Gene expression elucidates functional impact of polyge

Nature Neuroscience 19, 1442-1453 DOI: 10.1038/nn.4399

Citation Report

#	Article	IF	CITATIONS
1	Genomics implicates adaptive and innate immunity in Alzheimer's and Parkinson's diseases. Annals of Clinical and Translational Neurology, 2016, 3, 924-933.	1.7	84
2	The road to precision psychiatry: translating genetics into disease mechanisms. Nature Neuroscience, 2016, 19, 1397-1407.	7.1	189
3	Translating genome-wide association findings into new therapeutics for psychiatry. Nature Neuroscience, 2016, 19, 1392-1396.	7.1	115
4	Focus on psychiatric disorders. Nature Neuroscience, 2016, 19, 1381-1382.	7.1	3
5	When size matters: CHD8 in autism. Nature Neuroscience, 2016, 19, 1430-1432.	7.1	14
6	Chromosome conformation elucidates regulatory relationships in developing human brain. Nature, 2016, 538, 523-527.	13.7	507
7	Brains, genes and power. Nature Neuroscience, 2016, 19, 1428-1430.	7.1	2
8	Correlated expression analysis of genes implicated in schizophrenia: Identification of putative disease-related pathways. European Journal of Molecular and Clinical Medicine, 2017, 3, 224.	0.5	2
9	Molecular mechanisms underlying noncoding risk variations in psychiatric genetic studies. Molecular Psychiatry, 2017, 22, 497-511.	4.1	43
10	A current view on contactin-4, -5, and -6: Implications in neurodevelopmental disorders. Molecular and Cellular Neurosciences, 2017, 81, 72-83.	1.0	71
11	Predicting gene expression in massively parallel reporter assays: A comparative study. Human Mutation, 2017, 38, 1240-1250.	1.1	39
12	Integrating Gene Expression with Summary Association Statistics to Identify Genes Associated with 30 Complex Traits. American Journal of Human Genetics, 2017, 100, 473-487.	2.6	248
13	The Yin and Yang of Autism Genetics: How Rare De Novo and Common Variations Affect Liability. Annual Review of Genomics and Human Genetics, 2017, 18, 167-187.	2.5	44
14	Systems Research in Psychiatric Neuroscience. JAMA Psychiatry, 2017, 74, 553.	6.0	4
15	Systems biology in the central nervous system: A brief perspective on essential recent advancements. Current Opinion in Systems Biology, 2017, 3, 67-76.	1.3	8
16	qSVA framework for RNA quality correction in differential expression analysis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7130-7135.	3.3	95
17	Large-Scale Identification of Common Trait and Disease Variants Affecting Gene Expression. American Journal of Human Genetics, 2017, 100, 885-894.	2.6	91
18	Application of CRISPR/Cas9 to the study of brain development and neuropsychiatric disease. Molecular and Cellular Neurosciences, 2017, 82, 157-166.	1.0	25

#	Article	IF	CITATIONS
19	Open chromatin profiling of human postmortem brain infers functional roles for non-coding schizophrenia loci. Human Molecular Genetics, 2017, 26, 1942-1951.	1.4	69
20	Transcriptome Alterations in Prefrontal Pyramidal Cells Distinguish Schizophrenia From Bipolar and Major Depressive Disorders. Biological Psychiatry, 2017, 82, 594-600.	0.7	73
21	Genetic insights into the neurodevelopmental origins of schizophrenia. Nature Reviews Neuroscience, 2017, 18, 727-740.	4.9	377
22	Genetic variation and gene expression across multiple tissues and developmental stages in a nonhuman primate. Nature Genetics, 2017, 49, 1714-1721.	9.4	57
23	THC Treatment Alters Glutamate Receptor Gene Expression in Human Stem Cell-Derived Neurons. Molecular Neuropsychiatry, 2017, 3, 73-84.	3.0	5
24	Testing high-dimensional covariance matrices, with application to detecting schizophrenia risk genes. Annals of Applied Statistics, 2017, 11, 1810-1831.	0.5	20
25	Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nature Genetics, 2017, 49, 1576-1583.	9.4	395
26	Predicting causal variants affecting expression by using whole-genome sequencing and RNA-seq from multiple human tissues. Nature Genetics, 2017, 49, 1747-1751.	9.4	88
27	A ratiometric electrochemical strategy for sensitive determination of Furin activity based on dual signal amplification and antifouling nanosurfaces. Analyst, The, 2017, 142, 4215-4220.	1.7	18
28	Modeling a linkage between blood transcriptional expression and activity in brain regions to infer the phenotype of schizophrenia patients. NPJ Schizophrenia, 2017, 3, 25.	2.0	8
29	Gene-wide Association Study Reveals RNF122 Ubiquitin Ligase as a Novel Susceptibility Gene for Attention Deficit Hyperactivity Disorder. Scientific Reports, 2017, 7, 5407.	1.6	11
30	The epigenomics of schizophrenia, in the mouse. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 631-640.	1.1	12
31	Rare Genome-Wide Copy Number Variation and Expression of Schizophrenia in 22q11.2 Deletion Syndrome. American Journal of Psychiatry, 2017, 174, 1054-1063.	4.0	77
32	Schizophrenia genetics comes to translation. NPJ Schizophrenia, 2017, 3, 10.	2.0	1
33	The complement system: a gateway to gene–environment interactions in schizophrenia pathogenesis. Molecular Psychiatry, 2017, 22, 1554-1561.	4.1	99
34	Evaluating Synthetic Activation and Repression of Neuropsychiatric-Related Genes in hiPSC-Derived NPCs, Neurons, and Astrocytes. Stem Cell Reports, 2017, 9, 615-628.	2.3	76
35	Deconvolution of Transcriptional Networks in Post-Traumatic Stress Disorder Uncovers Master Regulators Driving Innate Immune System Function. Scientific Reports, 2017, 7, 14486.	1.6	12
36	Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders. Clinical Epigenetics, 2017, 9, 67.	1.8	108

#	Article	IF	CITATIONS
37	Modeling schizophrenia pathogenesis using patient-derived induced pluripotent stem cells (iPSCs). Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2382-2387.	1.8	23
38	A group II metabotropic glutamate receptor 3 (mGlu3, GRM3) isoform implicated in schizophrenia interacts with canonical mGlu3 and reduces ligand binding. Journal of Psychopharmacology, 2017, 31, 1519-1526.	2.0	8
39	Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and neurons are concordant with post-mortem adult brains. Nature Communications, 2017, 8, 2225.	5.8	143
40	A deep learning based scoring system for prioritizing susceptibility variants for mental disorders. , 2017, , .		2
41	Applying meta-analysis to genotype-tissue expression data from multiple tissues to identify eQTLs and increase the number of eGenes. Bioinformatics, 2017, 33, i67-i74.	1.8	21
42	Post-mortem molecular profiling of three psychiatric disorders. Genome Medicine, 2017, 9, 72.	3.6	147
43	Exon Array Biomarkers for the Differential Diagnosis of Schizophrenia and Bipolar Disorder. Molecular Neuropsychiatry, 2017, 3, 197-213.	3.0	5
45	Integrative omics for health and disease. Nature Reviews Genetics, 2018, 19, 299-310.	7.7	676
46	Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nature Genetics, 2018, 50, 381-389.	9.4	1,332
47	Comprehensive integrative analyses identify GLT8D1 and CSNK2B as schizophrenia risk genes. Nature Communications, 2018, 9, 838.	5.8	80
48	Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nature Communications, 2018, 9, 918.	5.8	250
49	Schizophrenia-associated rs4702 G allele-specific downregulation of FURIN expression by miR-338-3p reduces BDNF production. Schizophrenia Research, 2018, 199, 176-180.	1.1	39
50	Polygenic risk score for schizophrenia is not strongly associated with the expression of specific genes or gene sets. Psychiatric Genetics, 2018, 28, 59-65.	0.6	6
51	Recent Genetics and Epigenetics Approaches to PTSD. Current Psychiatry Reports, 2018, 20, 30.	2.1	89
52	Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nature Genetics, 2018, 50, 538-548.	9.4	406
53	MIR137 schizophrenia-associated locus controls synaptic function by regulating synaptogenesis, synapse maturation and synaptic transmission. Human Molecular Genetics, 2018, 27, 1879-1891.	1.4	58
54	Non-coding RNA dysregulation in the amygdala region of schizophrenia patients contributes to the pathogenesis of the disease. Translational Psychiatry, 2018, 8, 44.	2.4	55
55	Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science, 2018, 359, 693-697.	6.0	851

#	Article	IF	CITATIONS
56	Bacterial genomics of plant adaptation. Nature Genetics, 2018, 50, 2-4.	9.4	1
57	Mapping regulatory variants in hiPSC models. Nature Genetics, 2018, 50, 1-2.	9.4	33
58	Interactome analysis reveals ZNF804A, a schizophrenia risk gene, as a novel component of protein translational machinery critical for embryonic neurodevelopment. Molecular Psychiatry, 2018, 23, 952-962.	4.1	40
59	A direct regulatory link between microRNA-137 and SHANK2: implications for neuropsychiatric disorders. Journal of Neurodevelopmental Disorders, 2018, 10, 15.	1.5	21
60	Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 2018, 50, 668-681.	9.4	2,224
61	Polygenic Risk Scores in Clinical Psychology: Bridging Genomic Risk to Individual Differences. Annual Review of Clinical Psychology, 2018, 14, 119-157.	6.3	110
62	A Bayesian framework for multiple trait colocalization from summary association statistics. Bioinformatics, 2018, 34, 2538-2545.	1.8	203
63	A Comprehensive Analysis of Nuclear-Encoded Mitochondrial Genes in Schizophrenia. Biological Psychiatry, 2018, 83, 780-789.	0.7	35
64	The integrated landscape of causal genes and pathways in schizophrenia. Translational Psychiatry, 2018, 8, 67.	2.4	75
65	Genetic risk for schizophrenia and psychosis in Alzheimer disease. Molecular Psychiatry, 2018, 23, 963-972.	4.1	55
66	Investigating the neuroimmunogenic architecture of schizophrenia. Molecular Psychiatry, 2018, 23, 1251-1260.	4.1	59
67	A comprehensive review of the genetic and biological evidence supports a role for MicroRNAâ€137 in the etiology of schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 242-256.	1.1	30
68	Untangling Genetic Risk for Alzheimer's Disease. Biological Psychiatry, 2018, 83, 300-310.	0.7	160
69	Quantitative trait locus mapping and analysis of heritable variation in affiliative social behavior and coâ€occurring traits. Genes, Brain and Behavior, 2018, 17, e12431.	1.1	46
70	Opportunities for an enhanced integration of neuroscience and genomics. Brain Imaging and Behavior, 2018, 12, 1211-1219.	1.1	3
71	Effects of Schizophrenia Polygenic Risk Scores on Brain Activity and Performance During Working Memory Subprocesses in Healthy Young Adults. Schizophrenia Bulletin, 2018, 44, 844-853.	2.3	22
72	Psychiatric Genomics: An Update and an Agenda. American Journal of Psychiatry, 2018, 175, 15-27.	4.0	518
73	Treatment resistant depression: A multi-scale, systems biology approach. Neuroscience and Biobehavioral Reviews, 2018, 84, 272-288.	2.9	319

#	Article	IF	CITATIONS
74	Genetic association of molecular traits: A help to identify causative variants in complex diseases. Clinical Genetics, 2018, 93, 520-532.	1.0	45
75	Genome-wide association study identifies a novel locus for cannabis dependence. Molecular Psychiatry, 2018, 23, 1293-1302.	4.1	39
76	Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa. Molecular Psychiatry, 2018, 23, 1169-1180.	4.1	32
77	Replicated associations of FADS1, MAD1L1, and a rare variant at 10q26.13 with bipolar disorder in Chinese population. Translational Psychiatry, 2018, 8, 270.	2.4	21
78	iMEGES: integrated mental-disorder GEnome score by deep neural network for prioritizing the susceptibility genes for mental disorders in personal genomes. BMC Bioinformatics, 2018, 19, 501.	1.2	10
79	Causal Inference on Pathophysiological Mediators in Psychiatry. Cold Spring Harbor Symposia on Quantitative Biology, 2018, 83, 17-23.	2.0	13
80	Polygenic risk score for schizophrenia is more strongly associated with ancestry than with schizophrenia. Psychiatric Genetics, 2018, 28, 85-89.	0.6	102
81	Association of functional polymorphisms in 3′-untranslated regions of COMT, DISC1, and DTNBP1 with schizophrenia. Psychiatric Genetics, 2018, 28, 110-119.	0.6	6
82	Expression quantitative trait loci in the developing human brain and their enrichment in neuropsychiatric disorders. Genome Biology, 2018, 19, 194.	3.8	126
83	Integrated systems analysis reveals conserved gene networks underlying response to spinal cord injury. ELife, 2018, 7, .	2.8	29
84	Dopamine perturbation of gene co-expression networks reveals differential response in schizophrenia for translational machinery. Translational Psychiatry, 2018, 8, 278.	2.4	8
85	Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science, 2018, 362, .	6.0	162
86	Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science, 2018, 362, .	6.0	805
87	Comprehensive functional genomic resource and integrative model for the human brain. Science, 2018, 362, .	6.0	618
88	The <i>DGCR5</i> long noncoding RNA may regulate expression of several schizophrenia-related genes. Science Translational Medicine, 2018, 10, .	5.8	65
89	The transcription factor POU3F2 regulates a gene coexpression network in brain tissue from patients with psychiatric disorders. Science Translational Medicine, 2018, 10, .	5.8	81
90	Temporal proteomic profiling of postnatal human cortical development. Translational Psychiatry, 2018, 8, 267.	2.4	22
91	Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nature Communications, 2018, 9, 5269.	5.8	331

