Iron oxide nanoparticles inhibit tumour growth by indupolarization in tumour tissues

Nature Nanotechnology

11, 986-994

DOI: 10.1038/nnano.2016.168

Citation Report

#	Article	IF	CITATIONS
2	The new face of iron oxide nanoparticles: the bullets targeting tumor microenvironment for cancer therapy. Science Bulletin, 2016, 61, 1788-1790.	4.3	5
3	An iron age for cancer therapy. Nature Nanotechnology, 2016, 11, 921-922.	15.6	63
4	Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale, 2016, 8, 19421-19474.	2.8	326
6	Targeting iron metabolism in drug discovery and delivery. Nature Reviews Drug Discovery, 2017, 16, 400-423.	21.5	258
7	Colloidal capsules: nano- and microcapsules with colloidal particle shells. Chemical Society Reviews, 2017, 46, 2091-2126.	18.7	246
8	In vitro evaluation of cytotoxicity, possible alteration of apoptotic regulatory proteins, and antibacterial activity of synthesized copper oxide nanoparticles. Colloids and Surfaces B: Biointerfaces, 2017, 153, 320-326.	2.5	47
9	Tumor-associated macrophages: from basic research to clinical application. Journal of Hematology and Oncology, 2017, 10, 58.	6.9	607
10	Ferumoxytol vs. Gadolinium agents for contrastâ€enhanced MRI: Thoughts on evolving indications, risks, and benefits. Journal of Magnetic Resonance Imaging, 2017, 46, 919-923.	1.9	35
11	Designing nanomedicine for immuno-oncology. Nature Biomedical Engineering, 2017, 1, .	11.6	178
12	Paclitaxel nanoparticle awakens immune system to fight against cancer. Nanoscale, 2017, 9, 6529-6536.	2.8	37
13	Molecular Imaging in Nanotechnology and Theranostics. Molecular Imaging and Biology, 2017, 19, 363-372.	1.3	32
14	Synthesis of iron oxide nanoparticles in microplasma under atmospheric pressure. Chemical Engineering Science, 2017, 168, 360-371.	1.9	36
15	Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials, 2017, 136, 98-114.	5.7	244
16	Metabolic regulation of suppressive myeloid cells in cancer. Cytokine and Growth Factor Reviews, 2017, 35, 27-35.	3.2	27
17	Activatable Singlet Oxygen Generation from Lipid Hydroperoxide Nanoparticles for Cancer Therapy. Angewandte Chemie, 2017, 129, 6592-6596.	1.6	63
18	Activatable Singlet Oxygen Generation from Lipid Hydroperoxide Nanoparticles for Cancer Therapy. Angewandte Chemie - International Edition, 2017, 56, 6492-6496.	7.2	328
19	Biomaterial strategies for generating therapeutic immune responses. Advanced Drug Delivery Reviews, 2017, 114, 3-18.	6.6	51
20	Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Advanced Drug Delivery Reviews, 2017, 114, 206-221.	6.6	528

#	Article	IF	CITATIONS
21	Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics. Drug Discovery Today, 2017, 22, 1421-1429.	3.2	113
22	Ethylenediaminetetraacetic acid capped superparamagnetic iron oxide (Fe 3 O 4) nanoparticles: A novel preparation method and characterization. Journal of Magnetism and Magnetic Materials, 2017, 439, 312-319.	1.0	22
23	Delivering safer immunotherapies for cancer. Advanced Drug Delivery Reviews, 2017, 114, 79-101.	6.6	233
24	Tailoring Biomaterials for Cancer Immunotherapy: Emerging Trends and Future Outlook. Advanced Materials, 2017, 29, 1606036.	11.1	220
25	Monocytes/Macrophages Mobilization Orchestrate Neovascularization after Localized Colorectal Irradiation. Radiation Research, 2017, 187, 549-561.	0.7	9
26	Synthetic nanovaccines for immunotherapy. Journal of Controlled Release, 2017, 263, 200-210.	4.8	88
27	Immunomodulatory Nanomedicine. Macromolecular Bioscience, 2017, 17, 1700021.	2.1	11
28	"Pumping ironâ€â€"how macrophages handle iron at the systemic, microenvironmental, and cellular levels. Pflugers Archiv European Journal of Physiology, 2017, 469, 397-418.	1.3	132
29	Contrast Media Research 2017 Durango, Colorado USA, October 22–25, 2017 Convener: Michael F. Tweedle, PhD. Investigative Radiology, 2017, 52, 758-778.	3.5	2
30	Targeting tumor associated macrophages: The new challenge for nanomedicine. Seminars in Immunology, 2017, 34, 103-113.	2.7	110
31	Effects of engineered nanoparticles on the innate immune system. Seminars in Immunology, 2017, 34, 25-32.	2.7	189
32	Ten Things You Might Not Know about Iron Oxide Nanoparticles. Radiology, 2017, 284, 616-629.	3.6	129
33	Temperature influence on the properties of carbon-encapsulated iron nanoparticles forming in pyrolysis of gaseous precursors. Journal of Alloys and Compounds, 2017, 727, 711-720.	2.8	11
34	Nanoparticles and innate immunity: new perspectives on host defence. Seminars in Immunology, 2017, 34, 33-51.	2.7	244
35	Temperature/pH-Sensitive Nanoantibiotics and Their Sequential Assembly for Optimal Collaborations between Antibacterial and Immunoregulation. ACS Applied Materials & Interfaces, 2017, 9, 31589-31599.	4.0	20
36	Pro-inflammatory chitosan/poly(γ-glutamic acid) nanoparticles modulate human antigen-presenting cells phenotype and revert their pro-invasive capacity. Acta Biomaterialia, 2017, 63, 96-109.	4.1	45
37	Tumor-associated macrophages, nanomedicine and imaging: the axis of success in the future of cancer immunotherapy. Immunotherapy, 2017, 9, 819-835.	1.0	41
38	Cuprous oxide nanoparticles trigger ER stress-induced apoptosis by regulating copper trafficking and overcoming resistance to sunitinib therapy in renal cancer. Biomaterials, 2017, 146, 72-85.	5.7	69

#	Article	IF	CITATIONS
39	Multiscale technologies for treatment of ischemic cardiomyopathy. Nature Nanotechnology, 2017, 12, 845-855.	15.6	104
40	Functionalized Selenium Nanosystem as Radiation Sensitizer of ¹²⁵ I Seeds for Precise Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 25857-25869.	4.0	52
41	UV laser synthesis of nanoparticles in the gas phase. Kinetics and Catalysis, 2017, 58, 233-254.	0.3	7
42	Cancer Nanomedicine: Lessons for Immuno-Oncology. Trends in Cancer, 2017, 3, 551-560.	3.8	42
43	Evolution and clinical translation of drug delivery nanomaterials. Nano Today, 2017, 15, 91-106.	6.2	196
44	Design of nanocarriers based on complex biological barriers in vivo for tumor therapy. Nano Today, 2017, 15, 56-90.	6.2	103
45	Dual-Mode Imaging-Guided Synergistic Chemo- and Magnetohyperthermia Therapy in a Versatile Nanoplatform To Eliminate Cancer Stem Cells. ACS Applied Materials & Interfaces, 2017, 9, 23497-23507.	4.0	37
46	A Novel Theranostic Strategy for <i>MMP-14</i> –Expressing Glioblastomas Impacts Survival. Molecular Cancer Therapeutics, 2017, 16, 1909-1921.	1.9	35
47	Nano-therapeutics: A revolution in infection control in post antibiotic era. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2281-2301.	1.7	142
48	Prediction of Anti-cancer Nanotherapy Efficacy by Imaging. Nanotheranostics, 2017, 1, 296-312.	2.7	64
49	Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetic for Biomedical Applications. Theranostics, 2017, 7, 3207-3227.	4.6	421
50	Injecting nanoparticles into immunotherapy. BioTechniques, 2017, 63, 7-13.	0.8	1
51	Low toxic maghemite nanoparticles for theranostic applications. International Journal of Nanomedicine, 2017, Volume 12, 6365-6371.	3.3	21
52	The Current State of Nanoparticle-Induced Macrophage Polarization and Reprogramming Research. International Journal of Molecular Sciences, 2017, 18, 336.	1.8	142
53	Nanomedicine Strategies to Target Tumor-Associated Macrophages. International Journal of Molecular Sciences, 2017, 18, 979.	1.8	79
54	Nanomaterials in the Context of Type 2 Immune Responses—Fears and Potentials. Frontiers in Immunology, 2017, 8, 471.	2.2	19
55	Iron Induces Anti-tumor Activity in Tumor-Associated Macrophages. Frontiers in Immunology, 2017, 8, 1479.	2.2	121
56	Fluorine-19 Magnetic Resonance Imaging and Positron Emission Tomography of Tumor-Associated Macrophages and Tumor Metabolism. Contrast Media and Molecular Imaging, 2017, 2017, 1-8.	0.4	11

#	Article	IF	CITATIONS
57	Tumor-associated macrophages, potential targets for cancer treatment. Biomarker Research, 2017, 5, 25.	2.8	53
58	Nanoparticle-based drug delivery systems: What can they really do in vivo?. F1000Research, 2017, 6, 681.	0.8	47
	Biomaterials for Engineering Immune Responses. Journal of the Indian Institute of Science, 2018, 98,		
59	49-68.	0.9	2
60	Tumorâ€associated myeloid cells: new understandings on their metabolic regulation and their influence in cancer immunotherapy. FEBS Journal, 2018, 285, 717-733.	2.2	45
61	Magnetic nanoparticles based cancer therapy: current status and applications. Science China Life Sciences, 2018, 61, 400-414.	2.3	74
62	Nanotherapeutic approaches targeting angiogenesis and immune dysfunction in tumor microenvironment. Science China Life Sciences, 2018, 61, 380-391.	2.3	15
63	Effective cancer immunotherapy in mice by polyIC-imiquimod complexes and engineered magnetic nanoparticles. Biomaterials, 2018, 170, 95-115.	5.7	81
64	Titanium dioxide nanoparticle stimulating pro-inflammatory responses in vitro and in vivo for inhibited cancer metastasis. Life Sciences, 2018, 202, 44-51.	2.0	16
65	Inorganic nanoparticles: A potential cancer therapy for human welfare. International Journal of Pharmaceutics, 2018, 539, 104-111.	2.6	226
66	Multifunctional nanoparticles for cancer immunotherapy: A groundbreaking approach for reprogramming malfunctioned tumor environment. Journal of Controlled Release, 2018, 274, 24-34.	4.8	123
67	Application of nanomaterials in cancer immunotherapy. Materials Today Chemistry, 2018, 7, 53-64.	1.7	64
68	Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: Therapeutic benefits, toxicity, mechanistic insights, and translational considerations. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 977-990.	1.7	105
69	Insulin-like 3 expression and fibrosis induction after intra-testicular injection of magnetic nanoparticles in rat testis and the ameliorative role of Echinacea purpurea extract. Biotechnic and Histochemistry, 2018, 93, 118-132.	0.7	6
70	Activating TiO ₂ Nanoparticles: Gallium-68 Serves as a High-Yield Photon Emitter for Cerenkov-Induced Photodynamic Therapy. ACS Applied Materials & Interfaces, 2018, 10, 5278-5286.	4.0	86
71	Application of multifunctional nanomaterials in cancer vaccines (Review). Oncology Reports, 2018, 39, 893-900.	1.2	12
72	Fucoidan Prolongs the Circulation Time of Dextran-Coated Iron Oxide Nanoparticles. ACS Nano, 2018, 12, 1156-1169.	7.3	82
73	Nanoscale delivery systems for cancer immunotherapy. Materials Horizons, 2018, 5, 344-362.	6.4	57
74	Emerging Strategies of Cancer Therapy Based on Ferroptosis. Advanced Materials, 2018, 30, e1704007.	11.1	478

#	Article	IF	CITATIONS
75	Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances. Biomaterials Science, 2018, 6, 708-725.	2.6	105
76	Drug Delivery. , 2018, , 247-271.		3
77	Mapping the microscale origins of magnetic resonance image contrast with subcellular diamond magnetometry. Nature Communications, 2018, 9, 131.	5.8	92
78	Nanocageâ€Therapeutics Prevailing Phagocytosis and Immunogenic Cell Death Awakens Immunity against Cancer. Advanced Materials, 2018, 30, 1705581.	11.1	55
79	Recent trends of nanomedicinal approaches in clinics. International Journal of Pharmaceutics, 2018, 538, 263-278.	2.6	77
80	Iron-dependent cell death as executioner of cancer stem cells. Journal of Experimental and Clinical Cancer Research, 2018, 37, 79.	3.5	20
81	Theranostics and metabolotheranostics for precision medicine in oncology. Journal of Magnetic Resonance, 2018, 291, 141-151.	1.2	22
82	Diagnostics of carbon-encapsulated iron nanoparticles by laser heating. Journal of Physics: Conference Series, 2018, 946, 012068.	0.3	3
83	Iron(III)-Tannic Molecular Nanoparticles Enhance Autophagy effect and T1 MRI Contrast in Liver Cell Lines. Scientific Reports, 2018, 8, 6647.	1.6	41
84	<i>In Vivo</i> MR Imaging of Tumor-Associated Macrophages: The Next Frontier in Cancer Imaging. Magnetic Resonance Insights, 2018, 11, 1178623X1877197.	2.5	20
85	Nanoaggregates of iron poly-oxo-clusters obtained by laser ablation in aqueous solution of phosphonates. Journal of Colloid and Interface Science, 2018, 522, 208-216.	5.0	14
86	Iron Oxide Nanoparticles-Based Vaccine Delivery for Cancer Treatment. Molecular Pharmaceutics, 2018, 15, 1791-1799.	2.3	123
87	INFLAM – INFLAMmation in Brain and Vessels with Iron Nanoparticles and Cell Trafficking: A Multiscale Approach of Tissue Microenvironment, Iron Nanostructure and Iron Biotransformation. Irbm, 2018, 39, 93-102.	3.7	5
88	PEG/Dextran Double Layer Influences Fe Ion Release and Colloidal Stability of Iron Oxide Nanoparticles. Scientific Reports, 2018, 8, 4286.	1.6	36
89	Presence and Formation Mechanism of Foodborne Carbonaceous Nanostructures from Roasted Pike Eel (<i>Muraenesox cinereus</i>). Journal of Agricultural and Food Chemistry, 2018, 66, 2862-2869.	2.4	48
90	Emerging Biomedical Applications of Enzyme-Like Catalytic Nanomaterials. Trends in Biotechnology, 2018, 36, 15-29.	4.9	154
91	SPARCL1 suppresses osteosarcoma metastasis and recruits macrophages by activation of canonical WNT/β-catenin signaling through stabilization of the WNT–receptor complex. Oncogene, 2018, 37, 1049-1061.	2.6	57
92	Single step, phase controlled, large scale synthesis of ferrimagnetic iron oxide polymorph nanoparticles by thermal plasma route and their rheological properties. Journal of Magnetism and Magnetic Materials, 2018, 449, 232-242.	1.0	6

		CITATION REPORT	
#	Article	IF	CITATIONS
93	Physical oncology: New targets for nanomedicine. Biomaterials, 2018, 150, 87-99.	5.7	36
94	Systemic administration of β-glucan of 200ÂkDa modulates melanoma microenvironment an metastatic cancer. Oncolmmunology, 2018, 7, e1387347.	d suppresses 2.1	21
95	Amino Acid Functionalized Inorganic Nanoparticles as Cutting-Edge Therapeutic and Diagnost Agents. Bioconjugate Chemistry, 2018, 29, 657-671.	ic 1.8	60
96	The role of macrophage phenotype in regulating the response to radiation therapy. Translation Research, 2018, 191, 64-80.	nal 2.2	63
97	Metallic nanoparticles for cancer immunotherapy. Materials Today, 2018, 21, 673-685.	8.3	164
98	Characterization of liposome-containing SPIONs conjugated with anti-CD20 developed as a no theranostic agent for central nervous system lymphoma. Colloids and Surfaces B: Biointerface 161, 497-507.	ovel 25, 2018, 2.5	47
99	Quantification of Nanoparticle Enhancement in Polarized Breast Tumor Macrophage Deposits Spatial Analysis of MRI and Histological Iron Contrast Using Computer Vision. Contrast Media Molecular Imaging, 2018, 2018, 1-9.		6
100	Aspects of Nanomaterials in Wound Healing. Current Drug Delivery, 2018, 16, 26-41.	0.8	42
101	Theranostics Applications of Nanoparticles in Cancer Immunotherapy. Medical Sciences (Base	l,) Tj ETQq0 0 0 rgBT /Oye 1.34	erlock 10 Tf 50 4
102	Ferritin: A potential serum marker for lymph node metastasis in head and neck squamous cell carcinoma. Oncology Letters, 2019, 17, 314-322.	0.8	23
103	Iron oxide nanoparticles as nanocarriers to improve chlorin e6-based sonosensitivity in sonody therapy. Drug Design, Development and Therapy, 2018, Volume 12, 4207-4216.	ynamic 2.0	30
104	Bioactive Nanoparticles for Cancer Immunotherapy. International Journal of Molecular Science 2018, 19, 3877.	2S, 1.8	82
105	Arginine-Rich Manganese Silicate Nanobubbles as a Ferroptosis-Inducing Agent for Tumor-Targ Theranostics. ACS Nano, 2018, 12, 12380-12392.	geted 7.3	292
106	Designing multifunctional cancer-targeted nanosystem for magnetic resonance molecular imaging-guided theranostics of lung cancer. Drug Delivery, 2018, 25, 1811-1825.	2.5	29
107	Anti-tumor macrophages activated by ferumoxytol combined or surface-functionalized with th agonist poly (I : C) promote melanoma regression. Theranostics, 2018, 8, 6307-6321.	ne TLR3 4.6	89
108	Nanoparticle-Mediated Remodeling of the Tumor Microenvironment to Enhance Immunothera Nano, 2018, 12, 11740-11755.	ару. ACS 7.3	176
109	Nanomaterial Manipulation of Immune Microenvironment in the Diseased Liver. Advanced Fur Materials, 2019, 29, 1805760.	nctional 7.8	13
110	Environmental oxidative aging of iron oxide nanoparticles. Applied Physics Letters, 2018, 113,	,. 1.5	19

#	Article	IF	CITATIONS
111	Microfluidicsâ€Assisted Fabrication of Microtissues with Tunable Physical Properties for Developing an In Vitro Multiplex Tissue Model. Advanced Biology, 2018, 2, 1800236.	3.0	19
112	Biodistribution and Tumors MRI Contrast Enhancement of Magnetic Nanocubes, Nanoclusters, and Nanorods in Multiple Mice Models. Contrast Media and Molecular Imaging, 2018, 2018, 1-12.	0.4	15
113	Elimination of CD4lowHLA-G+ T cells overcomes castration-resistance in prostate cancer therapy. Cell Research, 2018, 28, 1103-1117.	5.7	16
114	Nanoparticles for Immune Stimulation Against Infection, Cancer, and Autoimmunity. ACS Nano, 2018, 12, 10621-10635.	7.3	79
115	Targeted Theranostic Nanoparticles for Brain Tumor Treatment. Pharmaceutics, 2018, 10, 181.	2.0	85
116	Protein nanoparticles with ligand-binding and enzymatic activities. International Journal of Nanomedicine, 2018, Volume 13, 6637-6646.	3.3	22
117	Multi-hierarchical profiling the structure-activity relationships of engineered nanomaterials at nano-bio interfaces. Nature Communications, 2018, 9, 4416.	5.8	61
118	Bioinspired tumor-homing nanosystem for precise cancer therapy via reprogramming of tumor-associated macrophages. NPG Asia Materials, 2018, 10, 1002-1015.	3.8	51
119	Fenton-Reaction-Acceleratable Magnetic Nanoparticles for Ferroptosis Therapy of Orthotopic Brain Tumors. ACS Nano, 2018, 12, 11355-11365.	7.3	449
120	Noninvasive Tissue Characterization of Post-Infarction Myocardium. JACC: Cardiovascular Imaging, 2018, 11, 1257-1259.	2.3	1
121	Immunomodulating Nanomedicine for Cancer Therapy. Nano Letters, 2018, 18, 6655-6659.	4.5	121
122	Glutathione-depletion mesoporous organosilica nanoparticles as a self-adjuvant and Co-delivery platform for enhanced cancer immunotherapy. Biomaterials, 2018, 175, 82-92.	5.7	135
123	IPSC‑MSC inhibition assessment in Raw 264.7 cells following oxygen and glucose deprivation reveals a distinct function for cardiopulmonary resuscitation. Molecular Medicine Reports, 2018, 17, 8212-8220.	1.1	2
124	Drug-Abuse Nanotechnology: Opportunities and Challenges. ACS Chemical Neuroscience, 2018, 9, 2288-2298.	1.7	7
125	Magnetic Particle Imaging (MPI). , 2018, , 115-133.		8
126	Tumor-Targeted Therapy. , 2018, , 273-290.		1
127	Cancer Therapy. , 2018, , 291-307.		1
128	Protein Corona: The Challenge at the Nanobiointerfaces. , 2018, , 91-104.		1

