Two distinct RNase activities of CRISPR-C2c2 enable gu detection

Nature 538, 270-273 DOI: 10.1038/nature19802

Citation Report

#	Article	IF	CITATIONS
2	Diversity and evolution of class 2 CRISPR–Cas systems. Nature Reviews Microbiology, 2017, 15, 169-182.		792
3	Cas9, Cpf1 and C2c1/2/3―What's next?. Bioengineered, 2017, 8, 265-273.	1.4	80
4	Building the Class 2 CRISPR-Cas Arsenal. Molecular Cell, 2017, 65, 377-379.	4.5	28
5	Two Distant Catalytic Sites Are Responsible for C2c2 RNase Activities. Cell, 2017, 168, 121-134.e12.	13.5	248
6	New CRISPR-Cas systems discovered. Cell Research, 2017, 27, 313-314.	5.7	4
7	CRISPR/CAS9 Technologies. Journal of Bone and Mineral Research, 2017, 32, 883-888.	3.1	19
8	Expanding the CRISPR Toolbox: Targeting RNA with Cas13b. Molecular Cell, 2017, 65, 582-584.	4.5	17
9	PPR-SMR protein SOT1 has RNA endonuclease activity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1554-E1563.	3.3	71
10	Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease. Circulation Research, 2017, 120, 876-894.	2.0	61
11	Biochemie 2016: Crispr-Cas: bakterielle Immunsysteme und ihre Anwendung. Nachrichten Aus Der Chemie, 2017, 65, 313-315.	0.0	0
12	Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356, 438-442.	6.0	2,275
13	Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a. Molecular Cell, 2017, 66, 221-233.e4.	4.5	408
14	A CRISPR toolbox to study virus–host interactions. Nature Reviews Microbiology, 2017, 15, 351-364.	13.6	147
15	RNA Targeting by Functionally Orthogonal Type VI-A CRISPR-Cas Enzymes. Molecular Cell, 2017, 66, 373-383.e3.	4.5	229
16	Structures and mechanisms of CRISPR RNA-guided effector nucleases. Current Opinion in Structural Biology, 2017, 43, 68-78.	2.6	72
17	Antiviral Goes Viral: Harnessing CRISPR/Cas9 to Combat Viruses in Humans. Trends in Microbiology, 2017, 25, 833-850.	3.5	65
18	CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Mammalian Genome, 2017, 28, 247-261.	1.0	104
19	Disruptive non-disruptive applications of CRISPR/Cas9. Current Opinion in Biotechnology, 2017, 48, 203-209.	3.3	7

ITATION REDO

2

#	Article	IF	CITATIONS
20	Conformational regulation of CRISPR-associated nucleases. Current Opinion in Microbiology, 2017, 37, 110-119.		43
21	Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 2017, 37, 67-78.	2.3	1,076
22	Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9. Molecular Cell, 2017, 67, 117-127.e5.	4.5	143
23	Biosensing: CRISPR-powered diagnostics. Nature Biomedical Engineering, 2017, 1, .	11.6	52
24	New variants of CRISPR RNAâ€guided genome editing enzymes. Plant Biotechnology Journal, 2017, 15, 917-926.	4.1	79
25	Inhibition of CRISPR-Cas9 with Bacteriophage Proteins. Cell, 2017, 168, 150-158.e10.	13.5	409
26	CRISPR targets RNA. Nature Methods, 2017, 14, 33-33.	9.0	1
27	Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Molecular Cell, 2017, 65, 618-630.e7.	4.5	445
28	A CRISPR Way to Diagnose Infectious Diseases. New England Journal of Medicine, 2017, 377, 1685-1687.	13.9	24
29	Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back. Genome Biology and Evolution, 2017, 9, 2812-2825.	1.1	131
30	The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit. Molecular Cell, 2017, 68, 15-25.	4.5	178
31	High-Throughput Approaches to Pinpoint Function within the Noncoding Genome. Molecular Cell, 2017, 68, 44-59.	4.5	54
32	Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes. Molecular Cell, 2017, 68, 26-43.	4.5	199
33	RNA targeting with CRISPR–Cas13. Nature, 2017, 550, 280-284.	13.7	1,442
34	The chemistry of Cas9 and its CRISPR colleagues. Nature Reviews Chemistry, 2017, 1, .	13.8	111
35	Class 2 CRISPR–Cas RNA-guided endonucleases: Swiss Army knives of genome editing. Nature Structural and Molecular Biology, 2017, 24, 882-892.	3.6	55
36	Biomedical applications of RNA-based devices. Current Opinion in Biomedical Engineering, 2017, 4, 106-115.	1.8	19
37	Edited course of biomedical research: leaping forward with CRISPR. Pharmacological Research, 2017, 125, 258-265.	3.1	5

		Report	
#	Article	IF	CITATIONS
38	The CRISPR Spacer Space Is Dominated by Sequences from Species-Specific Mobilomes. MBio, 2017, 8, .	1.8	181
39	Guide-bound structures of an RNA-targeting A-cleaving CRISPR–Cas13a enzyme. Nature Structural and Molecular Biology, 2017, 24, 825-833.	3.6	118
40	Genome editing technologies and their potential to treat neurologic disease. Neurology, 2017, 89, 1739-1748.	1.5	6
41	Type III CRISPR–Cas systems produce cyclic oligoadenylate second messengers. Nature, 2017, 548, 543-548.	13.7	377
42	Beyond Native Cas9: Manipulating Genomic Information and Function. Trends in Biotechnology, 2017, 35, 983-996.	4.9	64
43	The Molecular Architecture for RNA-Guided RNA Cleavage by Cas13a. Cell, 2017, 170, 714-726.e10.	13.5	344
44	Mechanisms and consequences of diversity-generating immune strategies. Nature Reviews Immunology, 2017, 17, 719-728.	10.6	26
45	Basics of genome editing technology and its application in livestock species. Reproduction in Domestic Animals, 2017, 52, 4-13.	0.6	68
46	Enhancing the RNA engineering toolkit. Science, 2017, 358, 996-997.	6.0	21
47	Precision Medicine, CRISPR, and Genome Engineering. Advances in Experimental Medicine and Biology, 2017, , .	0.8	2
48	Target Discovery for Precision Medicine Using High-Throughput Genome Engineering. Advances in Experimental Medicine and Biology, 2017, 1016, 123-145.	0.8	6
49	Molecular architectures and mechanisms of Class 2 CRISPR-associated nucleases. Current Opinion in Structural Biology, 2017, 47, 157-166.	2.6	65
50	A decade of discovery: CRISPR functions and applications. Nature Microbiology, 2017, 2, 17092.	5.9	238
51	Evolutionary Genomics of Defense Systems in Archaea and Bacteria. Annual Review of Microbiology, 2017, 71, 233-261.	2.9	256
52	Genome Editing by CRISPR-Based Technology. , 2017, , 531-540.		1
53	How to Train a Cell–Cutting-Edge Molecular Tools. Frontiers in Chemistry, 2017, 5, 12.	1.8	8
54	Systems Biology-Derived Discoveries of Intrinsic Clocks. Frontiers in Neurology, 2017, 8, 25.	1.1	31
55	Current status and perspectives of genome editing technology for microalgae. Biotechnology for Biofuels, 2017, 10, 267.	6.2	102

# 56	ARTICLE The Biology of CRISPR-Cas: Backward and Forward. Cell, 2018, 172, 1239-1259.	IF 13.5	Citations
57	Diagnosis and therapy with CRISPR advanced CRISPR based tools for point of care diagnostics and early therapies. Gene, 2018, 656, 22-29.		33
58	A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs. Methods, 2018, 143, 48-57.		36
59	Engineering Introns to Express RNA Guides for Cas9- and Cpf1-Mediated Multiplex Genome Editing. Molecular Plant, 2018, 11, 542-552.	3.9	81
60	Move Over, Genomes: Here Comes Transcriptome Engineering. CRISPR Journal, 2018, 1, 126-127.	1.4	2
61	The <scp>CRISPR</scp> /Cas revolution reaches the <scp>RNA</scp> world: Cas13, a new Swiss Army knife for plant biologists. Plant Journal, 2018, 94, 767-775.	2.8	83
62	The host-encoded RNase E endonuclease as the crRNA maturation enzyme in a CRISPR–Cas subtype III-Bv system. Nature Microbiology, 2018, 3, 367-377.	5.9	73
63	Programmable RNA Cleavage and Recognition by a Natural CRISPR-Cas9 System from Neisseria meningitidis. Molecular Cell, 2018, 69, 906-914.e4.	4.5	73
64	Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 2018, 360, 439-444.		1,649
65	CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018, 360, 436-439.	6.0	2,355
66	The evolution of CRISPR/Cas9 and their cousins: hope or hype?. Biotechnology Letters, 2018, 40, 465-477.	1.1	20
67	Wheat genome editing expedited by efficient transformation techniques: Progress and perspectives. Crop Journal, 2018, 6, 22-31.	2.3	29
68	RNA-targeting CRISPR comes of age. Nature Biotechnology, 2018, 36, 44-45.	9.4	8
70	Harnessing "A Billion Years of Experimentation‪ The Ongoing Exploration and Exploitation of CRISPR–Cas Immune Systems. CRISPR Journal, 2018, 1, 141-158.	1.4	44
71	Field-deployable viral diagnostics using CRISPR-Cas13. Science, 2018, 360, 444-448.	6.0	982
72	The ontogeny, activation and function of the epicardium during heart development and regeneration. Development (Cambridge), 2018, 145, .	1.2	73
73	Single-Molecule View of Small RNA–Guided Target Search and Recognition. Annual Review of Biophysics, 2018, 47, 569-593.	4.5	12
74	Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell, 2018, 173, 665-676.e14.	13.5	789

#	Article	IF	CITATIONS
75	Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Molecular Cell, 2018, 70, 327-339.e5.	4.5	356
76	CRISPR/Cas13 as a Tool for RNA Interference. Trends in Plant Science, 2018, 23, 374-378.	4.3	64
77	DNA silencing by prokaryotic Argonaute proteins adds a new layer of defense against invading nucleic acids. FEMS Microbiology Reviews, 2018, 42, 376-387.	3.9	52
78	CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Research, 2018, 28, 491-493.	5.7	623
79	CRISPR-RT: a web application for designing CRISPR-C2c2 crRNA with improved target specificity. Bioinformatics, 2018, 34, 117-119.	1.8	28
80	Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1408.	6.6	96
81	The emerging role of mRNA methylation in normal and pathological behavior. Genes, Brain and Behavior, 2018, 17, e12428.	1.1	65
82	Genome Editing: Insights from Chemical Biology to Support Safe and Transformative Therapeutic Applications. ACS Chemical Biology, 2018, 13, 333-342.	1.6	7
83	How bacteria control the CRISPR-Cas arsenal. Current Opinion in Microbiology, 2018, 42, 87-95.	2.3	21
84	Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation. Biotechnology Advances, 2018, 36, 295-310.	6.0	87
85	Modeling Cancer in the CRISPR Era. Annual Review of Cancer Biology, 2018, 2, 111-131.	2.3	15
86	Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications. ACS Chemical Biology, 2018, 13, 347-356.	1.6	25
87	Class 2 CRISPR/Cas: an expanding biotechnology toolbox for and beyond genome editing. Cell and Bioscience, 2018, 8, 59.	2.1	66
88	Structural insights into Cas13b-guided CRISPR RNA maturation and recognition. Cell Research, 2018, 28, 1198-1201.	5.7	45
89	Engineering RNA Virus Interference via the CRISPR/Cas13 Machinery in Arabidopsis. Viruses, 2018, 10, 732.	1.5	75
90	New Developments in CRISPR Technology: Improvements in Specificity and Efficiency. Current Pharmaceutical Biotechnology, 2018, 18, 1038-1054.	0.9	12
91	The CRISPR/Cas revolution continues: From efficient gene editing for crop breeding to plant synthetic biology. Journal of Integrative Plant Biology, 2018, 60, 1127-1153.	4.1	109
92	Blossom of CRISPR technologies and applications in disease treatment. Synthetic and Systems Biotechnology, 2018, 3, 217-228.	1.8	20