#	Article	IF	CITATIONS
92	Genetics of self-reported risk-taking behaviour, trans-ethnic consistency and relevance to brain gene expression. Translational Psychiatry, 2018, 8, 178.	2.4	29
93	Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer's disease susceptibility. Nature Genetics, 2018, 50, 1584-1592.	9.4	307
94	Genetic risk for schizophrenia and autism, social impairment and developmental pathways to psychosis. Translational Psychiatry, 2018, 8, 204.	2.4	16
95	Large-scale transcriptome-wide association study identifies new prostate cancer risk regions. Nature Communications, 2018, 9, 4079.	5.8	121
96	Expression-based drug screening of neural progenitor cells from individuals with schizophrenia. Nature Communications, 2018, 9, 4412.	5.8	63
97	Lost in Translation: Traversing the Complex Path from Genomics to Therapeutics in Autism Spectrum Disorder. Neuron, 2018, 100, 406-423.	3.8	98
98	Cross-tissue eQTL enrichment of associations in schizophrenia. PLoS ONE, 2018, 13, e0202812.	1.1	6
99	Large-scale meta-analysis highlights the hypothalamic–pituitary–gonadal axis in the genetic regulation of menstrual cycle length. Human Molecular Genetics, 2018, 27, 4323-4332.	1.4	20
100	Zebrafish Models of Neurodevelopmental Disorders: Past, Present, and Future. Frontiers in Molecular Neuroscience, 2018, 11, 294.	1.4	111
101	Landscape of Conditional eQTL in Dorsolateral Prefrontal Cortex and Co-localization with Schizophrenia GWAS. American Journal of Human Genetics, 2018, 102, 1169-1184.	2.6	128
102	Genetic identification of brain cell types underlying schizophrenia. Nature Genetics, 2018, 50, 825-833.	9.4	497
103	Gene expression in cord blood links genetic risk for neurodevelopmental disorders with maternal psychological distress and adverse childhood outcomes. Brain, Behavior, and Immunity, 2018, 73, 320-330.	2.0	26
104	Recent Advances in the Genetics of Schizophrenia. Molecular Neuropsychiatry, 2018, 4, 35-51.	3.0	81
105	miR-9 regulates basal ganglia-dependent developmental vocal learning and adult vocal performance in songbirds. ELife, 2018, 7, .	2.8	13
106	Considerations for optimal use of postmortem human brains for molecular psychiatry: lessons from schizophrenia. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 150, 221-235.	1.0	5
107	Abnormalities in behaviour, histology and prefrontal cortical gene expression profiles relevant to schizophrenia in embryonic day 17 MAM-Exposed C57BL/6 mice. Neuropharmacology, 2018, 140, 287-301.	2.0	15
108	Positive selection on schizophrenia-associated ST8SIA2 gene in post-glacial Asia. PLoS ONE, 2018, 13, e0200278.	1.1	12
109	Unperturbed expression bias of imprinted genes in schizophrenia. Nature Communications, 2018, 9, 2914.	5.8	6

#	Article	IF	CITATIONS
110	Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nature Communications, 2018, 9, 3121.	5.8	141
111	Cell-specific histone modification maps in the human frontal lobe link schizophrenia risk to the neuronal epigenome. Nature Neuroscience, 2018, 21, 1126-1136.	7.1	112
112	Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nature Neuroscience, 2018, 21, 1117-1125.	7.1	300
113	Altered Expression Profile of IgLON Family of Neural Cell Adhesion Molecules in the Dorsolateral Prefrontal Cortex of Schizophrenic Patients. Frontiers in Molecular Neuroscience, 2018, 11, 8.	1.4	43
114	Inference of cell type content from human brain transcriptomic datasets illuminates the effects of age, manner of death, dissection, and psychiatric diagnosis. PLoS ONE, 2018, 13, e0200003.	1.1	65
115	Synaptic Proteome Compensation and Resilience to Psychosis in Alzheimer's Disease. American Journal of Psychiatry, 2018, 175, 999-1009.	4.0	25
116	Transcriptomic context of <i>DRD1</i> is associated with prefrontal activity and behavior during working memory. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5582-5587.	3.3	18
117	Elevated polygenic burden for autism is associated with differential DNA methylation at birth. Genome Medicine, 2018, 10, 19.	3.6	88
118	Abnormalities in Prefrontal Cortical Gene Expression Profiles Relevant to Schizophrenia in MK-801-Exposed C57BL/6 Mice. Neuroscience, 2018, 390, 60-78.	1.1	7
119	Identification of expression quantitative trait loci associated with schizophrenia and affective disorders in normal brain tissue. PLoS Genetics, 2018, 14, e1007607.	1.5	34
120	Transcriptomic signatures of schizophrenia revealed by dopamine perturbation in an ex vivo model. Translational Psychiatry, 2018, 8, 158.	2.4	15
121	A unified statistical framework for single cell and bulk RNA sequencing data. Annals of Applied Statistics, 2018, 12, 609-632.	0.5	82
122	Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell, 2018, 173, 1705-1715.e16.	13.5	623
123	Development of a consensus approach for return of pathology incidental findings in the Genotype-Tissue Expression (GTEx) project. Journal of Medical Ethics, 2018, 44, 643-645.	1.0	3
124	Neuroepigenetics of Schizophrenia. Progress in Molecular Biology and Translational Science, 2018, 158, 195-226.	0.9	20
125	Building a schizophrenia genetic network: transcription factor 4 regulates genes involved in neuronal development and schizophrenia risk. Human Molecular Genetics, 2018, 27, 3246-3256.	1.4	33
126	Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nature Communications, 2018, 9, 2282.	5.8	294
127	A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data. Scientific Reports, 2018, 8, 8826.	1.6	51

#	Article	IF	Citations
128	Molecular windows into the human brain for psychiatric disorders. Molecular Psychiatry, 2019, 24, 653-673.	4.1	32
129	The Role of the Nuclear Factor-κB Transcriptional Complex in Cortical Immune Activation in Schizophrenia. Biological Psychiatry, 2019, 85, 25-34.	0.7	58
130	Protein misassembly and aggregation as potential convergence points for non-genetic causes of chronic mental illness. Molecular Psychiatry, 2019, 24, 936-951.	4.1	47
131	A powerful conditional gene-based association approach implicated functionally important genes for schizophrenia. Bioinformatics, 2019, 35, 628-635.	1.8	19
132	Differential activity of transcribed enhancers in the prefrontal cortex of 537 cases with schizophrenia and controls. Molecular Psychiatry, 2019, 24, 1685-1695.	4.1	40
133	Diurnal rhythms in gene expression in the prefrontal cortex in schizophrenia. Nature Communications, 2019, 10, 3355.	5.8	67
134	Genetic Variation in Long-Range Enhancers. Current Topics in Behavioral Neurosciences, 2019, 42, 35-50.	0.8	2
135	A critical review of zebrafish schizophrenia models: Time for validation?. Neuroscience and Biobehavioral Reviews, 2019, 107, 6-22.	2.9	29
136	Pleiotropic Meta-Analysis of Cognition, Education, and Schizophrenia Differentiates Roles of Early Neurodevelopmental and Adult Synaptic Pathways. American Journal of Human Genetics, 2019, 105, 334-350.	2.6	86
137	New insights into the development of the human cerebral cortex. Journal of Anatomy, 2019, 235, 432-451.	0.9	224
138	Developmental nicotine exposure elicits multigenerational disequilibria in proBDNF proteolysis and glucocorticoid signaling in the frontal cortices, striata, and hippocampi of adolescent mice. Biochemical Pharmacology, 2019, 168, 438-451.	2.0	24
139	Evidence for cerebello-thalamo-cortical hyperconnectivity as a heritable trait for schizophrenia. Translational Psychiatry, 2019, 9, 192.	2.4	23
140	Cell type-specific epigenetic links to schizophrenia risk in the brain. Genome Biology, 2019, 20, 135.	3.8	76
141	Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nature Genetics, 2019, 51, 1207-1214.	9.4	641
142	Polygenic liability for schizophrenia predicts shifting-specific executive function deficits and tobacco use in a moderate drinking community sample. Psychiatry Research, 2019, 279, 47-54.	1.7	4
143	A Unique Genome-wide Association Study of a Psychiatric Disorder From India. JAMA Psychiatry, 2019, 76, 1003.	6.0	0
144	Association of Schizophrenia Risk With Disordered Niacin Metabolism in an Indian Genome-wide Association Study. JAMA Psychiatry, 2019, 76, 1026.	6.0	51
145	Enhanced Molecular Appreciation of Psychiatric Disorders Through High-Dimensionality Data Acquisition and Analytics. Methods in Molecular Biology, 2019, 2011, 671-723.	0.4	13

#	Article	IF	CITATIONS
146	Rare compound heterozygous missense SPATA7 variations and risk of schizophrenia; whole-exome sequencing in a consanguineous family with affected siblings, follow-up sequencing and a case-control study. Neuropsychiatric Disease and Treatment, 2019, Volume 15, 2353-2363.	1.0	1
147	Genetic Control of Expression and Splicing in Developing Human Brain Informs Disease Mechanisms. Cell, 2019, 179, 750-771.e22.	13.5	174
148	Informing disease modelling with brain-relevant functional genomic annotations. Brain, 2019, 142, 3694-3712.	3.7	8
149	Co-expression network modeling identifies key long non-coding RNA and mRNA modules in altering molecular phenotype to develop stress-induced depression in rats. Translational Psychiatry, 2019, 9, 125.	2.4	30
150	Large-scale GWAS reveals genetic architecture of brain white matter microstructure and genetic overlap with cognitive and mental health traits (n = 17,706). Molecular Psychiatry, 2021, 26, 3943-3955	. ^{4.1}	100
151	Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits. Nature Genetics, 2019, 51, 1637-1644.	9.4	186
152	Integrate GWAS, eQTL, and mQTL Data to Identify Alzheimer's Disease-Related Genes. Frontiers in Genetics, 2019, 10, 1021.	1.1	40
153	Shared genetics of asthma and mental health disorders: a large-scale genome-wide cross-trait analysis. European Respiratory Journal, 2019, 54, 1901507.	3.1	106
154	Global landscape and genetic regulation of RNA editing in cortical samples from individuals with schizophrenia. Nature Neuroscience, 2019, 22, 1402-1412.	7.1	63
155	Integrative transcriptome imputation reveals tissue-specific and shared biological mechanisms mediating susceptibility to complex traits. Nature Communications, 2019, 10, 3834.	5.8	68
156	POTENTIAL ASSOCIATION OF MIR-137 WITH AGE OF ONSET OF SCHIZOPHRENIA. European Neuropsychopharmacology, 2019, 29, S1012-S1013.	0.3	0
157	Availability of public databases for triangulation of findings. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15766-15767.	3.3	2
158	Using Transcriptomic Hidden Variables to Infer Context-Specific Genotype Effects in the Brain. American Journal of Human Genetics, 2019, 105, 562-572.	2.6	7
159	Deconvolution of transcriptional networks identifies TCF4 as a master regulator in schizophrenia. Science Advances, 2019, 5, eaau4139.	4.7	59
160	CommonMind Consortium provides transcriptomic and epigenomic data for Schizophrenia and Bipolar Disorder. Scientific Data, 2019, 6, 180.	2.4	149
161	Exploring genetic variation that influences brain methylation in attention-deficit/hyperactivity disorder. Translational Psychiatry, 2019, 9, 242.	2.4	21
162	Synergistic effects of common schizophrenia risk variants. Nature Genetics, 2019, 51, 1475-1485.	9.4	184
163	Functional interpretation of genetic variants using deep learning predicts impact on chromatin accessibility and histone modification. Nucleic Acids Research, 2019, 47, 10597-106 <u>11.</u>	6.5	39