#	Article	IF	CITATIONS
129	Evaluation of the uptake, storage and cell effects of nano-iron in enterocyte-like cell models. Journal of Trace Elements in Medicine and Biology, 2018, 49, 98-104.	1.5	7
130	Factors relating to the biodistribution & clearance of nanoparticles & their effects on <i>in vivo</i> application. Nanomedicine, 2018, 13, 1495-1512.	1.7	132
131	Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity. Nature Communications, 2018, 9, 2920.	5.8	129
132	Nanotherapeutics to Modulate the Compromised Micro-Environment for Lung Cancers and Chronic Obstructive Pulmonary Disease. Frontiers in Pharmacology, 2018, 9, 759.	1.6	10
133	Targeting Macrophages as a Potential Therapeutic Intervention: Impact on Inflammatory Diseases and Cancer. International Journal of Molecular Sciences, 2018, 19, 1953.	1.8	117
134	Multimodal Theranostic Nanoformulations Permit Magnetic Resonance Bioimaging of Antiretroviral Drug Particle Tissue-Cell Biodistribution. Theranostics, 2018, 8, 256-276.	4.6	40
135	Myeloidâ€Derived Suppressor Cell Membraneâ€Coated Magnetic Nanoparticles for Cancer Theranostics by Inducing Macrophage Polarization and Synergizing Immunogenic Cell Death. Advanced Functional Materials, 2018, 28, 1801389.	7.8	140
136	Clinical applications of nanostructured drug delivery systems. , 2018, , 43-116.		6
137	Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Frontiers in Immunology, 2018, 9, 847.	2.2	812
138	Cell shape affects nanoparticle uptake and toxicity: An overlooked factor at the nanobio interfaces. Journal of Colloid and Interface Science, 2018, 531, 245-252.	5.0	21
139	CCL5-deficiency enhances intratumoral infiltration of CD8+ T cells in colorectal cancer. Cell Death and Disease, 2018, 9, 766.	2.7	51
140	Novel Weed-Extracted Silver Nanoparticles and Their Antibacterial Appraisal against a Rare Bacterium from River and Sewage Treatment Plan. Nanomaterials, 2018, 8, 9.	1.9	27
141	Nanoparticle-Mediated Therapeutic Agent Delivery for Treating Metastatic Breast Cancer—Challenges and Opportunities. Nanomaterials, 2018, 8, 361.	1.9	32
142	Iron overloaded polarizes macrophage to proinflammation phenotype through <scp>ROS</scp> /acetylâ€p53 pathway. Cancer Medicine, 2018, 7, 4012-4022.	1.3	171
143	Tuning the Intrinsic Nanotoxicity in Advanced Therapeutics. Advanced Therapeutics, 2018, 1, 1800059.	1.6	14
144	Cell iron status influences macrophage polarization. PLoS ONE, 2018, 13, e0196921.	1.1	124
145	A Magneticâ€Field Guided Interface Coassembly Approach to Magnetic Mesoporous Silica Nanochains for Osteoclastâ€Targeted Inhibition and Heterogeneous Nanocatalysis. Advanced Materials, 2018, 30, e1707515.	11.1	96
146	Improved sensitivity of cellular MRI using phase-cycled balanced SSFP of ferumoxytol nanocomplex-labeled macrophages at ultrahigh field. International Journal of Nanomedicine, 2018, Volume 13, 3839-3852.	3.3	3

#	Article	IF	CITATIONS
147	Biomaterial-assisted targeted modulation of immune cells in cancer treatment. Nature Materials, 2018, 17, 761-772.	13.3	352
148	Pulverized Sponge Iron, a Zero-Carbon and Clean Substitute for Fossil Coal in Energy Applications. Energy & Fuels, 2018, 32, 9982-9989.	2.5	24
149	Iron oxide nanoparticles conjugated with Zn phthalocyanine for photoinduced anticancer immune response. , 2018, , .		0
150	M1 Macrophage-Derived Nanovesicles Potentiate the Anticancer Efficacy of Immune Checkpoint Inhibitors. ACS Nano, 2018, 12, 8977-8993.	7.3	286
151	Magnetic Nanoparticles for Cancer Therapy and Bioimaging. Nanomedicine and Nanotoxicology, 2018, , 239-279.	0.1	9
152	Silicaâ€Coated Magnetite Nanoparticles Carrying a Highâ€Density Polymer Brush Shell of Hydrophilic Polymer. Macromolecular Rapid Communications, 2018, 39, e1800226.	2.0	15
153	Cyclodextrin–PEG conjugate-wrapped magnetic ferrite nanoparticles for enhanced drug loading and release. Applied Nanoscience (Switzerland), 2018, 8, 273-284.	1.6	32
154	Nanomaterials for modulating innate immune cells in cancer immunotherapy. Asian Journal of Pharmaceutical Sciences, 2019, 14, 16-29.	4.3	41
155	Syringeable immunotherapeutic nanogel reshapes tumor microenvironment and prevents tumor metastasis and recurrence. Nature Communications, 2019, 10, 3745.	5.8	108
156	Iron accumulation in tumor-associated macrophages marks an improved overall survival in patients with lung adenocarcinoma. Scientific Reports, 2019, 9, 11326.	1.6	31
157	Immunoengineering in glioblastoma imaging and therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1575.	3.3	16
158	Study of Evaporation of Laser-Heated Iron–Carbon Nanoparticles Using Analysis of Thermal Radiation. Technical Physics, 2019, 64, 1133-1139.	0.2	4
159	Iron and lung cancer. Cancer Letters, 2019, 464, 56-61.	3.2	48
160	Nanoparticle Interactions with the Tumor Microenvironment. Bioconjugate Chemistry, 2019, 30, 2247-2263.	1.8	66
161	Improving the efficacy of osteosarcoma therapy: combining drugs that turn cancer cell †don't eat me' signals on. Molecular Oncology, 2019, 13, 2049-2061.	2.1	30
162	Hyaluronic acid modified doxorubicin loaded Fe ₃ O ₄ nanoparticles effectively inhibit breast cancer metastasis. Journal of Materials Chemistry B, 2019, 7, 5861-5872.	2.9	32
163	Magnetic Reactive Oxygen Species Nanoreactor for Switchable Magnetic Resonance Imaging Guided Cancer Therapy Based on pH-Sensitive Fe ₅ C ₂ @Fe ₃ O ₄ Nanoparticles. ACS Nano, 2019, 13, 10002-10014.	7.3	138
164	Optimizing Advances in Nanoparticle Delivery for Cancer Immunotherapy. Advanced Drug Delivery Reviews, 2019, 144, 3-15.	6.6	44

ARTICLE IF CITATIONS # Advances and Challenges of Nanoparticle-Based Macrophage Reprogramming for Cancer 0.7 8 165 Immunotherapy. Biochemistry (Moscow), 2019, 84, 729-745. Acute Iron Deprivation Reprograms Human Macrophage Metabolism and Reduces Inflammation InÂVivo. Cell Reports, 2019, 28, 498-511.e5. Combustion and friction-derived nanoparticles and industrial-sourced nanoparticles: The culprit of 167 3.7 55 Alzheimer and Parkinson's diseases.. Environmental Research, 2019, 176, 108574. Fabrication of Maghemite Nanoparticles with High Surface Area. Nanomaterials, 2019, 9, 1004. 1.9 Ferrimagnetic Vortex Nanoring-Mediated Mild Magnetic Hyperthermia Imparts Potent Immunological 169 7.3 165 Effect for Treating Cancer Metastasis. ACS Nano, 2019, 13, 8811-8825. Artemisinin-Based Smart Nanomedicines with Self-Supply of Ferrous Ion to Enhance Oxidative Stress for Specific and Efficient Cancer Treatment. ACS Applied Materials & amp; Interfaces, 2019, 11, 4.0 29490-29497. Recent development in biodegradable nanovehicle delivery system-assisted immunotherapy. 171 2.6 22 Biomaterials Science, 2019, 7, 4414-4443. Biohybrid Nanoparticles to Negotiate with Biological Barriers. Small, 2019, 15, e1902333. 5.2 Pre-clinical study of iron oxide nanoparticles fortified artesunate for efficient targeting of malarial 173 2.7 42 parasite. EBioMédicine, 2019, 45, 261-277. 174 Nanobiomaterial Advances in Cardiovascular Tissue Engineering., 2019, , 79-106. Spatiotemporal Tracking of Brain-Tumor-Associated Myeloid Cells <i>in Vivo</i> through Optical 175 7.318 Coherence Tomography with Plasmonic Labeling and Speckle Modulation. ACS Nano, 2019, 13, 7985-7995. Multifunctional co-loaded magnetic nanocapsules for enhancing targeted MR imaging and in vivo photodynamic therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102047. Intratumoral fate of functional nanoparticles in response to microenvironment factor: Implications 177 6.6 79 on cancer diagnosis and therapy. Advanced Drug Delivery Reviews, 2019, 143, 37-67. Selective targeting of tumor cells and tumor associated macrophages separately by twin-like coreâ€"shell nanoparticles for enhanced tumor-localized chemoimmunotherapy. Nanoscale, 2019, 11, 2.8 13934-13946. 179 Macrophages and Metabolism in the Tumor Microenvironment. Cell Metabolism, 2019, 30, 36-50. 7.2 933 Improved anti-tumor efficacy of paclitaxel in combination with MicroRNA-125b-based tumor-associated 3.2 44 macrophage repolarization in epithelial ovarian cancer. Cancer Letters, 2019, 461, 1-9. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Advanced Drug 181 6.6 731 Delivery Reviews, 2019, 138, 302-325. Novel nanoparticles of cerium-doped zeolitic imidazolate frameworks with dual benefits of antibacterial and anti-inflammatory functions against periodontitis. Journal of Materials Chemistry B, 2019, 7, 6955-6971.

#	Article	IF	CITATIONS
183	Tumor-associated macrophages: an accomplice in solid tumor progression. Journal of Biomedical Science, 2019, 26, 78.	2.6	635
184	Nanomedicineâ€Based Immunotherapy for the Treatment of Cancer Metastasis. Advanced Materials, 2019, 31, e1904156.	11.1	120
185	Recent Progress in Ferroptosis Inducers for Cancer Therapy. Advanced Materials, 2019, 31, e1904197.	11.1	938
186	Artificial Natural Killer Cells for Specific Tumor Inhibition and Renegade Macrophage Reâ€Education. Advanced Materials, 2019, 31, e1904495.	11.1	59
187	Artificial Enzyme Catalyzed Cascade Reactions: Antitumor Immunotherapy Reinforced by NIRâ€II Light. Angewandte Chemie - International Edition, 2019, 58, 17425-17432.	7.2	214
188	Therapeutic Targeting of Neutrophil Granulocytes in Inflammatory Liver Disease. Frontiers in Immunology, 2019, 10, 2257.	2.2	32
189	Preclinical Evaluation and Clinical Translation of Magnetite-Based Nanomedicines. Journal of Drug Delivery Science and Technology, 2019, 54, 101282.	1.4	29
191	Triggering Sequential Catalytic Fenton Reaction on 2D MXenes for Hyperthermia-Augmented Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & Interfaces, 2019, 11, 42917-42931.	4.0	74
192	Recent Advances in Nanostrategies Capable of Overcoming Biological Barriers for Tumor Management. Advanced Materials, 2020, 32, e1904337.	11.1	130
193	The yin and yang of imaging tumor associated macrophages with PET and MRI. Theranostics, 2019, 9, 7730-7748.	4.6	53
194	Modulating Myeloid Immune Cell Migration Using Multivalently Presented Monosaccharide Ligands for Advanced Immunotherapy. Advanced Therapeutics, 2019, 2, 1900145.	1.6	2
195	A concise review on cancer treatment methods and delivery systems. Journal of Drug Delivery Science and Technology, 2019, 54, 101350.	1.4	60
196	Amplified Cancer Immunotherapy of a Surface-Engineered Antigenic Microparticle Vaccine by Synergistically Modulating Tumor Microenvironment. ACS Nano, 2019, 13, 12553-12566.	7.3	74
197	Silver nanoparticles selectively treat tripleâ€negative breast cancer cells without affecting nonâ€malignant breast epithelial cells in vitro and in vivo. FASEB BioAdvances, 2019, 1, 639-660.	1.3	59
198	Budd-Chiari syndrome with short-length stenosis: still room for the angioplasty and wait-and-see strategy – Authors' reply. The Lancet Gastroenterology and Hepatology, 2019, 4, 823-824.	3.7	0
199	Artificial Enzyme Catalyzed Cascade Reactions: Antitumor Immunotherapy Reinforced by NIRâ€II Light. Angewandte Chemie, 2019, 131, 17586-17593.	1.6	22
200	Role of Nanomedicine in Redox Mediated Healing at Molecular Level. Biomolecular Concepts, 2019, 10, 160-174.	1.0	18
201	Pro-inflammatory macrophage polarization enhances the anti-cancer efficacy of self-assembled galactomannan nanoparticles entrapped with hydrazinocurcumin. Drug Delivery and Translational Research, 2019, 9, 1159-1188.	3.0	10

#	Article	IF	CITATIONS
202	Potential applications of nanoparticles for tumor microenvironment remodeling to ameliorate cancer immunotherapy. International Journal of Pharmaceutics, 2019, 570, 118636.	2.6	24
203	Rhenium Sulfide Nanoparticles as a Biosafe Spectral CT Contrast Agent for Gastrointestinal Tract Imaging and Tumor Theranostics in Vivo. ACS Applied Materials & Interfaces, 2019, 11, 33650-33658.	4.0	46
204	Nanoscale Technologies for Prevention and Treatment of Heart Failure: Challenges and Opportunities. Chemical Reviews, 2019, 119, 11352-11390.	23.0	46
205	Engineered nano-immunopotentiators efficiently promote cancer immunotherapy for inhibiting and preventing lung metastasis of melanoma. Biomaterials, 2019, 223, 119464.	5.7	83
206	Zwitterionic chitooligosaccharide-modified ink-blue titanium dioxide nanoparticles with inherent immune activation for enhanced photothermal therapy. Biomaterials Science, 2019, 7, 5027-5034.	2.6	12
207	Iron chelated melanin-like nanoparticles for tumor-associated macrophage repolarization and cancer therapy. Biomaterials, 2019, 225, 119515.	5.7	118
208	Feraheme (Ferumoxytol) Is Recognized by Proinflammatory and Anti-inflammatory Macrophages via Scavenger Receptor Type AI/II. Molecular Pharmaceutics, 2019, 16, 4274-4281.	2.3	23
209	Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics. Nature Communications, 2019, 10, 4418.	5.8	153
210	Photo-Reactive Oxygen Species Boosting Strategy by Employing Mitochondrial Targeting Zinc-Doped Magnetic Nanoparticles to Enhance Anti-Cancer Therapy. Nano LIFE, 2019, 09, 1940005.	0.6	1
211	Surface radio-mineralisation mediates chelate-free radiolabelling of iron oxide nanoparticles. Chemical Science, 2019, 10, 2592-2597.	3.7	15
212	Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. Journal of Materials Chemistry B, 2019, 7, 1209-1225.	2.9	70
213	Aromatic secondary amine-functionalized fluorescent NO probes: improved detection sensitivity for NO and potential applications in cancer immunotherapy studies. Chemical Science, 2019, 10, 145-152.	3.7	39
214	Imaging endogenous macrophage iron deposits reveals a metabolic biomarker of polarized tumor macrophage infiltration and response to CSF1R breast cancer immunotherapy. Scientific Reports, 2019, 9, 857.	1.6	23
215	Biological Effects of Nanoparticles on Macrophage Polarization in the Tumor Microenvironment. Nanotheranostics, 2019, 3, 66-88.	2.7	121
216	Ferrous-cysteine–phosphotungstate nanoagent with neutral pH fenton reaction activity for enhanced cancer chemodynamic therapy. Materials Horizons, 2019, 6, 369-374.	6.4	150
217	Positive magnetic resonance angiography using ultrafine ferritin-based iron oxide nanoparticles. Nanoscale, 2019, 11, 2644-2654.	2.8	38
218	Inherent Chemotherapeutic Anti ancer Effects of Lowâ€Dimensional Nanomaterials. Chemistry - A European Journal, 2019, 25, 10995-11006.	1.7	17
219	Application of Gray Level co-Occurrence Matrix Algorithm for Detection of Discrete Structural Changes in Cell Nuclei After Exposure to Iron Oxide Nanoparticles and 6-Hydroxydopamine. Microscopy and Microanalysis, 2019, 25, 982-988.	0.2	13

#	Article	IF	CITATIONS
220	Immunomodulatory Nanosystems. Advanced Science, 2019, 6, 1900101.	5.6	255
221	The influence of titanium dioxide nanoparticles on their cellular response to macrophage cells. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 223, 42-52.	1.3	15
222	Use of magnetic fields and nanoparticles to trigger drug release and improve tumor targeting. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1571.	3.3	97
223	Two-Way Cruise Nanosatellite Promotes Metastasis Inhibition by Immunochemotherapy. Biomacromolecules, 2019, 20, 2873-2887.	2.6	8
224	Nanoparticle ferritin-bound erastin and rapamycin: a nanodrug combining autophagy and ferroptosis for anticancer therapy. Biomaterials Science, 2019, 7, 3779-3787.	2.6	65
225	Ultrasonication-Triggered Ubiquitous Assembly of Magnetic Janus Amphiphilic Nanoparticles in Cancer Theranostic Applications. Nano Letters, 2019, 19, 4118-4125.	4.5	44
226	Toxicological Risk Assessments of Iron Oxide Nanocluster- and Gadolinium-Based T1MRI Contrast Agents in Renal Failure Rats. ACS Nano, 2019, 13, 6801-6812.	7.3	36
227	Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chemical Society Reviews, 2019, 48, 3771-3810.	18.7	292
228	Chitosan/poly(γ-glutamic acid) nanoparticles incorporating IFN-γ for immune response modulation in the context of colorectal cancer. Biomaterials Science, 2019, 7, 3386-3403.	2.6	32
229	Toll-like receptor-targeted particles: A paradigm to manipulate the tumor microenvironment for cancer immunotherapy. Acta Biomaterialia, 2019, 94, 82-96.	4.1	40
230	Combining Nanomedicine and Immunotherapy. Accounts of Chemical Research, 2019, 52, 1543-1554.	7.6	310
231	Paclitaxel Magnetic Core–Shell Nanoparticles Based on Poly(lactic acid) Semitelechelic Novel Block Copolymers for Combined Hyperthermia and Chemotherapy Treatment of Cancer. Pharmaceutics, 2019, 11, 213.	2.0	19
232	Nanomaterial-Based Modulation of Tumor Microenvironments for Enhancing Chemo/Immunotherapy. AAPS Journal, 2019, 21, 64.	2.2	21
233	<p>Drug-free mannosylated liposomes inhibit tumor growth by promoting the polarization of tumor-associated macrophages</p> . International Journal of Nanomedicine, 2019, Volume 14, 3203-3220.	3.3	59
234	Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chemical Society Reviews, 2019, 48, 2967-3014.	18.7	389
235	Nanocatalysts-augmented Fenton chemical reaction for nanocatalytic tumor therapy. Biomaterials, 2019, 211, 1-13.	5.7	243
236	Preparation of collagen/chitosan microspheres for 3D macrophage proliferation in vitro. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572, 266-273.	2.3	20
237	Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Advanced Drug Delivery Reviews, 2019, 143, 68-96.	6.6	561

ARTICLE IF CITATIONS # The role of positively charged sites in the interaction between model cell membranes and Î³-Fe2O3 NPs. 238 3.9 14 Science of the Total Environment, 2019, 673, 414-423. Engineering Magnetosomes for Ferroptosis/Immunomodulation Synergism in Cancer. ACS Nano, 2019, 261 13, 5662-5673. 240 Catalytic antimicrobial robots for biofilm eradication. Science Robotics, 2019, 4, . 9.9 154 Reprogramming of cancer invasiveness and macrophage education <i>via</i> a nanostructured 241 6.4 antagonist of the TGF¹² receptor. Materials Horizons, 2019, 6, 1675-1681. Impact of Locally Administered Carboxydextranâ€Coated Superâ€Paramagnetic Iron Nanoparticles on 242 5.2 12 Cellular Immune Function. Small, 2019, 15, e1900224. Winning the war with iron. Nature Nanotechnology, 2019, 14, 499-500. 15.6 Concurrent Molecular Magnetic Resonance Imaging of Inflammatory Activity and Extracellular 244 Matrix Degradation for the Prediction of Aneurysm Rupture. Circulation: Cardiovascular Imaging, 1.3 32 2019, 12, e008707. A mini-review and perspective on ferroptosis-inducing strategies in cancer therapy. Chinese Chemical 245 4.8 48 Letters, 2019, 30, 847-852. Vanadium Dioxide Nanocoating Induces Tumor Cell Death through Mitochondrial Electron Transport 246 33 1.8 Chain Interruption. Global Challenges, 2019, 3, 1800058. Cy5.5-MSA-G250 nanoparticles (CMGNPs) induce M1 polarity of RAW264. 7 macrophage cells via 247 4.8 TLR4-dependent manner. Chinese Chemical Letters, 2019, 30, 1320-1324. Simultaneous T Cell Activation and Macrophage Polarization to Promote Potent Tumor Suppression by Iron Oxideâ€Embedded Largeâ€Pore Mesoporous Organosilica Core–Shell Nanospheres. Advanced 248 3.9 26 Healthcare Materials, 2019, 8, e1900039. A Density-Changing Centrifugation Method for Efficient Separation of Free Drugs from Drug-Loaded 2.2 Particulate Delivery Systems. AAPS Journal, 2019, 21, 33. Directing toll-like receptor signaling in macrophages to enhance tumor immunotherapy. Current 250 3.3 44 Opinion in Biotechnology, 2019, 60, 138-145. Nanoparticleâ€Based Nanomedicines to Promote Cancer Immunotherapy: Recent Advances and Future 5.2 100 Directions. Small, 2019, 15, e1900262. FDA-approved ferumoxytol displays anti-leukaemia efficacy against cells with low ferroportin levels. 252 15.6 199 Nature Nanotechnology, 2019, 14, 616-622. Nanomaterials Developed by Processing Iron Coordination Compounds for Biomedical Application. Journal of Nanomaterials, 2019, 2019, 1-14. Magnetic Hierarchical Photocatalytic Nanoreactors: Toward Highly Selective Cd²⁺ 254 Removal with Secondary Pollution Free Tetracycline Degradation. ACS Applied Nano Materials, 2019, 2, 2.4 45 1664-1674. Surface Modification of Polymeric Nanoparticles with M2pep Peptide for Drug Delivery to Tumor-Associated Macrophages. Pharmaceutical Research, 2019, 36, 65.

