photodynamic therapy. Journal of Colloid and Interface Science, 2019, 536, 586-597.	5.0	23
293	Self-assembled zinc phthalocyanine nanoparticles as excellent photothermal/photodynamic synergistic agent for antitumor treatment. Chemical Engineering Journal, 2019, 361, 117-128.	6.6	83
294	A Crossâ€linked Conjugated Polymer Photosensitizer Enables Efficient Sunlightâ€Induced Photooxidation. Angewandte Chemie - International Edition, 2019, 58, 3062-3066.	7.2	45
295	Elucidating the mode of action for thiophene-based organic D-ï€-A sensitizers for use in photodynamic therapy. Bioorganic and Medicinal Chemistry, 2019, 27, 315-321.	1.4	7
296	Transition metal compounds as cancer radiosensitizers. Chemical Society Reviews, 2019, 48, 540-557.	18.7	89
297	Enhanced photodynamic efficiency of methylene blue with controlled aggregation state in silica-methylene bule-acetate@tannic acid-iron(III) ions complexes. Dyes and Pigments, 2019, 160, 663-670.	2.0	14
298	Fluorescent Inorganicâ€Organic Hybrid Nanoparticles. ChemNanoMat, 2019, 5, 24-45.	1.5	20
299	Photothermal therapy and photoacoustic imaging <i>via</i> nanotheranostics in fighting cancer. Chemical Society Reviews, 2019, 48, 2053-2108.	18.7	2,033
300	Rational Design of Phosphorescent Iridium(III) Complexes for Selective Glutathione Sensing and Amplified Photodynamic Therapy. ChemBioChem, 2019, 20, 576-586.	1.3	21
301	A photosensitizer-loaded zinc oxide-polydopamine core-shell nanotherapeutic agent for photodynamic and photothermal synergistic therapy of cancer cells. Chinese Chemical Letters, 2020, 31, 189-192.	4.8	42
302	Regulating the Photophysical Property of Organic/Polymer Optical Agents for Promoted Cancer Phototheranostics. Advanced Materials, 2020, 32, e1806331.	11.1	231
303	Nucleus targeting anthraquinone-based copper (II) complexes as the potent PDT agents: Synthesis, photo-physical and theoretical evaluation. Inorganica Chimica Acta, 2020, 500, 119208.	1.2	16
304	Insight into the efficiency of oxygen introduced photodynamic therapy (PDT) and deep PDT against cancers with various assembled nanocarriers. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1583.	3.3	51
305	Relationship between heart rate variability and aggressive behavior among patients with schizophrenia hospitalized in acute wards. Perspectives in Psychiatric Care, 2020, 56, 321-329.	0.9	7
306	Central metal-derived co-assembly of biomimetic GdTPP/ZnTPP porphyrin nanocomposites for enhanced dual-modal imaging-guided photodynamic therapy. Biomaterials, 2020, 229, 119576.	5.7	48

#	Article	IF	CITATIONS
307	Layer structured LDH_ZnPcG4-FA nanoplatform for targeted and imaging guided chemo-photodynamic therapy mediated by 650†nm light. Chemical Engineering Journal, 2020, 382, 122847.	6.6	12
308	Self-assembled nanostructured photosensitizer with aggregation-induced emission for enhanced photodynamic anticancer therapy. Science China Materials, 2020, 63, 136-146.	3.5	25
309	Janus macromolecular brushes for synergistic cascade-amplified photodynamic therapy and enhanced chemotherapy. Acta Biomaterialia, 2020, 101, 495-506.	4.1	42
310	Hypericin and its radio iodinated derivatives – A novel combined approach for the treatment of pediatric alveolar rhabdomyosarcoma cells in vitro. Photodiagnosis and Photodynamic Therapy, 2020, 29, 101588.	1.3	12
311	Construction of FRETâ€Based Offâ€On Fluorescent Nanoprobes for Sensitive Detection of Intracellular Singlet Oxygen. ChemNanoMat, 2020, 6, 232-238.	1.5	9
312	Tuning the SOCT-ISC of bodipy based photosentizers by introducing different electron donating groups and its application in triplet-triplet-annihilation upconversion. Dyes and Pigments, 2020, 173, 108003.	2.0	19
313	In Situ Polymerized Hollow Mesoporous Organosilica Biocatalysis Nanoreactor for Enhancing ROSâ€Mediated Anticancer Therapy. Advanced Functional Materials, 2020, 30, 1907716.	7.8	136
314	GSHâ€Depleted PtCu ₃ Nanocages for Chemodynamic―Enhanced Sonodynamic Cancer Therapy. Advanced Functional Materials, 2020, 30, 1907954.	7.8	352
315	Photosynthetic Tumor Oxygenation by Photosensitizerâ€Containing Cyanobacteria for Enhanced Photodynamic Therapy. Angewandte Chemie, 2020, 132, 1922-1929.	1.6	20
316	Photosynthetic Tumor Oxygenation by Photosensitizerâ€Containing Cyanobacteria for Enhanced Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 1906-1913.	7.2	131
317	Smart supercapacitors from materials to devices. InformaÄnÃ-Materiály, 2020, 2, 113-125.	8.5	145
318	Functional two-photon cationic targeted photosensitizers for deep-seated tumor imaging and therapy. Sensors and Actuators B: Chemical, 2020, 304, 127310.	4.0	27
319	A Phototheranostic Strategy to Continuously Deliver Singlet Oxygen in the Dark and Hypoxic Tumor Microenvironment. Angewandte Chemie - International Edition, 2020, 59, 8833-8838.	7.2	139
320	<i>In vivo</i> therapeutic response monitoring by a self-reporting upconverting covalent organic framework nanoplatform. Chemical Science, 2020, 11, 1299-1306.	3.7	83
321	Reactive oxygen species-activatable camptothecin polyprodrug based dextran enhances chemotherapy efficacy by damaging mitochondria. Journal of Materials Chemistry B, 2020, 8, 1245-1255.	2.9	9
322	pH stimulus-disaggregated BODIPY: an activated photodynamic/photothermal sensitizer applicable to tumor ablation. Chemical Communications, 2020, 56, 1956-1959.	2.2	42
323	Microenvironment-activated nanoparticles for oxygen self-supplemented photodynamic cancer therapy. Biomaterials Science, 2020, 8, 370-378.	2.6	17
324	Peroxynitrite (ONOO ^{â^'}) generation from the HA-TPP@NORM nanoparticles based on synergistic interactions between nitric oxide and photodynamic therapies for elevating anticancer efficiency. New Journal of Chemistry, 2020, 44, 162-170.	1.4	16

#	Article	IF	CITATIONS
325	MnO ₂ @Ce6-loaded mesenchymal stem cells as an "oxygen-laden guided-missile―for the enhanced photodynamic therapy on lung cancer. Nanoscale, 2020, 12, 3090-3102.	2.8	50
326	Recent advances and prospects of carbon dots in cancer nanotheranostics. Materials Chemistry Frontiers, 2020, 4, 449-471.	3.2	101
327	Boosting the photodynamic therapy efficiency by using stimuli-responsive and AIE-featured nanoparticles. Biomaterials, 2020, 232, 119749.	5.7	80
328	A hollow Cu9S8 theranostic nanoplatform based on a combination of increased active sites and photothermal performance in enhanced chemodynamic therapy. Chemical Engineering Journal, 2020, 385, 123925.	6.6	69
329	Gold Nanoshell-Linear Tetrapyrrole Conjugates for Near Infrared-Activated Dual Photodynamic and Photothermal Therapies. ACS Omega, 2020, 5, 926-940.	1.6	51
330	Oxygen-Dependent Regulation of Excited-State Deactivation Process of Rational Photosensitizer for Smart Phototherapy. Journal of the American Chemical Society, 2020, 142, 1510-1517.	6.6	167
331	Solarâ€Inspired Water Purification Based on Emerging 2D Materials: Status and Challenges. Solar Rrl, 2020, 4, 1900400.	3.1	133
332	Hypocrellin Derivative‣oaded Calcium Phosphate Nanorods as NIR Lightâ€Triggered Phototheranostic Agents with Enhanced Tumor Accumulation for Cancer Therapy. ChemMedChem, 2020, 15, 177-181.	1.6	10
333	Multifunctional therapeutic strategy of Ag-synergized dual-modality upconversion nanoparticles to achieve the rapid and sustained cidality of methicillin-resistant Staphylococcus aureus. Chemical Engineering Journal, 2020, 385, 123980.	6.6	35
334	Irradiation-free photodynamic therapy in vivo induced by enhanced deep red afterglow within NIR-I bio-window. Chemical Engineering Journal, 2020, 387, 124067.	6.6	29
335	Precise photodynamic therapy: Penetrating the nuclear envelope with photosensitive carbon dots. Carbon, 2020, 159, 74-82.	5.4	57
336	Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics, 2020, 10, 757-781.	4.6	152
337	Intelligent nanoenzyme for T1-weighted MRI guided theranostic applications. Chemical Engineering Journal, 2020, 391, 123609.	6.6	32
338	Red blood cell membrane-enveloped O ₂ self-supplementing biomimetic nanoparticles for tumor imaging-guided enhanced sonodynamic therapy. Theranostics, 2020, 10, 867-879.	4.6	117
339	Optical imaging and pH-awakening therapy of deep tissue cancer based on specific upconversion nanophotosensitizers. Biomaterials, 2020, 230, 119637.	5.7	29
340	Light Irradiation of Gold Nanoparticles Toward Advanced Cancer Therapeutics. Advanced Therapeutics, 2020, 3, 1900153.	1.6	34
341	Crown- and phosphoryl-containing metal phthalocyanines in solutions of poly(N-vinylpyrrolidone): Supramolecular organization, accumulation in cells, photo-induced generation of reactive oxygen species, and cytotoxicity. Journal of Photochemistry and Photobiology B: Biology, 2020, 202, 111722.	1.7	7
342	Recent Advances in Nanomaterialâ€Assisted Combinational Sonodynamic Cancer Therapy. Advanced Materials, 2020, 32, e2003214.	11.1	333

#	Article	IF	CITATIONS
343	Recent development of amorphous metal coordination polymers for cancer therapy. Acta Biomaterialia, 2020, 116, 16-31.	4.1	30
344	Iron chelation promotes 5-aminolaevulinic acid-based photodynamic therapy against oral tongue squamous cell carcinoma. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101907.	1.3	5
345	Modification of Hypoxic States in Photodynamic Therapy. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2020, 14, 184-193.	0.3	1
346	An NIRâ€IIâ€Emissive Photosensitizer for Hypoxiaâ€Tolerant Photodynamic Theranostics. Advanced Materials, 2020, 32, e2003471.	11.1	150
347	Fe-TCPP@CS nanoparticles as photodynamic and photothermal agents for efficient antimicrobial therapy. Biomaterials Science, 2020, 8, 6526-6532.	2.6	36
348	Thionated organic compounds as emerging heavy-atom-free photodynamic therapy agents. Chemical Science, 2020, 11, 11113-11123.	3.7	49
349	Recent advances in cytotoxicity, cellular uptake and mechanism of action of ruthenium metallodrugs: A review. Polyhedron, 2020, 192, 114827.	1.0	26
350	A two-photon fluorescence self-reporting black phosphorus nanoprobe for the <i>in situ</i> monitoring of therapy response. Chemical Communications, 2020, 56, 14007-14010.	2.2	10
351	Carbon nanocage-based nanozyme as an endogenous H ₂ O ₂ -activated oxygenerator for real-time bimodal imaging and enhanced phototherapy of esophageal cancer. Nanoscale, 2020, 12, 21674-21686.	2.8	33
352	Six Birds with One Stone: Versatile Nanoporphyrin for Single‣aserâ€Triggered Synergistic Phototheranostics and Robust Immune Activation. Advanced Materials, 2020, 32, e2004481.	11.1	89
354	Bone-Targeting Prodrug Mesoporous Silica-Based Nanoreactor with Reactive Oxygen Species Burst for Enhanced Chemotherapy. ACS Applied Materials & amp; Interfaces, 2020, 12, 34630-34642.	4.0	24
355	Dual-targeted photothermal agents for enhanced cancer therapy. Chemical Science, 2020, 11, 8055-8072.	3.7	60
356	Biocompatible Fe-Hematoporphyrin coordination nanoplatforms with efficient sonodynamic-chemo effects on deep-seated tumors. Biomaterials, 2020, 257, 120239.	5.7	71
357	Rational design of type I photosensitizers based on Ru(<scp>ii</scp>) complexes for effective photodynamic therapy under hypoxia. Dalton Transactions, 2020, 49, 11192-11200.	1.6	23
358	Recent advances in strategies for overcoming hypoxia in photodynamic therapy of cancer. Cancer Letters, 2020, 492, 116-135.	3.2	67
359	Reactive Oxygen Species Activatable Heterodimeric Prodrug as Tumor-Selective Nanotheranostics. ACS Nano, 2020, 14, 16875-16886.	7.3	45
360	Photocatalytic Materials: An Apollo's Arrow to Tumor Cells. Trends in Chemistry, 2020, 2, 1126-1140.	4.4	14
361	Bioactive metal-containing nanomaterials for ferroptotic cancer therapy. Journal of Materials Chemistry B, 2020, 8, 10461-10473.	2.9	20

#	Article	IF	CITATIONS
362	Biodegradable Fe-Doped Vanadium Disulfide Theranostic Nanosheets for Enhanced Sonodynamic/Chemodynamic Therapy. ACS Applied Materials & Interfaces, 2020, 12, 52370-52382.	4.0	73
363	Tumorâ€Microenvironmentâ€Activated In Situ Selfâ€Assembly of Sequentially Responsive Biopolymer for Targeted Photodynamic Therapy. Advanced Functional Materials, 2020, 30, 2000229.	7.8	31
364	Triazole-based osmium(<scp>ii</scp>) complexes displaying red/near-IR luminescence: antimicrobial activity and super-resolution imaging. Chemical Science, 2020, 11, 8928-8935.	3.7	22
365	An on-demand nanoplatform for enhanced elimination of drug-resistant bacteria. Biomaterials Science, 2020, 8, 6912-6919.	2.6	3
366	Photodynamic Therapy of Cancers With Internal Light Sources: Chemiluminescence, Bioluminescence, and Cerenkov Radiation. Frontiers in Chemistry, 2020, 8, 770.	1.8	26
367	Enhanced photodynamic therapy through supramolecular photosensitizers with an adamantyl-functionalized porphyrin and a cyclodextrin dimer. Chemical Communications, 2020, 56, 11134-11137.	2.2	17
368	Materdicine: Interdiscipline of materials and medicine. View, 2020, 1, 20200016.	2.7	22
369	Bioinspired Copper Singleâ€Atom Catalysts for Tumor Parallel Catalytic Therapy. Advanced Materials, 2020, 32, e2002246.	11.1	230
370	Porous Lanthanumâ€Doped Manganese Oxide Nanoparticles for Enhanced Sonodynamic Cancer Therapy. Particle and Particle Systems Characterization, 2020, 37, 2000143.	1.2	13
371	A tumor-microenvironment fully responsive nano-platform for MRI-guided photodynamic and photothermal synergistic therapy. Journal of Materials Chemistry B, 2020, 8, 8271-8281.	2.9	32
372	Near-infrared and metal-free tetra(butylamino)phthalocyanine nanoparticles for dual modal cancer phototherapy. RSC Advances, 2020, 10, 25958-25965.	1.7	1
373	Clinical development and potential of photothermal and photodynamic therapies for cancer. Nature Reviews Clinical Oncology, 2020, 17, 657-674.	12.5	1,622
374	Recent advances in theranostic agents based on natural products for photodynamic and sonodynamic therapy. View, 2020, 1, 20200090.	2.7	31
375	Laser-Responsive Polymeric Nanomicelles to Subdue Tumor Multidrug Resistance Based on Mild Photodynamic Therapy and Chemotherapy. ACS Applied Nano Materials, 2020, 3, 6702-6710.	2.4	10
376	Recent advances in nanomaterials for sonodynamic therapy. Nano Research, 2020, 13, 2898-2908.	5.8	89
377	Near-Infrared Light-Initiated Upconversion Nanoplatform with Tumor Microenvironment Responsiveness for Improved Photodynamic Therapy. ACS Applied Bio Materials, 2020, 3, 5813-5823.	2.3	14
378	Synthesis of Radioluminescent CaF2:Ln Core, Mesoporous Silica Shell Nanoparticles for Use in X-ray Based Theranostics. Nanomaterials, 2020, 10, 1447.	1.9	5
379	Functional organic dyes for healthâ€related applications. View, 2020, 1, 20200055.	2.7	64

#	Article	IF	CITATIONS
380	Aggregationâ€Induced Emission Luminogens Married to 2D Black Phosphorus Nanosheets for Highly Efficient Multimodal Theranostics. Advanced Materials, 2020, 32, e2003382.	11.1	110
381	Organelle-localized radiosensitizers. Chemical Communications, 2020, 56, 10621-10630.	2.2	36
382	Remote Control of Neural Stem Cell Fate Using NIR-Responsive Photoswitching Upconversion Nanoparticle Constructs. ACS Applied Materials & amp; Interfaces, 2020, 12, 40031-40041.	4.0	16
383	Accompanying photocytotoxic activity of gold nanoechinus and zinc phthalocyanine on cancerous cell lines. Photodiagnosis and Photodynamic Therapy, 2020, 32, 101929.	1.3	4
384	Recent Advances in Self-Exciting Photodynamic Therapy. Frontiers in Bioengineering and Biotechnology, 2020, 8, 594491.	2.0	36
385	Synthesis of Zinc Oxide Nanoparticles Coated with Silicon Oxide. Doklady Chemistry, 2020, 492, 69-72.	0.2	1
386	Artificial Metalloprotein Nanoanalogues: In Situ Catalytic Production of Oxygen to Enhance Photoimmunotherapeutic Inhibition of Primary and Abscopal Tumor Growth. Small, 2020, 16, e2004345.	5.2	17
387	Rational Design of a High-Performance Quinoxalinone-Based AlE Photosensitizer for Image-Guided Photodynamic Therapy. ACS Applied Materials & amp; Interfaces, 2020, 12, 42551-42557.	4.0	31
388	Cytokine-induced killer cells-assisted tumor-targeting delivery of Her-2 monoclonal antibody-conjugated gold nanostars with NIR photosensitizer for enhanced therapy of cancer. Journal of Materials Chemistry B, 2020, 8, 8368-8382.	2.9	29
389	Synthesis and In Vitro Studies of a Gd(DOTA)–Porphyrin Conjugate for Combined MRI and Photodynamic Treatment. Inorganic Chemistry, 2020, 59, 14389-14398.	1.9	20
390	Rational design of a "dual lock-and-key―supramolecular photosensitizer based on aromatic nucleophilic substitution for specific and enhanced photodynamic therapy. Chemical Science, 2020, 11, 9703-9711.	3.7	74
391	Core-satellite metal-organic framework@upconversion nanoparticle superstructures via electrostatic self-assembly for efficient photodynamic theranostics. Nano Research, 2020, 13, 3377-3386.	5.8	38
392	A minireview on multiparameter-activated nanodevices for cancer imaging and therapy. Nanoscale, 2020, 12, 21571-21582.	2.8	8
393	A NIR-I light-responsive superoxide radical generator with cancer cell membrane targeting ability for enhanced imaging-guided photodynamic therapy. Chemical Science, 2020, 11, 10279-10286.	3.7	63
394	Endoplasmic reticulum targeted AIE bioprobe as a highly efficient inducer of immunogenic cell death. Science China Chemistry, 2020, 63, 1428-1434.	4.2	109
395	Exploiting radical-pair intersystem crossing for maximizing singlet oxygen quantum yields in pure organic fluorescent photosensitizers. Chemical Science, 2020, 11, 10921-10927.	3.7	17
396	Cavitationâ€Inducible Mesoporous Silica–Titania Nanoparticles for Cancer Sonotheranostics. Advanced Healthcare Materials, 2020, 9, e2000877.	3.9	27
397	Nearâ€Infrared Hypocrellin Derivatives for Synergistic Photodynamic and Photothermal Therapy. Chemistry - an Asian Journal, 2020, 15, 3462-3468.	1.7	12