#	Article	IF	CITATIONS
164	Dysregulated protocadherin-pathway activity as an intrinsic defect in induced pluripotent stem cell–derived cortical interneurons from subjects with schizophrenia. Nature Neuroscience, 2019, 22, 229-242.	7.1	84
165	Assessment of somatic single-nucleotide variation in brain tissue of cases with schizophrenia. Translational Psychiatry, 2019, 9, 21.	2.4	16
166	Prediction of Alzheimer's Disease-Associated Genes by Integration of GWAS Summary Data and Expression Data. Frontiers in Genetics, 2018, 9, 653.	1.1	34
167	The endocytic membrane trafficking pathway plays a major role in the risk of Parkinson's disease. Movement Disorders, 2019, 34, 460-468.	2.2	66
168	Genetics of Eating Disorders. Psychiatric Clinics of North America, 2019, 42, 59-73.	0.7	49
169	Comprehensive functional annotation of susceptibility SNPs prioritized 10 genes for schizophrenia. Translational Psychiatry, 2019, 9, 56.	2.4	20
170	The expression of long noncoding RNA NEAT1 is reduced in schizophrenia and modulates oligodendrocytes transcription. NPJ Schizophrenia, 2019, 5, 3.	2.0	44
171	Genome-wide association study implicates CHRNA2 in cannabis use disorder. Nature Neuroscience, 2019, 22, 1066-1074.	7.1	94
172	Comparison of quantitative trait loci methods: Total expression and allelic imbalance method in brain RNA-seq. PLoS ONE, 2019, 14, e0217765.	1.1	0
173	Network-based prediction of polygenic disease genes involved in cell motility. BMC Bioinformatics, 2019, 20, 313.	1.2	6
174	Dysregulated Glial Differentiation in Schizophrenia May Be Relieved by Suppression of SMAD4- and REST-Dependent Signaling. Cell Reports, 2019, 27, 3832-3843.e6.	2.9	32
175	Identification of the primate-specific gene BTN3A2 as an additional schizophrenia risk gene in the MHC loci. EBioMedicine, 2019, 44, 530-541.	2.7	24
176	Commonality in dysregulated expression of gene sets in cortical brains of individuals with autism, schizophrenia, and bipolar disorder. Translational Psychiatry, 2019, 9, 152.	2.4	61
177	Chromatin modification and remodeling in schizophrenia. , 2019, , 303-330.		1
178	Regional Heterogeneity in Gene Expression, Regulation, and Coherence in the Frontal Cortex and Hippocampus across Development and Schizophrenia. Neuron, 2019, 103, 203-216.e8.	3.8	158
179	Detection of circular RNA expression and related quantitative trait loci in the human dorsolateral prefrontal cortex. Genome Biology, 2019, 20, 99.	3.8	57
180	DLPFC transcriptome defines two molecular subtypes of schizophrenia. Translational Psychiatry, 2019, 9, 147.	2.4	29
181	Integrative analysis of Dupuytren's disease identifies novel risk locus and reveals a shared genetic etiology with BMI. Genetic Epidemiology, 2019, 43, 629-645.	0.6	13

#	Article	IF	CITATIONS
182	Expression analysis and genotyping of DGKZ: a GWAS-derived risk gene for schizophrenia. Molecular Biology Reports, 2019, 46, 4105-4111.	1.0	7
183	Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9604-9609.	3.3	200
184	Differential methylation of enhancer at IGF2 is associated with abnormal dopamine synthesis in major psychosis. Nature Communications, 2019, 10, 2046.	5.8	55
185	Variations in Genes Related to Sleep Patterns in Children With Autism Spectrum Disorder. Biological Research for Nursing, 2019, 21, 335-342.	1.0	9
186	Postmortem brain tissue as an underutilized resource to study the molecular pathology of neuropsychiatric disorders across different ethnic populations. Neuroscience and Biobehavioral Reviews, 2019, 102, 195-207.	2.9	9
187	Deletion of the KH1 Domain of <i>Fmr1</i> Leads to Transcriptional Alterations and Attentional Deficits in Rats. Cerebral Cortex, 2019, 29, 2228-2244.	1.6	22
188	Shared Molecular Neuropathology Across Major Psychiatric Disorders Parallels Polygenic Overlap. Focus (American Psychiatric Publishing), 2019, 17, 66-72.	0.4	20
189	Defining the Genetic, Genomic, Cellular, and Diagnostic Architectures of Psychiatric Disorders. Cell, 2019, 177, 162-183.	13.5	331
190	Genome-wide association analysis reveals KCTD12 and miR-383-binding genes in the background of rumination. Translational Psychiatry, 2019, 9, 119.	2.4	18
191	Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nature Genetics, 2019, 51, 659-674.	9.4	154
192	Phenotypic Landscape of Schizophrenia-Associated Genes Defines Candidates and Their Shared Functions. Cell, 2019, 177, 478-491.e20.	13.5	159
193	Identification of Shared Genes Between Ischemic Stroke and Parkinson's Disease Using Genome-Wide Association Studies. Frontiers in Neurology, 2019, 10, 297.	1.1	18
194	Mapping causal pathways from genetics to neuropsychiatric disorders using genomeâ€wide imaging genetics: Current status and future directions. Psychiatry and Clinical Neurosciences, 2019, 73, 357-369.	1.0	22
195	Genome-Scale Transcriptional Regulatory Network Models of Psychiatric and Neurodegenerative Disorders. Cell Systems, 2019, 8, 122-135.e7.	2.9	45
196	Prefrontal Coexpression of Schizophrenia Risk Genes Is Associated With Treatment Response in Patients. Biological Psychiatry, 2019, 86, 45-55.	0.7	27
197	Gene Expression Profiles Associated with Brain Aging are Altered in Schizophrenia. Scientific Reports, 2019, 9, 5896.	1.6	14
198	Novel Complex Interactions between Mitochondrial and Nuclear DNA in Schizophrenia and Bipolar Disorder. Molecular Neuropsychiatry, 2019, 5, 13-27.	3.0	36
199	Analyzing DNA methylation patterns in subjects diagnosed with schizophrenia using machine learning methods. Journal of Psychiatric Research, 2019, 114, 41-47.	1.5	19

#	Article	IF	CITATIONS
200	A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data. Nature Neuroscience, 2019, 22, 691-699.	7.1	118
202	Rigor in science and science reporting: updated guidelines for submissions to Molecular Autism. Molecular Autism, 2019, 10, 6.	2.6	4
203	A statistical framework for cross-tissue transcriptome-wide association analysis. Nature Genetics, 2019, 51, 568-576.	9.4	262
204	Thalamic connectivity measured with fMRI is associated with a polygenic index predicting thalamo-prefrontal gene co-expression. Brain Structure and Function, 2019, 224, 1331-1344.	1.2	18
205	Analysis of whole genome-transcriptomic organization in brain to identify genes associated with alcoholism. Translational Psychiatry, 2019, 9, 89.	2.4	66
206	Functional genomics reveal gene regulatory mechanisms underlying schizophrenia risk. Nature Communications, 2019, 10, 670.	5.8	94
207	Retinal transcriptome and eQTL analyses identify genes associated with age-related macular degeneration. Nature Genetics, 2019, 51, 606-610.	9.4	201
208	Prioritizing Parkinson's disease genes using population-scale transcriptomic data. Nature Communications, 2019, 10, 994.	5.8	130
209	Self-regulation and the <i>foraging</i> gene (<i>PRKG1</i>) in humans. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4434-4439.	3.3	29
210	Integrative analyses of major histocompatibility complex loci in the genome-wide association studies of major depressive disorder. Neuropsychopharmacology, 2019, 44, 1552-1561.	2.8	27
211	Debutant iOS app and geneâ€disease complexities in clinical genomics and precision medicine. Clinical and Translational Medicine, 2019, 8, 26.	1.7	17
212	Drosophila Bruton's Tyrosine Kinase Regulates Habituation Latency and Facilitation in Distinct Mushroom Body Neurons. Journal of Neuroscience, 2019, 39, 8730-8743.	1.7	5
213	Schizophrenia-associated MicroRNA–Gene Interactions in the Dorsolateral Prefrontal Cortex. Genomics, Proteomics and Bioinformatics, 2019, 17, 623-634.	3.0	23
214	RNA sequencing of identical twins discordant for autism reveals blood-based signatures implicating immune and transcriptional dysregulation. Molecular Autism, 2019, 10, 38.	2.6	14
216	Neuronal impact of patient-specific aberrant NRXN1α splicing. Nature Genetics, 2019, 51, 1679-1690.	9.4	91
217	Predicting novel genomic regions linked to genetic disorders using GWAS and chromosome conformation data – a case study of schizophrenia. Scientific Reports, 2019, 9, 17940.	1.6	6
218	African-American and Caucasian participation in postmortem human brain donation for neuropsychiatric research. PLoS ONE, 2019, 14, e0222565.	1.1	5
219	Brain Banks Spur New Frontiers in Neuropsychiatric Research and Strategies for Analysis and Validation. Genomics, Proteomics and Bioinformatics, 2019, 17, 402-414.	3.0	12

# 220	ARTICLE Regulation of lifespan by neural excitation and REST. Nature, 2019, 574, 359-364.	lF 13.7	Citations
221	Association of Myoinositol Transporters with Schizophrenia and Bipolar Disorder: Evidence from Human and Animal Studies. Molecular Neuropsychiatry, 2019, 5, 200-211.	3.0	7
222	The depression GWAS risk allele predicts smaller cerebellar gray matter volume and reduced SIRT1 mRNA expression in Chinese population. Translational Psychiatry, 2019, 9, 333.	2.4	25
223	Altered Expression of a Unique Set of Genes Reveals Complex Etiology of Schizophrenia. Frontiers in Psychiatry, 2019, 10, 906.	1.3	8
224	Shared co-expression networks in frontal cortex of the normal aged brain and schizophrenia. Schizophrenia Research, 2019, 204, 253-261.	1.1	6
225	Mitochondria, Metabolism, and Redox Mechanisms in Psychiatric Disorders. Antioxidants and Redox Signaling, 2019, 31, 275-317.	2.5	112
226	Integrative analysis of transcriptomeâ€wide association study and mRNA expression profiles identifies candidate genes associated with autism spectrum disorders. Autism Research, 2019, 12, 33-38.	2.1	10
227	Association of a Noncoding RNA Postmortem With Suicide by Violent Means and InÂVivo With Aggressive Phenotypes. Biological Psychiatry, 2019, 85, 417-424.	0.7	13
228	Thinking About Schizophrenia in an Era of Genomic Medicine. American Journal of Psychiatry, 2019, 176, 12-20.	4.0	45
229	Neurobiology and treatment of social cognition in schizophrenia: Bridging the bed-bench gap. Neurobiology of Disease, 2019, 131, 104315.	2.1	17
230	Critical period plasticity-related transcriptional aberrations in schizophrenia and bipolar disorder. Schizophrenia Research, 2019, 207, 12-21.	1.1	15
231	Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer's disease risk. Nature Genetics, 2019, 51, 404-413.	9.4	1,625
232	Ambient concentrations of NO ₂ and hospital admissions for schizophrenia. Occupational and Environmental Medicine, 2019, 76, 125-131.	1.3	30
233	Common-variant associations with fragile X syndrome. Molecular Psychiatry, 2019, 24, 338-344.	4.1	8
234	Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia. Nature Medicine, 2019, 25, 152-164.	15.2	111
235	Adolescent exposure to î"9-tetrahydrocannabinol alters the transcriptional trajectory and dendritic architecture of prefrontal pyramidal neurons. Molecular Psychiatry, 2019, 24, 588-600.	4.1	89
236	Synaptic and transcriptionally downregulated genes are associated with cortical thickness differences in autism. Molecular Psychiatry, 2019, 24, 1053-1064.	4.1	135
237	New considerations for hiPSC-based models of neuropsychiatric disorders. Molecular Psychiatry, 2019, 24, 49-66.	4.1	64

#	Article	IF	CITATIONS
238	Machine learning in schizophrenia genomics, a case ontrol study using 5,090 exomes. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2019, 180, 103-112.	1.1	26
239	Translational bioinformatics in mental health: open access data sources and computational biomarker discovery. Briefings in Bioinformatics, 2019, 20, 842-856.	3.2	16
240	Identification and prioritization of gene sets associated with schizophrenia risk by co-expression network analysis in human brain. Molecular Psychiatry, 2020, 25, 791-804.	4.1	86
241	mGluR5 hypofunction is integral to glutamatergic dysregulation in schizophrenia. Molecular Psychiatry, 2020, 25, 750-760.	4.1	39
242	Polygenic disruption of retinoid signalling in schizophrenia and a severe cognitive deficit subtype. Molecular Psychiatry, 2020, 25, 719-731.	4.1	33
243	Schizophrenia risk variants influence multiple classes of transcripts of sorting nexin 19 (SNX19). Molecular Psychiatry, 2020, 25, 831-843.	4.1	36
244	The association between schizophrenia and the immune system: Review of the evidence from unbiased â€~omic-studies'. Schizophrenia Research, 2020, 217, 114-123.	1.1	30
245	A Genetics Perspective on the Role of the (Neuro)Immune System in Schizophrenia. Schizophrenia Research, 2020, 217, 105-113.	1.1	43
246	The three-dimensional landscape of the genome in human brain tissue unveils regulatory mechanisms leading to schizophrenia risk. Schizophrenia Research, 2020, 217, 17-25.	1.1	31
247	Genetic heterogeneity in self-reported depressive symptoms identified through genetic analyses of the PHQ-9. Psychological Medicine, 2020, 50, 2385-2396.	2.7	46
248	Whole blood transcriptome analysis in bipolar disorder reveals strong lithium effect. Psychological Medicine, 2020, 50, 2575-2586.	2.7	20
249	Convergent Evidence for Predispositional Effects of Brain Gray Matter Volume on Alcohol Consumption. Biological Psychiatry, 2020, 87, 645-655.	0.7	32
250	Intragenic CNTN4 copy number variants associated with a spectrum of neurobehavioral phenotypes. European Journal of Medical Genetics, 2020, 63, 103736.	0.7	11
251	The proteome and its dynamics: A missing piece for integrative multi-omics in schizophrenia. Schizophrenia Research, 2020, 217, 148-161.	1.1	16
252	The complement system in schizophrenia: where are we now and what's next?. Molecular Psychiatry, 2020, 25, 114-130.	4.1	96
253	CRISPR-based functional evaluation of schizophrenia risk variants. Schizophrenia Research, 2020, 217, 26-36.	1.1	10
254	Markers of glutamate and GABA neurotransmission in the prefrontal cortex of schizophrenia subjects: Disease effects differ across anatomical levels of resolution. Schizophrenia Research, 2020, 217, 86-94.	1.1	20
255	Schizophrenia research in the era of Team Science and big data. Schizophrenia Research, 2020, 217, 13-16.	1.1	7