	Сітаті	on Report	
#	Article	IF	CITATIONS
256	Iron Metabolism in Liver Cancer Stem Cells. Frontiers in Oncology, 2019, 9, 149.	1.3	17
257	Take Immune Cells Back on Track: Glycopolymer-Engineered Tumor Cells for Triggering Immune Response. ACS Macro Letters, 2019, 8, 337-344.	2.3	32
258	Tailoring Nanomaterials for Targeting Tumorâ€Associated Macrophages. Advanced Materials, 2019, 31, e1808303.	11.1	223
259	Surface-enhanced Resonance Raman Scattering Nanoprobe Ratiometry for Detecting Microscopic Ovarian Cancer via Folate Receptor Targeting. Journal of Visualized Experiments, 2019, , .	0.2	6
260	Photothermal performance of MFe2O4 nanoparticles. Chinese Chemical Letters, 2019, 30, 2013-2016.	4.8	18
261	Therapeutic targeting of trained immunity. Nature Reviews Drug Discovery, 2019, 18, 553-566.	21.5	287
262	Exosomes from M1-Polarized Macrophages Enhance Paclitaxel Antitumor Activity by Activating Macrophages-Mediated Inflammation. Theranostics, 2019, 9, 1714-1727.	4.6	278
263	A probiotic formulation containing Lactobacillus bulgaricus DWT1 inhibits tumor growth by activating pro-inflammatory responses in macrophages. Journal of Functional Foods, 2019, 56, 232-245.	1.6	20
264	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	23.0	1,519
265	Rerouting engineered metal-dependent shapes of mesoporous silica nanocontainers to biodegradable Janus-type (sphero-ellipsoid) nanoreactors for chemodynamic therapy. Chemical Engineering Journal, 2019, 370, 1188-1199.	6.6	100
266	Bioinspired interface design modulates pathogen and immunocyte responses in biomaterial-centered infection combination therapy. Materials Horizons, 2019, 6, 1271-1282.	6.4	18
267	Mechanism of Iron Oxide-Induced Macrophage Activation: The Impact of Composition and the Underlying Signaling Pathway. Journal of the American Chemical Society, 2019, 141, 6122-6126.	6.6	126
268	Utility of macrophages in an antitumor strategy based on the vectorization of iron oxide nanoparticles. Nanoscale, 2019, 11, 9341-9352.	2.8	19
269	Sequential catalytic nanomedicine augments synergistic chemodrug and chemodynamic cancer therapy. Nanoscale Horizons, 2019, 4, 890-901.	4.1	42
270	Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy. Advanced Healthcare Materials, 2019, 8, e1801320.	3.9	43
271	Image-Guided Thermal Therapy Using Magnetic Particle Imaging and Magnetic Fluid Hyperthermia. , 2019, , 265-286.		6
272	Artificially Reprogrammed Macrophages as Tumorâ€Tropic Immunosuppressionâ€Resistant Biologics to Realize Therapeutics Production and Immune Activation. Advanced Materials, 2019, 31, e1807211.	11.1	128
273	Magnetic resonance imaging of stem cell–macrophage interactions with ferumoxytol and ferumoxytolâ€derived nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1552.	3.3	10

#	Article	IF	CITATIONS
274	Nanoparticle enhanced MRI can monitor macrophage response to CD47 mAb immunotherapy in osteosarcoma. Cell Death and Disease, 2019, 10, 36.	2.7	72
275	In vitro inhibition of tumor growth by low-dose iron oxide nanoparticles activating macrophages. Journal of Biomaterials Applications, 2019, 33, 935-945.	1.2	15
276	Nanoengineered Immune Niches for Reprogramming the Immunosuppressive Tumor Microenvironment and Enhancing Cancer Immunotherapy. Advanced Materials, 2019, 31, e1803322.	11.1	205
277	Spontaneously formed porous structure and M1 polarization effect of Fe3O4 nanoparticles for enhanced antitumor therapy. International Journal of Pharmaceutics, 2019, 559, 329-340.	2.6	13
278	Fe ₃ O ₄ @ <i>Astragalus</i> Polysaccharide Core–Shell Nanoparticles for Iron Deficiency Anemia Therapy and Magnetic Resonance Imaging in Vivo. ACS Applied Materials & Interfaces, 2019, 11, 10452-10461.	4.0	35
279	Microfluidics-Prepared Uniform Conjugated Polymer Nanoparticles for Photo-Triggered Immune Microenvironment Modulation and Cancer Therapy. ACS Applied Materials & Interfaces, 2019, 11, 11167-11176.	4.0	51
280	Iron oxide nanoparticles promote macrophage autophagy and inflammatory response through activation of toll-like Receptor-4 signaling. Biomaterials, 2019, 203, 23-30.	5.7	102
281	Glucose oxidase and polydopamine functionalized iron oxide nanoparticles: combination of the photothermal effect and reactive oxygen species generation for dual-modality selective cancer therapy. Journal of Materials Chemistry B, 2019, 7, 2190-2200.	2.9	36
282	A review of the concepts, recent advances and niche applications of the (photo) Fenton process, beyond water/wastewater treatment: Surface functionalization, biomass treatment, combatting cancer and other medical uses. Applied Catalysis B: Environmental, 2019, 248, 309-319.	10.8	99
283	Ferumoxytol Attenuates the Function of MDSCs to Ameliorate LPS-Induced Immunosuppression in Sepsis. Nanoscale Research Letters, 2019, 14, 379.	3.1	14
284	PHYSICOCHEMICAL AND BIOLOGICAL PROPERTIES OF ASSOCIATES OF COPPER NANOPARTICLES. Nanotechnologies in Russia, 2019, 14, 74-81.	0.7	2
286	Development of multi-drug loaded PEGylated nanodiamonds to inhibit tumor growth and metastasis in genetically engineered mouse models of pancreatic cancer. Nanoscale, 2019, 11, 22006-22018.	2.8	40
287	The vacuolization of macrophages induced by large amounts of inorganic nanoparticle uptake to enhance the immune response. Nanoscale, 2019, 11, 22849-22859.	2.8	30
288	Development of Adamantane-Conjugated TLR7/8 Agonists for Supramolecular Delivery and Cancer Immunotherapy. Theranostics, 2019, 9, 8426-8436.	4.6	65
289	PEGylated reduced-graphene oxide hybridized with Fe ₃ O ₄ nanoparticles for cancer photothermal-immunotherapy. Journal of Materials Chemistry B, 2019, 7, 7406-7414.	2.9	68
290	I6P7 peptide modified superparamagnetic iron oxide nanoparticles for magnetic resonance imaging detection of low-grade brain gliomas. Journal of Materials Chemistry B, 2019, 7, 6139-6147.	2.9	14
291	Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. , 2019, 7, 326.		211
292	Metal Oxide Nanoparticles in Therapeutic Regulation of Macrophage Functions. Nanomaterials, 2019, 9, 1631.	1.9	50

#	Article	IF	CITATIONS
293	Engineering Nanoparticles to Reprogram the Tumor Immune Microenvironment for Improved Cancer Immunotherapy. Theranostics, 2019, 9, 7981-8000.	4.6	106
294	Investigation of the effect of magnetite iron oxide particles size on cytotoxicity in A ₅₄₉ cell line. Toxicology and Industrial Health, 2019, 35, 703-713.	0.6	24
295	Active Nano-targeting of Macrophages. Current Pharmaceutical Design, 2019, 25, 1951-1961.	0.9	24
296	Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy. Theranostics, 2019, 9, 126-151.	4.6	128
297	Engineering Nanozymes Using DNA for Catalytic Regulation. ACS Applied Materials & Interfaces, 2019, 11, 1790-1799.	4.0	61
298	Cancer Immunotherapy of TLR4 Agonist–Antigen Constructs Enhanced with Pathogenâ€Mimicking Magnetite Nanoparticles and Checkpoint Blockade of PD‣1. Small, 2019, 15, e1803993.	5.2	44
299	Design and Application of Cisplatin-Loaded Magnetic Nanoparticle Clusters for Smart Chemotherapy. ACS Applied Materials & Interfaces, 2019, 11, 1864-1875.	4.0	49
300	Repolarization of myeloid derived suppressor cells via magnetic nanoparticles to promote radiotherapy for glioma treatment. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 16, 126-137.	1.7	43
301	Iron as a Central Player and Promising Target in Cancer Progression. International Journal of Molecular Sciences, 2019, 20, 273.	1.8	199
302	Iron Homeostasis in the Lungs—A Balance between Health and Disease. Pharmaceuticals, 2019, 12, 5.	1.7	54
303	Nanomaterial-induced ferroptosis for cancer specific therapy. Coordination Chemistry Reviews, 2019, 382, 160-180.	9.5	122
304	Cold atmospheric plasma and iron oxide-based magnetic nanoparticles for synergetic lung cancer therapy. Free Radical Biology and Medicine, 2019, 130, 71-81.	1.3	83
305	The role of iron metabolism in cancer therapy focusing on tumorâ€associated macrophages. Journal of Cellular Physiology, 2019, 234, 8028-8039.	2.0	26
306	External stimulus responsive inorganic nanomaterials for cancer theranostics. Advanced Drug Delivery Reviews, 2019, 138, 18-40.	6.6	79
307	Nanomedicine and macroscale materials in immuno-oncology. Chemical Society Reviews, 2019, 48, 351-381.	18.7	118
308	Metal Drugs and the Anticancer Immune Response. Chemical Reviews, 2019, 119, 1519-1624.	23.0	237
309	Magnetic iron oxide nanoparticles/10-hydroxy camptothecin co-loaded nanogel for enhanced photothermal-chemo therapy. Applied Materials Today, 2019, 14, 84-95.	2.3	30
310	Effect of Endoxylanase and Iron Oxide Nanoparticles on Performance and Histopathological Features in Broilers. Biological Trace Element Research, 2020, 193, 524-535.	1.9	11

#	Article	IF	Citations
311	Cadmium oxide nanoparticles: An attractive candidate for novel therapeutic approaches. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124017.	2.3	15
312	Advances of functional nanomaterials for cancer immunotherapeutic applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1574.	3.3	10
313	Iron oxide nanoparticles for therapeutic applications. Drug Discovery Today, 2020, 25, 141-149.	3.2	76
314	At the bench: Engineering the next generation of cancer vaccines. Journal of Leukocyte Biology, 2020, 108, 1435-1453.	1.5	22
315	Confined nanoparticles growth within hollow mesoporous nanoreactors for highly efficient MRI-guided photodynamic therapy. Chemical Engineering Journal, 2020, 379, 122251.	6.6	23
316	Materials for Immunotherapy. Advanced Materials, 2020, 32, e1901633.	11.1	132
317	Strategies for Targeting Cancer Immunotherapy Through Modulation of the Tumor Microenvironment. Regenerative Engineering and Translational Medicine, 2020, 6, 29-49.	1.6	16
318	Wear particles induce a new macrophage phenotype with the potential to accelerate material corrosion within total hip replacement interfaces. Acta Biomaterialia, 2020, 101, 586-597.	4.1	40
320	Polyethyleneimine coated Fe ₃ O ₄ magnetic nanoparticles induce autophagy, NF-l®B and TGF-l² signaling pathway activation in HeLa cervical carcinoma cells <i>via</i> reactive oxygen species generation. Biomaterials Science, 2020, 8, 201-211.	2.6	17
321	Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. Journal of Controlled Release, 2020, 320, 45-62.	4.8	180
322	Polarization of tumor-associated macrophage phenotype <i>via</i> porous hollow iron nanoparticles for tumor immunotherapy <i>in vivo</i> . Nanoscale, 2020, 12, 130-144.	2.8	83
323	Exploiting the protein corona: coating of black phosphorus nanosheets enables macrophage polarization <i>via</i> calcium influx. Nanoscale, 2020, 12, 1742-1748.	2.8	33
324	Cancer immunotherapy with immunoadjuvants, nanoparticles, and checkpoint inhibitors: Recent progress and challenges in treatment and tracking response to immunotherapy. , 2020, 207, 107456.		42
325	Engineering of an intelligent cascade nanoreactor for sequential improvement of microenvironment and enhanced tumor phototherapy. Applied Materials Today, 2020, 18, 100494.	2.3	16
326	Biointerface engineering nanoplatforms for cancer-targeted drug delivery. Asian Journal of Pharmaceutical Sciences, 2020, 15, 397-415.	4.3	52
327	Drug delivery to macrophages: A review of targeting drugs and drug carriers to macrophages for inflammatory diseases. Advanced Drug Delivery Reviews, 2020, 165-166, 15-40.	6.6	146
328	Redox Regulation <i>via</i> Glutaredoxin-1 and Protein <i>S</i> Glutathionylation. Antioxidants and Redox Signaling, 2020, 32, 677-700.	2.5	69
329	Bioactive iron oxide nanoparticles suppress osteoclastogenesis and ovariectomy-induced bone loss through regulating the TRAF6-p62-CYLD signaling complex. Acta Biomaterialia, 2020, 103, 281-292.	4.1	38

#	Article	IF	CITATIONS
330	Interplay between inflammation and cancer. Advances in Protein Chemistry and Structural Biology, 2020, 119, 199-245.	1.0	122
331	Cell Reprogramming for Immunotherapy. Methods in Molecular Biology, 2020, , .	0.4	2
332	Current Strategies to Target Tumor-Associated-Macrophages to Improve Anti-Tumor Immune Responses. Cells, 2020, 9, 46.	1.8	196
333	Ferroptosis: An emerging therapeutic opportunity for cancer. Genes and Diseases, 2022, 9, 334-346.	1.5	41
334	Transient coating of γ-Fe ₂ O ₃ nanoparticles with glutamate for its delivery to and removal from brain nerve terminals. Beilstein Journal of Nanotechnology, 2020, 11, 1381-1393.	1.5	3
335	Analyzing the mechanisms of iron oxide nanoparticles interactions with cells: A road from failure to success in clinical applications. Journal of Controlled Release, 2020, 328, 59-77.	4.8	72
336	Understanding the influence of experimental factors on bio-interactions of nanoparticles: Towards improving correlation between in vitro and in vivo studies. Archives of Biochemistry and Biophysics, 2020, 694, 108592.	1.4	13
337	Current trends in pyrrole and porphyrin-derived nanoscale materials for biomedical applications. Nanomedicine, 2020, 15, 2493-2515.	1.7	19
338	Activating Macrophageâ€Mediated Cancer Immunotherapy by Genetically Edited Nanoparticles. Advanced Materials, 2020, 32, e2004853.	11.1	146
339	Targeting Tumor-Associated Macrophages in Anti-Cancer Therapies: Convincing the Traitors to Do the Right Thing. Journal of Clinical Medicine, 2020, 9, 3226.	1.0	41
340	Harnessing Inorganic Nanoparticles to Direct Macrophage Polarization for Skeletal Muscle Regeneration. Nanomaterials, 2020, 10, 1963.	1.9	7
341	Chemically Programmed Vaccines: Iron Catalysis in Nanoparticles Enhances Combination Immunotherapy and Immunotherapy-Promoted Tumor Ferroptosis. IScience, 2020, 23, 101499.	1.9	33
342	An <i>Alphavirus</i> -derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. Science Translational Medicine, 2020, 12, .	5.8	181
343	Nanotherapy delivery of c-myc inhibitor targets Protumor Macrophages and preserves Antitumor Macrophages in Breast Cancer. Theranostics, 2020, 10, 7510-7526.	4.6	27
344	Silica-Based Nanoparticles for Biomedical Applications: From Nanocarriers to Biomodulators. Accounts of Chemical Research, 2020, 53, 1545-1556.	7.6	128
345	Redox Responsive Metal Organic Framework Nanoparticles Induces Ferroptosis for Cancer Therapy. Small, 2020, 16, e2001251.	5.2	107
346	The Crosstalk Between Tumor-Associated Macrophages (TAMs) and Tumor Cells and the Corresponding Targeted Therapy. Frontiers in Oncology, 2020, 10, 590941.	1.3	117
347	Activatable superparamagnetic iron oxide nanoparticles scavenge reactive oxygen species in macrophages and endothelial cells. RSC Advances, 2020, 10, 41305-41314.	1.7	8

#	Article	IF	CITATIONS
348	Nanomedicines modulating tumor immunosuppressive cells to enhance cancer immunotherapy. Acta Pharmaceutica Sinica B, 2020, 10, 2054-2074.	5.7	65
349	Tellurium doped zinc imidazole framework (Te@ZIF-8) for quantitative determination of hydrogen peroxide from serum of pancreatic cancer patients. Scientific Reports, 2020, 10, 21077.	1.6	13
350	Preparation, characterization, and in-vitro studies of doxorubicin-encapsulated silica coated iron oxide nanocomposites on liver cancer cells. Journal of the Taiwan Institute of Chemical Engineers, 2020, 117, 190-197.	2.7	9
351	Carcinogenesis as Side Effects of Iron and Oxygen Utilization: From the Unveiled Truth toward Ultimate Bioengineering. Cancers, 2020, 12, 3320.	1.7	22
352	Estrogen signaling differentially alters iron metabolism in monocytes in an Interleukin 6-dependent manner. Immunobiology, 2020, 225, 151995.	0.8	11
353	Eliciting Immunogenic Cell Death via a Unitized Nanoinducer. Nano Letters, 2020, 20, 6246-6254.	4.5	80
354	H ₂ Sâ€Scavenged and Activated Iron Oxideâ€Hydroxide Nanospindles for MRIâ€Guided Photothermal Therapy and Ferroptosis in Colon Cancer. Small, 2020, 16, e2001356.	5.2	61
355	Magnetic iron oxide nanomaterials: A key player in cancer nanomedicine. View, 2020, 1, 20200046.	2.7	31
356	Tumor-Associated Macrophages in Osteosarcoma: From Mechanisms to Therapy. International Journal of Molecular Sciences, 2020, 21, 5207.	1.8	119
357	Emerging Adjuvants for Cancer Immunotherapy. Frontiers in Chemistry, 2020, 8, 601.	1.8	28
358	Role of inorganic nanoparticle degradation in cancer therapy. Nanoscale Advances, 2020, 2, 3734-3763.	2.2	29
359	Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. Journal of Controlled Release, 2020, 327, 316-349.	4.8	236
360	Induction of Innate Immune Memory by Engineered Nanoparticles in Monocytes/Macrophages: From Hypothesis to Reality. Frontiers in Immunology, 2020, 11, 566309.	2.2	18
361	Zinc ferrate nanoparticles for applications in medicine: synthesis, physicochemical properties, regulation of macrophage functions, and inÂvivo safety evaluation. Nanotoxicology, 2020, 14, 1381-1398.	1.6	3
362	Modular design of Bi-specific nanoplatform engaged in malignant lymphoma immunotherapy. Nanoscale, 2020, 12, 18418-18428.	2.8	6
363	Gelatin oated Dual Crossâ€Linked Sodium Alginate/Magnetite Nanoparticle Microbeads for Controlled Release of Doxorubicin. ChemistrySelect, 2020, 5, 10276-10284.	0.7	20
364	Recent Advances in Nanocarrier-Assisted Therapeutics Delivery Systems. Pharmaceutics, 2020, 12, 837.	2.0	99
365	Glioblastoma Therapy Using Codelivery of Cisplatin and Glutathione Peroxidase Targeting siRNA from Iron Oxide Nanoparticles. ACS Applied Materials & Interfaces, 2020, 12, 43408-43421.	4.0	92

#	Article	IF	CITATIONS
366	Metabolic reprograming of tumor-associated macrophages. Annals of Translational Medicine, 2020, 8, 1030-1030.	0.7	55
367	Targeting ferroptosis for cancer therapy: exploring novel strategies from its mechanisms and role in cancers. Translational Lung Cancer Research, 2020, 9, 1569-1584.	1.3	70
368	Engineering of Cascade-Responsive Nanoplatform to Inhibit Lactate Efflux for Enhanced Tumor Chemo-Immunotherapy. ACS Nano, 2020, 14, 14164-14180.	7.3	88
369	Schwann cells promote lung cancer proliferation by promoting the M2 polarization of macrophages. Cellular Immunology, 2020, 357, 104211.	1.4	15
370	Reprogramming of macrophages with macrophage cell membrane-derived nanoghosts. Nanoscale Advances, 2020, 2, 5254-5262.	2.2	17
371	A Biomimetic Polymer Magnetic Nanocarrier Polarizing Tumorâ€Associated Macrophages for Potentiating Immunotherapy. Small, 2020, 16, e2003543.	5.2	83
372	Spatially Resolved Correlation between Stiffness Increase and Actin Aggregation around Nanofibers Internalized in Living Macrophages. Materials, 2020, 13, 3235.	1.3	6
373	Engineering Macrophages for Cancer Immunotherapy and Drug Delivery. Advanced Materials, 2020, 32, e2002054.	11.1	464
374	Nanoparticle Delivery of MnO ₂ and Antiangiogenic Therapy to Overcome Hypoxia-Driven Tumor Escape and Suppress Hepatocellular Carcinoma. ACS Applied Materials & Interfaces, 2020, 12, 44407-44419.	4.0	72
375	Iron Induces Cell Death and Strengthens the Efficacy of Antiandrogen Therapy in Prostate Cancer Models. Clinical Cancer Research, 2020, 26, 6387-6398.	3.2	36
376	Emerging Nanopharmaceuticals and Nanonutraceuticals in Cancer Management. Biomedicines, 2020, 8, 347.	1.4	39
377	Cascade reaction-mediated efficient ferroptosis synergizes with immunomodulation for high-performance cancer therapy. Biomaterials Science, 2020, 8, 6272-6285.	2.6	48
378	Colorectal Tumor Microenvironmentâ€Activated Bioâ€Decomposable and Metabolizable Cu ₂ 0@CaCO ₃ Nanocomposites for Synergistic Oncotherapy. Advanced Materials, 2020, 32, e2004647.	11.1	157
379	Nanotechnology-based drug delivery systems for enhanced diagnosis and therapy of oral cancer. Journal of Materials Chemistry B, 2020, 8, 8781-8793.	2.9	21
380	Progress of Iron-Based Nanozymes for Antitumor Therapy. Frontiers in Chemistry, 2020, 8, 680.	1.8	15
381	Chemical Strategies to Boost Cancer Vaccines. Chemical Reviews, 2020, 120, 11420-11478.	23.0	95
382	Tackling TAMs for Cancer Immunotherapy: It's Nano Time. Trends in Pharmacological Sciences, 2020, 41, 701-714.	4.0	60
383	The nanomaterial-induced bystander effects reprogrammed macrophage immune function and metabolic profile. Nanotoxicology, 2020, 14, 1137-1155.	1.6	14

