A Novel, Variable Stiffness Robotic Gripper Based on Ing Jamming

Soft Robotics 3, 134-143

DOI: 10.1089/soro.2016.0027

Citation Report

#	Article	IF	Citations
1	A Soft-Robotic Gripper With Enhanced Object Adaptation and Grasping Reliability. IEEE Robotics and Automation Letters, 2017, 2, 2287-2293.	3.3	190
2	Novel Variable-Stiffness Robotic Fingers with Built-In Position Feedback. Soft Robotics, 2017, 4, 338-352.	4.6	100
3	An under-actuated origami gripper with adjustable stiffness joints for multiple grasp modes. Smart Materials and Structures, 2017, 26, 055035.	1.8	56
4	A variable stiffness soft robotic gripper with low-melting-point alloy. , 2017, , .		18
5	Elastic Inflatable Actuators for Soft Robotic Applications. Advanced Materials, 2017, 29, 1604977.	11.1	300
6	Shape Memory Alloy-Based Soft Gripper with Variable Stiffness for Compliant and Effective Grasping. Soft Robotics, 2017, 4, 379-389.	4.6	247
7	Stronger at Depth: Jamming Grippers as Deep Sea Sampling Tools. Soft Robotics, 2017, 4, 305-316.	4.6	64
8	Grasp Mode and Compliance Control of an Underactuated Origami Gripper Using Adjustable Stiffness Joints. IEEE/ASME Transactions on Mechatronics, 2017, 22, 2165-2173.	3.7	93
9	A Programmable Mechanical Freedom and Variable Stiffness Soft Actuator with Low Melting Point Alloy. Lecture Notes in Computer Science, 2017, , 151-161.	1.0	14
10	New Motion Control Approach for Synchronized Handling of Complex Parts. Procedia Manufacturing, 2017, 11, 275-283.	1.9	O
11	Soft actuation and sensing towards robot-assisted facial rehabilitation., 2017,,.		4
12	Stiffening of soft robotic actuators — Jamming approaches. , 2017, , .		4
13	Design and analysis of variable stiffness soft manipulator based on jamming structure., 2017,,.		2
14	Flexible Medical Devices: Review of Controllable Stiffness Solutions. Actuators, 2017, 6, 23.	1.2	133
15	3D printing for soft robotics – a review. Science and Technology of Advanced Materials, 2018, 19, 243-262.	2.8	284
16	Principles and methods for stiffness modulation in soft robot design and development. Bio-Design and Manufacturing, 2018, 1, 14-25.	3.9	78
17	Stiffening Sheaths for Continuum Robots. Soft Robotics, 2018, 5, 291-303.	4.6	45
18	Controllable and reversible tuning of material rigidity for robot applications. Materials Today, 2018, 21, 563-576.	8.3	158

#	Article	IF	CITATIONS
19	A Reconfigurable Omnidirectional Soft Robot Based on Caterpillar Locomotion. Soft Robotics, 2018, 5, 164-174.	4.6	94
20	A eutectic-alloy-infused soft actuator with sensing, tunable degrees of freedom, and stiffness properties. Journal of Micromechanics and Microengineering, 2018, 28, 024004.	1.5	77
21	A Soft Tube-Climbing Robot. Soft Robotics, 2018, 5, 133-137.	4.6	97
22	Contact Detection and Size Estimation Using a Modular Soft Gripper with Embedded Flex Sensors. , 2018, , .		5
23	A Novel Variable Stiffness Compliant Finger Exoskeleton for Rehabilitation Based on Electromagnet Control., 2018, 2018, 3926-3929.		3
24	Passive and Active Particle Damping in Soft Robotic Actuators. , 2018, , .		9
25	Plant-Inspired Soft Pneumatic Eversion Robot. , 2018, , .		23
26	Soft Robotic Grippers. Advanced Materials, 2018, 30, e1707035.	11.1	1,097
27	Design and Development of a Topology-Optimized Three-Dimensional Printed Soft Gripper. Soft Robotics, 2018, 5, 650-661.	4.6	45
28	Toward a low hysteresis helical scale Jamming interface inspired by teleost fish scale morphology and arrangement. , 2018, , .		4
29	Precharged Pneumatic Soft Actuators and Their Applications to Untethered Soft Robots. Soft Robotics, 2018, 5, 567-575.	4.6	64
30	A Soft-Robotic Approach to Anthropomorphic Robotic Hand Dexterity. IEEE Access, 2019, 7, 101483-101495.	2.6	78
31	Soft fluidic actuator based on nylon artificial muscles. Engineering Research Express, 2019, 1, 015012.	0.8	3
32	A soft continuum robot, with a large variable-stiffness range, based on jamming. Bioinspiration and Biomimetics, 2019, 14, 066007.	1.5	26
33	Small-Beads Transmission and Its Application to Robot Joints. IEEE/ASME Transactions on Mechatronics, 2019, 24, 2282-2292.	3.7	3
34	Flexure-Based Variable Stiffness Gripper for Large-Scale Grasping Force Regulation with Vision. Lecture Notes in Computer Science, 2019, , 346-357.	1.0	O
35	A Vacuum Powered Soft Textile-Based Clutch. Actuators, 2019, 8, 47.	1.2	14
36	A novel versatile robotic palm inspired by human hand. Engineering Research Express, 2019, 1, 015008.	0.8	13

