Targeted Synthesis of 2H†and 1Tâ€Phase MoS<sub>2-Hydrogen Evolution

Advanced Materials 28, 10033-10041 DOI: 10.1002/adma.201603765

Citation Report

#	Article	IF	CITATIONS
1	Supercritical CO ₂ â€Assisted Reverseâ€Micelleâ€Induced Solutionâ€Phase Fabrication of Twoâ€Dimensional Metallic 1Tâ€MoS ₂ and 1Tâ€WS ₂ . ChemNanoMat, 2017, 3, 466-4	71 <mark>2.8</mark>	43
2	Two dimensional MoS2/CNT hybrid ink for paper-based capacitive energy storage. Journal of Materials Science: Materials in Electronics, 2017, 28, 8452-8459.	2.2	33
3	Interlayer expanded molybdenum disulfide nanosheets assembly for electrochemical supercapacitor with enhanced performance. Materials Chemistry and Physics, 2017, 192, 100-107.	4.0	24
4	Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy and Environmental Science, 2017, 10, 788-798.	30.8	629
5	Group 6 Layered Transition-Metal Dichalcogenides in Lab-on-a-Chip Devices: 1T-Phase WS ₂ for Microfluidics Non-Enzymatic Detection of Hydrogen Peroxide. Analytical Chemistry, 2017, 89, 4978-4985.	6.5	34
6	Assembling metallic 1T-MoS ₂ nanosheets with inorganic-ligand stabilized quantum dots for exceptional solar hydrogen evolution. Chemical Communications, 2017, 53, 5606-5609.	4.1	39
7	Integrated 3D MoSe2@Ni0.85Se Nanowire Network with Synergistic Cooperation as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction in Alkaline Medium. Electrochimica Acta, 2017, 246, 712-719.	5.2	69
8	Phase-transformation engineering in MoS 2 on carbon cloth as flexible binder-free anode for enhancing lithium storage. Journal of Alloys and Compounds, 2017, 716, 112-118.	5.5	66
9	Two-Dimensional 1T-Phase Transition Metal Dichalcogenides as Nanocarriers To Enhance and Stabilize Enzyme Activity for Electrochemical Pesticide Detection. ACS Nano, 2017, 11, 5774-5784.	14.6	109
10	Molybdenum Disulfide–Black Phosphorus Hybrid Nanosheets as a Superior Catalyst for Electrochemical Hydrogen Evolution. Nano Letters, 2017, 17, 4311-4316.	9.1	211
11	Light‣witchable Oxygen Vacancies in Ultrafine Bi ₅ O ₇ Br Nanotubes for Boosting Solarâ€Driven Nitrogen Fixation in Pure Water. Advanced Materials, 2017, 29, 1701774.	21.0	533
12	Engineering the crystallinity of MoS ₂ monolayers for highly efficient solar hydrogen production. Journal of Materials Chemistry A, 2017, 5, 8591-8598.	10.3	69
13	Highly Efficient, Green, and Scalable β yclodextrinâ€Assisted Aqueous Exfoliation of Transitionâ€Metal Dichalcogenides: MoS ₂ and ReS ₂ Nanoflakes. Chemistry - an Asian Journal, 2017, 12, 1052-1056.	3.3	14
14	Hierarchical NiCo ₂ S ₄ @NiFe LDH Heterostructures Supported on Nickel Foam for Enhanced Overall-Water-Splitting Activity. ACS Applied Materials & Interfaces, 2017, 9, 15364-15372.	8.0	468
15	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	47.7	3,940
16	Controllable Synthesis of Hexagonal WO ₃ Nanoplates for Efficient Visible‣ightâ€Driven Photocatalytic Oxygen Production. Chemistry - an Asian Journal, 2017, 12, 387-391.	3.3	16
17	Defect-Induced Epitaxial Growth for Efficient Solar Hydrogen Production. Nano Letters, 2017, 17, 6676-6683.	9.1	96
18	In Situ Carbon Homogeneous Doping on Ultrathin Bismuth Molybdate: A Dualâ€Purpose Strategy for Efficient Molecular Oxygen Activation. Advanced Functional Materials, 2017, 27, 1703923.	14.9	136

#	Article	IF	CITATIONS
19	Superior Photocatalytic H ₂ Production with Cocatalytic Co/Ni Species Anchored on Sulfide Semiconductor. Advanced Materials, 2017, 29, 1703258.	21.0	188
20	Nanocrystalline Co _{0.85} Se Anchored on Graphene Nanosheets as a Highly Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 30703-30710.	8.0	118
21	A van der Waals p–n Heterojunction Based on Polymer-2D Layered MoS ₂ for Solution Processable Electronics. Journal of Physical Chemistry C, 2017, 121, 21945-21954.	3.1	22
22	Electron-spun 2D MoS2-decorated carbon nanofibers as pseudocapacitive electrode material into lithium ion battery. Journal of Alloys and Compounds, 2017, 728, 767-772.	5.5	15
23	Formation of hybrid nanostructures comprising perovskite (Ba5Nb4O15)-MoS2 ultrathin nanosheets on CdS nanorods: Toward enhanced solar-driven H2 production. Journal of Catalysis, 2017, 352, 617-626.	6.2	15
24	Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS ₂): basal vs. edge plane activity. Chemical Science, 2017, 8, 6583-6593.	7.4	159
25	Multiple Exciton Harvesting at Zero-Dimensional/Two-Dimensional Heterostructures. ACS Energy Letters, 2017, 2, 1879-1885.	17.4	29
26	Horizontally and vertically aligned growth of strained MoS ₂ layers with dissimilar wetting and catalytic behaviors. CrystEngComm, 2017, 19, 5068-5078.	2.6	39
27	1T-Phase Transition Metal Dichalcogenides (MoS ₂ , MoSe ₂ , WS ₂ ,) Tj ETQ Enzyme-Based Biosensor. ACS Applied Materials & Interfaces, 2017, 9, 40697-40706.	q0 0 0 rgB 8.0	T /Overlock 1 138
28	Aligned and stable metallic MoS ₂ on plasma-treated mass transfer channels for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 25359-25367.	10.3	31
29	Heterogeneous Nanostructure Based on 1T-Phase MoS ₂ for Enhanced Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2017, 9, 25291-25297.	8.0	202
30	Arrays of ZnO/MoS2 nanocables and MoS2 nanotubes with phase engineering for bifunctional photoelectrochemical and electrochemical water splitting. Chemical Engineering Journal, 2017, 328, 474-483.	12.7	103
31	A MoS2 nanocatalyst with surface-enriched active sites for the heterogeneous transfer hydrogenation of nitroarenes. Chinese Journal of Catalysis, 2018, 39, 79-87.	14.0	24
32	Metallic few-layered VSe ₂ nanosheets: high two-dimensional conductivity for flexible in-plane solid-state supercapacitors. Journal of Materials Chemistry A, 2018, 6, 8299-8306.	10.3	89
33	Synergetic Exfoliation and Lateral Size Engineering of MoS ₂ for Enhanced Photocatalytic Hydrogen Generation. Small, 2018, 14, e1704153.	10.0	84
34	Metastable MoS ₂ : Crystal Structure, Electronic Band Structure, Synthetic Approach and Intriguing Physical Properties. Chemistry - A European Journal, 2018, 24, 15942-15954.	3.3	133
35	Efficient Hydrogen Evolution Reaction Catalysis in Alkaline Media by Allâ€inâ€One MoS ₂ with Multifunctional Active Sites. Advanced Materials, 2018, 30, e1707105.	21.0	321
36	MoS ₂ Quantum Dots@TiO ₂ Nanotube Arrays: An Extended-Spectrum-Driven Photocatalyst for Solar Hydrogen Evolution. ChemSusChem, 2018, 11, 1708-1721.	6.8	77

#	Article	IF	CITATIONS
37	Study of the layer-dependent properties of MoS ₂ nanosheets with different crystal structures by DFT calculations. Catalysis Science and Technology, 2018, 8, 1867-1879.	4.1	94
38	Atomic Layers of MoO ₂ with Exposed Highâ€Energy (010) Facets for Efficient Oxygen Reduction. Small, 2018, 14, e1703960.	10.0	22
39	Ultrathin Alumina Mask-Assisted Nanopore Patterning on Monolayer MoS ₂ for Highly Catalytic Efficiency in Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2018, 10, 8026-8035.	8.0	55
40	Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting. ACS Catalysis, 2018, 8, 2253-2276.	11.2	773
41	Metallic 1T-Li _x MoS ₂ co-catalyst enhanced photocatalytic hydrogen evolution over ZnIn ₂ S ₄ floriated microspheres under visible light irradiation. Catalysis Science and Technology, 2018, 8, 1375-1382.	4.1	31
42	Small stoichiometric (MoS ₂) _n clusters with the 1T phase. Physical Chemistry Chemical Physics, 2018, 20, 6365-6373.	2.8	29
43	Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chemical Reviews, 2018, 118, 6091-6133.	47.7	1,000
44	Engineered MoSe ₂ â€Based Heterostructures for Efficient Electrochemical Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1703212.	19.5	152
45	Defect-rich O-incorporated 1T-MoS2 nanosheets for remarkably enhanced visible-light photocatalytic H2 evolution over CdS: The impact of enriched defects. Applied Catalysis B: Environmental, 2018, 229, 227-236.	20.2	176
46	A Facile Space-Confined Solid-Phase Sulfurization Strategy for Growth of High-Quality Ultrathin Molybdenum Disulfide Single Crystals. Nano Letters, 2018, 18, 2021-2032.	9.1	42
47	Self-assembled pearl-bracelet-like CoSe ₂ –SnSe ₂ /CNT hollow architecture as highly efficient electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 1655-1662.	10.3	125
48	Recent development on MoS2-based photocatalysis: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2018, 35, 39-55.	11.6	404
49	Surface step decoration of isolated atom as electron pumping: Atomic-level insights into visible-light hydrogen evolution. Nano Energy, 2018, 45, 109-117.	16.0	118
50	Ultrathin molybdenum disulfide/carbon nitride nanosheets with abundant active sites for enhanced hydrogen evolution. Nanoscale, 2018, 10, 1766-1773.	5.6	57
51	High Yield Exfoliation of WS ₂ Crystals into 1–2 Layer Semiconducting Nanosheets and Efficient Photocatalytic Hydrogen Evolution from WS ₂ /CdS Nanorod Composites. ACS Applied Materials & Interfaces, 2018, 10, 2810-2818.	8.0	112
52	Electrophoretic Deposited Stable Chitosan@MoS ₂ Coating with Rapid In Situ Bacteriaâ€Killing Ability under Dualâ€Light Irradiation. Small, 2018, 14, e1704347.	10.0	171
53	One-pot synthesis of self-assembled coral-like hierarchical architecture constructed by polymorphic CoSe2 nanocrystals as superior electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2018, 277, 161-167.	5.2	29
54	Three-Dimensional Nanoporous Heterojunction of Monolayer MoS ₂ @rGO for Photoenhanced Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 2183-2191.	5.1	27

#	Article	IF	CITATIONS
55	TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. Chemical Society Reviews, 2018, 47, 4332-4356.	38.1	232
56	Temperature- and Phase-Dependent Phonon Renormalization in 1T′-MoS ₂ . ACS Nano, 2018, 12, 5051-5058.	14.6	63
57	Ultra-small freestanding amorphous molybdenum sulfide colloidal nanodots for highly efficient photocatalytic hydrogen evolution reaction. Applied Catalysis B: Environmental, 2018, 232, 446-453.	20.2	63
58	Unilamellar Metallic MoS ₂ /Graphene Superlattice for Efficient Sodium Storage and Hydrogen Evolution. ACS Energy Letters, 2018, 3, 997-1005.	17.4	184
59	Solvothermal synthesis of metallic 1T-WS2: A supporting co-catalyst on carbon nitride nanosheets toward photocatalytic hydrogen evolution. Chemical Engineering Journal, 2018, 335, 282-289.	12.7	161
60	One-pot synthesis of in situ carbon-decorated Cu ₃ P particles with enhanced electrocatalytic hydrogen evolution performance. Journal of Materials Research, 2018, 33, 546-555.	2.6	29
61	Advanced catalysts for sustainable hydrogen generation and storage via hydrogen evolution and carbon dioxide/nitrogen reduction reactions. Progress in Materials Science, 2018, 92, 64-111.	32.8	195
62	Co stabilized metallic 1Td MoS2 monolayers: Bottom-up synthesis and enhanced capacitance with ultra-long cycling stability. Materials Today Energy, 2018, 7, 10-17.	4.7	28
63	Grapheneâ€Like Multilayered CuS Nanosheets Assembled into Flowerâ€Like Microspheres and Their Electrocatalytic Oxygen Evolution Properties. ChemElectroChem, 2018, 5, 494-500.	3.4	53
64	2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 220, 379-385.	20.2	231
65	Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS ₂ . Journal of Materials Chemistry A, 2018, 6, 23932-23977.	10.3	250
66	Synthesis of Airâ€stable 1T Phase of Molybdenum Disulfide for Efficient Electrocatalytic Hydrogen Evolution. ChemCatChem, 2019, 11, 707-714.	3.7	10
67	Ultrasmall MoO _x Clusters as a Novel Cocatalyst for Photocatalytic Hydrogen Evolution. Advanced Materials, 2019, 31, e1804883.	21.0	222
68	Monolayer Attachment of Metallic MoS ₂ on Restacked Titania Nanosheets for Efficient Photocatalytic Hydrogen Generation. ACS Applied Energy Materials, 2018, 1, 6912-6918.	5.1	15
69	Defect Engineering of MoS ₂ and Its Impacts on Electrocatalytic and Photocatalytic Behavior in Hydrogen Evolution Reactions. Chemistry - an Asian Journal, 2019, 14, 278-285.	3.3	39
70	Surface Modulation of Hierarchical MoS ₂ Nanosheets by Ni Single Atoms for Enhanced Electrocatalytic Hydrogen Evolution. Advanced Functional Materials, 2018, 28, 1807086.	14.9	314
71	Molecular Functionalization of Twoâ€Dimensional MoS ₂ Nanosheets. Chemistry - A European Journal, 2018, 24, 18246-18257.	3.3	73
72	Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nature Materials, 2018, 17, 1108-1114.	27.5	348