#	Article	IF	CITATIONS
384	Tailored Chemodynamic Nanomedicine Improves Pancreatic Cancer Treatment via Controllable Damaging Neoplastic Cells and Reprogramming Tumor Microenvironment. Nano Letters, 2020, 20, 6780-6790.	4.5	47
385	3Dâ€Printed Micromotors for Biomedical Applications. Advanced Materials Technologies, 2020, 5, 2000435.	3.0	12
386	Identification of a 7-mRNA signature as a prognostic biomarker in pediatric osteosarcoma. Translational Cancer Research, 2020, 9, 6733-6742.	0.4	2
387	Cancer Immunotherapy and Application of Nanoparticles in Cancers Immunotherapy as the Delivery of Immunotherapeutic Agents and as the Immunomodulators. Cancers, 2020, 12, 3773.	1.7	33
388	The targeted inhibition of prostate cancer by iron-based nanoparticles based on bioinformatics. Journal of Biomaterials Applications, 2020, 36, 088532822097524.	1.2	3
389	Nanoparticles as Smart Carriers for Enhanced Cancer Immunotherapy. Frontiers in Chemistry, 2020, 8, 597806.	1.8	55
390	The Impact of Nanoparticles on Innate Immune Activation by Live Bacteria. International Journal of Molecular Sciences, 2020, 21, 9695.	1.8	19
391	Nanoparticles for immunotherapy. Frontiers of Nanoscience, 2020, , 265-306.	0.3	8
392	Fenton reaction-based nanomedicine in cancer chemodynamic and synergistic therapy. Applied Materials Today, 2020, 21, 100864.	2.3	71
393	A parallel and cascade control system: magnetofection of miR125b for synergistic tumor-association macrophage polarization regulation and tumor cell suppression in breast cancer treatment. Nanoscale, 2020, 12, 22615-22627.	2.8	24
394	The Intrinsic Biological Identities of Iron Oxide Nanoparticles and Their Coatings: Unexplored Territory for Combinatorial Therapies. Nanomaterials, 2020, 10, 837.	1.9	25
395	Bacteria mimics bearing carbohydrates, oligodeoxynucleotides and designed shapes. Chemical Communications, 2020, 56, 10887-10889.	2.2	3
396	Understanding Metal Dynamics Between Cancer Cells and Macrophages: Competition or Synergism?. Frontiers in Oncology, 2020, 10, 646.	1.3	26
397	Protein Kinase A Catalytic Subunit Is a Molecular Switch that Promotes the Pro-tumoral Function of Macrophages. Cell Reports, 2020, 31, 107643.	2.9	16
398	Hydrothermal Synthesis of Hematite Nanoparticles Decorated on Carbon Mesospheres and Their Synergetic Action on the Thermal Decomposition of Nitrocellulose. Nanomaterials, 2020, 10, 968.	1.9	47
399	In Vitro Intracellular Hyperthermia of Iron Oxide Magnetic Nanoparticles, Synthesized at High Temperature by a Polyol Process. Pharmaceutics, 2020, 12, 424.	2.0	31
400	Antimetastatic Activity of Lactoferrin-Coated Mesoporous Maghemite Nanoparticles in Breast Cancer Enabled by Combination Therapy. ACS Biomaterials Science and Engineering, 2020, 6, 3574-3584.	2.6	39
401	Cytotoxicity studies of Fe ₃ O ₄ nanoparticles in chicken macrophage cells. Royal Society Open Science, 2020, 7, 191561.	1.1	12

#	Article	IF	CITATIONS
402	Recent progress in nanotechnology based ferroptotic therapies for clinical applications. European Journal of Pharmacology, 2020, 880, 173198.	1.7	22
403	The gut microbial metabolite trimethylamine N-oxide aggravates GVHD by inducing M1 macrophage polarization in mice. Blood, 2020, 136, 501-515.	0.6	161
404	A Biomimetic Nanogenerator of Reactive Nitrogen Species Based on Battlefield Transfer Strategy for Enhanced Immunotherapy. Small, 2020, 16, e2002138.	5.2	100
405	Organic/inorganic nanocomposites for cancer immunotherapy. Materials Chemistry Frontiers, 2020, 4, 2571-2609.	3.2	38
406	Bioactive nanomaterials for ionâ€interference therapy. View, 2020, 1, e18.	2.7	47
407	Colloidal nanoparticles as pharmaceutical agents. Frontiers of Nanoscience, 2020, 16, 89-115.	0.3	2
408	A stable USPIO capable for MR lymphography with ultra-low effective dosage. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102233.	1.7	6
409	Cancer nanomedicine meets immunotherapy: opportunities and challenges. Acta Pharmacologica Sinica, 2020, 41, 954-958.	2.8	33
410	Mesoporous Bi-Containing Radiosensitizer Loading with DOX to Repolarize Tumor-Associated Macrophages and Elicit Immunogenic Tumor Cell Death to Inhibit Tumor Progression. ACS Applied Materials & Interfaces, 2020, 12, 31225-31234.	4.0	24
411	Iron Oxide Nanoparticles as Autophagy Intervention Agents Suppress Hepatoma Growth by Enhancing Tumoricidal Autophagy. Advanced Science, 2020, 7, 1903323.	5.6	29
412	Nanotechnology and nanomedicine. , 2020, , 9-21.		1
413	Use of nanoparticulate systems to salvage the myocardium. , 2020, , 89-111.		0
414	Cell-nanoparticle interactions. , 2020, , 125-142.		0
415	Nanoparticulate systems for delivery of biomolecules and cells to the injured myocardium. , 2020, , 143-156.		0
416	Differently Charged Super-Paramagnetic Iron Oxide Nanoparticles Preferentially Induced M1-Like Phenotype of Macrophages. Frontiers in Bioengineering and Biotechnology, 2020, 8, 537.	2.0	41
417	The Role of Tumor-Associated Myeloid Cells in Modulating Cancer Therapy. Frontiers in Oncology, 2020, 10, 899.	1.3	44
418	Nanoparticulate systems for monitoring of therapeutic cells. , 2020, , 113-123.		1
419	Nanoparticulate systems for sustained delivery of paracrine factors. , 2020, , 157-169.		Ο

#	Article	IF	Citations
420	Dancing with reactive oxygen species generation and elimination in nanotheranostics for disease treatment. Advanced Drug Delivery Reviews, 2020, 158, 73-90.	6.6	83
421	Metal–Organic Framework Nanoparticles Induce Pyroptosis in Cells Controlled by the Extracellular pH. Advanced Materials, 2020, 32, e1907267.	11.1	118
422	Targeting of Hepatic Macrophages by Therapeutic Nanoparticles. Frontiers in Immunology, 2020, 11, 218.	2.2	94
423	Immunoactive drug carriers in cancer therapy. , 2020, , 53-94.		2
425	Targeting macrophages: a novel avenue for cancer drug discovery. Expert Opinion on Drug Discovery, 2020, 15, 561-574.	2.5	28
426	Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications. Nanoscale, 2020, 12, 14957-14975.	2.8	39
427	Substrate stiffness modulates bone marrow-derived macrophage polarization through NF-l [̂] B signaling pathway. Bioactive Materials, 2020, 5, 880-890.	8.6	97
428	Tandemâ€Massâ€Tag Based Proteomic Analysis Facilitates Analyzing Critical Factors of Porous Silicon Nanoparticles in Determining Their Biological Responses under Diseased Condition. Advanced Science, 2020, 7, 2001129.	5.6	11
429	Ferroptotic nanomaterials enhance cancer therapy via boosting Fenton-reaction. Journal of Drug Delivery Science and Technology, 2020, 59, 101883.	1.4	8
430	Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Advanced Drug Delivery Reviews, 2020, 163-164, 65-83.	6.6	214
431	Bioinspired Biomaterials. Advances in Experimental Medicine and Biology, 2020, , .	0.8	5
432	Metal oxide nanoparticles in biomedical applications. , 2020, , 233-251.		27
433	Targeting non-apoptotic cell death in cancer treatment by nanomaterials: Recent advances and future outlook. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 29, 102243.	1.7	24
434	Immunomodulationâ€Enhanced Nanozymeâ€Based Tumor Catalytic Therapy. Advanced Materials, 2020, 32, e2003563.	11.1	226
435	Nanoparticle-Mediated Drug Delivery for Treatment of Ischemic Heart Disease. Frontiers in Bioengineering and Biotechnology, 2020, 8, 687.	2.0	48
436	Reprogramming Tumor Associated Macrophages toward M1 Phenotypes with Nanomedicine for Anticancer Immunotherapy. Advanced Therapeutics, 2020, 3, 1900181.	1.6	31
437	Moderate cooling coprecipitation for extremely small iron oxide as a pH dependent <i>T</i> ₁ -MRI contrast agent. Nanoscale, 2020, 12, 5521-5532.	2.8	35
438	Enzyme-instructed assembly of a cholesterol conjugate promotes pro-inflammatory macrophages and induces apoptosis of cancer cells. Biomaterials Science, 2020, 8, 2007-2017.	2.6	10

#	Article	IF	CITATIONS
439	Autophagic stress; a new cellular response to nanoparticles. Could it be a new strategy for inhibition of liver cancer cell invasion and metastasis?. Nanoscale, 2020, 12, 6556-6561.	2.8	9
440	Nanotechnology Promotes Genetic and Functional Modifications of Therapeutic T Cells Against Cancer. Advanced Science, 2020, 7, 1903164.	5.6	22
441	Regulation of cancerâ€immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1612.	3.3	33
442	pH-Sensitive nanoscale materials as robust drug delivery systems for cancer therapy. Chinese Chemical Letters, 2020, 31, 1345-1356.	4.8	124
443	Monitoring innate immune cell dynamics in the glioma microenvironment by magnetic resonance imaging and multiphoton microscopy (MR-MPM). Theranostics, 2020, 10, 1873-1883.	4.6	30
444	Recent Advancements of Magnetic Nanomaterials in Cancer Therapy. Pharmaceutics, 2020, 12, 147.	2.0	119
445	Cancer Nano-Immunotherapy from the Injection to the Target: The Role of Protein Corona. International Journal of Molecular Sciences, 2020, 21, 519.	1.8	19
446	Harnessing iron-oxide nanoparticles towards the improved bactericidal activity of macrophage against Staphylococcus aureus. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102158.	1.7	15
447	Improving nanotherapy delivery and action through image-guided systems pharmacology. Theranostics, 2020, 10, 968-997.	4.6	41
448	Biodegradable Polymeric Multilayer Capsules for Therapy of Lung Cancer. ACS Applied Materials & Interfaces, 2020, 12, 5610-5623.	4.0	35
449	Molecular Imaging for Cancer Immunotherapy: Seeing Is Believing. Bioconjugate Chemistry, 2020, 31, 404-415.	1.8	31
450	Enhancing cancer immunotherapy with nanomedicine. Nature Reviews Immunology, 2020, 20, 321-334.	10.6	506
451	The role of hepcidin and iron homeostasis in atherosclerosis. Pharmacological Research, 2020, 153, 104664.	3.1	64
452	Graphene Oxide-Grafted Magnetic Nanorings Mediated Magnetothermodynamic Therapy Favoring Reactive Oxygen Species-Related Immune Response for Enhanced Antitumor Efficacy. ACS Nano, 2020, 14, 1936-1950.	7.3	126
453	Mild magnetic nanoparticle hyperthermia enhances the susceptibility of <i>Staphylococcus aureus</i> biofilm to antibiotics. International Journal of Hyperthermia, 2020, 37, 66-75.	1.1	35
454	Cellular backpacks for macrophage immunotherapy. Science Advances, 2020, 6, eaaz6579.	4.7	224
455	Sustainable Synthesis of Nanoscale Zerovalent Iron Particles for Environmental Remediation. ChemSusChem, 2020, 13, 3288-3305.	3.6	42
456	Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy. Journal of Materials Chemistry B, 2020, 8, 6765-6781.	2.9	112

	Ст	TATION REPORT	
#	Article	IF	CITATIONS
457	Macrophage M1/M2 polarization. European Journal of Pharmacology, 2020, 877, 173090.	1.7	883
458	A novel intratumoral pH/redox-dual-responsive nanoplatform for cancer MR imaging and therapy. Journal of Colloid and Interface Science, 2020, 573, 263-277.	5.0	30
459	Nanoparticle Uptake in a Spontaneous and Immunocompetent Woodchuck Liver Cancer Model. ACS Nano, 2020, 14, 4698-4715.	7.3	20
460	Combined chemo-magneticÂfield-photothermal breast cancer therapy based on porous magnetite nanospheres. Scientific Reports, 2020, 10, 5925.	1.6	44
461	Altered Iron Metabolism and Impact in Cancer Biology, Metastasis, and Immunology. Frontiers in Oncology, 2020, 10, 476.	1.3	153
462	Contribution of Macrophages and T Cells in Skeletal Metastasis. Cancers, 2020, 12, 1014.	1.7	19
463	Platelet Membrane amouflaged Magnetic Nanoparticles for Ferroptosisâ€Enhanced Cancer Immunotherapy. Small, 2020, 16, e2001704.	5.2	223
464	Immunologically modified MnFe2O4 nanoparticles to synergize photothermal therapy and immunotherapy for cancer treatment. Chemical Engineering Journal, 2020, 396, 125239.	6.6	59
465	Improving Cancer Immunotherapy Outcomes Using Biomaterials. Angewandte Chemie, 2020, 132, 17484-17495.	1.6	12
466	Improving Cancer Immunotherapy Outcomes Using Biomaterials. Angewandte Chemie - International Edition, 2020, 59, 17332-17343.	7.2	48
467	Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nature Communications, 2020, 11, 1857.	5.8	294
468	Nanoparticle mediated cancer immunotherapy. Seminars in Cancer Biology, 2021, 69, 307-324.	4.3	48
470	MOF-shielded and glucose-responsive ultrasmall silver nano-factory for highly-efficient anticancer and antibacterial therapy. Chemical Engineering Journal, 2021, 416, 127610.	6.6	14
471	Intracellular and extracellular targets as mechanisms of cancer therapy by nanomaterials in relation to their physicochemical properties. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1680.	3.3	10
472	Engineering Nanoparticles toward the Modulation of Emerging Cancer Immunotherapy. Advanced Healthcare Materials, 2021, 10, e2000845.	3.9	33
473	Applications of Iron Oxide Nanoparticles in the Magnetic Resonance Imaging for the Cancer Diagnosis. Environmental Chemistry for A Sustainable World, 2021, , 115-158.	0.3	0
474	Nanotechnologyâ€Based CARâ€T Strategies for Improving Efficacy and Safety of Tumor Immunotheraµ Advanced Functional Materials, 2021, 31, .	py. 7.8	13
475	A targeting black phosphorus nanoparticle based immune cells nano-regulator for photodynamic/photothermal and photo-immunotherapy. Bioactive Materials, 2021, 6, 472-489.	8.6	137

#	Article	IF	CITATIONS
476	Fluorescent probes for iron, heme, and related enzymes. Coordination Chemistry Reviews, 2021, 429, 213645.	9.5	25
477	Î electron-stabilized polymeric micelles potentiate docetaxel therapy in advanced-stage gastrointestinal cancer. Biomaterials, 2021, 266, 120432.	5.7	31
478	Targeting tumorâ€ e ssociated macrophages: A potential treatment for solid tumors. Journal of Cellular Physiology, 2021, 236, 3445-3465.	2.0	35
479	Nanomedicine enables spatiotemporally regulating macrophage-based cancer immunotherapy. Biomaterials, 2021, 268, 120552.	5.7	23
480	Acceptor Engineering for Optimized ROS Generation Facilitates Reprogramming Macrophages to M1 Phenotype in Photodynamic Immunotherapy. Angewandte Chemie, 2021, 133, 5446-5453.	1.6	9
481	Bioengineering of nano metal-organic frameworks for cancer immunotherapy. Nano Research, 2021, 14, 1244-1259.	5.8	37
482	Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chemical Society Reviews, 2021, 50, 945-985.	18.7	108
483	Recent Advances in Hyperthermia Therapyâ€Based Synergistic Immunotherapy. Advanced Materials, 2021, 33, e2004788.	11.1	233
484	Control of oxidative stress in Jurkat cells as a model of leukemia treatment. Journal of Magnetism and Magnetic Materials, 2021, 523, 167623.	1.0	6
485	Acceptor Engineering for Optimized ROS Generation Facilitates Reprogramming Macrophages to M1 Phenotype in Photodynamic Immunotherapy. Angewandte Chemie - International Edition, 2021, 60, 5386-5393.	7.2	103
486	In vivo guiding inorganic nanozymes for biosensing and therapeutic potential in cancer, inflammation and microbial infections. Talanta, 2021, 224, 121805.	2.9	27
487	Nanomedicines inhibiting tumor metastasis and recurrence and their clinical applications. Nano Today, 2021, 36, 101004.	6.2	56
488	Enhancing antibody-dependent cellular phagocytosis by Re-education of tumor-associated macrophages with resiquimod-encapsulated liposomes. Biomaterials, 2021, 268, 120601.	5.7	67
489	Nano-immunotherapy: Unique mechanisms of nanomaterials in synergizing cancer immunotherapy. Nano Today, 2021, 36, 101023.	6.2	45
490	Enhancing Immunity with Nanomedicine: Employing Nanoparticles to Harness the Immune System. ACS Nano, 2021, 15, 7-20.	7.3	34
491	Implications of Biomolecular Corona for Molecular Imaging. Molecular Imaging and Biology, 2021, 23, 1-10.	1.3	3
492	Advances in Magnetic Nanoparticleâ€Mediated Cancer Immuneâ€Theranostics. Advanced Healthcare Materials, 2021, 10, e2001451.	3.9	59
493	Nanomedicine enables autophagy-enhanced cancer-cell ferroptosis. Science Bulletin, 2021, 66, 464-477.	4.3	26

#	Article	IF	CITATIONS
494	Nanoâ€sensing and nanoâ€therapy targeting central players in iron homeostasis. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1667.	3.3	0
495	Nanoparticles retard immune cells recruitment in vivo by inhibiting chemokine expression. Biomaterials, 2021, 265, 120392.	5.7	19
496	Challenges in the development of nanoparticleâ€based imaging agents: Characterization and biology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1665.	3.3	23
497	Accumulation and cytotoxicity assessment of TAT-IONPs on cancerous mammalian cells. Animal Biotechnology, 2021, 32, 100-105.	0.7	2
498	Nano-immunotherapy: Overcoming tumour immune evasion. Seminars in Cancer Biology, 2021, 69, 238-248.	4.3	47
499	Theranostics: Agents for Diagnosis and Therapy. , 2021, , 655-677.		3
500	Multienzyme nanoassemblies: from rational design to biomedical applications. Biomaterials Science, 2021, 9, 7323-7342.	2.6	7
501	Inorganic material based macrophage regulation for cancer therapy: basic concepts and recent advances. Biomaterials Science, 2021, 9, 4568-4590.	2.6	28
502	Biomedicine Meets Fenton Chemistry. Chemical Reviews, 2021, 121, 1981-2019.	23.0	400
503	The versatile biochemistry of iron in macrophage effector functions. FEBS Journal, 2021, 288, 6972-6989.	2.2	12
504	Ferrous ions doped layered double hydroxide: smart 2D nanotheranostic platform with imaging-guided synergistic chemo/photothermal therapy for breast cancer. Biomaterials Science, 2021, 9, 5928-5938.	2.6	17
505	Cancer therapeutic strategies based on metal ions. Chemical Science, 2021, 12, 12234-12247.	3.7	33
506	Tumor microenvironments self-activated nanoscale metal-organic frameworks for ferroptosis based cancer chemodynamic/photothermal/chemo therapy. Acta Pharmaceutica Sinica B, 2021, 11, 3231-3243.	5.7	53
507	Manganese-Doped Silica-Based Nanoparticles Promote the Efficacy of Antigen-Specific Immunotherapy. Journal of Immunology, 2021, 206, 987-998.	0.4	16
508	Probing the effects of redox conditions and dissolved Fe2+ on nanomagnetite stoichiometry by wet chemistry, XRD, XAS and XMCD. Environmental Science: Nano, 2021, 8, 2098-2107.	2.2	8
509	Exosome-mediated communication between tumor cells and tumor-associated macrophages: implications for tumor microenvironment. Oncolmmunology, 2021, 10, 1887552.	2.1	49
510	Multifunctional theranostic nanomedicine for photoacoustic imaging-guided combination tumor treatment. , 2021, , 67-90.		1
511	Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chemical Society Reviews, 2021, 50, 11614-11667.	18.7	193

#	ARTICLE	IF	CITATIONS
512	Injectable shear-thinning polylysine hydrogels for localized immunotherapy of gastric cancer through repolarization of tumor-associated macrophages. Biomaterials Science, 2021, 9, 6597-6608.	2.6	14
513	Mitochondria-Targeted BODIPY Nanoparticles for Enhanced Photothermal and Photoacoustic Imaging In Vivo. ACS Applied Bio Materials, 2021, 4, 1760-1770.	2.3	24
514	Ferumoxytol-Î ² -glucan Inhibits Melanoma Growth via Interacting with Dectin-1 to Polarize Macrophages into M1 Phenotype. International Journal of Medical Sciences, 2021, 18, 3125-3139.	1.1	9
515	Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics, 2021, 11, 5365-5386.	4.6	324
516	Advancements in Cancer Therapeutics. Advances in Medical Diagnosis, Treatment, and Care, 2021, , 382-412.	0.1	1
517	PSMA-targeted arsenic nanosheets: a platform for prostate cancer therapy <i>via</i> ferroptosis and ATM deficiency-triggered chemosensitization. Materials Horizons, 2021, 8, 2216-2229.	6.4	12
518	Gold Nanoparticles and Graphene Oxide Flakes Synergistic Partaking in Cytosolic Bactericidal Augmentation: Role of ROS and NOX2 Activity. Microorganisms, 2021, 9, 101.	1.6	22
519	Role of macrophage in nanomedicine-based disease treatment. Drug Delivery, 2021, 28, 752-766.	2.5	5
520	Immunomodulatory nanomedicine for colorectal cancer treatment: a landscape to be explored?. Biomaterials Science, 2021, 9, 3228-3243.	2.6	6
521	Manganese oxide nanomaterials boost cancer immunotherapy. Journal of Materials Chemistry B, 2021, 9, 7117-7131.	2.9	27
522	Influence of magnetic nanoparticles on cells of Ehrlich ascites carcinoma. AIP Advances, 2021, 11, 015019.	0.6	3
523	Nanoparticles breakthroughs tumor treatment limitations by regulating tumor immune microenvironment to enhance tumor immunotherapy efficacy. Smart Materials in Medicine, 2021, 2, 314-321.	3.7	2
524	Functional Nucleicâ€Acidâ€Decorated Spherical Nanoparticles: Preparation Strategies and Current Applications in Cancer Therapy. Small Science, 2021, 1, 2000056.	5.8	15
525	Iron Metabolism in the Tumor Microenvironment: Contributions of Innate Immune Cells. Frontiers in Immunology, 2020, 11, 626812.	2.2	29
526	Tailoring Materials for Modulation of Macrophage Fate. Advanced Materials, 2021, 33, e2004172.	11.1	141
527	A potential antibiofilm, antimicrobial and anticancer activities of chitosan capped gold nanoparticles prepared by γ–irradiation. Materials Technology, 2022, 37, 493-502.	1.5	21
528	Stimulation and Suppression of the Innate Immune System through Nanotechnology. ACS Applied Nano Materials, 2021, 4, 2303-2316.	2.4	5
529	Monodisperse albumin particles fabricated by membrane emulsification using anodic porous alumina. Materials Research Express, 2021, 8, 025003.	0.8	3