#	Article	IF	CITATIONS
37	Modeling and control of inherently safe robots with variable stiffness links. Robotics and Autonomous Systems, 2019, 120, 103247.	3.0	14
38	Towards an ontology for soft robots: what is soft?. Bioinspiration and Biomimetics, 2019, 14, 063001.	1.5	19
39	Echinoderm Inspired Variable Stiffness Soft Actuator with Connected Ossicle Structure., 2019,,.		7
40	Pre-Charged Pneumatic Soft Gripper With Closed-Loop Control. IEEE Robotics and Automation Letters, 2019, 4, 1402-1408.	3.3	48
41	Self-Forcing Mechanism of the Braided Tube as a Robotic Gripper. Journal of Mechanisms and Robotics, 2019, 11, .	1.5	5
42	Switchable Adhesives for Multifunctional Interfaces. Advanced Materials Technologies, 2019, 4, 1900193.	3.0	101
43	Bioinspired Variable Stiffness Dielectric Elastomer Actuators with Large and Tunable Load Capacity. Soft Robotics, 2019, 6, 631-643.	4.6	17
44	FifoBots: Foldable Soft Robots for Flipping Locomotion. Soft Robotics, 2019, 6, 532-559.	4.6	12
45	A Fully Multi-Material Three-Dimensional Printed Soft Gripper with Variable Stiffness for Robust Grasping. Soft Robotics, 2019, 6, 507-519.	4.6	115
46	Load-Sharing in Soft and Spiny Paws for a Large Climbing Robot. IEEE Robotics and Automation Letters, 2019, 4, 1439-1446.	3.3	27
47	Material stiffness control of compliant tools by using electromagnetic suction. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 4719-4728.	1.1	1
48	Vacuumâ€Powered Soft Pneumatic Twisting Actuators to Empower New Capabilities for Soft Robots. Advanced Materials Technologies, 2019, 4, 1800429.	3.0	72
49	A variable stiffness gripper based on differential drive particle jamming. Bioinspiration and Biomimetics, 2019, 14, 036009.	1.5	54
50	Design and Control of an Electrohydraulic Soft Actuator System for Robotic Grippers. , 2019, , .		3
51	Design and Analysis of Stiffness-Variable Soft Fingers with Dielectric Elastomers. , 2019, , .		0
52	Research on Stiffness Improvement of a Soft Pneumatic Finger Using Skeleton. , 2019, , .		0
53	Design and Preliminary Testing of a Continuum Assistive Robotic Manipulator. Robotics, 2019, 8, 84.	2.1	4
54	Single chamber multiple degree-of-freedom soft pneumatic actuator enabled by adjustable stiffness layers. Smart Materials and Structures, 2019, 28, 035012.	1.8	22