#	Article		CITATIONS
93	CRISPR Methods for Nucleic Acid Detection Herald the Future of Molecular Diagnostics. Clinical Chemistry, 2018, 64, 1681-1683.		18
94	A Reverse Transcriptase-Cas1 Fusion Protein Contains a Cas6 Domain Required for Both CRISPR RNA Biogenesis and RNA Spacer Acquisition. Molecular Cell, 2018, 72, 700-714.e8.		25
95	Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science, 2018, 362, 839-842.	6.0	757
96	CRISPR-Based Technologies: Impact of RNA-Targeting Systems. Molecular Cell, 2018, 72, 404-412.		131
97	The applications of <scp>CRISPR</scp> /Cas system in molecular detection. Journal of Cellular and Molecular Medicine, 2018, 22, 5807-5815.	1.6	47
98	Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d. Cell, 2018, 175, 212-223.e17.	13.5	195
99	Engineering RNA-Binding Proteins by Modular Assembly of RanBP2-Type Zinc Fingers. Methods in Molecular Biology, 2018, 1867, 57-74.	0.4	1
100	CRISPR-Cas guides the future of genetic engineering. Science, 2018, 361, 866-869.	6.0	1,024
101	CRISPR/Cas13a targeting of RNA virus in plants. Plant Cell Reports, 2018, 37, 1707-1712.	2.8	9
102	Heterochromatin Modulation and PCG Control of Gene Expression Mediated by Noncoding RNA in Cancer. , 2018, , 359-372.		0
103	CRISPR-Based Technologies for Metabolic Engineering in Cyanobacteria. Trends in Biotechnology, 2018, 36, 996-1010.	4.9	103
104	RNA-dependent RNA targeting by CRISPR-Cas9. ELife, 2018, 7, .	2.8	152
105	Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiological Reviews, 2018, 98, 1205-1240.	13.1	31
106	Models of Parkinson's disease revisited. Nature, 2018, 557, 169-170.	13.7	9
107	RNA Binding and HEPN-Nuclease Activation Are Decoupled in CRISPR-Cas13a. Cell Reports, 2018, 24, 1025-1036.	2.9	108
109	Genome Editing of Pluripotent Stem Cells. , 0, , 270-284.		1
110	Epitranscriptomics: A New Regulatory Mechanism of Brain Development and Function. Frontiers in Neuroscience, 2018, 12, 85.	1.4	27
111	65 YEARS OF THE DOUBLE HELIX: The advancements of gene editing and potential application to hereditary cancer. Endocrine-Related Cancer, 2018, 25, T141-T158.	1.6	3

	CITATION RI	EPORT	
#	Article	IF	CITATIONS
112	CRISPR-Cas Targeting of Host Genes as an Antiviral Strategy. Viruses, 2018, 10, 40.	1.5	35
113	From CRISPR scissors to virus sensors. Nature, 2018, 557, 168-169.	13.7	16
114	CRISPR–Cas13 Precision Transcriptome Engineering in Cancer. Cancer Research, 2018, 78, 4107-4113.	0.4	66
115	Pathogen detection in the CRISPR–Cas era. Genome Medicine, 2018, 10, 32.	3.6	75
116	The best Cas scenario. Nature Medicine, 2018, 24, 528-530.	15.2	0
117	Shooting the messenger: RNA-targetting CRISPR-Cas systems. Bioscience Reports, 2018, 38, .	1.1	28
118	RNA virus interference via CRISPR/Cas13a system in plants. Genome Biology, 2018, 19, 1.	3.8	1,148
119	RNA Guide Complementarity Prevents Self-Targeting in Type VI CRISPR Systems. Molecular Cell, 2018, 71, 791-801.e3.		79
120	DNA Nucleases and their Use in Livestock Production. , 2018, , 123-148.		1
121	Precision gene editing technology andÂapplications in nephrology. Nature Reviews Nephrology, 2018, 14, 663-677.	4.1	38
122	CRISPR Technology for Breast Cancer: Diagnostics, Modeling, and Therapy. Advanced Biology, 2018, 2, 1800132.	3.0	11
123	Implementation of the CRISPR-Cas13a system in fission yeast and its repurposing for precise RNA editing. Nucleic Acids Research, 2018, 46, e90-e90.	6.5	52
124	A CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment. Cancer Letters, 2018, 431, 171-181.	3.2	96
125	CRISPR/dCas9-mediated biosensor for detection of tick-borne diseases. Sensors and Actuators B: Chemical, 2018, 273, 316-321.	4.0	47
126	Applications of CRISPR-Cas Enzymes in Cancer Therapeutics and Detection. Trends in Cancer, 2018, 4, 499-512.	3.8	89
127	CRISPRâ€Enabled Tools for Engineering Microbial Genomes and Phenotypes. Biotechnology Journal, 2018, 13, e1700586.	1.8	30
128	Genome editing in the mammalian brain using the CRISPR–Cas system. Neuroscience Research, 2019, 141, 4-12.	1.0	21
129	Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR–Cas Systems. Journal of Molecular Biology, 2019, 431, 66-87.	2.0	247

#	Article		CITATIONS
130	PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. RNA Biology, 2019, 16, 504-517.		160
131	Comparative genomics and evolution of trans-activating RNAs in Class 2 CRISPR-Cas systems. RNA Biology, 2019, 16, 435-448.		45
132	Physiological RNA dynamics in RNA-Seq analysis. Briefings in Bioinformatics, 2019, 20, 1725-1733.	3.2	7
133	A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules. Nature Communications, 2019, 10, 3672.		281
134	CRISPR Tools for Systematic Studies of RNA Regulation. Cold Spring Harbor Perspectives in Biology, 2019, 11, a035386.	2.3	22
135	Programmable RNA manipulation in living cells. Cellular and Molecular Life Sciences, 2019, 76, 4861-4867.	2.4	10
136	A cytosine deaminase for programmable single-base RNA editing. Science, 2019, 365, 382-386.	6.0	322
137	Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nature Biotechnology, 2019, 37, 1059-1069.	9.4	168
138	Mutations in spliceosome genes and therapeutic opportunities in myeloid malignancies. Genes Chromosomes and Cancer, 2019, 58, 889-902.		41
139	CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biology, 2019, 20, 132.	3.8	224
140	Modular one-pot assembly of CRISPR arrays enables library generation and reveals factors influencing crRNA biogenesis. Nature Communications, 2019, 10, 2948.	5.8	75
141	Nucleic Acid Detection of Plant Genes Using CRISPR-Cas13. CRISPR Journal, 2019, 2, 165-171.	1.4	92
142	CRISPR-Cas12a Nucleases Bind Flexible DNA Duplexes without RNA/DNA Complementarity. ACS Omega, 2019, 4, 17140-17147.	1.6	14
143	Programmable Inhibition and Detection of RNA Viruses Using Cas13. Molecular Cell, 2019, 76, 826-837.e11.	4.5	286
144	Methods and applications of CRISPR/Cas system for genome editing in stem cells. Cell Regeneration, 2019, 8, 33-41.	1.1	24
145	The CRISPRâ€Cas13a Geneâ€Editing System Induces Collateral Cleavage of RNA in Glioma Cells. Advanced Science, 2019, 6, 1901299.	5.6	98
146	CRISPR/Cas13aâ€₽owered Electrochemical Microfluidic Biosensor for Nucleic Acid Amplificationâ€Free miRNA Diagnostics. Advanced Materials, 2019, 31, e1905311.	11.1	263
147	Dualâ€Locking Nanoparticles Disrupt the PDâ€1/PDâ€L1 Pathway for Efficient Cancer Immunotherapy. Advanced Materials, 2019, 31, e1905751.	11.1	95

#	Article		CITATIONS
148	CRISPR-Cas13a mediated nanosystem for attomolar detection of canine parvovirus type 2. Chinese Chemical Letters, 2019, 30, 2201-2204.		49
149	Endogenous CRISPR-Cas System-Based Genome Editing and Antimicrobials: Review and Prospects. Frontiers in Microbiology, 2019, 10, 2471.	1.5	39
150	Recruitment of Reverse Transcriptase-Cas1 Fusion Proteins by Type VI-A CRISPR-Cas Systems. Frontiers in Microbiology, 2019, 10, 2160.	1.5	27
151	The Role of Noncoding RNAs in Double-Strand Break Repair. Frontiers in Plant Science, 2019, 10, 1155.	1.7	17
152	Bacterial dormancy curbs phage epidemics. Nature, 2019, 570, 173-174.	13.7	12
153	SHERLOCK: nucleic acid detection with CRISPR nucleases. Nature Protocols, 2019, 14, 2986-3012.	5.5	851
154	CRISPR–Cas: a tool for cancer research and therapeutics. Nature Reviews Clinical Oncology, 2019, 16, 281-295.	12.5	127
155	<i>N</i> 1-Methyladenosine detection with CRISPR-Cas13a/C2c2. Chemical Science, 2019, 10, 2975-2979.	3.7	54
156	Next-Generation Sequencing and CRISPR/Cas13 Editing in Viroid Research and Molecular Diagnostics. Viruses, 2019, 11, 120.	1.5	44
157	CRISPR: a new principle of genome engineering linked to conceptual shifts in evolutionary biology. Biology and Philosophy, 2019, 34, 9.	0.7	26
158	Structural basis of Type IV CRISPR RNA biogenesis by a Cas6 endoribonuclease. RNA Biology, 2019, 16, 1438-1447.	1.5	19
159	Development of CRISPR-Cas systems for genome editing and beyond. Quarterly Reviews of Biophysics, 2019, 52, .	2.4	108
160	Two HEPN domains dictate CRISPR RNA maturation and target cleavage in Cas13d. Nature Communications, 2019, 10, 2544.	5.8	68
161	The next generation of CRISPR–Cas technologies and applications. Nature Reviews Molecular Cell Biology, 2019, 20, 490-507.	16.1	957
162	Therapeutic application of the CRISPR system: current issues and new prospects. Human Genetics, 2019, 138, 563-590.	1.8	16
163	Recent trends in CRISPR-Cas system: genome, epigenome, and transcriptome editing and CRISPR delivery systems. Genes and Genomics, 2019, 41, 871-877.	0.5	15
164	CRISPR technology to combat plant RNA viruses: A theoretical model for Potato virus Y (PVY) resistance. Microbial Pathogenesis, 2019, 133, 103551.	1.3	8
165	CRISPR-Cas9 directed genome engineering for enhancing salt stress tolerance in rice. Seminars in Cell and Developmental Biology, 2019, 96, 91-99.	2.3	53

#	Article	IF	CITATIONS
166	FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. Nucleic Acids Research, 2019, 47, e83-e83.		168
167	Development of CRISPR-Mediated Systems in the Study of Duchenne Muscular Dystrophy. Human Gene Therapy Methods, 2019, 30, 71-80.		8
168	Searching for a Match: Structure, Function and Application of Sequence-Specific RNA-Binding Proteins. Plant and Cell Physiology, 2019, 60, 1927-1938.		22
169	Precise editing of plant genomes – Prospects and challenges. Seminars in Cell and Developmental Biology, 2019, 96, 115-123.	2.3	15
170	Three New Cs for CRISPR: Collateral, Communicate, Cooperate. Trends in Genetics, 2019, 35, 446-456.	2.9	34
171	CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment. Drug Discovery Today, 2019, 24, 955-970.	3.2	52
172	Plant Genome Engineering for Targeted Improvement of Crop Traits. Frontiers in Plant Science, 2019, 10, 114.	1.7	149
173	CRISPR-Cas: Converting A Bacterial Defence Mechanism into A State-of-the-Art Genetic Manipulation Tool. Antibiotics, 2019, 8, 18.	1.5	48
174	Improving CRISPR Genome Editing by Engineering Guide RNAs. Trends in Biotechnology, 2019, 37, 870-881.		73
175	Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnology Advances, 2019, 37, 708-729.		95
176	High-Resolution Structure of Cas13b and Biochemical Characterization of RNA Targeting and Cleavage. Cell Reports, 2019, 26, 3741-3751.e5.		102
177	Origins and evolution of CRISPR-Cas systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180087.	1.8	258
178	Rapid and Fully Microfluidic Ebola Virus Detection with CRISPR-Cas13a. ACS Sensors, 2019, 4, 1048-1054.	4.0	215
179	A Practical Guide to Genome Editing Using Targeted Nuclease Technologies. , 2019, 9, 665-714.		7
180	High-Fidelity and Rapid Quantification of miRNA Combining crRNA Programmability and CRISPR/Cas13a <i>trans</i> -Cleavage Activity. Analytical Chemistry, 2019, 91, 5278-5285.	3.2	150
181	Broad-spectrum enzymatic inhibition of CRISPR-Cas12a. Nature Structural and Molecular Biology, 2019, 26, 315-321.	3.6	99
182	Emerging Analytical Techniques for Rapid Pathogen Identification and Susceptibility Testing. Annual Review of Analytical Chemistry, 2019, 12, 41-67.	2.8	45
183	The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: Current status, future perspectives, and associated challenges. Biotechnology Advances, 2019, 37,	6.0	74