#	Article	IF	CITATIONS
530	Tumor-Selective Immune-Active Mild Hyperthermia Associated with Chemotherapy in Colon Peritoneal Metastasis by Photoactivation of Fluorouracil–Gold Nanoparticle Complexes. ACS Nano, 2021, 15, 3330-3348.	7.3	28
531	Whither Magnetic Hyperthermia? A Tentative Roadmap. Materials, 2021, 14, 706.	1.3	76
532	Application of Bionanomaterials in Tumor Immune Microenvironment Therapy. Journal of Immunology Research, 2021, 2021, 1-10.	0.9	3
533	Oxygen-independent free radical generation mediated by core-shell magnetic nanocomposites synergizes with immune checkpoint blockade for effective primary and metastatic tumor treatment. Nano Today, 2021, 36, 101024.	6.2	13
534	Nanoâ€Oncologicals: A Tortoise Trail Reaching New Avenues. Advanced Functional Materials, 2021, 31, 2009860.	7.8	13
535	Recent nanotheranostics applications for cancer therapy and diagnosis: A review. IET Nanobiotechnology, 2021, 15, 247-256.	1.9	12
536	Crosstalk between Macrophages, T Cells, and Iron Metabolism in Tumor Microenvironment. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-14.	1.9	40
537	Therapeutic strategies of iron-based nanomaterials for cancer therapy. Biomedical Materials (Bristol), 2021, 16, 032003.	1.7	9
538	Role of Tumor-Associated Macrophages in Sarcomas. Cancers, 2021, 13, 1086.	1.7	26
539	CaCO ₃ -Encapsulated Au Nanoparticles Modulate Macrophages toward M1-like Phenotype. ACS Applied Bio Materials, 2021, 4, 3214-3223.	2.3	10
540	Nanomaterials Enhance the Immunomodulatory Effect of Molecular Targeted Therapy. International Journal of Nanomedicine, 2021, Volume 16, 1631-1661.	3.3	19
541	Recent Advancements in Nanomedicine for â€~Cold' Tumor Immunotherapy. Nano-Micro Letters, 2021, 13, 92.	14.4	41
542	Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomedical Materials (Bristol), 2021, 16, 032005.	1.7	14
543	Emerging nanotechnological strategies to reshape tumor microenvironment for enhanced therapeutic outcomes of cancer immunotherapy. Biomedical Materials (Bristol), 2021, 16, 042001.	1.7	6
544	Leveraging microenvironmental synthetic lethalities to treat cancer. Journal of Clinical Investigation, 2021, 131, .	3.9	17
545	A Nano "lmmune uide―Recruiting Lymphocytes and Modulating the Ratio of Macrophages from Different Origins to Enhance Cancer Immunotherapy. Advanced Functional Materials, 2021, 31, 2009116.	7.8	24
546	Tissue-Resident and Recruited Macrophages in Primary Tumor and Metastatic Microenvironments: Potential Targets in Cancer Therapy. Cells, 2021, 10, 960.	1.8	33
547	Tumor-Associated Macrophages—Implications for Molecular Oncology and Imaging. Biomedicines, 2021, 9, 374.	1.4	10

#	Article	IF	CITATIONS
548	Self-Assembly Iron Oxide Nanoclusters for Photothermal-Mediated Synergistic Chemo/Chemodynamic Therapy. Journal of Immunology Research, 2021, 2021, 1-10.	0.9	6
549	Nanocatalytic Innate Immunity Activation by Mitochondrial DNA Oxidative Damage for Tumor‧pecific Therapy. Advanced Materials, 2021, 33, e2008065.	11.1	78
550	Albumin covering maintains endothelial function upon magnetic iron oxide nanoparticles intravenous injection in rats. Journal of Biomedical Materials Research - Part A, 2021, 109, 2017-2026.	2.1	7
551	High-density lipoprotein modulates tumor-associated macrophage for chemoimmunotherapy of hepatocellular carcinoma. Nano Today, 2021, 37, 101064.	6.2	20
552	Research progress in tumor targeted immunotherapy. Expert Opinion on Drug Delivery, 2021, 18, 1067-1090.	2.4	11
553	Antioxidant nanozyme counteracts HIVâ€1 by modulating intracellular redox potential. EMBO Molecular Medicine, 2021, 13, e13314.	3.3	21
554	The Iron Curtain: Macrophages at the Interface of Systemic and Microenvironmental Iron Metabolism and Immune Response in Cancer. Frontiers in Immunology, 2021, 12, 614294.	2.2	20
555	Ferrite Nanoparticles-Based Reactive Oxygen Species-Mediated Cancer Therapy. Frontiers in Chemistry, 2021, 9, 651053.	1.8	20
556	Biodegradable Nanosonosensitizers with the Multiple Modulation of Tumor Microenvironment for Enhanced Sonodynamic Therapy. International Journal of Nanomedicine, 2021, Volume 16, 2633-2646.	3.3	10
557	Green chemistry route of biosynthesized copper oxide nanoparticles using Psidium guajava leaf extract and their antibacterial activity and effective removal of industrial dyes. Journal of Environmental Chemical Engineering, 2021, 9, 105033.	3.3	89
558	Synergistic ferroptosis and macrophage re-polarization using engineering exosome-mimic M1 nanovesicles for cancer metastasis suppression. Chemical Engineering Journal, 2021, 409, 128217.	6.6	24
559	Recent advances in iron oxide nanoparticles for brain cancer theranostics: from <i>in vitro</i> to clinical applications. Expert Opinion on Drug Delivery, 2021, 18, 1-29.	2.4	17
560	Blue light-triggered Fe2+-release from monodispersed ferrihydrite nanoparticles for cancer iron therapy. Biomaterials, 2021, 271, 120739.	5.7	48
561	Immunomodulation of Tumor Microenvironment by Arginine-Loaded Iron Oxide Nanoparticles for Gaseous Immunotherapy. ACS Applied Materials & amp; Interfaces, 2021, 13, 19825-19835.	4.0	42
562	Effect of physicochemical properties on inÂvivo fate of nanoparticle-based cancer immunotherapies. Acta Pharmaceutica Sinica B, 2021, 11, 886-902.	5.7	42
563	Low Dose Soft Xâ€Ray Remotely Triggered Lanthanide Nanovaccine for Deep Tissue CO Gas Release and Activation of Systemic Antiâ€Tumor Immunoresponse. Advanced Science, 2021, 8, e2004391.	5.6	34
564	Nutritional immunity: the impact of metals on lung immune cells and the airway microbiome during chronic respiratory disease. Respiratory Research, 2021, 22, 133.	1.4	32
565	Reactive Oxygen Species-Based Nanomaterials for Cancer Therapy. Frontiers in Chemistry, 2021, 9, 650587.	1.8	30

#	Article	IF	CITATIONS
566	Influence of the Aspect Ratio of Iron Oxide Nanorods on Hysteresis-Loss-Mediated Magnetic Hyperthermia. ACS Applied Bio Materials, 2021, 4, 4809-4820.	2.3	9
568	Glutathione-Depleting Nanomedicines for Synergistic Cancer Therapy. ACS Nano, 2021, 15, 8039-8068.	7.3	205
569	Harnessing Innate Immunity Using Biomaterials for Cancer Immunotherapy. Advanced Materials, 2021, 33, e2007576.	11.1	42
570	Mechanisms of Macrophage Plasticity in the Tumor Environment: Manipulating Activation State to Improve Outcomes. Frontiers in Immunology, 2021, 12, 642285.	2.2	70
571	Role of magnetic nanoparticle (MNPs) in cancer treatment: A review. Materials Today: Proceedings, 2021, , .	0.9	7
572	Recent Advances in Engineered Materials for Immunotherapyâ€Involved Combination Cancer Therapy. Advanced Materials, 2021, 33, e2007630.	11.1	112
573	Nanomaterial Shape Influence on Cell Behavior. International Journal of Molecular Sciences, 2021, 22, 5266.	1.8	27
574	The role of macrophage polarization and function in environmental toxicant-induced cancers. Environmental Research, 2021, 196, 110933.	3.7	7
575	Magnetic nanocatalysts as multifunctional platforms in cancer therapy through the synthesis of anticancer drugs and facilitated Fenton reaction. Journal of Advanced Research, 2021, 30, 171-184.	4.4	33
576	Magnetic Nanostructures as Emerging Therapeutic Tools to Boost Anti-Tumour Immunity. Cancers, 2021, 13, 2735.	1.7	21
577	Ironing Out the Details: How Iron Orchestrates Macrophage Polarization. Frontiers in Immunology, 2021, 12, 669566.	2.2	34
578	Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. Journal of Controlled Release, 2021, 333, 188-245.	4.8	31
579	PEGylated Mn containing MOF nanoparticles for potential immunotherapy of pancreatic cancer via manganese induced activation of anti-tumor immunity. Colloids and Interface Science Communications, 2021, 42, 100409.	2.0	11
580	How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol. Pediatric Radiology, 2022, 52, 354-366.	1.1	12
581	From Design to Clinic: Engineered Nanobiomaterials for Immune Normalization Therapy of Cancer. Advanced Materials, 2021, 33, e2008094.	11.1	60
582	Gold Nanoparticles and Graphene Oxide Flakes Enhance Cancer Cells' Phagocytosis through Granzyme-Perforin-Dependent Biomechanism. Nanomaterials, 2021, 11, 1382.	1.9	20
583	Sex as an important factor in nanomedicine. Nature Communications, 2021, 12, 2984.	5.8	47
584	Nanotechnology synergized immunoengineering for cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 72-101.	2.0	8

#	ARTICLE	IF	CITATIONS
585	The Use of Iron Oxide Nanoparticles to Reprogram Macrophage Responses and the Immunological Tumor Microenvironment. Frontiers in Immunology, 2021, 12, 693709.	2.2	40
586	Sugar-originated carbon nanodots selectively damage the tumor and enhance the sensitivity of chemotherapy. Nano Today, 2021, 38, 101200.	6.2	10
587	Black phosphorous nanosheet: A novel immune-potentiating nanoadjuvant for near-infrared-improved immunotherapy. Biomaterials, 2021, 273, 120788.	5.7	40
588	Iron Released after Cryo-Thermal Therapy Induced M1 Macrophage Polarization, Promoting the Differentiation of CD4+ T Cells into CTLs. International Journal of Molecular Sciences, 2021, 22, 7010.	1.8	9
589	The past, present, and future of breast cancer models for nanomedicine development. Advanced Drug Delivery Reviews, 2021, 173, 306-330.	6.6	65
590	Macrophage Polarization States in the Tumor Microenvironment. International Journal of Molecular Sciences, 2021, 22, 6995.	1.8	539
591	The potential application of nanomaterials for ferroptosis-based cancer therapy. Biomedical Materials (Bristol), 2021, 16, 042013.	1.7	19
592	Immune Cell Modulation of the Extracellular Matrix Contributes to the Pathogenesis of Pancreatic Cancer. Biomolecules, 2021, 11, 901.	1.8	20
593	Nanoparticle-Based Therapies for Turning Cold Tumors Hot: How to Treat an Immunosuppressive Tumor Microenvironment. Frontiers in Bioengineering and Biotechnology, 2021, 9, 689245.	2.0	16
594	Redirecting macrophage function to sustain their "defender―antitumor activity. Cancer Cell, 2021, 39, 734-737.	7.7	13
595	Core Crossâ€Linked Polymeric Micelles for Specific Iron Delivery: Inducing Sterile Inflammation in Macrophages. Advanced Healthcare Materials, 2021, 10, e2100385.	3.9	13
596	Restoring Endogenous Repair Mechanisms to Heal Chronic Wounds with a Multifunctional Wound Dressing. Molecular Pharmaceutics, 2021, 18, 3171-3180.	2.3	17
597	Nanocarriers Used in Drug Delivery to Enhance Immune System in Cancer Therapy. Pharmaceutics, 2021, 13, 1167.	2.0	25
598	Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: Approaching to a new era of cancer chemotherapy. Life Sciences, 2021, 277, 119430.	2.0	68
599	Electromagnetic Fieldâ€₽rogrammed Magnetic Vortex Nanodelivery System for Efficacious Cancer Therapy. Advanced Science, 2021, 8, e2100950.	5.6	22
600	Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: A review. Artificial Organs, 2021, 45, 1272-1299.	1.0	35
601	Treatment of Small Cell Lung Cancer with Lurbinectedin: A Review. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, 812-820.	0.9	3
602	Iron Oxide Nanoparticles as Theranostic Agents in Cancer Immunotherapy. Nanomaterials, 2021, 11, 1950.	1.9	16

#	Article	IF	CITATIONS
603	Modulating Repolarization of Tumor-Associated Macrophages with Targeted Therapeutic Nanoparticles as a Potential Strategy for Cancer Therapy. ACS Applied Bio Materials, 2021, 4, 5871-5896.	2.3	8
604	Selfâ€Cycling Free Radical Generator from LDHâ€Based Nanohybrids for Ferroptosisâ€Enhanced Chemodynamic Therapy. Advanced Healthcare Materials, 2021, 10, e2100539.	3.9	28
605	Repurposing Ferumoxytol as a Breast Cancer-Associated Macrophage Tracer with Five-Dimensional Quantitative [Fe]MRI of SPION Dynamics. Cancers, 2021, 13, 3802.	1.7	8
606	The Underlying Function and Structural Organization of the Intracellular Protein Corona on Graphdiyne Oxide Nanosheet for Local Immunomodulation. Nano Letters, 2021, 21, 6005-6013.	4.5	63
607	Protein-Mimicking Nanoparticles for a Cellular Regulation of Homeostasis. ACS Applied Materials & Interfaces, 2021, 13, 31331-31336.	4.0	19
608	The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment. Bioactive Materials, 2021, 6, 1973-1987.	8.6	343
609	Personalised Profiling of Innate Immune Memory Induced by Nano-Imaging Particles in Human Monocytes. Frontiers in Immunology, 2021, 12, 692165.	2.2	10
611	Nanozyme for tumor therapy: Surface modification matters. Exploration, 2021, 1, 75-89.	5.4	250
612	Non-Transferrin-Bound Iron in the Spotlight: Novel Mechanistic Insights into the Vasculotoxic and Atherosclerotic Effect of Iron. Antioxidants and Redox Signaling, 2021, 35, 387-414.	2.5	18
613	Iron metabolism: pathophysiology and pharmacology. Trends in Pharmacological Sciences, 2021, 42, 640-656.	4.0	87
614	M2 macrophage-targeted iron oxide nanoparticles for magnetic resonance image-guided magnetic hyperthermia therapy. Journal of Materials Science and Technology, 2021, 81, 77-87.	5.6	26
615	Understanding the interactions between inorganic-based nanomaterials and biological membranes. Advanced Drug Delivery Reviews, 2021, 175, 113820.	6.6	23
616	Fe ₂ P nanorods based photothermal therapy combined with immune checkpoint inhibitors for pancreatic cancer. Nanophotonics, 2021, 10, 3267-3278.	2.9	5
617	Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment. Molecular Therapy, 2022, 30, 327-340.	3.7	52
618	Advances in technology and applications of nanoimmunotherapy for cancer. Biomarker Research, 2021, 9, 63.	2.8	7
619	Double enhancement of immunogenic cell death and antigen presentation for cancer immunotherapy. Nano Today, 2021, 39, 101225.	6.2	45
620	Magnetic systems for cancer immunotherapy. Acta Pharmaceutica Sinica B, 2021, 11, 2172-2196.	5.7	40
621	Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanisms. Journal of Saudi Chemical Society, 2021, 25, 101280.	2.4	133

#	Article	IF	CITATIONS
622	Iron Oxide Nanoparticles Synthesized Via Green Tea Extract for Doxorubicin Delivery. Current Nanoscience, 2021, 17, 646-657.	0.7	5
623	Loss of erythroblasts in acute myeloid leukemia causes iron redistribution with clinical implications. Blood Advances, 2021, 5, 3102-3112.	2.5	5
624	Titania/iron oxide nanoplatform operates as hydrogen peroxide enriched vector for amplification of fenton catalytic efficiency in cancer theranostics. Chemical Engineering Journal, 2021, 418, 129381.	6.6	6
625	Nanomedicines modulating myeloid-derived suppressor cells for improving cancer immunotherapy. Nano Today, 2021, 39, 101163.	6.2	18
626	Nanoparticles targeting tumor-associated macrophages: A novel anti-tumor therapy. Nano Research, 2022, 15, 2177-2195.	5.8	6
627	Reactive oxygen species / photothermal therapy dual-triggered biomimetic gold nanocages nanoplatform for combination cancer therapy via ferroptosis and tumor-associated macrophage repolarization mechanism. Journal of Colloid and Interface Science, 2022, 606, 1950-1965.	5.0	32
628	Renal Clearable Ultrasmall Single-Crystal Fe Nanoparticles for Highly Selective and Effective Ferroptosis Therapy and Immunotherapy. Journal of the American Chemical Society, 2021, 143, 15812-15823.	6.6	136
629	Engineering Cellâ€Based Systems for Smart Cancer Therapy. Advanced Intelligent Systems, 2022, 4, 2100134.	3.3	14
630	Nanotechnology for Targeted Detection and Removal of Bacteria: Opportunities and Challenges. Advanced Science, 2021, 8, e2100556.	5.6	38
631	Personalized Nanovaccine Coated with Calcinetin-Expressed Cancer Cell Membrane Antigen for Cancer Immunotherapy. Nano Letters, 2021, 21, 8418-8425.	4.5	55
632	The role of iron homeostasis in remodeling immune function and regulating inflammatory disease. Science Bulletin, 2021, 66, 1806-1816.	4.3	59
633	The need for robust characterization of nanomaterials for nanomedicine applications. Nature Communications, 2021, 12, 5246.	5.8	43
634	Ferroptosis and Cancer: Complex Relationship and Potential Application of Exosomes. Frontiers in Cell and Developmental Biology, 2021, 9, 733751.	1.8	32
635	Calcium Phosphateâ€Reinforced Metalâ€Organic Frameworks Regulate Adenosineâ€Mediated Immunosuppression. Advanced Materials, 2021, 33, e2102271.	11.1	27
636	Ultrasmall Zwitterionic Polypeptide-Coordinated Nanohybrids for Highly Efficient Cancer Photothermal Ferrotherapy. ACS Applied Materials & Interfaces, 2021, 13, 44002-44012.	4.0	13
637	Cigarette smoke-induced toxicity consequences of intracellular iron dysregulation and ferroptosis. Life Sciences, 2021, 281, 119799.	2.0	17
638	Magnetothermal regulation of in vivo protein corona formation on magnetic nanoparticles for improved cancer nanotherapy. Biomaterials, 2021, 276, 121021.	5.7	29
639	LncRNA LINC00888 upregulation predicts a worse survival of laryngeal cancer patients and accelerates the growth and mobility of laryngeal cancer cells through regulation of miRâ€378g/TFRC. Journal of Biochemical and Molecular Toxicology, 2021, 35, e22878.	1.4	7

#	Article	IF	CITATIONS
640	Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coordination Chemistry Reviews, 2021, 442, 213949.	9.5	31
641	Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacological Research, 2021, 171, 105780.	3.1	196
642	"Cytokine-microfactories―recruit DCs and deliver tumor antigens via gap junctions for immunotherapy. Journal of Controlled Release, 2021, 337, 417-430.	4.8	9
643	Precise Control of Customized Macrophage Cell Robot for Targeted Therapy of Solid Tumors with Minimal Invasion. Small, 2021, 17, e2103986.	5.2	38
644	Smart Nanomaterials for Treatment of Biofilm in Orthopedic Implants. Frontiers in Bioengineering and Biotechnology, 2021, 9, 694635.	2.0	14
645	Exosomes synergized with PIONs@E6 enhance their immunity against hepatocellular carcinoma via promoting M1 macrophages polarization. International Immunopharmacology, 2021, 99, 107960.	1.7	19
646	A state-of-the-art review on the application of various pharmaceutical nanoparticles as a promising technology in cancer treatment. Arabian Journal of Chemistry, 2021, 14, 103352.	2.3	27
647	Advance of nano anticancer therapies targeted on tumor-associated macrophages. Coordination Chemistry Reviews, 2021, 446, 214126.	9.5	6
648	Iron oxide-based enzyme mimic nanocomposite for dual-modality imaging guided chemical phototherapy and anti-tumor immunity against immune cold triple-negative breast cancer. Chemical Engineering Journal, 2021, 425, 130579.	6.6	9
649	Core-shell nanomaterials engineered to reverse cancer multidrug resistance by immunotherapy and promote photo-responsive chemotherapy. Chemical Engineering Journal, 2022, 429, 132329.	6.6	5
650	Challenges and opportunities of nanotechnology in cancer immunotherapy. , 2022, , 197-239.		1
651	Delivery strategies for reprogramming tumor-associated macrophages. , 2022, , 83-115.		0
652	Image-guided cancer immunotherapy. , 2022, , 427-467.		0
653	Iron-based nanoparticles for MR imaging-guided ferroptosis in combination with photodynamic therapy to enhance cancer treatment. Nanoscale, 2021, 13, 4855-4870.	2.8	88
654	HA/MgO nanocrystal-based hybrid hydrogel with high mechanical strength and osteoinductive potential for bone reconstruction in diabetic rats. Journal of Materials Chemistry B, 2021, 9, 1107-1122.	2.9	30
655	Nanoparticles as a Hedgehog signaling inhibitor for the suppression of cancer growth and metastasis. Nanoscale, 2021, 13, 11077-11085.	2.8	2
656	Targeting Tumor Microenvironment-associated Immune Cells with Nanoparticles-based Strategies. Pharmacophore, 2021, 12, 1-10.	0.2	3
657	Recent progress on nanomedicine-induced ferroptosis for cancer therapy. Biomaterials Science, 2021, 9, 5092-5115.	2.6	38