#	Article	IF	CITATIONS
398	Photodynamic Diagnosis and Therapy for Peritoneal Carcinomatosis: Emerging Perspectives. Cancers, 2020, 12, 2491.	1.7	17
399	A mini-review of X-ray photodynamic therapy (XPDT) nonoagent constituents' safety and relevant design considerations. Photochemical and Photobiological Sciences, 2020, 19, 1134-1144.	1.6	9
400	Design and synthesis of efficient heavy-atom-free photosensitizers for photodynamic therapy of cancer. Chemical Communications, 2020, 56, 11489-11492.	2.2	32
401	Retooling Cancer Nanotherapeutics' Entry into Tumors to Alleviate Tumoral Hypoxia. Small, 2020, 16, e2003000.	5.2	36
402	Boosting type I process of Ru(II) compounds by changing tetrazole ligand for enhanced photodynamic therapy against lung cancer. Journal of Inorganic Biochemistry, 2020, 212, 111236.	1.5	10
403	A combination of electrochemistry and mass spectrometry to monitor the interaction of reactive species with supported lipid bilayers. Scientific Reports, 2020, 10, 18683.	1.6	10
404	Recent Progress in Small Spirocyclic, Xanthene-Based Fluorescent Probes. Molecules, 2020, 25, 5964.	1.7	26
405	Rational Design of Near-Infrared-Absorbing Pt(II)-Chelated Azadipyrromethene Dyes as a New Generation of Photosensitizers for Synergistic Phototherapy. Inorganic Chemistry, 2020, 59, 17826-17833.	1.9	10
406	Plasmonic Hot-Electron Reactive Oxygen Species Generation: Fundamentals for Redox Biology. Frontiers in Chemistry, 2020, 8, 591325.	1.8	22
407	Fenton reaction-based nanomedicine in cancer chemodynamic and synergistic therapy. Applied Materials Today, 2020, 21, 100864.	2.3	71
408	Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer. Advanced Science, 2020, 7, 2003584.	5.6	49
409	GSH and H ₂ O ₂ Coâ€Activatable Mitochondriaâ€Targeted Photodynamic Therapy under Normoxia and Hypoxia. Angewandte Chemie, 2020, 132, 12220-12226.	1.6	99
410	Modulation of tumor microenvironment by metal-organic-framework-derived nanoenzyme for enhancing nucleus-targeted photodynamic therapy. Nano Research, 2020, 13, 1527-1535.	5.8	56
411	Recent Advances in Activatable Organic Photosensitizers for Specific Photodynamic Therapy. ChemPlusChem, 2020, 85, 948-957.	1.3	53
412	Host–guest interaction based supramolecular photodynamic therapy systems: a promising candidate in the battle against cancer. Chemical Communications, 2020, 56, 5865-5876.	2.2	36
413	A Highlyâ€Efficient Type I Photosensitizer with Robust Vascularâ€Disruption Activity for Hypoxicâ€andâ€Metastatic Tumor Specific Photodynamic Therapy. Small, 2020, 16, e2001059.	5.2	116
414	New insights into the synthesis, toxicity and applications of gold nanoparticles in CT imaging and treatment of cancer. Nanomedicine, 2020, 15, 1127-1145.	1.7	33
415	Oxygen Self-Sufficient Core–Shell Metal–Organic Framework-Based Smart Nanoplatform for Enhanced Synergistic Chemotherapy and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2020, 12, 24662-24674.	4.0	70

#	Article	IF	CITATIONS
416	Distinguishing Activities in the Photodynamic Arsenals of the Pigmented Ciliates Blepharisma sinuosum Sawaya, 1940 and Blepharisma japonicum Suzuki, 1954 (Ciliophora: Heterotrichea). Photochemistry and Photobiology, 2020, 96, 1251-1266.	1.3	2
417	Transition metal complexes as photosensitizers for integrated cancer theranostic applications. Coordination Chemistry Reviews, 2020, 418, 213355.	9.5	91
418	Clinical and immunological peri-implant parameters among cigarette and electronic smoking patients treated with photochemotherapy: A randomized controlled clinical trial. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101800.	1.3	29
419	Single-atom replacement as a general approach towards visible-light/near-infrared heavy-atom-free photosensitizers for photodynamic therapy. Chemical Science, 2020, 11, 6701-6708.	3.7	67
420	Recent Advances in Porphyrin-Based Inorganic Nanoparticles for Cancer Treatment. International Journal of Molecular Sciences, 2020, 21, 3358.	1.8	51
421	PEGylated Dimeric BODIPY Photosensitizers as Nanocarriers for Combined Chemotherapy and Cathepsin B-Activated Photodynamic Therapy in 3D Tumor Spheroids. ACS Applied Bio Materials, 2020, 3, 3835-3845.	2.3	18
422	Near-infrared photocontrolled therapeutic release via upconversion nanocomposites. Journal of Controlled Release, 2020, 324, 104-123.	4.8	28
423	The conjugation of targeted therapy and image-guided phototdynamic therapy of cancer in vitro and in vivo. Bioorganic Chemistry, 2020, 100, 103822.	2.0	2
424	Recent progress in nanotechnology based ferroptotic therapies for clinical applications. European Journal of Pharmacology, 2020, 880, 173198.	1.7	22
425	Recent advances in photonanomedicines for enhanced cancer photodynamic therapy. Progress in Materials Science, 2020, 114, 100685.	16.0	128
426	Versatile Nanoplatforms with enhanced Photodynamic Therapy: Designs and Applications. Theranostics, 2020, 10, 7287-7318.	4.6	58
427	A COF-based nanoplatform for highly efficient cancer diagnosis, photodynamic therapy and prognosis. Chemical Science, 2020, 11, 6882-6888.	3.7	87
428	pH and singlet oxygen dual-responsive GEM prodrug micelles for efficient combination therapy of chemotherapy and photodynamic therapy. Journal of Materials Chemistry B, 2020, 8, 5645-5654.	2.9	16
429	Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coordination Chemistry Reviews, 2020, 420, 213410.	9.5	191
430	Magnetic stomatocyte-like nanomotor as photosensitizer carrier for photodynamic therapy based cancer treatment. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111204.	2.5	29
431	Diketopyrrolopyrrole: An emerging phototherapy agent in fighting cancer. Dyes and Pigments, 2020, 181, 108599.	2.0	30
432	Nanocomposites for X-Ray Photodynamic Therapy. International Journal of Molecular Sciences, 2020, 21, 4004.	1.8	27
433	Cascade of reactive oxygen species generation by polyprodrug for combinational photodynamic therapy. Biomaterials, 2020, 255, 120210.	5.7	74

#	Article	IF	CITATIONS
434	Engineering autologous tumor cell vaccine to locally mobilize antitumor immunity in tumor surgical bed. Science Advances, 2020, 6, eaba4024.	4.7	78
435	Effects of Nanoparticle Size and Radiation Energy on Copper-Cysteamine Nanoparticles for X-ray Induced Photodynamic Therapy. Nanomaterials, 2020, 10, 1087.	1.9	22
436	High-efficiency platinum–carbon nanozyme for photodynamic and catalytic synergistic tumor therapy. Chemical Engineering Journal, 2020, 399, 125797.	6.6	35
437	Dancing with reactive oxygen species generation and elimination in nanotheranostics for disease treatment. Advanced Drug Delivery Reviews, 2020, 158, 73-90.	6.6	83
438	Stereospecific interactions between chiral inorganic nanomaterials and biological systems. Chemical Society Reviews, 2020, 49, 2481-2503.	18.7	138
439	Peripheral RAFT Polymerization on a Covalent Organic Polymer with Enhanced Aqueous Compatibility for Controlled Generation of Singlet Oxygen. Angewandte Chemie - International Edition, 2020, 59, 10431-10435.	7.2	25
440	Fabrication of Glycoâ€Metalâ€Organic Frameworks for Targeted Interventional Photodynamic/Chemotherapy for Hepatocellular Carcinoma through Percutaneous Transperitoneal Puncture. Advanced Functional Materials, 2020, 30, 1910084.	7.8	52
441	Hydrogen Peroxide-Activatable Nanoparticles for Luminescence Imaging and <i>In Situ</i> Triggerable Photodynamic Therapy of Cancer. ACS Applied Materials & Interfaces, 2020, 12, 17230-17243.	4.0	53
442	Engineering antigen as photosensitiser nanocarrier to facilitate ROS triggered immune cascade for photodynamic immunotherapy. Biomaterials, 2020, 244, 119964.	5.7	62
443	Lanthanide-Based Nanocomposites for Photothermal Therapy under Near-Infrared Laser: Relationship between Light and Heat, Biostability, and Reaction Temperature. Langmuir, 2020, 36, 4033-4043.	1.6	11
444	Nanogel: A Versatile Nano-Delivery System for Biomedical Applications. Pharmaceutics, 2020, 12, 290.	2.0	140
445	Recent Development of Photothermal Agents (PTAs) Based on Small Organic Molecular Dyes. ChemBioChem, 2020, 21, 2098-2110.	1.3	45
446	MTH1 inhibitor amplifies the lethality of reactive oxygen species to tumor in photodynamic therapy. Science Advances, 2020, 6, eaaz0575.	4.7	59
447	An Oxidationâ€Enhanced Magnetic Resonance Imaging Probe for Visual and Specific Detection of Singlet Oxygen Generated in Photodynamic Cancer Therapy In Vivo. Advanced Healthcare Materials, 2020, 9, e2000533.	3.9	21
448	Rational design of near-infrared platinum(<scp>ii</scp>)-acetylide conjugated polymers for photoacoustic imaging-guided synergistic phototherapy under 808 nm irradiation. Journal of Materials Chemistry B, 2020, 8, 7356-7364.	2.9	14
449	Unusual Oxidative Dealkylation Strategy toward Functionalized Phenalenones as Singlet Oxygen Photosensitizers and Photophysical Studies. Journal of Organic Chemistry, 2020, 85, 10603-10616.	1.7	11
450	Specific-oxygen-supply functionalized core-shell nanoparticles for smart mutual-promotion between photodynamic therapy and gambogic acid-induced chemotherapy. Biomaterials, 2020, 257, 120228.	5.7	52
451	Melanin-instructed biomimetic synthesis of copper sulfide for cancer phototheranostics. Chemical Engineering Journal, 2020, 388, 124232.	6.6	22

#	Article	IF	CITATIONS
452	Familiarity and implementation of academicians of dental schools regarding the application of photodynamic therapy in dentistry: A need to incorporate in the dental curriculum. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101897.	1.3	0
453	Linear Alternating Supramolecular Photosensitizer for Enhanced Photodynamic Therapy. ACS Applied Materials & Interfaces, 2020, 12, 32352-32359.	4.0	33
454	One-Step Self-Assembly of ZnPc/KMnF ₃ : Yb, Er upconversion Photodynamic Therapy System for Antibacterial Applications. Nano, 2020, 15, 2050075.	0.5	4
455	Catalytic rhodium (Rh)-based (mesoporous polydopamine) MPDA nanoparticles with enhanced phototherapeutic efficiency for overcoming tumor hypoxia. Biomaterials Science, 2020, 8, 4157-4165.	2.6	31
456	A ROS responsive nanomedicine with enhanced photodynamic therapy via dual mechanisms: GSH depletion and biosynthesis inhibition. Journal of Photochemistry and Photobiology B: Biology, 2020, 209, 111955.	1.7	16
457	Upconversion Nanoparticle-Induced Multimode Photodynamic Therapy Based on a Metal–Organic Framework/Titanium Dioxide Nanocomposite. ACS Applied Materials & Interfaces, 2020, 12, 12600-12608.	4.0	74
458	Photoinduced Release of DNAâ€Binding Ligands from the [4+4] Dimers of Benzo[<i>b</i>]quinolizinium and Anthracene Derivatives. ChemPhotoChem, 2020, 4, 520-525.	1.5	7
459	Visible Lightâ€Responsive Dynamic Biomaterials: Going Deeper and Triggering More. Advanced Healthcare Materials, 2020, 9, e1901553.	3.9	68
460	Epitope Molecularly Imprinted Polymer Nanoparticles for Chemo-/Photodynamic Synergistic Cancer Therapy Guided by Targeted Fluorescence Imaging. ACS Applied Materials & Interfaces, 2020, 12, 13360-13370.	4.0	63
461	Unimolecular Photodynamic O ₂ -Economizer To Overcome Hypoxia Resistance in Phototherapeutics. Journal of the American Chemical Society, 2020, 142, 5380-5388.	6.6	242
462	Intersystem crossing in tunneling regime: T ₁ → S ₀ relaxation in thiophosgene. Physical Chemistry Chemical Physics, 2020, 22, 5500-5508.	1.3	21
463	Self-assembled CeVO ₄ /Au heterojunction nanocrystals for photothermal/photoacoustic bimodal imaging-guided phototherapy. RSC Advances, 2020, 10, 2581-2588.	1.7	5
464	Tumor-targeted upconverting nanoplatform constructed by host-guest interaction for near-infrared-light-actuated synergistic photodynamic-/chemotherapy. Chemical Engineering Journal, 2020, 390, 124516.	6.6	26
465	Gold-Nanobipyramid-Based Nanotheranostics for Dual-Modality Imaging-Guided Phototherapy. ACS Applied Materials & Interfaces, 2020, 12, 12541-12548.	4.0	31
466	Hybrid nanoparticle composites applied to photodynamic therapy: strategies and applications. Journal of Materials Chemistry B, 2020, 8, 4726-4737.	2.9	48
467	Conjugation of a Scintillator Complex and Gold Nanorods for Dual-Modal Image-Guided Photothermal and X-ray-Induced Photodynamic Therapy of Tumors. ACS Applied Materials & Interfaces, 2020, 12, 12591-12599.	4.0	59
468	Naturally available hypericin undergoes electron transfer for type I photodynamic and photothermal synergistic therapy. Biomaterials Science, 2020, 8, 2481-2487.	2.6	14
469	Rational design of semiconducting polymer brushes as cancer theranostics. Materials Horizons, 2020, 7, 1474-1494.	6.4	40

#	Article	IF	CITATIONS
470	Integration of metal-organic framework with a photoactive porous-organic polymer for interface enhanced phototherapy. Biomaterials, 2020, 235, 119792.	5.7	78
471	Doxorubicin-loaded pH-responsive nanoparticles coated with chlorin e6 for drug delivery and synergetic chemo-photodynamic therapy. Nanotechnology, 2020, 31, 195103.	1.3	19
472	A Phototheranostic Strategy to Continuously Deliver Singlet Oxygen in the Dark and Hypoxic Tumor Microenvironment. Angewandte Chemie, 2020, 132, 8918-8923.	1.6	16
473	Piezoelectric Materials as Sonodynamic Sensitizers to Safely Ablate Tumors: A Case Study Using Black Phosphorus. Journal of Physical Chemistry Letters, 2020, 11, 1228-1238.	2.1	105
474	Homologous-targeting biomimetic nanoparticles for photothermal therapy and Nrf2-siRNA amplified photodynamic therapy against oral tongue squamous cell carcinoma. Chemical Engineering Journal, 2020, 388, 124268.	6.6	35
475	Size-Switchable Nanoparticles with Self-Destructive and Tumor Penetration Characteristics for Site-Specific Phototherapy of Cancer. ACS Applied Materials & Interfaces, 2020, 12, 6933-6943.	4.0	42
476	Enhancing selective photosensitizer accumulation and oxygen supply for high-efficacy photodynamic therapy toward glioma by 5-aminolevulinic acid loaded nanoplatform. Journal of Colloid and Interface Science, 2020, 565, 483-493.	5.0	34
477	Dual-Targeted Phototherapeutic Agents as Magic Bullets for Cancer. Bioconjugate Chemistry, 2020, 31, 474-482.	1.8	33
478	Graphene Oxide Mediated Broad-Spectrum Antibacterial Based on Bimodal Action of Photodynamic and Photothermal Effects. Frontiers in Microbiology, 2019, 10, 2995.	1.5	55
479	Light Sources and Dosimetry Techniques for Photodynamic Therapy. Photochemistry and Photobiology, 2020, 96, 280-294.	1.3	213
480	Highly efficient singlet oxygen generation, two-photon photodynamic therapy and melanoma ablation by rationally designed mitochondria-specific near-infrared AIEgens. Chemical Science, 2020, 11, 2494-2503.	3.7	131
481	Hybrid Nanospheres to Overcome Hypoxia and Intrinsic Oxidative Resistance for Enhanced Photodynamic Therapy. ACS Nano, 2020, 14, 2183-2190.	7.3	151
482	Iridium/ruthenium nanozyme reactors with cascade catalytic ability for synergistic oxidation therapy and starvation therapy in the treatment of breast cancer. Biomaterials, 2020, 238, 119848.	5.7	89
483	Ultrasound-Enhanced Chemo-Photodynamic Combination Therapy by Using Albumin "Nanoglue―Based Nanotheranostics. ACS Nano, 2020, 14, 5560-5569.	7.3	83
484	Auger Electrons Constructed Active Sites on Nanocatalysts for Catalytic Internal Radiotherapy. Advanced Science, 2020, 7, 1903585.	5.6	16
485	Peripheral RAFT Polymerization on a Covalent Organic Polymer with Enhanced Aqueous Compatibility for Controlled Generation of Singlet Oxygen. Angewandte Chemie, 2020, 132, 10517-10521.	1.6	3
486	H ₂ O ₂ â€Responsive Nanogel for Enhancing Chemodynamic Therapy. ChemNanoMat, 2020, 6, 1054-1058.	1.5	14
487	Killing G(+) or G(â^') Bacteria? The Important Role of Molecular Charge in AIEâ€Active Photosensitizers. Small Methods, 2020, 4, 2000046.	4.6	114