#	Article	IF	CITATIONS
73	In-situ temperature and thickness control grown 2D-MoS2 via pulsed laser ablation for photovoltaic devices. Solar Energy, 2018, 174, 286-295.	6.1	26
74	Self-assembly optimization of cadmium/molybdenum sulfide hybrids by cation coordination competition toward extraordinarily efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 18396-18402.	10.3	22
75	Synergistic modulation in MX ₂ (whereÂM = Mo or W or V, and X = S or Se) for an enhanced hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 21847-21858.	10.3	39
76	Synthesis of Particulate Hierarchical Tandem Heterojunctions toward Optimized Photocatalytic Hydrogen Production. Advanced Materials, 2018, 30, e1804282.	21.0	411
77	Differentiating Polymorphs in Molybdenum Disulfide via Electron Microscopy. Advanced Materials, 2018, 30, e1802397.	21.0	75
78	Enhanced sulfurization reaction of molybdenum using a thermal cracker for forming two-dimensional MoS ₂ layers. Physical Chemistry Chemical Physics, 2018, 20, 16193-16201.	2.8	15
79	Metallic 1T phase MoS ₂ nanosheets decorated hollow cobalt sulfide polyhedra for high-performance lithium storage. Journal of Materials Chemistry A, 2018, 6, 12613-12622.	10.3	46
80	Stable multiphasic 1T/2H MoSe2 nanosheets integrated with 1D sulfide semiconductor for drastically enhanced visible-light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 238, 27-37.	20.2	113
81	Multiscale porous molybdenum phosphide of honeycomb structure for highly efficient hydrogen evolution. Nanoscale, 2018, 10, 14594-14599.	5.6	42
82	Crystalâ€Face Tailored Graphitic Carbon Nitride Films for Highâ€Performance Photoelectrochemical Cells. ChemSusChem, 2018, 11, 2497-2501.	6.8	34
83	Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: A review. Chemical Engineering Research and Design, 2018, 118, 40-58.	5.6	121
84	A hidden symmetry-broken phase of MoS ₂ revealed as a superior photovoltaic material. Journal of Materials Chemistry A, 2018, 6, 16087-16093.	10.3	16
85	A metallic MoS ₂ nanosheet array on graphene-protected Ni foam as a highly efficient electrocatalytic hydrogen evolution cathode. Journal of Materials Chemistry A, 2018, 6, 16458-16464.	10.3	33
86	Metallic MoS ₂ for High Performance Energy Storage and Energy Conversion. Small, 2018, 14, e1800640.	10.0	218
87	A comparative study on the photocatalytic degradation of organic dyes using hybridized 1T/2H, 1T/3R and 2H MoS ₂ nano-sheets. RSC Advances, 2018, 8, 26364-26370.	3.6	63
88	2H/1T Phase Transition of Multilayer MoS ₂ by Electrochemical Incorporation of S Vacancies. ACS Applied Energy Materials, 2018, 1, 4754-4765.	5.1	141
89	Self-supported MoS2@NHCF fiber-in-tube composites with tunable voids for efficient hydrogen evolution reaction. Composites Communications, 2018, 9, 86-91.	6.3	34
90	Ultrastable Inâ€Plane 1T–2H MoS ₂ Heterostructures for Enhanced Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1801345.	19.5	409

#	Article	IF	CITATIONS
91	Synthesis, properties, and optoelectronic applications of two-dimensional MoS ₂ and MoS ₂ -based heterostructures. Chemical Society Reviews, 2018, 47, 6101-6127.	38.1	293
92	Defect- and Phase-Induced Acceleration of Electrocatalytic Hydrogen Production by Ultrathin and Small MoS ₂ -Decorated rGO Sheets. ACS Applied Nano Materials, 2018, 1, 4622-4632.	5.0	33
93	Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today, 2018, 22, 14-35.	11.9	252
94	Recent advances in the field of transition metal dichalcogenides for biomedical applications. Nanoscale, 2018, 10, 16365-16397.	5.6	147
95	Highly dispersed PtO nanodots as efficient co-catalyst for photocatalytic hydrogen evolution. Applied Surface Science, 2018, 462, 423-431.	6.1	103
96	Facile synthesis of silk-cocoon S-rich cobalt polysulfide as an efficient catalyst for the hydrogen evolution reaction. Energy and Environmental Science, 2018, 11, 2467-2475.	30.8	91
97	Stabilized monolayer 1T MoS2 embedded in CoOOH for highly efficient overall water splitting. Nanoscale, 2018, 10, 12330-12336.	5.6	33
98	Recent Development of Metallic (1T) Phase of Molybdenum Disulfide for Energy Conversion and Storage. Advanced Energy Materials, 2018, 8, 1703482.	19.5	317
99	Synergistic effect of mechanical strain and interfacial-chemical interaction for stable 1T-WSe2 by carbon nanotube and cobalt. Applied Surface Science, 2019, 496, 143694.	6.1	13
100	Piezo-promoted the generation of reactive oxygen species and the photodegradation of organic pollutants. Applied Catalysis B: Environmental, 2019, 258, 118024.	20.2	84
101	Building a lateral/vertical 1T-2H MoS ₂ /Au heterostructure for enhanced photoelectrocatalysis and surface enhanced Raman scattering. Journal of Materials Chemistry A, 2019, 7, 19922-19928.	10.3	47
102	One-pot synthesized visible-light-responsive MoS2@CdS nanosheets-on- nanospheres for hydrogen evolution from the antibiotic wastewater: Waste to energy insight. International Journal of Hydrogen Energy, 2019, 44, 21577-21587.	7.1	26
103	Challenges and recent advancements of functionalization of two-dimensional nanostructured molybdenum trioxide and dichalcogenides. Nanoscale, 2019, 11, 15709-15738.	5.6	27
104	Engineering Multifunctional Collaborative Catalytic Interface Enabling Efficient Hydrogen Evolution in All pH Range and Seawater. Advanced Energy Materials, 2019, 9, 1901333.	19.5	196
105	Effects of active species on degrading A-ring of tetracycline in the Z-scheme heterostructured core-shell La(OH)3@BaTiO3 composition. Journal of Alloys and Compounds, 2019, 804, 100-110.	5.5	23
106	C ₃ N ₄ -digested 3D construction of hierarchical metallic phase MoS ₂ nanostructures. Journal of Materials Chemistry A, 2019, 7, 18388-18396.	10.3	26
107	High Phaseâ€Purity 1Tâ€MoS ₂ Ultrathin Nanosheets by a Spatially Confined Template. Angewandte Chemie - International Edition, 2019, 58, 17621-17624.	13.8	109
108	Cu ₂ Oâ^'Cu ₂ Se Mixedâ€Phase Nanoflake Arrays: pHâ€Universal Hydrogen Evolution Reactions with Ultralow Overpotential. ChemElectroChem, 2019, 6, 5014-5021.	3.4	8

#	Article	IF	CITATIONS
109	MoS2 confined on graphene by triethanolamine for enhancing electrocatalytic hydrogen evolution performance. International Journal of Hydrogen Energy, 2019, 44, 28151-28162.	7.1	33
110	Simple Te-Thermal Converting 2H to 1T@2H MoS ₂ Homojunctions with Enhanced Supercapacitor Performance. ACS Applied Energy Materials, 2019, 2, 8337-8344.	5.1	22
111	Optimisation study on few layer formations of MoS2 thin films by a novel sulfurization method. AIP Conference Proceedings, 2019, , .	0.4	1
112	High Phaseâ€Purity 1Tâ€MoS 2 Ultrathin Nanosheets by a Spatially Confined Template. Angewandte Chemie, 2019, 131, 17785-17788.	2.0	67
113	3D Hierarchical N, O Co–Doped MoS ₂ /NiO Hollow Microspheres as Reusable Catalyst for Nitrophenols Reduction. ChemistrySelect, 2019, 4, 9339-9347.	1.5	4
114	Untapped Potential of Polymorph MoS ₂ : Tuned Cationic Intercalation for High-Performance Symmetric Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 33955-33965.	8.0	80
115	Strong interactions in molybdenum disulfide heterostructures boosting the catalytic performance of water splitting: A short review. Nano Materials Science, 2019, 1, 231-245.	8.8	17
116	Revealing the role of the 1T phase on the adsorption of organic dyes on MoS ₂ nanosheets. RSC Advances, 2019, 9, 28345-28356.	3.6	19
117	Phase-Mediated Heavy Metal Adsorption from Aqueous Solutions Using Two-Dimensional Layered MoS ₂ . ACS Applied Materials & Interfaces, 2019, 11, 38789-38797.	8.0	82
118	Synthesis of MoWS ₂ on Flexible Carbon-Based Electrodes for High-Performance Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 37550-37558.	8.0	31
119	Coral-like S-doped CoSe2 with enriched 1T-phase as efficient electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2019, 322, 134739.	5.2	25
120	Space-confined synthesis of monolayer molybdenum disulfide using tetrathiomolybdate intercalated layered double hydroxide as precursor. Journal of Colloid and Interface Science, 2019, 541, 183-191.	9.4	13
121	Powder exfoliated MoS ₂ nanosheets with highly monolayer-rich structures as high-performance lithium-/sodium-ion-battery electrodes. Nanoscale, 2019, 11, 1887-1900.	5.6	93
122	2D boron dichalcogenides from the substitution of Mo with ionic B ₂ pair in MoX ₂ (X = S, Se and Te): high stability, large excitonic effect and high charge carrier mobility. Journal of Materials Chemistry C, 2019, 7, 1651-1658.	5.5	17
123	Controlled Vapor Growth and Nonlinear Optical Applications of Largeâ€Area 3R Phase WS ₂ and WSe ₂ Atomic Layers. Advanced Functional Materials, 2019, 29, 1806874.	14.9	92
124	Facile microwave assisted synthesis of vastly edge exposed 1T/2H-MoS ₂ with enhanced activity for hydrogen evolution catalysis. Journal of Materials Chemistry A, 2019, 7, 3563-3569.	10.3	24
125	Aligned Heterointerfaceâ€Induced 1Tâ€MoS ₂ Monolayer with Nearâ€Ideal Gibbs Free for Stable Hydrogen Evolution Reaction. Small, 2019, 15, e1804903.	10.0	63
126	3D bicontinuous nanoporous plasmonic heterostructure for enhanced hydrogen evolution reaction under visible light. Nano Energy, 2019, 58, 552-559.	16.0	29