#	Article	IF	CITATIONS
184	CdpR Inhibits CRISPR-Cas Adaptive Immunity to Lower Anti-viral Defense while Avoiding Self-Reactivity. IScience, 2019, 13, 55-68.		14
185	Beyond classic editing: innovative CRISPR approaches for functional studies of long non-coding RNA. Biology Methods and Protocols, 2019, 4, bpz017.		16
186	Electrochemical biosensor for CRISPR/Cas13a powered miRNA diagnostics. , 2019, , .		1
187	Composition and Diversity of CRISPR-Cas13a Systems in the Genus Leptotrichia. Frontiers in Microbiology, 2019, 10, 2838.	1.5	25
188	Dynamic Imaging of RNA in Living Cells by CRISPR-Cas13 Systems. Molecular Cell, 2019, 76, 981-997.e7.	4.5	231
190	CRISPR-Cas13d mediates robust RNA virus interference in plants. Genome Biology, 2019, 20, 263.	3.8	124
191	Progress in the application of CRISPR: From gene to base editing. Medicinal Research Reviews, 2019, 39, 665-683.	5.0	21
192	Recent advances in structural studies of the CRISPR-Cas-mediated genome editing tools. National Science Review, 2019, 6, 438-451.	4.6	14
193	Clinical applications of CRISPRâ€based genome editing and diagnostics. Transfusion, 2019, 59, 1389-1399.	0.8	31
194	CRISPR-Cas Biology and Its Application to Infectious Diseases. Journal of Clinical Microbiology, 2019, 57, .		82
195	Emerging technologies for the detection of viral infections. Future Virology, 2019, 14, 39-49.	0.9	19
196	CRISPR/Cas Systems towards Next-Generation Biosensing. Trends in Biotechnology, 2019, 37, 730-743.	4.9	600
197	Current progress in CRISPRâ€based diagnostic platforms. Journal of Cellular Biochemistry, 2019, 120, 2721-2725.	1.2	56
198	Cancer diagnosis and immunotherapy in the age of CRISPR. Genes Chromosomes and Cancer, 2019, 58, 233-243.	1.5	4
199	Functionally diverse type V CRISPR-Cas systems. Science, 2019, 363, 88-91.	6.0	342
200	Emerging role of nanomedicine in the treatment of neuropathic pain. Journal of Drug Targeting, 2020, 28, 11-22.	2.1	9
201	Biochemical characterization of RNA-guided ribonuclease activities for CRISPR-Cas9 systems. Methods, 2020, 172, 32-41.	1.9	0
202	Applications of genome editing in farm animals. , 2020, , 131-149.		5

		CITATION R	EPORT	
#	Article		IF	CITATIONS
203	Approaches to study CRISPR RNA biogenesis and the key players involved. Methods, 2020, 17	72, 12-26.	1.9	18
204	CRISPR Applications in Plant Virology: Virus Resistance and Beyond. Phytopathology, 2020, 1	10, 18-28.	1.1	43
205	Recent developments and applications of genetic transformation and genome editing techno wheat. Theoretical and Applied Genetics, 2020, 133, 1603-1622.	ologies in	1.8	28
206	Sharpening the Molecular Scissors: Advances in Gene-Editing Technology. IScience, 2020, 23	, 100789.	1.9	81
207	Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. N Reviews Microbiology, 2020, 18, 67-83.	Nature	13.6	1,427
208	CRISPR-Cas System for RNA Detection and Imaging. Chemical Research in Chinese Universitie 157-163.	es, 2020, 36,	1.3	8
209	CRISPR/Cas13a Signal Amplification Linked Immunosorbent Assay for Femtomolar Protein De Analytical Chemistry, 2020, 92, 573-577.	rtection.	3.2	123
210	Highly specific enrichment of rare nucleic acid fractions using Thermus thermophilus argonau with applications in cancer diagnostics. Nucleic Acids Research, 2020, 48, e19-e19.	ite	6.5	76
211	Functional DNA Regulated CRISPR-Cas12a Sensors for Point-of-Care Diagnostics of Non-Nucleic-Acid Targets. Journal of the American Chemical Society, 2020, 142, 207-213.		6.6	430
212	Conditional control of RNA-guided nucleic acid cleavage and gene editing. Nature Communic 2020, 11, 91.	ations,	5.8	54
213	A New Tool for CRISPR-Cas13a-Based Cancer Gene Therapy. Molecular Therapy - Oncolytics, 2 79-92.	2020, 19,	2.0	29
214	CRISPR/Cas13: A potential therapeutic option of COVID-19. Biomedicine and Pharmacothera 110738.	ру, 2020, 131,	2.5	37
215	New Insights on the Role of N6-Methyladenosine RNA Methylation in the Physiology and Path the Nervous System. Frontiers in Molecular Biosciences, 2020, 7, 555372.	ology of	1.6	19
216	A materials-science perspective on tackling COVID-19. Nature Reviews Materials, 2020, 5, 84	7-860.	23.3	228
217	Ultrasensitive and high-specific microRNA detection using hyper-branching rolling circle ampli CRISPR/Cas13a biosensor. Sensors and Actuators B: Chemical, 2020, 325, 128799.	ified	4.0	28
218	Structure-based design of gRNA for Cas13. Scientific Reports, 2020, 10, 11610.		1.6	27
219	CRISPR-Cas13a based bacterial detection platform: Sensing pathogen Staphylococcus aureus samples. Analytica Chimica Acta, 2020, 1127, 225-233.	s in food	2.6	90
220	CRISPR-Casî¦ from huge phages is a hypercompact genome editor. Science, 2020, 369, 333-	337.	6.0	352

ARTICLE IF CITATIONS # Fighting COVID-19: Integrated Micro- and Nanosystems for Viral Infection Diagnostics. Matter, 2020, 3, 221 5.0 77 628-651. CRISPR-Cas13a Inhibits HIV-1 Infection. Molecular Therapy - Nucleic Acids, 2020, 21, 147-155. 2.3 223 CRISPR–Cas immune systems and genome engineering. , 2020, , 157-177. 0 Is microfluidics the "assembly line―for CRISPR-Cas9 gene-editing?. Biomicrofluidics, 2020, 14, 061301. 1.2 224 Effective RNA Knockdown Using CRISPR-Cas13a and Molecular Targeting of the EML4-ALK Transcript in 225 1.8 16 H3122 Lung Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 8904. Single Stage Purification of CRISPR/Cas13a Nuclease via Metal-Chelating Chromatography Following Heterologous Expression with the Preservation of Collateral Ribonuclease Activity. Applied Biochemistry and Microbiology, 2020, 56, 671-677. 0.3 Heavily Armed Ancestors: CRISPR Immunity and Applications in Archaea with a Comparative Analysis of 227 1.8 14 CRISPR Types in Sulfolobales. Biomolecules, 2020, 10, 1523. Point-of-care CRISPR/Cas nucleic acid detection: Recent advances, challenges and opportunities. 228 5.3 222 Biosensors and Bioelectronics, 2020, 166, 112445. 229 Targeted RNA Knockdown by a Type III CRISPR-Cas Complex in Zebrafish. CRISPR Journal, 2020, 3, 299-313. 1.4 20 Molecular Mechanisms of CRISPR-Cas Immunity in Bacteria. Annual Review of Genetics, 2020, 54, 93-120. 3.2 94 Development and clinical application of a novel CRISPR-Cas12a based assay for the detection of African 231 1.3 19 swine fever virus. BMC Microbiology, 2020, 20, 282. CRISPR-Cas13d for Gene Knockdown and Engineering of CHO Cells. ACS Synthetic Biology, 2020, 9, 2808-2818. Deployable CRISPR-Cas13a diagnostic tools to detect and report Ebola and Lassa virus cases in 233 5.8 101 real-time. Nature Communications, 2020, 11, 4131. RNAâ€" protein interaction mapping via MS2- or Cas13-based APEX targeting. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22068-22079. 234 3.3 A CRISPR-Cas13a Based Strategy That Tracks and Degrades Toxic RNA in Myotonic Dystrophy Type 1. 235 1.1 18 Frontiers in Genetics, 2020, 11, 594576. Functional Screening Techniques to Identify Long Non-Coding RNAs as Therapeutic Targets in Cancer. Cancers, 2020, 12, 3695. Functional Genomics in Pancreatic ¹² Cells: Recent Advances in Gene Deletion and Genome Editing 237 1.513 Technologies for Diabetes Research. Frontiers in Endocrinology, 2020, 11, 576632. 238 CRISPR_Cas systems for fungal research. Fungal Biology Reviews, 2020, 34, 189-201. 28

#	Article	IF	Citations
239	Delivery of Cas13a/crRNA by self-degradable black phosphorus nanosheets to specifically inhibit Mcl-1 for breast cancer therapy. Journal of Materials Chemistry B, 2020, 8, 11096-11106.	2.9	21
240	The expanded development and application of CRISPR system for sensitive nucleotide detection. Protein and Cell, 2020, 11, 624-629.	4.8	30
241	Light-Driven Activation of RNA-Guided Nucleic Acid Cleavage. ACS Chemical Biology, 2020, 15, 1455-1463.	1.6	32
242	CRISPR-cas systems based molecular diagnostic tool for infectious diseases and emerging 2019 novel coronavirus (COVID-19) pneumonia. Journal of Drug Targeting, 2020, 28, 727-731.	2.1	62
243	A m ⁶ A Sensing Method by Its Impact on the Stability of RNA Double Helix. Chemistry and Biodiversity, 2020, 17, e2000050.	1.0	3
244	Massively multiplexed nucleic acid detection with Cas13. Nature, 2020, 582, 277-282.	13.7	492
245	Applications of CRISPR-Cas systems in lactic acid bacteria. FEMS Microbiology Reviews, 2020, 44, 523-537.	3.9	34
246	CRISPR/Cas13a Powered Portable Electrochemiluminescence Chip for Ultrasensitive and Specific MiRNA Detection. Advanced Science, 2020, 7, 1903661.	5.6	177
247	The Manipulation of RNAâ€Guided Nucleic Acid Cleavage with Ninhydrin Chemistry. Advanced Science, 2020, 7, 1903770.	5.6	8
248	A phage-encoded anti-CRISPR enables complete evasion of type VI-A CRISPR-Cas immunity. Science, 2020, 369, 54-59.	6.0	77
249	Major advances in the history of plant virology. , 2020, , 3-24.		1
250	Cas12a-Activated Universal Field-Deployable Detectors for Bacterial Diagnostics. ACS Omega, 2020, 5, 14814-14821.	1.6	17
251	CRISPR-Cas13 as an Antiviral Strategy for Coronavirus Disease 2019. CRISPR Journal, 2020, 3, 140-142.	1.4	4
252	Applications of CRISPR technologies in transplantation. American Journal of Transplantation, 2020, 20, 3285-3293.	2.6	12
253	Programmable RNA Targeting Using CasRx in Flies. CRISPR Journal, 2020, 3, 164-176.	1.4	63
254	Massively parallel Cas13 screens reveal principles for guide RNA design. Nature Biotechnology, 2020, 38, 722-727.	9.4	233
255	CasRx-mediated RNA targeting prevents choroidal neovascularization in a mouse model of age-related macular degeneration. National Science Review, 2020, 7, 835-837.	4.6	38
256	Nucleic Acid Detection Using CRISPR/Cas Biosensing Technologies. ACS Synthetic Biology, 2020, 9, 1226-1233.	1.9	226

#	Article	IF	CITATIONS
257	Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nature Communications, 2020, 11, 1281.	5.8	279
258	Single-molecule analysis of nucleic acid biomarkers – A review. Analytica Chimica Acta, 2020, 1115, 61-85.	2.6	34
260	Single-Step, Salt-Aging-Free, and Thiol-Free Freezing Construction of AuNP-Based Bioprobes for Advancing CRISPR-Based Diagnostics. Journal of the American Chemical Society, 2020, 142, 7506-7513.	6.6	161
261	CRISPR-Cas13a Cleavage of Dengue Virus NS3 Gene Efficiently Inhibits Viral Replication. Molecular Therapy - Nucleic Acids, 2020, 19, 1460-1469.	2.3	52
262	An introduction to genome editing CRISPR-Cas systems. , 2020, , 1-13.		4
263	Evolution and molecular mechanism of CRISPR/Cas9 systems. , 2020, , 15-25.		4
264	Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nature Biotechnology, 2020, 38, 1431-1440.	9.4	173
265	A scoutRNA Is Required for Some Type V CRISPR-Cas Systems. Molecular Cell, 2020, 79, 416-424.e5.	4.5	49
266	CRISPR-based functional genomics for neurological disease. Nature Reviews Neurology, 2020, 16, 465-480.	4.9	89
267	CRISPR/cas systems redefine nucleic acid detection: Principles and methods. Biosensors and Bioelectronics, 2020, 165, 112430.	5.3	138
268	Application of Various Delivery Methods for CRISPR/dCas9. Molecular Biotechnology, 2020, 62, 355-363.	1.3	11
269	Next-generation pathogen diagnosis with CRISPR/Cas-based detection methods. Emerging Microbes and Infections, 2020, 9, 1682-1691.	3.0	94
270	Futuristic CRISPR-based biosensing in the cloud and internet of things era: an overview. Multimedia Tools and Applications, 2022, 81, 35143-35171.	2.6	28
271	Universal and Naked-Eye Gene Detection Platform Based on the Clustered Regularly Interspaced Short Palindromic Repeats/Cas12a/13a System. Analytical Chemistry, 2020, 92, 4029-4037.	3.2	184
272	High-throughput and all-solution phase African Swine Fever Virus (ASFV) detection using CRISPR-Cas12a and fluorescence based point-of-care system. Biosensors and Bioelectronics, 2020, 154, 112068.	5.3	163
273	Aberrant Expression Profiles of IncRNAs and Their Associated Nearby Coding Genes in the Hippocampus of the SAMP8 Mouse Model with AD. Molecular Therapy - Nucleic Acids, 2020, 20, 140-154.	2.3	11
274	Impact of CRISPR interference on strain development in biotechnology. Biotechnology and Applied Biochemistry, 2020, 67, 7-21.	1.4	31
275	CRISPR system: Discovery, development and off-target detection. Cellular Signalling, 2020, 70, 109577.	1.7	37