#	Article	IF	Citations
55	Chain-Like Granular Jamming: A Novel Stiffness-Programmable Mechanism for Soft Robotics. Soft Robotics, 2019, 6, 118-132.	4.6	72
56	A Soft Retraction System for Surgery Based on Ferromagnetic Materials and Granular Jamming. Soft Robotics, 2019, 6, 161-173.	4.6	16
57	A Novel Tendon-Driven Soft Actuator with Self-Pumping Property. Soft Robotics, 2020, 7, 130-139.	4.6	29
58	A soft gripper with variable stiffness inspired by pangolin scales, toothed pneumatic actuator and autonomous controller. Robotics and Computer-Integrated Manufacturing, 2020, 61, 101848.	6.1	85
59	Hybrid Jamming for Bioinspired Soft Robotic Fingers. Soft Robotics, 2020, 7, 292-308.	4.6	91
60	A Review of Jamming Actuation in Soft Robotics. Actuators, 2020, 9, 104.	1.2	93
61	A Hybrid, Wearable Exoskeleton Glove Equipped With Variable Stiffness Joints, Abduction Capabilities, and a Telescopic Thumb. IEEE Access, 2020, 8, 173345-173358.	2.6	24
62	In situ stiffness manipulation using elegant curved origami. Science Advances, 2020, 6, .	4.7	90
63	A Pneumatically Driven, Disposable, Soft Robotic Gripper Equipped with Retractable, Telescopic Fingers. , 2020, , .		3
64	Suction Cup Based on Particle Jamming and Its Performance Comparison in Various Fruit Handling Tasks. , 2020, , .		7
65	Employing Pneumatic, Telescopic Actuators for the Development of Soft and Hybrid Robotic Grippers. Frontiers in Robotics and AI, 2020, 7, 601274.	2.0	6
66	Design and Automatic Fabrication of Novel Bio-Inspired Soft Smart Robotic Hands. IEEE Access, 2020, 8, 155912-155925.	2.6	14
67	Customization Methodology for Conformable Grasping Posture of Soft Grippers by Stiffness Patterning. Frontiers in Robotics and Al, 2020, 7, 114.	2.0	8
68	A Novel Articulated Soft Robot Capable of Variable Stiffness through Bistable Structure., 2020, , .		6
69	A Variable Stiffness Soft Continuum Robot Based on Pre-charged Air, Particle Jamming, and Origami. , 2020, , .		11
70	Pressure-Driven Manipulator with Variable Stiffness Structure. , 2020, , .		10
71	A Bioinspired Soft Swallowing Gripper for Universal Adaptable Grasping. Soft Robotics, 2022, 9, 36-56.	4.6	25
72	A variable stiffness composite mixed with pneumatic muscle fibers and elastomer. Mechanics of Advanced Materials and Structures, 2020, , 1-9.	1.5	3

#	ARTICLE	IF	Citations
73	Adaptive Variable Stiffness Particle Phalange for Robust and Durable Robotic Grasping. Soft Robotics, 2020, 7, 743-757.	4.6	57
74	Sliding Mode Control With PID Sliding Surface for Active Vibration Damping of Pneumatically Actuated Soft Robots. IEEE Access, 2020, 8, 88793-88800.	2.6	42
75	Design and characterization of a hybrid soft gripper with active palm pose control. International Journal of Robotics Research, 2020, 39, 1668-1685.	5.8	50
76	A new method for the synchronous displacement of objects with unknown size, shape and mechanical properties. International Journal of Computer Integrated Manufacturing, 2020, 33, 491-503.	2.9	0
77	Coulomb friction in twisting of biomimetic scale-covered substrate. Bioinspiration and Biomimetics, 2020, 15, 056013.	1.5	8
78	Which is the best PID variant for pneumatic soft robots an experimental study. IEEE/CAA Journal of Automatica Sinica, 2020, 7, 451-460.	8.5	29
79	Soft Robotic Module for Sensing and Controlling Contact Force. , 2020, , .		8
80	A Two-Finger Soft-Robotic Gripper with Enveloping and Pinching Grasping Modes. IEEE/ASME Transactions on Mechatronics, 2020, , $1\text{-}1$.	3.7	29
81	Damping effect of particle-jamming structure for soft actuators with 3D-printed particles. Smart Materials and Structures, 2020, 29, 095012.	1.8	10
82	A novel design of shape-memory alloy-based soft robotic gripper with variable stiffness. International Journal of Advanced Robotic Systems, 2020, 17, 172988142090781.	1.3	42
83	Self-locking mechanism for variable stiffness rigid–soft gripper. Smart Materials and Structures, 2020, 29, 035033.	1.8	39
84	Radial-Layer Jamming Mechanism for String Configuration. IEEE Robotics and Automation Letters, 2020, 5, 5221-5228.	3.3	12
85	A soft robotic finger with self-powered triboelectric curvature sensor based on multi-material 3D printing. Nano Energy, 2020, 73, 104772.	8.2	54
86	Lowâ€Cost Sensorâ€Rich Fluidic Elastomer Actuators Embedded with Paper Electronics. Advanced Intelligent Systems, 2020, 2, 2000025.	3.3	17
87	Untethered Multimode Fluidic Actuation: A New Approach to Soft and Compliant Robotics. Soft Robotics, 2021, 8, 71-84.	4.6	12
88	Tendon-Driven Jamming Mechanism for Configurable Variable Stiffness. Soft Robotics, 2021, 8, 109-118.	4.6	23
89	A Multimodal, Enveloping Soft Gripper: Shape Conformation, Bioinspired Adhesion, and Expansion-Driven Suction. IEEE Transactions on Robotics, 2021, 37, 350-362.	7.3	71
90	Flexible self-powered multifunctional sensor for stiffness-tunable soft robotic gripper by multimaterial 3D printing. Nano Energy, 2021, 79, 105438.	8.2	73