#	Article	IF	CITATIONS
256	Neuronal Autophagy in Synaptic Functions and Psychiatric Disorders. Biological Psychiatry, 2020, 87, 787-796.	0.7	42
257	The TMEM106B FTLD-protective variant, rs1990621, is also associated with increased neuronal proportion. Acta Neuropathologica, 2020, 139, 45-61.	3.9	51
258	Exploring lithium's transcriptional mechanisms of action in bipolar disorder: a multi-step study. Neuropsychopharmacology, 2020, 45, 947-955.	2.8	24
259	Schizophrenia—An Overview. JAMA Psychiatry, 2020, 77, 201.	6.0	569
260	A multimodal attempt to follow-up linkage regions using RNA expression, SNPs and CpG methylation in schizophrenia and bipolar disorder kindreds. European Journal of Human Genetics, 2020, 28, 499-507.	1.4	3
261	A transcriptome-wide association study implicates specific pre- and post-synaptic abnormalities in schizophrenia. Human Molecular Genetics, 2020, 29, 159-167.	1.4	54
262	The genome-wide risk alleles for psychiatric disorders at 3p21.1 show convergent effects on mRNA expression, cognitive function, and mushroom dendritic spine. Molecular Psychiatry, 2020, 25, 48-66.	4.1	59
263	Integration analysis of methylation quantitative trait loci and GWAS identify three schizophrenia risk variants. Neuropsychopharmacology, 2020, 45, 1179-1187.	2.8	13
264	Making Sense of Antisense: Getting From a Locus to a Gene. Biological Psychiatry, 2020, 87, 95-97.	0.7	0
265	A Robust Method Uncovers Significant Context-Specific Heritability in Diverse Complex Traits. American Journal of Human Genetics, 2020, 106, 71-91.	2.6	54
266	The Psychiatric Genomics Consortium: History, development, and the future. , 2020, , 91-101.		6
267	A powerful fine-mapping method for transcriptome-wide association studies. Human Genetics, 2020, 139, 199-213.	1.8	32
268	Schizotypy-Related Magnetization of Cortex in Healthy Adolescence Is Colocated With Expression of Schizophrenia-Related Genes. Biological Psychiatry, 2020, 88, 248-259.	0.7	59
269	Cannabidiol Improves Cognitive Impairment and Reverses Cortical Transcriptional Changes Induced by Ketamine, in Schizophrenia-Like Model in Rats. Molecular Neurobiology, 2020, 57, 1733-1747.	1.9	26
270	Association between C4A rs201016130 and schizophrenia in a Han Chinese population. Asian Journal of Psychiatry, 2020, 51, 101850.	0.9	0
271	Integrating genome-wide association study and expression quantitative trait loci data identifies NEGR1 as a causal risk gene of major depression disorder. Journal of Affective Disorders, 2020, 265, 679-686.	2.0	27
272	The Biomarker and Therapeutic Potential of Circular Rnas in Schizophrenia. Cells, 2020, 9, 2238.	1.8	11
273	Overexpression of complement component C4 in the dorsolateral prefrontal cortex, parietal cortex, superior temporal gyrus and associative striatum of patients with schizophrenia. Brain, Behavior, and Immunity, 2020, 90, 216-225.	2.0	25

#	Article	IF	CITATIONS
274	Biological insights from multi-omic analysis of 31 genomic risk loci for adult hearing difficulty. PLoS Genetics, 2020, 16, e1009025.	1.5	42
275	Cell-Type-Specific Proteogenomic Signal Diffusion for Integrating Multi-Omics Data Predicts Novel Schizophrenia Risk Genes. Patterns, 2020, 1, 100091.	3.1	5
276	Network modules linking expression and methylation in prefrontal cortex of schizophrenia. Epigenetics, 2021, 16, 876-893.	1.3	8
277	Varmole: a biologically drop-connect deep neural network model for prioritizing disease risk variants and genes. Bioinformatics, 2021, 37, 1772-1775.	1.8	12
278	Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions. Scientific Data, 2020, 7, 340.	2.4	75
279	Special Article: Translational Science Update. Pharmacological Implications of Emerging Schizophrenia Genetics. Journal of Clinical Psychopharmacology, 2020, 40, 323-329.	0.7	10
280	The role of clustered protocadherins in neurodevelopment and neuropsychiatric diseases. Current Opinion in Genetics and Development, 2020, 65, 144-150.	1.5	28
281	Massively parallel techniques for cataloguing the regulome of the human brain. Nature Neuroscience, 2020, 23, 1509-1521.	7.1	39
282	Changes of Serum Insulin-like Growth Factor-2 Response to Negative Symptom Improvements in Schizophrenia Patients Treated with Atypical Antipsychotics. Current Medical Science, 2020, 40, 563-569.	0.7	3
283	Integration of CRISPR-engineering and hiPSC-based models of psychiatric genomics. Molecular and Cellular Neurosciences, 2020, 107, 103532.	1.0	8
284	Allele-specific open chromatin in human iPSC neurons elucidates functional disease variants. Science, 2020, 369, 561-565.	6.0	77
285	Analysis of Genetically Regulated Gene Expression Identifies a Prefrontal PTSD Gene, SNRNP35, Specific to Military Cohorts. Cell Reports, 2020, 31, 107716.	2.9	44
286	Gene expression meta-analysis reveals the up-regulation of CREB1 and CREBBP in Brodmann Area 10 of patients with schizophrenia. Psychiatry Research, 2020, 292, 113311.	1.7	12
287	Common genetic risk variants identified in the SPARK cohort support DDHD2 as a candidate risk gene for autism. Translational Psychiatry, 2020, 10, 265.	2.4	56
288	Comparative transcriptomics implicate mitochondrial and neurodevelopmental impairments in larval zebrafish (Danio rerio) exposed to two selective serotonin reuptake inhibitors (SSRIs). Ecotoxicology and Environmental Safety, 2020, 203, 110934.	2.9	13
289	Diverse phenotypic measurements of wellbeing: Heritability, temporal stability and the variance explained by polygenic scores. Genes, Brain and Behavior, 2020, 19, e12694.	1.1	19
290	Cyclic and multilevel causation in evolutionary processes. Biology and Philosophy, 2020, 35, 1.	0.7	1
291	Genome-wide association studies of antidepressant class response and treatment-resistant depression. Translational Psychiatry, 2020, 10, 360.	2.4	33

#	Article	IF	CITATIONS
292	Differential gene regulatory pattern in the human brain from schizophrenia using transcriptomic-causal network. BMC Bioinformatics, 2020, 21, 469.	1.2	14
293	Identification of a functional SNP rs7304782 at schizophrenia risk locus 12q24.31 and validation of its association with schiz ophrenia in Chinese populations. Psychiatry Research, 2020, 294, 113491.	1.7	1
294	Diagnosis- and Cell Type-Specific Mitochondrial Functional Pathway Signatures in Schizophrenia and Bipolar Disorder. American Journal of Psychiatry, 2020, 177, 1140-1150.	4.0	32
295	The Role of Zebrafish and Laboratory Rodents in Schizophrenia Research. Frontiers in Psychiatry, 2020, 11, 703.	1.3	24
296	Circular RNAs: The Brain Transcriptome Comes Full Circle. Trends in Neurosciences, 2020, 43, 752-766.	4.2	51
297	Transcription factor POU3F2 regulates TRIM8 expression contributing to cellular functions implicated in schizophrenia. Molecular Psychiatry, 2021, 26, 3444-3460.	4.1	16
298	Convergent lines of evidence support <i>NOTCH4</i> as a schizophrenia risk gene. Journal of Medical Genetics, 2021, 58, 666-678.	1.5	9
299	Co-expression Network Analysis Reveals Novel Genes Underlying Alzheimer's Disease Pathogenesis. Frontiers in Aging Neuroscience, 2020, 12, 605961.	1.7	17
300	Clustered Protocadherins Emerge as Novel Susceptibility Loci for Mental Disorders. Frontiers in Neuroscience, 2020, 14, 587819.	1.4	20
301	Common schizophrenia risk variants are enriched in open chromatin regions of human glutamatergic neurons. Nature Communications, 2020, 11, 5581.	5.8	53
302	Publicly Available hiPSC Lines with Extreme Polygenic Risk Scores for Modeling Schizophrenia. Complex Psychiatry, 2020, 6, 68-82.	1.3	18
303	Exploring the mRNA expression level of RELN in peripheral blood of schizophrenia patients before and after antipsychotic treatment. Hereditas, 2020, 157, 43.	0.5	8
304	A fast and powerful eQTL weighted method to detect genes associated with complex trait using GWAS summary data. Genetic Epidemiology, 2020, 44, 550-563.	0.6	10
305	Cis-effects on gene expression in the human prenatal brain associated with genetic risk for neuropsychiatric disorders. Molecular Psychiatry, 2021, 26, 2082-2088.	4.1	23
306	Genome-wide association study of MRI markers of cerebral small vessel disease in 42,310 participants. Nature Communications, 2020, 11, 2175.	5.8	93
307	Hippocampal transcriptome analysis following maternal separation implicates altered RNA processing in a mouse model of fetal alcohol spectrum disorder. Journal of Neurodevelopmental Disorders, 2020, 12, 15.	1.5	8
308	SZDB2.0: an updated comprehensive resource for schizophrenia research. Human Genetics, 2020, 139, 1285-1297.	1.8	35
309	Pairwise common variant meta-analyses of schizophrenia with other psychiatric disorders reveals shared and distinct gene and gene-set associations. Translational Psychiatry, 2020, <u>10, 134</u> .	2.4	37

#	Article	IF	CITATIONS
310	Common variants in FAN1, located in 15q13.3, confer risk for schizophrenia and bipolar disorder in Han Chinese. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 103, 109973.	2.5	5
311	Gene expression meta-analysis reveals the down-regulation of three GABA receptor subunits in the superior temporal gyrus of patients with schizophrenia. Schizophrenia Research, 2020, 220, 29-37.	1.1	14
312	The polygenic architecture of schizophrenia — rethinking pathogenesis and nosology. Nature Reviews Neurology, 2020, 16, 366-379.	4.9	122
313	Functional annotation of rare structural variation in the human brain. Nature Communications, 2020, 11, 2990.	5.8	32
314	Transcriptomeâ€wide association studies: a view from Mendelian randomization. Quantitative Biology, 2021, 9, 107-121.	0.3	22
316	Consistent gene signature of schizophrenia identified by a novel feature selection strategy from comprehensive sets of transcriptomic data. Briefings in Bioinformatics, 2020, 21, 1058-1068.	3.2	177
317	Further confirmation of netrin 1 receptor (DCC) as a depression risk gene via integrations of multi-omics data. Translational Psychiatry, 2020, 10, 98.	2.4	26
318	Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk. Nature Neuroscience, 2020, 23, 510-519.	7.1	67
319	Complement Activation in 22q11.2 Deletion Syndrome. Journal of Clinical Immunology, 2020, 40, 515-523.	2.0	5
320	Hippocampal subfield transcriptome analysis in schizophrenia psychosis. Molecular Psychiatry, 2021, 26, 2577-2589.	4.1	25
321	Analysis of DNA methylation associates the cystine–glutamate antiporter SLC7A11 with risk of Parkinson's disease. Nature Communications, 2020, 11, 1238.	5.8	85
322	The genetic architecture of the human cerebral cortex. Science, 2020, 367, .	6.0	450
323	Altered insulin-like growth factor-2 signaling is associated with psychopathology and cognitive deficits in patients with schizophrenia. PLoS ONE, 2020, 15, e0226688.	1.1	18
324	Regulatory mechanisms of major depressive disorder risk variants. Molecular Psychiatry, 2020, 25, 1926-1945.	4.1	37
325	Identification of a functional human-unique 351-bp Alu insertion polymorphism associated with major depressive disorder in the 1p31.1 GWAS risk loci. Neuropsychopharmacology, 2020, 45, 1196-1206.	2.8	17
326	Rare and common variants analysis of the EMB gene in patients with schizophrenia. BMC Psychiatry, 2020, 20, 135.	1.1	4
327	Transcriptional and imaging-genetic association of cortical interneurons, brain function, and schizophrenia risk. Nature Communications, 2020, 11, 2889.	5.8	59
328	Analysis of transcript levels of a few schizophrenia candidate genes in neurons from a transgenic mouse embryonic stem cell model overexpressing DNMT1. Gene, 2020, 757, 144934.	1.0	10