ARTICLE IF CITATIONS Construction of CdS/MoS₂ heterojunction from coreâ€"shell MoS₂ @Cd-MOF 127 3.3 60 for efficient photocatalytic hydrogen evolution. Dalton Transactions, 2019, 48, 2715-2721. Vertical nanosheet array of 1T phase MoS2 for efficient and stable hydrogen evolution. Applied Catalysis B: Environmental, 2019, 246, 296-302. 20.2 Preparation of MoS2/WS2 nanosheets by liquid phase exfoliation with assistance of epigallocatechin gallate and study as an additive for high-performance lithium-sulfur batteries. Journal of Colloid and 129 9.4 45 Interface Science, 2019, 552, 554-562. Rich active-edge-site MoS2 anchored on reduction sites in metal sulfide heterostructure: Toward robust visible light photocatalytic hydrogen sulphide splitting. Applied Catalysis B: Environmental, 2019, 256, 117870 Unraveling the Role of Lithium in Enhancing the Hydrogen Evolution Activity of MoS₂: 131 17.4 45 Intercalation versus Adsorption. ACS Energy Letters, 2019, 4, 1733-1740. 1T-phase MoS₂ quantum dots as a superior co-catalyst to Pt decorated on carbon nitride nanorods for photocatalytic hydrogen evolution from water. Materials Chemistry Frontiers, 2019, 3, 2032-2040. Role of Sulfur Vacancies and Undercoordinated Mo Regions in MoS₂ Nanosheets toward 133 14.6 402 the Evolution of Hydrogen. ACS Nano, 2019, 13, 6824-6834. Topological Formation of a Mo–Ni-Based Hollow Structure as a Highly Efficient Electrocatalyst for the Hydrogen Evolution Reaction in Alkaline Solutions. ACS Applied Materials & amp; Interfaces, 2019, 134 8.0 56 <u>11, 21998-22004.</u> Metallic 1T-phase MoS₂ quantum dots/g-C₃N₄ heterojunctions 135 5.6 76 for enhanced photocatalytic hydrogen evolution. Nanoscale, 2019, 11, 12266-12274. Photoelectrochemical Hydrogen Evolution and CO2 Reduction over MoS2/Si and MoSe2/Si Nanostructures by Combined Photoelectrochemical Deposition and Rapid-Thermal Annealing Process. 3.5 Catalysts, 2019, 9, 494. A Critical Review on Enhancement of Photocatalytic Hydrogen Production by Molybdenum Disulfide: 137 10.0 69 From Growth to Interfacial Activities. Small, 2019, 15, e1900578. Ru_xSe@MoS₂ hybrid as a highly efficient electrocatalyst toward hydrogen 138 3.6 evolution reaction. RSC Advances, 2019, 9, 13486-13493. Metallic molybdenum sulfide nanodots as platinum-alternative co-catalysts for photocatalytic 139 6.2 37 hydrogen evolution. Journal of Catalysis, 2019, 374, 237-245. Interfacial Charge Transfer in MoS2/TiO2 Heterostructured Photocatalysts: The Impact of Crystal 140 3.8 Facets and Defects. Molecules, 2019, 24, 1769. The Holy Grail in Platinumâ€Free Electrocatalytic Hydrogen Evolution: Molybdenumâ€Based Catalysts and 141 72 3.4 Recent Ádvances. ChemElectroChem, 2019, 6, 3570-3589. SnO₂ nanoparticles functionalized MoS₂ nanosheets as the electrode 142 material for supercapacitor applications. Materials Research Express, 2019, 6, 085526. Metallic 1T phase MoS2/MnO composites with improved cyclability for lithium-ion battery anodes. 143 5.5 22 Journal of Alloys and Compounds, 2019, 796, 25-32. "Superaerophobic―Nickel Phosphide Nanoarray Catalyst for Efficient Hydrogen Evolution at 144 Ultrahigh Current Densities. Journal of the American Chemical Society, 2019, 141, 7537-7543.

#	Article	IF	Citations
145	Recent advances of phase engineering in group VI transition metal dichalcogenides. Tungsten, 2019, 1, 46-58.	4.8	15
146	1T MoS2 nanosheets with extraordinary sodium storage properties via thermal-driven ion intercalation assisted exfoliation of bulky MoS2. Nano Energy, 2019, 61, 361-369.	16.0	157
147	In situ fabrication of molybdenum disulfide based nanohybrids for reducing fire hazards of epoxy. Composites Part A: Applied Science and Manufacturing, 2019, 122, 77-84.	7.6	34
148	The atomic origin of nickel-doping-induced catalytic enhancement in MoS ₂ for electrochemical hydrogen production. Nanoscale, 2019, 11, 7123-7128.	5.6	75
149	Few-layered 1T-MoS ₂ -modified ZnCoS solid-solution hollow dodecahedra for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 8472-8484.	10.3	56
150	Glucoseâ€Induced Synthesis of 1Tâ€MoS ₂ /C Hybrid for Highâ€Rate Lithiumâ€Ion Batteries. Small, 2019, 15, e1805420.	10.0	138
151	Progress in Electrocatalytic Hydrogen Evolution Based on Monolayer Molybdenum Disulfide. Frontiers in Chemistry, 2019, 7, 131.	3.6	17
152	Engineering 2D Metal–Organic Framework/MoS ₂ Interface for Enhanced Alkaline Hydrogen Evolution. Small, 2019, 15, e1805511.	10.0	169
153	Facile ultrasound-driven formation and deposition of few-layered MoS2 nanosheets on CdS for highly enhanced photocatalytic hydrogen evolution. Applied Surface Science, 2019, 481, 795-801.	6.1	22
154	Integrating the merits of two-dimensional structure and heteroatom modification into semiconductor photocatalyst to boost NO removal. Chemical Engineering Journal, 2019, 370, 944-951.	12.7	54
155	Temperature controlled 1T/2H phase ratio modulation in mono- and a few layered MoS2 films. Applied Surface Science, 2019, 479, 1236-1245.	6.1	29
156	Lattice -Mismatch-Induced Ultrastable 1T-Phase MoS ₂ –Pd/Au for Plasmon-Enhanced Hydrogen Evolution. Nano Letters, 2019, 19, 2758-2764.	9.1	98
157	Activating MoS ₂ with Super-High Nitrogen-Doping Concentration as Efficient Catalyst for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2019, 123, 10917-10925.	3.1	50
158	Achieving Highâ€Temperature Stability of Metastable αâ€MoC 1â€x by Suppressing Phase Transformation with Mounted Atoms for Lithium Storage Performance. Chemistry - an Asian Journal, 2019, 14, 1977-1984.	3.3	8
159	Design of basal plane active MoS2 through one-step nitrogen and phosphorus co-doping as an efficient pH-universal electrocatalyst for hydrogen evolution. Nano Energy, 2019, 58, 862-869.	16.0	74
160	Enhancing the electrocatalytic activity of 2H-WS ₂ for hydrogen evolution <i>via</i> defect engineering. Physical Chemistry Chemical Physics, 2019, 21, 6071-6079.	2.8	60
161	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	47.7	1,591
162	First-principles and experimental investigation of carbon-coated MoS ₂ hollow nanosphere heterogeneous structures with enhanced hydrogen evolution performance. New Journal of Chemistry, 2019, 43, 17502-17510.	2.8	2

#	Article	IF	CITATIONS
163	S-Edge-rich Mo _x S _y arrays vertically grown on carbon aerogels as superior bifunctional HER/OER electrocatalysts. Nanoscale, 2019, 11, 20284-20294.	5.6	32
164	1T-MoS ₂ nanopatch/Ti ₃ C ₂ MXene/TiO ₂ nanosheet hybrids for efficient photocatalytic hydrogen evolution. Materials Chemistry Frontiers, 2019, 3, 2673-2680.	5.9	81
165	Metallic 1T-VS ₂ nanosheets featuring V ²⁺ self-doping and mesopores towards an efficient hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2019, 6, 3510-3517.	6.0	39
166	Effect of Ni Doping on the MoS2 Structure and Its Hydrogen Evolution Activity in Acid and Alkaline Electrolytes. Surfaces, 2019, 2, 531-545.	2.3	34
167	Three-dimensional MoS2/rGO foams as efficient sulfur hosts for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2019, 355, 671-678.	12.7	164
168	2H- and 1T- mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 241, 236-245.	20.2	242
169	Crystal phase engineering on photocatalytic materials for energy and environmental applications. Nano Research, 2019, 12, 2031-2054.	10.4	95
170	Integration of metallic TaS ₂ Coâ€catalyst on carbon nitride photoharvester for enhanced photocatalytic performance. Canadian Journal of Chemical Engineering, 2019, 97, 1821-1827.	1.7	1
171	Reduced-graphene-oxide-loaded MoS2‡Ni3S2 nanorod arrays on Ni foam as an efficient and stable electrocatalyst for the hydrogen evolution reaction. Electrochemistry Communications, 2019, 99, 22-26.	4.7	20
172	Cascade electronic band structured zinc oxide/bismuth vanadate/three-dimensional ordered macroporous titanium dioxide ternary nanocomposites for enhanced visible light photocatalysis. Journal of Colloid and Interface Science, 2019, 539, 585-597.	9.4	20
173	Low-temperature wafer-scale growth of MoS2-graphene heterostructures. Applied Surface Science, 2019, 470, 129-134.	6.1	44
174	Activating MoS ₂ Basal Plane with Ni ₂ P Nanoparticles for Ptâ€Like Hydrogen Evolution Reaction in Acidic Media. Advanced Functional Materials, 2019, 29, 1809151.	14.9	114
175	Carbonized MoS ₂ : Super-Active Co-Catalyst for Highly Efficient Water Splitting on CdS. ACS Sustainable Chemistry and Engineering, 2019, 7, 4220-4229.	6.7	68
176	Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy, 2019, 58, 244-276.	16.0	298
177	Phase and interlayer effect of transition metal dichalcogenide cocatalyst toward photocatalytic hydrogen evolution: The case of MoSe2. Applied Catalysis B: Environmental, 2019, 243, 330-336.	20.2	105
178	Heterostructures Based on 2D Materials: A Versatile Platform for Efficient Catalysis. Advanced Materials, 2019, 31, e1804828.	21.0	142
179	Efficient hydrogen generation on graphdiyne-based heterostructure. Nano Energy, 2019, 55, 135-142.	16.0	59
180	Phaseâ€Controlled Synthesis of 1Tâ€MoSe ₂ /NiSe Heterostructure Nanowire Arrays via Electronic Injection for Synergistically Enhanced Hydrogen Evolution, Small Methods, 2019, 3, 1800317.	8.6	67

#	Article	IF	CITATIONS
181	MoS2/SnNb2O6 2D/2D nanosheet heterojunctions with enhanced interfacial charge separation for boosting photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2019, 536, 1-8.	9.4	60
182	One-step hydrothermal synthesis of high-percentage 1T-phase MoS2 quantum dots for remarkably enhanced visible-light-driven photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2019, 243, 76-85.	20.2	137
183	Synthesis of MoX2 (X = Se or S) monolayers with high-concentration 1T′ phase on 4H/fcc-Au nanorods for hydrogen evolution. Nano Research, 2019, 12, 1301-1305.	10.4	44
184	Exfoliated colloidal MoS2 nanosheet with predominantly 1T phase for electrocatalytic hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 18645-18656.	7.1	13
185	Fabrication of ultrathin-MoS2/Ag/AgBr composite with enhanced photocatalytic activity. Journal of Materials Science, 2020, 55, 2166-2175.	3.7	10
186	Facile synthesis of Bi5O7Br/BiOBr 2D/3D heterojunction as efficient visible-light-driven photocatalyst for pharmaceutical organic degradation. Separation and Purification Technology, 2020, 231, 115917.	7.9	77
187	Molybdenum disulfide (MoS2): A versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine. Chemical Engineering Journal, 2020, 384, 123264.	12.7	232
188	One-step fabrication of ultrathin layered 1T@2H phase MoS2 with high catalytic activity based counter electrode for photovoltaic devices. Journal of Materials Science and Technology, 2020, 51, 94-101.	10.7	30
189	High throughput study on magnetic ground states with Hubbard <i>U</i> corrections in transition metal dihalide monolayers. Nanoscale Advances, 2020, 2, 495-501.	4.6	25
190	Different phases of few-layer MoS ₂ and their silver/gold nanocomposites for efficient hydrogen evolution reaction. Catalysis Science and Technology, 2020, 10, 154-163.	4.1	36
191	Recent progress of TMD nanomaterials: phase transitions and applications. Nanoscale, 2020, 12, 1247-1268.	5.6	132
192	One-step molten-salt synthesis of anatase/rutile bi-phase TiO2@MoS2 hierarchical photocatalysts for enhanced solar-driven hydrogen generation. Applied Surface Science, 2020, 507, 145072.	6.1	28
193	Selective Preparation of 1T- and 2H-Phase MoS ₂ Nanosheets with Abundant Monolayer Structure and Their Applications in Energy Storage Devices. ACS Applied Energy Materials, 2020, 3, 998-1009.	5.1	50
194	SiOC functionalization of MoS ₂ as a means to improve stability as sodium-ion battery anode. Nanotechnology, 2020, 31, 145403.	2.6	30
195	Highly Sensitive 1Tâ€MoS ₂ Pressure Sensor with Wide Linearity Based on Hierarchical Microstructures of Leaf Vein as Spacer. Advanced Electronic Materials, 2020, 6, 1900916.	5.1	27
196	Investigation of the Active Phase in K-Promoted MoS ₂ Catalysts for Methanethiol Synthesis. ACS Catalysis, 2020, 10, 1838-1846.	11.2	25
197	Deep Phase Transition of MoS ₂ for Excellent Hydrogen Evolution Reaction by a Facile C-Doping Strategy. ACS Applied Materials & Interfaces, 2020, 12, 877-885.	8.0	38
198	Sequential Chemistry Toward Core–Shell Structured Metal Sulfides as Stable and Highly Efficient Visibleâ€Light Photocatalysts. Angewandte Chemie - International Edition, 2020, 59, 3287-3293.	13.8	80