#	Article	IF	CITATIONS
488	Synthesis and supramolecular self-assembly of phenothiazine functionalized by carboxyphenyl fragments. Russian Chemical Bulletin, 2020, 69, 333-338.	0.4	7
489	An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy. Nature Communications, 2020, 11, 1735.	5.8	343
490	Boosting O ₂ ^{•â^'} Photogeneration via Promoting Intersystemâ€Crossing and Electronâ€Donating Efficiency of Azaâ€BODIPYâ€Based Nanoplatforms for Hypoxicâ€Tumor Photodynamic Therapy. Small Methods, 2020, 4, 2000013.	4.6	89
491	Dimerization of heavy atom free tetraphenylethylene with aggregation induced emission for boosting photodynamic therapy. New Journal of Chemistry, 2020, 44, 7029-7034.	1.4	4
492	GSH and H ₂ O ₂ Coâ€Activatable Mitochondriaâ€Targeted Photodynamic Therapy under Normoxia and Hypoxia. Angewandte Chemie - International Edition, 2020, 59, 12122-12128.	7.2	143
493	A non-aggregated silicon(IV) phthalocyanine-lactose conjugate for photodynamic therapy. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127164.	1.0	16
494	Boosting two-photon photodynamic therapy with mitochondria-targeting ruthenium–glucose conjugates. Chemical Communications, 2020, 56, 5839-5842.	2.2	27
495	Multicationic AlEgens for unimolecular photodynamic theranostics and two-photon fluorescence bioimaging. Materials Chemistry Frontiers, 2020, 4, 1623-1633.	3.2	20
496	Photogenerated-hole-induced rapid elimination of solid tumors by the supramolecular porphyrin photocatalyst. National Science Review, 2021, 8, nwaa155.	4.6	31
497	An Ethacrynic Acidâ€Brominated BODIPY Photosensitizer (EAâ€BPS) Construct Enhances the Lethality of Reactive Oxygen Species in Hypoxic Tumorâ€Targeted Photodynamic Therapy. Angewandte Chemie - International Edition, 2021, 60, 3196-3204.	7.2	68
498	Enhancement of tumor lethality of ROS in photodynamic therapy. Cancer Medicine, 2021, 10, 257-268.	1.3	70
499	Radioiodinated Persistent Luminescence Nanoplatform for Radiationâ€Induced Photodynamic Therapy and Radiotherapy. Advanced Healthcare Materials, 2021, 10, e2000802.	3.9	33
500	In Vivo-assembled phthalocyanine/albumin supramolecular complexes combined with a hypoxia-activated prodrug for enhanced photodynamic immunotherapy of cancer. Biomaterials, 2021, 266, 120430.	5.7	75
501	Cancer nanotheranostics in the second nearâ€infrared window. View, 2021, 2, 20200075.	2.7	29
502	A multifunctional nano system based on DNA and CeO2 for intracellular imaging of miRNA and enhancing photodynamic therapy. Talanta, 2021, 221, 121554.	2.9	7
503	Photoâ€responsive nanozymes: Mechanism, activity regulation, and biomedical applications. View, 2021, 2, 20200045.	2.7	36
504	A singlet oxygen self-reporting photosensitizer for cancer phototherapy. Chemical Science, 2021, 12, 2515-2520.	3.7	36
505	Development of MOF "Armorâ€Plated―Phycocyanin and Synergistic Inhibition of Cellular Respiration for Hypoxic Photodynamic Therapy in Patientâ€Derived Xenograft Models. Advanced Healthcare Materials, 2021, 10, e2001577.	3.9	25

	CHATION R		
#	Article	IF	CITATIONS
506	Oxygen self-sufficient photodynamic therapy. Coordination Chemistry Reviews, 2021, 432, 213714.	9.5	66
507	Quantitative self-assembly of photoactivatable small molecular prodrug cocktails for safe and potent cancer chemo-photodynamic therapy. Nano Today, 2021, 36, 101030.	6.2	52
508	Integration of IR-808 and thiol-capped Au–Bi bimetallic nanoparticles for NIR light mediated photothermal/photodynamic therapy and imaging. Journal of Materials Chemistry B, 2021, 9, 101-111.	2.9	18
509	Mitochondria‧pecific Agents for Photodynamic Cancer Therapy: A Key Determinant to Boost the Efficacy. Advanced Healthcare Materials, 2021, 10, e2001240.	3.9	42
510	Smart J-aggregate of cyanine photosensitizer with the ability to target tumor and enhance photodynamic therapy efficacy. Biomaterials, 2021, 269, 120532.	5.7	50
511	Which is Better for Nanomedicines: Nanocatalysts or Singleâ€Atom Catalysts?. Advanced Healthcare Materials, 2021, 10, e2001897.	3.9	13
512	1550 nm excitation-responsive upconversion nanoparticles to establish dual-photodynamic therapy against pancreatic tumors. Journal of Materials Chemistry B, 2021, 9, 694-709.	2.9	32
513	Ultrasonic Interfacial Engineering of Red Phosphorous–Metal for Eradicating MRSA Infection Effectively. Advanced Materials, 2021, 33, e2006047.	11.1	93
514	An Ethacrynic Acidâ€Brominated BODIPY Photosensitizer (EAâ€BPS) Construct Enhances the Lethality of Reactive Oxygen Species in Hypoxic Tumorâ€Targeted Photodynamic Therapy. Angewandte Chemie, 2021, 133, 3233-3241.	1.6	6
515	NIR-II luminescence and X-ray induced UV luminescence from Ce3+, Nd3+ co-doped NaLuF4 phosphors. Journal of Alloys and Compounds, 2021, 863, 158062.	2.8	6
517	Dual-light triggered metabolizable nano-micelles for selective tumor-targeted photodynamic/hyperthermia therapy. Acta Biomaterialia, 2021, 119, 323-336.	4.1	25
518	From biology to biology: Hematoporphyrin-melanin nanoconjugates with synergistic sonodynamic-photothermal effects on malignant tumors. Chemical Engineering Journal, 2021, 408, 127282.	6.6	19
519	A heavy atom free semiconducting polymer with high singlet oxygen quantum yield for photodynamic and photothermal synergistic therapy. Materials and Design, 2021, 197, 109263.	3.3	10
520	Nanoprobes with aggregation-induced emission for theranostics. Materials Chemistry Frontiers, 2021, 5, 603-626.	3.2	53
521	Co-delivery of anionic epitope/CpG vaccine and IDO inhibitor by self-assembled cationic liposomes for combination melanoma immunotherapy. Journal of Materials Chemistry B, 2021, 9, 3892-3899.	2.9	18
522	6â€Nitroâ€Quinazolinâ^'4(3 <i>H</i>)â^'one Exhibits Photodynamic Effects and Photodegrades Human Melanoma Cell Lines. A Study on the Photoreactivity of Simple Quinazolinâ^'4(3 <i>H</i>)â^'ones. Photochemistry and Photobiology, 2021, 97, 826-836.	1.3	6
523	Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chemical Society Reviews, 2021, 50, 9152-9201.	18.7	254
524	Intelligent stimuli-responsive nano immunomodulators for cancer immunotherapy. Chemical Science, 2021, 12, 3130-3145.	3.7	26

#	Article	IF	Citations
" 525	Investigating the reactive oxygen species production of Rose Bengal and Merocyanine 540-loaded	2.2	14
020	radioluminescent nanoparticles. Nanoscale Advances, 2021, 3, 1375-1381.	2,2	1
526	Wound healing acceleration by antibacterial biodegradable black phosphorus nanosheets loaded with cationic carbon dots. Journal of Materials Science, 2021, 56, 6411-6426.	1.7	27
527	A new near-infrared phosphorescent iridium(<scp>iii</scp>) complex conjugated to a xanthene dye for mitochondria-targeted photodynamic therapy. Biomaterials Science, 2021, 9, 4843-4853.	2.6	31
528	Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chemical Society Reviews, 2021, 50, 11381-11485.	18.7	129
529	Phenolic-enabled nanotechnology: versatile particle engineering for biomedicine. Chemical Society Reviews, 2021, 50, 4432-4483.	18.7	163
530	Ultra-high photoactive thiadiazolo[3,4- <i>g</i>]quinoxaline nanoparticles with active-targeting capability for deep photodynamic therapy. Journal of Materials Chemistry B, 2021, 9, 8330-8340.	2.9	3
531	Rapid bacterial elimination achieved by sonodynamic Au@Cu ₂ O hybrid nanocubes. Nanoscale, 2021, 13, 15699-15710.	2.8	38
532	A photosensitizer with conformational restriction for enhanced photodynamic therapy. Chemical Communications, 2021, 57, 9100-9103.	2.2	7
533	A DNA tetrahedron-loaded natural photosensitizer with aggregation-induced emission characteristics for boosting fluorescence imaging-guided photodynamic therapy. Materials Chemistry Frontiers, 2021, 5, 5410-5417.	3.2	10
534	Biodegradable Calcium Phosphate Nanotheranostics with Tumorâ€Specific Activatable Cascade Catalytic Reactionsâ€Augmented Photodynamic Therapy. Advanced Functional Materials, 2021, 31, 2009848.	7.8	120
535	Recent advances in phase change material based nanoplatforms for cancer therapy. Nanoscale Advances, 2021, 3, 106-122.	2.2	24
536	Biodegradable FeWO _x nanoparticles for CT/MR imaging-guided synergistic photothermal, photodynamic, and chemodynamic therapy. Nanoscale, 2021, 13, 3049-3060.	2.8	33
537	A porphysome-based photodynamic O ₂ economizer for hypoxic tumor treatment by inhibiting mitochondrial respiration. Chemical Communications, 2021, 57, 4134-4137.	2.2	7
538	Current Advances in Black Phosphorusâ€Based Drug Delivery Systems for Cancer Therapy. Advanced Science, 2021, 8, 2003033.	5.6	70
539	Photodynamic therapy: photosensitizers and nanostructures. Materials Chemistry Frontiers, 2021, 5, 3788-3812.	3.2	92
540	Designing a lysosome targeting nanomedicine for pH-triggered enhanced phototheranostics. Materials Chemistry Frontiers, 2021, 5, 2694-2701.	3.2	9
541	Ru(<scp>ii</scp>), Ir(<scp>iii</scp>), Re(<scp>i</scp>) and Rh(<scp>iii</scp>) based complexes as next generation anticancer metallopharmaceuticals. Dalton Transactions, 2021, 50, 11259-11290.	1.6	23
542	Nano-assembly of ruthenium(<scp>ii</scp>) photosensitizers for endogenous glutathione depletion and enhanced two-photon photodynamic therapy. Nanoscale, 2021, 13, 7590-7599.	2.8	16

#	Article	IF	CITATIONS
543	Recent Advances in Photosensitizers as Multifunctional Theranostic Agents for Imaging-Guided Photodynamic Therapy of Cancer. Theranostics, 2021, 11, 9054-9088.	4.6	85
544	Innovative strategies of hydrogen peroxide-involving tumor therapeutics. Materials Chemistry Frontiers, 2021, 5, 4474-4501.	3.2	16
545	Tuning Nanosiliceous Framework for Enhanced Cancer Theranostic Applications. Advanced Therapeutics, 2021, 4, 2000218.	1.6	10
546	Phototherapy and multimodal imaging of cancers based on perfluorocarbon nanomaterials. Journal of Materials Chemistry B, 2021, 9, 6751-6769.	2.9	15
547	Innovative strategies for enhanced tumor photodynamic therapy. Journal of Materials Chemistry B, 2021, 9, 7347-7370.	2.9	27
548	Supramolecular agents for combination of photodynamic therapy and other treatments. Chemical Science, 2021, 12, 7248-7268.	3.7	82
549	Recent Advances in Photodynamic Therapy for Deep-Seated Tumors with the Aid of Nanomedicine. Biomedicines, 2021, 9, 69.	1.4	44
550	Fluorinated chitosan-mediated intracellular catalase delivery for enhanced photodynamic therapy of oral cancer. Biomaterials Science, 2021, 9, 658-662.	2.6	24
551	Study of Nanomaterials for X-Ray Photodynamic Therapy. Journal of Surface Investigation, 2021, 15, 7-11.	0.1	1
552	Single molecular nanomedicine with NIR light-initiated superoxide radical, singlet oxygen and thermal generation for hypoxia-overcoming cancer therapy. Nanoscale, 2021, 13, 8012-8016.	2.8	7
553	Development of "Smart―Photodynamic Theranostics Agents. , 2021, , 771-786.		0
554	A near-infrared light-excitable immunomodulating nano-photosensitizer for effective photoimmunotherapy. Biomaterials Science, 2021, 9, 4191-4198.	2.6	8
555	UCNP@BSA@Ru nanoparticles with tumor-specific and NIR-triggered efficient PACT activity <i>in vivo</i> . Dalton Transactions, 2021, 50, 7715-7724.	1.6	7
556	Gathering brings strength: How organic aggregates boost disease phototheranostics. Aggregate, 2021, 2, 95-113.	5.2	188
557	A light-controlled multi-step drug release nanosystem targeting tumor hypoxia for synergistic cancer therapy. Chemical Science, 2021, 12, 11810-11820.	3.7	12
558	Recent near-infrared light-activated nanomedicine toward precision cancer therapy. Journal of Materials Chemistry B, 2021, 9, 7076-7099.	2.9	21
559	Silk Sericin-Based Nanoparticle as the Photosensitizer Chlorin e6 Carrier for Enhanced Cancer Photodynamic Therapy. ACS Sustainable Chemistry and Engineering, 2021, 9, 3213-3222.	3.2	7
560	Click Modification of a Metal–Organic Framework for Two-Photon Photodynamic Therapy with Near-Infrared Excitation. ACS Applied Materials & Interfaces, 2021, 13, 9739-9747.	4.0	25

#	Article	IF	CITATIONS
561	Electronic Relaxation Pathways in Heavy-Atom-Free Photosensitizers Absorbing Near-Infrared Radiation and Exhibiting High Yields of Singlet Oxygen Generation. Journal of the American Chemical Society, 2021, 143, 2676-2681.	6.6	38
562	Polydopamineâ€Based Nanoparticles for Photothermal Therapy/Chemotherapy and their Synergistic Therapy with Autophagy Inhibitor to Promote Antitumor Treatment. Chemical Record, 2021, 21, 781-796.	2.9	68
563	Exploiting a Neutral BODIPY Copolymer as an Effective Agent for Photodynamic Antimicrobial Inactivation. Journal of Physical Chemistry B, 2021, 125, 1550-1557.	1.2	4
564	808 nm NIR Laser-Excited Upconversion Nanoplatform for Combinatory Photodynamic and Chemotherapy with Deep Penetration and Acid Bursting Release Performance. ACS Applied Bio Materials, 2021, 4, 2639-2653.	2.3	5
565	Upconversion Nanoparticles Hybridized Cyanobacterial Cells for Nearâ€Infrared Mediated Photosynthesis and Enhanced Photodynamic Therapy. Advanced Functional Materials, 2021, 31, 2010196.	7.8	45
566	Improved cancer phototheranostic efficacy of hydrophobic IR780 via parenteral route by association with tetrahedral nanostructured DNA. Journal of Controlled Release, 2021, 330, 483-492.	4.8	32
567	Emerging Nanomedicineâ€Enabled/Enhanced Nanodynamic Therapies beyond Traditional Photodynamics. Advanced Materials, 2021, 33, e2005062.	11.1	117
568	Highly Efficient Water-Soluble Photosensitizer Based on Chlorin: Synthesis, Characterization, and Evaluation for Photodynamic Therapy. ACS Pharmacology and Translational Science, 2021, 4, 802-812.	2.5	9
569	Fabrication of <scp>PEGylated</scp> porphyrin/reduced graphene oxide/doxorubicin nanoplatform for tumour combination therapy. Polymer International, 2021, 70, 1413-1420.	1.6	2
570	Biomimetic Nanoemulsion for Synergistic Photodynamicâ€Immunotherapy Against Hypoxic Breast Tumor. Angewandte Chemie, 2021, 133, 10742-10748.	1.6	13
571	Nanomaterials for Deep Tumor Treatment. Mini-Reviews in Medicinal Chemistry, 2021, 21, 677-688.	1.1	6
572	NIR photosensitizers activated by Î ³ -glutamyl transpeptidase for precise tumor fluorescence imaging and photodynamic therapy. Science China Chemistry, 2021, 64, 808-816.	4.2	43
573	The effect of imidazole on the singlet oxygen quantum yield of sinoporphyrin sodium. Chemical Physics, 2021, 543, 111090.	0.9	2
574	Self-Illuminated, Oxygen-Supplemented Photodynamic Therapy via a Multienzyme-Mimicking Nanoconjugate. ACS Applied Bio Materials, 2021, 4, 3490-3498.	2.3	7
575	Pillararene-based supramolecular systems for theranostics and bioapplications. Science China Chemistry, 2021, 64, 688-700.	4.2	50
576	Plasmid DNAâ€Based Bioluminescenceâ€Activated System for Photodynamic Therapy in Cancer Treatment. ChemMedChem, 2021, 16, 1967-1974.	1.6	6
577	X-ray-activated, UVA persistent luminescent materials based on Bi-doped SrLaAlO4 for deep-Seated photodynamic activation. Journal of Applied Physics, 2021, 129, .	1.1	17
578	Magnetothermally Triggered Free-Radical Generation for Deep-Seated Tumor Treatment. Nano Letters, 2021, 21, 2926-2931.	4.5	38