ARTICLE IF CITATIONS Iron oxide nanoparticles for immune cell labeling and cancer immunotherapy. Nanoscale Horizons, 658 4.1 28 2021, 6, 696-717. Targeting Tumor Microenvironment Through Nanotheranostics., 2021, 133-159. 659 Cancer theranostic platforms based on injectable polymer hydrogels. Biomaterials Science, 2021, 9, 660 2.6 16 3543-3575. Magnetoâ€Based Synergetic Therapy for Implantâ€Associated Infections via Biofilm Disruption and Innate Immunity Regulation. Advanced Science, 2021, 8, 2004010. Two-dimensional materials in biomedical, biosensing and sensing applications. Chemical Society 662 18.7 265 Reviews, 2021, 50, 619-657. Nanomedicine-based cancer immunotherapies developed by reprogramming tumor-associated 2.8 macrophages. Nanoscale, 2021, 13, 4705-4727. Singleâ€Atom Catalysts for Nanocatalytic Tumor Therapy. Small, 2021, 17, e2004467. 664 5.2 72 An Overview of Advances in Cell-Based Cancer Immunotherapies Based on the Multiple Immune-Cancer 0.4 Cell Interactions. Methods in Molecular Biology, 2020, 2097, 139-171. Preparation of Hyaluronic Acid-Based Nanoparticles for Macrophage-Targeted MicroRNA Delivery and 666 0.4 4 Transfection. Methods in Molecular Biology, 2020, 2118, 99-110. Overview of Basic Immunology and Clinical Application. Advances in Experimental Medicine and Biology, 2020, 1244, 1-36. Cancer Nanomedicine: Special Focus on Cancer Immunotherapy., 2021, , 465-508. 668 2 Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetics for Biomedical Application. Nanostructure 0.1 28 Science and Technology, 2020, , 105-140. Bio-application of Inorganic Nanomaterials in Tissue Engineering. Advances in Experimental Medicine 670 0.8 7 and Biology, 2020, 1249, 115-130. Fabrication and Applications of Magnetic Nanoparticles-Based Drug Delivery System: Challenges and 671 Perspectives. , 2020, , 455-482. Versatile iron-vitamin K3 derivative-based nanoscale coordination polymer augments tumor 672 5.8 11 ferroptotic therapy. Nano Research, 2021, 14, 2398. Multimodal stratified imaging of nanovaccines in lymph nodes for improving cancer immunotherapy. Advanced Drug Delivery Reviews, 2020, 161-162, 145-160. Multifunctional FeS2 theranostic nanoparticles for photothermal-enhanced 674 chemodynamic/photodynamic cancer therapy and photoacoustic imaging. Chemical Engineering 6.6 80 Journal, 2020, 396, 125294. Ferrihydrite nanoparticles insights: Structural characterization, lactate dehydrogenase binding and virtual screening assay. International Journal of Biological Macromolecules, 2020, 164, 3559-3567.

#	Article	IF	CITATIONS
676	Gd-metallofullerenol drug delivery system mediated macrophage polarization enhances the efficiency of chemotherapy. Journal of Controlled Release, 2020, 320, 293-303.	4.8	18
677	Transforming a toxic drug into an efficacious nanomedicine using a lipoprodrug strategy for the treatment of patient-derived melanoma xenografts. Journal of Controlled Release, 2020, 324, 289-302.	4.8	51
678	Metal-derived nanoparticles in tumor theranostics: Potential and limitations. Journal of Inorganic Biochemistry, 2020, 209, 111117.	1.5	32
679	Chemo-physical Strategies to Advance the <i>in Vivo</i> Functionality of Targeted Nanomedicine: The Next Generation. Journal of the American Chemical Society, 2021, 143, 538-559.	6.6	148
683	Effects of Iron Nanoparticles on Immune Response of Two Immunocytes Like Virus. Nanoscience and Nanotechnology Letters, 2017, 9, 1934-1946.	0.4	2
684	Arsenic nano complex induced degradation of YAP sensitized ESCC cancer cells to radiation and chemotherapy. Cell and Bioscience, 2020, 10, 146.	2.1	12
685	<g class="gr_ gr_3 gr-alert gr_spell gr_inline_cards gr_run_anim ContextualSpelling ins-del
multiReplace" data-gr-id="3" id="3">Magnetogel Nanospheres Composed of Cisplatin-Loaded Alginate/BCyclodextrinas Controlled Release Drug Delivery. Advanced Pharmaceutical Bulletin, 2019, 9, 571-577.</g>	0.6	12
686	Profiles of immune cell infiltration and immune-related genes in the tumor microenvironment of osteosarcoma. Aging, 2020, 12, 3486-3501.	1.4	120
687	Magnet-assisted Flow Cytometry of in vivo Tumors to Quantitate Cell-specific Responses to Magnetic Iron Oxide Nanoparticles. Bio-protocol, 2020, 10, e3822.	0.2	1
688	Friend or Foe? Recent Strategies to Target Myeloid Cells in Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 351.	1.8	45
689	Modulation of Macrophages M1/M2 Polarization Using Carbohydrate-Functionalized Polymeric Nanoparticles. Polymers, 2021, 13, 88.	2.0	25
690	Antiâ€ʿCD206 antibodyâ€ʿconjugated Fe3O4â€ʿbased PLGA nanoparticles selectively promote tumorâ€ʿassociatec macrophages to polarize to the proâ€ʻinflammatory subtype. Oncology Letters, 2020, 20, 1-1.	0.8 ¹	21
691	Two step promotion of a hot tumor immune environment by gold decorated iron oxide nanoflowers and light-triggered mild hyperthermia. Nanoscale, 2021, 13, 18483-18497.	2.8	11
692	Graphdiyne: from Preparation to Biomedical Applications. Chemical Research in Chinese Universities, 2021, 37, 1-19.	1.3	10
693	Applications of Magnetite Nanoparticles in Cancer Immunotherapies: Present Hallmarks and Future Perspectives. Frontiers in Immunology, 2021, 12, 701485.	2.2	3
694	Old Stars and New Players in the Brain Tumor Microenvironment. Frontiers in Cellular Neuroscience, 2021, 15, 709917.	1.8	11
695	The Dynamic Interactions between Nanoparticles and Macrophages Impact Their Fate in Brain Tumors. Small, 2021, 17, e2103600.	5.2	9
696	Achieving NIR Light-Mediated Tumor-Specific Fenton Reaction-Assisted Oncotherapy by Using Magnetic Nanoclusters. Frontiers in Oncology, 2021, 11, 777295.	1.3	1

#	Article	IF	CITATIONS
697	Ultrasoundâ€Augmented Nanocatalytic Ferroptosis Reverses Chemotherapeutic Resistance and Induces Synergistic Tumor Nanotherapy. Advanced Functional Materials, 2022, 32, 2107529.	7.8	43
698	Tumorâ€Microenvironmentâ€Activated Reactive Oxygen Species Amplifier for Enzymatic Cascade Cancer Starvation/Chemodynamic /Immunotherapy. Advanced Materials, 2022, 34, e2106010.	11.1	139
699	Shaping Macrophage Plasticity with Iron – Towards a New Therapeutic Approach. European Oncology and Haematology, 2018, 14, 76.	0.0	1
700	A Novel Model of Cancer. Journal of Cancer Therapy, 2018, 09, 383-387.	0.1	0
702	Ferroptosis in Cancer Therapy. , 2019, , 303-324.		0
703	Immunotherapy with mRNA vaccination and immunomodulation nanomedicine for cancer therapy. , 2019, , 551-600.		0
704	Surface-functionalized magnetic nanoparticles in cancer-drug delivery and diagnosis. , 2019, , 107-128.		0
705	Ferroptosis in Cancer Disease. , 2019, , 285-301.		0
706	Nanoparticles for Immune Cell Reprogramming and Reengineering of Tumor Microenvironment. Methods in Molecular Biology, 2020, 2097, 211-221.	0.4	3
708	Challenges in Development of Nanomedicine for Treatment of Cancer. Journal of Cancer Research Updates, 0, 8, 64-69.	0.3	0
710	Harnessing nanomedicine for enhanced immunotherapy for breast cancer brain metastases. Drug Delivery and Translational Research, 2021, 11, 2344-2370.	3.0	8
711	Fenton metal nanomedicines for imaging-guided combinatorial chemodynamic therapy against cancer. Asian Journal of Pharmaceutical Sciences, 2022, 17, 177-192.	4.3	21
712	Nanotechnology-based products for cancer immunotherapy. Molecular Biology Reports, 2022, 49, 1389-1412.	1.0	7
713	Reprogramming of Neutrophils as Non-canonical Antigen Presenting Cells by Radiotherapy–Radiodynamic Therapy to Facilitate Immune-Mediated Tumor Regression. ACS Nano, 2021, 15, 17515-17527.	7.3	22
714	Synergistic interventional photothermal therapy and immunotherapy using an iron oxide nanoplatform for the treatment of pancreatic cancer. Acta Biomaterialia, 2022, 138, 453-462.	4.1	44
715	Cellular transformers for targeted therapy. Advanced Drug Delivery Reviews, 2021, 179, 114032.	6.6	8
717	Nanomedicine and Healthcare Systems. Advances in Medical Technologies and Clinical Practice Book Series, 2022, , 1-32.	0.3	0
718	Progress of Nanomaterials Regulating Tumor-Associated Macrophages for Tumor Immunotherapy. Material Sciences, 2020, 10, 75-83.	0.0	0

#	Article	IF	CITATIONS
719	Evaluation of Anticancer Activities of Gallic Acid and Tartaric Acid Vectorized on Iron Oxide Nanoparticles. Drug Delivery Letters, 2020, 10, 123-132.	0.2	1
720	Smart biomaterials to enhance the efficiency of immunotherapy in glioblastoma: State of the art and future perspectives. Advanced Drug Delivery Reviews, 2021, 179, 114035.	6.6	23
721	Metallic Nanoparticle-Mediated Immune Cell Regulation and Advanced Cancer Immunotherapy. Pharmaceutics, 2021, 13, 1867.	2.0	20
722	Iron oxide nanoparticles exert inhibitory effects on N-Bis(2-hydroxypropyl)nitrosamine (DHPN)-induced lung tumorigenesis in rats. Regulatory Toxicology and Pharmacology, 2022, 128, 105072.	1.3	1
723	Prenormative verification and validation of a protocol for measuring magnetite–maghemite ratios in magnetic nanoparticles. Metrologia, 2022, 59, 015001.	0.6	8
724	Light-independent M1 macrophage polarization by photosensitizer-loaded protein corona on gold nanorods. Nanomedicine, 2020, 15, 2329-2344.	1.7	1
725	Beyond Promoter: The Role of Macrophage in Invasion and Progression of Renal Cell Carcinoma. Current Stem Cell Research and Therapy, 2020, 15, 588-596.	0.6	4
726	Transferrin receptor 1 in cancer: a new sight for cancer therapy. American Journal of Cancer Research, 2018, 8, 916-931.	1.4	108
727	Iron and magnetic: new research direction of the ferroptosis-based cancer therapy. American Journal of Cancer Research, 2018, 8, 1933-1946.	1.4	32
729	TFRC promotes epithelial ovarian cancer cell proliferation and metastasis via up-regulation of AXIN2 expression. American Journal of Cancer Research, 2020, 10, 131-147.	1.4	13
733	The role of iron homeostasis and iron-mediated ROS in cancer. American Journal of Cancer Research, 2021, 11, 1895-1912.	1.4	3
734	Nanoparticle technologies: Recent state of the art and emerging opportunities. , 2022, , 3-46.		7
735	Photosensitizer-Functionalized Mn@Co Magnetic Nanoparticles for MRI/NIR-Mediated Photothermal Therapy of Gastric Cancer. ACS Applied Nano Materials, 2021, 4, 13523-13533.	2.4	10
736	Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nature Reviews Cardiology, 2022, 19, 228-249.	6.1	171
737	Remodeling Macrophages by an Iron Nanotrap for Tumor Growth Suppression. ACS Nano, 2021, 15, 19298-19309.	7.3	19
738	Nanotechnology: An Emerging Field in Protein Aggregation and Cancer Therapeutics. , 2022, , 177-207.		Ο
739	Reprogramming Tumorâ€Associated Macrophages via ROSâ€Mediated Novel Mechanism of Ultraâ€Small Cu _{2â~`} <i>_x<i>Se Nanoparticles to Enhance Antiâ€Tumor Immunity. Advanced Functional Materials, 2022, 32, 2108971.</i></i>	7.8	31
740	Iron Oxyhydroxide Nanorods Coated with Poly(acrylic acid) to Reprogram Tumor-Associated Macrophages for Antitumor Immunotherapy. ACS Applied Nano Materials, 0, , .	2.4	2

#	Article	IF	CITATIONS
741	Engineered Iron-Based nanoplatform amplifies repolarization of M2-Like Tumor-Associated Macrophages for enhanced cancer immunotherapy. Chemical Engineering Journal, 2022, 433, 133847.	6.6	12
742	Silica Coating of Ferromagnetic Iron Oxide Magnetic Nanoparticles Significantly Enhances Their Hyperthermia Performances for Efficiently Inducing Cancer Cells Death In Vitro. Pharmaceutics, 2021, 13, 2026.	2.0	9
743	DNM1: A Prognostic Biomarker Associated with Immune Infiltration in Colon Cancer—A Study Based on TCGA Database. BioMed Research International, 2021, 2021, 1-9.	0.9	4
744	The ancillary effects of nanoparticles and their implications for nanomedicine. Nature Nanotechnology, 2021, 16, 1180-1194.	15.6	108
745	Enhancement of CD8 ⁺ Tâ€Cellâ€Mediated Tumor Immunotherapy via Magnetic Hyperthermia. ChemMedChem, 2022, 17, .	1.6	9
746	Temulence Therapy to Orthotopic Colorectal Tumor via Oral Administration of Fungiâ€Based Acetaldehyde Generator. Small Methods, 2022, 6, e2100951.	4.6	6
747	Ultrasonic Imaging of Carotid Inflammatory Plaque with Superparamagnetic Nanoparticles. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-7.	0.7	1
748	Systematic Review of Cancer Targeting by Nanoparticles Revealed a Global Association between Accumulation in Tumors and Spleen. International Journal of Molecular Sciences, 2021, 22, 13011.	1.8	24
749	Porous silicon materials for cancer and immunotherapy. , 2021, , 571-609.		0
750	Immune System in Action. Advances in Experimental Medicine and Biology, 2021, 1342, 1-43.	0.8	0
751	External stimuli-responsive nanomedicine for cancer immunotherapy. , 2021, , .		0
752	Strategies of Perturbing Ion Homeostasis for Cancer Therapy. Advanced Therapeutics, 2022, 5, 2100189.	1.6	3
753	CRISPR-based in situ engineering tumor cells to reprogram macrophages for effective cancer immunotherapy. Nano Today, 2022, 42, 101359.	6.2	26
754	Impact of reactive iron in coal mine dust on oxidant generation and epithelial lung cell viability. Science of the Total Environment, 2022, 810, 152277.	3.9	15
755	Engineering in modern medicine using †magnetic nanoparticles' in understanding physicochemical interactions at the nano†"bio interfaces. Materials Today Chemistry, 2022, 23, 100733.	1.7	5
756	Biosensors for Caspase-3: From chemical methodologies to biomedical applications. Talanta, 2022, 240, 123198.	2.9	18
757	A novel and controllable cell-based microrobot in real vascular network for target tumor therapy. , 2020, , .		2
758	Promotion of trained innate immunity by nanoparticles. Seminars in Immunology, 2021, 56, 101542.	2.7	3

#	Article	IF	CITATIONS
759	A nano-innate immune system activator for cancer therapy in a 4T1 tumor-bearing mouse model. Journal of Nanobiotechnology, 2022, 20, 54.	4.2	4
760	Biomimetic manganese-eumelanin nanocomposites for combined hyperthermia-immunotherapy against prostate cancer. Journal of Nanobiotechnology, 2022, 20, 48.	4.2	10
761	Exploring the Immune-Boosting Functions of Vitamins and Minerals as Nutritional Food Bioactive Compounds: A Comprehensive Review. Molecules, 2022, 27, 555.	1.7	38
762	From Microenvironment Remediation to Novel Anti-Cancer Strategy: The Emergence of Zero Valent Iron Nanoparticles. Pharmaceutics, 2022, 14, 99.	2.0	3
763	Design of Magnetic Nanoplatforms for Cancer Theranostics. Biosensors, 2022, 12, 38.	2.3	23
764	Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioactive Materials, 2022, 17, 29-48.	8.6	42
765	Magnetic Nanostructures: Rational Design and Fabrication Strategies toward Diverse Applications. Chemical Reviews, 2022, 122, 5411-5475.	23.0	49
766	Repurposing ferumoxytol: Diagnostic and therapeutic applications of an FDA-approved nanoparticle. Theranostics, 2022, 12, 796-816.	4.6	83
767	Turing miRNA into infinite coordination supermolecule: a general and enabling nanoengineering strategy for resurrecting nuclear acid therapeutics. Journal of Nanobiotechnology, 2022, 20, 10.	4.2	13
768	Inhaled silica nanoparticles exacerbate atherosclerosis through skewing macrophage polarization towards M1 phenotype. Ecotoxicology and Environmental Safety, 2022, 230, 113112.	2.9	9
769	Self-Adaptive Single-Atom Catalyst Boosting Selective Ferroptosis in Tumor Cells. ACS Nano, 2022, 16, 855-868.	7.3	84
770	Therapeutic exosomal vaccine for enhanced cancer immunotherapy by mediating tumor microenvironment. IScience, 2022, 25, 103639.	1.9	17
771	Orchestrated Yolk–Shell Nanohybrids Regulate Macrophage Polarization and Dendritic Cell Maturation for Oncotherapy with Augmented Antitumor Immunity. Advanced Materials, 2022, 34, e2108263.	11.1	53
772	Glass Nanopipette Sensing of Single Entities. Journal of Electroanalytical Chemistry, 2022, 909, 116106.	1.9	7
773	A "Closed‣oop―Therapeutic Strategy Based on Mutually Reinforced Ferroptosis and Immunotherapy. Advanced Functional Materials, 2022, 32, .	7.8	96
774	Hybridâ€Membraneâ€Decorated Prussian Blue for Effective Cancer Immunotherapy via Tumorâ€Associated Macrophages Polarization and Hypoxia Relief. Advanced Materials, 2022, 34, e2200389.	11.1	64
775	Self-assembled tetrahedral framework nucleic acid mediates tumor-associated macrophage reprogramming and restores antitumor immunity. Molecular Therapy - Nucleic Acids, 2022, 27, 763-773.	2.3	7
776	Particle uptake driven phagocytosis in macrophages and neutrophils enhances bacterial clearance. Journal of Controlled Release, 2022, 343, 131-141.	4.8	15

#	Article	IF	CITATIONS
777	Recent advancements of biogenic iron nanoparticles in cancer theranostics. Materials Letters, 2022, 313, 131769.	1.3	21
778	Erythrocyte membrane-enveloped molybdenum disulfide nanodots for biofilm elimination on implants <i>via</i> toxin neutralization and immune modulation. Journal of Materials Chemistry B, 2022, 10, 1805-1820.	2.9	11
779	Leveraging macrophages for cancer theranostics. Advanced Drug Delivery Reviews, 2022, 183, 114136.	6.6	21
780	Recent Development in Metallic Nanoparticles for Breast Cancer Therapy and Diagnosis. Chemical Record, 2022, 22, e202100331.	2.9	13
781	The Most Recent Discoveries in Heterocyclic Nanoformulations for Targeted Anticancer Therapy. Mini-Reviews in Medicinal Chemistry, 2022, 22, 1735-1751.	1.1	1
782	Ferroptosis in cancer and cancer immunotherapy. Cancer Communications, 2022, 42, 88-116.	3.7	179
783	How the Physicochemical Properties of Manufactured Nanomaterials Affect Their Performance in Dispersion and Their Applications in Biomedicine: A Review. Nanomaterials, 2022, 12, 552.	1.9	33
784	Photo-induced processes of iron oxide nanoparticles to enhance laser therapy. Biomedical Photonics, 2022, 10, 44-58.	0.3	1
785	Nanomedicine targets iron metabolism for cancer therapy. Cancer Science, 2022, 113, 828-837.	1.7	19
786	Combination of ovalbumin-coated iron oxide nanoparticles and poly(amidoamine) dendrimer-cisplatin nanocomplex for enhanced anticancer efficacy. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112391.	2.5	10
787	Advanced bioactive nanomaterials for biomedical applications. Exploration, 2021, 1, .	5.4	156
792	Iron oxide nanoparticles: current and future applications in nanomedicine. , 2022, , 349-392.		1
794	Role of macrophages in tumor development. , 2022, , 113-164.		0
795	Iron oxide nanoparticles as a drug carrier reduce host immunosuppression for enhanced chemotherapy. Nanoscale, 2022, 14, 4588-4594.	2.8	7
796	Gold nanoparticle-directed autophagy intervention for antitumor immunotherapy via inhibiting tumor-associated macrophage M2 polarization. Acta Pharmaceutica Sinica B, 2022, 12, 3124-3138.	5.7	35
797	Ultrasonic Formation of Fe ₃ O ₄ -Reduced Graphene Oxide–Salicylic Acid Nanoparticles with Switchable Antioxidant Function. ACS Biomaterials Science and Engineering, 2022, 8, 1181-1192.	2.6	3
798	Cell Membrane-Cloaked Nanotherapeutics for Targeted Drug Delivery. International Journal of Molecular Sciences, 2022, 23, 2223.	1.8	27
799	The Landscape of Nanovectors for Modulation in Cancer Immunotherapy. Pharmaceutics, 2022, 14, 397.	2.0	4