#	Article	IF	Citations
329	DeepWAS: Multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning. PLoS Computational Biology, 2020, 16, e1007616.	1.5	54
330	Stem Cells for Improving the Treatment of Neurodevelopmental Disorders. Stem Cells and Development, 2020, 29, 1118-1130.	1.1	7
331	Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information. Nature Communications, 2020, 11, 1041.	5.8	22
332	The multiplex model of the genetics of Alzheimer's disease. Nature Neuroscience, 2020, 23, 311-322.	7.1	291
333	Association between <i>ErbB4</i> gene function in synaptogenesis and schizophrenia pathogenesis. Biotechnology and Biotechnological Equipment, 2020, 34, 135-143.	0.5	2
334	Novel genetic susceptibility loci identified by family based whole exome sequencing in Han Chinese schizophrenia patients. Translational Psychiatry, 2020, 10, 5.	2.4	16
335	decorate: differential epigenetic correlation test. Bioinformatics, 2020, 36, 2856-2861.	1.8	11
336	A chromosomal connectome for psychiatric and metabolic risk variants in adult dopaminergic neurons. Genome Medicine, 2020, 12, 19.	3.6	31
337	Integrating CRISPR Engineering and hiPSC-Derived 2D Disease Modeling Systems. Journal of Neuroscience, 2020, 40, 1176-1185.	1.7	13
338	Integrating Multi-Omics Data to Identify Novel Disease Genes and Single-Neucleotide Polymorphisms. Frontiers in Genetics, 2019, 10, 1336.	1.1	7
339	Gene Expression in Patient-Derived Neural Progenitors Implicates WNT5A Signaling in the Etiology of Schizophrenia. Biological Psychiatry, 2020, 88, 236-247.	0.7	28
340	Dissecting transcriptomic signatures of neuronal differentiation and maturation using iPSCs. Nature Communications, 2020, 11, 462.	5.8	96
341	Transcriptome analysis of fibroblasts from schizophrenia patients reveals differential expression of schizophrenia-related genes. Scientific Reports, 2020, 10, 630.	1.6	22
342	Novel Approaches for Identifying the Molecular Background of Schizophrenia. Cells, 2020, 9, 246.	1.8	13
343	LncRNA-AC006129.1 reactivates a SOCS3-mediated anti-inflammatory response through DNA methylation-mediated CIC downregulation in schizophrenia. Molecular Psychiatry, 2021, 26, 4511-4528.	4.1	26
344	Statistical Methods in Genome-Wide Association Studies. Annual Review of Biomedical Data Science, 2020, 3, 265-288.	2.8	6
345	Translating insights from neuropsychiatric genetics and genomics for precision psychiatry. Genome Medicine, 2020, 12, 43.	3.6	53
346	An Update on the Role of Common Genetic Variation Underlying Substance Use Disorders. Current Genetic Medicine Reports, 2020, 8, 35-46.	1.9	10

#	Article	IF	CITATIONS
347	Whole-Genome and RNA Sequencing Reveal Variation and Transcriptomic Coordination in the Developing Human Prefrontal Cortex. Cell Reports, 2020, 31, 107489.	2.9	91
348	Overdispersed gene expression in schizophrenia. NPJ Schizophrenia, 2020, 6, 9.	2.0	20
349	Whole-exome sequencing in a family with a monozygotic twin pair concordant for schizophrenia and a follow-up case-control study of identified de-novo variants. Psychiatric Genetics, 2020, 30, 60-63.	0.6	1
350	Integrated Analysis of Summary Statistics to Identify Pleiotropic Genes and Pathways for the Comorbidity of Schizophrenia and Cardiometabolic Disease. Frontiers in Psychiatry, 2020, 11, 256.	1.3	24
351	A bioinformatic inquiry of the EAAT2 interactome in postmortem and neuropsychiatric datasets. Schizophrenia Research, 2020, , .	1.1	4
352	Identifying 5 Common Psychiatric Disorders Associated Chemicals Through Integrative Analysis of Genome-Wide Association Study and Chemical-Gene Interaction Datasets. Schizophrenia Bulletin, 2020, 46, 1182-1190.	2.3	7
353	Increased burden of ultra-rare structural variants localizing to boundaries of topologically associated domains in schizophrenia. Nature Communications, 2020, 11, 1842.	5.8	56
354	Meta-Analysis of Transcriptomic Data of Dorsolateral Prefrontal Cortex and of Peripheral Blood Mononuclear Cells Identifies Altered Pathways in Schizophrenia. Genes, 2020, 11, 390.	1.0	14
355	Resources for functional genomic studies of health and development in nonhuman primates. American Journal of Physical Anthropology, 2020, 171, 174-194.	2.1	7
356	The interaction between cannabis use and a CB1-related polygenic co-expression index modulates dorsolateral prefrontal activity during working memory processing. Brain Imaging and Behavior, 2021, 15, 288-299.	1.1	11
357	Autistic traits in psychotic disorders: prevalence, familial risk, and impact on social functioning. Psychological Medicine, 2021, 51, 1704-1713.	2.7	24
358	Cortical cellular diversity and development in schizophrenia. Molecular Psychiatry, 2021, 26, 203-217.	4.1	11
359	Translational genomics and beyond in bipolar disorder. Molecular Psychiatry, 2021, 26, 186-202.	4.1	30
360	Genome-wide Association Analysis of Parkinson's Disease and Schizophrenia Reveals Shared Genetic Architecture and Identifies Novel Risk Loci. Biological Psychiatry, 2021, 89, 227-235.	0.7	53
361	Massively Parallel Reporter Assays: Defining Functional Psychiatric Genetic Variants Across Biological Contexts. Biological Psychiatry, 2021, 89, 76-89.	0.7	34
362	Transcriptomic Insight Into the Polygenic Mechanisms Underlying Psychiatric Disorders. Biological Psychiatry, 2021, 89, 54-64.	0.7	36
363	PsychENCODE and beyond: transcriptomics and epigenomics of brain development and organoids. Neuropsychopharmacology, 2021, 46, 70-85.	2.8	15
364	A Human-Specific Schizophrenia Risk Tandem Repeat Affects Alternative Splicing of a Human-Unique Isoform <i>AS3MT</i> d2d3 and Mushroom Dendritic Spine Density. Schizophrenia Bulletin, 2021, 47, 219-227	2.3	19

#	Article	IF	CITATIONS
365	Genome-wide association study identifies 48 common genetic variants associated with handedness. Nature Human Behaviour, 2021, 5, 59-70.	6.2	79
366	Functional Genomics Identify a Regulatory Risk Variation rs4420550 in the 16p11.2 Schizophrenia-Associated Locus. Biological Psychiatry, 2021, 89, 246-255.	0.7	20
367	Adiponectin receptor2 and HCLS1 associated proteinX-1 levels are altered in postmortem schizophrenic brain. Meta Gene, 2021, 27, 100834.	0.3	1
368	Novel Risk Loci Associated With Genetic Risk for Bipolar Disorder Among Han Chinese Individuals. JAMA Psychiatry, 2021, 78, 320.	6.0	35
369	Convergent genomic and pharmacological evidence of PI3K/GSK3 signaling alterations in neurons from schizophrenia patients. Neuropsychopharmacology, 2021, 46, 673-682.	2.8	24
370	Low-Level Brain Somatic Mutations Are Implicated in Schizophrenia. Biological Psychiatry, 2021, 90, 35-46.	0.7	16
371	Independent replications and integrative analyses confirm TRANK1 as a susceptibility gene for bipolar disorder. Neuropsychopharmacology, 2021, 46, 1103-1112.	2.8	20
372	Dream: powerful differential expression analysis for repeated measures designs. Bioinformatics, 2021, 37, 192-201.	1.8	138
374	Similarities in Cortical Transcriptome Alterations Between Schizophrenia and Bipolar Disorder Are Related to the Presence of Psychosis. Schizophrenia Bulletin, 2021, 47, 1442-1451.	2.3	18
375	Functional genomics of psychiatric disease risk using genome engineering. , 2021, , 711-734.		0
376	ExonSkipAD provides the functional genomic landscape of exon skipping events in Alzheimer's disease. Briefings in Bioinformatics, 2021, 22, .	3.2	4
378	Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types. Science Advances, 2021, 7, .	4.7	59
379	Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-37.	1.9	92
380	Using iPSC Models to Understand the Role of Estrogen in Neuron–Glia Interactions in Schizophrenia and Bipolar Disorder. Cells, 2021, 10, 209.	1.8	7
381	A Review of Statistical Methods for Identifying Trait-Relevant Tissues and Cell Types. Frontiers in Genetics, 2020, 11, 587887.	1.1	7
382	Convergent lines of evidence support BIN1 as a risk gene of Alzheimer's disease. Human Genomics, 2021, 15, 9.	1.4	8
383	Transcriptome-wide Mendelian randomization study prioritising novel tissue-dependent genes for glioma susceptibility. Scientific Reports, 2021, 11, 2329.	1.6	7
385	Transcriptomics of the Prader–Willi syndrome hypothalamus. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 181, 369-379.	1.0	8

#	Article	IF	CITATIONS
386	Exploring the Genetic Association of the ABAT Gene with Alzheimer's Disease. Molecular Neurobiology, 2021, 58, 1894-1903.	1.9	7
387	Robust Importance Sampling for Error Estimation in the Context of Optimal Bayesian Transfer Learning. SSRN Electronic Journal, 0, , .	0.4	0
388	Genome-wide landscape of RNA-binding protein target site dysregulation reveals a major impact on psychiatric disorder risk. Nature Genetics, 2021, 53, 166-173.	9.4	49
389	netDx: Software for building interpretable patient classifiers by multi-'omic data integration using patient similarity networks. F1000Research, 2020, 9, 1239.	0.8	2
391	Gene Expression Meta-Analysis of Cerebellum Samples Supports the FKBP5 Gene-Environment Interaction Model for Schizophrenia. Life, 2021, 11, 190.	1.1	2
393	Core transcriptional networks in Williams syndrome: IGF1-PI3K-AKT-mTOR, MAPK and actin signaling at the synapse echo autism. Human Molecular Genetics, 2021, 30, 411-429.	1.4	3
395	Association of IncRNA with regulatory molecular factors in brain and their role in the pathophysiology of schizophrenia. Metabolic Brain Disease, 2021, 36, 849-858.	1.4	14
397	RCL1 copy number variants are associated with a range of neuropsychiatric phenotypes. Molecular Psychiatry, 2021, 26, 1706-1718.	4.1	10
398	Imputed gene expression risk scores: a functionally informed component of polygenic risk. Human Molecular Genetics, 2021, 30, 727-738.	1.4	11
399	Cntn4, a risk gene for neuropsychiatric disorders, modulates hippocampal synaptic plasticity and behavior. Translational Psychiatry, 2021, 11, 106.	2.4	21
400	Transcriptome-wide transmission disequilibrium analysis identifies novel risk genes for autism spectrum disorder. PLoS Genetics, 2021, 17, e1009309.	1.5	14
401	Identification of major depressive disorder disease-related genes and functional pathways based on system dynamic changes of network connectivity. BMC Medical Genomics, 2021, 14, 55.	0.7	6
402	Dysregulation of phospholipase and cyclooxygenase expression is involved in Schizophrenia. EBioMedicine, 2021, 64, 103239.	2.7	9
403	Deep transcriptome sequencing of subgenual anterior cingulate cortex reveals cross-diagnostic and diagnosis-specific RNA expression changes in major psychiatric disorders. Neuropsychopharmacology, 2021, 46, 1364-1372.	2.8	22
404	Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature Neuroscience, 2021, 24, 425-436.	7.1	418
405	CCmed: cross-condition mediation analysis for identifying replicable trans-associations mediated by cis-gene expression. Bioinformatics, 2021, 37, 2513-2520.	1.8	4
406	Schizophrenia risk alleles often affect the expression of many genes and each gene may have a different effect on the risk: A mediation analysis. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2021, 186, 251-258.	1.1	3
407	Sex Differences in the Human Brain Transcriptome of Cases With Schizophrenia. Biological Psychiatry, 2022, 91, 92-101.	0.7	38

#	Article	IF	CITATIONS
408	Common Genetic Variation in Humans Impacts InÂVitro Susceptibility to SARS-CoV-2 Infection. Stem Cell Reports, 2021, 16, 505-518.	2.3	39
411	Integrative Analyses Followed by Functional Characterization Reveal TMEM180 as a Schizophrenia Risk Gene. Schizophrenia Bulletin, 2021, 47, 1364-1374.	2.3	7
412	Genetic control of the human brain proteome. American Journal of Human Genetics, 2021, 108, 400-410.	2.6	52
413	Machine Learning Reduced Gene/Non-Coding RNA Features That Classify Schizophrenia Patients Accurately and Highlight Insightful Gene Clusters. International Journal of Molecular Sciences, 2021, 22, 3364.	1.8	4
414	Transcriptome alterations are enriched for synapse-associated genes in the striatum of subjects with obsessive-compulsive disorder. Translational Psychiatry, 2021, 11, 171.	2.4	13
415	Germline Genetic Variants of Viral Entry and Innate Immunity May Influence Susceptibility to SARS-CoV-2 Infection: Toward a Polygenic Risk Score for Risk Stratification. Frontiers in Immunology, 2021, 12, 653489.	2.2	10
417	The genetic architecture of structural left–right asymmetry of the human brain. Nature Human Behaviour, 2021, 5, 1226-1239.	6.2	70
418	Utilising multi-large omics data to elucidate biological mechanisms within multiple sclerosis genetic susceptibility loci. Multiple Sclerosis Journal, 2021, 27, 2141-2149.	1.4	3
419	Cell-type-aware analysis of RNA-seq data. Nature Computational Science, 2021, 1, 253-261.	3.8	12
420	Identification of cell-type-specific marker genes from co-expression patterns in tissue samples. Bioinformatics, 2021, 37, 3228-3234.	1.8	9
421	A missense variant in NDUFA6 confers schizophrenia risk by affecting YY1 binding and NAGA expression. Molecular Psychiatry, 2021, 26, 6896-6911.	4.1	19
422	Genome wide association study identifies four loci for early onset schizophrenia. Translational Psychiatry, 2021, 11, 248.	2.4	15
423	A computational method for direct imputation of cell type-specific expression profiles and cellular compositions from bulk-tissue RNA-Seq in brain disorders. NAR Genomics and Bioinformatics, 2021, 3, lqab056.	1.5	5
424	Symptom-level modelling unravels the shared genetic architecture of anxiety and depression. Nature Human Behaviour, 2021, 5, 1432-1442.	6.2	45
425	Spatial Expression Pattern of <i>ZNF391</i> Gene in the Brains of Patients With Schizophrenia, Bipolar Disorders or Major Depressive Disorder Identifies New Cross-Disorder Biotypes: A Trans-Diagnostic, Top-Down Approach. Schizophrenia Bulletin, 2021, 47, 1351-1363.	2.3	4
426	Rewired Pathways and Disrupted Pathway Crosstalk in Schizophrenia Transcriptomes by Multiple Differential Coexpression Methods. Genes, 2021, 12, 665.	1.0	7
427	Resequencing and association analysis of GAP43 with autism spectrum disorder and schizophrenia in a Japanese population. Research in Autism Spectrum Disorders, 2021, 82, 101729.	0.8	2
428	Bayesian estimation of cell type–specific gene expression with prior derived from single-cell data. Genome Research, 2021, 31, 1807-1818.	2.4	40