ARTICLE IF CITATIONS Sequential Chemistry Toward Coreâ€"Shell Structured Metal Sulfides as Stable and Highly Efficient 199 2.0 16 Visibleâ€Light Photocatalysts. Angewandte Chemie, 2020, 132, 3313-3319. Solar-assisted fabrication of dimpled 2H-MoS2 membrane for highly efficient water desalination. 11.3 Water Research, 2020, 170, 115367. Hierarchical Hollowâ€Nanocube Niâ[^]Co Skeleton@MoO 3 /MoS 2 Hybrids for Improvedâ€Performance 201 3.3 16 Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2020, 26, 2013-2024. Nano-layer based 1T-rich MoS2/g-C3N4 co-catalyst system for enhanced photocatalytic and photoelectrochemical activity. Applied Catalysis B: Environmental, 2020, 268, 118466. Recent Advancements and Future Prospects in Ultrathin 2D Semiconductor-Based Photocatalysts for 203 3.5 35 Water Splitting. Catalysts, 2020, 10, 1111. Bottomâ€Up Synthesis of MoS₂/CNTs Hollow Polyhedron with 1T/2H Hybrid Phase for Superior Potassiumâ€Ion Storage. Small, 2020, 16, e2004178. 204 44 Two-dimensional materials as novel co-catalysts for efficient solar-driven hydrogen production. 205 10.3 81 Journal of Materials Chemistry A, 2020, 8, 23202-23230. To achieve ultrasensitive electrochemical detection of mercury ions employing metallic 1T-MoS2 206 5.2 Carrier Dynamics and Transfer across the CdS/MoS₂ Interface upon Optical Excitation. 207 4.6 13 Journal of Physical Chemistry Letters, 2020, 11, 6544-6550. Fabrication of MoS₂/BiOBr heterojunctions on carbon fibers as a weaveable photocatalyst for tetracycline hydrochloride degradation and Cr(<scp>vi</scp>) reduction under visible light. Environmental Science: Nano, 2020, 7, 2708-2722. 208 4.3 Scalable and controllable synthesis of 2D high-proportion 1T-phase MoS2. Nano Research, 2020, 13, 209 10.4 16 2933-2938. 3D 1Tâ€MoS₂/CoS₂ Heterostructure via Interface Engineering for Ultrafast 10.0 114 Hydrogen Evolution Reaction. Small, 2020, 16, e2002850. Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis. Journal of 211 10.3 115 Materials Chemistry A, 2020, 8, 14863-14894. Advancements in Therapeutics via 3D Printed Multifunctional Architectures from Dispersed 2D 10.0 Nanomaterial Inks. Small, 2020, 16, e2004900. Significant acceleration of Fe2+/ peroxydisulfate oxidation towards sulfisoxazole by addition of 214 7.5 27 MoS2. Environmental Research, 2020, 188, 109692. An overview of strategies for enhancement in photocatalytic oxidative ability of MoS2 for water 38 purification. Journal of Environmental Chemical Engineering, 2020, 8, 104307. Ultrafine nano 1T-MoS2 monolayers with NiOx as dual co-catalysts over TiO2 photoharvester for 216 20.2 56 efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 279, 119387. The impact of anion elements on the engineering of the electronic and optical characteristics of the two dimensional monolayer janus MoSSe for nanoelectronic device applications. Results in Physics, 4.1 2020, 18, 103284.

#	Article	IF	CITATIONS
218	Significantly increased Raman enhancement on defect-rich O-incorporated 1T-MoS2 nanosheets. Journal of Materials Science, 2020, 55, 16374-16384.	3.7	14
219	Defect Engineering in Metastable Phases of Transitionâ€Metal Dichalcogenides for Electrochemical Applications. Chemistry - an Asian Journal, 2020, 15, 3961-3972.	3.3	8
220	Scalable salt-templated directed synthesis of high-quality MoS2 nanosheets powders towards energetic and environmental applications. Nano Research, 2020, 13, 3098-3104.	10.4	24
221	Outdoor sunlight-driven scalable water-gas shift reaction through novel photothermal device-supported CuO _x /ZnO/Al ₂ O ₃ nanosheets with a hydrogen generation rate of 192 mmol g ^{â^'1} h ^{â^'1} . Journal of Materials Chemistry A, 2020, 8, 19467-19472.	10.3	23
222	Fabrication of rGO/CdS@2H, 1T, amorphous MoS2 heterostructure for enhanced photocatalytic and electrocatalytic activity. International Journal of Hydrogen Energy, 2020, 45, 21409-21421.	7.1	21
223	Direct growth of uniform carbon nitride layers with extended optical absorption towards efficient water-splitting photoanodes. Nature Communications, 2020, 11, 4701.	12.8	87
224	Polyoxometalate Template-Based Synthetic Strategy to Prepare Ni, Mo Co-Doped CdS for Efficient Photocatalytic Hydrogen Evolution from Water Splitting. Catalysts, 2020, 10, 1478.	3.5	6
225	Initial stage of MBE growth of MoSe ₂ monolayer. Nanotechnology, 2020, 31, 315710.	2.6	10
226	Vanadium-doping in interlayer-expanded MoS ₂ nanosheets for the efficient electrocatalytic hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2020, 7, 2497-2505.	6.0	23
227	Chemical activation of hollow carbon nanospheres induced self-assembly of metallic 1T phase MoS2 ultrathin nanosheets for electrochemical lithium storage. Electrochimica Acta, 2020, 353, 136545.	5.2	25
228	Hybrid phase 1T/2H-MoS ₂ with controllable 1T concentration and its promoted hydrogen evolution reaction. Nanoscale, 2020, 12, 11908-11915.	5.6	62
229	The metallic 1T-phase WS2 nanosheets as cocatalysts for enhancing the photocatalytic hydrogen evolution of g-C3N4 nanotubes. Applied Catalysis B: Environmental, 2020, 274, 119114.	20.2	116
231	Bifunctional and binder-free S-doped Ni-P nanospheres electrocatalyst fabricated by pulse electrochemical deposition method for overall water splitting. Journal of Colloid and Interface Science, 2020, 577, 265-278.	9.4	29
232	Wettability transition of Ni3B4-doped MoS2 for hydrogen evolution reaction by magnetron sputtering. Applied Surface Science, 2020, 510, 145368.	6.1	15
233	Visible-Light-Driven Nitrogen Fixation Catalyzed by Bi ₅ O ₇ Br Nanostructures: Enhanced Performance by Oxygen Vacancies. Journal of the American Chemical Society, 2020, 142, 12430-12439.	13.7	260
234	Metallic 1T Phase Tungsten Disulfide Microflowers for Trace Level Detection of Hg ²⁺ Ions. Advanced Sustainable Systems, 2020, 4, 2000068.	5.3	12
235	Recent breakthroughs in two-dimensional van der Waals magnetic materials and emerging applications. Nano Today, 2020, 34, 100902.	11.9	49
236	Electronic and optical properties of vertical borophene/MoS2 heterojunctions. Materials Chemistry and Physics, 2020, 252, 123305.	4.0	9

#	Article	IF	CITATIONS
237	Engineering Phase Transformation of MoS ₂ /RGO by N-doping as an Excellent Microwave Absorber. ACS Applied Materials & Interfaces, 2020, 12, 16831-16840.	8.0	57
238	Post-graphene 2D materials-based antimicrobial agents: focus on fabrication strategies and biosafety assessments. Journal of Materials Science, 2020, 55, 7226-7246.	3.7	31
239	Recent advances of two–dimensional molybdenum disulfide based materials: Synthesis, modification and applications in energy conversion and storage. Sustainable Materials and Technologies, 2020, 24, e00161.	3.3	12
240	Vertical kinetically oriented MoS ₂ –Mo ₂ N heterostructures on carbon cloth: a highly efficient hydrogen evolution electrocatalyst. Sustainable Energy and Fuels, 2020, 4, 2201-2207.	4.9	28
241	Recent developments in reduced graphene oxide nanocomposites for photoelectrochemical water-splitting applications. International Journal of Hydrogen Energy, 2020, 45, 11976-11994.	7.1	50
242	Designed synthesis of unique ZnS@CdS@Cd0.5Zn0.5S-MoS2 hollow nanospheres for efficient visible-light-driven H2 evolution. CrystEngComm, 2020, 22, 2743-2755.	2.6	8
243	Engineered 2D Transition Metal Dichalcogenides—A Vision of Viable Hydrogen Evolution Reaction Catalysis. Advanced Energy Materials, 2020, 10, 1903870.	19.5	169
244	Design Strategies for Development of TMD-Based Heterostructures in Electrochemical Energy Systems. Matter, 2020, 2, 526-553.	10.0	312
245	Effects of phase, strain, pressure, vacancy, and doping on the adsorption of metallic radionuclides on monolayer 2H-MoS2. Adsorption, 2020, 26, 521-535.	3.0	4
246	Extraordinary lithium storage capacity and lithiation mechanism of partially amorphous molybdenum sulfide on chemically exfoliated graphene. Electrochimica Acta, 2020, 354, 136636.	5.2	10
247	Molybdenum and Phosphorous Dual Doping in Cobalt Monolayer Interfacial Assembled Cobalt Nanowires for Efficient Overall Water Splitting. Advanced Functional Materials, 2020, 30, 2002533.	14.9	107
248	Synergistic lubrication of a porous MoS ₂ -POSS nanohybrid. RSC Advances, 2020, 10, 20579-20587.	3.6	6
249	Phase Engineering of Transition Metal Dichalcogenides with Unprecedentedly High Phase Purity, Stability, and Scalability via Moltenâ€Metalâ€Assisted Intercalation. Advanced Materials, 2020, 32, e2001889.	21.0	63
250	Hierarchical Nanorods of MoS ₂ /MoP Heterojunction for Efficient Electrocatalytic Hydrogen Evolution Reaction. Small, 2020, 16, e2002482.	10.0	85
251	Contacts for Molybdenum Disulfide: Interface Chemistry and Thermal Stability. Materials, 2020, 13, 693.	2.9	8
252	Co-doped 1T′/T phase dominated MoS1+XSe1+Y alloy nanosheets as bifunctional electrocatalyst for overall water splitting. Applied Surface Science, 2020, 513, 145828.	6.1	10
253	Plasma-Induced Exfoliation Provides Onion-Like Graphene-Surrounded MoS ₂ Nanosheets for a Highly Efficient Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2020, 12, 11533-11542.	8.0	49
254	Assembly of 1T′-MoS ₂ based fibers for flexible energy storage. Nanoscale, 2020, 12, 6562-6570.	5.6	10

#	Apticie	IF	CITATIONS
#	1T- and 2H-mixed phase MoS2 nanosheets coated on hollow mesoporous TiO2 nanospheres with	IF	CHATIONS
255	enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2020, 567, 10-17.	9.4	29
256	Boosting aqueous zinc-ion storage in MoS2 via controllable phase. Chemical Engineering Journal, 2020, 389, 124405.	12.7	122
257	One-step synthesis of Co-doped 1T-MoS2 nanosheets with efficient and stable HER activity in alkaline solutions. Materials Chemistry and Physics, 2020, 244, 122642.	4.0	51
258	Construction of Hybrid MoS ₂ Phase Coupled with SiC Heterojunctions with Promoted Photocatalytic Activity for 4-Nitrophenol Degradation. Langmuir, 2020, 36, 1174-1182.	3.5	41
259	The Rise of 2D Photothermal Materials beyond Graphene for Clean Water Production. Advanced Science, 2020, 7, 1902236.	11.2	206
260	Active faceted Cu2O hollow nanospheres for unprecedented adsorption and visible-light degradation of pollutants. Journal of Colloid and Interface Science, 2020, 565, 207-217.	9.4	31
261	Surface electron state engineering enhanced hydrogen evolution of hierarchical molybdenum disulfide in acidic and alkaline media. Applied Catalysis B: Environmental, 2020, 266, 118649.	20.2	55
262	Promoting the hydrogen evolution performance of 1T-MoSe2-Se: Optimizing the two-dimensional structure of MoSe2 by layered double hydroxide limited growth. Applied Surface Science, 2020, 509, 145364.	6.1	26
263	Research status of MoSe2 and its composites: A review. Superlattices and Microstructures, 2020, 139, 106388.	3.1	30
264	Recent Progress on Exploring Stable Metal–Organic Frameworks for Photocatalytic Solar Fuel Production. Solar Rrl, 2020, 4, 1900547.	5.8	47
265	Sulfur Vacancy-Rich O-Doped 1T-MoS ₂ Nanosheets for Exceptional Photocatalytic Nitrogen Fixation over CdS. ACS Applied Materials & Interfaces, 2020, 12, 7257-7269.	8.0	196
266	Metallicity of 2H-MoS ₂ induced by Au hybridization. 2D Materials, 2020, 7, 025021.	4.4	17
267	Structuralâ€Phase Catalytic Redox Reactions in Energy and Environmental Applications. Advanced Materials, 2020, 32, e1905739.	21.0	56
268	Molybdenum Disulfide Based Nanomaterials for Rechargeable Batteries. Chemistry - A European Journal, 2020, 26, 6296-6319.	3.3	49
269	Design, Synthesis and High HER Performances of 3D Ni/Mo Sulfide on Ni Foam. ChemCatChem, 2020, 12, 1647-1652.	3.7	18
270	2D transition metal dichalcogenides, carbides, nitrides, and their applications in supercapacitors and electrocatalytic hydrogen evolution reaction. Applied Physics Reviews, 2020, 7, 021304.	11.3	126
271	Quenching of substituted polyparaphenylenevinylenes photoluminescence by 2D MoS2 and modified graphenes. Synthetic Metals, 2020, 264, 116376.	3.9	1
272	1â€T-phase molybdenum sulfide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Applied Catalysis B: Environmental, 2020, 272, 118984.	20.2	68

