Molecular transport through capillaries made with ator

Nature 538, 222-225 DOI: 10.1038/nature19363

Citation Report

#	Article	IF	CITATIONS
3	Channel morphology effect on water transport through graphene bilayers. Scientific Reports, 2016, 6, 38583.	1.6	30
4	Chemisorption of Hydroxide on 2D Materials from DFT Calculations: Graphene versus Hexagonal Boron Nitride. Journal of Physical Chemistry Letters, 2016, 7, 4695-4700.	2.1	92
5	Slip divergence of water flow in graphene nanochannels: the role of chirality. Physical Chemistry Chemical Physics, 2017, 19, 8646-8652.	1.3	43
6	Electrowetting on conductors: anatomy of the phenomenon. Faraday Discussions, 2017, 199, 49-61.	1.6	15
7	Reversible structural transition in nanoconfined ice. Physical Review B, 2017, 95, .	1.1	28
8	Flows in one-dimensional and two-dimensional carbon nanochannels: Fast and curious. MRS Bulletin, 2017, 42, 278-282.	1.7	15
9	Tunable Transfer of Molecules between Liquid Crystal Microdroplets and Control of Photonic Crystallinity in Isolated Microdroplets. Advanced Optical Materials, 2017, 5, 1700119.	3.6	8
10	In situ direct observation of photocorrosion in ZnO crystals in ionic liquid using a laser-equipped high-voltage electron microscope. AIP Advances, 2017, 7, .	0.6	24
11	Tunable sieving of ions using graphene oxide membranes. Nature Nanotechnology, 2017, 12, 546-550.	15.6	1,364
12	Non-Continuum Intercalated Water Diffusion Explains Fast Permeation through Graphene Oxide Membranes. ACS Nano, 2017, 11, 11152-11161.	7.3	81
13	Size effect in ion transport through angstrom-scale slits. Science, 2017, 358, 511-513.	6.0	418
14	Membranes prepared from graphene-based nanomaterials for sustainable applications: a review. Environmental Science: Nano, 2017, 4, 2267-2285.	2.2	42
15	Acoustic Graphene Plasmon Nanoresonators for Field-Enhanced Infrared Molecular Spectroscopy. ACS Photonics, 2017, 4, 3089-3097.	3.2	43
16	Ultra-fast vapor generation by a graphene nano-ratchet: a theoretical and simulation study. Nanoscale, 2017, 9, 19066-19072.	2.8	47
17	Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science, 2017, 357, 792-796.	6.0	566
18	Understanding 2D Crystal Vertical Heterostructures at the Atomic Scale Using Advanced Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 1714-1715.	0.2	0
19	Effect of Adsorbed Alcohol Layers on the Behavior of Water Molecules Confined in a Graphene Nanoslit: A Molecular Dynamics Study. Langmuir, 2017, 33, 11467-11474.	1.6	29
20	Rational Design and Strain Engineering of Nanoporous Boron Nitride Nanosheet Membranes for Water Desalination. Journal of Physical Chemistry C, 2017, 121, 22105-22113.	1.5	102

#	Article	IF	CITATIONS
21	Deformation of water nano-droplets on graphene under the influence of constant and alternative electric fields. Physical Chemistry Chemical Physics, 2017, 19, 26833-26838.	1.3	22
22	Li-intercalated graphene on SiC(0001): An STM study. Physical Review B, 2017, 96, .	1.1	37
23	Nanofluidics in two-dimensional layered materials: inspirations from nature. Chemical Society Reviews, 2017, 46, 5400-5424.	18.7	233
24	Positively charged capillary nanofiltration membrane with high rejection for Mg2 + and Ca2 + and good separation for Mg2 + and Li +. Desalination, 2017, 420, 158-166.	4.0	170
25	Fast Dynamic Visualizations in Microfluidics Enabled by Fluorescent Carbon Nanodots. Small, 2017, 13, 1700869.	5.2	14
26	Exploring Ultimate Water Capillary Evaporation in Nanoscale Conduits. Nano Letters, 2017, 17, 4813-4819.	4.5	87
27	Effect of water molecules on nanoscale wetting behaviour of molecular ethanol on hydroxylated SiO ₂ substrate. Molecular Simulation, 2017, 43, 1377-1384.	0.9	9
28	Structural and dynamic characteristics in monolayer square ice. Journal of Chemical Physics, 2017, 147, 044706.	1.2	17
29	Ultrathin graphene-based membrane with preciseÂmolecular sieving and ultrafast solventÂpermeation. Nature Materials, 2017, 16, 1198-1202.	13.3	549
30	The physics and chemistry of graphene-on-surfaces. Chemical Society Reviews, 2017, 46, 4417-4449.	18.7	309
31	Fabrication of nanoporous graphene/polymer composite membranes. Nanoscale, 2017, 9, 10487-10493.	2.8	55
32	Nanoconfined water can orient and cause long-range dipolar interactions with biomolecules. Scientific Reports, 2017, 7, 17852.	1.6	15
33	Water Confined in Nanocapillaries: Two-Dimensional Bilayer Squarelike Ice and Associated Solid–Liquid–Solid Transition. Journal of Physical Chemistry C, 2018, 122, 6704-6712.	1.5	27
34	Dripplons as localized and superfast ripples of water confined between graphene sheets. Nature Communications, 2018, 9, 1496.	5.8	50
35	Evaporation-induced receding contact lines in partial-wetting regime on a heated substrate. International Journal of Heat and Mass Transfer, 2018, 124, 279-287.	2.5	20
36	Electrostrictive behavior of confined water subjected to GPa pressure. Physical Review B, 2018, 97, .	1.1	8
37	Nanomaterialâ€Based Plasmonâ€Enhanced Infrared Spectroscopy. Advanced Materials, 2018, 30, e1704896.	11.1	124
38	Functional graphene oxide membrane preparation for organics/inorganic salts mixture separation aiming at advanced treatment of refractory wastewater. Science of the Total Environment, 2018, 628-629, 261-270	3.9	27

#	Article	IF	CITATIONS
39	Thin film nanocomposite membranes incorporated with graphene quantum dots for high flux and antifouling property. Journal of Membrane Science, 2018, 553, 17-24.	4.1	166
40	Barrier Reduction of Lithium Ion Tunneling through Graphene with Hybrid Defects: Firstâ€Principles Calculations. Advanced Theory and Simulations, 2018, 1, 1700009.	1.3	11
41	Carbon nanostructure based mechano-nanofluidics. Journal of Micromechanics and Microengineering, 2018, 28, 033001.	1.5	8
42	Fast water transport in graphene nanofluidic channels. Nature Nanotechnology, 2018, 13, 238-245.	15.6	220
43	Graphene-based membranes for organic solvent nanofiltration. Science China Materials, 2018, 61, 429-431.	3.5	10
44	Bioinspired smart asymmetric nanochannel membranes. Chemical Society Reviews, 2018, 47, 322-356.	18.7	372
45	Micro- and nano-mechanics in China: A brief review of recent progress and perspectives. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	2.0	26
46	Coarse-grained molecular dynamics study of membrane distillation through meso-size graphene channels. Journal of Membrane Science, 2018, 558, 34-44.	4.1	28
47	Response to Comment on "Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins― Science, 2018, 359, .	6.0	18
48	Light- and Electric-Field-Controlled Wetting Behavior in Nanochannels for Regulating Nanoconfined Mass Transport. Journal of the American Chemical Society, 2018, 140, 4552-4559.	6.6	99
49	Understanding the role of pore size homogeneity in the water transport through graphene layers. Nanotechnology, 2018, 29, 225706.	1.3	4
50	A molecular theory for predicting the thermodynamic efficiency of electrokinetic energy conversion in slit nanochannels. Journal of Chemical Physics, 2018, 148, 084701.	1.2	9
51	Insights on the mechanism of water-alcohol separation in multilayer graphene oxide membranes: Entropic versus enthalpic factors. Carbon, 2018, 127, 280-286.	5.4	44
52	A specific demetalation of Fe–N ₄ catalytic sites in the micropores of NC_Ar + NH ₃ is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells. Energy and Environmental Science, 2018, 11, 365-382.	15.6	280
53	Surface charge-dependent transport of water in graphene nano-channels. Microfluidics and Nanofluidics, 2018, 22, 1.	1.0	35
54	Water on graphene: review of recent progress. 2D Materials, 2018, 5, 022001.	2.0	119
55	Supercritical CO ₂ -induced atomistic lubrication for water flow in a rough hydrophilic nanochannel. Nanoscale, 2018, 10, 19957-19963.	2.8	44
56	Fast mass transport-assisted convective heat transfer through a multi-walled carbon nanotube array. Nanoscale, 2018, 10, 23103-23112.	2.8	4