#	Article	IF	CITATIONS
276	Sensitive detection of a bacterial pathogen using allosteric probe-initiated catalysis and CRISPR-Cas13a amplification reaction. Nature Communications, 2020, 11, 267.	5.8	200
277	RNA Editing as a Therapeutic Approach for Retinal Gene Therapy Requiring Long Coding Sequences. International Journal of Molecular Sciences, 2020, 21, 777.	1.8	46
278	It takes two (Las1 HEPN endoribonuclease domains) to cut RNA correctly. Journal of Biological Chemistry, 2020, 295, 5857-5870.	1.6	14
279	CRISPR-Cas13 Inhibitors Block RNA Editing in Bacteria and Mammalian Cells. Molecular Cell, 2020, 78, 850-861.e5.	4.5	65
280	Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice. Cell, 2020, 181, 590-603.e16.	13.5	306
281	Pharmacological Therapeutics Targeting RNA-Dependent RNA Polymerase, Proteinase and Spike Protein: From Mechanistic Studies to Clinical Trials for COVID-19. Journal of Clinical Medicine, 2020, 9, 1131.	1.0	112
282	<p>How CRISPR-Cas System Could Be Used to Combat Antimicrobial Resistance</p> . Infection and Drug Resistance, 2020, Volume 13, 1111-1121.	1.1	87
283	A Novel Eukaryoteâ€Like CRISPR Activation Tool in Bacteria: Features and Capabilities. BioEssays, 2020, 42, e1900252.	1.2	6
284	Machine learning predicts new anti-CRISPR proteins. Nucleic Acids Research, 2020, 48, 4698-4708.	6.5	70
285	Ultrafast visual nucleic acid detection with CRISPR/Cas12a and rapid PCR in single capillary. Sensors and Actuators B: Chemical, 2021, 326, 128618.	4.0	29
286	CRISPR-based enrichment strategies for targeted sequencing. Biotechnology Advances, 2021, 46, 107672.	6.0	23
287	CRISPR-based biosensing systems: a way to rapidly diagnose COVID-19. Critical Reviews in Clinical Laboratory Sciences, 2021, 58, 225-241.	2.7	17
288	Next-Generation CRISPR Technologies and Their Applications in Gene and Cell Therapy. Trends in Biotechnology, 2021, 39, 692-705.	4.9	52
289	Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell, 2021, 184, 323-333.e9.	13.5	613
290	CRISPR technology: The engine that drives cancer therapy. Biomedicine and Pharmacotherapy, 2021, 133, 111007.	2.5	30
291	Ultrasensitive electrochemical assay for microRNA-21 based on CRISPR/Cas13a-assisted catalytic hairpin assembly. Talanta, 2021, 224, 121878.	2.9	62
292	Screening for functional circular RNAs using the CRISPR–Cas13 system. Nature Methods, 2021, 18, 51-59.	9.0	179
293	Sophisticated CRISPR/Cas tools for fine-tuning plant performance. Journal of Plant Physiology, 2021, 257, 153332.	1.6	10

#	Article	IF	CITATIONS
294	An Ultralocalized Cas13a Assay Enables Universal and Nucleic Acid Amplification-Free Single-Molecule RNA Diagnostics. ACS Nano, 2021, 15, 1167-1178.	7.3	187
295	HEPN RNases – an emerging class of functionally distinct RNA processing and degradation enzymes. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 88-108.	2.3	6
296	Systematic analysis, identification, and use of CRISPR/Cas13a–associated crRNAs for sensitive and specific detection of the lcrV gene of Yersinia pestis. Diagnostic Microbiology and Infectious Disease, 2021, 99, 115275.	0.8	15
297	Emerging tools and paradigm shift of gene editing in cereals, fruits, and horticultural crops for enhancing nutritional value and food security. Food and Energy Security, 2021, 10, e258.	2.0	21
298	Inflammatory Leptomeningeal Cytokines Mediate COVID-19 Neurologic Symptoms in Cancer Patients. Cancer Cell, 2021, 39, 276-283.e3.	7.7	54
299	Gene and Genome Editing with CRISPR/Cas Systems for Fruit and Vegetable Improvement. Concepts and Strategies in Plant Sciences, 2021, , 227-245.	0.6	0
300	Safe-in-Man Broad Spectrum Antiviral Agents. Advances in Experimental Medicine and Biology, 2021, 1322, 313-337.	0.8	1
301	The CRISPR-Cas Mechanism for Adaptive Immunity and AlternateÂBacterialÂFunctions Fuels Diverse Biotechnologies. Frontiers in Cellular and Infection Microbiology, 2020, 10, 619763.	1.8	35
302	CRISPR Systems for COVID-19 Diagnosis. ACS Sensors, 2021, 6, 1430-1445.	4.0	100
303	CRISPR/Cas-based Diagnostics and Gene Therapy. BIO Integration, 2021, 2, .	0.9	3
303 304	CRISPR/Cas-based Diagnostics and Gene Therapy. BIO Integration, 2021, 2, . COVID-19 Diagnostic Approaches: An Overview. IFMBE Proceedings, 2021, , 892-906.	0.9	3 0
304	COVID-19 Diagnostic Approaches: An Overview. IFMBE Proceedings, 2021, , 892-906. Next-Generation Sequencing and the CRISPR-Cas Nexus: A Molecular Plant Virology Perspective.	0.2	0
304 305	COVID-19 Diagnostic Approaches: An Overview. IFMBE Proceedings, 2021, , 892-906. Next-Generation Sequencing and the CRISPR-Cas Nexus: A Molecular Plant Virology Perspective. Frontiers in Microbiology, 2020, 11, 609376. Genetic Engineering of a Phage-Based Delivery System for Endogenous III-A CRISPR-Cas System Against	0.2 1.5	0 9
304 305 306	 COVID-19 Diagnostic Approaches: An Overview. IFMBE Proceedings, 2021, , 892-906. Next-Generation Sequencing and the CRISPR-Cas Nexus: A Molecular Plant Virology Perspective. Frontiers in Microbiology, 2020, 11, 609376. Genetic Engineering of a Phage-Based Delivery System for Endogenous III-A CRISPR-Cas System Against Mycobacterium tuberculosis. Springer Protocols, 2021, , 311-323. CRISPR technology incorporating amplification strategies: molecular assays for nucleic acids, 	0.2 1.5 0.1	0 9 1
304 305 306 307	 COVID-19 Diagnostic Approaches: An Overview. IFMBE Proceedings, 2021, , 892-906. Next-Generation Sequencing and the CRISPR-Cas Nexus: A Molecular Plant Virology Perspective. Frontiers in Microbiology, 2020, 11, 609376. Genetic Engineering of a Phage-Based Delivery System for Endogenous III-A CRISPR-Cas System Against Mycobacterium tuberculosis. Springer Protocols, 2021, , 311-323. CRISPR technology incorporating amplification strategies: molecular assays for nucleic acids, proteins, and small molecules. Chemical Science, 2021, 12, 4683-4698. 	0.2 1.5 0.1	0 9 1 145
304 305 306 307 308	 COVID-19 Diagnostic Approaches: An Overview. IFMBE Proceedings, 2021, , 892-906. Next-Generation Sequencing and the CRISPR-Cas Nexus: A Molecular Plant Virology Perspective. Frontiers in Microbiology, 2020, 11, 609376. Genetic Engineering of a Phage-Based Delivery System for Endogenous III-A CRISPR-Cas System Against Mycobacterium tuberculosis. Springer Protocols, 2021, , 311-323. CRISPR technology incorporating amplification strategies: molecular assays for nucleic acids, proteins, and small molecules. Chemical Science, 2021, 12, 4683-4698. Alternative types of editing. , 2021, , 123-143. CRISPR/Cas13: A Novel and Emerging Tool for RNA Editing in Plants. Concepts and Strategies in Plant 	0.2 1.5 0.1 3.7	0 9 1 145 1

#	Article	IF	CITATIONS
313	COVID-19 one year later: a retrospect of CRISPR-Cas system in combating COVID-19. International Journal of Biological Sciences, 2021, 17, 2080-2088.	2.6	6
314	Genome editing for plant research and crop improvement. Journal of Integrative Plant Biology, 2021, 63, 3-33.	4.1	70
315	A ligation-driven CRISPR–Cas biosensing platform for non-nucleic acid target detections. Chemical Communications, 2021, 57, 7051-7054.	2.2	22
316	Sequence-specific inhibition of reverse transcription by recombinant CRISPR/dCas13a ribonucleoprotein complexes <i>in vitro</i> . Biology Methods and Protocols, 2021, 6, bpab009.	1.0	0
317	A highly sensitive and selective fluoride sensor based on a riboswitch-regulated transcription coupled with CRISPR-Cas13a tandem reaction. Chemical Science, 2021, 12, 11740-11747.	3.7	20
318	Advances in Point-of-Care Testing Platforms for Diagnosis of Infectious Diseases. , 2021, , .		0
319	Fungal genome editing using CRISPR-Cas nucleases: a new tool for the management of plant diseases. , 2021, , 333-360.		1
320	ADAR-Mediated RNA Editing and Its Therapeutic Potentials. RNA Technologies, 2021, , 471-503.	0.2	3
321	Applications of CRISPR/Cas Beyond Simple Traits in Crops. , 2021, , 231-260.		0
322	Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics. Cell, 2021, 184, 881-898.	13.5	56
323	Development of a Broadly Applicable Cas12a-Linked Beam Unlocking Reaction for Sensitive and Specific Detection of Respiratory Pathogens Including SARS-CoV-2. ACS Chemical Biology, 2021, 16, 491-500.	1.6	12
324	A Living Organism in your CRISPR Toolbox: <i>Caenorhabditis elegans</i> Is a Rapid and Efficient Model for Developing CRISPR-Cas Technologies. CRISPR Journal, 2021, 4, 32-42.	1.4	9
325	The bridge helix of Cas12a imparts selectivity in cis â€DNA cleavage and regulates trans â€DNA cleavage. FEBS Letters, 2021, 595, 892-912.	1.3	9
326	Rapid and Sensitive Detection of SARS-CoV-2 Using Clustered Regularly Interspaced Short Palindromic Repeats. Biomedicines, 2021, 9, 239.	1.4	20
327	The CRISPR revolution and its potential impact on global health security. Pathogens and Global Health, 2021, 115, 80-92.	1.0	8
328	Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nature Biotechnology, 2021, 39, 717-726.	9.4	130
329	An engineered CRISPR-Cas12a variant and DNA-RNA hybrid guides enable robust and rapid COVID-19 testing. Nature Communications, 2021, 12, 1739.	5.8	124
330	Targeted RNA <i>N</i> ⁶ â€Methyladenosine Demethylation Controls Cell Fate Transition in Human Pluripotent Stem Cells. Advanced Science, 2021, 8, e2003902.	5.6	20

#	Article	IF	CITATIONS
331	Highly sensitive and specific detection of hepatitis B virus DNA and drug resistance mutations utilizing the PCR-based CRISPR-Cas13a system. Clinical Microbiology and Infection, 2021, 27, 443-450.	2.8	45
332	Structural basis for self-cleavage prevention by tag:anti-tag pairing complementarity in type VI Cas13 CRISPR systems. Molecular Cell, 2021, 81, 1100-1115.e5.	4.5	34
334	CRISPR Tech Behind Super-Sensitive, Smartphone COVID Test. IEEE Pulse, 2021, 12, 8-11.	0.1	3
335	CRISPR-based tools: Alternative methods for the diagnosis of COVID-19. Clinical Biochemistry, 2021, 89, 1-13.	0.8	67
336	Inverse design of a single-frequency diffractive biosensor based on the reporter cleavage detection mechanism. Optics Express, 2021, 29, 10780.	1.7	7
337	Exploring the Trans-Cleavage Activity of CRISPR/Cas12a on Gold Nanoparticles for Stable and Sensitive Biosensing. Analytical Chemistry, 2021, 93, 4967-4974.	3.2	78
338	CRISPR systems: Novel approaches for detection and combating COVID-19. Virus Research, 2021, 294, 198282.	1.1	36
339	Amplification-free RNA detection with CRISPR–Cas13. Communications Biology, 2021, 4, 476.	2.0	119
340	CRISPR-Cas systems: From gene scissors to programmable biosensors. TrAC - Trends in Analytical Chemistry, 2021, 137, 116210.	5.8	56
341	A CRISPR/Cas13a-powered catalytic electrochemical biosensor for successive and highly sensitive RNA diagnostics. Biosensors and Bioelectronics, 2021, 178, 113027.	5.3	87
342	Argonaute integrated single-tube PCR system enables supersensitive detection of rare mutations. Nucleic Acids Research, 2021, 49, e75-e75.	6.5	66
343	Sensitive detection of foodborne pathogens based on CRISPR as13a. Journal of Food Science, 2021, 86, 2615-2625.	1.5	21
344	CRISPR-based DNA and RNA detection with liquid-liquid phase separation. Biophysical Journal, 2021, 120, 1198-1209.	0.2	23
346	CRISPR: A new paradigm of theranostics. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 33, 102350.	1.7	10
347	Construction of a CRISPRâ€Biolayer Interferometry Platform for Realâ€Time, Sensitive, and Specific DNA Detection. ChemBioChem, 2021, 22, 1974-1984.	1.3	5
348	Noncanonical crRNAs derived from host transcripts enable multiplexable RNA detection by Cas9. Science, 2021, 372, 941-948.	6.0	83
349	Enhancing the yield and activity of defucosylated antibody produced by CHO-K1 cells using Cas13d-mediated multiplex gene targeting. Journal of the Taiwan Institute of Chemical Engineers, 2021, 121, 38-47.	2.7	6
350	Prokaryotic reverse transcriptases: from retroelements to specialized defense systems. FEMS Microbiology Reviews, 2021, 45, .	3.9	16