#	Article	IF	CITATIONS
800	Nanomedicine as a Promising Tool to Overcome Immune Escape in Breast Cancer. Pharmaceutics, 2022, 14, 505.	2.0	7
801	Magnetic Solid Nanoparticles and Their Counterparts: Recent Advances towards Cancer Theranostics. Pharmaceutics, 2022, 14, 506.	2.0	13
802	Tumor associated macrophages reprogrammed by targeted bifunctional bioorthogonal nanozymes for enhanced tumor immunotherapy. Materials Today, 2022, 56, 16-28.	8.3	25
803	Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. Journal of Experimental and Clinical Cancer Research, 2022, 41, 68.	3.5	115
804	Harnessing antiâ€ŧumor and tumorâ€ŧropism functions of macrophages via nanotechnology for tumor immunotherapy. Exploration, 2022, 2, .	5.4	64
805	Fe(III)-Chelated Polydopamine Nanoparticles for Synergistic Tumor Therapies of Enhanced Photothermal Ablation and Antitumor Immune Activation. ACS Applied Materials & Interfaces, 2022, 14, 15894-15910.	4.0	42
806	Appropriate Size of Fe ₃ O ₄ Nanoparticles for Cancer Therapy by Ferroptosis. ACS Applied Bio Materials, 2022, 5, 1692-1699.	2.3	22
807	Clinical magnetic hyperthermia requires integrated magnetic particle imaging. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1779.	3.3	34
808	Twoâ€Pronged Intracellular Coâ€Đelivery of Antigen and Adjuvant for Synergistic Cancer Immunotherapy. Advanced Materials, 2022, 34, e2202168.	11.1	41
809	An update on the applications and characteristics of magnetic iron oxide nanoparticles for drug delivery. Expert Opinion on Drug Delivery, 2022, 19, 321-335.	2.4	29
810	Exosomes Derived from Gold Nanorod Engineered Vascular Endothelial Cells Inhibit Tumor Growth via Disrupting the TGFÎ ² Pathway. Journal of Nanomaterials, 2022, 2022, 1-11.	1.5	3
811	Iron Oxide Nanoparticles: Preparation, Characterization, and Assessment of Antimicrobial and Anticancer Activity. Adsorption Science and Technology, 2022, 2022, .	1.5	40
812	Biomimetic and Materials-Potentiated Cell Engineering for Cancer Immunotherapy. Pharmaceutics, 2022, 14, 734.	2.0	1
813	Bionized Nanoferrite Particles Alter the Course of Experimental Cryptococcus neoformans Pneumonia. Antimicrobial Agents and Chemotherapy, 2022, 66, e0239921.	1.4	1
814	The consequences of particle uptake on immune cells. Trends in Pharmacological Sciences, 2022, 43, 305-320.	4.0	6
815	Novel Immunotherapies for Osteosarcoma. Frontiers in Oncology, 2022, 12, 830546.	1.3	25
816	Iron oxide nanoparticles for theranostic applications - Recent advances. Journal of Drug Delivery Science and Technology, 2022, 70, 103196.	1.4	12
817	Multifunctional metal complex-based gene delivery for tumour immune checkpoint blockade combination therapy. Journal of Drug Targeting, 2022, , 1-14.	2.1	3

#	Article	IF	CITATIONS
818	Precision design of engineered nanomaterials to guide immune systems for disease treatment. Matter, 2022, 5, 1162-1191.	5.0	11
819	Advancement of cancer immunotherapy using nanoparticles-based nanomedicine. Seminars in Cancer Biology, 2022, 86, 624-644.	4.3	41
820	Iron metabolism: State of the art in hypoxic cancer cell biology. Archives of Biochemistry and Biophysics, 2022, 723, 109199.	1.4	10
821	In vivo toxicity evaluations of halophenolic disinfection byproducts in drinking water: A multi-omics analysis of toxic mechanisms. Water Research, 2022, 218, 118431.	5.3	8
822	Advanced iron oxide nanotheranostics for multimodal and precision treatment of pancreatic ductal adenocarcinoma. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1793.	3.3	3
823	Current Nano-Strategies to Target Tumor Microenvironment to Improve Anti-Tumor efficiency. OpenNano, 2022, , 100042.	1.8	1
824	Rigid metal/liquid metal nanoparticles: Synthesis and application for locally ablative therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 42, 102535.	1.7	8
825	Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants. Bioactive Materials, 2022, 16, 249-270.	8.6	24
826	Targeting immunometabolism in host-directed therapies to fungal disease. Clinical and Experimental Immunology, 2022, 208, 158-166.	1.1	5
827	Emerging Nanoparticle Strategies for Modulating Tumor-Associated Macrophage Polarization. Biomolecules, 2021, 11, 1912.	1.8	11
829	Magnetic nanoparticles in theranostics of malignant melanoma. EJNMMI Research, 2021, 11, 127.	1.1	9
830	Immunotherapy for cancer: effects of iron oxide nanoparticles on polarization of tumor-associated macrophages. Nanomedicine, 2021, 16, 2633-2650.	1.7	27
831	Synergistic Effect of Repolarization of M2 to M1 Macrophages Induced by Iron Oxide Nanoparticles Combined with Lactate Oxidase. International Journal of Molecular Sciences, 2021, 22, 13346.	1.8	7
833	Biomaterials as Antigen Delivery Carrier for Cancer Immunotherapy. Macromolecular Research, 2021, 29, 834-842.	1.0	1
834	Tumor Associated Macrophages: Origin, Recruitment, Phenotypic Diversity, and Targeting. Frontiers in Oncology, 2021, 11, 788365.	1.3	66
835	Complementing Cancer Photodynamic Therapy with Ferroptosis through Iron Oxide Loaded Porphyrin-Grafted Lipid Nanoparticles. ACS Nano, 2021, 15, 20164-20180.	7.3	69
837	Primary giant cell malignant fibrous histiocytoma of the lung: a rare case report and literature review. Translational Cancer Research, 2020, 9, 7350-7358.	0.4	3
838	Selective Colorimetric Detection of Cancer Cells Based on Iron/Copper Nanocatalyst Peroxidase Activity. IEEE Sensors Journal, 2022, 22, 10492-10499.	2.4	10

#	Article	IF	CITATIONS
839	Iron Metabolism and Immune Regulation. Frontiers in Immunology, 2022, 13, 816282.	2.2	63
840	Carbonized paramagnetic complexes of Mn (II) as contrast agents for precise magnetic resonance imaging of sub-millimeter-sized orthotopic tumors. Nature Communications, 2022, 13, 1938.	5.8	21
841	Nontoxic In Vivo Clearable Nanoparticle Clusters for Theranostic Applications. ACS Biomaterials Science and Engineering, 2022, 8, 2053-2065.	2.6	5
842	Microparticles: biogenesis, characteristics and intervention therapy for cancers in preclinical and clinical research. Journal of Nanobiotechnology, 2022, 20, 189.	4.2	17
843	Advances of functional nanomaterials for magnetic resonance imaging and biomedical engineering applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1800.	3.3	12
844	Microwave-mediated synthesis of iron oxide nanoparticles: Photocatalytic, antimicrobial and their cytotoxicity assessment. Process Biochemistry, 2022, 118, 205-214.	1.8	10
845	Single-atom iron catalysts for biomedical applications. Progress in Materials Science, 2022, 128, 100959.	16.0	17
849	Magnetic nanocluster-mediated photothermal effect and macrophage modulation for synergistic photothermal immunotherapy of cancer. Biomaterials Science, 2022, 10, 3188-3200.	2.6	2
850	Analysis of Cell-Nanoparticle Interactions and Imaging of In Vitro Labeled Cells Showing Barcoded Endosomes using Fluorescent Thiol-Organosilica Nanoparticles Surface-Functionalized with Polyethyleneimine. Nanoscale Advances, 0, , .	2.2	2
851	Innate Immunomodulatory Nanodevices for Cancer Therapy: A Review. Journal of Biomedical Nanotechnology, 2022, 18, 293-318.	0.5	5
852	Identification of Key Genes and Key Pathways in Breast Cancer Based on Machine Learning. Medical Science Monitor, 0, 28, .	0.5	3
853	Macrophage-Mediated Delivery of Fe ₃ O ₄ -Nanoparticles: A Generalized Strategy to Deliver Iron to Tumor Microenvironment. Current Drug Delivery, 2022, 19, 928-939.	0.8	1
854	Upregulation of Ferroptosis-Related Fanconi Anemia Group D2 is a Poor Prognostic Factor and an Indicator of Tumor Immune Cell Infiltration in Lung Adenocarcinoma. Frontiers in Genetics, 2022, 13, .	1.1	5
855	Targeted Delivery of DNA Topoisomerase Inhibitor SN38 to Intracranial Tumors of Glioblastoma Using Subâ€5 Ultrafine Iron Oxide Nanoparticles. Advanced Healthcare Materials, 2022, 11, e2102816.	3.9	6
856	Immunogenicity-boosted cancer immunotherapy based on nanoscale metal-organic frameworks. Journal of Controlled Release, 2022, 347, 183-198.	4.8	23
857	Macrophage-mediated tumor-targeted delivery of engineered Salmonella typhimurium VNP20009 in anti-PD1 therapy against melanoma. Acta Pharmaceutica Sinica B, 2022, 12, 3952-3971.	5.7	11
858	Which cell death modality wins the contest for photodynamic therapy of cancer?. Cell Death and Disease, 2022, 13, 455.	2.7	86
859	Cold-catalytic antitumor immunity with pyroelectric black phosphorus nanosheets. Chemical Science, 2022, 13, 6842-6851.	3.7	14

#	Article	IF	CITATIONS
860	Combining immune checkpoint blockade with ATP-based immunogenic cell death amplifier for cancer chemo-immunotherapy. Acta Pharmaceutica Sinica B, 2022, 12, 3694-3709.	5.7	13
861	Polyaniline-Based Glyco-Condensation on Au Nanoparticles Enhances Immunotherapy in Lung Cancer. ACS Applied Materials & Interfaces, 2022, 14, 24144-24159.	4.0	11
862	Biodistribution, pharmacokinetics and excretion studies of intravenously injected nanoparticles and extracellular vesicles: Possibilities and challenges. Advanced Drug Delivery Reviews, 2022, 186, 114326.	6.6	33
863	Tumor microenvironment manipulation and cancer metastasis (taming the beast). , 2022, , 209-234.		0
864	Biological interactions of ferromagnetic iron oxide–carbon nanohybrids with alveolar epithelial cells. Biomaterials Science, 2022, 10, 3514-3526.	2.6	2
865	Time-dependent biodistribution profiles and reaction of polyethylene glycol-coated iron oxide nanoclusters in the spleen after intravenous injection in the mice. Acta Histochemica, 2022, 124, 151907.	0.9	4
866	Cerium dioxide, a Jekyll and Hyde nanomaterial, can increase basal and decrease elevated inflammation and oxidative stress. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 43, 102565.	1.7	3
867	Amelioration of systemic antitumor immune responses in cocktail therapy by immunomodulatory nanozymes. Science Advances, 2022, 8, .	4.7	20
868	Recent applications of immunomodulatory biomaterials for disease immunotherapy. Exploration, 2022, 2, .	5.4	81
869	Combination therapy using microwave ablation and d-mannose-chelated iron oxide nanoparticles inhibits hepatocellular carcinoma progression. Acta Pharmaceutica Sinica B, 2022, 12, 3475-3485.	5.7	15
870	Mushroom Carboxymethylated β- <scp>d</scp> -Glucan Functions as a Macrophage-Targeting Carrier for Iron Oxide Nanoparticles and an Inducer of Proinflammatory Macrophage Polarization for Immunotherapy. Journal of Agricultural and Food Chemistry, 2022, 70, 7110-7121.	2.4	6
872	Exosome-based drug delivery systems and their therapeutic applications. RSC Advances, 2022, 12, 18475-18492.	1.7	33
874	Tracing New Landscapes in the Arena of Nanoparticle-Based Cancer Immunotherapy. Frontiers in Nanotechnology, 0, 4, .	2.4	3
875	Free-Radical Cascade Generated by AIPH/Fe ₃ O ₄ -Coloaded Nanoparticles Enhances MRI-Guided Chemo/Thermodynamic Hypoxic Tumor Therapy. ACS Applied Materials & Interfaces, 2022, 14, 29563-29576.	4.0	10
876	Nanostructured Organosilica Nitric Oxide Donors Intrinsically Regulate Macrophage Polarization with Antitumor Effect. ACS Nano, 2022, 16, 10943-10957.	7.3	33
877	Iron Oxide Nanoparticles for Visualization of Prostate Cancer in MRI. Cancers, 2022, 14, 2909.	1.7	7
878	Dealing with Macrophage Plasticity to Address Therapeutic Challenges in Head and Neck Cancers. International Journal of Molecular Sciences, 2022, 23, 6385.	1.8	7
879	Nanosystems for Immune Regulation against Bacterial Infections: A Review. ACS Applied Nano Materials, 2022, 5, 13959-13971.	2.4	6

#	Article	IF	CITATIONS
880	Nanoparticles mediated tumor microenvironment modulation: current advances and applications. Journal of Nanobiotechnology, 2022, 20, .	4.2	24
881	Emerging Biomaterials Imaging Antitumor Immune Response. Advanced Materials, 2022, 34, .	11.1	22
882	Nonmetal Graphdiyne Nanozyme-Based Ferroptosis–Apoptosis Strategy for Colon Cancer Therapy. ACS Applied Materials & Interfaces, 2022, 14, 27720-27732.	4.0	26
883	Reprogramming Mitochondrial Metabolism in Synovial Macrophages of Early Osteoarthritis by a Camouflaged Metaâ€Defensome. Advanced Materials, 2022, 34, .	11.1	25
884	Theranostic nanosystem mediating cascade catalytic reactions for effective immunotherapy of highly immunosuppressive and poorly penetrable pancreatic tumor. Science China Chemistry, 2022, 65, 1383-1400.	4.2	5
885	Metabolism and polarization regulation of macrophages in the tumor microenvironment. Cancer Letters, 2022, 543, 215766.	3.2	26
886	<i>In vitro</i> and <i>ex vivo</i> nano-enabled immunomodulation by the protein corona. Nanoscale, 2022, 14, 10531-10539.	2.8	3
887	Acoustic and magnetic hybrid actuated immune cell robot for target and kill cancer cells. , 2022, , .		1
888	Systematic Identification of Genomic Markers for Guiding Iron Oxide Nanoparticles in Cervical Cancer Based on Translational Bioinformatics. International Journal of Nanomedicine, 0, Volume 17, 2823-2841.	3.3	4
889	APLICACIONES TECNOLÓGICAS DE LAS NANOPARTÀULAS EN LA MEDICINA E INDUSTRIA. Epistemus, 2022, 16,	0.0	Ο
890	Vascular Repair by Grafting Based on Magnetic Nanoparticles. Pharmaceutics, 2022, 14, 1433.	2.0	3
891	Enzyme-Like Property (Nanozyme) of Iron Oxide Nanoparticles. , 0, , .		3
892	Trends in iron oxide nanoparticles: a nano-platform for theranostic application in breast cancer. Journal of Drug Targeting, 0, , 1-21.	2.1	6
893	Graphdiyne oxide nanosheets reprogram immunosuppressive macrophage for cancer immunotherapy. Nano Today, 2022, 45, 101543.	6.2	10
894	A ferroptosis-related gene signature for overall survival prediction and immune infiltration in lung squamous cell carcinoma. Bioscience Reports, 2022, 42, .	1.1	7
895	Galactomannan armed superparamagnetic iron oxide nanoparticles as a folate receptor targeted multi-functional theranostic agent in the management of cancer. International Journal of Biological Macromolecules, 2022, 219, 740-753.	3.6	7
896	A Visualizable Metallodrug Modulates Immune-Vascular Crosstalk to Combat Immunosuppressive Liver Cancer. SSRN Electronic Journal, 0, , .	0.4	0
897	Immunomodulatory roles of selenium nanoparticles: Novel arts for potential immunotherapy strategy development. Frontiers in Immunology, 0, 13, .	2.2	16

#	Article	IF	CITATIONS
898	Nanomedicine approaches for treatment of hematologic and oncologic malignancies. World Journal of Clinical Oncology, 2022, 13, 553-566.	0.9	2
899	Ferroptosis As Ultimate Target of Cancer Therapy. Antioxidants and Redox Signaling, 2023, 39, 206-223.	2.5	9
900	Engineered metal and their complexes for nanomedicine-elicited cancer immunotherapy. Materials Today Advances, 2022, 15, 100276.	2.5	4
901	The Role of TAMs in Tumor Microenvironment and New Research Progress. Stem Cells International, 2022, 2022, 1-11.	1.2	23
902	Cycloacceleration of Reactive Oxygen Species Generation Based on Exceedingly Small Magnetic Iron Oxide Nanoparticles for Tumor Ferroptosis Therapy. Small, 2022, 18, .	5.2	23
903	Folate-modified erythrocyte membrane nanoparticles loaded with Fe3O4 and artemisinin enhance ferroptosis of tumors by low-intensity focused ultrasound. Frontiers in Oncology, 0, 12, .	1.3	4
904	Targeted non AR mediated smart delivery of abiraterone to the prostate cancer. PLoS ONE, 2022, 17, e0272396.	1.1	3
905	Functional 2D Ironâ€Based Nanosheets for Synergistic Immunotherapy, Phototherapy, and Chemotherapy of Tumor. Advanced Healthcare Materials, 2022, 11, .	3.9	8
906	Nanomaterials: A powerful tool for tumor immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	5
907	Targeted Regulation and Cellular Imaging of Tumor-Associated Macrophages in Triple-Negative Breast Cancer: From New Mechanistic Insights to Candidate Translational Applications. , 0, , .		0
908	Dependence of size distribution of nanoparticles on hole size uniformity in membrane emulsification. Materials Research Express, 2022, 9, 086404.	0.8	8
909	Multifunctional nanoparticle potentiates the in situ vaccination effect of radiation therapy and enhances response to immune checkpoint blockade. Nature Communications, 2022, 13, .	5.8	24
910	Iron oxide nanoparticles for biomedical applications: an updated patent review (2015–2021). Expert Opinion on Therapeutic Patents, 2022, 32, 939-952.	2.4	5
911	Iron dyshomeostasis and time-course changes in iron-uptake systems and ferritin level in relation to pro-inflammatory microglia polarization in sepsis-induced encephalopathy. Frontiers in Physiology, 0, 13, .	1.3	6
912	M1 macrophage-derived exosomes synergistically enhance the anti- bladder cancer effect of gemcitabine. Aging, 2022, 14, 7364-7377.	1.4	9
913	Quantum-Dot-Based Iron Oxide Nanoparticles Activate the NLRP3 Inflammasome in Murine Bone Marrow-Derived Dendritic Cells. Nanomaterials, 2022, 12, 3145.	1.9	1
914	C3d(g), iron nanoparticles, hemin and cytochrome c may induce oxidative cytotoxicity in tumors and reduce tumor-associated myeloid cells-mediated immunosuppression. Medical Hypotheses, 2022, 167, 110944.	0.8	0
915	Lymph node-targeting nanovaccines for cancer immunotherapy. Journal of Controlled Release, 2022, 351, 102-122.	4.8	18

	Сітатіо	n Report	
#	Article	IF	CITATIONS
916	Nonordered dendritic mesoporous silica nanoparticles as promising platforms for advanced methods of diagnosis and therapies. Materials Today Chemistry, 2022, 26, 101144.	1.7	8
917	Boosting doxil-based chemoimmunotherapy via reprogramming tumor-associated macrophages. Chemical Engineering Journal, 2023, 451, 138971.	6.6	3
918	Biogenic Nanomaterials Derived ROS for Cancer Therapy. , 2022, , 2803-2816.		0
919	Boosting immunotherapy of triple negative breast cancer through the synergy of mild PTT and Fe-loaded organosilica nanoparticles. Journal of Materials Chemistry B, 2022, 10, 8490-8501.	2.9	5
920	The amount of dextran in PLGA nanocarriers modulates protein corona and promotes cell membrane damage. Journal of Materials Chemistry B, 0, , .	2.9	2
921	Nanomedicines for Tumor-Associated Macrophages. , 2022, , 3133-3155.		0
922	SS-31 Modification Inhibits the Proinflammatory Effect on Macrophages Induced by Superparamagnetic Iron Oxide Nanoparticles. Journal of Biomedical Nanotechnology, 2022, 18, 1413-1422.	0.5	0
923	Influence of copper nanoparticles on the growth characteristics of tumors in white outbreed rats. Issledovaniâ I Praktika V Medicine, 2022, 9, 67-79.	0.1	0
924	Nanocatalytic bacteria disintegration reverses immunosuppression of colorectal cancer. National Science Review, 2022, 9, .	4.6	14
925	The Yin and Yang of the protein corona on the delivery journey of nanoparticles. Nano Research, 2023, 16, 715-734.	5.8	13
926	p53 Promotes Ferroptosis in Macrophages Treated with Fe ₃ O ₄ Nanoparticles. ACS Applied Materials & Interfaces, 2022, 14, 42791-42803.	4.0	19
927	Polarization of Tumor-Associated Macrophages Promoted by Vitamin C-Loaded Liposomes for Cancer Immunotherapy. ACS Nano, 2022, 16, 17389-17401.	7.3	19
930	Nanoparticle-Based Drug Delivery Systems Targeting Tumor Microenvironment for Cancer Immunotherapy Resistance: Current Advances and Applications. Pharmaceutics, 2022, 14, 1990.	2.0	17
931	Enhanced natural killer cell anti-tumor activity with nanoparticles mediated ferroptosis and potential therapeutic application in prostate cancer. Journal of Nanobiotechnology, 2022, 20, .	4.2	14
932	Opportunities for Nitric Oxide in Potentiating Cancer Immunotherapy. Pharmacological Reviews, 2022, 74, 1146-1175.	7.1	8
933	Systematic and Bibliometric Analysis of Magnetite Nanoparticles and Their Applications in (Biomedical) Research. Global Challenges, 2023, 7, .	1.8	3
934	Sustained Drug Release from Smart Nanoparticles in Cancer Therapy: A Comprehensive Review. Micromachines, 2022, 13, 1623.	1.4	23
936	PD-L1 antibody enhanced β-glucan antitumor effects via blockade of the immune checkpoints in a melanoma model. Cancer Immunology, Immunotherapy, 2023, 72, 719-731.	2.0	5