#	Article	IF	CITATIONS
273	Improved hydrogen evolution activity by unique NiS2-MoS2 heterostructures with misfit lattices supported on poly(ionic liquid)s functionalized polypyrrole/graphene oxide nanosheets. Chemical Engineering Journal, 2021, 404, 126253.	12.7	23
274	Solid-state synthesis of ultra-small freestanding amorphous MoP quantum dots for highly efficient photocatalytic H2 production. Chemical Engineering Journal, 2021, 406, 126838.	12.7	34
275	In Situ Assembly of MoS <i>_x</i> Thinâ€Film through Selfâ€Reduction on pâ€&i for Drastic Enhancement of Photoelectrochemical Hydrogen Evolution. Advanced Functional Materials, 2021, 31, 2007071.	14.9	22
276	Surface atomic arrangement of nanomaterials affects nanotoxicity. Nanotoxicology, 2021, 15, 114-130.	3.0	14
277	Modification strategies on transition metal-based electrocatalysts for efficient water splitting. Journal of Energy Chemistry, 2021, 58, 446-462.	12.9	88
278	Stacking design in photocatalysis: synergizing cocatalyst roles and anti-corrosion functions of metallic MoS2 and graphene for remarkable hydrogen evolution over CdS. Journal of Materials Chemistry A, 2021, 9, 1552-1562.	10.3	36
279	A flexible, integrated film battery configuration for ultrafast sodium ion storage. Journal of Materials Chemistry A, 2021, 9, 1252-1259.	10.3	1
280	Rational design of strong chemical coupling carbon coated N-doped C@MoS2@C nanotubes for high-performance lithium storage. Journal of Alloys and Compounds, 2021, 861, 157981.	5.5	12
281	n-p Heterojunction of TiO2-NiO core-shell structure for efficient hydrogen generation and lignin photoreforming. Journal of Colloid and Interface Science, 2021, 585, 694-704.	9.4	91
282	Amorphous CoMoSx/N-Doped Carbon Hybrid with 3D Networks as Electrocatalysts for Hydrogen Evolution. Catalysis Letters, 2021, 151, 1720-1727.	2.6	4
283	Two-dimensional MX Dirac materials and quantum spin Hall insulators with tunable electronic and topological properties. Nano Research, 2021, 14, 584-589.	10.4	14
284	Accelerating directional charge separation via built-in interfacial electric fields originating from work-function differences. Chinese Journal of Catalysis, 2021, 42, 583-594.	14.0	29
285	Direct synthesis of 1T-phase MoS ₂ nanosheets with abundant sulfur-vacancies through (CH ₃) ₄ N ⁺ cation-intercalation for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 13996-14003.	10.3	17
286	Facile phase transition engineering of MoS ₂ for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 8394-8400.	10.3	28
287	A palladium doped 1T-phase molybdenum disulfide–black phosphorene two-dimensional van der Waals heterostructure for visible-light enhanced electrocatalytic hydrogen evolution. Nanoscale, 2021, 13, 5892-5900.	5.6	16
288	Concomitant induction to few-layer and 1T-rich two-dimensional MoS ₂ by rigid segment-containing polysulfide as a sulfur source and <i>in situ</i> in tercalator. Chemical Communications, 2021, 57, 2277-2280.	4.1	6
289	Synthesis and size modulation of MoS2 quantum dots by pulsed laser ablation in liquid for viable hydrogen generation. Journal of Applied Physics, 2021, 129, .	2.5	11
290	Millisecond Conversion of Metastable 2D Materials by Flash Joule Heating. ACS Nano, 2021, 15, 1282-1290.	14.6	48

#	Article	IF	CITATIONS
291	One step towards the 1T/2H-MoS ₂ mixed phase: a journey from synthesis to application. Materials Chemistry Frontiers, 2021, 5, 2143-2172.	5.9	43
292	Research progress of defective MoS2 for photocatalytic hydrogen evolution. Journal of the Korean Ceramic Society, 2021, 58, 135-147.	2.3	34
293	Hexagonal RuSe ₂ Nanosheets for Highly Efficient Hydrogen Evolution Electrocatalysis. Angewandte Chemie, 2021, 133, 7089-7093.	2.0	20
294	Hexagonal RuSe ₂ Nanosheets for Highly Efficient Hydrogen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 7013-7017.	13.8	88
295	Defective-MoS2/rGO heterostructures with conductive 1T phase MoS2 for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 9360-9370.	7.1	40
296	Adsorption of atomic hydrogen on monolayer MoS2. Nanotechnology, 2021, 32, 235701.	2.6	8
297	Spin caloritronics in two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>CrI</mml:mi><mml:n van der Waals heterostructures. Physical Review B, 2021, 103, .</mml:n </mml:msub></mml:mrow></mml:math 	111 3.3 <td>ıl:։։։ու» </td>	ı l:։։։ ու»
298	Metallic Transition Metal Dichalcogenides of Group VIB: Preparation, Stabilization, and Energy Applications. Small, 2021, 17, e2005573.	10.0	19
299	Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nature Communications, 2021, 12, 1687.	12.8	210
300	Phase-Reversed MoS ₂ Nanosheets Prepared through Femtosecond Laser Exfoliation and Chemical Doping. Journal of Physical Chemistry C, 2021, 125, 8304-8313.	3.1	10
301	Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis*. Chinese Physics B, 2021, 30, 116401.	1.4	3
302	High Stability of 1T-Phase MoS _{2<i>x</i>} Se _{2(1–<i>x</i>)} Monolayers Under Ambient Conditions. Journal of Physical Chemistry C, 2021, 125, 8407-8417.	3.1	7
303	Photocatalytic activity of co-doped Janus monolayer MoSSe for solar water splitting: A computational investigation. Applied Surface Science, 2021, 544, 148741.	6.1	25
304	Density Functional Theory Study of Edge-Induced Atomic-Scale Structural Phase Transitions of MoS2 Nanocrystals: Implications for a High-Performance Catalyst. ACS Applied Nano Materials, 2021, 4, 5496-5502.	5.0	2
305	Study of Optical, Electrochemical, and Morphological Properties of MoS2 Thin Films Prepared by Thermal Evaporation. Brazilian Journal of Physics, 2021, 51, 1182-1190.	1.4	7
306	A Smart Nanoplatform with Photothermal Antibacterial Capability and Antioxidant Activity for Chronic Wound Healing. Advanced Healthcare Materials, 2021, 10, e2100033.	7.6	101
307	Vertically Aligned Few-Layer Crumpled MoS ₂ Hybrid Nanostructure on Porous Ni Foam toward Promising Binder-Free Methanol Electro-Oxidation Application. Energy & Fuels, 2021, 35, 10169-10180.	5.1	24
308	Electron injection induced phase transition of 2H to 1T MoS2 by cobalt and nickel substitutional doping. Chemical Engineering Journal, 2021, 411, 128567.	12.7	42

		CITATION REPORT		
#	Article		IF	CITATIONS
309	Electric field driven exfoliation of MoS2. Journal of Alloys and Compounds, 2021, 862,	158551.	5.5	15
310	The activation of porous atomic layered MoS2 basal-plane to induce adjacent Mo atom high efficiency electrochemical N2 fixation. Applied Catalysis B: Environmental, 2021, 2	n pairs promoting 285, 119810.	20.2	35
311	In-situ surface-enhanced Raman scattering based on MTi20 nanoflowers: Monitoring a of contaminants. Journal of Hazardous Materials, 2021, 412, 125209.	nd degradation	12.4	40
312	Vacancy-rich 1T-MoS2 monolayer confined to MoO3 matrix: An interface-engineered h efficiently electrocatalytic conversion of nitrogen to ammonia. Applied Catalysis B: Env 2021, 286, 119870.	ybrid for vironmental,	20.2	35
313	Boosting Hydrogen Evolution on MoS 2 /CNT Modified by Poly(sodiumâ€p–styrene Concentration in Acid Solution. ChemElectroChem, 2021, 8, 2259-2265.	sulfonate) via Proton	3.4	4
314	Recent Advances in Transition Metal Dichalcogenide Cathode Materials for Aqueous R Multivalent Metal-Ion Batteries. Nanomaterials, 2021, 11, 1517.	echargeable	4.1	27
315	Synergistic Pt doping and phase conversion engineering in two-dimensional MoS2 for hydrogen evolution. Nano Energy, 2021, 84, 105898.	efficient	16.0	80
316	Pressurized Alloying Assisted Synthesis of High Quality Antimonene for Capacitive Dei Advanced Functional Materials, 2021, 31, 2102766.	onization.	14.9	15
317	Semiâ€metal <scp>1T</scp> ′ phase <scp>MoS₂</scp> nanosheets fo electrocatalytic nitrogen reduction. EcoMat, 2021, 3, e12122.	r promoted	11.9	15
318	Phase-Dependent MoS ₂ Nanoflowers for Light-Driven Antibacterial Applic Sustainable Chemistry and Engineering, 2021, 9, 7904-7912.	ation. ACS	6.7	77
319	2D/2D g-C ₃ N ₄ /1T-MoS ₂ Nanohybrids as Schot Photocatalysts for Nuclear Wastewater Pretreatment. ACS ES&T Water, 2021, 1, 2197	tky Heterojunction 7-2205.	4.6	23
320	A Review on MoS2 Energy Applications: Recent Developments and Challenges. Energie	es, 2021, 14, 4586.	3.1	37
321	Self-Supported Ceramic Electrode of 1T-2H MoS ₂ Grown on the TiC Mem Hydrogen Production. Chemistry of Materials, 2021, 33, 6217-6226.	brane for	6.7	26
322	All-pH-Tolerant In-Plane Heterostructures for Efficient Hydrogen Evolution Reaction. AC 15, 11417-11427.	CS Nano, 2021,	14.6	77
323	Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges. Nano-Micro Letters, 20.	21, 13, 156.	27.0	71
324	MoS2-based nanocomposites: synthesis, structure, and applications in water remediat storage: a review. Environmental Chemistry Letters, 2021, 19, 3645-3681.	ion and energy	16.2	48
325	Architecting core-shell nanosheets of MoS2-polypyrrole on carbon cloth as a robust so Sustainable Materials and Technologies, 2021, 28, e00255.	dium anode.	3.3	5
326	Engineering Cocatalysts onto Lowâ€Dimensional Photocatalysts for CO ₂ Structures, 2021, 2, 2100046.	Reduction. Small	12.0	40