#	Article	IF	CITATIONS
57	On the role of driving force in water transport through nanochannels within graphene oxide laminates. Nanoscale, 2018, 10, 21625-21628.	2.8	31
58	Emerging hydrovoltaic technology. Nature Nanotechnology, 2018, 13, 1109-1119.	15.6	429
59	Electrically Tunable Ion Selectivity of Charged Nanopores. Journal of Physical Chemistry C, 2018, 122, 29380-29385.	1.5	7
60	Confined Structures and Selective Mass Transport of Organic Liquids in Graphene Nanochannels. ACS Applied Materials & Interfaces, 2018, 10, 37014-37022.	4.0	18
61	Effect of surface area of carbon nanotubes on membrane performance for effective water desalination. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	8
62	Flow-induced voltage generation by driving imidazolium-based ionic liquids over a graphene nano-channel. Journal of Materials Chemistry A, 2018, 6, 11941-11950.	5.2	14
63	Effect of layered water structures on the anomalous transport through nanoscale graphene channels. Journal of Physics Communications, 2018, 2, 085015.	0.5	12
64	Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry A, 2018, 6, 11734-11742.	5.2	96
65	Ultrafast Water Permeation in Graphene Nanostructures Anomalously Enhances Twoâ€Phase Heat Transfer. Advanced Materials Interfaces, 2018, 5, 1800286.	1.9	28
66	Frictionless gas flow observed in perfectly flat-walled nanochannels. Nature, 2018, 558, 379-380.	13.7	3
67	Spatially resolved observation of water transport across nanomembranes using bright-field nanoscopy. Applied Physics Letters, 2018, 113, 043701.	1.5	4
68	Mechanism and Regulation of Spontaneous Water Transport in Grapheneâ€Based Nanoslits. Advanced Theory and Simulations, 2018, 1, 1800054.	1.3	2
69	Advanced Material-Ordered Nanotubular Ceramic Membranes Covalently Capped with Single-Wall Carbon Nanotubes. Materials, 2018, 11, 739.	1.3	5
70	Electrically controlled water permeation through graphene oxide membranes. Nature, 2018, 559, 236-240.	13.7	263
71	Stateâ€ofâ€theâ€Art and Future Prospects for Atomically Thin Membranes from 2D Materials. Advanced Materials, 2018, 30, e1801179.	11.1	79
72	Fast water flow through graphene nanocapillaries: A continuum model approach involving the microscopic structure of confined water. Applied Physics Letters, 2018, 113, .	1.5	34
73	Anomalously low dielectric constant of confined water. Science, 2018, 360, 1339-1342.	6.0	627
74	Ballistic molecular transport through two-dimensional channels. Nature, 2018, 558, 420-424.	13.7	139

#	Article	IF	CITATIONS
75	Nanomechanics of graphene. National Science Review, 2019, 6, 324-348.	4.6	75
76	Incorporating attapulgite nanorods into graphene oxide nanofiltration membranes for efficient dyes wastewater treatment. Separation and Purification Technology, 2019, 214, 21-30.	3.9	86
77	Desalination properties of a free-standing, partially oxidized few-layer graphene membrane. Desalination, 2019, 451, 72-80.	4.0	24
78	Evaluating the potential of superhydrophobic nanoporous alumina membranes for direct contact membrane distillation. Journal of Colloid and Interface Science, 2019, 533, 723-732.	5.0	50
79	Structure and dynamic properties of stretched water in graphene nanochannels by molecular dynamics simulation: effects of stretching extent. Physical Chemistry Chemical Physics, 2019, 21, 19163-19171.	1.3	19
80	Why Pore Width of Nanoporous Carbon Materials Determines the Preferred Solvated States of Alkaline Cations: A Density Functional Theory Calculation Study. Journal of Physical Chemistry C, 2019, 123, 21457-21466.	1.5	8
81	Electrolytes under Inhomogeneous Nanoconfinement: Water Structuring-Mediated Local Ion Accumulation. Journal of Physical Chemistry Letters, 2019, 10, 4895-4902.	2.1	6
82	Hybrid phonon-polaritons at atomically-thin van der Waals heterointerfaces for infrared optical modulation. Optics Express, 2019, 27, 18585.	1.7	17
83	Probing permeation of energetic hydrogen atoms through molybdenum disulphide on graphene platform. Materials Research Express, 2019, 6, 095614.	0.8	0
84	Effect of oscillating temperature and crystallization on graphene oxide composite pervaporation membrane for inland brine desalination. Journal of Membrane Science, 2019, 588, 117210.	4.1	35
85	Adsorption characteristics of copper ion on nanoporous silica. Acta Geochimica, 2019, 38, 517-529.	0.7	5
86	Hydrogen bonding structure of confined water templated by a metal-organic framework with open metal sites. Nature Communications, 2019, 10, 4771.	5.8	86
87	Water Diffusion in Wiggling Graphene Membranes. Journal of Physical Chemistry Letters, 2019, 10, 7251-7258.	2.1	14
88	Nucleation of Capillary Bridges and Bubbles in Nanoconfined CO2. Langmuir, 2019, 35, 15401-15409.	1.6	8
89	Study of Charge Distributions and Electrical Properties in GaAs/AlGaAs Single Quantum Well/Nanowire Heterostructures. Journal of Physical Chemistry C, 2019, 123, 26888-26894.	1.5	5
90	Interaction between water and carbon nanostructures: How good are current density functional approximations?. Journal of Chemical Physics, 2019, 151, 164702.	1.2	47
91	Unprecedented Capillary Evaporative Heat Flux in Nanochannels. , 2019, , .		0
92	Water Flow in Silica Nanopores Coated by Carbon Nanotubes from a Wetting Translucency Perspective. Journal of Physical Chemistry C, 2019, 123, 25635-25642.	1.5	11

#	Article	IF	CITATIONS
93	Understanding flow enhancement in grapheneâ€coated nanochannels. Electrophoresis, 2019, 40, 859-864.	1.3	22
94	Water transport properties of boron nitride nanosheets mixed matrix membranes for humic acid removal. Heliyon, 2019, 5, e01142.	1.4	27
95	Water flow modeling through a graphene-based nanochannel: theory and simulation. Physical Chemistry Chemical Physics, 2019, 21, 3304-3309.	1.3	22
96	Impurities Limit the Capacitance of Carbon-Based Supercapacitors. Journal of Physical Chemistry C, 2019, 123, 4085-4093.	1.5	24
97	Probing solvation and reactivity in ionized polycyclic aromatic hydrocarbon–water clusters with photoionization mass spectrometry and electronic structure calculations. Faraday Discussions, 2019, 217, 414-433.	1.6	18
98	Ice-VII-like molecular structure of ambient water nanomeniscus. Nature Communications, 2019, 10, 286.	5.8	29
99	Study on catalytic performances and reaction mechanisms of graphene electroactive membrane in wastewater treatment. Separation and Purification Technology, 2019, 226, 278-285.	3.9	10
100	From Contact Line Structures to Wetting Dynamics. Langmuir, 2019, 35, 10233-10245.	1.6	50
101	Interfacial properties of water/heavy water layer encapsulate in bilayer graphene nanochannel and nanocapacitor. Journal of Materials Science: Materials in Electronics, 2019, 30, 11964-11975.	1.1	2
102	Critical Knowledge Gaps in Mass Transport through Single-Digit Nanopores: A Review and Perspective. Journal of Physical Chemistry C, 2019, 123, 21309-21326.	1.5	234
103	Osmosis, from molecular insights to large-scale applications. Chemical Society Reviews, 2019, 48, 3102-3144.	18.7	177
104	Enhancement of oil flow in shale nanopores by manipulating friction and viscosity. Physical Chemistry Chemical Physics, 2019, 21, 12777-12786.	1.3	46
105	Quantum-confined superfluid. Nanoscale Horizons, 2019, 4, 1029-1036.	4.1	27
106	Graphene oxide-deposited tilted fiber grating for ultrafast humidity sensing and human breath monitoring. Sensors and Actuators B: Chemical, 2019, 293, 336-341.	4.0	91
107	Antibacterial thin film nanocomposite reverse osmosis membrane by doping silver phosphate loaded graphene oxide quantum dots in polyamide layer. Desalination, 2019, 464, 94-104.	4.0	64
108	Dehydration impeding ionic conductance through two-dimensional angstrom-scale slits. Nanoscale, 2019, 11, 8449-8457.	2.8	40
109	Ionized water confined in graphene nanochannels. Physical Chemistry Chemical Physics, 2019, 21, 9285-9295.	1.3	10
110	Anomalous Stability of Two-Dimensional Ice Confined in Hydrophobic Nanopores. ACS Nano, 2019, 13, 4712-4719.	7.3	19