#	Article	IF	CITATIONS
351	Detect and destroy: CRISPR-based technologies for the response against viruses. Cell Host and Microbe, 2021, 29, 689-703.	5.1	50
352	CRISPR-Cas13 System as a Promising and Versatile Tool for Cancer Diagnosis, Therapy, and Research. ACS Synthetic Biology, 2021, 10, 1245-1267.	1.9	38
353	Intrinsic signal amplification by type III CRISPR-Cas systems provides a sequence-specific SARS-CoV-2 diagnostic. Cell Reports Medicine, 2021, 2, 100319.	3.3	56
355	High contrast cleavage detection. Optics Letters, 2021, 46, 2593.	1.7	4
357	Advances in Clustered, Regularly Interspaced Short Palindromic Repeats (CRISPR)-Based Diagnostic Assays Assisted by Micro/Nanotechnologies. ACS Nano, 2021, 15, 7848-7859.	7.3	69
358	Droplet Cas12a Assay Enables DNA Quantification from Unamplified Samples at the Single-Molecule Level. Nano Letters, 2021, 21, 4643-4653.	4.5	120
359	CRISPR diagnostics. Science, 2021, 372, 914-915.	6.0	52
360	Functional Features and Current Applications of the RNAâ€Targeting Type VI CRISPRâ€Cas Systems. Advanced Science, 2021, 8, 2004685.	5.6	24
361	Anti-CRISPRs go viral: The infection biology of CRISPR-Cas inhibitors. Cell Host and Microbe, 2021, 29, 704-714.	5.1	43
363	Programmable RNA editing with compact CRISPR–Cas13 systems from uncultivated microbes. Nature Methods, 2021, 18, 499-506.	9.0	182
364	A Review: Computational Approaches to Design sgRNA of CRISPR-Cas9. Current Bioinformatics, 2022, 17, 2-18.	0.7	3
365	CRISPR-Cas13a-Based Detection for Bovine Viral Diarrhea Virus. Frontiers in Veterinary Science, 2021, 8, 603919.	0.9	5
366	Selective transport of fluorescent proteins into the phage nucleus. PLoS ONE, 2021, 16, e0251429.	1.1	16
367	Programmable RNA <i>N</i> ¹ â€Methyladenosine Demethylation by a Cas13dâ€Directed Demethylase. Angewandte Chemie - International Edition, 2021, 60, 19592-19597.	7.2	21
368	Challenges and Opportunities for Clustered Regularly Interspaced Short Palindromic Repeats Based Molecular Biosensing. ACS Sensors, 2021, 6, 2497-2522.	4.0	37
369	Potent programmable antiviral against dengue virus in primary human cells by Cas13b RNP with short spacer and delivery by VLP. Molecular Therapy - Methods and Clinical Development, 2021, 21, 729-740.	1.8	11
370	CRISPR-Cas13a-based diagnostic method for <i>Chlamydia trachomatis</i> from nongonococcal urethritis. Bioanalysis, 2021, 13, 901-912.	0.6	2
371	CRISPR-Associated (CAS) Effectors Delivery via Microfluidic Cell-Deformation Chip. Materials, 2021, 14, 3164.	1.3	10

#	Article	IF	CITATIONS
372	Identifying SOX2-OT transcript that is responsible for regulating SOX2 in cancer cells and embryonic stem cells. Research Ideas and Outcomes, 0, 7, .	1.0	1
373	Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. Biology, 2021, 10, 530.	1.3	7
375	Programmable RNA N 1 â€Methyladenosine Demethylation by a Cas13dâ€Directed Demethylase. Angewandte Chemie, 2021, 133, 19744-19749.	1.6	3
376	Mitochondrial function in development and disease. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	48
377	Nucleic Acid Tests for Clinical Translation. Chemical Reviews, 2021, 121, 10469-10558.	23.0	109
378	Signal amplification and output of CRISPR/Cas-based biosensing systems: A review. Analytica Chimica Acta, 2021, 1185, 338882.	2.6	69
379	A type III-A CRISPR–Cas system mediates co-transcriptional DNA cleavage at the transcriptional bubbles in close proximity to active effectors. Nucleic Acids Research, 2021, 49, 7628-7643.	6.5	10
380	CRISPR/Cas13-Based Approaches for Ultrasensitive and Specific Detection of microRNAs. Cells, 2021, 10, 1655.	1.8	33
381	Highly Specific and Sensitive Detection of Yersinia pestis by Portable Cas12a-UPTLFA Platform. Frontiers in Microbiology, 2021, 12, 700016.	1.5	22
382	Get ready for the CRISPR/Cas system: A beginner's guide to the engineering and design of guide RNAs. Journal of Gene Medicine, 2021, 23, e3377.	1.4	3
383	CRISPR-based diagnostics. Nature Biomedical Engineering, 2021, 5, 643-656.	11.6	492
384	Harnessing the CRISPR-Cas Systems to Combat Antimicrobial Resistance. Frontiers in Microbiology, 2021, 12, 716064.	1.5	27
385	Recent progress on rapid SARS-CoV-2/COVID-19 detection by CRISPR-Cas13-based platforms. Drug Discovery Today, 2021, 26, 2025-2035.	3.2	17
386	Potential of CRISPR/Cas system in the diagnosis of COVID-19 infection. Expert Review of Molecular Diagnostics, 2021, 21, 1179-1189.	1.5	13
388	DNA interference states of the hypercompact CRISPR–CasΦ effector. Nature Structural and Molecular Biology, 2021, 28, 652-661.	3.6	50
389	Accelerated RNA detection using tandem CRISPR nucleases. Nature Chemical Biology, 2021, 17, 982-988.	3.9	135
390	Roadmap on Universal Photonic Biosensors for Real-Time Detection of Emerging Pathogens. Photonics, 2021, 8, 342.	0.9	6
391	Applications of the versatile <scp>CRISPRâ€Cas13 RNA</scp> targeting system. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1694.	3.2	26

#	Article	IF	CITATIONS
392	Gold Nanoparticles/Mo ₂ C/MoO ₂ -Modified Electrodes for Nucleic Acid Detection through CRISPR/Cas12a Photoelectrochemical Assay. ACS Applied Nano Materials, 2021, 4, 10701-10707.	2.4	12
393	Perfecting Targeting in CRISPR. Annual Review of Genetics, 2021, 55, 453-477.	3.2	10
394	Kinetic analysis of Cas12a and Cas13a RNA-Guided nucleases for development of improved CRISPR-Based diagnostics. IScience, 2021, 24, 102996.	1.9	57
395	Digging into the lesser-known aspects of CRISPR biology. International Microbiology, 2021, 24, 473-498.	1.1	10
397	A Novel Miniature CRISPR-Cas13 System for SARS-CoV-2 Diagnostics. ACS Synthetic Biology, 2021, 10, 2541-2551.	1.9	34
398	CRISPR as enzymes: The toolkit revolutionizing diagnostics. Biotechnology Journal, 2021, , 2100304.	1.8	6
399	Application of the amplification-free SERS-based CRISPR/Cas12a platform in the identification of SARS-CoV-2 from clinical samples. Journal of Nanobiotechnology, 2021, 19, 273.	4.2	40
400	Integrating Reverse Transcription Recombinase Polymerase Amplification with CRISPR Technology for the One-Tube Assay of RNA. Analytical Chemistry, 2021, 93, 12808-12816.	3.2	63
401	RNA-Centric Methods: Toward the Interactome of Specific RNA Transcripts. Trends in Biotechnology, 2021, 39, 890-900.	4.9	19
402	The gRAMP CRISPR-Cas effector is an RNA endonuclease complexed with a caspase-like peptidase. Science, 2021, 373, 1349-1353.	6.0	76
403	CRISPR/Cas12a-powered immunosensor suitable for ultra-sensitive whole Cryptosporidium oocyst detection from water samples using a plate reader. Water Research, 2021, 203, 117553.	5.3	19
404	Site-directed RNA editing: recent advances and open challenges. RNA Biology, 2021, 18, 41-50.	1.5	31
405	Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature, 2021, 597, 720-725.	13.7	155
407	Alleviation of neurological disease by RNA editing. Methods, 2021, 194, 94-99.	1.9	5
408	A CRISPR-based and post-amplification coupled SARS-CoV-2 detection with a portable evanescent wave biosensor. Biosensors and Bioelectronics, 2021, 190, 113418.	5.3	90
409	Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Molecular Cancer, 2021, 20, 126.	7.9	86
410	A versatile CRISPR/Cas12a-based sensitivity amplifier suitable for commercial HRP-based ELISA kits. Sensors and Actuators B: Chemical, 2021, 347, 130533.	4.0	13
411	A signal-switchable electrochemiluminescence biosensor based on the integration of spherical nucleic acid and CRISPR/Cas12a for multiplex detection of HIV/HPV DNAs. Sensors and Actuators B: Chemical, 2021, 346, 130485.	4.0	36

#	Article	IF	CITATIONS
412	CRISPR-Cas based virus detection: Recent advances and perspectives. Biosensors and Bioelectronics, 2021, 193, 113541.	5.3	110
413	Development of A Super-Sensitive Diagnostic Method for African Swine Fever Using CRISPR Techniques. Virologica Sinica, 2021, 36, 220-230.	1.2	12
414	Pathogen detection and disease diagnosis in wildlife: challenges and opportunities. OIE Revue Scientifique Et Technique, 2021, 40, 105-118.	0.5	5
415	Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects. International Journal of Molecular Sciences, 2021, 22, 682.	1.8	29
416	Point-of-care testing detection methods for COVID-19. Lab on A Chip, 2021, 21, 1634-1660.	3.1	150
417	A CRISPR-Cas autocatalysis-driven feedback amplification network for supersensitive DNA diagnostics. Science Advances, 2021, 7, .	4.7	152
418	The Rtc RNA End Healing and Sealing System. , 2021, , 53-72.		0
419	CRISPR based development of RNA editing and the diagnostic platform. Progress in Molecular Biology and Translational Science, 2021, 179, 117-159.	0.9	0
420	CRISPR-based diagnostics for detection of pathogens. Progress in Molecular Biology and Translational Science, 2021, 181, 45-57.	0.9	7
421	High-Fidelity CRISPR/Cas13a <i>trans</i> -Cleavage-Triggered Rolling Circle Amplified DNAzyme for Visual Profiling of MicroRNA. Analytical Chemistry, 2021, 93, 2038-2044.	3.2	57
422	Wide Horizons of CRISPR-Cas-Derived Technologies for Basic Biology, Agriculture, and Medicine. Springer Protocols, 2020, , 1-23.	0.1	15
423	CRISPR-Cas RNA Targeting Using Transient Cas13a Expression in Nicotiana benthamiana. Methods in Molecular Biology, 2021, 2170, 1-18.	0.4	5
424	CRISPR/Cas9 Editing in Induced Pluripotent Stem Cells: A Way Forward for Treating Cystic Fibrosis?. , 2019, , 153-178.		2
425	Interfering with retrotransposition by two types of CRISPR effectors: Cas12a and Cas13a. Cell Discovery, 2020, 6, 30.	3.1	6
426	RNA-targeting CRISPR systems from metagenomic discovery to transcriptomic engineering. Nature Cell Biology, 2020, 22, 143-150.	4.6	48
427	Resistance is not futile: bacterial â€~innate' and CRISPR-Cas â€~adaptive' immune systems. Microbiology (United Kingdom), 2019, 165, 834-841.	0.7	6
444	RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System. PLoS ONE, 2017, 12, e0170552.	1.1	81
445	CRISPR-Cas13a system: a novel approach to precision oncology. Cancer Biology and Medicine, 2020, 17, 6-8.	1.4	10