#	Article	IF	CITATIONS
429	Mendelian randomization integrating GWAS and eQTL data revealed genes pleiotropically associated with major depressive disorder. Translational Psychiatry, 2021, 11, 225.	2.4	19
430	Regulation of TRANK1 by GSK-3 in the brain: unexpected interactions. Molecular Psychiatry, 2021, 26, 6109-6111.	4.1	3
431	Associations between hemispheric asymmetry and schizophrenia-related risk genes in people with schizophrenia and people at a genetic high risk of schizophrenia. British Journal of Psychiatry, 2021, 219, 392-400.	1.7	5
432	Gene Expression Imputation Across Multiple Tissue Types Provides Insight Into the Genetic Architecture of Frontotemporal Dementia and Its Clinical Subtypes. Biological Psychiatry, 2021, 89, 825-835.	0.7	10
433	Pleiotropic effects of telomere length loci with brain morphology and brain tissue expression. Human Molecular Genetics, 2021, 30, 1360-1370.	1.4	4
434	Genetic basis of lacunar stroke: a pooled analysis of individual patient data and genome-wide association studies. Lancet Neurology, The, 2021, 20, 351-361.	4.9	95
435	Cross-platform validation of neurotransmitter release impairments in schizophrenia patient-derived <i>NRXN1</i> -mutant neurons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	49
436	Essential genes from genome-wide screenings as a resource for neuropsychiatric disorders gene discovery. Translational Psychiatry, 2021, 11, 317.	2.4	2
438	Allele-specific DNA methylation maps in monozygotic twins discordant for psychiatric disorders reveal that disease-associated switching at the EIPR1 regulatory loci modulates neural function. Molecular Psychiatry, 2021, 26, 6630-6642.	4.1	7
441	Downregulation by CNNM2 of ATP5MD expression in the 10q24.32 schizophrenia-associated locus involved in impaired ATP production and neurodevelopment. NPJ Schizophrenia, 2021, 7, 27.	2.0	3
442	Multi-tissue neocortical transcriptome-wide association study implicates 8 genes across 6 genomic loci in Alzheimer's disease. Genome Medicine, 2021, 13, 76.	3.6	19
443	Identifying nootropic drug targets via large-scale cognitive GWAS and transcriptomics. Neuropsychopharmacology, 2021, 46, 1788-1801.	2.8	12
446	Transcriptome-wide association study identifies new susceptibility genes and pathways for depression. Translational Psychiatry, 2021, 11, 306.	2.4	32
448	Microglia contribute to social behavioral adaptation to chronic stress. Glia, 2021, 69, 2459-2473.	2.5	19
449	Genetic underpinnings of affective temperaments: a pilot GWAS investigation identifies a new genome-wide significant SNP for anxious temperament in ADGRB3 gene. Translational Psychiatry, 2021, 11, 337.	2.4	9
450	Brain-immune interactions in neuropsychiatric disorders: Lessons from transcriptome studies for molecular targeting. Biochemical Pharmacology, 2021, 188, 114532.	2.0	12
451	HGF and MET: From Brain Development to Neurological Disorders. Frontiers in Cell and Developmental Biology, 2021, 9, 683609.	1.8	47
453	Convergent and distributed effects of the 3q29 deletion on the human neural transcriptome. Translational Psychiatry, 2021, 11, 357.	2.4	12

#	Article	IF	CITATIONS
454	Patterns of cilia gene dysregulations in major psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 109, 110255.	2.5	19
455	Proteome-wide Association Study Provides Insights Into the Genetic Component of Protein Abundance in Psychiatric Disorders. Biological Psychiatry, 2021, 90, 781-789.	0.7	34
456	Investigation of convergent and divergent genetic influences underlying schizophrenia and alcohol use disorder. Psychological Medicine, 2023, 53, 1196-1204.	2.7	7
457	Limited Association between Schizophrenia Genetic Risk Factors and Transcriptomic Features. Genes, 2021, 12, 1062.	1.0	5
458	Novel approaches in schizophrenia-from risk factors and hypotheses to novel drug targets. World Journal of Psychiatry, 2021, 11, 277-296.	1.3	17
459	Inverse association between hypertension treatment and COVID-19 prevalence in Japan. International Journal of Infectious Diseases, 2021, 108, 517-521.	1.5	4
460	The nasal microbiome, nasal transcriptome, and pet sensitization. Journal of Allergy and Clinical Immunology, 2021, 148, 244-249.e4.	1.5	8
461	Genome wide analysis implicates upregulation of proteasome pathway in major depressive disorder. Translational Psychiatry, 2021, 11, 409.	2.4	2
462	Cell typeâ€specific <scp>DNA</scp> methylation analysis of the prefrontal cortex of patients with schizophrenia. Psychiatry and Clinical Neurosciences, 2021, 75, 297-299.	1.0	3
463	InTACT: An adaptive and powerful framework for jointâ€ŧissue transcriptomeâ€wide association studies. Genetic Epidemiology, 2021, 45, 848-859.	0.6	4
464	The Potential of OMICs Technologies for the Treatment of Immune-Mediated Inflammatory Diseases. International Journal of Molecular Sciences, 2021, 22, 7506.	1.8	6
465	All-optical approaches to studying psychiatric disease. Methods, 2021, , .	1.9	1
466	Unveiling the Pathogenesis of Psychiatric Disorders Using Network Models. Genes, 2021, 12, 1101.	1.0	10
467	DNA methylome perturbations: an epigenetic basis for the emergingly heritable neurodevelopmental abnormalities associated with maternal smoking and maternal nicotine exposure. Biology of Reproduction, 2021, 105, 644-666.	1.2	4
468	Making Sense of Patient-Derived iPSCs, Transdifferentiated Neurons, Olfactory Neuronal Cells, and Cerebral Organoids as Models for Psychiatric Disorders. International Journal of Neuropsychopharmacology, 2021, 24, 759-775.	1.0	8
469	Coexpression network architecture reveals the brain-wide and multiregional basis of disease susceptibility. Nature Neuroscience, 2021, 24, 1313-1323.	7.1	44
470	The autism risk gene <i>CNTN4</i> modulates dendritic spine formation. Human Molecular Genetics, 2021, 31, 207-218.	1.4	3
472	Novel DNA methylation loci and genes showing pleiotropic association with Alzheimer's dementia: a network Mendelian randomization analysis. Epigenetics, 2022, 17, 746-758.	1.3	8

#	Article	IF	CITATIONS
473	Genome-wide association study followed by trans-ancestry meta-analysis identify 17 new risk loci for schizophrenia. BMC Medicine, 2021, 19, 177.	2.3	12
474	Applying stem cells and CRISPR engineering to uncover the etiology of schizophrenia. Current Opinion in Neurobiology, 2021, 69, 193-201.	2.0	13
475	A Second Wave for the Neurokinin Tac2 Pathway in Brain Research. Biological Psychiatry, 2021, 90, 156-164.	0.7	6
476	The schizophrenia susceptibility gene NAGA regulates dendritic spine density: further evidence for the dendritic spine pathology of schizophrenia. Molecular Psychiatry, 2021, 26, 7102-7104.	4.1	7
477	Strategies for cellular deconvolution in human brain RNA sequencing data. F1000Research, 0, 10, 750.	0.8	4
478	Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals, 2021, 14, 765.	1.7	3
479	Transcriptome Analysis of Post-Mortem Brain Tissue Reveals Up-Regulation of the Complement Cascade in a Subgroup of Schizophrenia Patients. Genes, 2021, 12, 1242.	1.0	12
480	Novel characterization of the multivariate genetic architecture of internalizing psychopathology and alcohol use. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2021, 186, 353-366.	1.1	5
481	Brain-trait-associated variants impact cell-type-specific gene regulation during neurogenesis. American Journal of Human Genetics, 2021, 108, 1647-1668.	2.6	36
482	A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer's disease. Nature Genetics, 2021, 53, 1276-1282.	9.4	430
483	Biovalue in Human Brain Banking: Applications and Challenges for Research in Neurodegenerative Diseases. Methods in Molecular Biology, 2022, 2389, 209-220.	0.4	2
484	Genome-wide sequencing-based identification of methylation quantitative trait loci and their role in schizophrenia risk. Nature Communications, 2021, 12, 5251.	5.8	37
485	Regulatory variants at 2q33.1 confer schizophrenia risk by modulating distal gene <i>TYW5</i> expression. Brain, 2022, 145, 770-786.	3.7	8
487	Induced Pluripotent Stem Cells in Psychiatry: An Overview and Critical Perspective. Biological Psychiatry, 2021, 90, 362-372.	0.7	23
488	Rare germline variants in individuals diagnosed with schizophrenia within multiplex families. Psychiatry Research, 2021, 303, 114038.	1.7	6
489	Cannabidiol prevents disruptions in sensorimotor gating induced by psychotomimetic drugs that last for 24-h with probable involvement of epigenetic changes in the ventral striatum. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 111, 110352.	2.5	12
490	Multi-omics analyses of cognitive traits and psychiatric disorders highlight brain-dependent mechanisms. Human Molecular Genetics, 2023, 32, 885-896.	1.4	11
492	Multiâ€tissue transcriptomeâ€wide association studies. Genetic Epidemiology, 2021, 45, 324-337.	0.6	8

#	Article	IF	CITATIONS
493	Investigation of Schizophrenia with Human Induced Pluripotent Stem Cells. Advances in Neurobiology, 2020, 25, 155-206.	1.3	11
494	An xQTL map integrates the genetic architecture of the human brain's transcriptome and epigenome. Nature Neuroscience, 2017, 20, 1418-1426.	7.1	377
495	Neuronal defects in a human cellular model of 22q11.2 deletion syndrome. Nature Medicine, 2020, 26, 1888-1898.	15.2	113
496	Enhancer Locus in ch14q23.1 Modulates Brain Asymmetric Temporal Regions Involved in Language Processing. Cerebral Cortex, 2020, 30, 5322-5332.	1.6	12
497	Identification of Reproducible BCL11A Alterations in Schizophrenia Through Individual-Level Prediction of Coexpression. Schizophrenia Bulletin, 2020, 46, 1165-1171.	2.3	8
498	Comprehensive Gene Expression Analysis Detects Global Reduction of Proteasome Subunits in Schizophrenia. Schizophrenia Bulletin, 2021, 47, 785-795.	2.3	10
499	Mega-analysis of Odds Ratio: A Convergent Method for a Deep Understanding of the Genetic Evidence in Schizophrenia. Schizophrenia Bulletin, 2019, 45, 698-708.	2.3	17
573	Integrative study of the upper and lower airway microbiome and transcriptome in asthma. JCI Insight, 2020, 5, .	2.3	44
574	Peripheral Blood Leukocyte RNA-Seq Identifies a Set of Genes Related to Abnormal Psychomotor Behavior Characteristics in Patients with Schizophrenia. Medical Science Monitor, 2020, 26, e922426.	0.5	17
575	A complex network approach reveals a pivotal substructure of genes linked to schizophrenia. PLoS ONE, 2018, 13, e0190110.	1.1	22
576	Rate of brain aging and <i>APOE ε4</i> are synergistic risk factors for Alzheimer's disease. Life Science Alliance, 2019, 2, e201900303.	1.3	10
577	Use of the epigenetic toolbox to contextualize common variants associated with schizophrenia risk. Dialogues in Clinical Neuroscience, 2019, 21, 407-416.	1.8	3
578	Computational drug repositioning using big data from genetic studies. Journal of Applied Science Engineering Technology and Education, 2019, 1, 1-3.	0.2	1
579	Verification of the Availability of Individual Proteins for Quantitative Analysis in Brains Preserved in Two Different Brain Banks Using GAPDH and GFAP. SSRN Electronic Journal, 0, , .	0.4	0
580	Insights into Enhancer RNAs: Biogenesis and Emerging Role in Brain Diseases. Neuroscientist, 2023, 29, 166-176.	2.6	4
581	Schizophrenia-Linked Protein tSNARE1 Regulates Endosomal Trafficking in Cortical Neurons. Journal of Neuroscience, 2021, 41, 9466-9481.	1.7	10
582	Cell-Type-Specific Impact of Glucocorticoid Receptor Activation on the Developing Brain: A Cerebral Organoid Study. American Journal of Psychiatry, 2022, 179, 375-387.	4.0	33
584	A longitudinal study of gene expression in first-episode schizophrenia; exploring relapse mechanisms by co-expression analysis in peripheral blood. Translational Psychiatry, 2021, 11, 539.	2.4	5