#	Article	IF	CITATIONS
327	Modulating electronic structure of CoSe2 by Ni doping for efficient electrocatalyst for hydrogen evolution reaction. Rare Metals, 2022, 41, 901-910.	7.1	29
328	1T and 2H mixed phase MoS2 nanobelts coupled with Ti3+ self-doped TiO2 nanosheets for enhanced photocatalytic degradation of RhB under visible light. Applied Surface Science, 2021, 556, 149768.	6.1	38
329	Solar-light induced photoreduction of CO2 using nonthermal plasma sulfurized MoO3@MoS2-CuS composites. Journal of Environmental Chemical Engineering, 2021, 9, 105469.	6.7	19
330	Metal-semiconductor 1T/2H-MoS2 by a heteroatom-doping strategy for enhanced electrocatalytic hydrogen evolution. Catalysis Communications, 2021, 156, 106325.	3.3	21
331	New Insight into Desodiation/Sodiation Mechanism of MoS ₂ : Sodium Insertion in Amorphous Mo–S Clusters. ACS Applied Materials & Interfaces, 2021, 13, 40481-40488.	8.0	7
332	Two-dimensional heterostructures and their device applications: progress, challenges and opportunities—review. Journal Physics D: Applied Physics, 2021, 54, 433001.	2.8	30
333	Study of the molybdenum dichalcogenide crystals: recent developments and novelty of the P-MoS2 structure. Journal of Molecular Modeling, 2021, 27, 268.	1.8	5
334	Molybdenum disulfide (MoS2): A novel activator of peracetic acid for the degradation of sulfonamide antibiotics. Water Research, 2021, 201, 117291.	11.3	99
335	Facile preparation of metallic 1T phase molybdenum selenide as cocatalyst coupled with graphitic carbon nitride for enhanced photocatalytic H2 production. Journal of Colloid and Interface Science, 2021, 598, 172-180.	9.4	68
336	Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution. Nature Communications, 2021, 12, 5260.	12.8	93
337	Catalysis of hydrogen evolution reaction by in situ electrodeposited amorphous molybdenum sulfide at soft interfaces. Materials Today Energy, 2021, 21, 100742.	4.7	9
338	Hybrid Phase MoS ₂ as a Noble Metal-Free Photocatalyst for Conversion of Nitroaromatics to Aminoaromatics. Journal of Physical Chemistry C, 2021, 125, 20887-20895.	3.1	7
339	Selective biomass photoreforming for valuable chemicals and fuels: A critical review. Renewable and Sustainable Energy Reviews, 2021, 148, 111266.	16.4	70
340	Two-dimensional metallic MoS2-amorphous CoNi(OH)2 nanocomposite for enhanced electrochemical water splitting in alkaline solutions. Applied Surface Science, 2021, 561, 150079.	6.1	18
341	Sandwich structured Ni3S2-MoS2-Ni3S2@Ni foam electrode as a stable bifunctional electrocatalyst for highly sustained overall seawater splitting. Electrochimica Acta, 2021, 390, 138833.	5.2	41
342	In-situ sulfurized In2S3/MoO3@MoS2 heterojunction for visible light induced CO2 photoreduction. Journal of Environmental Chemical Engineering, 2021, 9, 106042.	6.7	12
343	MoS2 based nanocomposites: An excellent material for energy and environmental applications. Journal of Environmental Chemical Engineering, 2021, 9, 105836.	6.7	54
344	Effective active sites of triangular Mo-S Nano-catalysts from first-principle calculations. Surfaces and Interfaces, 2021, 26, 101373.	3.0	1

#	Article	IF	Citations
345	Low crystalline 1T-MoS2@S-doped carbon hollow spheres as an anode material for Lithium-ion battery. Journal of Colloid and Interface Science, 2021, 601, 411-417.	9.4	21
346	Photocatalytic H2 production with simultaneous wastewater purification over flower-like 1T/2H-MoS2-decorated CNT/CNU isotype heterojunction photocatalyst. Applied Surface Science, 2021, 569, 151072.	6.1	10
347	Enhanced piezocatalysis of polymorphic few-layered MoS2 nanosheets by phase engineering. Nano Energy, 2021, 90, 106527.	16.0	52
348	Recent advances in synthesis strategies and solar-to-hydrogen evolution of 1T phase MS2 (MÂ=ÂW, Mo) co-catalysts. Journal of Materials Science and Technology, 2022, 101, 242-263.	10.7	14
349	Molybdenophosphate thin film decorated on the surface of MoS2 nanoflakes for aqueous K-ion capacitors. Chemical Engineering Journal, 2022, 428, 131179.	12.7	14
350	Interface engineering heterostructured MoS2/WS2-reduced graphene Oxide for enhanced hydrogen Evolution electrocatalysts. Separation and Purification Technology, 2021, 278, 119569.	7.9	10
351	Visible-light degradation of antibiotics catalyzed by titania/zirconia/graphitic carbon nitride ternary nanocomposites: a combined experimental and theoretical study. Applied Catalysis B: Environmental, 2022, 300, 120633.	20.2	82
352	Fabrication and mechanism exploration of oxygen-incorporated 1T-MoS2 with high adsorption performance on methylene blue. Chemical Engineering Journal, 2022, 428, 130954.	12.7	34
353	Three-dimensional graphene encapsulated Ag–ZnFe ₂ O ₄ flower-like nanocomposites with enhanced photocatalytic degradation of enrofloxacin. RSC Advances, 2021, 11, 4723-4739.	3.6	16
354	Metal oxide-based electrocatalysts for low-temperature electrochemical production and oxidation of hydrogen (HER and HOR). , 2021, , 9-35.		0
355	Controlled 2H/1T phase transition in MoS ₂ monolayers by a strong interface with M ₂ C MXenes: a computational study. Physical Chemistry Chemical Physics, 2021, 23, 20107-20116.	2.8	13
356	Unveiling the effect of the crystalline phases of iron oxyhydroxide for highly sensitive and selective detection of dopamine. Dalton Transactions, 2021, 50, 13497-13504.	3.3	5
357	Promoted Interfacial Charge Transport and Separation of Size-Uniform Zn, Ni-Doped CdS-1T/2H O-MoS ₂ Nanoassemblies for Efficient Visible-Light Photocatalytic Water Splitting. Crystal Growth and Design, 2021, 21, 1278-1289.	3.0	9
358	Two-dimensional materials in biomedical, biosensing and sensing applications. Chemical Society Reviews, 2021, 50, 619-657.	38.1	265
359	U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 479-489.	4.9	6
360	Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nature Communications, 2018, 9, 2533.	12.8	356
361	3D porous ZnO–SnS p–n heterojunction for visible light driven photocatalysis. Physical Chemistry Chemical Physics, 2017, 19, 16576-16585.	2.8	86
362	<i>In situ</i> ion exchange synthesis of MoS ₂ /g-C ₃ N ₄ heterojunctions for highly efficient hydrogen production. New Journal of Chemistry, 2018, 42, 910-917.	2.8	40

#	Article	IF	CITATIONS
363	Current status and prospects of memristors based on novel 2D materials. Materials Horizons, 2020, 7, 1495-1518.	12.2	101
364	NO disproportionation over defective 1T′-MoS ₂ monolayers. Physical Chemistry Chemical Physics, 2020, 22, 13154-13159.	2.8	3
365	Coexisting 1T/2H polymorphs, reentrant resistivity behavior, and charge distribution in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Mo</mml:mi><mml:msub><mml: mathvariant="normal">S<mml:mn>2</mml:mn></mml: </mml:msub><mml:mo>â^`</mml:mo><mml:mi>hBN 2D/2D composite thin films. Physical Review Materials, 2019, 3, .</mml:mi></mml:mrow></mml:math 	mi <td>> <!--19<br-->mml:mrow</td>	> 19<br mml:mrow
366	A General Method for the Synthesis of Hybrid Nanostructures Using MoSe ₂ Nanosheet-Assembled Nanospheres as Templates. Research, 2019, 2019, 6439734.	5.7	7
367	Construction of 1T@2H MoS ₂ heterostructures <i>in situ</i> from natural molybdenite with enhanced electrochemical performance for lithium-ion batteries. RSC Advances, 2021, 11, 33481-33489.	3.6	8
368	Enhanced Surface-Enhanced Raman Scattering Activity of MoS ₂ –Ag-Reduced Graphene Oxide: Structure-Mediated Excitonic Transition. Journal of Physical Chemistry C, 2021, 125, 23259-23266.	3.1	8
369	Phase engineering of transition metal compounds for boosting lithium/sodium storage. APL Materials, 2021, 9, .	5.1	3
370	MoS ₂ Nanostructures with the 1T Phase for Electromagnetic Wave Absorption. ACS Applied Nano Materials, 2021, 4, 11042-11051.	5.0	29
371	Realizing the Excellent HER Performance of Pt3Pb2S2 by d-Orbital Electronic Modulation. Inorganic Chemistry, 2021, 60, 16538-16543.	4.0	3
372	Developing feature-rich electronic and magnetic properties in the β-As monolayer for spintronic and optoelectronic applications by C and Si doping: A first-principles study. Surfaces and Interfaces, 2021, 27, 101534.	3.0	1
373	Morphology and Phase Engineering of MoS2 Cocatalyst for High-Efficiency Hydrogen Evolution: One-Step Clean Synthesis and Comparative Studies. Journal of Physical Chemistry C, 0, , .	3.1	10
374	High-yield exfoliation of MoS2 (WS2) monolayers towards efficient photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 431, 133286.	12.7	14
375	A truncated octahedron metal-organic framework derived TiO2@C@MoS2 composite with superior lithium-ion storage properties. Journal of Power Sources, 2022, 518, 230746.	7.8	10
376	Insights into the effects of single Mo vacancy sites on the adsorption and dissociation of CO2 and H2O over the tertiary N-doped MoS2 monolayers. Applied Surface Science, 2022, 577, 151908.	6.1	4
377	P-Type AsP Nanosheet as an Electron Donor for Stable Solar Broad-Spectrum Hydrogen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 55102-55111.	8.0	2
378	Mo/P Dual-Doped Co/Oxygen-Deficient Co ₃ O ₄ Core–Shell Nanorods Supported on Ni Foam for Electrochemical Overall Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 55263-55271.	8.0	26
379	An overview on advances in design and development of materials for electrochemical generation of hydrogen and oxygen. Materials Today Energy, 2022, 23, 100902.	4.7	33
380	Self-water-absorption-type two-dimensional composite photocatalyst with high-efficiency water absorption and overall water-splitting performance. , 2022, 1, 100008.		55

#	Article	IF	CITATIONS
381	Dimensional Design and Core–Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption. Advanced Materials, 2022, 34, e2107538.	21.0	353
382	Free-Standing Petal-Shaped Metallic 1T-Phase Molybdenum Sulfide Anchored on a Nitrogen-Doped Carbon Cloth for High Rate Na-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 1106-1113.	5.1	3
383	Synergistic phase and crystallinity engineering in cubic RuSe ₂ catalysts towards efficient hydrogen evolution reaction. CrystEngComm, 2022, 24, 620-627.	2.6	11
384	Confined synthesis of MoS2 with rich co-doped edges for enhanced hydrogen evolution performance. Journal of Energy Chemistry, 2022, 70, 18-26.	12.9	29
385	Nanoribbons of 2D materials: A review on emerging trends, recent developments and future perspectives. Coordination Chemistry Reviews, 2022, 453, 214335.	18.8	20
386	In-situ phase conversion of composited 1T@2H–MoSe2 nanosheets with enhanced HER performance. Materials Chemistry and Physics, 2022, 278, 125657.	4.0	7
387	Crystal phase engineering boosted photo-electrochemical kinetics of CoSe2 for oxygen evolution catalysis. Journal of Colloid and Interface Science, 2022, 611, 22-28.	9.4	11
388	P and Se-codopants triggered basal plane active sites in NbS2 3D nanosheets toward electrocatalytic hydrogen evolution. Applied Surface Science, 2022, 581, 152419.	6.1	7
389	lodide-substitution-induced phase transition of chemical-vapor-deposited MoS2. Journal of Materials Chemistry C, 2022, 10, 1638-1644.	5.5	1
391	Plasmon-enhanced photoluminescence from MoS ₂ monolayer with topological insulator nanoparticle. Nanophotonics, 2022, 11, 995-1001.	6.0	8
392	Design of few-layered 1T-MoS2 by supramolecular-assisted assembly with N-doped carbon quantum dots for supercapacitor. Journal of Electroanalytical Chemistry, 2022, 908, 116093.	3.8	17
393	Construction of a sensitive electrochemical sensor based on hybrid 1ÂT/2H MoS2 nanoflowers anchoring on rGO nanosheets for the voltammetric determination of acetaminophen. Microchemical Journal, 2022, 175, 107129.	4.5	6
394	The role of sodium dodecyl sulfate mediated hydrothermal synthesis of MoS2 nanosheets for photocatalytic dye degradation and dye-sensitized solar cell application. Chemosphere, 2022, 294, 133725.	8.2	25
395	Pseudo metallic (1T) molybdenum disulfide for efficient photo/electrocatalytic water splitting. Applied Catalysis B: Environmental, 2022, 307, 121156.	20.2	11
396	General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy. Nature Communications, 2022, 13, 776.	12.8	56
397	Promoting Photoelectrochemical Performance Through the Modulation of MoS ₂ Morphology. Korean Journal of Materials Research, 2022, 32, 30-35.	0.2	0
398	Fabrication of hierarchical integrated 3D hollow MnS@MoS ₂ microcubes <i>via</i> a template-controlled synthesis for asymmetric supercapacitors. Journal of Materials Chemistry A, 2022, 10, 9370-9379.	10.3	24
399	Construction of FeS ₂ @MoS ₂ heterostructures for enhanced hydrogen evolution. Sustainable Energy and Fuels, 2022, 6, 2243-2248.	4.9	5