~			<u> </u>
	ΤΔΤΙ	ON	Report
<u> </u>			KLI OKI

#	Article	IF	CITATIONS
446	Genetically engineered mouse models for studying radiation biology. Translational Cancer Research, 2017, 6, S900-S913.	0.4	21
447	The Application of the RNA Interference Technologies for KRAS: Current Status, Future Perspective and Associated Challenges. Current Topics in Medicinal Chemistry, 2019, 19, 2143-2157.	1.0	8
448	CRISPR/Cas system: An emerging technology in stem cell research. World Journal of Stem Cells, 2019, 11, 937-956.	1.3	23
449	Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a. ELife, 2019, 8, .	2.8	41
450	The CRISPR–Cas toolbox for analytical and diagnostic assay development. Chemical Society Reviews, 2021, 50, 11844-11869.	18.7	102
451	Attomolar analyte sensing techniques (AttoSens): a review on a decade of progress on chemical and biosensing nanoplatforms. Chemical Society Reviews, 2021, 50, 13012-13089.	18.7	25
452	Rapid and Sensitive Detection of Salmonella spp. Using CRISPR-Cas13a Combined With Recombinase Polymerase Amplification. Frontiers in Microbiology, 2021, 12, 732426.	1.5	23
453	COVID-19: A review of newly formed viral clades, pathophysiology, therapeutic strategies and current vaccination tasks. International Journal of Biological Macromolecules, 2021, , .	3.6	14
454	A sensitive electrochemical method for rapid detection of dengue virus by CRISPR/Cas13a-assisted catalytic hairpin assembly. Analytica Chimica Acta, 2021, 1187, 339131.	2.6	24
456	Omics and Their Impact on the Development of Chemotherapy Against <i>Leishmania</i> . RSC Drug Discovery Series, 2017, , 101-129.	0.2	0
465	DÜZENLİ ARALIKLARLA BÖLÜNMÜŞ PALİNDROMİK TEKRAR KÜMELERİNİN MİKROBİYAL TAI of Biotechnology and Strategic Health Research, 0, , .	NIDA KULL	ANJMI. Journa
473	CRISPR Tackles Emerging Viral Pathogens. Viruses, 2021, 13, 2157.	1.5	6
474	Exploiting the orthogonal CRISPR-Cas12a/Cas13a trans-cleavage for dual-gene virus detection using a handheld device. Biosensors and Bioelectronics, 2022, 196, 113701.	5.3	69
475	Cyanobacterial availability for CRISPR-based genome editing: Current and future challenges. , 2022, , 231-252.		0
476	CRISPR-Cas orthologs and variants. , 2022, , 7-38.		0
481	The dynamicity of light-up aptamers in one-pot in vitro diagnostic assays. Analyst, The, 2021, , .	1.7	3
483	Advances in gene therapy for neurogenetic diseases: a brief review. Journal of Molecular Medicine, 2022, 100, 385-394.	1.7	3
486	Potential Use of CRISPR/Cas13 Machinery in Understanding Virus–Host Interaction. Frontiers in Microbiology, 2021, 12, 743580.	1.5	9

#	Article	IF	CITATIONS
405	An outlook on coronavirus disease 2019 detection methods. Journal of Pharmaceutical Analysis, 2022,	0.4	
487	12, 205-214.	2.4	1
489	The Miniature CRISPR-Cas12m Effector Binds DNA To Block Transcription. SSRN Electronic Journal, 0, , .	0.4	0
490	CRISPR guides induce gene silencing in plants in the absence of Cas. Genome Biology, 2022, 23, 6.	3.8	22
491	Reengineering of the CRISPR/Cas System. , 2022, , 149-186.		0
492	Beyond Genome Editing: CRISPR Approaches. , 2022, , 187-218.		2
493	Emerging biosensing and transducing techniques for potential applications in point-of-care diagnostics. Chemical Science, 2022, 13, 2857-2876.	3.7	36
494	A one-step platform for screening high-efficient and minimal off-target CRISPR/Cas13 crRNAs to eradicate SARS-CoV-2 virus for treatment of COVID-19 patients. Medical Hypotheses, 2022, 159, 110754.	0.8	5
495	Targeted gene silencing in the nervous system with CRISPR-Cas13. Science Advances, 2022, 8, eabk2485.	4.7	45
496	Type III CRISPR-based RNA editing for programmable control of SARS-CoV-2 and human coronaviruses. Nucleic Acids Research, 2022, 50, e47-e47.	6.5	8
497	Structure and mechanism of the RNA dependent RNase Cas13a from Rhodobacter capsulatus. Communications Biology, 2022, 5, 71.	2.0	6
499	Molecular reporters for CRISPR/Cas: From design principles to engineering for bioanalytical and diagnostic applications. TrAC - Trends in Analytical Chemistry, 2022, 149, 116539.	5.8	19
500	History and Classification of CRISPR/Cas System. , 2022, , 29-52.		4
501	Supramolecular CRISPR-OFF switches with host–guest chemistry. Nucleic Acids Research, 2022, 50, 1241-1255.	6.5	6
502	Portable and visual assays for the detection of SARSâ€CoVâ€2. View, 2022, 3, .	2.7	15
503	Gold Nanoparticleâ€Labeled CRISPRâ€Cas13a Assay for the Sensitive Solidâ€State Nanopore Molecular Counting. Advanced Materials Technologies, 2022, 7, .	3.0	12
504	An introduction to advanced technologies in synthetic biology. , 2022, , 1-9.		3
505	How to Find the Right RNA-Sensing CRISPR-Cas System for an In Vitro Application. Biosensors, 2022, 12, 53.	2.3	5
506	Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPRâ€associated genomeâ€editing toolkit to enhance salt stress tolerance in rice and wheat. Physiologia Plantarum, 2022, 174, e13642.	2.6	17

#	Article	IF	CITATIONS
507	Development of next-generation diagnostic tools using synthetic biology. , 2022, , 287-330.		2
508	Structural principles of CRISPR-Cas enzymes used in nucleic acid detection. Journal of Structural Biology, 2022, 214, 107838.	1.3	8
509	Robust genome and RNA editing via CRISPR nucleases in PiggyBac systems. Bioactive Materials, 2022, 14, 313-320.	8.6	7
510	The use of new CRISPR tools in cardiovascular research and medicine. Nature Reviews Cardiology, 2022, 19, 505-521.	6.1	21
511	Rapid Nucleic Acid Reaction Circuits for Point-Of-Care Diseases Diagnosis. Current Topics in Medicinal Chemistry, 2022, 22, .	1.0	1
512	Targeted inhibition of Zika virus infection in human cells by CRISPR-Cas13b. Virus Research, 2022, 312, 198707.	1.1	10
513	CRISPR Approaches for the Diagnosis of Human Diseases. International Journal of Molecular Sciences, 2022, 23, 1757.	1.8	9
514	Cooperation and competition between CRISPR- and omics-based technologies in foodborne pathogens detection: a state of the art review. Current Opinion in Food Science, 2022, 44, 100813.	4.1	22
515	Current Trends of SARS-CoV-2 and its New Variants Diagnostics in Different Body Fluids: Surface Antigen, Antibody, Nucleic Acid, and RNA Sequencing Detection Techniques. SSRN Electronic Journal, 0, , .	0.4	0
516	Visual Detection of Duck Tembusu Virus With CRISPR/Cas13: A Sensitive and Specific Point-of-Care Detection. Frontiers in Cellular and Infection Microbiology, 2022, 12, 848365.	1.8	8
517	CRISPR towards a Sustainable Agriculture. Encyclopedia, 2022, 2, 538-558.	2.4	7
518	CRISPR-iPAS: a novel dCAS13-based method for alternative polyadenylation interference. Nucleic Acids Research, 2022, 50, e26-e26.	6.5	10
519	CRISPR in cancer biology and therapy. Nature Reviews Cancer, 2022, 22, 259-279.	12.8	157
520	Programming the <i>trans</i> -cleavage Activity of CRISPR-Cas13a by Single-Strand DNA Blocker and Its Biosensing Application. Analytical Chemistry, 2022, 94, 3987-3996.	3.2	11
521	Figure of Merit for CRISPR-Based Nucleic Acid-Sensing Systems: Improvement Strategies and Performance Comparison. ACS Sensors, 2022, 7, 900-911.	4.0	16
522	CRISPR/Cas13 effectors have differing extents of off-target effects that limit their utility in eukaryotic cells. Nucleic Acids Research, 2022, 50, e65-e65.	6.5	63
523	CRISPR-Cas gene editing technology and its application prospect in medicinal plants. Chinese Medicine, 2022, 17, 33.	1.6	19
524	CRISPR Diagnostics: Advances toward the Point of Care. Biochemistry, 2023, 62, 3488-3492.	1.2	6

#	Article	IF	CITATIONS
525	Targeted intracellular delivery of Cas13 and Cas9 nucleases using bacterial toxin-based platforms. Cell Reports, 2022, 38, 110476.	2.9	14
527	Review—CRISPR/Cas Systems: Endless Possibilities for Electrochemical Nucleic Acid Sensors. Journal of the Electrochemical Society, 2022, 169, 037522.	1.3	6
528	Fast and sensitive detection of SARS-CoV-2 RNA using suboptimal protospacer adjacent motifs for Cas12a. Nature Biomedical Engineering, 2022, 6, 286-297.	11.6	106
530	New Insights for Biosensing: Lessons from Microbial Defense Systems. Chemical Reviews, 2022, 122, 8126-8180.	23.0	15
531	Inverse-designed waveguide-based biosensor for high-sensitivity, single-frequency detection of biomolecules. Nanophotonics, 2022, 11, 1427-1442.	2.9	6
533	Development and Application of CRISPR-Cas Based Tools. Frontiers in Cell and Developmental Biology, 2022, 10, 834646.	1.8	13
534	CRISPR Cas system: A strategic approach in detection of nucleic acids. Microbiological Research, 2022, 259, 127000.	2.5	7
535	Advances in nucleic acid amplification techniques (NAATs): COVID-19 point-of-care diagnostics as an example. Biosensors and Bioelectronics, 2022, 206, 114109.	5.3	82
536	A new method to detect red spotted grouper neuro necrosis virus (RGNNV) based on CRISPR/Cas13a. Aquaculture, 2022, 555, 738217.	1.7	3
537	Electrochemical detection of ctDNA mutation in non-small cell lung cancer based on CRISPR/Cas12a system. Sensors and Actuators B: Chemical, 2022, 362, 131807.	4.0	23
538	CRISPR-Cas13a cascade-based viral RNA assay for detecting SARS-CoV-2 and its mutations in clinical samples. Sensors and Actuators B: Chemical, 2022, 362, 131765.	4.0	23
539	CRISPR-Based Genetic Switches and Other Complex Circuits: Research and Application. Life, 2021, 11, 1255.	1.1	5
542	Advanced CRISPR-Cas Effector Enzyme-Based Diagnostics for Infectious Diseases, Including COVID-19. Life, 2021, 11, 1356.	1.1	9
543	Highly Sensitive Immuno-CRISPR Assay for CXCL9 Detection. Analytical Chemistry, 2021, 93, 16528-16534.	3.2	25
544	A field-deployable method for single and multiplex detection of DNA or RNA from pathogens using Cas12 and Cas13. Science China Life Sciences, 2022, 65, 1456-1465.	2.3	16
546	Gene editing and its applications in biomedicine. Science China Life Sciences, 2022, 65, 660-700.	2.3	20
548	Label-Free Resonance Rayleigh Scattering Amplification for Lipopolysaccharide Detection and Logical Circuit by CRISPR/Cas12a-Driven Guanine Nanowire Assisted Non-Cross-Linking Hybridization Chain Reaction. Analytical Chemistry, 2022, 94, 6371-6379.	3.2	16
549	Adaptation by Type III CRISPR-Cas Systems: Breakthrough Findings and Open Questions. Frontiers in Microbiology, 2022, 13, 876174.	1.5	4