#	Article	IF	CITATIONS
111	Molecular streaming and its voltage control in ångström-scale channels. Nature, 2019, 567, 87-90.	13.7	170
112	Ultrafast Diameter-Dependent Water Evaporation from Nanopores. ACS Nano, 2019, 13, 3363-3372.	7.3	70
113	Atomic Scale Interfacial Transport at an Extended Evaporating Meniscus. Langmuir, 2019, 35, 4491-4497.	1.6	22
114	Ionic Coulomb blockade as a fractional Wien effect. Nature Nanotechnology, 2019, 14, 573-578.	15.6	51
115	Versatile electrification of two-dimensional nanomaterials in water. Nature Communications, 2019, 10, 1656.	5.8	66
116	2D nanoporous materials: membrane platform for gas and liquid separations. 2D Materials, 2019, 6, 042002.	2.0	37
117	Thermal-driven flow inside graphene channels for water desalination. 2D Materials, 2019, 6, 035018.	2.0	15
118	What momentum mismatch?. Nature Nanotechnology, 2019, 14, 308-309.	15.6	4
119	Intensification of chemical separation engineering by nanostructured channels and nanofluidics: From theories to applications. Chinese Journal of Chemical Engineering, 2019, 27, 1439-1448.	1.7	6
120	Boron nitride nanochannels encapsulating a water/heavy water layer for energy applications. RSC Advances, 2019, 9, 5901-5907.	1.7	3
121	Enhanced thermal conductance at the graphene–water interface based on functionalized alkane chains. RSC Advances, 2019, 9, 4563-4570.	1.7	17
122	A first look at the performance of nano-grooved heat pipes. International Journal of Heat and Mass Transfer, 2019, 132, 280-287.	2.5	22
123	Free-standing graphene oxide membrane with tunable channels for efficient water pollution control. Journal of Hazardous Materials, 2019, 366, 659-668.	6.5	45
124	Ultrahigh Evaporative Heat Fluxes in Nanoconfined Geometries. Langmuir, 2019, 35, 78-85.	1.6	39
125	Tuning the functional groups of a graphene oxide membrane by ·OH contributes to the nearly complete prevention of membrane fouling. Journal of Membrane Science, 2019, 576, 190-197.	4.1	14
126	Surface charge and hydrophilicity improvement of graphene membranes via modification of pore surface oxygen-containing groups to enhance permeability and selectivity. Carbon, 2019, 145, 140-148.	5.4	55
127	Complete steric exclusion of ions and proton transport through confined monolayer water. Science, 2019, 363, 145-148.	6.0	207
128	Physisorption of Water on Graphene: Subchemical Accuracy from Many-Body Electronic Structure Methods. Journal of Physical Chemistry Letters, 2019, 10, 358-368.	2.1	90

#	Article	IF	Citations
129	Slippery and Sticky Graphene in Water. ACS Nano, 2019, 13, 2072-2082.	7.3	12
130	Nucleate pool boiling enhancement by ultrafast water permeation in graphene-nanostructure. International Communications in Heat and Mass Transfer, 2019, 101, 26-34.	2.9	54
131	Tuning the interfacial thermal conductance via the anisotropic elastic properties of graphite. Carbon, 2019, 144, 109-115.	5.4	20
132	Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn's equation and extended menisci. Journal of Colloid and Interface Science, 2019, 538, 340-348.	5.0	28
133	Toward Sustainable Chemical Processing With Graphene-Based Materials. , 2020, , 195-229.		0
134	Effect of tool edge radius on material removal mechanism in atomic and close-to-atomic scale cutting. Applied Surface Science, 2020, 504, 144451.	3.1	27
135	Pressure-gated capillary nanovalves based on liquid nanofilms. Journal of Colloid and Interface Science, 2020, 560, 485-491.	5.0	16
136	Ultra-thin graphene oxide films via contra-diffusion method: Fast fabrication for ion rejection. Journal of Membrane Science, 2020, 595, 117586.	4.1	22
137	Mechanism of atomic and close-to-atomic scale cutting of monocrystalline copper. Applied Surface Science, 2020, 503, 144239.	3.1	21
138	Precision Nanotube Mimics via Self-Assembly of Programmed Carbon Nanohoops. Journal of Organic Chemistry, 2020, 85, 129-141.	1.7	23
139	Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices. Accounts of Chemical Research, 2020, 53, 347-357.	7.6	43
140	Tailoring Dielectric Surface Charge via Atomic Layer Thickness. ACS Applied Materials & Interfaces, 2020, 12, 5025-5030.	4.0	5
141	Proton conductivity of a hexagonal boron nitride membrane and its energy applications. Journal of Materials Chemistry A, 2020, 8, 2898-2912.	5.2	27
142	Hydrodynamic slip enhanced nanofluidic reverse electrodialysis for salinity gradient energy harvesting. Desalination, 2020, 477, 114263.	4.0	22
143	Solvationâ€involved Nanoionics: New Opportunities from 2D Nanomaterial Laminar Membranes. Advanced Materials, 2020, 32, e1904562.	11.1	61
144	Couette flows between various bounding substrates. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126181.	0.9	3
145	Nano-/Micro-confined Water in Graphene Hydrogel as Superadsorbents for Water Purification. Nano-Micro Letters, 2020, 12, 2.	14.4	39
146	Controlled Ionic Tunneling in Lithium Nanoionic Synaptic Transistor through Atomically Thin Graphene Layer for Neuromorphic Computing. Advanced Electronic Materials, 2020, 6, 1901100.	2.6	49