#	Article	IF	CITATIONS
400	Efficient harvesting and storage of solar energy of an all-vanadium solar redox flow battery with a MoS ₂ @TiO ₂ photoelectrode. Journal of Materials Chemistry A, 2022, 10, 10484-10492.	10.3	11
401	Mesoâ€Microporous Nanosheetâ€Constructed 3DOM Perovskites for Remarkable Photocatalytic Hydrogen Production. Advanced Functional Materials, 2022, 32, .	14.9	37
402	Few-Layered MoS ₂ /ZnCdS/ZnS Heterostructures with an Enhanced Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 4893-4902.	5.1	21
403	Direct Synthesis of Stable 1Tâ€MoS ₂ Doped with Ni Single Atoms for Water Splitting in Alkaline Media. Small, 2022, 18, e2107238.	10.0	58
404	In-situ construction of ZnO/Sb2MoO6 nano-heterostructure for efficient visible-light photocatalytic conversion of N2 to NH3. Surfaces and Interfaces, 2022, 30, 101844.	3.0	8
405	2D molten salt strategy for preparing large-sized MoS2/C sheets with self-adaptive structural deformation for K-ion storage. Chemical Engineering Journal, 2022, 440, 135871.	12.7	2
406	Stabilizing the heavily-doped and metallic phase of MoS ₂ monolayers with surface functionalization. 2D Materials, 2022, 9, 015033.	4.4	5
407	Achieving ultra-dispersed 1T-Co-MoS ₂ @HMCS <i>via</i> space-confined engineering for highly efficient hydrogen evolution in the universal pH range. Inorganic Chemistry Frontiers, 2022, 9, 2617-2627.	6.0	5
408	Waferâ€Scale 2Hâ€MoS ₂ Monolayer for High Surfaceâ€enhanced Raman Scattering Performance: Chargeâ€Transfer Coupled with Molecule Resonance. Advanced Materials Technologies, 2022, 7, .	5.8	14
409	Fabricating WS2/Mn0.5Cd0.5S/CuInS2 hierarchical tandem p-n heterojunction for highly efficient hydrogen production. Applied Surface Science, 2022, 593, 153448.	6.1	10
410	Rich 1Tâ€MoS ₂ Nanoflowers Decorated on Reduced Graphene Oxide Nanosheet for Ultraâ€Quick Zn ²⁺ Storage. Batteries and Supercaps, 2022, 5, .	4.7	4
411	Tuning phase compositions of MoS ₂ nanomaterials for enhanced heavy metal removal: performance and mechanism. Physical Chemistry Chemical Physics, 2022, 24, 13305-13316.	2.8	6
412	FeP2 monolayer: Isoelectronic analogue of MoS2 with excellent electronic and optical properties. Physical Chemistry Chemical Physics, 0, , .	2.8	1
413	The effects of the fluence of electron irradiation on the structure and hydrogen evolution reaction performance of molybdenum disulfide. Journal of Materials Chemistry C, 2022, 10, 7839-7848.	5.5	3
414	One-step ultrafast laser induced synthesis of strongly coupled 1T-2H MoS2/N-rGO quantum-dot heterostructures for enhanced hydrogen evolution. Chemical Engineering Journal, 2022, 445, 136618.	12.7	10
415	Encapsulating MoS2-nanoflowers conjugated with chitosan oligosaccharide into electrospun nanofibrous scaffolds for photothermal inactivation of bacteria. Journal of Nanostructure in Chemistry, 2024, 14, 137-151.	9.1	11
416	Cobalt-doped molybdenum disulfide with rich defects and extended layered structure for rechargeable zinc-ion batteries. Journal of Alloys and Compounds, 2022, 916, 165487.	5.5	7
417	Morphologyâ€Tuned Pt ₃ Ge Accelerates Water Dissociation to Industrialâ€Standard Hydrogen Production over a wide pH Range. Advanced Materials, 2022, 34, .	21.0	12

#	Article	IF	CITATIONS
418	Singleâ€Atom Catalysts for Hydrogen Generation: Rational Design, Recent Advances, and Perspectives. Advanced Energy Materials, 2022, 12, .	19.5	42
419	Recent strategies for activating the basal planes of transition metal dichalcogenides towards hydrogen production. Journal of Materials Chemistry A, 2022, 10, 19067-19089.	10.3	27
420	Light induced ammonia synthesis by crystalline polyoxometalate-based hybrid frameworks coupled with the Sv-1T MoS ₂ cocatalyst. Inorganic Chemistry Frontiers, 2022, 9, 3828-3838.	6.0	7
421	Silk-based 2D nanocomposites for superior oily wastewater remediation. Journal of Cleaner Production, 2022, 365, 132707.	9.3	9
422	Ultrahigh yield and large-scale fast growth of large-size high-quality van der Waals transition-metal telluride single crystals. Cell Reports Physical Science, 2022, 3, 100953.	5.6	2
423	Allâ€Solidâ€State Li–S Batteries Enhanced by Interface StabilizationÂand Reaction Kinetics Promotion through 2D Transition Metal Sulfides. Advanced Materials Interfaces, 2022, 9, .	3.7	10
424	STEM Image Analysis Based on Deep Learning: Identification of Vacancy Defects and Polymorphs of MoS ₂ . Nano Letters, 2022, 22, 4677-4685.	9.1	14
425	Interface-assisted phase transition in MOF-derived MoS ₂ /CoS ₂ heterostructures for highly efficient dual-pH hydrogen evolution and overall water splitting. Journal of Materials Chemistry A, 2022, 10, 16115-16126.	10.3	18
426	Heterointerface-Rich Sn/Mo/NiÂTrimetallicÂSulfide Porous Nanosheets WithÂEnhanced Electrocatalytic H2-EvolutionÂActivity. SSRN Electronic Journal, 0, , .	0.4	0
427	Phase Engineering and Alkali Cation Stabilization for 1T Molybdenum Dichalcogenides Monolayers. Advanced Functional Materials, 2022, 32, .	14.9	19
428	Preparation of lamellar structure MoS2@rGO/S and its energy storage performance. Ionics, 2022, 28, 4217-4227.	2.4	1
429	Newly Designed Oneâ€Pot Inâ€6itu Synthesis of VS ₂ /rGO Nanocomposite to Explore Its Electrochemical Behavior towards Oxygen Electrode Reactions**. ChemElectroChem, 2022, 9, .	3.4	8
430	Chemical insights into two-dimensional quantum materials. Matter, 2022, 5, 2168-2189.	10.0	2
431	Facile Synthesis of ZnS/1T-2H MoS2nanocomposite for Boosted adsorption/photocatalytic degradation of methylene blue under visiblelight. Environmental Science and Pollution Research, 0, , .	5.3	0
432	Noble Metal-Free 2D 1T-MoS ₂ Edge Sites Boosting Selective Hydrogenation of Maleic Anhydride. ACS Catalysis, 2022, 12, 8986-8994.	11.2	18
433	Crystal phase engineering of electrocatalysts for energy conversions. Nano Research, 2022, 15, 10194-10217.	10.4	13
434	Light-Switchable Oxygen Vacancies Enhanced Nitrogen Fixation Performance on BiOBr: Mechanism of Formation, Reconversion and Function. Chemical Engineering Journal, 2022, 450, 138066.	12.7	13
435	Amine and Carbon-pretreated nickel–molybdenum disulfide as bifunctional electrocatalysts for hydrogen and oxygen gas evolution. International Journal of Hydrogen Energy, 2022, 47, 27839-27847.	7.1	4

# 436	ARTICLE Molecularly imprinted sensor based on 1T/2H MoS2 and MWCNTs for voltammetric detection of acetaminophen. Sensors and Actuators A: Physical, 2022, 345, 113772.	IF 4.1	Citations 7
437	Recent Progress in Phase Regulation, Functionalization, and Biosensing Applications of Polyphase MoS ₂ . Small, 2022, 18, .	10.0	17
438	The nature of K-induced 2H and 1T'-MoS2 species and their phase transition behavior for the synthesis of methanethiol (CH3SH). IScience, 2022, 25, 104999.	4.1	5
439	High-Efficiency Photodynamic Antibacterial Activity of NH ₂ -MIL-101(Fe)@MoS ₂ /ZnO Ternary Composites. ACS Applied Bio Materials, 2022, 5, 3912-3922.	4.6	12
440	Dual MOFâ€Derived MoS ₂ /CdS Photocatalysts with Rich Sulfur Vacancies for Efficient Hydrogen Evolution Reaction. Chemistry - A European Journal, 2022, 28, .	3.3	9
441	Metal-cation-directed self-assembly of hierarchical MoS2 nanotubes as high-performance anode for Na-ion batteries. Chemical Engineering Science, 2022, 261, 117953.	3.8	0
442	(1T/2H)-MoS2/CoFe2O4 heterojunctions with a unique grape bunch structure for photocatalysis of organic dyes driven by visible light. Applied Surface Science, 2022, 605, 154751.	6.1	12
443	Direct and in situ growth of 1T′ MoS2 and 1T MoSe2 on electrochemically synthesized MXene as an electrocatalyst for hydrogen generation. Nano Energy, 2022, 103, 107835.	16.0	20
444	Vertically Aligned W(Mo)S2/N-W(Mo)C Photoelectrocatalysis for Hydrogen Evolution in Acidic Solutions. SSRN Electronic Journal, 0, , .	0.4	0
445	Zn-doped SnS with sulfur vacancies for enhanced photocatalytic hydrogen evolution from water. New Journal of Chemistry, 2022, 46, 17791-17800.	2.8	4
446	Vanadium defect-engineering in molybdenum disulfide for electrochemical nitrate reduction. Journal of Materials Chemistry A, 2022, 10, 23990-23997.	10.3	10
447	Photochemically engineered ultra-stable 1T MoS ₂ by flow synthesis. Chemical Communications, 2022, 58, 11929-11932.	4.1	1
448	Selective Electrocatalytic Hydrogenation of Nitroarenes on Interlayer-Expanded MoS ₂ . ACS Sustainable Chemistry and Engineering, 2022, 10, 13525-13533.	6.7	14
449	Cobalt porphyrin/molybdenum disulfide nanoensembles for light-assisted electrocatalytic water oxidation and selective hydrogen peroxide production. 2D Materials, 2023, 10, 014007.	4.4	3
450	2+ <i>δ</i> â€Dimensional Materials via Atomistic Zâ€Welding. Advanced Science, 2022, 9, .	11.2	8
451	Molecular Engineering Strategies toward Molybdenum Diselenide Design for Energy Storage and Conversion. Advanced Energy Materials, 2022, 12, .	19.5	12
452	Green approach to synthesize various MoS2 nanoparticles via hydrothermal process. Bulletin of Materials Science, 2022, 45, .	1.7	3
453	Facilitating peroxymonosulfate activation for effective antibiotics degradation from drinking water by photoelectrocatalytic system using MoS2 embedded carbon substrate. Chemical Engineering Journal, 2022, , 139591.	12.7	11

#	Article	IF	CITATIONS
454	Surface-Plasma-Induced One-Pot Synthesis of N,S-Carbon Dot Intercalated MoS ₂ /Graphene Nanosheets for Highly Efficient Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 12817-12827.	5.1	18
455	Charge self-regulation in 1T'''-MoS2 structure with rich S vacancies for enhanced hydrogen evolution activity. Nature Communications, 2022, 13, .	12.8	56
456	Research progress of 1T-MoS2 in electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 39771-39795.	7.1	23
457	Advances in 2D Molybdenum Disulfideâ€Based Functional Materials for Supercapacitor Applications. ChemistrySelect, 2022, 7, .	1.5	3
458	Engineered MoS2 nanostructures for improved photocatalytic applications in water treatment. Materials Today Sustainability, 2023, 21, 100264.	4.1	9
459	Synthesis and modifications of g-C3N4-based materials and their applications in wastewater pollutants removal. Journal of Environmental Chemical Engineering, 2022, 10, 108782.	6.7	26
460	Ultra-small porous WN/W ₂ C nanoparticles for sustained hydrogen production by a polyoxometalate-intercalated pyrolysis strategy. New Journal of Chemistry, 2022, 46, 23292-23296.	2.8	4
461	Phase-controlled 1T/2H-MoS2 interaction with reduced TiO2 for highly stable photocatalytic CO2 reduction into CO. Journal of CO2 Utilization, 2023, 67, 102324.	6.8	9
462	Ti _{<i>n</i>} O _{2<i>n</i>–1} /MXene Hierarchical Bifunctional Catalyst Anchored on Graphene Aerogel toward Flexible and High-Energy Li–S Batteries. ACS Nano, 2022, 16, 19133-19144.	14.6	22
463	Surface engineering of phase controlled defective 1ÂT-MoS2 QDs@g-C3Nx material for significantly enhanced hydrogen evolution under visible-light irradiation. Separation and Purification Technology, 2023, 308, 122920.	7.9	9
464	Fabrication of a novel pyramidal 3D MoS2/2D PbTiO3 nanocomposites and the efficient photocatalytic removal of organic pollutants: Effects of the PbTiO3 internal electric field and S-scheme heterojunction formation. Applied Surface Science, 2023, 616, 156431.	6.1	7
465	Continuously Flow Photothermal Catalysis Efficiently CO ₂ Reduction Over Sâ€Scheme 2D/0D Bi ₅ O ₇ lâ€OVs/Cd _{0.5} Zn _{0.5} S Heterojunction with Strong Interfacial Electric Field. Small, 2023, 19, .	10.0	25
466	Correlation of Volumetric Vaporsorption and Vapor Sensing Phenomenon of Flower-Like MoS ₂ -Based Sensor. IEEE Sensors Journal, 2023, 23, 5858-5865.	4.7	1
467	Synergistic Germanium-Decorated h-BN/MoS2 Heterostructure Nanosheets: An Advanced Electrocatalyst for Energy Storage Applications. Energies, 2023, 16, 3286.	3.1	2
468	Boosting photocatalytic ammonia synthesis performance over OVs-Rich Ru/W18O49: Insights into the roles of oxygen vacancies in enhanced hydrogen spillover effect. Chemical Engineering Journal, 2023, 461, 141892.	12.7	12
469	Boosting photocatalytic hydrogen evolution over CdS/MoS2 on the graphene/montmorillonite composites. Applied Clay Science, 2023, 236, 106855.	5.2	4
470	Dual non-metal atom doping enabled 2D 1T-MoS2 cocatalyst with abundant edge-S active sites for efficient photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2023, 48, 16987-16999.	7.1	9
471	Vertically aligned W(Mo)S2/N-W(Mo)C-based light-assisted electrocatalysis for hydrogen evolution in acidic solutions. Rare Metals, 2023, 42, 1535-1544.	7.1	6