#	Article	IF	CITATIONS
579	Inâ€vitro and Inâ€vivo Photocatalytic Cancer Therapy with Biocompatible Iridium(III) Photocatalysts. Angewandte Chemie - International Edition, 2021, 60, 9474-9479.	7.2	89
580	Advances in Nanomaterial-Mediated Photothermal Cancer Therapies: Toward Clinical Applications. Biomedicines, 2021, 9, 305.	1.4	181
581	Recent Advancements in Nanomedicine for â€~Cold' Tumor Immunotherapy. Nano-Micro Letters, 2021, 13, 92.	14.4	41
582	Iridium(III) Complex-Loaded Perfluoropropane Nanobubbles for Enhanced Sonodynamic Therapy. Bioconjugate Chemistry, 2022, 33, 1057-1068.	1.8	7
583	Oxygen-Carrying Polymer Nanoconstructs for Radiodynamic Therapy of Deep Hypoxic Malignant Tumors. Biomedicines, 2021, 9, 322.	1.4	11
584	Inâ€vitro and Inâ€vivo Photocatalytic Cancer Therapy with Biocompatible Iridium(III) Photocatalysts. Angewandte Chemie, 2021, 133, 9560-9565.	1.6	24
585	H ₂ O ₂ -Responsive Gold Nanoclusters @ Mesoporous Silica @ Manganese Dioxide Nanozyme for "Off/On―Modulation and Enhancement of Magnetic Resonance Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 14928-14937.	4.0	67
586	Biomimetic Nanoemulsion for Synergistic Photodynamic″mmunotherapy Against Hypoxic Breast Tumor. Angewandte Chemie - International Edition, 2021, 60, 10647-10653.	7.2	96
587	Recent progress on lanthanide scintillators for soft Xâ€rayâ€ŧriggered bioimaging and deepâ€ŧissue theranostics. View, 2021, 2, 20200122.	2.7	16
588	Bioorthogonal Pretargeting Strategy for Anchoring Activatable Photosensitizers on Plasma Membranes for Effective Photodynamic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 14004-14014.	4.0	16
589	Advanced Biomedical Applications of Reactive Oxygen Species-Based Nanomaterials in Lung Cancer. Frontiers in Chemistry, 2021, 9, 649772.	1.8	10
590	Transitional Metalâ€Based Noncatalytic Medicine for Tumor Therapy. Advanced Healthcare Materials, 2021, 10, e2001819.	3.9	28
591	Injectable Hydrogels as Local Depots at Tumor Sites for Antitumor Immunotherapy and Immuneâ€Based Combination Therapy. Macromolecular Bioscience, 2021, 21, e2100039.	2.1	34
592	In Vivo Plain Xâ€Ray Imaging of Cancer Using Perovskite Quantum Dot Scintillators. Advanced Functional Materials, 2021, 31, 2102334.	7.8	34
593	Persistent luminescence nanoparticles for cancer theranostics application. Journal of Nanobiotechnology, 2021, 19, 113.	4.2	50
594	Inorganic chemoreactive nanosonosensitzers with unique physiochemical properties and structural features for versatile sonodynamic nanotherapies. Biomedical Materials (Bristol), 2021, 16, 032006.	1.7	22
595	Ultrathin 2D Copper(I) 1,2,4â€īriazolate Coordination Polymer Nanosheets for Efficient and Selective Gene Silencing and Photodynamic Therapy. Advanced Materials, 2021, 33, e2100849.	11.1	38
596	Regulating water states by vacancies for cancer therapy. Nano Today, 2021, 37, 101099.	6.2	14

#	Article	IF	CITATIONS
597	Organelle-Targeted Photosensitizers for Precision Photodynamic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 19543-19571.	4.0	143
598	A Proteinâ€Binding Molecular Photothermal Agent for Tumor Ablation. Angewandte Chemie, 2021, 133, 13676-13680.	1.6	1
599	Platinum-based photosensitizer with near-infrared aggregation-induced emission for synergistic photodynamic-chemo theranostics. Organic Electronics, 2021, 92, 106105.	1.4	6
600	Good Steel Used in the Blade: Wellâ€Tailored Typeâ€l Photosensitizers with Aggregationâ€lnduced Emission Characteristics for Precise Nuclear Targeting Photodynamic Therapy. Advanced Science, 2021, 8, e2100524.	5.6	94
601	DNA Nanotechnology for Multimodal Synergistic Theranostics. Journal of Analysis and Testing, 2021, 5, 112-129.	2.5	20
602	A Proteinâ€Binding Molecular Photothermal Agent for Tumor Ablation. Angewandte Chemie - International Edition, 2021, 60, 13564-13568.	7.2	59
603	Novel dual-mode antitumor chlorin-based derivatives as potent photosensitizers and histone deacetylase inhibitors for photodynamic therapy and chemotherapy. European Journal of Medicinal Chemistry, 2021, 217, 113363.	2.6	9
604	Gum polysaccharide/nanometal hybrid biocomposites in cancer diagnosis and therapy. Biotechnology Advances, 2021, 48, 107711.	6.0	26
605	Self-luminescent photodynamic therapy and pathogen detection for infectious diseases. Drug Delivery and Translational Research, 2021, 11, 1451-1455.	3.0	10
606	A cyclic nano-reactor achieving enhanced photodynamic tumor therapy by reversing multiple resistances. Journal of Nanobiotechnology, 2021, 19, 149.	4.2	29
607	Assembly of multifunction dyes and heat shock protein 90 inhibitor coupled to bovine serum albumin in nanoparticles for multimodal photodynamic/photothermal/chemo-therapy. Journal of Colloid and Interface Science, 2021, 590, 290-300.	5.0	30
608	Copper Phosphide Nanoparticles Used for Combined Photothermal and Photodynamic Tumor Therapy. ACS Biomaterials Science and Engineering, 2021, 7, 2745-2754.	2.6	9
609	CuWO ₄ Nanodots for NIR-Induced Photodynamic and Chemodynamic Synergistic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 22150-22158.	4.0	34
610	Highly doped NaErF4-based nanocrystals for multi-tasking application. Journal of Rare Earths, 2021, 39, 1467-1476.	2.5	10
611	Mitochondria Targeted O ₂ Economizer to Alleviate Tumor Hypoxia for Enhanced Photodynamic Therapy. Advanced Healthcare Materials, 2021, 10, e2100198.	3.9	34
612	A Near-Infrared Organoplatinum(II) Metallacycle Conjugated with Heptamethine Cyanine for Trimodal Cancer Therapy. CCS Chemistry, 2022, 4, 2090-2101.	4.6	44
613	Redox-responsive nanoparticles self-assembled from porphyrin-betulinic acid conjugates for chemo- and photodynamic therapy. Dyes and Pigments, 2021, 190, 109307.	2.0	5
614	ROS-based dynamic therapy synergy with modulating tumor cell-microenvironment mediated by inorganic nanomedicine. Coordination Chemistry Reviews, 2021, 437, 213828.	9.5	80

#	Article	IF	CITATIONS
615	Tumor-Associated-Macrophage-Membrane-Coated Nanoparticles for Improved Photodynamic Immunotherapy. Nano Letters, 2021, 21, 5522-5531.	4.5	106
617	Photodynamic Therapy—Current Limitations and Novel Approaches. Frontiers in Chemistry, 2021, 9, 691697.	1.8	215
618	Persistent Luminescence Immune Hydrogel for Photodynamicâ€Immunotherapy of Tumors In Vivo. Advanced Functional Materials, 2021, 31, 2104472.	7.8	38
619	Red Phosphorus Decorated TiO ₂ Nanorod Mediated Photodynamic and Photothermal Therapy for Renal Cell Carcinoma. Small, 2021, 17, e2101837.	5.2	26
620	Tumor hypoxia-activated combinatorial nanomedicine triggers systemic antitumor immunity to effectively eradicate advanced breast cancer. Biomaterials, 2021, 273, 120847.	5.7	55
621	BOPHY-Based Aggregation-Induced-Emission Nanoparticle Photosensitizers for Photodynamic Therapy. ACS Applied Nano Materials, 2021, 4, 6012-6019.	2.4	15
622	Ultrasound activatable antiangiogenic sonosensitizer for VEGFR associated glioblastoma tumor models. Aggregate, 2021, 2, e97.	5.2	5
623	A Novel Nanobody–Photosensitizer Conjugate for Hypoxia Resistant Photoimmunotherapy. Advanced Functional Materials, 2021, 31, 2103629.	7.8	21
624	Plasma membrane targeted photodynamic O2 economizer for hypoxic tumor therapy. Biomaterials, 2021, 273, 120854.	5.7	29
625	Recent Advances in Nanoparticle-Based Cancer Treatment: A Review. ACS Applied Nano Materials, 2021, 4, 6441-6470.	2.4	56
626	Periodic Mesoporous Ionosilica Nanoparticles for Green Light Photodynamic Therapy and Photochemical Internalization of siRNA. ACS Applied Materials & Interfaces, 2021, 13, 29325-29339.	4.0	21
627	A Bifunctional Zwitterionâ€Modified Porphyrin for Photodynamic Nondestructive Tooth Whitening and Biofilm Eradication. Advanced Functional Materials, 2021, 31, 2104799.	7.8	33
628	Antibacterial potency of riboflavin-mediated photodynamic inactivation against Salmonella and its influences on tuna quality. LWT - Food Science and Technology, 2021, 146, 111462.	2.5	23
629	Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review. Cancers, 2021, 13, 3484.	1.7	86
630	Mitochondria-Targeting Enhanced Phototherapy by Intrinsic Characteristics Engineered "One-for-All― Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 35568-35578.	4.0	16
631	Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coordination Chemistry Reviews, 2021, 439, 213945.	9.5	82
632	Type I AIE photosensitizers: Mechanism and application. View, 2022, 3, 20200121.	2.7	72
633	Nanoparticle-Assisted Sonosensitizers and Their Biomedical Applications. International Journal of Nanomedicine, 2021, Volume 16, 4615-4630.	3.3	29

#	Article	IF	CITATIONS
635	Oxygenâ€Independent Photocleavage of Radical Nanogenerator for Nearâ€IRâ€Gated and H ₂ Oâ€Mediated Freeâ€Radical Nanotherapy. Advanced Materials, 2021, 33, e2100129.	11.1	27
636	Trimodal Sono/Photoinduced Focal Therapy for Localized Prostate Cancer: Singleâ€Drugâ€Based Nanosensitizer under Dualâ€Activation. Advanced Functional Materials, 2021, 31, 2104473.	7.8	13
637	Mitochondria-targeted nanotheranostic: Harnessing single-laser-activated dual phototherapeutic processing for hypoxic tumor treatment. Matter, 2021, 4, 2508-2521.	5.0	22
638	The Abnormal Physicochemical Phenomena of Singlet Oxygen Sensor Green in Water in the Presence of Ultrasound. ChemistrySelect, 2021, 6, 6631-6635.	0.7	0
639	pH and lightâ€responsive polycaprolactone/curcumin@zifâ€8 composite films with enhanced antibacterial activity. Journal of Food Science, 2021, 86, 3550-3562.	1.5	25
640	Selfâ€Delivered Supramolecular Nanomedicine with Transformable Shape for Ferroceneâ€Amplified Photodynamic Therapy of Breast Cancer and Bone Metastases. Advanced Functional Materials, 2021, 31, 2104645.	7.8	73
641	Progress in Lightâ€Responsive Lanthanide Nanoparticles toward Deep Tumor Theranostics. Advanced Functional Materials, 2021, 31, 2104325.	7.8	40
642	Photodynamic therapy for hypoxic tumors: Advances and perspectives. Coordination Chemistry Reviews, 2021, 438, 213888.	9.5	151
643	Tumor microenvironment triggered local oxygen generation and photosensitizer release from manganese dioxide mineralized albumin-ICG nanocomplex to amplify photodynamic immunotherapy efficacy. Chinese Chemical Letters, 2021, 32, 3948-3953.	4.8	50
644	Recent Research Trends of Twoâ€Photon Photosensitizer for Simultaneous Imaging and Photodynamic Therapy. Bulletin of the Korean Chemical Society, 2021, 42, 1184-1190.	1.0	7
645	Tablet-like TiO2/C nanocomposites for repeated type I sonodynamic therapy of pancreatic cancer. Acta Biomaterialia, 2021, 129, 269-279.	4.1	45
646	Singlet Oxygen Photosensitization Using Graphene-Based Structures and Immobilized Dyes: A Review. ACS Applied Nano Materials, 2021, 4, 7563-7586.	2.4	25
647	NIR-absorbing superoxide radical and hyperthermia photogenerator via twisted donor-acceptor-donor molecular rotation for hypoxic tumor eradication. Science China Materials, 2021, 64, 3101.	3.5	9
648	Tumor microenvironment responsive biomimetic copper peroxide nanoreactors for drug delivery and enhanced chemodynamic therapy. Chemical Engineering Journal, 2021, 416, 129037.	6.6	53
649	Nanostructured Phthalocyanine Assemblies with Efficient Synergistic Effect of Type I Photoreaction and Photothermal Action to Overcome Tumor Hypoxia in Photodynamic Therapy. Journal of the American Chemical Society, 2021, 143, 13980-13989.	6.6	107
650	BODIPYâ€Based Photodynamic Agents for Exclusively Generating Superoxide Radical over Singlet Oxygen. Angewandte Chemie, 2021, 133, 20065-20073.	1.6	14
651	Dual-step irradiation strategy to sequentially destroy singlet oxygen-responsive polymeric micelles and boost photodynamic cancer therapy. Biomaterials, 2021, 275, 120959.	5.7	19
652	When Chemodynamic Therapy Meets Photodynamic Therapy: A Synergistic Combination of Cancer Treatments. IEEE Nanotechnology Magazine, 2021, 15, 29-43.	0.9	2

#	Article	IF	CITATIONS
653	Reactive oxygen species-sensitive polymeric nanocarriers for synergistic cancer therapy. Acta Biomaterialia, 2021, 130, 17-31.	4.1	52
654	Liquid exfoliation of TiN nanodots as novel sonosensitizers for photothermal-enhanced sonodynamic therapy against cancer. Nano Today, 2021, 39, 101170.	6.2	138
655	Persistent luminescence materials for deep photodynamic therapy. Nanophotonics, 2021, 10, 2999-3029.	2.9	19
656	BODIPYâ€Based Photodynamic Agents for Exclusively Generating Superoxide Radical over Singlet Oxygen. Angewandte Chemie - International Edition, 2021, 60, 19912-19920.	7.2	186
657	Mitochondria-targeting and ROS-sensitive smart nanoscale supramolecular organic framework for combinational amplified photodynamic therapy and chemotherapy. Acta Biomaterialia, 2021, 130, 447-459.	4.1	32
658	Optical – Magnetic probe for evaluating cancer therapy. Coordination Chemistry Reviews, 2021, 441, 213978.	9.5	15
659	Using Gold-Nanorod-Filled Mesoporous Silica Nanobeads for Enhanced Radiotherapy of Oral Squamous Carcinoma. Nanomaterials, 2021, 11, 2235.	1.9	13
660	A Mitochondrial Oxidative Stress Amplifier to Overcome Hypoxia Resistance for Enhanced Photodynamic Therapy. Small Methods, 2021, 5, e2100581.	4.6	32
661	Photodynamic Therapy for the Treatment and Diagnosis of Cancer–A Review of the Current Clinical Status. Frontiers in Chemistry, 2021, 9, 686303.	1.8	172
662	An Integrated Strategy for Rapid Hemostasis during Tumor Resection and Prevention of Postoperative Tumor Recurrence of Hepatocellular Carcinoma by Antibacterial Shape Memory Cryogel. Small, 2021, 17, e2101356.	5.2	46
663	Bioinspired nanostructured spiderweb for high-efficiency capturing and killing of bacteria. Science China Materials, 2022, 65, 518-526.	3.5	2
664	Smart 131 lâ€Labeled Selfâ€lluminating Photosensitizers for Deep Tumor Therapy. Angewandte Chemie, 2021, 133, 22055-22060.	1.6	1
666	Nanomedicines modulating myeloid-derived suppressor cells for improving cancer immunotherapy. Nano Today, 2021, 39, 101163.	6.2	18
667	Boosting Antitumor Sonodynamic Therapy Efficacy of Black Phosphorus via Covalent Functionalization. Advanced Science, 2021, 8, e2102422.	5.6	32
668	Rational Design of Nearâ€Infrared Azaâ€Platinumâ€Dipyrrometheneâ€Based Nanophototherapy Agent with Multistage Enhancement for Synergistic Antitumor Therapeutics. Small Structures, 2021, 2, 2100094.	6.9	14
669	Smart ¹³¹ l‣abeled Selfâ€Illuminating Photosensitizers for Deep Tumor Therapy. Angewandte Chemie - International Edition, 2021, 60, 21884-21889.	7.2	26
670	Target-Oriented Synthesis of Marine Coelenterazine Derivatives with Anticancer Activity by Applying the Heavy-Atom Effect. Biomedicines, 2021, 9, 1199.	1.4	20
671	"Internal and External Combined―Nonradiative Decay-Based Nanoagents for Photoacoustic Image-Guided Highly Efficient Photothermal Therapy. ACS Applied Materials & Interfaces, 2021, 13, 46353-46360.	4.0	16

#	Article	IF	CITATIONS
672	Molecular Design of Monochromophore-Based Bifunctional Photosensitizers for Simultaneous Ratiometric Oxygen Reporting and Photodynamic Cancer Therapy. Analytical Chemistry, 2021, 93, 13539-13547.	3.2	5
673	Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chemical Reviews, 2021, 121, 13454-13619.	23.0	657
674	Metal peroxides for cancer treatment. Bioactive Materials, 2021, 6, 2698-2710.	8.6	46
675	A Robust ROS Generation Strategy for Enhanced Chemodynamic/Photodynamic Therapy via H ₂ O ₂ /O ₂ Selfâ€Supply and Ca ²⁺ Overloading. Advanced Functional Materials, 2021, 31, 2106106.	7.8	75
676	Photodynamic Therapy: A Compendium of Latest Reviews. Cancers, 2021, 13, 4447.	1.7	134
677	Construction of a nanotheranostic system Zr-MOF@PPa/AF@PEG for improved photodynamic therapy effects based on the PDTâ€'oxygen consumption and hypoxia sensitive chemotherapeutic drug. Journal of Photochemistry and Photobiology B: Biology, 2021, 222, 112274.	1.7	19
678	Conquering the Hypoxia Limitation for Photodynamic Therapy. Advanced Materials, 2021, 33, e2103978.	11.1	262
679	The Development of Ru(II)-Based Photoactivated Chemotherapy Agents. Molecules, 2021, 26, 5679.	1.7	20
680	Photosynthetic Cyanobacteriaâ€Hybridized Black Phosphorus Nanosheets for Enhanced Tumor Photodynamic Therapy. Small, 2021, 17, e2102113.	5.2	46
681	A Biosynthesized Near-Infrared-Responsive Nanocomposite Biomaterial for Antimicrobial and Antibiofilm Treatment. ACS Applied Bio Materials, 2021, 4, 7542-7553.	2.3	3
682	Heavy atom effect on water-soluble porphyrin photosensitizers for photodynamic therapy. Chemical Physics Letters, 2021, 784, 139091.	1.2	5
683	Near-infrared light-triggered synergistic antitumor therapy based on hollow ZIF-67-derived Co3S4-indocyanine green nanocomplex as a superior reactive oxygen species generator. Materials Science and Engineering C, 2021, 130, 112465.	3.8	10
684	Photodynamic therapy: When van der Waals heterojunction meets tumor. Chemical Engineering Journal, 2021, 421, 129773.	6.6	9
685	Reactive oxygen species-activatable self-amplifying Watson-Crick base pairing-inspired supramolecular nanoprodrug for tumor-specific therapy. Biomaterials, 2021, 277, 121128.	5.7	21
686	Advances and perspectives in organic sonosensitizers for sonodynamic therapy. Coordination Chemistry Reviews, 2021, 445, 214087.	9.5	128
687	Development of photocontrolled BRD4 PROTACs for tongue squamous cell carcinoma (TSCC). European Journal of Medicinal Chemistry, 2021, 222, 113608.	2.6	21
688	Amino modified iodinated BODIPY photosensitizer for highly efficient NIR imaging-guided photodynamic therapy with ultralow dose. Dyes and Pigments, 2021, 194, 109611.	2.0	17
689	Hypoxia-responsive block copolymer polyprodrugs for complementary photodynamic-chemotherapy. Journal of Controlled Release, 2021, 339, 130-142.	4.8	30

