Calculation of strain compensation thickness for III– superlattices

Journal of Crystal Growth 454, 64-70

DOI: 10.1016/j.jcrysgro.2016.08.050

Citation Report

#	Article	IF	CITATIONS
1	A comprehensive study of $\langle i \rangle g \langle i \rangle$ -factors, elastic, structural and electronic properties of III-V semiconductors using hybrid-density functional theory. Journal of Applied Physics, 2018, 123, .	2.5	23
2	Demonstration of HOT LWIR T2SLs InAs/InAsSb photodetectors grown on GaAs substrate. Infrared Physics and Technology, 2018, 95, 222-226.	2.9	22
3	Epitaxial Lift-off (ELO) of InGaP/GaAs/InGaAs solar cells with quantum dots in GaAs middle sub-cell. Solar Energy Materials and Solar Cells, 2018, 185, 153-157.	6.2	9
4	Two-step photon absorption in InP/InGaP quantum dot solar cells. Applied Physics Letters, 2018, 113, .	3.3	10
5	Demonstration of the Very Long Wavelength Infrared Type-II Superlattice InAs/InAsSb GaAs Immersed Photodetector Operating at Thermoelectric Cooling. IEEE Electron Device Letters, 2019, 40, 1396-1398.	3.9	14
6	Investigation of Radiative Coupling from InGaAsP Quantum Wells for Improving End-of-Life (EOL) Efficiency in Multijunction Solar Cells. , 2019, , .		0
7	Advanced material system for the design of an intermediate band solar cell: Type-II CdTe quantum dots in a ZnCdSe matrix. Journal of Applied Physics, 2019, 126, 235302.	2.5	2
8	Theoretical modeling of XBn T2SLs InAs/InAsSb/B-AlSb longwave infrared detector operating under thermoelectrical cooling. Optical and Quantum Electronics, 2020, 52, 1.	3.3	3
9	Method of electron affinity evaluation for the type-2 InAs/InAs1â^xSbx superlattice. Journal of Materials Science, 2020, 55, 5135-5144.	3.7	5
11	Higher operating temperature photoresponse of MWIR T2SLs InAs/InAsSb photodetector. , 2018, , .		1
12	Demonstration of the Longwave Type-II Superlattice InAs/InAsSb Cascade Photodetector for High Operating Temperature. IEEE Electron Device Letters, 2022, 43, 1487-1490.	3.9	3
13	Impact of Well Number on High-Efficiency Strain-Balanced Quantum-Well Solar Cells. IEEE Journal of Photovoltaics, 2023, 13, 61-69.	2.5	3
14	Growth optimization of quantum-well-enhanced multijunction photovoltaics. Cell Reports Physical Science, 2023, 4, 101432.	5.6	1
15	Very-Long-Wavelength Infrared Range Type-II Superlattice InAs/InAsSb GaAs/Immersed Photodetectors for High-Operating-Temperature Conditions. , 0, , .		O