#	Article	IF	CITATIONS
472	Stable 1T –2H MoS2 heterostructures for efficient electrocatalytic hydrogen evolution. Chemical Engineering Journal, 2023, 460, 141858.	12.7	13
473	Electron induced construction of heterogeneous MoS2 for highly efficient hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2023, 932, 117267.	3.8	5
474	Modulation of Schottky Barrier Height by Nitrogen Doping and Its Influence on Responsivity of Monolayer MoS ₂ Photodetector. Advanced Materials Interfaces, 2023, 10, .	3.7	4
475	MoS ₂ Nanostructures for Solar Hydrogen Generation via Membraneless Electrochemical Water Splitting. ACS Applied Electronic Materials, 2023, 5, 1461-1470.	4.3	5
476	Unraveling the role of phase engineering in tuning photocatalytic hydrogen evolution activity and stability. Chinese Chemical Letters, 2023, 34, 108328.	9.0	5
477	<i>Ex Situ</i> Characterization of 1T/2H MoS ₂ and Their Carbon Composites for Energy Applications, a Review. ACS Nano, 2023, 17, 5163-5186.	14.6	9
478	A Unified Therapeutic–Prophylactic Tissueâ€Engineering Scaffold Demonstrated to Prevent Tumor Recurrence and Overcoming Infection toward Bone Remodeling. Advanced Materials, 2023, 35, .	21.0	15
479	Unravelling the Synergy between Phase Engineering and Interface Regulation in TiO ₂ /1T-Rich MoSe ₂ Heterostructures for Efficient Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2023, 11, 8009-8019.	6.7	15
480	Giant change of MoS ₂ optical properties along amorphous-crystalline transition: broadband spectroscopic study including NIR therapeutic window. Nanoscale Advances, 0, , .	4.6	1
481	Structure phase engineering strategy through acetic acid coupling to boost hydrogen evolution reaction performance of 2H phase MoS2 at wide pH range. Fuel, 2023, 347, 128428.	6.4	8
482	Effectively enhanced activity of hydrogen evolution through strong interfacial coupling on SnS2/MoS2/Ni3S2 heterostructured porous nanosheets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 670, 131634.	4.7	3
483	Bifunctional bismuth molybdate/biochar composite with an enhanced photo-assisted electrochemical activity: Memory effect-free Hg(II) detection and efficient photocatalytic reduction of Cr(VI). Chemical Engineering Journal, 2023, 468, 143849.	12.7	5
484	Au induced in-situ formation of ultra-stable 1T-MoS2 on polymeric carbon nitride toward promoted photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2023, , .	7.1	0
486	Insights of active sites separation mechanism for highly efficient electrocatalytic N2 reduction to ammonia over glucose-induced metallic MoS2. Applied Catalysis B: Environmental, 2023, 337, 122997.	20.2	5
487	Hydrothermal Synthesis of MoS2/SnS2 Photocatalysts with Heterogeneous Structures Enhances Photocatalytic Activity. Materials, 2023, 16, 4436.	2.9	6
488	Durable hierarchical phosphorusâ€doped biphase MoS ₂ electrocatalysts with enhanced H* adsorption. , 0, , .		5
489	MoS2 and CdS photocatalysts for water decontamination: A review. Inorganic Chemistry Communication, 2023, 153, 110775.	3.9	9
490	A supercritical growth strategy for 1T/2H mixed-phase MoS2 nanosheets of high activity and stability. International Journal of Hydrogen Energy, 2023, 48, 31582-31589.	7.1	4

#	Article	IF	CITATIONS
491	Engineering Mott–Schottky Heterojunction Au ^{Î′+} /1T-MoS _{1.76} Electrocatalyst for Boosting Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2023, 6, 6278-6288.	5.1	2
492	Recent Advances in Phase-Engineered Photocatalysts: Classification and Diversified Applications. Materials, 2023, 16, 3980.	2.9	3
493	The peroxidase-like cleaning strategy for organic fouling of water treatment membranes based on MoS2 functional layers. Journal of Water Process Engineering, 2023, 54, 103955.	5.6	1
494	Fabrication of 3D hierarchical networks adsorbent immobilized MoS2 for adsorption of Ag(I) from aqueous solution. Applied Surface Science, 2023, 637, 157932.	6.1	0
495	Heterostructure engineering of MoS2/Mo2CT nanoarray via molten salt synthesis for enhanced hydrogen evolution reaction. Journal of Materiomics, 2023, 9, 1122-1128.	5.7	1
496	Transition metal dichalcogenides and hybrids for electrochemical sensing. , 2023, , 199-224.		0
497	Bimetallic active site nuclear-shell heterostructure enables efficient dual-functional electrocatalysis in alkaline media. Rare Metals, 2023, 42, 3024-3033.	7.1	4
498	Metal-assisted growth of MoS2 nanosheets on carbon fabric with enhanced electrical conductivity for self-powered wearable thermoelectric application. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	0
499	Two Dimensional Irâ€Based Catalysts for Acidic OER. Small, 2023, 19, .	10.0	6
500	Anchoring and catalyzing polysulfides by rGO/MoS2/C modified separator in lithium–sulfur batteries. Carbon, 2023, 214, 118361.	10.3	7
501	Tailoring supports for enhancing the electrocatalytic hydrogen evolution performance of platinum species: a review. Journal of Materials Chemistry A, 2023, 11, 19812-19844.	10.3	2
502	Uncovering the photoelectronic/catalytic property modulation and applications of 2D MoS ₂ : from the perspective of constructing heterogeneous interfaces. Journal of Materials Chemistry A, 2023, 11, 19736-19763.	10.3	2
503	Nonlinear Optical Properties from Engineered 2D Materials. Molecules, 2023, 28, 6737.	3.8	1
505	Probing Functional Structures, Defects, and Interfaces of 2D Transition Metal Dichalcogenides by Electron Microscopy. Advanced Functional Materials, 2024, 34, .	14.9	1
506	Fruit waste-derived cellulose-templated hierarchical spheres of ultrathin MoS2 nanosheets for oxygen evolution reactions. FlatChem, 2023, 41, 100543.	5.6	0
507	Ligand Modulation of Active Sites to Promote Cobaltâ€Doped 1Tâ€MoS ₂ Electrocatalytic Hydrogen Evolution in Alkaline Media. Angewandte Chemie - International Edition, 2023, 62, .	13.8	10
508	Research Progress in the Construction of Tungsten Based Catalysts and Their Electro Catalytic Performance for Hydrogen Production. Journal of Advances in Physical Chemistry, 2023, 12, 205-221.	0.1	0
509	1Tâ€⊋H Mixedâ€Phase MoS ₂ Stabilized with a Hyperbranched Polyethylene Ionomer for Mg ²⁺ /Li ⁺ Coâ€Intercalation Toward Highâ€Capacity Dualâ€Balt Batteries. Small, 2024, 20, .	10.0	1

#	Article	IF	CITATIONS
510	A general strategy to stabilize 1T-MoS ₂ using MXene heterostructures and unlock its hydrogen evolution reaction capabilities. Physical Chemistry Chemical Physics, 2023, 25, 27181-27188.	2.8	0
511	Ligand Modulation of Active Sites to Promote Cobaltâ€Doped 1Tâ€MoS ₂ Electrocatalytic Hydrogen Evolution in Alkaline Media. Angewandte Chemie, 2023, 135, .	2.0	0
512	Polymeric PDI-based photocatalytic nanoarchitectures promoting the performance of thin film composite membrane for forward osmosis water purification. Chemical Engineering Journal, 2023, 476, 146747.	12.7	2
513	High-content 1T Phase MoS2 Nanosheets Coupled on Graphene Oxide for Lithium-ion Batteries. Journal of Alloys and Compounds, 2023, , 172640.	5.5	0
514	Antibiofouling polyethersulfone ultrafiltration membranes functionalized with MoS2 nanosheets and self-cleaning with hydrogen peroxide. Journal of Environmental Chemical Engineering, 2023, 11, 111571.	6.7	0
515	Recent Progress on Phase Engineering of Nanomaterials. Chemical Reviews, 2023, 123, 13489-13692.	47.7	3
516	MoS2â^'x/GCD-MoS2â^'x nanostructures for tuning the overpotential of Volmer-Heyrovsky reaction of electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2024, 55, 422-431.	7.1	0
517	Simultaneously tuning oxygen reduction pathway and charge transfer dynamics toward sacrificial agent-free photocatalytic H2O2 production for in-situ water disinfection. Chemical Engineering Journal, 2024, 479, 147863.	12.7	4
519	Hydrothermal Synthesis of Fluorescent Functionalized MoS ₂ Quantum Dots for Heavy Metal Detection. ACS Applied Nano Materials, 2023, 6, 22435-22445.	5.0	0
520	Phase-incorporation-induced electromagnetic coupling of NFS@1T/2H–MoS2 for enhanced microwave absorption. Composites Part B: Engineering, 2024, 270, 111136.	12.0	3
521	2D semiconductor nanosheets for solar photocatalysis. , 2023, 1, 248-295.		5
522	Coexisting Phases in Transition Metal Dichalcogenides: Overview, Synthesis, Applications, and Prospects. ACS Nano, 2024, 18, 2708-2729.	14.6	0
523	Molybdenum–Based Electrocatalysts for Direct Alcohol Fuel Cells: A Critical Review. Journal of Electrochemical Science and Technology, 2024, 15, 67-95.	2.2	0
524	Nanocomposite Marvels: Unveiling Breakthroughs in Photocatalytic Water Splitting for Enhanced Hydrogen Evolution. ACS Omega, 2024, 9, 6147-6164.	3.5	1
525	2D Monolayer Catalysts: Towards Efficient Water Splitting and Green Hydrogen Production. Chemistry - A European Journal, 2024, 30, .	3.3	1
526	Inspired by Plant Transpiration: Fabrication of a Unique Micro–Nano-Structured Janus Evaporator Using Waste Cotton Fabric for Enhanced Efficiency and Salt Resistance. ACS Sustainable Chemistry and Engineering, 2024, 12, 2364-2374.	6.7	0
527	Enhanced electrochemical energy storage performance by mediating BaTiO3 nanoparticles into the multilayers of Ti3C2Tx MXene. Journal of Electroanalytical Chemistry, 2024, 956, 118092.	3.8	0
528	Constructing the Interconnected Charge Transfer Pathways in Sulfur Composite Cathode for All-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2024, 16, 11076-11083.	8.0	0

#	Article	IF	CITATIONS
529	Enhancing Hydrogen Evolution Catalysis through Potential-Induced Structural Phase Transition in Transition-Metal Dichalcogenide Thin Sheets. Journal of Physical Chemistry Letters, 2024, 15, 2287-2292.	4.6	0
530	Confinement and phase engineering boosting <scp>1T</scp> phase <scp>MoS₂</scp> /carbon hybrid for highâ€performance capacitive deionization. AICHE Journal, 0, , .	3.6	0
531	Native point defects in 2D transition metal dichalcogenides: A perspective bridging intrinsic physical properties and device applications. Journal of Applied Physics, 2024, 135, .	2.5	0
532	Scaling up Simultaneous Exfoliation and 2H to 1T Phase Transformation of MoS ₂ . Advanced Functional Materials, 0, , .	14.9	0
533	Construction of 1T-MoS2@biomass-derived carbon electromagnetic wave absorbents with extremely broad effective absorption bandwidth of 10.4GHz. Materials Research Bulletin, 2024, 175, 112783.	5.2	0
534	Broad-spectrum hybrid-driven triple-interface Z-Scheme 1T/2H phase sailboat-like molybdenum disulfide (MoS2)/protonated N-defect nanoporous graphitic carbon nitride (g-C3N4) nanosheets piezo-photocatalyst: Superior degradation and hydrogen evolution. Journal of Colloid and Interface Science. 2024. 665. 655-680.	9.4	0