#	Article	IF	CITATIONS
690	AIE-featured tetraphenylethylene nanoarchitectures in biomedical application: Bioimaging, drug delivery and disease treatment. Coordination Chemistry Reviews, 2021, 447, 214135.	9.5	59
691	Synthesis and biological evaluation of NO-donor containing photosensitizers to induce ferroptosis of cancer cells. Bioorganic Chemistry, 2021, 116, 105355.	2.0	4
692	A diketopyrrolopyrrole-based conjugated polymer for efficient photodynamic and photothermal combination therapy under single 808Ânm laser irradiation. Dyes and Pigments, 2021, 196, 109762.	2.0	8
693	Iridium oxide nanoparticles mediated enhanced photodynamic therapy combined with photothermal therapy in the treatment of breast cancer. Journal of Colloid and Interface Science, 2022, 605, 851-862.	5.0	28
694	A portable NIR fluorimeter directly quantifies singlet oxygen generated by nanostructures for Photodynamic Therapy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 265, 120357.	2.0	2
695	Photococatalytic anticancer performance of naked Ag/AgCl nanoparticles. Chemical Engineering Journal, 2022, 428, 131265.	6.6	17
696	Nanoscale metal–organic frameworks for tumor phototherapy. Journal of Materials Chemistry B, 2021, 9, 3756-3777.	2.9	36
697	Carbon dots for cancer nanomedicine: a bright future. Nanoscale Advances, 2021, 3, 5183-5221.	2.2	37
698	Recent advances of AIE light-up probes for photodynamic therapy. Chemical Science, 2021, 12, 6488-6506.	3.7	224
699	Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application. Chemical Society Reviews, 2021, 50, 4185-4219.	18.7	576
700	One-Pot Fabrication of Hollow Porphyrinic MOF Nanoparticles with Ultrahigh Drug Loading toward Controlled Delivery and Synergistic Cancer Therapy. ACS Applied Materials & Interfaces, 2021, 13, 3679-3693.	4.0	121
701	Bioorthogonal Coordination Polymer Nanoparticles with Aggregationâ€Induced Emission for Deep Tumorâ€Penetrating Radio―and Radiodynamic Therapy. Advanced Materials, 2021, 33, e2007888.	11.1	89
702	MnO ₂ nanosheets anchored with polypyrrole nanoparticles as a multifunctional platform for combined photothermal/photodynamic therapy of tumors. Food and Function, 2021, 12, 6334-6347.	2.1	14
703	Applications of carbon dots on tumour theranostics. View, 2021, 2, 20200061.	2.7	30
704	Polymyxin B-functionalized phthalocyanine for chemo-photodynamic antibacterial therapy in enhanced wound healing. New Journal of Chemistry, 2021, 45, 6450-6457.	1.4	6
705	Synergistically enhanced multienzyme catalytic nanoconjugates for efficient cancer therapy. Journal of Materials Chemistry B, 2021, 9, 5877-5886.	2.9	18
706	Energy transfer facilitated near infrared fluorescence imaging and photodynamic therapy of tumors. Biomaterials Science, 2021, 9, 4662-4670.	2.6	6
707	Recent progress of surface-enhanced Raman spectroscopy for subcellular compartment analysis. Theranostics, 2021, 11, 4872-4893.	4.6	29

#	Article	IF	CITATIONS
708	Recent advances in innovative strategies for enhanced cancer photodynamic therapy. Theranostics, 2021, 11, 3278-3300.	4.6	107
709	An albumin-binding dimeric prodrug nanoparticle with long blood circulation and light-triggered drug release for chemo-photodynamic combination therapy against hypoxia-induced metastasis of lung cancer. Biomaterials Science, 2021, 9, 3718-3736.	2.6	18
710	Singleâ€Atom Catalysts for Nanocatalytic Tumor Therapy. Small, 2021, 17, e2004467.	5.2	72
711	Melaninâ€Like Nanomaterials for Advanced Biomedical Applications: A Versatile Platform with Extraordinary Promise. Advanced Science, 2020, 7, 1903129.	5.6	113
712	Nanoparticles weaponized with builtâ€in functions for imagingâ€guided cancer therapy. View, 2020, 1, e19.	2.7	35
713	Nanostructured Materials and Their Biomedical Application. , 2019, , 205-227.		1
714	Comparison of Redox Responsiveness and Antitumor Capability of Paclitaxel Dimeric Nanoparticles with Different Linkers. Chemistry of Materials, 2020, 32, 10719-10727.	3.2	28
715	Highly efficient near-infrared BODIPY phototherapeutic nanoparticles for cancer treatment. Journal of Materials Chemistry B, 2020, 8, 5305-5311.	2.9	20
716	Novel therapeutics for bacterial infections. Emerging Topics in Life Sciences, 2017, 1, 85-92.	1.1	2
717	In-vitro investigation of green synthesized gold nanoparticle's role in combined photodynamic and radiation therapy of cancerous cells. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2020, 11, 045006.	0.7	9
718	Chemiluminescence resonance energy transfer–based nanoparticles for quantum yield–enhanced cancer phototheranostics. Science Advances, 2020, 6, eaaz8400.	4.7	51
719	rGO nanomaterial-mediated cancer targeting and photothermal therapy in a microfluidic co-culture platform. Nano Convergence, 2020, 7, 10.	6.3	33
720	Photo- and Sono-Dynamic Therapy: A Review of Mechanisms and Considerations for Pharmacological Agents Used in Therapy Incorporating Light and Sound. Current Pharmaceutical Design, 2019, 25, 401-412.	0.9	38
721	Combined Photodynamic and Radiotherapy Synergistic Effect in Cancer Treatment. Novel Approaches in Cancer Study, 2018, 1, .	0.2	3
722	Near-infrared activated cyanine dyes as agents for photothermal therapy and diagnosis of tumors. Acta Naturae, 2020, 12, 102-113.	1.7	25
723	De Novo Design of Polymeric Carrier to Photothermally Release Singlet Oxygen for Hypoxic Tumor Treatment. Research, 2019, 2019, 9269081.	2.8	18
724	Photothermally Responsive Conjugated Polymeric Singlet Oxygen Carrier for Phase Change-Controlled and Sustainable Phototherapy for Hypoxic Tumor. Research, 2020, 2020, 5351848.	2.8	12
725	Photodynamic therapy with mitochondria-targeted biscyclometallated Ir(<scp>iii</scp>) complexes. Multi-action mechanism and strong influence of the cyclometallating ligand. Dalton Transactions, 2021, 51, 111-128.	1.6	13

#	Article	IF	CITATIONS
726	A–DA′D–A fused-ring small molecule-based nanoparticles for combined photothermal and photodynamic therapy of cancer. Chemical Communications, 2021, 57, 12020-12023.	2.2	23
727	Cell membrane camouflaged cerium oxide nanocubes for targeting enhanced tumor-selective therapy. Journal of Materials Chemistry B, 2021, 9, 9524-9532.	2.9	9
728	Photodynamic Therapy with Tumor Cell Discrimination through RNA-Targeting Ability of Photosensitizer. Molecules, 2021, 26, 5990.	1.7	4
729	An all-in-one nanoplatform with near-infrared light promoted on-demand oxygen release and deep intratumoral penetration for synergistic photothermal/photodynamic therapy. Journal of Colloid and Interface Science, 2022, 608, 1543-1552.	5.0	6
730	Diketopyrrolopyrroleâ€derived organic small molecular dyes for tumor phototheranostics. Chinese Chemical Letters, 2022, 33, 1681-1692.	4.8	77
731	Versatile Types of Inorganic/Organic NIR-IIa/IIb Fluorophores: From Strategic Design toward Molecular Imaging and Theranostics. Chemical Reviews, 2022, 122, 209-268.	23.0	232
732	Bio-Inspired Bimetallic Enzyme Mimics as Bio-Orthogonal Catalysts for Enhanced Bacterial Capture and Inhibition. Chemistry of Materials, 2021, 33, 8052-8058.	3.2	18
733	Prospects for More Efficient Multi-Photon Absorption Photosensitizers Exhibiting Both Reactive Oxygen Species Generation and Luminescence. Molecules, 2021, 26, 6323.	1.7	10
734	Photoactivated Selfâ€Disassembly of Multifunctional DNA Nanoflower Enables Amplified Autophagy Suppression for Lowâ€Dose Photodynamic Therapy. Small, 2021, 17, e2104722.	5.2	29
735	Hypoxia-Responsive Polyprodrug Nanocarriers for Near-Infrared Light-Boosted Photodynamic Chemotherapy. Biomacromolecules, 2021, 22, 4857-4870.	2.6	18
736	Emerging Design Principle of Nearâ€Infrared Upconversion Sensitizer Based on Mitochondriaâ€Targeted Organic Dye for Enhanced Photodynamic Therapy. Chemistry - A European Journal, 2021, 27, 16707-16715.	1.7	2
737	A quaternary ammonium modified coumarin derivative for antimicrobial photodynamic therapy. , 2018, , \cdot		1
738	Investigation into the influence of an acrylic acid acceptor in organic D-Ï€-A sensitizers against phototoxicity. Bioorganic and Medicinal Chemistry, 2020, 28, 115558.	1.4	0
739	Light-triggered nitric oxide release and structure transformation of peptide for enhanced intratumoral retention and sensitized photodynamic therapy. Bioactive Materials, 2022, 12, 303-313.	8.6	18
740	Metal Nanoparticles for Photodynamic Therapy: A Potential Treatment for Breast Cancer. Molecules, 2021, 26, 6532.	1.7	44
741	A benzophenoxazine-dyad as cancer indicator using for fluorescence-guided phototherapy. Sensors and Actuators B: Chemical, 2022, 352, 130990.	4.0	8
742	Enzyme-Responsive Materials as Carriers for Improving Photodynamic Therapy. Frontiers in Chemistry, 2021, 9, 763057.	1.8	4
743	The therapeutic significance of the novel photodynamic material TPE-IQ-2O in tumors. Aging, 2021, 13, 1383-1409.	1.4	9

#	Article	IF	CITATIONS
744	Multifunctional Nanotheranostic Agent for NIRâ€II Imagingâ€Guided Synergetic Photothermal/Photodynamic Therapy. Advanced Therapeutics, 2021, 4, 2000240.	1.6	9
745	Mimetic sea cucumber-shaped nanoscale metal-organic frameworks composite for enhanced photodynamic therapy. Dyes and Pigments, 2022, 197, 109920.	2.0	7
746	Nitroso-caged upconversion luminescent prodrug: Near infrared light-activatable NO nano-donor for gas therapy. Chemical Engineering Journal, 2022, 430, 132858.	6.6	25
747	Self-Remedied Nanomedicine for Surmounting the Achilles' Heel of Photodynamic Tumor Therapy. ACS Applied Bio Materials, 2021, 4, 8023-8032.	2.3	7
748	A BODIPY-modified polymeric micelle for sustaining enhanced photodynamic therapy. Chinese Chemical Letters, 2022, 33, 3277-3280.	4.8	11
749	Luminescent Conjugated Polymer Dots for Biomedical Applications. , 2021, , 197-230.		0
750	Solvothermal synthesis of Nb-doped TiO ₂ nanoparticles with enhanced sonodynamic effects for destroying tumors. RSC Advances, 2021, 11, 36920-36927.	1.7	2
751	Palliating the escalated post-PDT tumor hypoxia with a dual cascade oxygenation nanocomplex. Applied Materials Today, 2022, 26, 101287.	2.3	2
752	Highly Efficient Multifunctional Organic Photosensitizer with Aggregation-Induced Emission for <i>In Vivo</i> Bioimaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 54783-54793.	4.0	20
753	Ligand Engineering of Titanium-Oxo Nanoclusters for Cerenkov Radiation-Reinforced Photo/Chemodynamic Tumor Therapy. ACS Applied Materials & Interfaces, 2021, 13, 54727-54738.	4.0	16
754	9,10-Phenanthrenequinone: A Promising Kernel to Develop Multifunctional Antitumor Systems for Efficient Type I Photodynamic and Photothermal Synergistic Therapy. ACS Nano, 2021, 15, 20042-20055.	7.3	61
755	Spin Crossover of Thiophosgene via Multidimensional Heavy-Atom Quantum Tunneling. Journal of the American Chemical Society, 2021, 143, 20952-20961.	6.6	17
756	Review of Functionalized Nanomaterials for Photothermal Therapy of Cancers. ACS Applied Nano Materials, 2021, 4, 11353-11385.	2.4	75
757	Cationization to boost both type I and type II ROS generation for photodynamic therapy. Biomaterials, 2022, 280, 121255.	5.7	67
758	Phthalocyanine and Its Formulations: A Promising Photosensitizer for Cervical Cancer Phototherapy. Pharmaceutics, 2021, 13, 2057.	2.0	11
759	Metal–Phenolicâ€Network oated Dendrimer–Drug Conjugates for Tumor MR Imaging and Chemo/Chemodynamic Therapy via Amplification of Endoplasmic Reticulum Stress. Advanced Materials, 2022, 34, e2107009.	11.1	50
760	Bovine Serum Albumin-Encapsulated Ultrasmall Gold Nanoclusters for Photodynamic Therapy of Tumors. ACS Applied Nano Materials, 2021, 4, 13818-13825.	2.4	15
761	Aggregation induced bright organic luminogens: Design strategies, advanced bio-imaging and theranostic applications. Progress in Molecular Biology and Translational Science, 2021, 185, 75-112.	0.9	1

	Сітатіс	on Report	
#	Article	IF	CITATIONS
762	External stimuli-responsive nanomedicine for cancer immunotherapy. , 2021, , .		0
763	Combinatorial Therapeutic Approaches with Nanomaterial-Based Photodynamic Cancer Therapy. Pharmaceutics, 2022, 14, 120.	2.0	28
764	Carbon nitride nanomaterials with application in photothermal and photodynamic therapies. Photodiagnosis and Photodynamic Therapy, 2022, 37, 102683.	1.3	10
765	Thiocarbonyl photosensitizer, a feasible way to eliminate the photosensitizer residues in photodynamic therapy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 270, 120783.	2.0	6
766	Se-sensitized NIR hot band absorption photosensitizer for anti-Stokes excitation deep photodynamic therapy. Science China Chemistry, 2022, 65, 563-573.	4.2	19
767	Research progress of tumor targeted drug delivery based on PD-1/PD-L1. International Journal of Pharmaceutics, 2022, 616, 121527.	2.6	16
768	An Energy‣toring DNAâ€Based Nanocomplex for Laserâ€Free Photodynamic Therapy. Advanced Material 2022, 34, e2109920.	ls, 11.1	40
769	Recent Developments in ROS-Based Nanotherapeutic Modalities in Preclinical Cancer Treatment. , 2022, , 1-18.		0
770	A tumor microenvironment-responsive Co/ZIF-8/ICG/Pt nanoplatform for chemodynamic and enhanced photodynamic antitumor therapy. Dalton Transactions, 2022, 51, 2798-2804.	1.6	17
771	Synthesis, Characterization of NR@SiO2/PNIPAm-co-Ppa Composite Nanogel and Study On Its Application in Photodynamic Therapy. Journal of Fluorescence, 2022, 32, 771.	1.3	2
772	Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy. Theranostics, 2022, 12, 434-458.	4.6	154
773	Conjugated Oligomerâ€Directed Formation of Hollow Nanoparticles for Targeted Photokilling Cancer Cells under Hypoxia. Advanced Optical Materials, 2022, 10, .	3.6	9
774	A scintillating nanoplatform with upconversion function for the synergy of radiation and photodynamic therapies for deep tumors. Journal of Materials Chemistry C, 2022, 10, 688-695.	2.7	12
775	Plasmon-Accelerated Generation of Singlet Oxygen on an Au/MoS ₂ Nanohybrid for Enhanced Photodynamic Killing of Bacterial Pathogens/Cancerous Cells. ACS Applied Bio Materials, 2022, 5, 747-760.	2.3	6
776	Tumor Microenvironment Responsive Singleâ€Atom Nanozymes for Enhanced Antitumor Therapy. Chemistry - A European Journal, 2022, 28, .	1.7	14
777	BODIPY-Tagged Platinum(II) Curcumin Complexes for Endoplasmic Reticulum-Targeted Red Light PDT. Inorganic Chemistry, 2022, 61, 1335-1348.	1.9	15
778	NIR-II Aggregation-Induced Emission Luminogens for Tumor Phototheranostics. Biosensors, 2022, 12, 46.	2.3	15
779	Synthesis, structure and photochemical properties of asymmetric NMe2-bearing aza-BODIPYs as novel photothermal agents. Dyes and Pigments, 2022, 199, 110092.	2.0	11