#	Article	IF	Citations
91	Characterization and modeling of granular jamming: models for mechanical design. Granular Matter, $2021, 23, 1.$	1.1	7
92	Management and Intelligent Decision-Making in Complex Systems: An Optimization-Driven Approach. , 2021, , .		1
93	Investigation on a New Approach for Designing Articulated Soft Robots With Discrete Variable Stiffness. IEEE/ASME Transactions on Mechatronics, 2021, 26, 2998-3009.	3.7	11
94	Versatile Soft Robot Gripper Enabled by Stiffness and Adhesion Tuning via Thermoplastic Composite. Soft Robotics, 2022, 9, 189-200.	4.6	23
95	Reconfigurable laminates enable multifunctional robotic building blocks. Smart Materials and Structures, 2021, 30, 035005.	1.8	7
96	Adjustable Compliance Soft Sensor via an Elastically Inflatable Fluidic Dome. Sensors, 2021, 21, 1970.	2.1	9
97	Bioâ€Inspired Soft Grippers Based on Impactive Gripping. Advanced Science, 2021, 8, 2002017.	5.6	68
98	Honeycomb Jamming: An Enabling Technology of Variable Stiffness Reconfiguration. Soft Robotics, 2021, 8, 720-734.	4.6	9
99	A vacuum-driven rubber-band gripper. ROBOMECH Journal, 2021, 8, .	0.9	4
100	A Bioinspired Composite Finger With Self-Locking Joints. IEEE Robotics and Automation Letters, 2021, 6, 1391-1398.	3.3	13
101	A Versatile Pneumatic Actuator Based on Scissor Mechanisms: Design, Modeling, and Experiments. IEEE Robotics and Automation Letters, 2021, 6, 1288-1295.	3.3	15
102	Shape, Size, and Fabrication Effects in 3D Printed Granular Jamming Grippers. , 2021, , .		15
103	Active Bending Mechanism Employing Granular Jamming and Vacuum-Controlled Adaptable Gripper. IEEE Robotics and Automation Letters, 2021, 6, 3041-3048.	3.3	14
104	Analysis of Soft Kirigami Unit Cells for Tunable Stiffness Architectures. , 2021, , .		2
105	Push-On Push-Off: A Compliant Bistable Gripper with Mechanical Sensing and Actuation., 2021,,.		5
106	Re-foldable origami-inspired bidirectional twisting of artificial muscles reproduces biological motion. Cell Reports Physical Science, 2021, 2, 100407.	2.8	17
107	Bioinspired Soft Robotic Fingers with Sequential Motion Based on Tendon-Driven Mechanisms. Soft Robotics, 2022, 9, 531-541.	4.6	7
108	Soft robotic fabric gripper with gecko adhesion and variable stiffness. Sensors and Actuators A: Physical, 2021, 323, 112673.	2.0	43

