Manipulating Cell Nanomechanics Using Micropatterns

Advanced Functional Materials 26, 7634-7643 DOI: 10.1002/adfm.201601585

Citation Report

щ	Article	IF	CITATIONS
#	ARTICLE	IF	CHATIONS
1	Synergetic stimulation of nanostructure and chemistry cues on behaviors of fibroblasts and endothelial cells. Colloids and Surfaces B: Biointerfaces, 2017, 160, 500-509.	2.5	8
2	Fabrication of gelatin-micropatterned surface and its effect on osteogenic differentiation of hMSCs. Journal of Materials Chemistry B, 2018, 6, 1018-1025.	2.9	9
3	Valence State Manipulation of Cerium Oxide Nanoparticles on a Titanium Surface for Modulating Cell Fate and Bone Formation. Advanced Science, 2018, 5, 1700678.	5.6	114
4	Fabrication of Multiple-Layered Hydrogel Scaffolds with Elaborate Structure and Good Mechanical Properties via 3D Printing and Ionic Reinforcement. ACS Applied Materials & Interfaces, 2018, 10, 18338-18350.	4.0	51
5	The influence of carbon-encapsulated iron nanoparticles on elastic modulus of living human mesenchymal stem cells examined by atomic force microscopy. Micron, 2018, 108, 41-48.	1.1	21
6	The Role of Nanomechanics in Healthcare. Advanced Healthcare Materials, 2018, 7, 1700793.	3.9	13
7	Zero-dimensional, one-dimensional, two-dimensional and three-dimensional biomaterials for cell fate regulation. Advanced Drug Delivery Reviews, 2018, 132, 33-56.	6.6	55
8	Regulation of mesenchymal stem cell functions by micro–nano hybrid patterned surfaces. Journal of Materials Chemistry B, 2018, 6, 5424-5434.	2.9	31
9	Bidirectional Transport of Nanoparticles and Cells with a Bio onveyor Belt. Small, 2019, 15, e1905209.	5.2	14
10	Influence of Cell Spreading Area on the Osteogenic Commitment and Phenotype Maintenance of Mesenchymal Stem Cells. Scientific Reports, 2019, 9, 6891.	1.6	43
11	Synergetic effect of chemical and topological signals of gingival regeneration scaffold on the behavior of human gingival fibroblasts. Journal of Biomedical Materials Research - Part A, 2019, 107, 1875-1885.	2.1	8
12	Graphene Oxide-Based Biosensors for Liquid Biopsies in Cancer Diagnosis. Nanomaterials, 2019, 9, 1725.	1.9	18
13	Influence of Cell Morphology on Mesenchymal Stem Cell Transfection. ACS Applied Materials & Interfaces, 2019, 11, 1932-1941.	4.0	26
14	Dynamic Contact Guidance of Myoblasts by Feature Size and Reversible Switching of Substrate Topography: Orchestration of Cell Shape, Orientation, and Nematic Ordering of Actin Cytoskeletons. Langmuir, 2019, 35, 7538-7551.	1.6	24
15	A stage-specific cell-manipulation platform for inducing endothelialization on demand. National Science Review, 2020, 7, 629-643.	4.6	38
16	Graphene Oxide–Based Nanomaterials: An Insight into Retinal Prosthesis. International Journal of Molecular Sciences, 2020, 21, 2957.	1.8	19
17	The varied influences of cell adhesion and spreading on gene transfection of mesenchymal stem cells on a micropatterned substrate. Acta Biomaterialia, 2021, 125, 100-111.	4.1	26
18	Micropattern-controlled chirality of focal adhesions regulates the cytoskeletal arrangement and gene transfection of mesenchymal stem cells. Biomaterials, 2021, 271, 120751.	5.7	27

ATION RE

CITATION REPORT

#	Article	IF	CITATIONS
19	Hypervalent Iodine Compounds as Versatile Reagents for Extremely Efficient and Reversible Patterning of Graphene with Nanoscale Precision. Advanced Materials, 2021, 33, e2101653.	11.1	9
20	Regulation of Stem Cell Functions by Micro-Patterned Structures. Advances in Experimental Medicine and Biology, 2020, 1250, 141-155.	0.8	4
21	Micropatternâ€Controlled Cell Density and Its Effect on Gene Transfection of Mesenchymal Stem Cells. Advanced Materials Interfaces, 0, , 2101978.	1.9	6
22	Micro-patterned cell populations as advanced pharmaceutical drugs with precise functional control. Advanced Drug Delivery Reviews, 2022, 184, 114169.	6.6	10
23	Influences of viscosity on the osteogenic and adipogenic differentiation of mesenchymal stem cells with controlled morphology. Journal of Materials Chemistry B, 2022, 10, 3989-4001.	2.9	9
24	Morphological Dependence of Breast Cancer Cell Responses to Doxorubicin on Micropatterned Surfaces. Polymers, 2022, 14, 2761.	2.0	1
25	Regulation of micropatterned curvature-dependent FA heterogeneity on cytoskeleton tension and nuclear DNA synthesis of malignant breast cancer cells. Journal of Materials Chemistry B, 2022, 11, 99-108.	2.9	1
26	Cellular nanomechanics derived from pattern-dependent focal adhesion and cytoskeleton to balance gene transfection of malignant osteosarcoma. Journal of Nanobiotechnology, 2022, 20, .	4.2	3
28	Fabrication of micro-nano patterned materials mimicking the topological structure of extracellular matrix for biomedical applications. Nano Research, 0, , .	5.8	0