#	Article	IF	CITATIONS
780	Fabrication of hexagonal boron carbonitride nanoplates using for in vitro photodynamic therapy and chemo therapy. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112377.	2.5	2
781	Fabrication of programmed photosensitizer-conjugated nanoassemblies by dual supramolecular self-assembly for photodynamic therapy of orthotopic hepatoma. Chemical Engineering Journal, 2022, 435, 134930.	6.6	8
782	Self-assembly of nanomicelles with rationally designed multifunctional building blocks for synergistic chemo-photodynamic therapy. Theranostics, 2022, 12, 2028-2040.	4.6	12
783	Near-infrared light-triggered β-NaYF ₄ :Yb,Tm,Cd@MIL-100(Fe) nanomaterials for antibacterial applications. New Journal of Chemistry, 2022, 46, 4806-4813.	1.4	8
784	Activity-based NIR fluorescent probes based on the versatile hemicyanine scaffold: design strategy, biomedical applications, and outlook. Chemical Society Reviews, 2022, 51, 1795-1835.	18.7	209
785	Folic acid functionalized aggregation-induced emission nanoparticles for tumor cell targeted imaging and photodynamic therapy. RSC Advances, 2022, 12, 4484-4489.	1.7	6
786	Harnessing GLUT1 Targeted Proâ€oxidant Ascorbate for Synergistic Phototherapeutics. Angewandte Chemie, 0, , .	1.6	1
787	Harnessing GLUT1â€Targeted Proâ€oxidant Ascorbate for Synergistic Phototherapeutics. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
788	Allâ€Inâ€One Biomimetic Nanoplatform Based on Hollow Polydopamine Nanoparticles for Synergistically Enhanced Radiotherapy of Colon Cancer. Small, 2022, 18, e2107656.	5.2	43
789	Synthesis of Near-Infrared Light-responsive Dyes Based on N-Confused Porphyrinoids. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 139-148.	0.0	0
790	Targeted Phototherapy by Niobium Carbide for Mammalian Tumor Models Similar to Humans. Frontiers in Oncology, 2022, 12, 827171.	1.3	1
791	Peptide-based supramolecular photodynamic therapy systems: From rational molecular design to effective cancer treatment. Chemical Engineering Journal, 2022, 436, 135240.	6.6	15
792	Liposomal cyanine dyes with enhanced nonradiative transition for the synergistic phototherapy of tumors. Journal of Materials Chemistry B, 2022, 10, 3016-3022.	2.9	5
793	A polydopamine-based photodynamic coating on the intraocular lens surface for safer posterior capsule opacification conquering. Biomaterials Science, 2022, 10, 2188-2197.	2.6	8
794	Anisotropic plasmonic Pd-tipped Au nanorods for near-infrared light-activated photoacoustic imaging guided photothermal–photodynamic cancer therapy. Journal of Materials Chemistry B, 2022, 10, 2028-2037.	2.9	8
795	Nanotechnology-based combinatorial phototherapy for enhanced cancer treatment. RSC Advances, 2022, 12, 9725-9737.	1.7	12
796	Green-light-responsive metal–organic frameworks for colorectal cancer treatment. Chemical Communications, 2022, 58, 5225-5228.	2.2	8
797	Recent advances in noble metal complex based photodynamic therapy. Chemical Science, 2022, 13, 5085-5106.	3.7	62

#	Article	IF	CITATIONS
799	Synthesis of tetraphenylethene-based D–A conjugated molecules with near-infrared AIE features, and their application in photodynamic therapy. Journal of Materials Chemistry B, 2022, 10, 3550-3559.	2.9	9
800	Genetically encoded BRET-activated photodynamic therapy for the treatment of deep-seated tumors. Light: Science and Applications, 2022, 11, 38.	7.7	26
801	Green Process for the Synthesis of 3-Amino-2-methyl-quinazolin-4(3H)-one Synthones and Amides Thereof:DNA Photo-Disruptive and Molecular Docking Studies. Processes, 2022, 10, 384.	1.3	4
802	Oxygen Self‣upply Engineeringâ€Ferritin for the Relief of Hypoxia in Tumors and the Enhancement of Photodynamic Therapy Efficacy. Small, 2022, 18, e2200116.	5.2	63
803	Homologous targeting nanoparticles for enhanced PDT against osteosarcoma HOS cells and the related molecular mechanisms. Journal of Nanobiotechnology, 2022, 20, 83.	4.2	36
804	Engineering a theranostic platform for synergistic hypoxia-responsive photodynamic therapy and chemotherapy. Matter, 2022, 5, 1502-1519.	5.0	27
805	Intelligent Nanotransducer for Deep-Tumor Hypoxia Modulation and Enhanced Dual-Photosensitizer Photodynamic Therapy. ACS Applied Materials & Interfaces, 2022, 14, 14944-14952.	4.0	19
806	An Electroluminodynamic Flexible Device for Highly Efficient Eradication of Drugâ€Resistant Bacteria. Advanced Materials, 2022, 34, e2200334.	11.1	25
807	Delivering Singlet Oxygen in Dark Condition With an Anthracene-Functionalized Semiconducting Compound for Enhanced Phototheranostics. Frontiers in Bioengineering and Biotechnology, 2022, 10, 781766.	2.0	4
808	Photodynamic Therapeutic Effect of Nanostructured Metal Sulfide Photosensitizers on Cancer Treatment. Nanoscale Research Letters, 2022, 17, 33.	3.1	12
809	An Effective Supramolecular Approach to Boost the Photodynamic Therapy Efficacy of a Near-Infrared Activating Perylene Diimide-Based Photosensitizer. , 2022, 4, 657-664.		15
810	Acceptor Planarization and Donor Rotation: A Facile Strategy for Realizing Synergistic Cancer Phototherapy <i>via</i> Type I PDT and PTT. ACS Nano, 2022, 16, 4162-4174.	7.3	121
811	ATP-Triggered Intracellular In Situ Aggregation of a Gold-Nanoparticle-Equipped Triple-Helix Molecular Switch for Fluorescence Imaging and Photothermal Tumor Therapy. Langmuir, 2022, 38, 3755-3764.	1.6	12
812	Multifunctional Self-Assembly with NIR Light-Activated Cascade Effect for Improving Local Treatment on Solid Tumors. ACS Applied Materials & amp; Interfaces, 2022, 14, 14087-14096.	4.0	3
813	Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduction and Targeted Therapy, 2022, 7, 70.	7.1	88
814	Co-delivery of photosensitizer and diclofenac through sequentially responsive bilirubin nanocarriers for combating hypoxic tumors. Acta Pharmaceutica Sinica B, 2022, 12, 1416-1431.	5.7	35
815	Metal-Organic Framework-Based Nanotherapeutics With Tumor Hypoxia-Relieving Ability for Synergistic Sonodynamic/Chemo-therapy. Frontiers in Materials, 2022, 9, .	1.2	8
816	A Metalâ€Phenolic Nanosensitizer Performs Hydrogen Sulfideâ€Reprogrammed Oxygen Metabolism for Cancer Radiotherapy Intensification and Immunogenicity. Angewandte Chemie - International Edition, 2022, 61, .	7.2	39

#	Article	IF	CITATIONS
817	A Metalâ€Phenolic Nanosensitizer Performs Hydrogen Sulfideâ€Reprogrammed Oxygen Metabolism for Cancer Radiotherapy Intensification and Immunogenicity. Angewandte Chemie, 0, , .	1.6	0
818	Viscosity Effects on Excitedâ€6tate Dynamics of Indocyanine Green for Phototheranostic. Chemistry - an Asian Journal, 2022, 17, .	1.7	3
819	Light amplified oxidative stress in tumor microenvironment by carbonized hemin nanoparticles for boosting photodynamic anticancer therapy. Light: Science and Applications, 2022, 11, 47.	7.7	27
820	Openâ€ S hell Nanosensitizers for Glutathione Responsive Cancer Sonodynamic Therapy. Advanced Materials, 2022, 34, e2110283.	11.1	48
821	Internal light source for deep photodynamic therapy. Light: Science and Applications, 2022, 11, 85.	7.7	16
822	Singleâ€Cell Quantification of a Highly Biocompatible Dinuclear Iridium(III) Complex for Photocatalytic Cancer Therapy. Angewandte Chemie, 2022, 134, .	1.6	3
823	Nanoâ \in enzyme of Ni0.5Fe0.5S2 Mediated Synergetic Antitumor Treatment. ChemNanoMat, 0, , .	1.5	1
824	Chemiluminescence resonance energy transfer-based immunostimulatory nanoparticles for sonoimmunotherapy. Biomaterials, 2022, 283, 121466.	5.7	21
825	Synchronously boosting type-I photodynamic and photothermal efficacies via molecular manipulation for pancreatic cancer theranostics in the NIR-II window. Biomaterials, 2022, 283, 121476.	5.7	48
826	Singleâ€Cell Quantification of a Highly Biocompatible Dinuclear Iridium(III) Complex for Photocatalytic Cancer Therapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
827	Scalable and accessible personalized photodynamic therapy optimization with FullMonte and PDT-SPACE. Journal of Biomedical Optics, 2022, 27, .	1.4	9
828	Dual-modality magnetic resonance/optical imaging-guided sonodynamic therapy of pancreatic cancer with metal—organic nanosonosensitizer. Nano Research, 2022, 15, 6340-6347.	5.8	5
829	Supramolecular organic frameworks improve the safety of clinically used porphyrin photodynamic agents and maintain their antitumor efficacy. Biomaterials, 2022, 284, 121467.	5.7	20
830	Heterojunction engineered bioactive chlorella for cascade promoted cancer therapy. Journal of Controlled Release, 2022, 345, 755-769.	4.8	86
831	Construction of homo and heteronuclear Ru(II), Ir(III) and Re(I) complexes for target specific cancer therapy. Coordination Chemistry Reviews, 2022, 460, 214462.	9.5	23
832	A multifunctional platform with metallacycle-based star polymers and gold nanorods for combinational photochemotherapy. Materials Today Advances, 2022, 14, 100229.	2.5	3
833	Optimizing the photodynamic therapeutic effect of BODIPY-based photosensitizers against cancer and bacterial cells. Dyes and Pigments, 2022, 202, 110255.	2.0	7
834	TME-responded Full-biodegradable nanocatalyst for mitochondrial calcium Overload-induced hydroxyl radical bursting cancer treatment. Chemical Engineering Journal, 2022, 438, 135372.	6.6	11

#	Article	IF	CITATIONS
835	Light-guided tumor diagnosis and therapeutics: From nanoclusters to polyoxometalates. Chinese Chemical Letters, 2022, 33, 2783-2798.	4.8	4
836	Sonodynamic Therapy with Metal Complexes: A New Promise in Cancer Therapy. ChemMedChem, 2022, 17,	1.6	8
837	Cancer-Targeted Azo Dye for Two-Photon Photodynamic Therapy in Human Colon Tissue. Analytical Chemistry, 2021, 93, 16821-16827.	3.2	7
838	Hybrid Nanoplatform: Enabling a Precise Antitumor Strategy via Dual-Modal Imaging-Guided Photodynamic/Chemo-/Immunosynergistic Therapy. ACS Nano, 2021, 15, 20643-20655.	7.3	27
839	A Luminescent, Water-Soluble Ir(III) Complex as a Potential Photosensitizer for Two-Photon Photodynamic Therapy. Applied Sciences (Switzerland), 2021, 11, 11596.	1.3	1
840	Complementing Cancer Photodynamic Therapy with Ferroptosis through Iron Oxide Loaded Porphyrin-Grafted Lipid Nanoparticles. ACS Nano, 2021, 15, 20164-20180.	7.3	69
841	Injectable Optical System for Drug Delivery, Ablation, and Sampling in Deep Tissue. Advanced Materials Technologies, 2022, 7, .	3.0	4
842	A cell membrane-targeting AIE photosensitizer as a necroptosis inducer for boosting cancer theranostics. Chemical Science, 2022, 13, 5929-5937.	3.7	40
843	Design, synthesis and applications of NIR-emissive scaffolds of diketopyrrolopyrrole-aza-BODIPY hybrids. Chemical Communications, 2022, 58, 5996-5999.	2.2	4
844	Iron Phosphate Nanozyme–Hydrogel with Multienzyme-like Activity for Efficient Bacterial Sterilization. ACS Applied Materials & Interfaces, 2022, 14, 18170-18181.	4.0	23
846	Heavy Atomâ€Free, Mitochondriaâ€Targeted, and Activatable Photosensitizers for Photodynamic Therapy with Realâ€Time Inâ€Situ Therapeutic Monitoring. Angewandte Chemie - International Edition, 2022, 61, .	7.2	46
847	Glucose Oxidase Integrated Porphyrinic Covalent Organic Polymers for Combined Photodynamic/Chemodynamic/Starvation Therapy in Cancer Treatment. ACS Biomaterials Science and Engineering, 2022, 8, 1956-1963.	2.6	9
848	Contribution of Oxidative Stress Induced by Sonodynamic Therapy to the Calcium Homeostasis Imbalance Enhances Macrophage Infiltration in Glioma Cells. Cancers, 2022, 14, 2036.	1.7	8
849	Heavy Atomâ€Free, Mitochondriaâ€Targeted, and Activatable Photosensitizers for Photodynamic Therapy with Realâ€Time Inâ€Situ Therapeutic Monitoring. Angewandte Chemie, 2022, 134, .	1.6	6
850	Advancements in cell membrane camouflaged nanoparticles: A bioinspired platform for cancer therapy. Journal of Controlled Release, 2022, 346, 71-97.	4.8	39
853	An unexpected strategy to alleviate hypoxia limitation of photodynamic therapy by biotinylation of photosensitizers. Nature Communications, 2022, 13, 2225.	5.8	69
854	Tongue Cancer Tailored Photosensitizers for Nir-li Fluorescence Imaging Guided Precise Treatment. SSRN Electronic Journal, 0, , .	0.4	0
855	Icing on the cake: combining a dual PEG-functionalized pillararene and an A-D-A small molecule photosensitizer for multimodal phototherapy. Science China Chemistry, 2022, 65, 1134-1141.	4.2	24

#	Article	IF	CITATIONS
856	C-Phycoycanin-Doxorubicin Nanoparticles for Chemo-Photodynamic Cancer Therapy. Macromolecular Research, 2022, 30, 486-494.	1.0	1
857	Multifunctional Nanosystems Powered Photodynamic Immunotherapy. Frontiers in Pharmacology, 2022, 13, .	1.6	11
858	Aggregation-Induced Emission Nanoparticles for Single Near-Infrared Light-Triggered Photodynamic and Photothermal Antibacterial Therapy. ACS Nano, 2022, 16, 7961-7970.	7.3	61
859	Edge-rich atomic-layered BiOBr quantum dots for photocatalytic molecular oxygen activation. Chemical Engineering Journal, 2022, 445, 136776.	6.6	22
860	Photoinduced free radical-releasing systems and their anticancer properties. Photochemical and Photobiological Sciences, 2022, , .	1.6	2
861	Cationization-Enhanced Type I and Type II ROS Generation for Photodynamic Treatment of Drug-Resistant Bacteria. ACS Nano, 2022, 16, 9130-9141.	7.3	68
862	Fluorescein-Based Type I Supramolecular Photosensitizer via Induction of Charge Separation by Self-Assembly. Jacs Au, 2022, 2, 1472-1478.	3.6	23
863	Platinum-Based Two-Photon Photosensitizer Responsive to NIR Light in Tumor Hypoxia Microenvironment. Journal of Medicinal Chemistry, 2022, 65, 7786-7798.	2.9	14
864	When starvation therapy meets chemodynamic therapy. ChemPhysMater, 2022, 1, 264-280.	1.4	4
865	A self-delivery chimeric peptide for high efficient cell membrane-targeting low-temperature photothermal/photodynamic combinational therapy and metastasis suppression of tumor. Biomaterials, 2022, 286, 121593.	5.7	16
866	Supramolecular materials based on AIEgens for photo-assisted therapy. Biomaterials, 2022, 286, 121595.	5.7	17
867	Nir-Ii Light-Assisted Radiotherapy Based on Ultrasmall Hfo2-Embedded Porous Carbon Nanooctahedra for Overcoming Tumor Radioresistance. SSRN Electronic Journal, 0, , .	0.4	0
868	Novel Lysosome-Targeting Fluorescence Off-On Photosensitizer for Near-Infrared Hypoxia Imaging and Photodynamic Therapy In Vitro and In Vivo. Molecules, 2022, 27, 3457.	1.7	6
869	Enhancing Photodynamic Therapy Efficacy Against Cancer Metastasis by Ultrasound-Mediated Oxygen Microbubble Destruction to Boost Tumor-Targeted Delivery of Oxygen and Renal-Clearable Photosensitizer Micelles. ACS Applied Materials & Interfaces, 2022, 14, 25197-25208.	4.0	12
870	Recent Progress of Metal-Organic Framework-Based Photodynamic Therapy for Cancer Treatment. International Journal of Nanomedicine, 0, Volume 17, 2367-2395.	3.3	23
871	A supramolecular photosensitizer derived from an Arene-Ru(II) complex self-assembly for NIR activated photodynamic and photothermal therapy. Nature Communications, 2022, 13, .	5.8	58
872	A Twoâ€Inâ€One Nanoprodrug for Photoacoustic Imagingâ€Guided Enhanced Sonodynamic Therapy. Small, 2022, 18, .	5.2	27
873	Size Optimization of Organic Nanoparticles with Aggregationâ€Induced Emission Characteristics for Improved ROS Generation and Photodynamic Cancer Cell Ablation. Small, 2022, 18, .	5.2	21