#	Article	IF	CITATIONS
109	Adjustable stiffness elastic composite soft actuator for fast-moving robots. Science China Technological Sciences, 2021, 64, 1663-1675.	2.0	12
110	Inflatable Particle-Jammed Robotic Gripper Based on Integration of Positive Pressure and Partial Filling. Soft Robotics, 2022, 9, 309-323.	4.6	19
111	Design and Feasibility Tests of a Lightweight Soft Gripper for Compliant and Flexible Envelope Grasping. Soft Robotics, 2022, 9, 376-385.	4.6	6
112	A bionic soft tongue driven by shape memory alloy and pneumatics. Bioinspiration and Biomimetics, 2021, 16 , .	1.5	9
113	A Human-Inspired Soft Finger with Dual-Mode Morphing Enabled by Variable Stiffness Mechanism. Soft Robotics, 2022, 9, 399-411.	4.6	28
114	One-Shot 3D-Printed Multimaterial Soft Robotic Jamming Grippers. Soft Robotics, 2022, 9, 497-508.	4.6	17
115	A MATLAB-Based Framework for Designing 3D Topology Optimized Soft Robotic Grippers. , 2021, , .		9
116	Beyond Soft Hands: Efficient Grasping With Non-Anthropomorphic Soft Grippers. Frontiers in Robotics and Al, 2021, 8, 632006.	2.0	8
117	Modeling and analysis of a passively adaptive soft gripper with the bio-inspired compliant mechanism. Bioinspiration and Biomimetics, 2021, 16, 055001.	1.5	6
118	Soft Robotic Palm With Tunable Stiffness Using Dual-Layered Particle Jamming Mechanism. IEEE/ASME Transactions on Mechatronics, 2021, 26, 1820-1827.	3.7	20
119	STRENGTHENING EFFECT OF FLOODING IN 3D PRINTED POROUS SOFT ROBOTICS SCAFFOLDS. International Journal of 3d Printing Technologies and Digital Industry, 0, , .	0.3	2
120	Shape-Adaptive Universal Soft Parallel Gripper for Delicate Grasping Using a Stiffness-Variable Composite Structure. IEEE Transactions on Industrial Electronics, 2021, 68, 12441-12451.	5.2	22
121	Bending of hyperelastic beams made of transversely isotropic material in finite elasticity. Applied Mathematical Modelling, 2021, 100, 55-76.	2.2	6
122	Weight Imprinting Classification-Based Force Grasping With a Variable-Stiffness Robotic Gripper. IEEE Transactions on Automation Science and Engineering, 2022, 19, 969-981.	3.4	7
123	Deterministic control of adhesive crack propagation through jamming based switchable adhesives. Soft Matter, 2021, 17, 1731-1737.	1.2	14
124	Variable stiffness soft pneumatic grippers augmented with active vacuum adhesion. Smart Materials and Structures, 2020, 29, 105028.	1.8	14
125	Torsional Stiffness Improvement of a Soft Pneumatic Finger Using Embedded Skeleton. Journal of Mechanisms and Robotics, 2020, 12, .	1.5	27
126	MODAL FREQUENCY ANALYSES OF THE VARIABLE STIFFNESS MECHANISM DESIGN OF SOFT ROBOTIC SYSTEM. International Journal of 3d Printing Technologies and Digital Industry, 0, , .	0.3	O