#	Article	IF	CITATIONS
585	Attachment style moderates polygenic risk for incident posttraumatic stress in U.S. military veterans: A 7-year, nationally representative, prospective cohort study. Biological Psychiatry, 2021, , .	0.7	7
587	Genome-wide association study of idiopathic hypersomnia in a Japanese population. Sleep and Biological Rhythms, 2022, 20, 137-148.	0.5	6
588	Joint-Tissue Integrative Analysis Identified Hundreds of Schizophrenia Risk Genes. Molecular Neurobiology, 2021, , 1.	1.9	4
591	Dysregulation of schizophrenia-associated genes and genome-wide hypomethylation in neurons overexpressing DNMT1. Epigenomics, 2021, 13, 1539-1555.	1.0	11
592	Systematic discovery of signaling pathways linking immune activation to schizophrenia. IScience, 2021, 24, 103209.	1.9	2
593	Transcriptomics of the depressed and PTSD brain. Neurobiology of Stress, 2021, 15, 100408.	1.9	8
649	DNA Methylation and Schizophrenia: Current Literature and Future Perspective. Cells, 2021, 10, 2890.	1.8	26
650	Schizophrenia Genomics: Convergence on Synaptic Development, Adult Synaptic Plasticity, or Both?. Biological Psychiatry, 2022, 91, 709-717.	0.7	38
651	Transcriptome Profiling of Dysregulated GPCRs Reveals Overlapping Patterns across Psychiatric Disorders and Age-Disease Interactions. Cells, 2021, 10, 2967.	1.8	13
654	Genetics and Neuroimaging in Schizophrenia. , 2020, , 319-342.		1
663	netDx: Software for building interpretable patient classifiers by multi-'omic data integration using patient similarity networks. F1000Research, 2020, 9, 1239.	0.8	2
672	Correlated expression analysis of genes implicated in schizophrenia: identification of putative disease-related pathways. New Horizons in Translational Medicine, 2017, 3, 224-232.	1.0	4
673	Meta-Analyses of Splicing and Expression Quantitative Trait Loci Identified Susceptibility Genes of Glioma. Frontiers in Genetics, 2021, 12, 609657.	1.1	1
674	Effects of Importin $\hat{l}\pm 1/KPNA1$ deletion and adolescent social isolation stress on psychiatric disorder-associated behaviors in mice. PLoS ONE, 2021, 16, e0258364.	1.1	8
676	Bench Research Informed by GWAS Results. Cells, 2021, 10, 3184.	1.8	5
677	Peripheral complement is increased in schizophrenia and inversely related to cortical thickness. Brain, Behavior, and Immunity, 2022, 101, 423-434.	2.0	21
678	Human brain organogenesis: Toward a cellular understanding of development and disease. Cell, 2022, 185, 42-61.	13.5	97
679	Cascading epigenomic analysis for identifying disease genes from the regulatory landscape of GWAS variants. PLoS Genetics, 2021, 17, e1009918.	1.5	2

#	Article	IF	CITATIONS
680	Multi-omic insights into Parkinson's Disease: From genetic associations to functional mechanisms. Neurobiology of Disease, 2022, 163, 105580.	2.1	20
681	Regulatory Variant rs2535629 in <i>ITIH3</i> Intron Confers Schizophrenia Risk By Regulating CTCF Binding and <i>SFMBT1</i> Expression. Advanced Science, 2022, 9, e2104786.	5.6	8
682	A novel cis-regulatory variant modulating TIE1 expression associated with attention deficit hyperactivity disorder in Han Chinese children. Journal of Affective Disorders, 2022, 300, 179-188.	2.0	4
684	Multi-ancestry eQTL meta-analysis of human brain identifies candidate causal variants for brain-related traits. Nature Genetics, 2022, 54, 161-169.	9.4	49
685	Expression of actin- and oxidative phosphorylation-related transcripts across the cortical visuospatial working memory network in unaffected comparison and schizophrenia subjects. Neuropsychopharmacology, 2022, 47, 2061-2070.	2.8	1
686	Robust importance sampling for error estimation in the context of optimal Bayesian transfer learning. Patterns, 2022, 3, 100428.	3.1	2
687	Androgens increase excitatory neurogenic potential in human brain organoids. Nature, 2022, 602, 112-116.	13.7	47
688	A Novel 16-Genes Signature Scoring System as Prognostic Model to Evaluate Survival Risk in Patients with Glioblastoma. Biomedicines, 2022, 10, 317.	1.4	11
690	Insulin-Like Growth Factor 2: New Roles for a Known Molecule. Neuroscience and Behavioral Physiology, 2022, 52, 175-182.	0.2	2
691	Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1. Genome Medicine, 2022, 14, 7.	3.6	12
692	Functional variant rs2270363 on 16p13.3 confers schizophrenia risk by regulating <i>NMRAL1</i> . Brain, 2022, 145, 2569-2585.	3.7	4
693	Harnessing tissue-specific genetic variation to dissect putative causal pathways between body mass index and cardiometabolic phenotypes. American Journal of Human Genetics, 2022, 109, 240-252.	2.6	15
694	Comparison of confound adjustment methods in the construction of gene co-expression networks. Genome Biology, 2022, 23, 44.	3.8	4
695	Robust meta-analysis for large-scale genomic experiments based on an empirical approach. BMC Medical Research Methodology, 2022, 22, 43.	1.4	1
696	Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci and subtype-specific risk alleles. Nature Genetics, 2022, 54, 152-160.	9.4	135
697	Discovery of genomic loci of the human cerebral cortex using genetically informed brain atlases. Science, 2022, 375, 522-528.	6.0	31
699	Atlas of genetic effects in human microglia transcriptome across brain regions, aging and disease pathologies. Alzheimer's and Dementia, 2021, 17, e050942.	0.4	4
700	Meta-Analyses of Splicing and Expression Quantitative Trait Loci Identified Susceptibility Genes of Glioma. Frontiers in Genetics, 2021, 12, 609657.	1.1	8

#	Article	IF	CITATIONS
701	Integration with systems biology approaches and -omics data to characterize risk variation. , 2022, , 289-315.		4
702	Functional genomics elucidates regulatory mechanisms of Parkinson's disease-associated variants. BMC Medicine, 2022, 20, 68.	2.3	2
704	Sex-Dependent Effects of Stress in Male Rats on Memory and Expression of the Insulin-Like Growth Factor 2 Receptor Gene in the Brains of Offspring. Neuroscience and Behavioral Physiology, 2022, 52, 242-250.	0.2	0
707	Expansion of Schizophrenia Gene Network Knowledge Using Machine Learning Selected Signals From Dorsolateral Prefrontal Cortex and Amygdala RNA-seq Data. Frontiers in Psychiatry, 2022, 13, 797329.	1.3	9
709	Systems-Level Analysis of Genetic Variants Reveals Functional and Spatiotemporal Context in Treatment-resistant Schizophrenia. Molecular Neurobiology, 2022, 59, 3170-3182.	1.9	4
710	Innovative computational approaches shed light on genetic mechanisms underlying cognitive impairment among children born extremely preterm. Journal of Neurodevelopmental Disorders, 2022, 14, 16.	1.5	2
711	LncRNA RP5-998N21.4 promotes immune defense through upregulation of IFIT2 and IFIT3 in schizophrenia. NPJ Schizophrenia, 2022, 8, 11.	2.0	6
712	Putting Genetics to Work in the Psychiatric Clinic. American Journal of Psychiatry, 2022, 179, 182-188.	4.0	2
713	The druggable schizophrenia genome: from repurposing opportunities to unexplored drug targets. Npj Genomic Medicine, 2022, 7, 25.	1.7	8
716	TGF-β1 is associated with deficits in cognition and cerebral cortical thickness in first-episode schizophrenia. Journal of Psychiatry and Neuroscience, 2022, 47, E86-E98.	1.4	8
717	Chromatin domain alterations linked to 3D genome organization in a large cohort of schizophrenia and bipolar disorder brains. Nature Neuroscience, 2022, 25, 474-483.	7.1	25
718	Genetic associations at regulatory phenotypes improve fine-mapping of causal variants for 12 immune-mediated diseases. Nature Genetics, 2022, 54, 251-262.	9.4	23
719	Social Determinants of Inter-Individual Variability and Vulnerability: The Role of Dopamine. Frontiers in Behavioral Neuroscience, 2022, 16, 836343.	1.0	6
720	Genetic variants associated with longitudinal changes in brain structure across the lifespan. Nature Neuroscience, 2022, 25, 421-432.	7.1	75
721	Co-Expression Networks Unveiled Long Non-Coding RNAs as Molecular Targets of Drugs Used to Treat Bipolar Disorder. Frontiers in Pharmacology, 2022, 13, 873271.	1.6	7
722	Impact of SARS-CoV-2 on Host Factors Involved in Mental Disorders. Frontiers in Microbiology, 2022, 13, 845559.	1.5	5
724	Mapping anorexia nervosa genes to clinical phenotypes. Psychological Medicine, 2023, 53, 2619-2633.	2.7	9
725	Bioinformatics and network-based approaches for determining pathways, signature molecules, and drug substances connected to genetic basis of schizophrenia etiology. Brain Research, 2022, 1785, 147889.	1.1	5

#	Article	IF	CITATIONS
728	Transcriptomic analysis of frontotemporal lobar degeneration with TDP-43 pathology reveals cellular alterations across multiple brain regions. Acta Neuropathologica, 2022, 143, 383-401.	3.9	20
729	Identification of a Risk Locus at 7p22.3 for Schizophrenia and Bipolar Disorder in East Asian Populations. Frontiers in Genetics, 2021, 12, 789512.	1.1	0
730	Modeling common and rare genetic risk factors of neuropsychiatric disorders in human induced pluripotent stem cells. Schizophrenia Research, 2022, , .	1.1	6
745	Identifying causal genes for stroke via integrating the proteome and transcriptome from brain and blood. Journal of Translational Medicine, 2022, 20, 181.	1.8	12
746	Gene co-expression architecture in peripheral blood in a cohort of remitted first-episode schizophrenia patients. NPJ Schizophrenia, 2022, 8, .	2.0	2
748	Comprehensive and integrative analyses identify TYW5 as a schizophrenia risk gene. BMC Medicine, 2022, 20, 169.	2.3	5
749	Annotating functional effects of non-coding variants in neuropsychiatric cell types by deep transfer learning. PLoS Computational Biology, 2022, 18, e1010011.	1.5	7
750	Functional genomic analysis delineates regulatory mechanisms of GWAS-identified bipolar disorder risk variants. Genome Medicine, 2022, 14, 53.	3.6	6
755	Association between resting-state functional brain connectivity and gene expression is altered in autism spectrum disorder. Nature Communications, 2022, 13, .	5.8	12
756	EPIC: Inferring relevant cell types for complex traits by integrating genome-wide association studies and single-cell RNA sequencing. PLoS Genetics, 2022, 18, e1010251.	1.5	10
757	Hippocampal Iron Accumulation Impairs Synapses and Memory via Suppressing Furin Expression and Downregulating BDNF Maturation. Molecular Neurobiology, 2022, 59, 5574-5590.	1.9	11
758	IGF2: Development, Genetic and Epigenetic Abnormalities. Cells, 2022, 11, 1886.	1.8	18
759	Identification of novel proteins for lacunar stroke by integrating genome-wide association data and human brain proteomes. BMC Medicine, 2022, 20, .	2.3	12
760	Integrating 3D genomic and epigenomic data to enhance target gene discovery and drug repurposing in transcriptome-wide association studies. Nature Communications, 2022, 13, .	5.8	18
761	dbBIP: a comprehensive bipolar disorder database for genetic research. Database: the Journal of Biological Databases and Curation, 2022, 2022, .	1.4	3
762	Gradient-based Sparse Principal Component Analysis with Extensions to Online Learning. Biometrika, 0,	1.3	0
763	Patterns of Convergence and Divergence Between Bipolar Disorder Type I and Type II: Evidence From Integrative Genomic Analyses. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	6
764	Integrative Analyses of Transcriptomes to Explore Common Molecular Effects of Antipsychotic Drugs. International Journal of Molecular Sciences, 2022, 23, 7508.	1.8	2