#	Article	IF	CITATIONS
937	Nanocarriers for cancer nano-immunotherapy. Drug Delivery and Translational Research, 2023, 13, 1936-1954.	3.0	17
938	Ferumoxytol-Enhanced MRI in Children and Young Adults: State of the Art. American Journal of Roentgenology, 2023, 220, 590-603.	1.0	3
939	Detecting monocyte trafficking in an animal model of glioblastoma using R2* and quantitative susceptibility mapping. Cancer Immunology, Immunotherapy, 2023, 72, 733-742.	2.0	2
940	Design of slow-release methotrexate drug delivery system using PHBV magnetic nanoparticles and evaluation of its cytotoxicity. Journal of Drug Delivery Science and Technology, 2022, 77, 103854.	1.4	12
941	Immunotherapy-based novel nanoparticles in the treatment of gastrointestinal cancer: Trends and challenges. World Journal of Gastroenterology, 0, 28, 5403-5419.	1.4	4
942	Nanomaterial-Based Drug Delivery Systems: A New Weapon for Cancer Immunotherapy. International Journal of Nanomedicine, 0, Volume 17, 4677-4696.	3.3	9
943	Nanoscale metal–organic frameworks for photodynamic therapy and radiotherapy. Current Opinion in Chemical Engineering, 2022, 38, 100871.	3.8	4
944	Magnetic Micellar Nanovehicles: Prospects of Multifunctional Hybrid Systems for Precision Theranostics. International Journal of Molecular Sciences, 2022, 23, 11793.	1.8	6
945	Application of nanomaterials in combined thermal ablation and immunotherapy for liver tumors. World Chinese Journal of Digestology, 2022, 30, 829-837.	0.0	0
946	Photothermal Nanozymeâ€Based Microneedle Patch against Refractory Bacterial Biofilm Infection via Ironâ€Actuated Janus Ion Therapy. Advanced Materials, 2022, 34, .	11.1	57
947	Mannose and Hyaluronic Acid Dual-Modified Iron Oxide Enhances Neoantigen-Based Peptide Vaccine Therapy by Polarizing Tumor-Associated Macrophages. Cancers, 2022, 14, 5107.	1.7	6
949	Probiotic-based nanoparticles for targeted microbiota modulation and immune restoration in bacterial pneumonia. National Science Review, 2023, 10, .	4.6	12
950	Iron Oxide Nanoparticles Combined with Static Magnetic Fields in Bone Remodeling. Cells, 2022, 11, 3298.	1.8	7
951	Cationic Polyethyleneimine (PEI)–Gold Nanocomposites Modulate Macrophage Activation and Reprogram Mouse Breast Triple-Negative MET-1 Tumor Immunological Microenvironment. Pharmaceutics, 2022, 14, 2234.	2.0	2
952	A theranostic metallodrug modulates immunovascular crosstalk to combat immunosuppressive liver cancer. Acta Biomaterialia, 2022, 154, 478-496.	4.1	11
953	Cell sorting microbeads as novel contrast agent for magnetic resonance imaging. Scientific Reports, 2022, 12, .	1.6	1
954	Fabrication and application of cisplatin-loaded mesoporous magnetic nanobiocomposite: a novel approach to smart cervical cancer chemotherapy. Cancer Nanotechnology, 2022, 13, .	1.9	7
955	Modern Biomedical Applications of Magnetic Nanoparticles. Springer Briefs in Molecular Science, 2023, , 25-91.	0.1	1

#	Article	IF	CITATIONS
956	Dual-targeting nanozyme for tumor activatable photo-chemodynamic theranostics. Journal of Nanobiotechnology, 2022, 20, .	4.2	6
957	Nanomodulation and nanotherapeutics of tumor-microenvironment. OpenNano, 2022, 8, 100099.	1.8	0
958	Nanoparticle-assisted targeting of the tumour microenvironment. OpenNano, 2022, 8, 100097.	1.8	2
959	Construction of functional magnetic scaffold with temperature control switch for long-distance vascular injury. Biomaterials, 2022, 290, 121862.	5.7	4
960	Novel insight on the role of Macrophages in atherosclerosis: Focus on polarization, apoptosis and efferocytosis. International Immunopharmacology, 2022, 113, 109260.	1.7	9
961	Melittin regulates iron homeostasis and mediates macrophage polarization in rats with lumbar spinal stenosis. Biomedicine and Pharmacotherapy, 2022, 156, 113776.	2.5	4
962	Redox regulation and its emerging roles in cancer treatment. Coordination Chemistry Reviews, 2023, 475, 214897.	9.5	19
963	Use of metal-based contrast agents for in vivo MR and CT imaging of phagocytic cells in neurological pathologies. Journal of Neuroscience Methods, 2023, 383, 109729.	1.3	6
964	Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chemical Society Reviews, 2022, 51, 9759-9830.	18.7	17
965	Tailoring biomaterials and applications targeting tumor-associated macrophages in cancers. Frontiers in Immunology, 0, 13, .	2.2	1
966	Homotypic Targeted Photosensitive Nanointerferer for Tumor Cell Cycle Arrest to Boost Tumor Photoimmunotherapy. ACS Nano, 2022, 16, 18555-18567.	7.3	14
967	Fn14-Directed DART Nanoparticles Selectively Target Neoplastic Cells in Preclinical Models of Triple-Negative Breast Cancer Brain Metastasis. Molecular Pharmaceutics, 2023, 20, 314-330.	2.3	7
968	The Therapeutic Potential of Chemo/Thermotherapy with Magnetoliposomes for Cancer Treatment. Pharmaceutics, 2022, 14, 2443.	2.0	9
969	A miRNA-based gene therapy nanodrug synergistically enhances pro-inflammatory antitumor immunity against melanoma. Acta Biomaterialia, 2023, 155, 538-553.	4.1	13
970	AntiPD-L1 antibody conjugated Au-SPIOs nanoplatform for enhancing radiosensitivity and triggering anti-tumor immune response. Scientific Reports, 2022, 12, .	1.6	3
971	Amplifying STING activation by bioinspired nanomedicine for targeted chemo- and immunotherapy of acute myeloid leukemia. Acta Biomaterialia, 2023, 157, 381-394.	4.1	7
972	Iron therapy mitigates chronic kidney disease progression by regulating intracellular iron status of kidney macrophages. JCI Insight, 2023, 8, .	2.3	9
973	Development of functional nanomedicines for tumor associated macrophages-focused cancer immunotherapy. Theranostics, 2022, 12, 7821-7852.	4.6	12

ARTICLE IF CITATIONS Ultrasound-enhanced cascade chemodynamic tumor nanotherapy with lactic acid-enabled hydrogen 974 2.6 2 peroxide self-production. Biomaterials Science, 2023, 11, 1486-1498. Nanoparticles augment the therapeutic window of RT and immunotherapy for treating cancers: 4.6 pivotal role of autophagy. Theranostics, 2023, 13, 40-58. A pH/GSH dual responsive nanoparticle with relaxivity-amplification for magnetic resonance imaging 976 2.8 2 and suppression of tumors and metastases. Nanoscale, 0, , . Enhanced photothermal-ferroptosis effects based on RBCm-coated PDA nanoparticles for effective 2.9 cancer therapy. Journal of Materials Chemistry B, 2023, 11, 415-429. Manganese immunotherapy for treating osteosarcoma: Glycosylating 1V209 anchored MnO2 978 6.2 5 nanosheets prompt pro-inflammatory macrophage polarization. Nano Today, 2023, 48, 101670. 979 Ironing out macrophages in atherosclerosis. Acta Biochimica Et Biophysica Sinica, 2022, , . Targeting the activity of T cells by membrane surface redox regulation for cancer theranostics. 980 15.6 24 Nature Nanotechnology, 2023, 18, 86-97. Lyve-1 deficiency enhances the hepatic immune microenvironment entailing altered susceptibility to 981 1.8 melanoma liver metastasis. Cancer Cell International, 2022, 22, . Insights and Strategies of Melanoma Immunotherapy: Predictive Biomarkers of Response and 982 Resistance and Strategies to Improve Response Rates. International Journal of Molecular Sciences, 1.8 6 2023, 24, 41. Injectable Nano Drug Delivery Systems for the Treatment of Breast Cancer. Pharmaceutics, 2022, 14, 2783. Cancer immunotherapeutic effect of carboxymethylated Î²-d-glucan coupled with iron oxide nanoparticles via reprogramming tumor-associated macrophages. International Journal of Biological 984 3.6 5 Macromolecules, 2023, 228, 692-705. Polyelectrolyte Coating of Ferumoxytol Differentially Impacts the Labeling of Inflammatory and 1.4 Steady-State Dendritic Cell Subtypes. Biomedicines, 2022, 10, 3137. Iron oxide nanoparticle targeting mechanism and its application in tumor magnetic resonance imaging 987 1.7 9 and therapy. Nanomedicine, 2022, 17, 1567-1583. Gold nanoparticle delivery to solid tumors: a multiparametric study on particle size and the tumor 4.2 microenvironment. Journal of Nanobiotechnology, 2022, 20, . Engineered anti-cancer nanomedicine for synergistic ferroptosis-immunotherapy. Chemical 989 6.6 17 Engineering Journal, 2023, 455, 140688. Nanoparticle-induced immune response: Health risk versus treatment opportunity?. Immunobiology, 990 2023, 228, 152317. Targeted Imaging of Lung Cancer with Hyperpolarized 129Xe MRI Using Surface-Modified Iron Oxide 991 1.7 3 Nanoparticles as Molecular Contrast Agents. Cancers, 2022, 14, 6070. Macrophage Polarization Induced by Bacteriaâ€Responsive Antibioticâ€Loaded Nanozymes for Multidrug 992 5.2 Resistanceâ€Bacterial Infections Management. Small, 2023, 19, .

#	Article	IF	CITATIONS
993	The portrayal of macrophages as tools and targets: A paradigm shift in cancer management. Life Sciences, 2023, 316, 121399.	2.0	2
994	How to diagnose iron deficiency in chronic disease: A review of current methods and potential marker for the outcome. European Journal of Medical Research, 2023, 28, .	0.9	8
995	Magneticâ€Activated Nanosystem with Liverâ€Specific CRISPR Nonviral Vector to Achieve Spatiotemporal Liver Genome Editing as Hepatitis B Therapeutics. Advanced Functional Materials, 2023, 33, .	7.8	3
996	Synergistic Functional Nanomedicine Enhances Ferroptosis Therapy for Breast Tumors by a Blocking Defensive Redox System. ACS Applied Materials & Interfaces, 2023, 15, 2705-2713.	4.0	13
997	Gradient Nanoaggregation in a Magnetically Actuated Scaffold for Multiscale Immunoregulation and Microenvironment Remodeling Accelerates Nerve and Muscle Repair. , 2023, 5, 580-595.		5
998	Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics, 2023, 15, 236.	2.0	22
999	HWJMSC-derived extracellular vesicles ameliorate IL-1β-induced chondrocyte injury through regulation of the BMP2/RUNX2 axis via up-regulation TFRC. Cellular Signalling, 2023, , 110604.	1.7	1
1000	De Novo Design and Synthesis of Polypeptide Immunomodulators for Resetting Macrophage Polarization. Biodesign Research, 2023, 5, .	0.8	0
1001	Nanoparticles in the diagnosis and treatment of cancer metastases: Current and future perspectives. Cancer Letters, 2023, 556, 216066.	3.2	18
1002	Nanomaterials and Advances in Tumor Immune-Related Therapy: A Bibliometric Analysis. Journal of Biomedical Nanotechnology, 2022, 18, 2154-2170.	0.5	1
1003	Engineering magnetic nano-manipulators for boosting cancer immunotherapy. Journal of Nanobiotechnology, 2022, 20, .	4.2	9
1004	Collagen-Specific Molecular Magnetic Resonance Imaging of Prostate Cancer. International Journal of Molecular Sciences, 2023, 24, 711.	1.8	2
1005	phagocytic killing of cancer cells through interface with FcÎ ³ receptor. Natural Product Research, 0, , 1-9.	1.0	0
1006	Ultrasound-responsive catalytic microbubbles enhance biofilm elimination and immune activation to treat chronic lung infections. Science Advances, 2023, 9, .	4.7	13
1007	Magnetic Nanomaterials Mediate Electromagnetic Stimulations of Nerves for Applications in Stem Cell and Cancer Treatments. Journal of Functional Biomaterials, 2023, 14, 58.	1.8	2
1008	Targeting critical pathways in ferroptosis and enhancing antitumor therapy of Platinum drugs for colorectal cancer. Science Progress, 2023, 106, 003685042211471.	1.0	2
1009	Pretherapy Ferumoxytol-enhanced MRI for Metastatic Breast Cancer: A New Approach for Predicting Tumor Delivery of Macromolecular Therapeutics?. Radiology Imaging Cancer, 2023, 5, .	0.7	0
1010	Photoinduced electron transfer (PeT) based fluorescent probes for cellular imaging and disease therapy. Chemical Society Reviews, 2023, 52, 2322-2357.	18.7	56

ARTICLE IF CITATIONS Imaging of Tumor-Associated Macrophages., 2023, , 1-19. 0 1011 Current Strategies for Modulating Tumor-Associated Macrophages with Biomaterials in 1.7 Hepatocellular Carcinoma. Molecules, 2023, 28, 2211. Recent Advances in Well-Designed Therapeutic Nanosystems for the Pancreatic Ductal 1013 2 1.7 Adenocarcinoma Treatment Dilemma. Molecules, 2023, 28, 1506. Modular-designed engineered bacteria for precision tumor immunotherapy via spatiotemporal 1014 5.8 23 manipulation by magnetic field. Nature Communications, 2023, 14, . ROS Scavenging Nanozyme Modulates Immunosuppression for Sensitized Cancer Immunotherapy. 1016 3.9 3 Advanced Healthcare Materials, 2023, 12, . Nanomaterials-involved strategies for reversing the immunosuppressive factors and improving antitumor immunotherapy. Nano Today, 2023, 50, 101831. 6.2 Magnetite nanoparticles as a kinetically favorable source of iron to enhance GBM response to 1018 3.9 6 chemoradiosensitization with pharmacological ascorbate. Redox Biology, 2023, 62, 102651. The combinational nano-immunotherapy of ferumoxytol and poly(I:C) inhibits melanoma via boosting 1019 1.7 anti-angiogenic immunity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2023, 49, 102658. Nanoparticles for Drug and Gene Delivery in Pediatric Brain Tumors' Cancer Stem Cells: Current 1020 2.0 7 Knowledge and Future Perspectives. Pharmaceutics, 2023, 15, 505. Recent Advances in Cancer Immunotherapy Delivery Modalities. Pharmaceutics, 2023, 15, 504. The modulation of iron metabolism affects the Rhabdomyosarcoma tumor growth in vitro and in 1022 1.9 1 vivo. Clinical and Experimental Medicine, 0, , . Recent trends in emerging strategies for ferroptosis-based cancer therapy. Nanoscale Advances, 2023, 2.2 5, 1271-1290. Regulated contribution of local and systemic immunity to new bone regeneration by modulating B/Sr 1024 2.6 3 concentration of bioactive borosilicate glass. Materials Today Bio, 2023, 19, 100585. Antitumor therapy for breast cancer: Focus on tumorâ€associated macrophages and nanosized drug 1.3 delivery systems. Cancer Medicine, 2023, 12, 11049-11072. Advanced Biomaterials with Intrinsic Immunomodulation Effects for Cancer Immunotherapy. Small 1026 3 4.6 Methods, 2023, 7, . On the Anomalous Behavior of the Optical Density of Iron Nanoparticles under Heating by a Shock 1027 0.1 Wave. High Temperature, 2022, 60, 187-191. Designing Singleâ€Atom Active Sites on sp² arbon Linked Covalent Organic Frameworks to 1028 5.6 20 Induce Bacterial Ferroptosisâ€Like for Robust Antiâ€Infection Therapy. Advanced Science, 2023, 10, . Cu-doped TiO2 nanoparticles improve local antitumor immune activation and optimize dendritic cell 1029 4.2 vaccine strategies. Journal of Nanobiotechnology, 2023, 21, .

#	Article	IF	CITATIONS
1030	Controlled intracellular aggregation of magnetic particles improves permeation and retention for magnetic hyperthermia promotion and immune activation. Theranostics, 2023, 13, 1454-1469.	4.6	8
1031	NAT10 mediated mRNA acetylation modification patterns associated with colon cancer progression and microsatellite status. Epigenetics, 2023, 18, .	1.3	10
1032	Bioorthogonal Activation of TLR7 Agonists Provokes Innate Immunity to Reinforce Aptamer-Based Checkpoint Blockade. ACS Nano, 2023, 17, 5808-5820.	7.3	8
1033	Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nature Reviews Nephrology, 2023, 19, 315-336.	4.1	39
1034	Promoting the bench-to-bedside translation of nanomedicines. Medical Review, 2023, 3, 1-3.	0.3	1
1035	Reprogramming of tumor-associated macrophages by polyaniline-coated iron oxide nanoparticles applied to treatment of breast cancer. International Journal of Pharmaceutics, 2023, 636, 122866.	2.6	7
1036	A biomimetic nanoplatform for precise reprogramming of tumor-associated macrophages and NIR-II mediated antitumor immune activation. Acta Biomaterialia, 2023, 162, 85-97.	4.1	7
1037	Heterostructural Nanoadjuvant CuSe/CoSe ₂ for Potentiating Ferroptosis and Photoimmunotherapy through Intratumoral Blocked Lactate Efflux. Journal of the American Chemical Society, 2023, 145, 7205-7217.	6.6	29
1038	Translatable Drug-Loaded Iron Oxide Nanophore Sensitizes Murine Melanoma Tumors to Monoclonal Antibody Immunotherapy. ACS Nano, 2023, 17, 6178-6192.	7.3	2
1039	JAK/STAT signaling and cellular iron metabolism in hepatocellular carcinoma: therapeutic implications. Clinical and Experimental Medicine, 2023, 23, 3147-3157.	1.9	4
1040	The advancement of metalloadjuvant for cancer immunotherapy. Science Bulletin, 2023, 68, 756-758.	4.3	2
1041	Highly Sensitive Imaging of Tumor Metastasis Based on the Targeting and Polarization of M2-like Macrophages. Journal of the American Chemical Society, 2023, 145, 7941-7951.	6.6	5
1042	Carbon Nanomaterials: Emerging Roles in Immuno-Oncology. International Journal of Molecular Sciences, 2023, 24, 6600.	1.8	1
1043	Chiral Ruthenium Nanozymes with Selfâ€Cascade Reaction Driven the NO Generation Induced Macrophage M1 Polarization Realizing the Lung Cancer "Cocktail Therapy― Small, 2023, 19, .	5.2	10
1044	Biomaterial-Based Delivery Systems for Chemotherapeutics. Biological and Medical Physics Series, 2023, , 105-178.	0.3	2
1045	Hybrid Organic Polymer/Inorganic Nano-materials for Biomedical Applications: Where we are and Where to go?. Current Nanoscience, 2024, 20, 188-205.	0.7	Ο
1046	Identification of novel immune ferroptosis-related genes associated with clinical and prognostic features in breast cancer. Frontiers in Genetics, 0, 14, .	1.1	0
1047	Reprogramming tumor-associated macrophages as a unique approach to target tumor immunotherapy. Frontiers in Immunology, 0, 14, .	2.2	14

		CITATION RE	PORT	
#	Article		IF	Citations
1048	Modulation of macrophage polarization by iron-based nanoparticles. Medical Review, 2	023, 3, 105-122.	0.3	1
1049	Nanotechnology and Precision Medicine. , 2023, , 236-270.			0
1050	Engineering cells for precision drug delivery: New advances, clinical translation, and em strategies. Advanced Drug Delivery Reviews, 2023, 197, 114840.	erging	6.6	14
1056	The Role of Macrophages in Cancer Immunity. , 2022, , 1-26.			0
1072	Nanostructured ferrite materials for theranostics. , 2023, , 805-829.			0
1083	Recent progress in the effect of magnetic iron oxide nanoparticles on cells and extracel vesicles. Cell Death Discovery, 2023, 9, .	lular	2.0	6
1097	Nanotechnological tools for the diagnosis and treatment of cancer. , 2023, , 337-352.			0
1100	Metal-based drug delivery systems for cancer immunotherapy. , 2023, , 851-891.			0
1103	Advancement and Applications of Nanotherapy for Cancer Immune Microenvironment. Medical Science, 2023, 43, 631-646.	Current	0.7	0
1115	Emergence of magnetic nanoparticles in photothermal and ferroptotic therapies. Mater 0, , .	ials Horizons,	6.4	1
1118	Nanomedicine targeting ferroptosis to overcome anticancer therapeutic resistance. Sci Sciences, 2024, 67, 19-40.	ence China Life	2.3	2
1129	IONPs-Based Treatment Methods. Nanomedicine and Nanotoxicology, 2023, , 129-240		0.1	0
1131	Nanomedicine $\hat{a} \in ``$ Immune System Interactions: Limitations and Opportunities for the Cancer. Handbook of Experimental Pharmacology, 2023, , .	Treatment of	0.9	0
1132	A Review on the Effect of Green Synthesized Silver Nanoparticles Using Natural Produc Negative Breast Cancer. Advances in Medical Diagnosis, Treatment, and Care, 2023, , 1		0.1	0
1151	Drug Conjugation Chemistry in Iron Oxide Nanoparticles (IONPs). Nanomedicine and N 2023, , 15-34.	anotoxicology,	0.1	0
1181	Iron Oxide Nanozyme in Biomedicine. Nanostructure Science and Technology, 2024, , 1	19-129.	0.1	0
1200	Magnetic nanocarriers for cancer immunotherapy. , 2024, , 349-401.			0
1201	Nanomedicine. , 2024, , 267-296.			0

#	Article	IF	CITATIONS
1221	Lung Cancer Therapy: Synergistic Potential of PD-1/PD-L1 and CTLA-4 Inhibitors. , 202°	4, , 297-316.	0