#	Article	IF	CITATIONS
147	Engineering polydopamine-glued sandwich-like nanocomposites with antifouling and antibacterial properties for the development of advanced mixed matrix membranes. Separation and Purification Technology, 2020, 237, 116326.	3.9	25
148	Water flow inside various geometric nano-confinement channels. Physical Chemistry Chemical Physics, 2020, 22, 24633-24639.	1.3	6
149	Construction of a hierarchical carbon nanotube/MXene membrane with distinct fusiform channels for efficient molecular separation. Journal of Materials Chemistry A, 2020, 8, 22666-22673.	5.2	39
150	Mechanically activated ionic transport across single-digit carbon nanotubes. Nature Materials, 2020, 19, 1057-1061.	13.3	64
151	Quantifying Water Friction in Misaligned Graphene Channels under Ãngström Confinements. ACS Applied Materials & Interfaces, 2020, 12, 35757-35764.	4.0	10
152	Fast Advective Water Flow Through Nanochannels in Clay Interlayers: Implications for Moisture Transport in Soils and Unconventional Oil/Gas Production. ACS Applied Nano Materials, 2020, 3, 11897-11905.	2.4	10
153	Transport Phenomena in Nano/Molecular Confinements. ACS Nano, 2020, 14, 16348-16391.	7.3	55
154	Influence of anisotropy of nickel-based single crystal superalloy in atomic and close-to-atomic scale cutting. Precision Engineering, 2020, 66, 347-362.	1.8	13
155	Ion Transport in Electrically Imperfect Nanopores. ACS Nano, 2020, 14, 10518-10526.	7.3	33
156	High energy density and interfacial polarization in poly(vinylidene fluoride-chlorotrifluoroethylene) nanocomposite incorporated with halloysite nanotube architecture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606, 125495.	2.3	12
157	Anomalies of Ionic/Molecular Transport in Nano and Sub-Nano Confinement. Nano Letters, 2020, 20, 6937-6946.	4.5	112
158	Atomic Filtration by Graphene Oxide Membranes to Access Atomically Dispersed Single Atom Catalysts. ACS Catalysis, 2020, 10, 10468-10475.	5.5	36
160	Spontaneous adsorption of ions on graphene at the electrolyte–graphene interface. Applied Physics Letters, 2020, 117, 203102.	1.5	1
161	Higher harmonic generation from bilayer nanostructures assisted by electron backscattering. Physical Review B, 2020, 102, .	1.1	20
162	Prospects of Observing Ionic Coulomb Blockade in Artificial Ion Confinements. Entropy, 2020, 22, 1430.	1.1	5
163	Effects of the Interfacial Modeling Approach on Equilibrium Calculations of Slip Length for Nanoconfined Water in Carbon Slits. Langmuir, 2020, 36, 14772-14781.	1.6	6
164	Capillary condensation under atomic-scale confinement. Nature, 2020, 588, 250-253.	13.7	168
165	A thermally reduced graphene oxide membrane interlayered with an <i>in situ</i> synthesized nanospacer for water desalination. Journal of Materials Chemistry A, 2020, 8, 25951-25958.	5.2	17

#	Article	IF	CITATIONS
166	Extended Nernst–Planck Equation Incorporating Partial Dehydration Effect. Chinese Physics Letters, 2020, 37, 094701.	1.3	3
167	Water under extreme confinement in graphene: Oscillatory dynamics, structure, and hydration pressure explained as a function of the confinement width. Journal of Molecular Liquids, 2020, 317, 114027.	2.3	28
168	Intertube Aggregation-Dependent Convective Heat Transfer in Vertically Aligned Carbon Nanotube Channels. ACS Applied Materials & Interfaces, 2020, 12, 50355-50364.	4.0	4
169	Universal and Nonuniversal Aspects of Electrostatics in Aqueous Nanoconfinement. Journal of Physical Chemistry B, 2020, 124, 4365-4371.	1.2	48
170	High permeability sub-nanometre sieve composite MoS2 membranes. Nature Communications, 2020, 11, 2747.	5.8	93
171	Towards single-species selectivity of membranes with subnanometre pores. Nature Nanotechnology, 2020, 15, 426-436.	15.6	389
172	Water-dispersible few-layer graphene flakes for selective and rapid ion mercury (Hg ²⁺)-rejecting membranes. Materials Advances, 2020, 1, 387-402.	2.6	11
173	Viscoelasticity-Induced Onset of Slip at the Wall for Polymer Fluids. ACS Macro Letters, 2020, 9, 924-928.	2.3	6
174	Limits on gas impermeability of graphene. Nature, 2020, 579, 229-232.	13.7	220
175	Static and dynamic behavior of CO2 enhanced oil recovery in nanoslits: Effects of mineral type and oil components. International Journal of Heat and Mass Transfer, 2020, 153, 119583.	2.5	40
176	Interaction of 2D materials with liquids: wettability, electrochemical properties, friction, and emerging directions. NPG Asia Materials, 2020, 12, .	3.8	53
177	Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nature Materials, 2020, 19, 767-774.	13.3	275
178	The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies. Energy and Environmental Science, 2020, 13, 1694-1710.	15.6	206
179	Selective Permeation of Water through Angstromâ€Channel Graphene Membranes for Bioethanol Concentration. Advanced Materials, 2020, 32, e2002320.	11.1	35
180	Coupled Transport of Water and Ions through Graphene Nanochannels. Journal of Physical Chemistry C, 2020, 124, 17320-17330.	1.5	17
181	Ultrathin graphene oxide membrane with constructed tent-shaped structures for efficient and tunable molecular sieving. Environmental Science: Nano, 2020, 7, 2373-2384.	2.2	4
182	Theory and simulation developments of confined mass transport through graphene-based separation membranes. Physical Chemistry Chemical Physics, 2020, 22, 6032-6057.	1.3	19
183	Nanofluidics coming of age. Nature Materials, 2020, 19, 254-256.	13.3	255

#	Article	IF	CITATIONS
184	A Low-Cost Biomimetic Heterostructured Multilayer Membrane with Geopolymer Microparticles for Broad-Spectrum Water Purification. ACS Applied Materials & amp; Interfaces, 2020, 12, 12133-12142.	4.0	44
185	Formation of Linear Water Chains on Ni(110). Journal of Physical Chemistry Letters, 2020, 11, 2121-2126.	2.1	7
186	Evaporation-driven liquid flow through nanochannels. Physics of Fluids, 2020, 32, .	1.6	38
187	Fast atom effect on helium gas/graphite interfacial energy transfer. Carbon, 2020, 161, 206-218.	5.4	6
188	From atoms to aerosols: probing clusters and nanoparticles with synchrotron based mass spectrometry and X-ray spectroscopy. Physical Chemistry Chemical Physics, 2020, 22, 2713-2737.	1.3	34
189	Na ⁺ -gated water-conducting nanochannels for boosting CO ₂ conversion to liquid fuels. Science, 2020, 367, 667-671.	6.0	136
190	The effect of surface wrinkles on the properties of water in graphene slit pores. Molecular Simulation, 2020, 46, 604-615.	0.9	3
191	Ion Dynamics of Waterâ€inâ€Salt Electrolyte with Organic Solvents in Nanoporous Supercapacitor Electrodes. ChemElectroChem, 2020, 7, 2048-2054.	1.7	6
192	Improving ion rejection of graphene oxide conductive membranes by applying electric field. Journal of Membrane Science, 2020, 604, 118077.	4.1	17
193	Quantifying anisotropic dielectric response properties of nanoconfined water within graphene slit pores. Physical Chemistry Chemical Physics, 2020, 22, 10833-10837.	1.3	29
194	Performance enhancement of graphene-coated micro heat pipes for light-emitting diode cooling. International Journal of Heat and Mass Transfer, 2020, 154, 119687.	2.5	34
195	Integrated ionic sieving channels from engineering ordered monolayer two-dimensional crystallite structures. Science Bulletin, 2020, 65, 1356-1362.	4.3	3
196	Fast transport of water in carbon nanotubes: a review of current accomplishments and challenges. Molecular Simulation, 2021, 47, 905-924.	0.9	18
197	Stable Selfâ€Floating Reduced Graphene Oxide Hydrogel Membrane for High Rate of Solar Vapor Evaporation under 1 sun. Global Challenges, 2021, 5, 2000053.	1.8	15
198	Fluids at the Nanoscale: From Continuum to Subcontinuum Transport. Annual Review of Fluid Mechanics, 2021, 53, 377-410.	10.8	172
199	Effects of nanopore geometry on confined water flow: A view of lattice Boltzmann simulation. Chemical Engineering Science, 2021, 230, 116183.	1.9	17
200	Stacking of 2D Materials. Advanced Functional Materials, 2021, 31, 2007810.	7.8	123
201	Ultrafast water evaporation through graphene membranes with subnanometer pores for desalination. Journal of Membrane Science, 2021, 621, 118934.	4.1	45