#	Article	IF	CITATIONS
874	Electronâ€Rich EDOT Linkers in Tetracationic bisâ€Triarylborane Chromophores: Influence on Water Stability, Biomacromolecule Sensing, and Photoinduced Cytotoxicity. Chemistry - A European Journal, 2022, 28, .	1.7	5
875	Redox-responsive nano-micelles containing trisulfide bonds to enhance photodynamic efficacy of zinc naphthalocyanine. Chemical Physics Letters, 2022, 803, 139785.	1.2	7
876	Asymmetrical zinc(II) phthalocyanines conjugated to metal tungstate nanoparticles for photoinactivation of <i>Staphylococcus aureus</i> . Journal of Coordination Chemistry, 0, , 1-15.	0.8	1
877	Increasing the efficiency of hyperthermic intraperitoneal chemotherapy (HIPEC) by combination with a photosensitive drug in pediatric rhabdomyosarcoma in an animal model. Pediatric Blood and Cancer, 2022, 69, .	0.8	2
878	Three-dimensional covalent organic frameworks as enzyme nanoprotector: preserving the activity of catalase in acidic environment for hypoxia cancer therapy. Materials Today Nano, 2022, 19, 100236.	2.3	6
879	Porphyrin-loaded acetylated lignin nanoparticles as a remarkable biomarker emitting in the first optical window. Journal of Porphyrins and Phthalocyanines, 0, , .	0.4	0
880	On-Demand Generation of Peroxynitrite from an Integrated Two-Dimensional System for Enhanced Tumor Therapy. ACS Nano, 2022, 16, 8939-8953.	7.3	38
881	Defect engineering of layered double hydroxide nanosheets as inorganic photosensitizers for NIR-III photodynamic cancer therapy. Nature Communications, 2022, 13, .	5.8	95
882	Bimodal Treatment of Hepatocellular Carcinoma by Targeted Minimally Interventional Photodynamic/Chemotherapy Using Glyco-Covalent-Organic Frameworks-Guided Porphyrin/Sorafenib. Acta Biomaterialia, 2022, 148, 206-217.	4.1	9
883	Near Infraredâ€Triggered Theranostic Nanoplatform with Controlled Release of HSP90 Inhibitor for Synergistic Mild Photothermal and Enhanced Nanocatalytic Therapy with Hypoxia Relief. Small, 2022, 18, .	5.2	34
884	Minimalist O2 generator formed by in situ KMnO4 oxidation for tumor cascade therapy. Biomaterials, 2022, 287, 121596.	5.7	4
885	Identifying high performance photosensitizer with simultaneous enhancement in fluorescence and singlet oxygen generation, from â€~(Ag/Au)-aggregation-induced emission-active fluorogen' theranostic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 649, 129448.	2.3	1
886	Tumor pH-Responsive Autocatalytic Nanoreactor as H ₂ O ₂ and O ₂ Self-Supplying Granary for Enhanced ROS-Based Chemodynamic/Photodynamic Therapy. SSRN Electronic Journal, 0, , .	0.4	0
887	A cyclometallated iridium(<scp>iii</scp>) complex with multi-photon absorption properties as an imaging-guided photosensitizer. Journal of Materials Chemistry B, 2022, 10, 5765-5773.	2.9	6
888	Self-assembled iRGD-R7-LAHP-M nanoparticle induced sufficient singlet oxygen and enhanced tumor penetration immunological therapy. Nanoscale, 2022, 14, 11388-11406.	2.8	5
889	Rational design of a small organic photosensitizer for NIR-I imaging-guided synergistic photodynamic and photothermal therapy. Biomaterials Science, 2022, 10, 4785-4795.	2.6	5
890	Singlet Oxygen, Photodynamic Therapy, and Mechanisms of Cancer Cell Death. Journal of Oncology, 2022, 2022, 1-20.	0.6	35
891	Coupling Chlorin-Based Photosensitizers and Histone Deacetylase Inhibitors for Photodynamic Chemotherapy. Molecular Pharmaceutics, 2022, 19, 2807-2817.	2.3	1

#	Article	IF	CITATIONS
892	Current Progress in Cancer Treatment Using Nanomaterials. Frontiers in Oncology, 0, 12, .	1.3	15
893	Rationally Designed Heptamethine Cyanine Photosensitizers that Amplify Tumorâ€Specific Endoplasmic Reticulum Stress and Boost Antitumor Immunity. Small, 2022, 18, .	5.2	15
894	Oxygen Self‣upplying Enzymatic Nanoplatform for Precise and Enhanced Photodynamic Therapy. Advanced Therapeutics, 2022, 5, .	1.6	4
895	Fluorescent Probes for Sensing and Imaging Biological Hydrogen Sulfide. Analysis & Sensing, 2022, 2, .	1.1	1
896	Photoswitchable semiconducting polymer dots with photosensitizer molecule and photochromic molecule loading for photodynamic cancer therapy. Journal of Innovative Optical Health Sciences, 2022, 15, .	0.5	2
897	Radiodynamic therapy with CsI(na)@MgO nanoparticles and 5-aminolevulinic acid. Journal of Nanobiotechnology, 2022, 20, .	4.2	3
898	Tongue cancer tailored photosensitizers for NIR-II fluorescence imaging guided precise treatment. Nano Today, 2022, 45, 101550.	6.2	31
899	Engineered biomimetic nanoparticles achieve targeted delivery and efficient metabolism-based synergistic therapy against glioblastoma. Nature Communications, 2022, 13, .	5.8	59
900	Aggregation-induced emission photosensitizer-based photodynamic therapy in cancer: from chemical to clinical. Journal of Nanobiotechnology, 2022, 20, .	4.2	42
901	Nanoparticles for X-ray or Cherenkov radiation-induced photodynamic therapy. , 2022, , .		0
902	Organic conjugated small molecules with donor–acceptor structures: design and application in the phototherapy of tumors. Materials Chemistry Frontiers, 2022, 6, 2968-2993.	3.2	21
903	Enhanced radioluminescence of yttrium pyrosilicate nanoparticles <i>via</i> rare earth multiplex doping. Nanoscale, 2022, 14, 12030-12037.	2.8	0
904	Targeted cancer phototherapy using phthalocyanine–anticancer drug conjugates. Dalton Transactions, 2022, 51, 13157-13175.	1.6	8
905	Recent Advances in Nanoparticles-Based Platforms Targeting the PD-1/PD-L1 Pathway for Cancer Treatment. Pharmaceutics, 2022, 14, 1581.	2.0	13
906	Self-Supply Oxygen ROS Reactor via Fenton-like Reaction and Modulating Glutathione for Amplified Cancer Therapy Effect. Nanomaterials, 2022, 12, 2509.	1.9	12
907	Discovery of the Anticancer Activity for Lung and Gastric Cancer of a Brominated Coelenteramine Analog. International Journal of Molecular Sciences, 2022, 23, 8271.	1.8	10
908	Porous organic polymer overcomes the post-treatment phototoxicity of photodynamic agents and maintains their antitumor efficiency. Acta Biomaterialia, 2022, 150, 254-264.	4.1	4
909	Tumor Selective Metabolic Reprogramming as a Prospective PDâ€L1 Depression Strategy to Reactivate Immunotherapy. Advanced Materials, 2022, 34, .	11.1	52

#	Article	IF	CITATIONS
910	Multi-functional engineered polypeptide-based drug delivery systems for improved cancer therapy. Green Chemical Engineering, 2022, , .	3.3	2
911	Evaluation of the anticancer activity and chemiluminescence of a halogenated coelenterazine analog. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 434, 114228.	2.0	3
912	Clinical progress in gold nanoparticle (GNP)-mediated photothermal cancer therapy Current Cancer Therapy Reviews, 2022, 18, .	0.2	1
913	Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies. Journal of Nanobiotechnology, 2022, 20, .	4.2	40
914	Molecularly Self-Engineered Nanoamplifier for Boosting Photodynamic Therapy via Cascade Oxygen Elevation and Lipid ROS Accumulation. ACS Applied Materials & Interfaces, 2022, 14, 38497-38505.	4.0	14
915	Thiolumazines as Heavy-Atom-Free Photosensitizers for Applications in Daylight Photodynamic Therapy: Insights from Ultrafast Excited-State Dynamics. Journal of Physical Chemistry B, 2022, 126, 6083-6094.	1.2	5
916	Vacancy defect-promoted nanomaterials for efficient phototherapy and phototherapy-based multimodal Synergistic Therapy. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	1
917	Porphyrinâ€Based Nanoparticles: A Promising Phototherapy Platform. ChemPlusChem, 2022, 87, .	1.3	9
918	NIR-II light-assisted radiotherapy based on ultrasmall HfO2-embedded porous carbon nanooctahedra for overcoming tumor radioresistance. Materials Today Nano, 2022, 20, 100253.	2.3	4
919	Zein-Based Nanomedicines for Synergistic Chemodynamic/Photodynamic Therapy. ACS Omega, 2022, 7, 29256-29265.	1.6	12
920	Upconversion Nanostructures Applied in Theranostic Systems. International Journal of Molecular Sciences, 2022, 23, 9003.	1.8	5
921	Covalent Organic Framework Nanocarriers of Singlet Oxygen for Oxygenâ€Independent Concurrent Photothermal/Photodynamic Therapy to Ablate Hypoxic Tumors. Small, 2022, 18, .	5.2	24
922	Secure transplantation by tissue purging using photodynamic therapy to eradicate malignant cells. Journal of Photochemistry and Photobiology B: Biology, 2022, 234, 112546.	1.7	9
923	A self-supplied O2 versatile nanoplatform for GOx-mediated synergistic starvation and hypothermal photothermal therapy. Materials and Design, 2022, 222, 111067.	3.3	4
924	Research progress of bone-targeted drug delivery system on metastatic bone tumors. Journal of Controlled Release, 2022, 350, 377-388.	4.8	10
925	Light activation of iridium(III) complexes driving ROS production and DNA damage enhances anticancer activity in A549 cells. Journal of Inorganic Biochemistry, 2022, 236, 111977.	1.5	11
926	Injectable hyaluronan/MnO2 nanocomposite hydrogel constructed by metal-hydrazide coordinated crosslink mineralization for relieving tumor hypoxia and combined phototherapy. Journal of Colloid and Interface Science, 2022, 628, 79-94.	5.0	10
927	Novel pyropheophorbide a dimers: Synthesis and photobiological evaluation as potent photosensitizers for photodynamic therapy. Journal of Molecular Structure, 2022, 1269, 133840.	1.8	1

#	Article	IF	CITATIONS
928	Carbon dots as a promising therapeutic approach for combating cancer. Bioorganic and Medicinal Chemistry, 2022, 72, 116987.	1.4	6
929	Biomimetic PLGA-based nanocomplexes for improved tumor penetration to enhance chemo-photodynamic therapy against metastasis of TNBC. Materials Today Advances, 2022, 16, 100289.	2.5	6
930	Halogen-bridged binuclear iridium(<scp>iii</scp>) complexes with enhanced photodynamic therapeutic effects in mitochondria. Journal of Materials Chemistry B, 2022, 10, 6307-6314.	2.9	2
931	Phosphorescent metal complexes for biomedical applications. , 2022, , .		0
932	A dual-functional nanoplatform based on NIR and green dual-emissive persistent luminescence nanoparticles for X-ray excited persistent luminescence imaging and photodynamic therapy. Nanoscale, 2022, 14, 15451-15461.	2.8	4
933	An endoperoxide-containing covalent organic framework as a singlet oxygen reservoir for cancer therapy. Chemical Communications, 2022, 58, 11013-11016.	2.2	7
934	Recent Developments in ROS-Based Nanotherapeutic Modalities in Preclinical Cancer Treatment. , 2022, , 3059-3076.		0
935	Highly biocompatible chlorin e6-poly(dopamine) core–shell nanoparticles for enhanced cancer phototherapy. Nanoscale Advances, 2022, 4, 4617-4627.	2.2	5
936	A nanoplatform for mild-temperature photothermal and type I & II photodynamic therapy in the NIR-II biowindow. Chemical Communications, 2022, 58, 10353-10356.	2.2	15
937	A photoactive lysosome targeting Ru ^{II} complex downregulates stemness genes in oral squamous cell carcinoma. Inorganic Chemistry Frontiers, 2022, 9, 5840-5852.	3.0	2
938	Recent advances on organelle specific Ru(II)/Ir(III)/Re(I) based complexes for photodynamic therapy. Coordination Chemistry Reviews, 2023, 474, 214860.	9.5	20
939	Graphdiyne-Related Materials in Biomedical Applications and Their Potential in Peripheral Nerve Tissue Engineering. Cyborg and Bionic Systems, 2022, 2022, .	3.7	10
940	Enhancing electron transfer of a semiconducting polymer for type I photodynamic and photothermal synergistic therapy. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
941	Comprehensive Thione-Derived Perylene Diimides and Their Bio-Conjugation for Simultaneous Imaging, Tracking, and Targeted Photodynamic Therapy. Journal of the American Chemical Society, 2022, 144, 17249-17260.	6.6	27
942	Mitochondriaâ€Targeting Boron Dipyrromethene Based Photosensitizers for Enhanced Photodynamic Therapy: Synthesis, Optical Properties, and inâ€vitro Biological Activity. ChemPlusChem, 2022, 87, .	1.3	2
943	An Approach to Developing Cyanines with Upconverted Photosensitive Efficiency Enhancement for Highly Efficient NIR Tumor Phototheranostics. Advanced Science, 2022, 9, .	5.6	7
944	Stimuli-Responsive Aggregation-Induced Emission (AIE)-Active Polymers for Biomedical Applications. ACS Biomaterials Science and Engineering, 2022, 8, 4207-4229.	2.6	13
945	Overview of Nanoparticle-Based Approaches for the Combination of Photodynamic Therapy (PDT) and Chemotherapy at the Preclinical Stage. Cancers, 2022, 14, 4462.	1.7	13

#	Article	IF	CITATIONS
946	Amorphous Ultraâ€Small Feâ€Based Nanocluster Engineered and ICG Loaded Organoâ€Mesoporous Silica for GSH Depletion and Photothermalâ€Chemodynamic Synergistic Therapy. Advanced Healthcare Materials, 2022, 11, .	3.9	9
947	Low Intensity Focused Ultrasound Ignited "Deep-Penetration Nanobomb―(DPNB) for Tetramodal Imaging Guided Hypoxia-Tolerant Sonodynamic Therapy Against Hypoxic Tumors. International Journal of Nanomedicine, 0, Volume 17, 4547-4565.	3.3	7
948	A Microneedle Patch with Self-Oxygenation and Glutathione Depletion for Repeatable Photodynamic Therapy. ACS Nano, 2022, 16, 17298-17312.	7.3	33
949	Triarylboronâ€Doped Acenethiophenes as Organic Sonosensitizers for Highly Efficient Sonodynamic Therapy with Low Phototoxicity. Advanced Materials, 2022, 34, .	11.1	11
950	Ultradeep Photothermal Therapy Strategies. Journal of Physical Chemistry Letters, 2022, 13, 9564-9572.	2.1	17
951	Tetra vs Octa - How it affects the photophysical, photochemical, physicochemical and biological properties of mercaptophenolsubstituted Zn phthalocyanines. Journal of Porphyrins and Phthalocyanines, 0, , .	0.4	0
952	Rational Modulation of BODIPY Photosensitizers to Design Metal–Organic Framework-Based NIR Nanocomposites for High-Efficiency Photodynamic Therapy in a Hypoxic Environment. ACS Applied Materials & Interfaces, 2022, 14, 46262-46272.	4.0	15
953	Catalytic Biomaterials and Nanomedicines with Exogenous and Endogenous Activations. Advanced Healthcare Materials, 2023, 12, .	3.9	16
954	Attachment of â^'tBu groups to aza-BODIPY core at 3,5-sites with ultra-large Stokes shift to enhance photothermal therapy through apoptosis mechanism. Materials Today Bio, 2022, 16, 100446.	2.6	4
955	Mechanistic insight into photoactivation of small inorganic molecules from the biomedical applications perspectives. Advances in Inorganic Chemistry, 2022, , .	0.4	0
956	Cerenkov radiation-activated probes for deep cancer theranostics: a review. Theranostics, 2022, 12, 7404-7419.	4.6	5
957	A pH-responsive cascade nanoplatform with circulating oxygen supply for collaborative breast cancer treatment. Chemical Communications, 2022, 58, 12090-12093.	2.2	4
958	Ruthenium-based antitumor drugs and delivery systems from monotherapy to combination therapy. Nanoscale, 2022, 14, 16339-16375.	2.8	14
960	Amphiphilic Rhodamine Nano-assembly as a Type I Supramolecular Photosensitizer for Photodynamic Therapy. ACS Applied Nano Materials, 2022, 5, 14954-14960.	2.4	13
961	Study on the photodynamic performance of non-stoichiometric nano-tungsten oxide probe. Digest Journal of Nanomaterials and Biostructures, 2022, 17, 1125-1134.	0.3	1
962	Three Birds with One Stone: Acceptor Engineering of Hemicyanine Dye with NIRâ€II Emission for Synergistic Photodynamic and Photothermal Anticancer Therapy. Small, 2022, 18, .	5.2	15
963	Chemiluminescence in Combination with Organic Photosensitizers: Beyond the Light Penetration Depth Limit of Photodynamic Therapy. International Journal of Molecular Sciences, 2022, 23, 12556.	1.8	13
964	Synthetic biology-instructed transdermal microneedle patch for traceable photodynamic therapy. Nature Communications, 2022, 13, .	5.8	25

#	Article	IF	CITATIONS
965	Stimuli-responsive image-guided nanocarriers as smart drug delivery platforms. Expert Opinion on Drug Delivery, 2022, 19, 1487-1504.	2.4	5
966	Modified hollow mesoporous silica nanoparticles as immune adjuvant-nanocarriers for photodynamically enhanced cancer immunotherapy. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
967	A lipid droplet-targeted multifunctional AIE-active fluorescent probe for hydrogen peroxide detection and imaging-guided photodynamic therapy. Sensors and Actuators B: Chemical, 2023, 375, 132892.	4.0	15
968	Endo/exo-genous dual-stimuli responsive gold nanotetrapod-based nanoprobe for magnetic resonance imaging and enhanced multimodal therapeutics by amplifying·OH generation. Acta Biomaterialia, 2022, 154, 549-558.	4.1	7
969	A tumor pH-responsive autocatalytic nanoreactor as a H2O2 and O2 self-supplying depot for enhanced ROS-based chemo/photodynamic therapy. Acta Biomaterialia, 2022, 154, 510-522.	4.1	13
970	NIR-II light-activated two-photon squaric acid dye with Type I photodynamics for antitumor therapy. Nanophotonics, 2022, 11, 5089-5100.	2.9	3
971	Spin-Coating-Based Facile Annular Photodynamic Intraocular Lens Fabrication for Efficient and Safer Posterior Capsular Opacification Prevention. ACS Applied Materials & Interfaces, 2022, 14, 48341-48355.	4.0	5
972	Recent advances in MXenes: new horizons in biomedical technologies. Materials Today Chemistry, 2022, 26, 101205.	1.7	5
973	Cancer therapy by antibody-targeted Cerenkov light and metabolism-selective photosensitization. Journal of Controlled Release, 2022, 352, 25-34.	4.8	3
974	Non-UV-activated persistent luminescence phosphors for sustained bioimaging and phototherapy. Coordination Chemistry Reviews, 2023, 475, 214913.	9.5	11
975	Tumor microenvironment activated nanoreactors for chemiluminescence imaging-guided simultaneous elimination of breast tumors and tumor-resident intracellular pathogens. Chemical Engineering Journal, 2023, 453, 139939.	6.6	14
976	Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chemical Society Reviews, 2022, 51, 9759-9830.	18.7	17
977	Engineering of BODIPY-based theranostics for cancer therapy. Coordination Chemistry Reviews, 2023, 476, 214908.	9.5	48
978	Investigation of the Anticancer and Drug Combination Potential of Brominated Coelenteramines toward Breast and Prostate Cancer. International Journal of Molecular Sciences, 2022, 23, 13981.	1.8	1
979	Investigation of Specific Features of Recording the Optical Response of X-Ray Phosphors for X-Ray Photodynamic Therapy. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2022, 130, 409-417.	0.2	1
980	Upconversion rare Earths nanomaterials applied to photodynamic therapy and bioimaging. Frontiers in Chemistry, 0, 10, .	1.8	5
981	Aggregation-Induced Emission Luminogens for Enhanced Photodynamic Therapy: From Organelle Targeting to Tumor Targeting. Biosensors, 2022, 12, 1027.	2.3	1
982	Alternative Strategy to Optimize Cerium Oxide for Enhanced X-ray-Induced Photodynamic Therapy. ACS Nano, 2022, 16, 20805-20819.	7.3	25