#	Article	IF	CITATIONS
765	A polygenic score indexing a DRD2-related co-expression network is associated with striatal dopamine function. Scientific Reports, 2022, 12, .	1.6	4
766	Variation in TAF1 Expression in Female Carrier-Induced Pluripotent Stem Cells and Human Brain Ontogeny Has Implications for Adult Neostriatum Vulnerability in X-Linked Dystonia Parkinsonism. ENeuro, 2022, 9, ENEURO.0129-22.2022.	0.9	0
767	Highly targeted electrochemical disruption of microbes with minimal disruption to pulp cells. Journal of Dentistry, 2022, 125, 104241.	1.7	1
768	Genetic identification of tissues and cell types underlying attention-deficit/hyperactivity disorder. Frontiers in Psychiatry, 0, 13, .	1.3	1
769	Cell-type-specific cis-eQTLs in eight human brain cell types identify novel risk genes for psychiatric and neurological disorders. Nature Neuroscience, 2022, 25, 1104-1112.	7.1	78
770	Perfluorooctanoic acid-induced developmental cardiotoxicity in chicken embryo: Roles of miR-490-5p. Environmental Pollution, 2022, 312, 120022.	3.7	4
771	Morphometric Integrated Classification Index: A Multisite Model-Based, Interpretable, Shareable and Evolvable Biomarker for Schizophrenia. Schizophrenia Bulletin, 2022, 48, 1217-1227.	2.3	4
772	Genome-wide DNA methylation in an animal model and human studies of schizophrenia: a protocol for a meta-analysis. BMJ Open Science, 2022, 6, .	0.8	1
773	Loss of the Schizophrenia-linked Furin protein from Drosophila mushroom body neurons results in antipsychotic-reversible habituation deficits. Journal of Neuroscience, 0, , JN-RM-1055-22.	1.7	0
774	Association Between Brain Structure and Alcohol Use Behaviors in Adults. JAMA Psychiatry, 2022, 79, 869.	6.0	18
777	Demystifying non-coding GWAS variants: an overview of computational tools and methods. Human Molecular Genetics, 2022, 31, R73-R83.	1.4	9
779	Insulin-like Growth Factor 2 (IGF-2) and Insulin-like Growth Factor Binding Protein 7 (IGFBP-7) Are Upregulated after Atypical Antipsychotics in Spanish Schizophrenia Patients. International Journal of Molecular Sciences, 2022, 23, 9591.	1.8	4
780	Trans-genetic effects of circular RNA expression quantitative trait loci and potential causal mechanisms in autism. Molecular Psychiatry, 2022, 27, 4695-4706.	4.1	4
781	The emerging role of furin in neurodegenerative and neuropsychiatric diseases. Translational Neurodegeneration, 2022, 11, .	3.6	19
784	Integrating human brain proteomic data with genome-wide association study findings identifies novel brain proteins in substance use traits. Neuropsychopharmacology, 2022, 47, 2292-2299.	2.8	6
785	Comprehensive analysis of shared genetic loci between hippocampal volume and schizophrenia. Psychiatry Research, 2022, 316, 114795.	1.7	0
786	Identification of novel proteins associated with movement-related adverse antipsychotic effects by integrating GWAS data and human brain proteomes. Psychiatry Research, 2022, 317, 114791.	1.7	3
788	Cross-ancestry meta-analysis of opioid use disorder uncovers novel loci with predominant effects in brain regions associated with addiction. Nature Neuroscience, 2022, 25, 1279-1287.	7.1	26

#	Article	IF	CITATIONS
789	Population-level variation in enhancer expression identifies disease mechanisms in the human brain. Nature Genetics, 2022, 54, 1493-1503.	9.4	17
790	Comment on: What genes are differentially expressed in individuals with schizophrenia? A systematic review. Molecular Psychiatry, 2023, 28, 523-525.	4.1	5
791	Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention. Nature Genetics, 2022, 54, 1332-1344.	9.4	64
792	Shared genetic architecture between schizophrenia and subcortical brain volumes implicates early neurodevelopmental processes and brain development in childhood. Molecular Psychiatry, 2022, 27, 5167-5176.	4.1	13
793	Stroke genetics informs drug discovery and risk prediction across ancestries. Nature, 2022, 611, 115-123.	13.7	143
794	Leveraging interindividual variability of regulatory activity for refining genetic regulation of gene expression in schizophrenia. Molecular Psychiatry, 2022, 27, 5177-5185.	4.1	1
795	Using neuroimaging genomics to investigate the evolution of human brain structure. Proceedings of the United States of America, 2022, 119, .	3.3	5
796	Altered extracellular mRNA communication in postpartum depression is associated with decreased autophagy. Molecular Psychiatry, 2022, 27, 4526-4535.	4.1	10
799	Lessons Learned From Parsing Genetic Risk for Schizophrenia Into Biological Pathways. Biological Psychiatry, 2023, 94, 121-130.	0.7	8
800	Upper cortical layer–driven network impairment in schizophrenia. Science Advances, 2022, 8, .	4.7	31
801	Modeling gene × environment interactions in PTSD using human neurons reveals diagnosis-specific glucocorticoid-induced gene expression. Nature Neuroscience, 2022, 25, 1434-1445.	7.1	19
802	Differential H3K9me2 heterochromatin levels and concordant mRNA expression in postmortem brain tissue of individuals with schizophrenia, bipolar, and controls. Frontiers in Psychiatry, 0, 13, .	1.3	1
803	Transcriptome-wide and stratified genomic structural equation modeling identify neurobiological pathways shared across diverse cognitive traits. Nature Communications, 2022, 13, .	5.8	11
804	Common and rare variants of EGF increase the genetic risk of Alzheimer's disease as revealed by targeted sequencing of growth factors in Han Chinese. Neurobiology of Aging, 2022, , .	1.5	1
806	Analysis of the caudate nucleus transcriptome in individuals with schizophrenia highlights effects of antipsychotics and new risk genes. Nature Neuroscience, 2022, 25, 1559-1568.	7.1	19
808	Genetic insights into smoking behaviours in 10,558 men of African ancestry from continental Africa and the UK. Scientific Reports, 2022, 12, .	1.6	1
809	The miR-124-AMPAR pathway connects polygenic risks with behavioral changes shared between schizophrenia and bipolar disorder. Neuron, 2023, 111, 220-235.e9.	3.8	14
810	KIBRA regulates activity-induced AMPA receptor expression and synaptic plasticity in an age-dependent manner. IScience, 2022, 25, 105623.	1.9	6

#	Article	IF	CITATIONS
811	Rare tandem repeat expansions associate with genes involved in synaptic and neuronal signaling functions in schizophrenia. Molecular Psychiatry, 2023, 28, 475-482.	4.1	10
812	Transcriptome-wide association study by different approaches reveals candidate causal genes for cannabis use disorder. Gene, 2023, 851, 147048.	1.0	0
813	Common and rare variants within SP4 exert distinct molecular mechanisms contributing to the risk of schizophrenia. Psychiatry Research, 2022, 318, 114948.	1.7	1
814	Integrated analysis of proteome-wide and transcriptome-wide association studies identified novel genes and chemicals for vertigo. Brain Communications, 2022, 4, .	1.5	0
815	Sex-Specific Differences in the Transcriptome of the Human Dorsolateral Prefrontal Cortex in Schizophrenia. Molecular Neurobiology, 2023, 60, 1083-1098.	1.9	7
816	Multiâ€Omics Studies in Historically Excluded Populations: The Road to Equity. Clinical Pharmacology and Therapeutics, 2023, 113, 541-556.	2.3	6
818	Gene expression metaâ€analysis in patients with schizophrenia reveals upâ€regulation of <i>RGS2</i> and <i>RGS16</i> in Brodmann Area 10. European Journal of Neuroscience, 2023, 57, 360-372.	1.2	2
819	Morphometric dis-similarity between cortical and subcortical areas underlies cognitive function and psychiatric symptomatology: a preadolescence study from ABCD. Molecular Psychiatry, 2023, 28, 1146-1158.	4.1	9
820	Severe COVID-19 is associated with molecular signatures of aging in the human brain. Nature Aging, 2022, 2, 1130-1137.	5.3	34
821	Brain Proteome-Wide and Transcriptome-Wide Asso-ciation Studies, Bayesian Colocalization, and Mendelian Randomization Analyses Reveal Causal Genes of Parkinson's Disease. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2023, 78, 563-568.	1.7	4
823	Astrocytic cell adhesion genes linked to schizophrenia correlate with synaptic programs in neurons. Cell Reports, 2023, 42, 111988.	2.9	4
824	Molecular Landscape of Tourette's Disorder. International Journal of Molecular Sciences, 2023, 24, 1428.	1.8	0
825	Meta-analysis of brain samples of individuals with schizophrenia detects down-regulation of multiple ATP synthase encoding genes in both females and males. Journal of Psychiatric Research, 2023, 158, 350-359.	1.5	5
826	Exploring genetic mechanisms underlying EEG endophenotypes via summary-data-based Mendelian randomization. , 2022, , .		0
827	Prediction of transition to psychosis from an at-risk mental state using structural neuroimaging, genetic, and environmental data. Frontiers in Psychiatry, 0, 13, .	1.3	3
828	Twelve-hour rhythms in transcript expression within the human dorsolateral prefrontal cortex are altered in schizophrenia. PLoS Biology, 2023, 21, e3001688.	2.6	5
829	The relationship between case–control differential gene expression from brain tissue and genetic associations in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2023, 192, 85-92.	1.1	2
830	The evolutionary origin of psychosis. Frontiers in Psychiatry, 0, 14, .	1.3	1

#	Article	IF	CITATIONS
831	Polygenic scores for psychiatric disorders in a diverse postmortem brain tissue cohort. Neuropsychopharmacology, 2023, 48, 764-772.	2.8	1
834	The shared genetic landscape of blood cell traits and risk of neurological and psychiatric disorders. Cell Genomics, 2023, 3, 100249.	3.0	3
835	Perturbed iron biology in the prefrontal cortex of people with schizophrenia. Molecular Psychiatry, 2023, 28, 2058-2070.	4.1	8
836	Identifying novel proteins underlying loneliness by integrating GWAS summary data with human brain proteomes. Neuropsychopharmacology, 2023, 48, 1087-1097.	2.8	2
837	Genetic architecture of the white matter connectome of the human brain. Science Advances, 2023, 9, .	4.7	13
838	Multivariate genomic architecture of cortical thickness and surface area at multiple levels of analysis. Nature Communications, 2023, 14, .	5.8	11
839	Brain expression quantitative trait locus and network analyses reveal downstream effects and putative drivers for brain-related diseases. Nature Genetics, 2023, 55, 377-388.	9.4	54
840	Gene and schizophrenia in the pregenome and postgenome-wide association studies era: a bibliometric analysis and network visualization. Psychiatric Genetics, 2023, 33, 37-49.	0.6	1
841	No Increased Detection of Nucleic Acids of CNS-related Viruses in the Brains of Patients with Schizophrenia, Bipolar Disorder, and Autism Spectrum Disorder. Schizophrenia Bulletin, 0, , .	2.3	3
842	The molecular pathology of schizophrenia: an overview of existing knowledge and new directions for future research. Molecular Psychiatry, 2023, 28, 1868-1889.	4.1	8
844	How can childhood maltreatment affect post-traumatic stress disorder in adult: Results from a composite null hypothesis perspective of mediation analysis. Frontiers in Psychiatry, 0, 14, .	1.3	0
845	Convergent coexpression of autism-associated genes suggests some novel risk genes may not be detectable in large-scale genetic studies. Cell Genomics, 2023, 3, 100277.	3.0	2
850	Antipsychotic drug use complicates assessment of gene expression changes associated with schizophrenia. Translational Psychiatry, 2023, 13, .	2.4	3
851	BrainGENIE: The Brain Gene Expression and Network Imputation Engine. Translational Psychiatry, 2023, 13, .	2.4	1
853	Up-Regulation of S100 Gene Family in Brain Samples of a Subgroup of Individuals with Schizophrenia: Meta-analysis. NeuroMolecular Medicine, 2023, 25, 388-401.	1.8	1
855	Applications of artificial intelligenceâ^'machine learning for detection of stress: a critical overview. Molecular Psychiatry, 0, , .	4.1	7
856	Cellular Diversity in Human Subgenual Anterior Cingulate and Dorsolateral Prefrontal Cortex by Single-Nucleus RNA-sequencing. Journal of Neuroscience, 0, , JN-RM-0830-22.	1.7	0
857	Multi-omic molecular profiling and network biology for precision anaesthesiology: a narrative review. British Journal of Anaesthesia, 2023, 131, 26-36.	1.5	2

#	Article	IF	CITATIONS
858	Integrative Post-Genome-Wide Association Study Analyses Relevant to Psychiatric Disorders: Imputing Transcriptome and Proteome Signals. Complex Psychiatry, 2023, 9, 130-144.	1.3	0
860	The thalamus in psychosis spectrum disorder. Frontiers in Neuroscience, 0, 17, .	1.4	4
861	Consensus molecular environment of schizophrenia risk genes in coexpression networks shifting across age and brain regions. Science Advances, 2023, 9, .	4.7	5
862	Exploring the mediation of DNA methylation across the epigenome between childhood adversity and First Episode of Psychosis—findings from the EU-GEI study. Molecular Psychiatry, 2023, 28, 2095-2106.	4.1	5
863	The Nature of Prefrontal Cortical GABA Neuron Alterations in Schizophrenia: Markedly Lower Somatostatin and Parvalbumin Gene Expression Without Missing Neurons. American Journal of Psychiatry, 2023, 180, 495-507.	4.0	15
872	â€~Multi-omics' data integration: applications in probiotics studies. Npj Science of Food, 2023, 7, .	2.5	6
939	Identification of risk genes and biological pathways influencing myopia via transcriptome association study and biomedical ontology methods. , 2023, , .		0