#	Article	IF	CITATIONS
202	Study on staged work hardening mechanism of nickel-based single crystal alloy during atomic and close-to-atomic scale cutting. Precision Engineering, 2021, 68, 35-56.	1.8	27
203	Mutually Reinforced Polymer–Graphene Bilayer Membranes for Energyâ€Efficient Acoustic Transduction. Advanced Materials, 2021, 33, e2004053.	11.1	9
204	A Review on Graphene Oxide Two-dimensional Macromolecules: from Single Molecules to Macro-assembly. Chinese Journal of Polymer Science (English Edition), 2021, 39, 267-308.	2.0	29
205	Study on phase transformation in cutting Ni-base superalloy based on molecular dynamics method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 2065-2086.	1.1	5
206	Mechanical hydrolysis imparts self-destruction of water molecules under steric confinement. Physical Chemistry Chemical Physics, 2021, 23, 5999-6008.	1.3	5
207	Hydrocarbon contamination in angström-scale channels. Nanoscale, 2021, 13, 9553-9560.	2.8	7
208	Artificial channels for confined mass transport at the sub-nanometre scale. Nature Reviews Materials, 2021, 6, 294-312.	23.3	263
209	Novel Nanofluidic Cells Based on Nanowires and Nanotubes for Advanced Chemical and Bio-Sensing Applications. Nanomaterials, 2021, 11, 90.	1.9	10
210	Water mobility in MoS ₂ nanopores: effects of the dipole–dipole interaction on the physics of fluid transport. Physical Chemistry Chemical Physics, 2021, 23, 12075-12081.	1.3	5
211	Electric control of ionic transport in sub-nm nanopores. RSC Advances, 2021, 11, 13806-13813.	1.7	2
212	Organic molecular sieve membranes for chemical separations. Chemical Society Reviews, 2021, 50, 5468-5516.	18.7	170
213	Advances in nanofluidics for water purification and filtration: molecular dynamics (MD) perspective. Environmental Science: Nano, 2021, 8, 2120-2151.	2.2	9
214	Reply to the â€~Comment on "Non-PGM electrocatalysts for PEM fuel cells: effect of fluorination on the activity and stability of a highly active NC_Ar + NH ₃ catalystâ€â€™ by Xi Yin, Edward F. Holby and Piotr Zelenay, <i>Energy Environ. Sci.</i> , 10.1039/D0EE02069A. Energy and Environmental Science, 2021, 14, 1034-1041.	15.6	7
215	Understanding water slippage through carbon nanotubes. Physical Chemistry Chemical Physics, 2021, 23, 14737-14745.	1.3	1
216	Diameter Dependence of Water Filling in Lithographically Segmented Isolated Carbon Nanotubes. ACS Nano, 2021, 15, 2778-2790.	7.3	20
217	Neuromorphic van der Waals crystals for substantial energy generation. Nature Communications, 2021, 12, 47.	5.8	21
218	Abnormal Dielectric Constant of Nanoconfined Water between Graphene Layers in the Presence of Salt. Journal of Physical Chemistry B, 2021, 125, 1604-1610.	1.2	19
219	Translocation of DNA through Ultrathin Nanoslits. Advanced Materials, 2021, 33, e2007682.	11.1	22

#	Article	IF	CITATIONS
220	Graphene Oxide Membranes for Tunable Ion Sieving in Acidic Radioactive Waste. Advanced Science, 2021, 8, 2002717.	5.6	44
221	Molecular Simulations on Tuning the Interlayer Spacing of Graphene Nanoslits for C4H6/C4H10 Separation. ACS Applied Nano Materials, 2021, 4, 1994-2001.	2.4	5
222	Challenges in membrane-based liquid phase separations. Green Chemical Engineering, 2021, 2, 3-13.	3.3	13
223	Abnormal in-plane permittivity and ferroelectricity of confined water: From sub-nanometer channels to bulk. Journal of Chemical Physics, 2021, 154, 114503.	1.2	14
224	First principles study on modification of Ni composite SWCNT material system for gas adsorption. Applied Surface Science, 2021, 544, 148765.	3.1	3
225	Connecting theory and simulation with experiment for the study of diffusion in nanoporous solids. Adsorption, 2021, 27, 683-760.	1.4	72
226	Hydrous Proton Transfer through Graphene Interlayer: An Extraordinary Mechanism under Magnifier. Advanced Materials Technologies, 2021, 6, 2001049.	3.0	10
227	Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting. ACS Nano, 2021, 15, 5838-5860.	7.3	97
228	Evaporation in nano/molecular materials. Advances in Colloid and Interface Science, 2021, 290, 102385.	7.0	12
229	Study on the mechanism of water transport near the surface of pristine and nitrogen-doped β-graphyne. International Journal of Modern Physics B, 2021, 35, 2150152.	1.0	2
230	Catalytic Reduction of Graphene Oxide Membranes and Water Selective Channel Formation in Water–Alcohol Separations. Membranes, 2021, 11, 317.	1.4	0
232	High-rate nanofluidic energy absorption in porous zeolitic frameworks. Nature Materials, 2021, 20, 1015-1023.	13.3	52
233	Nanofluidic charged-coupled devices for controlled DNA transport and separation. Nanotechnology, 2021, 32, 345501.	1.3	4
234	Efficient isotropic water desalination in anisotropic lamellar nano-channels formed by layered black phosphorus membrane. Desalination, 2021, 504, 114962.	4.0	16
235	Confinement-Controlled Aqueous Chemistry within Nanometric Slit Pores. Chemical Reviews, 2021, 121, 6293-6320.	23.0	74
236	Thin film nanocomposite membrane with triple-layer structure for enhanced water flux and antibacterial capacity. Science of the Total Environment, 2021, 770, 145370.	3.9	28
237	Recent advances in graphene and other 2D materials. Nano Materials Science, 2022, 4, 3-9.	3.9	97
238	Water friction in nanofluidic channels made from two-dimensional crystals. Nature Communications, 2021, 12, 3092.	5.8	59

#	Article	IF	Citations
239	Nanofluidics for Gas Separation Applications: The Molecular Dynamics Simulation Perspective. Separation and Purification Reviews, 2022, 51, 245-260.	2.8	4
240	Ionic Diode Based on an Asymmetricâ€Shaped Carbon Black Nanoparticle Membrane. Advanced Functional Materials, 2021, 31, 2104341.	7.8	15
241	Abnormal Properties of Lowâ€Dimensional Confined Water. Small, 2021, 17, e2100788.	5.2	28
242	Nanophotonic biosensors harnessing van der Waals materials. Nature Communications, 2021, 12, 3824.	5.8	88
243	Measurement of Navier Slip on Individual Nanoparticles in Liquid. Nano Letters, 2021, 21, 4959-4965.	4.5	11
244	Anomalously low friction of confined monolayer water with a quadrilateral structure. Journal of Chemical Physics, 2021, 154, 224508.	1.2	14
245	Effects of Layering and Supporting Substrate on Liquid Slip at the Single-Layer Graphene Interface. ACS Nano, 2021, 15, 10095-10106.	7.3	19
246	lonic conductance oscillations in sub-nanometer pores probed by optoelectronic control. Matter, 2021, 4, 2378-2391.	5.0	13
247	A bibliometric study on biomimetic and bioinspired membranes for water filtration. Npj Clean Water, 2021, 4, .	3.1	16
248	Theoretical framework for the atomistic modeling of frequency-dependent liquid-solid friction. Physical Review Research, 2021, 3, .	1.3	2
249	Nanoscale morphology of thin liquid films near the advancing contact line during condensation. Physics of Fluids, 2021, 33, 072109.	1.6	7
250	A large deviation theory perspective on nanoscale transport phenomena. European Physical Journal B, 2021, 94, 1.	0.6	11
251	Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport. Chemical Reviews, 2021, 121, 9450-9501.	23.0	43
252	Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials. Advanced Materials, 2021, 33, e2007977.	11.1	34
253	Exploring Two-Dimensional Empty Space. Nano Letters, 2021, 21, 6356-6358.	4.5	31
254	Remarkable Rate of Water Evaporation through Naked Veins of Natural Tree Leaves. ACS Omega, 2021, 6, 20379-20387.	1.6	5
255	Energy-Based Interface Detection for Phase Change Processes of Monatomic Fluids in Nanoconfinements. Journal of Physical Chemistry Letters, 2021, 12, 8397-8403.	2.1	5
256	Fast Water-Assisted Lithium Ion Conduction in Restacked Lithium Tin Sulfide Nanosheets. Chemistry of Materials, 2021, 33, 7337-7349.	3.2	5