#	Article	IF	CITATIONS
557	Crispr/Cas13a Induced Exponential Amplification for Highly Sensitive and Specific Detection of Circular Rna. SSRN Electronic Journal, 0, , .	0.4	0
558	CRISPR use in diagnosis and therapy for COVID-19. Methods in Microbiology, 2022, , 123-150.	0.4	3
559	Recent advances in CRISPRâ€based systems for the detection of foodborne pathogens. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 3010-3029.	5.9	23
560	CRISPR/Cas13a induced exponential amplification for highly sensitive and specific detection of circular RNA. Talanta, 2022, 246, 123521.	2.9	9
561	Synthetic biology-powered biosensors based on CRISPR/Cas mediated cascade signal amplification for precise RNA detection. Chemical Engineering Journal, 2022, 446, 136864.	6.6	6
562	Cyclic Nucleotide Signaling in Phage Defense and Counter-Defense. Annual Review of Virology, 2022, 9, 451-468.	3.0	37
563	A Highly Sensitive and Specific Detection Method for Mycobacterium tuberculosis Fluoroquinolone Resistance Mutations Utilizing the CRISPR-Cas13a System. Frontiers in Microbiology, 2022, 13, .	1.5	8
564	CRISPR-Cas-mediated diagnostics. Trends in Biotechnology, 2022, 40, 1326-1345.	4.9	26
565	Trends in nanomaterial-based biosensors for viral detection. Nano Futures, 2022, 6, 022005.	1.0	4
566	Specific High-Sensitivity Enzymatic Molecular Detection System Termed RPA-Based CRISPR-Cas13a for Duck Tembusu Virus Diagnostics. Bioconjugate Chemistry, 2022, 33, 1232-1240.	1.8	5
567	Hierarchical self-uncloaking CRISPR-Cas13a–customized RNA nanococoons for spatial-controlled genome editing and precise cancer therapy. Science Advances, 2022, 8, eabn7382.	4.7	16
569	Tetrahedral framework nucleic acids linked CRISPR/Cas13a signal amplification system for rare tumor cell detection. Talanta, 2022, 247, 123531.	2.9	10
570	Programmable Nucleic Acid-Binding Proteins-Based Nucleic Acid Detection and Biosensing Technologies. , 2022, , .		0
572	Glycerol Additive Boosts 100-fold Sensitivity Enhancement for One-Pot RPA-CRISPR/Cas12a Assay. Analytical Chemistry, 2022, 94, 8277-8284.	3.2	49
573	Next-Generation Diagnostic with CRISPR/Cas: Beyond Nucleic Acid Detection. International Journal of Molecular Sciences, 2022, 23, 6052.	1.8	15
574	CRISPR-Cas Systems-Based Bacterial Detection: A Scoping Review. Diagnostics, 2022, 12, 1335.	1.3	7
577	Structure and engineering of the type III-E CRISPR-Cas7-11 effector complex. Cell, 2022, 185, 2324-2337.e16.	13.5	51
578	CRISPRâ€based pointâ€ofâ€care diagnostics incorporating Cas9, Cas12, and Cas13 enzymes advanced for SARSâ€CoVâ€2 detection. Journal of Biochemical and Molecular Toxicology, 2022, 36, .	1.4	5

#	Article	IF	CITATIONS
579	A naturally DNase-free CRISPR-Cas12c enzyme silences gene expression. Molecular Cell, 2022, 82, 2148-2160.e4.	4.5	25
580	CRISPR-Based Diagnostics for Point-of-Care Viral Detection. International Journal of Translational Medicine, 2022, 2, 198-203.	0.1	1
581	Broad-spectrum resistance against multiple PVY-strains by CRSIPR/Cas13 system in <i>Solanum tuberosum</i> crop. GM Crops and Food, 2022, 13, 97-111.	2.0	11
582	Lack of Cas13a inhibition by anti-CRISPR proteins from Leptotrichia prophages. Molecular Cell, 2022, 82, 2161-2166.e3.	4.5	4
583	A Mutated Nme1Cas9 Is a Functional Alternative RNase to Both LwaCas13a and RfxCas13d in the Yeast S. cerevisiae. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	4
584	Rapid RNA detection through intra-enzyme chain replacement-promoted Cas13a cascade cyclic reaction without amplification. Analytica Chimica Acta, 2022, 1217, 340009.	2.6	5
586	CRISPRå•ç®¡ç‰æ,©æ‰©å⊄žæŠ€æœ⁻é«~çµæ•œ£€æµ‹æ,é,: 以检测新型å†çŠ¶ç—æ-'(SARS-CoV-2) R	NAOäç2ä³∕4≺.	S o ientia Sini
589	Diagnostics of COVID-19 Based on CRISPR–Cas Coupled to Isothermal Amplification: A Comparative Analysis and Update. Diagnostics, 2022, 12, 1434.	1.3	8
591	A target expression threshold dictates invader defense and prevents autoimmunity by CRISPR-Cas13. Cell Host and Microbe, 2022, 30, 1151-1162.e6.	5.1	9
595	A chemical CRISPR off switch efficiently controls gene editing. Cell Reports Physical Science, 2022, , 100956.	2.8	2
596	CRISPR: A Promising Tool for Cancer Therapy. Current Molecular Medicine, 2022, 22, .	0.6	0
597	Photocontrolled crRNA activation enables robust CRISPR-Cas12a diagnostics. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	53
598	Exonuclease III-assisted CRISPR/Cas12a electrochemiluminescence biosensor for sub-femtomolar mercury ions determination. Sensors and Actuators B: Chemical, 2022, 368, 132208.	4.0	18
599	Characterization of a thermostable Cas13 enzyme for one-pot detection of SARS-CoV-2. Proceedings of the United States of America, 2022, 119, .	3.3	33
600	Use of CRISPR in Infection Control. Current Protein and Peptide Science, 2022, 23, 299-309.	0.7	2
601	CRISPR-based systems for sensitive and rapid on-site COVID-19 diagnostics. Trends in Biotechnology, 2022, 40, 1346-1360.	4.9	16
602	CRISPR-Based Programmable Nucleic Acid-Binding Protein Technology Can Specifically Detect Fatal Tropical Disease-Causing Pathogens. Journal of Tropical Medicine, 2022, 2022, 1-12.	0.6	2
603	Screening circular RNAs with functional potential using the RfxCas13d/BSJ-gRNA system. Nature Protocols, 2022, 17, 2085-2107.	5.5	11

#	Article	IF	Citations
604	RNA-targeting strategies as a platform for ocular gene therapy. Progress in Retinal and Eye Research, 2023, 92, 101110.	7.3	10
606	Enhancement of CRISPR/Cas12a <i>trans</i> -cleavage activity using hairpin DNA reporters. Nucleic Acids Research, 2022, 50, 8377-8391.	6.5	41
607	CRISPR-Cas, Argonaute proteins and the emerging landscape of amplification-free diagnostics. Methods, 2022, 205, 1-10.	1.9	12
608	The SARS-CoV-2 targeted human RNA binding proteins network biology to investigate COVID-19 associated manifestations. International Journal of Biological Macromolecules, 2022, 217, 853-863.	3.6	5
609	Structure and engineering of the minimal type VI CRISPR-Cas13bt3. Molecular Cell, 2022, 82, 3178-3192.e5.	4.5	12
610	High-fidelity Cas13 variants for targeted RNA degradation with minimal collateral effects. Nature Biotechnology, 2023, 41, 108-119.	9.4	65
611	Optimization of specific RNA knockdown in mammalian cells with CRISPR-Cas13. Methods, 2022, 206, 58-68.	1.9	7
612	Microfluidics: the propellant of CRISPR-based nucleic acid detection. Trends in Biotechnology, 2023, 41, 557-574.	4.9	9
613	Rapid detection of SARS-CoV-2 RNA in saliva via Cas13. Nature Biomedical Engineering, 2022, 6, 944-956.	11.6	59
614	Recent Advances in CRISPR-Based Biosensors for Point-of-Care Pathogen Detection. CRISPR Journal, 2022, 5, 500-516.	1.4	14
615	Pathogen-Specific Bactericidal Method Mediated by Conjugative Delivery of CRISPR-Cas13a Targeting Bacterial Endogenous Transcripts. Microbiology Spectrum, 2022, 10, .	1.2	7
617	CRISPR-RNAa: targeted activation of translation using dCas13 fusions to translation initiation factors. Nucleic Acids Research, 2022, 50, 8986-8998.	6.5	17
618	Negative autoregulation mitigates collateral RNase activity of repeat-targeting CRISPR-Cas13d in mammalian cells. Cell Reports, 2022, 40, 111226.	2.9	18
619	<scp>CRISPR</scp> /Casâ€based tools for the targeted control of plant viruses. Molecular Plant Pathology, 2022, 23, 1701-1718.	2.0	20
620	Platinum nanoparticles (PtNPs)-based CRISPR/Cas12a platform for detection of nucleic acid and protein in clinical samples. Analytica Chimica Acta, 2022, 1225, 340203.	2.6	5
621	A comprehensive review of COVID-19 detection techniques: From laboratory systems to wearable devices. Computers in Biology and Medicine, 2022, 149, 106070.	3.9	10
622	Current trends in COVID-19 diagnosis and its new variants in physiological fluids: Surface antigens, antibodies, nucleic acids, and RNA sequencing. TrAC - Trends in Analytical Chemistry, 2022, 157, 116750.	5.8	16
623	The double life of CRISPR–Cas13. Current Opinion in Biotechnology, 2022, 78, 102789.	3.3	16

#	Article	IF	CITATIONS
624	Tetrahedral DNA framework based CRISPR electrochemical biosensor for amplification-free miRNA detection. Biosensors and Bioelectronics, 2022, 217, 114671.	5.3	19
625	New Directions for Epigenetics: Application of Engineered DNA-binding Molecules to Locus-specific Epigenetic Research. , 2023, , 843-868.		0
626	Pulmonary Delivery of Messenger RNA (mRNA) Therapeutics for Respiratory Diseases. RNA Technologies, 2022, , 139-156.	0.2	1
627	Molecular Details of DNA Integration by CRISPR-Associated Proteins During Adaptation in Bacteria and Archaea. Advances in Experimental Medicine and Biology, 2022, , 27-43.	0.8	2
628	CRISPR-Cas Technology: A Genome-Editing Powerhouse for Molecular Plant Breeding. , 2022, , 803-879.		4
630	Applications of CRISPR/Cas13-Based RNA Editing in Plants. Cells, 2022, 11, 2665.	1.8	17
634	Tandem Cas13a/crRNA-Mediated CRISPR-FET Biosensor: A One-for-All Check Station for Virus without Amplification. ACS Sensors, 2022, 7, 2680-2690.	4.0	14
635	A CRISPR/Cas12a-assisted rapid detection platform by biosensing the apxIVA of Actinobacillus pleuropneumoniae. Frontiers in Microbiology, 0, 13, .	1.5	1
636	A Review on the Mechanism and Applications of CRISPR/Cas9/Cas12/Cas13/Cas14 Proteins Utilized for Genome Engineering. Molecular Biotechnology, 2023, 65, 311-325.	1.3	42
637	Rapid and sensitive onâ€site genetic diagnostics of pest fruit flies using <scp>CRISPRâ€Cas12a</scp> . Pest Management Science, 2023, 79, 68-75.	1.7	7
638	A programmable system to methylate and demethylate N6-methyladenosine (m6A) on specific RNA transcripts in mammalian cells. Journal of Biological Chemistry, 2022, 298, 102525.	1.6	6
640	Recent Advances in CRISPR/Cas-Based Biosensors for Protein Detection. Bioengineering, 2022, 9, 512.	1.6	10
641	RNA-targeting CRISPR–Cas systems. Nature Reviews Microbiology, 2023, 21, 21-34.	13.6	28
642	Differentiation of Classical Swine Fever Virus Virulent and Vaccine Strains by CRISPR/Cas13a. Microbiology Spectrum, 2022, 10, .	1.2	1
643	Fluorescence Signal-Readout of CRISPR/Cas Biosensors for Nucleic Acid Detection. Biosensors, 2022, 12, 779.	2.3	9
644	Molecular mechanism of active Cas7-11 in processing CRISPR RNA and interfering target RNA. ELife, 0, 11,	2.8	8
645	CRISPR-Cas13 technology portfolio and alliance with other genetic tools. Biotechnology Advances, 2022, , 108047.	6.0	6
646	Recent advances on CRISPR/Cas system-enabled portable detection devices for on-site agri-food safety assay. Trends in Food Science and Technology, 2022, 129, 364-387.	7.8	18