#	ARTICLE	IF	CITATIONS
127	In-situ adjustable nonlinear passive stiffness using X-shaped mechanisms. Mechanical Systems and Signal Processing, 2022, 170, 108267.	4.4	65
128	Artificial Intelligence Approach to the Trajectory Generation and Dynamics of a Soft Robotic Swallowing Simulator. Advances in Intelligent Systems and Computing, 2019, , 3-16.	0.5	2
129	Three-Fingered Soft Pneumatic Gripper Integrating Joint-Tuning Capability. Soft Robotics, 2022, 9, 948-959.	4.6	12
130	Flexible and stable grasping by multi-jointed pneumatic actuator mimicking the human finger-impacts of structural parameters on performance. Smart Materials and Structures, 2021, 30, 125019.	1.8	5
131	Novel bio-inspired variable stiffness soft actuator via fiber-reinforced dielectric elastomer, inspired by Octopus bimaculoides. Intelligent Service Robotics, 2021, 14, 691-705.	1.6	7
132	Management of Soft Agents withÂStructural Uncertainty. , 2021, , 31-53.		0
133	A Novel Damping Mechanism for Soft Agents with Structural Uncertainty., 2021,, 55-68.		0
134	An Enveloping Soft Gripper With High-Load Carrying Capacity: Design, Characterization and Application. IEEE Robotics and Automation Letters, 2022, 7, 373-380.	3.3	7
135	Study on the Structure and Performance of an Antagonistic Pneumatic Bidirectional Rotary Joint. Mathematical Problems in Engineering, 2021, 1-13.	0.6	2
136	Coupled bend–twist mechanics of biomimetic scale substrate. Journal of the Mechanics and Physics of Solids, 2022, 159, 104711.	2.3	6
137	Utilizing Sacrificial Molding for Embedding Motion Controlling Endostructures in Soft Pneumatic Actuators. , 2020, , .		1
138	Reconfigurable Soft Flexure Hinges via Pinched Tubes. , 2020, , .		6
139	Laminar Jamming Flexure Joints for the Development of Variable Stiffness Robot Grippers and Hands. , 2020, , .		11
140	Soft robotic surface enhances the grasping adaptability and reliability of pneumatic grippers. International Journal of Mechanical Sciences, 2022, 219, 107094.	3.6	22
141	Design, modeling, and testing of a soft actuator with variable stiffness using granular jamming. Robotica, 2022, 40, 2468-2484.	1.3	5
142	Bioinspired Multifunctional Mechanoreception of Soft–Rigid Hybrid Actuator Fingers. Advanced Intelligent Systems, 2022, 4, .	3.3	5
143	Soft actuator using sponge units with constrained film and layer jamming. Industrial Robot, 2022, 49, 616-624.	1.2	6
144	Detachable Soft Actuators with Tunable Stiffness Based on Wire Jamming. Applied Sciences (Switzerland), 2022, 12, 3582.	1.3	4

#	Article	IF	CITATIONS
145	Pressure and Tendon Actuation Integrated Three-finger Soft Gripper for Wide Force and Speed Range Grasping. , 2021 , , .		2
146	Multi-Fingered Soft Gripper Driven by Bellows Actuator for Handling Food Materials., 2021,,.		7
147	Stiffness Control for a Soft Robotic Finger based on Reinforcement Learning for Robust Grasping. , 2021, , .		2
148	A Soft Gripper Driven by Bellow Actuators and Twist Actuators for Dexterous Grasping. , 2021, , .		1
149	A Dataâ€Driven Review of Soft Robotics. Advanced Intelligent Systems, 2022, 4, .	3.3	28
152	Getting a Grip: in Materio Evolution of Membrane Morphology for Soft Robotic Jamming Grippers. , 2022, , .		9
153	Data-driven Simulation Framework for Expressive Piano Playing by Anthropomorphic Hand with Variable Passive Properties. , 2022, , .		6
154	A flexible gripper with a wide-range variable stiffness structure based on shape memory alloy. Industrial Robot, 2022, 49, 1190-1201.	1.2	5
155	Eccentric High-Force Soft Pneumatic Bending Actuator for Finger-Type Soft Grippers. Journal of Mechanisms and Robotics, 2022, 14, .	1.5	5
156	Bioinspired Multimodal Multipose Hybrid Fingers for Wide-Range Force, Compliant, and Stable Grasping. Soft Robotics, 2023, 10, 30-39.	4.6	16
157	Kinematic Modeling and Characterization of Soft Parallel Robots. IEEE Transactions on Robotics, 2022, 38, 3792-3806.	7.3	12
158	Fabrication and Functionality Integration Technologies for Smallâ€6cale Soft Robots. Advanced Materials, 2022, 34, .	11.1	13
159	A Soft Robot With Variable Stiffness Multidirectional Grasping Based on a Folded Plate Mechanism and Particle Jamming. IEEE Transactions on Robotics, 2022, 38, 3821-3831.	7.3	8
160	TaTa: A Universal Jamming Gripper with High-Quality Tactile Perception and Its Application to Underwater Manipulation. , 2022, , .		15
161	A Bioinspired Adhesive Sucker with Both Suction and Adhesion Mechanisms for Three-Dimensional Surfaces. Journal of Bionic Engineering, 2022, 19, 1671-1683.	2.7	1
162	A high-load bioinspired soft gripper with force booster fingers. Mechanism and Machine Theory, 2022, 177, 105048.	2.7	9
163	Design and analysis of a novel hybrid-driven continuum robot with variable stiffness. Mechanism and Machine Theory, 2022, 177, 105067.	2.7	7
164	Multicomponent and multifunctional integrated miniature soft robots. Soft Matter, 2022, 18, 7464-7485.	1.2	7