#	Article	IF	CITATIONS
257	Continuous Water Filling in a Graphene Nanochannel: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2021, 125, 9824-9833.	1.2	9
258	Heterogeneous MXene/PSâ€bâ€P2VP Nanofluidic Membranes with Controllable Ion Transport for Osmotic Energy Conversion. Advanced Functional Materials, 2021, 31, 2105013.	7.8	62
259	Tailored Chiral Copper Selenide Nanochannels for Ultrasensitive Enantioselective Recognition and Detection. Angewandte Chemie - International Edition, 2021, 60, 24997-25004.	7.2	19
260	Tailored Chiral Copper Selenide Nanochannels for Ultrasensitive Enantioselective Recognition and Detection. Angewandte Chemie, 2021, 133, 25201-25208.	1.6	3
261	Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science, 2021, 373, 687-691.	6.0	89
262	Surface morphological effects on gas transport through nanochannels with atomically smooth walls. Carbon, 2021, 180, 85-91.	5.4	18
263	Study on the evolution mechanism of subsurface defects in nickel-based single crystal alloy during atomic and close-to-atomic scale cutting. Journal of Manufacturing Processes, 2021, 68, 14-33.	2.8	12
264	High energy density in poly(vinylidene fluoride-trifluoroethylene) composite incorporated with modified halloysite nanotubular architecture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126993.	2.3	9
265	Anomalously enhanced light-emitting diode cooling via nucleate boiling using graphene-nanoplatelets coatings. Energy Conversion and Management, 2021, 244, 114522.	4.4	36
266	Custom-tailoring loose nanocomposite membrane incorporated bipiperidine/graphene quantum dots for high-efficient dye/salt fractionation in hairwork dyeing effluent. Separation and Purification Technology, 2021, 271, 118870.	3.9	10
267	Particle-Wave Dualism in Nanoconfined Space: Ultrafast Substance Flow. Chemical Research in Chinese Universities, 2022, 38, 957-960.	1.3	1
268	A Review: Ion Transport of Two-Dimensional Materials in Novel Technologies from Macro to Nanoscopic Perspectives. Energies, 2021, 14, 5819.	1.6	7
269	Distinct Chemistries Explain Decoupling of Slip and Wettability in Atomically Smooth Aqueous Interfaces. Journal of Physical Chemistry Letters, 2021, 12, 9060-9067.	2.1	14
270	The interaction between atomic-scale pores and particles. Journal of Physics Condensed Matter, 2021, 34, .	0.7	0
271	Nanoscale mapping of electric polarizability in a heterogeneous dielectric material with surface irregularities. Nanotechnology, 2021, 32, 505711.	1.3	3
272	Effect of misfit strain on the buckling of graphene/MoS2 van der Waals heterostructures. Nanotechnology, 2021, 32, 485701.	1.3	3
273	Pervaporation membrane materials: Recent trends and perspectives. Journal of Membrane Science, 2021, 636, 119557.	4.1	140
274	Evaluating gas permeance through graphene nanopores and porous 2D-membranes: A generalized approach. Carbon Trends, 2021, 5, 100086.	1.4	2

#	ARTICLE	IF	CITATIONS
275	Rectification Correlation between Water and Ions through Asymmetric Graphene Channels. Journal of Physical Chemistry B, 2021, 125, 11232-11241.	1.2	12
276	Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scales. Materials Today Nano, 2021, 16, 100136.	2.3	51
277	Electrochemistry of 2D nanomaterials. Frontiers of Nanoscience, 2021, , 485-536.	0.3	3
278	Tunable sieving of small gas molecules using horizontal graphene oxide membrane. Journal of Membrane Science, 2020, 610, 118178.	4.1	14
279	Nanoconfined Fluids: What Can We Expect from Them?. Journal of Physical Chemistry Letters, 2020, 11, 4678-4692.	2.1	71
280	Snap-through in Graphene Nanochannels: With Application to Fluidic Control. ACS Applied Materials & Interfaces, 2021, 13, 1158-1168.	4.0	11
281	Surface Tension Nanogates for Controlled Ion Transport. ACS Applied Nano Materials, 2020, 3, 6979-6986.	2.4	5
282	Terahertz-Light Induced Structural Transition and Superpermeation of Confined Monolayer Water. ACS Photonics, 2021, 8, 781-786.	3.2	27
283	Chapter 1. Current State-of-the-art Membrane Based Filtration and Separation Technologies. RSC Nanoscience and Nanotechnology, 2018, , 1-13.	0.2	6
284	Mass Transport Across Atomically Thin Membranes. RSC Nanoscience and Nanotechnology, 2018, , 43-75.	0.2	1
285	Slippage dynamics of confined water in graphene oxide capillaries. Physical Review Materials, 2018, 2, .	0.9	8
286	Failure in Two-Dimensional Materials: Defect Sensitivity and Failure Criteria. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	24
287	Research progress of hydrogen tunneling in two-dimensional materials. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 056601.	0.2	3
288	A hydrogen bond-modulated soft nanoscale water channel for ion transport through liquid–liquid interfaces. Soft Matter, 2021, 17, 9736-9744.	1.2	1
289	Porous Ni(OH)2 permselective membrane to identify the mechanism of hydrogen evolution reaction in buffered solution. Electrochimica Acta, 2022, 401, 139444.	2.6	2
290	Empowering single-molecule analysis with self-assembled DNA nanostructures. Matter, 2021, 4, 3121-3145.	5.0	10
291	2D Material Nanofiltration Membranes: From Fundamental Understandings to Rational Design. Advanced Science, 2021, 8, e2102493.	5.6	29
292	Mechanisms of Selective Mass Transport through Graphene Oxide Membranes. RSC Nanoscience and Nanotechnology, 2018, , 97-114.	0.2	0

#	Article	IF	CITATIONS
293	In-situ compression and electrochemical studies of graphene foam. Veruscript Functional Nanomaterials, 2018, 2, 1-10.	0.2	0
296	Nonnegligible role of rigidity/flexibility for efficient CO2 separation in SILMs: A molecular dynamics simulation study. International Journal of Heat and Mass Transfer, 2022, 183, 122058.	2.5	14
297	Interfacial Friction and Adhesion Between Graphene and Silicon. Springer Theses, 2020, , 67-96.	0.0	0
298	Monolayer Square-Like Ice Between Two Graphene Sheets. Springer Theses, 2020, , 35-47.	0.0	0
299	Tuning the Water Desalination Performance of Graphenic Layered Nanomaterials by Element Doping and Inter-Layer Spacing*. Chinese Physics Letters, 2020, 37, 116101.	1.3	1
300	Structure and dynamics of nanoconfined water and aqueous solutions. European Physical Journal E, 2021, 44, 136.	0.7	38
301	Water-solid interfaces probed by high-resolution atomic force microscopy. Surface Science Reports, 2022, 77, 100549.	3.8	18
302	Nanoconfinement engineering for enchanced adsorptionÂof carbon materials, metal–organic frameworks, mesoporous silica, MXenes and porous organic polymers: a review. Environmental Chemistry Letters, 2022, 20, 563-595.	8.3	26
303	An analytical model for evaluating fluid flux across carbon-based membrane. Journal of Membrane Science, 2022, 644, 120157.	4.1	1
304	Fast and versatile thermo-osmotic flows with a pinch of salt. Nanoscale, 2022, 14, 626-631.	2.8	8
305	Photoactivated Bacteriorhodopsin/SiN _{<i>x</i>} Nanopore-Based Biological Nanofluidic Generator with Single-Protein Sensitivity. ACS Nano, 2022, 16, 1589-1599.	7.3	7
306	Selective transport of water molecules through interlayer spaces in graphite. Nature Communications, 2022, 13, 498.	5.8	15
307	Novel Method of Measuring the Thickness of Nanoscale Films Using Energy Dispersive Xâ€Ray Spectroscopy Line Scan Profiles. Advanced Materials Interfaces, 0, , 2101489.	1.9	1
308	Fluctuation-induced quantum friction in nanoscale water flows. Nature, 2022, 602, 84-90.	13.7	97
309	Anomalous spontaneous capillary flow of water through graphene nanoslits: Channel width-dependent density. Journal of Molecular Liquids, 2022, 352, 118701.	2.3	5
310	A molecular simulation study into the stability of hydrated graphene nanochannels used in nanofluidics devices. Nanoscale, 2022, 14, 3467-3479.	2.8	13
311	Angstrom-scale ion channels towards single-ion selectivity. Chemical Society Reviews, 2022, 51, 2224-2254.	18.7	116
312	Single-Molecule Ionic andÂOptical Sensing withÂNanoapertures. Nanostructure Science and Technology, 2022, , 367-387.	0.1	3