#	Article	IF	CITATIONS
983	Recent Progress and Trends in X-ray-Induced Photodynamic Therapy with Low Radiation Doses. ACS Nano, 2022, 16, 19691-19721.	7.3	27
984	BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Selfâ€Assembly, Properties, and Applications. Advanced Materials, 2023, 35, .	11.1	50
985	Boosting Type-I and Type-II ROS Production of Water-Soluble Porphyrin for Efficient Hypoxic Tumor Therapy. Molecular Pharmaceutics, 2023, 20, 606-615.	2.3	10
986	Reactive oxygen species-upregulating nanomedicines towards enhanced cancer therapy. Biomaterials Science, 2023, 11, 1182-1214.	2.6	19
987	A protein-targeted photosensitizer for highly efficient cancer therapy. Materials Today Chemistry, 2023, 27, 101261.	1.7	1
988	Design strategies and applications of smart optical probes in the second near-infrared window. Advanced Drug Delivery Reviews, 2023, 192, 114637.	6.6	13
989	Catalytic nanotechnology of X-ray photodynamics for cancer treatments. Biomaterials Science, 2023, 11, 1153-1181.	2.6	6
990	Two-photon photodynamic therapy based on FRET using tumor-cell targeted riboflavin conjugated graphene quantum dot. Journal of Photochemistry and Photobiology B: Biology, 2023, 238, 112602.	1.7	8
991	Targeted implementation strategies of precise photodynamic therapy based on clinical and technical demands. Biomaterials Science, 2023, 11, 704-718.	2.6	4
992	Carbon dots nanophotosensitizers with tunable reactive oxygen species generation for mitochondrion-targeted type I/II photodynamic therapy. Biomaterials, 2023, 293, 121953.	5.7	30
993	Phototheranostics for NIR fluorescence image guided PDT/PTT with extended conjugation and enhanced TICT. Biomedicine and Pharmacotherapy, 2023, 158, 114071.	2.5	6
994	An Oxygen-Sufficient Nanoplatform for Enhanced Imaging-Guided Microwave Dynamic Therapy Against Hypoxic Tumors. International Journal of Nanomedicine, O, Volume 17, 5525-5545.	3.3	0
995	The Application of Black Phosphorus Nanomaterials in Bone Tissue Engineering. Pharmaceutics, 2022, 14, 2634.	2.0	6
996	A self-amplified necrotic targeting theranostic nanoparticle with deep tumor penetration for imaging-guided personalized chemo-photodynamic therapy. Chemical Engineering Journal, 2023, 455, 140465.	6.6	0
997	Light-triggered theranostic hydrogels for real-time imaging and on-demand photodynamic therapy of skin abscesses. Acta Biomaterialia, 2023, 155, 292-303.	4.1	11
998	Mesoporous Silica Nanoparticlesâ€Based Nanoplatforms: Basic Construction, Current State, and Emerging Applications in Anticancer Therapeutics. Advanced Healthcare Materials, 2023, 12, .	3.9	16
999	Photocatalytic Generation of Hydrogen Radical (Hâ‹) with GSH for Photodynamic Therapy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	17
1000	Nanotherapeutic Intervention in Photodynamic Therapy for Cancer. ACS Omega, 2022, 7, 45882-45909.	1.6	25

#	Article	IF	Citations
1001	Short-Wavelength Aggregation-Induced Emission Photosensitizers for Solid Tumor Therapy: Enhanced with White-Light Fiber Optic. International Journal of Nanomedicine, 0, Volume 17, 6607-6619.	3.3	2
1002	Investigation of the photoluminescent properties, scintillation behaviour and toxicological profile of various magnesium tungstate nanoscale motifs. Royal Society Open Science, 2022, 9, .	1.1	2
1003	Programmed cyclodextrin-based core–shell nanoparticles for cooperative TGF-β blockade to reverse immunosuppression post photodynamic therapy. Chemical Engineering Journal, 2023, 455, 140830.	6.6	3
1004	Highly Effective Generation of Singlet Oxygen by an Imidazole-Linked Robust Photosensitizing Covalent Organic Framework. ACS Nano, 2022, 16, 21565-21575.	7.3	24
1005	Photocatalytic Generation of Hydrogen Radical (Hâ‹) with GSH for Photodynamic Therapy. Angewandte Chemie, 2023, 135, .	1.6	3
1006	Upconversion nanoparticles (UCNPs): Synthesis methods, imaging and cancer therapy. Journal of Drug Delivery Science and Technology, 2023, 80, 104175.	1.4	7
1007	Piezocatalytic Medicine: An Emerging Frontier using Piezoelectric Materials for Biomedical Applications. Advanced Materials, 2023, 35, .	11.1	45
1008	Design of A3B-Porphyrin Conjugates with Terpyridine as Potential Theranostic Agents: Synthesis, Complexation with Fe(III), Gd(III), and Photodynamic Activity. Pharmaceutics, 2023, 15, 269.	2.0	5
1009	A pH-Responsive Drug Delivery System Based on Conjugated Polymer for Effective Synergistic Chemo-/Photodynamic Therapy. Molecules, 2023, 28, 399.	1.7	6
1010	Targeting Warburg effect to rescue the suffocated photodynamic therapy: A cancer-specific solution. Biomaterials, 2023, 294, 122017.	5.7	11
1011	Progress in the application of hydrogels in immunotherapy of gastrointestinal tumors. Drug Delivery, 2023, 30, .	2.5	5
1012	Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics, 2023, 15, 236.	2.0	22
1013	Manipulate tumor hypoxia for improved photodynamic therapy using nanomaterials. European Journal of Medicinal Chemistry, 2023, 247, 115084.	2.6	9
1014	Rationally designed fluorescent probes using target specific cascade reactions. Sensors and Actuators B: Chemical, 2023, 380, 133282.	4.0	1
1015	Ferroptosis: challenges and opportunities for nanomaterials in cancer therapy. International Journal of Energy Production and Management, 2023, 10, .	1.9	12
1016	Hypoxia signaling in cancer: Implications for therapeutic interventions. MedComm, 2023, 4, .	3.1	16
1017	Acceptor engineering of metallacycles with high phototoxicity indices for safe and effective photodynamic therapy. Chemical Science, 2023, 14, 2901-2909.	3.7	14
1018	Fluorophore-based host–guest assembly complexes for imaging and therapy. Chemical Communications, 2023, 59, 3024-3039.	2.2	5

			CI .	
#	Article	IF		CITATIONS
1019	Recent progress in synthesis and application of furoxan. RSC Advances, 2023, 13, 5228-5248.	1.7	7	2
1020	Low-dose X-ray radiodynamic therapy solely based on gold nanoclusters for efficient treatment of deep hypoxic solid tumors combined with enhanced antitumor immune response. Theranostics, 202. 13, 1042-1058.	3, 4.0	6	8
1021	Monolayer LDH Nanosheets with Ultrahigh ICG Loading for Phototherapy and Ca ²⁺ -Induced Mitochondrial Membrane Potential Damage to Co-Enhance Cancer Immunotherapy. ACS Applied Materials & Interfaces, 2023, 15, 9135-9149.	4.0	0	8
1022	Hyaluronic acid-covered piezoelectric nanocomposites as tumor microenvironment modulators for piezoelectric catalytic therapy of melanoma. International Journal of Biological Macromolecules, 2023, 236, 124020.	3.6	6	3
1023	Cerenkov radiation induced chemo-photodynamic therapy using ROS-responsive agent. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 439, 114641.	2.0	0	0
1024	An aggregation-induced emission photosensitizer with efficient singlet oxygen generation capacity for mitochondria targeted photodynamic therapy. Dyes and Pigments, 2023, 213, 111181.	2,0	D	7
1025	Application of aptamer-drug delivery system in the therapy of breast cancer. Biomedicine and Pharmacotherapy, 2023, 161, 114444.	2,5	5	10
1026	Novel nanoparticles prepared from isothiocyanate derivatives for phototherapy of tumor. Journal of Photochemistry and Photobiology B: Biology, 2023, 242, 112701.	1.7	7	0
1027	Near-infrared light triggered in situ release of CO for enhanced therapy of glioblastoma. Journal of Nanobiotechnology, 2023, 21, .	4.2	2	1
1028	Bovine serum albumin-based and dual-responsive targeted hollow mesoporous silica nanoparticles for breast cancer therapy. Colloids and Surfaces B: Biointerfaces, 2023, 224, 113201.	2.5	5	14
1029	An oxygen-carrying and lysosome-targeting BODIPY derivative for NIR bioimaging and enhanced multimodal therapy against hypoxic tumors. Journal of Photochemistry and Photobiology B: Biology, 2023, 241, 112666.	1.7	7	5
1030	Supramolecular Photosensitizer Enables Oxygen-Independent Generation of Hydroxyl Radicals for Photodynamic Therapy. Journal of the American Chemical Society, 2023, 145, 4081-4087.	6.0	6	85
1031	Palladium nanoparticle based smart hydrogels for NIR light-triggered photothermal/photodynamic therapy and drug release with wound healing capability. Nanoscale Advances, 2023, 5, 1729-1739.	2.2	2	4
1032	Photodynamic and photothermal therapy-driven synergistic cancer treatment assisted by zeolitic imidazolate framework-8: A review. Journal of Drug Delivery Science and Technology, 2023, 81, 1042	272. ^{1.4}	1	6
1033	Tumor-specific activated nano-domino-CRISPR to amplify intrinsic oxidative and activate endogenous apoptosis for spatiotemporally specific therapy. Biomaterials, 2023, 295, 122056.	5 5.7	7	6
1034	Global Trends and Research Progress of Photodynamic Therapy in Skin Cancer: A Bibliometric Analysi and Literature Review. Clinical, Cosmetic and Investigational Dermatology, 0, Volume 16, 479-498.	s 0.4	8	9
1035	Development of a multifunctional platform for near-infrared imaging and targeted radionuclide therapy for tumors. European Journal of Pharmaceutics and Biopharmaceutics, 2023, 185, 107-115.	2.0	0	0
1036	Near Infrared-Activatable Methylene Blue Polypeptide Codelivery of the NO Prodrug via ï€â€"ï€ Stack for Cascade Reactive Oxygen Species Amplification-Mediated Photodynamic Therapy. ACS Applied Materials & Interfaces, 2023, 15, 12750-12765.	ting 4.0	0	8

#	Article	IF	CITATIONS
1037	Novel Biophotonic Techniques for Phototherapy Enhancement: Cerenkov Radiation as a Bridge between Ionizing and Non-Ionizing Radiation Treatment. Journal of Nanotheranostics, 2023, 4, 86-105.	1.7	1
1038	Insight into the Crosstalk between Photodynamic Therapy and Immunotherapy in Breast Cancer. Cancers, 2023, 15, 1532.	1.7	6
1039	Photo-/piezo-activated ultrathin molybdenum disulfide nanomedicine for synergistic tumor therapy. Journal of Materials Chemistry B, 2023, 11, 2895-2903.	2.9	5
1040	Phototheranostic Nanoagents for <scp>Imagingâ€Guided</scp> Treatment of Oral Cancer ^{â€} . Chinese Journal of Chemistry, 2023, 41, 1624-1636.	2.6	1
1041	Coupling Probiotics with 2D CoCuMoâ€LDH Nanosheets as a Tumorâ€Microenvironmentâ€Responsive Platform for Precise NIRâ€II Photodynamic Therapy. Advanced Materials, 2023, 35, .	11.1	30
1042	Size-Controllable Nanosystem with Double Responsive for Deep Photodynamic Therapy. Pharmaceutics, 2023, 15, 940.	2.0	0
1043	Inhibition of melanoma using a nanoceria-based prolonged oxygen-generating phototherapy hydrogel. Frontiers in Oncology, 0, 13, .	1.3	0
1044	Cyclopentylmalononitrile dye as an efficient photosensitizer for combined photodynamic and water-dependent reversible photoacidity therapy. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 441, 114701.	2.0	2
1045	Biomimetic nanoplatform with H2O2 homeostasis disruption and oxidative stress amplification for enhanced chemodynamic therapy. Acta Biomaterialia, 2023, 162, 44-56.	4.1	11
1046	Polymeric DNA Hydrogels and Their Applications in Drug Delivery for Cancer Therapy. Gels, 2023, 9, 239.	2.1	8
1047	Reactive oxygen species-powered cancer immunotherapy: Current status and challenges. Journal of Controlled Release, 2023, 356, 623-648.	4.8	28
1048	Selfâ€Assembled Carrierâ€Free Nanodrugs for Starvation Therapyâ€Amplified Photodynamic Therapy of Cancer. Advanced Healthcare Materials, 2023, 12, .	3.9	6
1049	Integration of TADF Photosensitizer as "Electron Pump―and BSA as "Electron Reservoir―for Boosting Type I Photodynamic Therapy. Journal of the American Chemical Society, 2023, 145, 8130-8140.	6.6	32
1050	ROS-responsive self-activatable photosensitizing agent for photodynamic-immunotherapy of cancer. Acta Biomaterialia, 2023, 164, 511-521.	4.1	5
1051	Sweetened Alkylated Verdazyls Effectively Kill Cancer Cells under Light Irradiation. ChemMedChem, 0,	1.6	1
1052	Recent Advances in Hydrogel-Based Phototherapy for Tumor Treatment. Gels, 2023, 9, 286.	2.1	3
1054	Structure and Photosensitaizer Ability of Polymethine Dyes in Photodynamic Therapy: A Review. Theoretical and Experimental Chemistry, 2023, 58, 373-401.	0.2	10
1055	Secondary Structure in Overcoming Photosensitizers' Aggregation: <i>α</i> â€Helical Polypeptides for Enhanced Photodynamic Therapy. Advanced Healthcare Materials, 2023, 12, .	3.9	2

#	Article	IF	CITATIONS
1056	Polymeric Phthalocyanineâ€Based Nanosensitizers for Enhanced Photodynamic and Sonodynamic Therapies. Advanced Healthcare Materials, 2023, 12, .	3.9	2
1057	Positron emission tomography imaging sheds new light on hypoxia and antitumor therapies. , 2023, 1, .		8
1058	Rare-earth scintillating nanoparticles for X-ray induced photodynamic therapy. Journal of Luminescence, 2023, 261, 119862.	1.5	1
1059	Developmental synergism in the management of oral potentially malignant disorders. Photodiagnosis and Photodynamic Therapy, 2023, 42, 103563.	1.3	0
1060	Activatable Photodynamic Photosensitizers for Cancer Treatment. , 2023, , 345-377.		0
1061	Synthesis of near-infrared absorbing conjugated copolymers with perfluorocarbon side chains to improve singlet oxygen generation efficiency. Journal of Polymer Research, 2023, 30, .	1.2	0
1062	Hybrid <scp>ZnO</scp> @Au nanorod array for fast and repeatable bacteria inactivation. Chinese Journal of Chemistry, 0, , .	2.6	0
1063	Tunable Nanoparticles with Aggregationâ€Induced Emission Heater for Precise Synergistic Photothermal and Thermodynamic Oral Cancer Therapy of Patientâ€Derived Tumor Xenograft. Advanced Science, 2023, 10, .	5.6	6
1064	Nanosystems for antimicrobial interventions: advanced synthesis and implementation strategies. , 2023, , 3-22.		1
1065	Copper Coordination-Based Conjugated Polymer Nanoparticles for Synergistic Photodynamic and Chemodynamic Therapy. Chemical Communications, 0, , .	2.2	2
1066	Hypoxic tumor therapy based on free radicals. Materials Chemistry Frontiers, 0, , .	3.2	0
1079	Mitochondria-targeted fluorophores for <i>in vivo</i> NIR-II imaging-guided PDT/PTT. Chemical Communications, 2023, 59, 8127-8130.	2.2	3
1084	Functional anti-bone tumor biomaterial scaffold: construction and application. Journal of Materials Chemistry B, 2023, 11, 8565-8585.	2.9	3
1087	Recent advances in type I organic photosensitizers for efficient photodynamic therapy for overcoming tumor hypoxia. Journal of Materials Chemistry B, 2023, 11, 4600-4618.	2.9	12
1089	Research development of porphyrin-based metal–organic frameworks: targeting modalities and cancer therapeutic applications. Journal of Materials Chemistry B, 2023, 11, 6172-6200.	2.9	5
1091	Nanomaterials for photothermal cancer therapy. RSC Advances, 2023, 13, 14443-14460.	1.7	11
1105	Editorial: Synthesis of novel photosensitizers for cancer theranostics. Frontiers in Chemistry, 0, 11, .	1.8	0
1112	Fluorescent dyes based on rhodamine derivatives for bioimaging and therapeutics: recent progress, challenges, and prospects. Chemical Society Reviews, 2023, 52, 5607-5651.	18.7	35

#	Article	IF	CITATIONS
1126	Current status and prospects of MIL-based MOF materials for biomedicine applications. RSC Medicinal Chemistry, 2023, 14, 1914-1933.	1.7	3
1131	Covalent organic frameworks: linkage types, synthetic methods and bio-related applications. Biomaterials Science, 2023, 11, 6942-6976.	2.6	2
1137	Reprogramming the tumor immune microenvironment via nanomaterial-mediated dynamic therapy. Nano Research, 2023, 16, 13100-13112.	5.8	0
1138	Applications of supramolecular assemblies in drug delivery and photodynamic therapy. RSC Medicinal Chemistry, 2023, 14, 2438-2458.	1.7	1
1144	X-ray excited luminescent nanoparticles for deep photodynamic therapy. RSC Advances, 2023, 13, 30133-30150.	1.7	1
1170	Nanotechnology Potent Photothermal and Photodynamic Immunotherapies of Cancer. Journal of Medical and Biological Engineering, 0, , .	1.0	0
1172	Recent advances and prospects of metal–organic frameworks in cancer therapies. Dalton Transactions, 2023, 52, 17601-17622.	1.6	3
1173	Unveiling the antibacterial strategies and mechanisms of MoS ₂ : a comprehensive analysis and future directions. Biomaterials Science, 0, , .	2.6	0
1224	Novel applications in drug-free sustainable photocatalytic cancer therapy. , 2024, , 215-226.		0