#	ARTICLE	IF	Citations
165	Soft Magnetic Fingertip With Particle-Jamming Structure for Tactile Perception and Grasping. IEEE Transactions on Industrial Electronics, 2023, 70, 6027-6035.	5.2	18
166	A Novel Discrete Variable Stiffness Gripper Based on the Fin Ray Effect. Lecture Notes in Computer Science, 2022, , 791-802.	1.0	4
167	A Soft Pneumatic Gripper with Endoskeletons Resisting Out-of-Plane Bending. Actuators, 2022, 11, 246.	1.2	7
168	Using natural language processing to find research topics in Living Machines conferences and their intersections with Bioinspiration & Diomimetics publications. Bioinspiration and Biomimetics, 2022, 17, 065008.	1.5	1
170	A Walking Claw for Tethered Object Retrieval. Journal of Mechanisms and Robotics, 2023, 15, .	1.5	3
171	Optimal design and experimental validation of 3D printed soft pneumatic actuators. Smart Materials and Structures, 2022, 31, 115010.	1.8	3
172	A novel design of a passive variable stiffness soft robotic gripper. Bioinspiration and Biomimetics, 2022, 17, 066014.	1.5	7
173	Kinematics and Stiffness Modeling of Soft Robot With a Concentric Backbone. Journal of Mechanisms and Robotics, 2023, 15, .	1.5	7
174	A Biomimetic Softâ€Rigid Hybrid Finger with Autonomous Lateral Stiffness Enhancement. Advanced Intelligent Systems, 2022, 4, .	3.3	5
175	Optimal Variable Stiffness Control and Its Applications in Bionic Robotic Joints: A Review. Journal of Bionic Engineering, 2023, 20, 417-435.	2.7	1
176	Double-Acting Soft Actuator for Soft Robotic Hand: A Bellow Pumping and Contraction Approach. Biomimetics, 2022, 7, 171.	1.5	5
177	The Novel Variable Stiffness Composite Systems with Characteristics of Repeatable High Load Bearing and Response Rate. Journal of Bionic Engineering, 0, , .	2.7	0
178	Application-Oriented Comparison of Two 3D Printing Processes for the Manufacture of Pneumatic Bending Actuators for Bioinspired Macroscopic Soft Gripper Systems. Lecture Notes in Computer Science, 2022, , 54-67.	1.0	3
179	A bioinspired multi-knuckle dexterous pneumatic soft finger. Sensors and Actuators A: Physical, 2023, 350, 114105.	2.0	6
180	Enhancing the Tensile-Shaping Stability of Soft Elongation Actuators for Grasping Applications. IEEE Robotics and Automation Letters, 2023, 8, 600-607.	3.3	6
181	An Omnidirectional Encircled Deployable Polyhedral Gripper for Contactless Delicate Midwater Creatures Sampling. Advanced Engineering Materials, 2023, 25, .	1.6	4
182	Benchmarking Variable-Stiffness Grippers. Lecture Notes in Networks and Systems, 2023, , 46-61.	0.5	0
183	Soft, Multi-Layer, Disposable, Kirigami Based Robotic Grippers: On Handling of Delicate, Contaminated, and Everyday Objects., 2022, , .		4