#	Article	IF	CITATIONS
647	Norbornene-tetrazine ligation chemistry for controlling RNA-guided CRISPR systems. Chemical Science, 2022, 13, 12577-12587.	3.7	0
648	Technologies Enabling Single-Molecule Super-Resolution Imaging of mRNA. Cells, 2022, 11, 3079.	1.8	8
649	CRISPR-Cas13: A new technology for the rapid detection of pathogenic microorganisms. Frontiers in Microbiology, 0, 13, .	1.5	7
650	Application of CRISPR/Cas Systems in the Nucleic Acid Detection of Infectious Diseases. Diagnostics, 2022, 12, 2455.	1.3	13
652	Detection of Tropical Diseases Caused by Mosquitoes Using CRISPR-Based Biosensors. Tropical Medicine and Infectious Disease, 2022, 7, 309.	0.9	3
653	Target RNA activates the protease activity of Craspase to confer antiviral defense. Molecular Cell, 2022, 82, 4503-4518.e8.	4.5	12
654	CRISPR/Cas systems usher in a new era of disease treatment and diagnosis. Molecular Biomedicine, 2022, 3, .	1.7	5
655	Bacteriophage genome engineering with CRISPR–Cas13a. Nature Microbiology, 2022, 7, 1956-1966.	5.9	29
656	Broad-spectrum CRISPR-Cas13a enables efficient phage genome editing. Nature Microbiology, 2022, 7, 1967-1979.	5.9	41
657	Clustered Regularly Interspaced short palindromic repeatsâ€Based Microfluidic System in Infectious Diseases Diagnosis: Current Status, Challenges, and Perspectives. Advanced Science, 2022, 9, .	5.6	12
658	Al-boosted CRISPR-Cas13a and total internal reflection fluorescence microscopy system for SARS-CoV-2 detection. Frontiers in Sensors, 0, 3, .	1.7	1
659	Recent progress in diagnosis and treatment of Human African Trypanosomiasis has made the elimination of this disease a realistic target by 2030. Frontiers in Medicine, 0, 9, .	1.2	15
660	A novel cascade signal amplification strategy integrating CRISPR/Cas13a and branched hybridization chain reaction for ultra-sensitive and specific SERS detection of disease-related nucleic acids. Biosensors and Bioelectronics, 2023, 219, 114836.	5.3	12
661	Casting CRISPR-Cas13d to fish for microprotein functions in animal development. IScience, 2022, 25, 105547.	1.9	3
662	Quantum Dot-Based Molecular Beacons for Quantitative Detection of Nucleic Acids with CRISPR/Cas(N) Nucleases. ACS Nano, 2022, 16, 20693-20704.	7.3	20
663	Colorimetric Detection of Antimicrobial Resistance from Food Processing Facilities Using a CRISPR System. ACS Food Science & Technology, 2023, 3, 17-22.	1.3	5
664	Applying CRISPR-Cas9 screens to dissect hematological malignancies. Blood Advances, 2023, 7, 2252-2270.	2.5	2
665	Recent advances in the use of the CRISPR-Cas system for the detection of infectious pathogens. Journal of Zhejiang University: Science B, 2022, 23, 881-898.	1.3	5

#	Article	IF	CITATIONS
666	Amplification-free CRISPR/Cas detection technology: challenges, strategies, and perspectives. Chemical Society Reviews, 2023, 52, 361-382.	18.7	45
667	Visual and label-free ASFV and PCV2 detection by CRISPR-Cas12a combined with G-quadruplex. Frontiers in Veterinary Science, 0, 9, .	0.9	3
668	Gold Nanoparticle Enabled Localized Surface Plasmon Resonance on Unique Gold Nanomushroom Structures for On hip CRISPR as13a Sensing. Advanced Materials Interfaces, 2023, 10, .	1.9	4
669	Developing New Tools to Fight Human Pathogens: A Journey through the Advances in RNA Technologies. Microorganisms, 2022, 10, 2303.	1.6	1
670	Sequence-specific capture and concentration of viral RNA by type III CRISPR system enhances diagnostic. Nature Communications, 2022, 13, .	5.8	8
671	CRISPR-Based Diagnostics: Challenges and Potential Solutions toward Point-of-Care Applications. ACS Synthetic Biology, 2023, 12, 1-16.	1.9	13
672	Optimization of <scp>CRISPR–Cas</scp> system for clinical cancer therapy. Bioengineering and Translational Medicine, 2023, 8, .	3.9	3
673	Structural basis for the non-self RNA-activated protease activity of the type III-E CRISPR nuclease-protease Craspase. Nature Communications, 2022, 13, .	5.8	7
674	CRISPR-Cas based molecular diagnostics for foodborne pathogens. Critical Reviews in Food Science and Nutrition, 0, , 1-21.	5.4	9
675	CRISPR-Cas13a system: A novel tool for molecular diagnostics. Frontiers in Microbiology, 0, 13, .	1.5	16
676	The miniature CRISPR-Cas12m effector binds DNA to block transcription. Molecular Cell, 2022, 82, 4487-4502.e7.	4.5	26
677	CRISPR/Cas technology: Opportunities for phytopathogenic viruses detection. Journal of Biotechnology, 2022, 360, 211-217.	1.9	3
678	Analysis and Biomedical Applications of Functional Cargo in Extracellular Vesicles. ACS Nano, 2022, 16, 19980-20001.	7.3	20
679	An Ultrasensitive PCR-Based CRISPR-Cas13a Method for the Detection of Helicobacter pylori. Journal of Personalized Medicine, 2022, 12, 2082.	1.1	2
680	CRISPR/Cas13a Trans-Cleavage-Triggered Catalytic Hairpin Assembly Assay for Specific and Ultrasensitive SARS-CoV-2 RNA Detection. Analytical Chemistry, 0, , .	3.2	1
681	Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing. Nature Communications, 2023, 14, .	5.8	36
682	Nucleic acid-assisted CRISPR-Cas systems for advanced biosensing and bioimaging. TrAC - Trends in Analytical Chemistry, 2023, 159, 116931.	5.8	14
683	Signal Amplification by the <i>trans</i> -Cleavage Activity of CRISPR-Cas Systems: Kinetics and Performance. Analytical Chemistry, 2023, 95, 206-217.	3.2	21

#	Article	IF	CITATIONS
684	Cas12a2 elicits abortive infection through RNA-triggered destruction of dsDNA. Nature, 2023, 613, 588-594.	13.7	21
685	Ultrasensitive CRISPR/Cas13a-Mediated Photoelectrochemical Biosensors for Specific and Direct Assay of miRNA-21. Analytical Chemistry, 0, , .	3.2	8
686	Locusâ€Specific Detection of DNA Methylation: The Advance, Challenge, and Perspective of CRISPR as Assisted Biosensors. Small Methods, 2023, 7, .	4.6	3
687	Sensitive Small Molecule Aptasensing based on Hybridization Chain Reaction and CRISPR/Cas12a Using a Portable 3D-Printed Visualizer. ACS Sensors, 2023, 8, 1076-1084.	4.0	20
688	CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	73
689	Updated toolkits for nucleic acid-based biosensors. TrAC - Trends in Analytical Chemistry, 2023, 159, 116943.	5.8	3
690	Ultrasensitive and amplification-free detection of SARS-CoV-2 RNA using an electrochemical biosensor powered by CRISPR/Cas13a. Bioelectrochemistry, 2023, 150, 108364.	2.4	6
691	Advances of CRISPR-Cas13 system in COVID-19 diagnosis and treatment. Genes and Diseases, 2023, 10, 2414-2424.	1.5	3
692	A Landscape of CRISPR/Cas Technique for Emerging Viral Disease Diagnostics and Therapeutics: Progress and Prospects. Pathogens, 2023, 12, 56.	1.2	6
693	PddCas: A Polydisperse Droplet Digital CRISPR/Cas-Based Assay for the Rapid and Ultrasensitive Amplification-Free Detection of Viral DNA/RNA. Analytical Chemistry, 0, , .	3.2	5
694	RNA targeting unleashes indiscriminate nuclease activity of CRISPR–Cas12a2. Nature, 2023, 613, 582-587.	13.7	17
695	Cryo-EM structure and protease activity of the type III-E CRISPR-Cas effector. Nature Microbiology, 2023, 8, 522-532.	5.9	4
696	CRISPR as Biochemistry and CRISPRâ€Based Molecular Diagnostics. Angewandte Chemie - International Edition, 2023, 62, .	7.2	24
698	CRISPR-Cas13 in malaria parasite: Diagnosis and prospective gene function identification. Frontiers in Microbiology, 0, 14, .	1.5	2
699	Recent progress in nucleic acid detection with CRISPR. Lab on A Chip, 2023, 23, 1467-1492.	3.1	7
700	Precise transcript targeting by CRISPR-Csm complexes. Nature Biotechnology, 2023, 41, 1256-1264.	9.4	28
701	CRISPR as Biochemistry and CRISPRâ€Based Molecular Diagnostics. Angewandte Chemie, 0, , .	1.6	0
702	Advances in CRISPR/Cas technologies and their application in plants. , 2023, 2, 1-10.		1

#	Article	IF	CITATIONS
703	CRISPR-Cas system as a promising player against bacterial infection and antibiotic resistance. Drug Resistance Updates, 2023, 68, 100948.	6.5	7
704	Lightâ€Start CRISPR as12a Reaction with Caged crRNA Enables Rapid and Sensitive Nucleic Acid Detection. Angewandte Chemie, 2023, 135, .	1.6	3
705	CESSAT: A chemical additive-enhanced single-step accurate CRISPR/Cas13 testing system for field-deployable ultrasensitive detection and genotyping of SARS-CoV-2 variants of concern. Biosensors and Bioelectronics, 2023, 229, 115238.	5.3	6
706	CRISPR technology: A decade of genome editing is only the beginning. Science, 2023, 379, .	6.0	233
707	Programmable regulation of translation by harnessing the CRISPR-Cas13 system. Chemical Communications, 2023, 59, 2616-2619.	2.2	6
708	The collateral activity of RfxCas13d can induce lethality in a RfxCas13d knock-in mouse model. Genome Biology, 2023, 24, .	3.8	21
709	Recent advances in nanocomposite-based delivery systems for targeted CRISPR/Cas delivery and therapeutic genetic manipulation. Journal of Materials Chemistry B, 2023, 11, 5251-5271.	2.9	5
710	A high-fidelity RNA-targeting Cas13 restores paternal Ube3a expression and improves motor functions in Angelman syndrome mice. Molecular Therapy, 2023, 31, 2286-2295.	3.7	7
711	Recent advance in nucleic acid amplification-integrated methods for DNA methyltransferase assay. TrAC - Trends in Analytical Chemistry, 2023, 160, 116998.	5.8	4
712	Shotgun knockdown of RNA by CRISPR-Cas13d in fission yeast. Journal of Cell Science, 2023, 136, .	1.2	3
713	CRISPR techniques and potential for the detection and discrimination of SARS-CoV-2 variants of concern. TrAC - Trends in Analytical Chemistry, 2023, 161, 117000.	5.8	11
714	Portable rapid detection of maize chlorotic mottle virus using RT-RAA/CRISPR-Cas12a based lateral flow assay. Frontiers in Plant Science, 0, 14, .	1.7	4
715	Mechanisms regulating the CRISPR-Cas systems. Frontiers in Microbiology, 0, 14, .	1.5	2
716	CRISPR-Cas-Driven Single Micromotor (Cas-DSM) Enables Direct Detection of Nucleic Acid Biomarkers at the Single-Molecule Level. Analytical Chemistry, 2023, 95, 5729-5737.	3.2	3
717	Collateral activity of the CRISPR/RfxCas13d system in human cells. Communications Biology, 2023, 6, .	2.0	16
719	Lightâ€Start CRISPR as12a Reaction with Caged crRNA Enables Rapid and Sensitive Nucleic Acid Detection. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
720	CRISPR-Based Biosensing Strategies: Technical Development and Application Prospects. Annual Review of Analytical Chemistry, 2023, 16, 311-332.	2.8	9
722	RNA-Dependent RNA Targeting by CRISPR-Cas Systems: Characterizations and Applications. International Journal of Molecular Sciences, 2023, 24, 6894.	1.8	4

#	Article	IF	CITATIONS
723	Impact of Divalent Metal Ions on Regulation of Transâ€cleavage Activity of CRISPR as13a: A Combined Experimental and Computational Study. ChemBioChem, 0, , .	1.3	0
724	Programmable mammalian translational modulators by CRISPR-associated proteins. Nature Communications, 2023, 14, .	5.8	5
725	An all-in-one assay based on CRISPR/Cas13a and a DNA circuit for rapid and ultrasensitive detection of Echovirus 11. Sensors and Actuators B: Chemical, 2023, 388, 133851.	4.0	1
726	CRISPR technology and its potential role in treating rare imprinting diseases. , 2023, , 273-300.		0
729	Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Biochemistry, 2023, 62, 3465-3487.	1.2	13
739	DNA-Nukleasen und ihre Verwendung in der Viehzucht. , 2023, , 139-168.		0
760	CRISPR/Cas-based electrochemical diagnostics. , 2023, , 372-410.		0
772	The application of CRISPR-Cas in disease diagnosis and treatment. Science China Chemistry, 2023, 66, 2734-2742.	4.2	0
777	Genome Editing: Mechanism and Utilization in Plant Breeding. , 2023, , 457-488.		0
812	Molecular engineering of CRISPR-Cas system toward in vitro diagnostics. , 2024, , 93-108.		0
821	CRISPR/Cas-based diagnosis and treatment of infectious diseases. , 2024, , 2039-2057.		0
823	Recent progress on the CRISPR/Cas system in optical biosensors. Analytical Methods, 2024, 16, 798-816.	1.3	0
836	The Functional Circular RNA Screening via RfxCas13d/BSJ-gRNA System. Methods in Molecular Biology, 2024, , 173-191.	0.4	0
847	CRISPR-based precision breeding of fruits, vegetables, and ornamental plants. , 2024, , 191-216.		0
853	Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Associated Proteins (Cas) [CRISPR–Cas]: An Emerging Technique in Plant Disease Detection and Management. , 2024, , 589-645.		0