#	Article	IF	CITATIONS
313	Laser Interferometry for Precise Measurement of Ultralow Flow Rates from Permeable Materials. Environmental Science and Technology Letters, 2022, 9, 233-238.	3.9	0
314	Are 2D Interfaces Really Flat?. ACS Nano, 2022, 16, 5316-5324.	7.3	15
315	Engineering Optically Active Defects in Hexagonal Boron Nitride Using Focused Ion Beam and Water. ACS Nano, 2022, 16, 3695-3703.	7.3	28
316	Ultrafast rectifying counter-directional transport of proton and metal ions in metal-organic framework–based nanochannels. Science Advances, 2022, 8, eabl5070.	4.7	48
317	Leaf-veins-inspired nickel phosphate nanotubes-reduced graphene oxide composite membranes for ultrafast organic solvent nanofiltration. Journal of Membrane Science, 2022, 649, 120401.	4.1	20
318	Confined lamellar channels structured by multilayer graphene for high-efficiency desalination. Desalination, 2022, 530, 115681.	4.0	16
319	Enhanced nanofluidic transport in activated carbon nanoconduits. Nature Materials, 2022, 21, 696-702.	13.3	36
320	Asymmetric transport and desalination in graphene channels. Physical Chemistry Chemical Physics, 2022, 24, 13245-13255.	1.3	8
322	Nonequilibrium thermodynamics of electrochemical processes. Scientia Sinica Chimica, 2022, 52, 668-677.	0.2	0
323	Molecular transport under extreme confinement. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	8
324	The spontaneous self-assembly of a molecular water pipe in 3D space. IUCrJ, 2022, 9, 364-369.	1.0	5
325	Competitive adsorption of asphaltene and n-heptane on quartz surfaces and its effect on crude oil transport through nanopores. Journal of Molecular Liquids, 2022, 359, 119312.	2.3	14
326	The coming of age of water channels for separation membranes: from biological to biomimetic to synthetic. Chemical Society Reviews, 2022, 51, 4537-4582.	18.7	70
327	Spontaneous and Selective Potassium Transport through a Suspended Tailor-Cut Ti ₃ C ₂ T _{<i>x</i>} MXene Film. ACS Nano, 2022, 16, 9142-9149.	7.3	24
328	Controllable synthesis of novel porous graphene-based sheets and design of ultrathin composite films by in-situ sealing technology. Chemical Engineering Journal, 2022, 446, 137075.	6.6	6
329	Wettability of Graphite Under 2d Confinement. SSRN Electronic Journal, 0, , .	0.4	1
330	Molecular-Level Insights into Unique Behavior of Water Molecules Confined in the Heterojunction between One- and Two-Dimensional Nanochannels. Langmuir, 2022, 38, 7300-7311.	1.6	3
331	Atomistic Simulations of the Permeability and Dynamic Transportation Characteristics of Diamond Nanochannels. Nanomaterials, 2022, 12, 1785.	1.9	2

#	Article	IF	CITATIONS
332	Infiltration characteristics of nanochannels composed of graphene sheets in different directions. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	2
333	Nanoporous Titanate Nanosheet-Based Membranes for Water Treatment and Molecular Separations. SSRN Electronic Journal, 0, , .	0.4	0
334	Mass Transport via In-Plane Nanopores in Graphene Oxide Membranes. Nano Letters, 2022, 22, 4941-4948.	4.5	18
335	Synergistic Effect of Electrostatic Interaction and Ionic Dehydration on Asymmetric Ion Transport in Nanochannel/Ion Channel Composite Membrane. Journal of Physical Chemistry Letters, 2022, 13, 5267-5274.	2.1	10
336	Sustainable power generation for at least one month from ambient humidity using unique nanofluidic diode. Nature Communications, 2022, 13, .	5.8	39
337	Submolecular Insights into Interfacial Water by Hydrogen-Sensitive Scanning Probe Microscopy. Accounts of Chemical Research, 2022, 55, 1680-1692.	7.6	6
338	Heterogeneous asymmetric passable cavities within graphene oxide nanochannels for highly efficient lithium sieving. Desalination, 2022, 538, 115888.	4.0	11
339	Robustness of Bilayer Hexagonal Ice against Surface Symmetry and Corrugation. Physical Review Letters, 2022, 129, .	2.9	14
340	MXene Nanosheet Tailored Bioinspired Modification of a Nanofiltration Membrane for Dye/Salt Separation. ACS ES&T Water, 2023, 3, 1756-1766.	2.3	12
341	Angstrofluidics: Walking to the Limit. Annual Review of Materials Research, 2022, 52, 189-218.	4.3	16
342	Wettability of graphite under 2D confinement. Carbon, 2022, 198, 132-141.	5.4	13
343	Slip Flow on Graphene: Current Status and Perspective. Journal of Thermal Science, 2022, 31, 1115-1134.	0.9	2
344	Atomic-Void van der Waals Channel Waveguides. Nano Letters, 2022, 22, 6254-6261.	4.5	8
345	Extended Wertheim theory predicts the anomalous chain length distributions of divalent patchy particles under extreme confinement. Journal of Chemical Physics, 2022, 157, .	1.2	1
346	Enhanced Water Evaporation from ÃScale Graphene Nanopores. ACS Nano, 2022, 16, 15382-15396.	7.3	15
347	Ultrahigh resistance of hexagonal boron nitride to mineral scale formation. Nature Communications, 2022, 13, .	5.8	16
348	Enhanced Ion Rejection in Carbon Nanotubes by a Lateral Electric Field. Langmuir, 2022, 38, 10065-10074.	1.6	7
349	Fast water transport and molecular sieving through ultrathin ordered conjugated-polymer-framework membranes. Nature Materials, 2022, 21, 1183-1190.	13.3	45