#	Article	IF	CITATIONS
184	Design and Control of a Multi-Modal Soft Gripper Inspired by Elephant Fingers., 2022,,.		5
185	Electro-Adhesive Tubular Clutch for Variable-Stiffness Robots. , 2022, , .		2
186	An Untethered Soft Robotic Gripper with Adjustable Grasping Modes and Force Feedback. , 2022, , .		3
187	Design and Experiments of a Robotic Arm with a Rigid-Soft Coupling Structure. , 2022, , .		O
188	A Novel Stiffness Programmable Method for Environment-adaptive Crawling Robot. , 2022, , .		0
189	A novel soft end effector with active palm and fingertips for robotic picking. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2023, 237, 3035-3046.	1.1	O
190	Variable Stiffness Linear Actuator Based on Differential Drive Fiber Jamming. IEEE Transactions on Robotics, 2023, 39, 4429-4442.	7.3	6
191	Electro-mechano responsive elastomers with self-tunable conductivity and stiffness. Science Advances, 2023, 9, .	4.7	13
192	Hybrid Robotic Grasping With a Soft Multimodal Gripper and a Deep Multistage Learning Scheme. IEEE Transactions on Robotics, 2023, 39, 2379-2399.	7.3	10
193	A Bioinspired Gripper with Sequential Motion and Mutable Posture Enabled by Antagonistic Mechanism. Advanced Intelligent Systems, 2023, 5, .	3.3	2
194	A dual-mode and enclosing soft robotic gripper with stiffness-tunable and high-load capacity. Sensors and Actuators A: Physical, 2023, 354, 114294.	2.0	6
195	Layer jamming: Modeling and experimental validation. International Journal of Mechanical Sciences, 2023, 251, 108325.	3.6	3
196	Stiffness-Tunable Soft Bellows Actuators by Cross-Fiber Jamming Effect for Robust Grasping. IEEE/ASME Transactions on Mechatronics, 2023, 28, 2897-2907.	3.7	6
197	Novel Bionic Soft Robotic Hand With Dexterous Deformation and Reliable Grasping. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-10.	2.4	3
198	Kirigami-Inspired 3D Printable Soft Pneumatic Actuators with Multiple Deformation Modes for Soft Robotic Applications. Soft Robotics, 2023, 10, 737-748.	4.6	1
199	Harnessing the nonlinear properties of buckling inflatable tubes for complex robotic behaviors. Materials Today, 2023, 63, 59-88.	8.3	5
200	Soft Robots for Cluttered Environments Based on Origami Anisotropic Stiffness Structure (OASS) Inspired by Desert Iguana. Advanced Intelligent Systems, 2023, 5, .	3.3	11
201	A Soft Gripper with Granular Jamming and Electroadhesive Properties. Advanced Intelligent Systems, 2023, 5, .	3.3	3

#	ARTICLE	IF	CITATIONS
202	A Palm-Shape Variable-Stiffness Gripper Based on 3D-Printed Fabric Jamming. IEEE Robotics and Automation Letters, 2023, 8, 3238-3245.	3.3	6
203	Soft and lightweight fabric enables powerful and high-range pneumatic actuation. Science Advances, 2023, 9, .	4.7	13
204	Variable Stiffness Improves Safety and Performance in Soft Robotics. , 2023, , .		2
205	Tuning Stiffness with Granular Chain Structures for Versatile Soft Robots. Soft Robotics, 2023, 10, 493-503.	4.6	1
211	Variable Kinematics enabled by Layer Jamming Transition in a Soft Bending Actuator. , 2023, , .		1
212	A Vacuum-Powered Soft Mesh Gripper for Compliant and Effective Grasping. , 2023, , .		3
213	The Jamming Donut: A Free-Space Gripper Based on Granular Jamming. , 2023, , .		1
214	Are active soft particles suitable for particle jamming actuators?. , 2023, , .		0
219	A Soft Hybrid-Actuated Continuum Robot Based on Dual Origami Structures. , 2023, , .		0
223	A Pneumatic Bending Actuator System Inspired by the Avian Tendon Locking Mechanism. Lecture Notes in Computer Science, 2023, , 84-100.	1.0	0
227	Unlocking the potential of self-healing and recyclable ionic elastomers for soft robotics applications. Materials Horizons, 2024 , 11 , $708-725$.	6.4	1
229	The design of a gripper device with screw and gear gears in a robotic fruit picking system. , 2023, , .		0
230	Bio-inspired Design ofÂaÂSoft Bending Actuator forÂFlexion ofÂaÂHuman Index Finger: A Case Study. Mechanisms and Machine Science, 2023, , 620-629.	0.3	0
235	A Soft, Multi-Layer, Kirigami Inspired Robotic Gripper with a Compact, Compression-Based Actuation System., 2023, , .		0
236	Design and Stiffness Analysis of a Bio-Inspired Soft Actuator with Bi-Direction Tunable Stiffness Property., 2023,,.		0
237	Employing Multi-Layer, Sensorised Kirigami Grippers for Single-Grasp Based Identification of Objects and Force Exertion Estimation. , 2023, , .		0
243	Behavior Analysis of Soft Bending Actuators Equipped with Layer Jamming Mechanism., 2023,,.		0
244	Design and Research of a Soft Manipulator with Variable Stiffness and Multi-Directional Gripping. , 2023, , .		0

Article IF Citations