#	Article	IF	CITATIONS
350	Thermal Energy Transfer between Helium Gas and Graphene Surface According to Molecular Dynamics Simulations and the Monte Carlo Method. Nanomaterials, 2022, 12, 2855.	1.9	0
352	Water-Graphene non-bonded interaction parameters: Development and influence on molecular dynamics simulations. Applied Surface Science, 2022, 603, 154477.	3.1	2
353	Two-dimensional heterogenous channels incorporated by enhanced-surface hydrophilic hollow ZIF-8 nanocrystals for ultrafast water permeation. Journal of Membrane Science, 2022, 661, 120943.	4.1	6
354	Anomalously enhanced thermal performance of micro heat pipes coated with heterogeneous superwettable graphene nanostructures. Applied Energy, 2022, 326, 119994.	5.1	4
355	Water transport through a graphene channel with different cross-sectional shapes. Journal of Molecular Liquids, 2022, 366, 120241.	2.3	1
356	Unveiling the interlayers and edges predominant controlling transport pathways in laminar graphene oxide membranes via different assembly strategies. Separation and Purification Technology, 2022, 302, 122094.	3.9	4
357	Template-free lithography for cross-scale channels towards enhancing nanofluidic devices. Sensors and Actuators B: Chemical, 2022, 372, 132642.	4.0	4
358	A combined theoretical and experimental study of small anthracene–water clusters. Physical Chemistry Chemical Physics, 2022, 24, 23106-23118.	1.3	4
359	The electrochemical double layer at the graphene/aqueous electrolyte interface: what we can learn from simulations, experiments, and theory. Journal of Materials Chemistry C, 2022, 10, 15225-15262.	2.7	21
360	Mechanism and performance of ionic diodes fabricated from 2D trapezoidal-shaped nanochannels. Physical Chemistry Chemical Physics, 2022, 24, 19927-19937.	1.3	1
361	A Thermodynamic Formulation of Water Potential in Soil. Water Resources Research, 2022, 58, .	1.7	8
362	Extreme Ionâ€Transport Inorganic 2D Membranes for Nanofluidic Applications. Advanced Materials, 2023, 35, .	11.1	14
363	Edge-Driven Phase Transitions in 2D Ice. Journal of Physical Chemistry C, 2022, 126, 16006-16015.	1.5	5
365	Interaction confinement and electronic screening in two-dimensional nanofluidic channels. Journal of Chemical Physics, 2022, 157, .	1.2	8
366	The first-principles phase diagram of monolayer nanoconfined water. Nature, 2022, 609, 512-516.	13.7	66
367	Two-dimensional capillaries assembled by van der Waals heterostructures. Nano Research, 2023, 16, 4119-4129.	5.8	6
368	Macroscopic Heterostructure Membrane of Graphene Oxide/Porous Graphene/Graphene Oxide for Selective Separation of Deuterium Water from Natural Water. Advanced Materials, 2022, 34, .	11.1	12
369	Understanding water transport through graphene-based nanochannels via experimental control of slip length. Nature Communications, 2022, 13, .	5.8	12

C	ΙΤΑΤ	ION	Re	PORT

#	Article	IF	CITATIONS
370	Wicking dynamics into two-rail open channel with periodical branches. Physics of Fluids, 2022, 34, 102004.	1.6	3
371	Graphene oxide membranes with a confined mass transfer effect for Li ⁺ /Mg ²⁺ separation: a molecular dynamics study. Physical Chemistry Chemical Physics, 2022, 24, 26011-26022.	1.3	10
372	Chemical Exfoliation of Metal Oxide Nanosheets for High-Performance Ion Conducting Membranes. , 2022, 4, 2321-2327.		3
373	Thermally Programmable Dynamic Capillarity in Nanofluidic Channels Grafted with Smart Elastomeric Layers. Small, 0, , 2201691.	5.2	1
374	Microporous membranes for ultrafast and energy-efficient removal of antibiotics through polyphenol-mediated nanointerfaces. Matter, 2023, 6, 260-273.	5.0	18
375	Imbibition dynamics and steady flows in graphene nanochannels with sparse geometric and chemical defects. Physics of Fluids, 2022, 34, 112003.	1.6	5
376	Local nanoflow field produced by the bladed rotor in a rotation transmission nanosystem in water environments. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 286, 116046.	1.7	0
377	Microscopic liquid–gas interface effect on liquid wetting. Journal of Colloid and Interface Science, 2023, 630, 813-822.	5.0	3
378	Insights into the synergistic effect of methoxy functionalized halloysite nanotubes for dielectric elastomer with improved dielectric properties and actuated strain. Composites Science and Technology, 2023, 231, 109802.	3.8	12
379	Effective Modulation of Ion Mobility through Solid-State Single-Digit Nanopores. Nanomaterials, 2022, 12, 3946.	1.9	0
380	Differences in water and vapor transport through angstrom-scale pores in atomically thin membranes. Nature Communications, 2022, 13, .	5.8	9
381	Enhanced ion conductivity of "water-in-salt―electrolytes by nanochannel membranes. Journal of Materials Chemistry A, 2023, 11, 1394-1402.	5.2	7
382	Tunable ion transport through ultimately small channels. , 2022, 2, 100043.		2
383	Drop impact dynamics on solid surfaces. Applied Physics Letters, 2022, 121, .	1.5	27
384	Ultra-hydrophilic nanofiltration membranes fabricated via punching in the HTO nanosheets. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	4
385	Bidirectional Transport Phenomenon of Ions in Electric Fields Due to the Cluster Formation in Two-Dimensional Graphene Channels. Journal of Physical Chemistry C, 2023, 127, 1167-1175.	1.5	3
386	Aqueous Proton Transportation in Graphene-Based Nanochannels. Langmuir, 2022, 38, 15413-15421.	1.6	2
387	Electrical Control of Chemical Vapor Deposition of Graphene. Journal of the American Chemical Society, 2022, 144, 22925-22932.	6.6	5

#	Article	IF	CITATIONS
388	Solution-processable amorphous microporous polymers for membrane applications. Progress in Polymer Science, 2023, 137, 101636.	11.8	13
389	Ion-Induced Friction Reduction in Water Nanoflow over Graphene. Acta Mechanica Solida Sinica, 0, , .	1.0	0
390	Interfacial Liquid Water on Graphite, Graphene, and 2D Materials. ACS Nano, 2023, 17, 51-69.	7.3	11
391	Improving the Performance of the Lamellar Reduced Graphene Oxide/Molybdenum Sulfide Nanofiltration Membrane through Accelerated Water-Transport Channels and Capacitively Enhanced Charge Density. Environmental Science & Technology, 2023, 57, 615-625.	4.6	3
392	lon sieving in graphene oxide membrane enables efficient actinides/lanthanides separation. Nature Communications, 2023, 14, .	5.8	22
393	Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science, 2023, 379, 161-167.	6.0	67
394	An adjustable high-speed and directional diffusion of water nanodroplets confined by graphene sheets. Physical Chemistry Chemical Physics, 0, , .	1.3	0
395	How to accurately predict nanoscale flow: Theory of single-phase or two-phase?. Physics of Fluids, 2023, 35, .	1.6	9
396	Remarkable Thermal Performance Enhancement of Micro Heat Pipes with Graphene-Nanoplatelet Nano-Wicks. Nanomaterials, 2023, 13, 232.	1.9	1
397	Low-frequency flicker noise in stochastic ionic transport across atomically thin graphene nanopores. Cell Reports Physical Science, 2023, 4, 101210.	2.8	0
398	Membrane-based nanoconfined heterogeneous catalysis for water purification: A critical review✰. Water Research, 2023, 230, 119577.	5.3	43
399	Preservable superhydrophilicity of thermally cured graphene-nanoplatelets/epoxy nanocomposite coatings. Composites Part B: Engineering, 2023, 252, 110500.	5.9	7
400	Reversible bipolar thermopower of ionic thermoelectric polymer composite for cyclic energy generation. Nature Communications, 2023, 14, .	5.8	13
401	Deciphering the Properties of Nanoconfined Aqueous Solutions by Vibrational Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry Letters, 2023, 14, 1208-1213.	2.1	1
402	Recent advances in twoâ€dimensional materials for hydrovoltaic energy technology. Exploration, 2023, 3, .	5.4	10
403	Surface charge density governs the ionic current rectification direction in asymmetric graphene oxide channels. Physical Chemistry Chemical Physics, 2023, 25, 7477-7486.	1.3	3
404	Nanofluidics at the crossroads. Journal of Chemical Physics, 2023, 158, .	1.2	11
405	Dipole alignment of water molecules flowing through a carbon nanotube. Physical Review B, 2023, 107, .	1.1	3

#	Article	IF	CITATIONS
406	Anomalous transport in angstrom-sized membranes with exceptional water flow rates and dye/salt rejections. Materials Today Nano, 2023, 22, 100328.	2.3	4
407	Entrance loss of capillary flow in narrow slit nanochannels. Physics of Fluids, 2023, 35, .	1.6	7
408	Cavities in multilayer homo- and heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 151, 115735.	1.3	1
409	Coupled Interactions at the Ionic Graphene-Water Interface. Physical Review Letters, 2023, 130, .	2.9	1
410	Multiscale simulations of nanofluidics: Recent progress and perspective. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	6.2	3
411	Water's motions in x-y and z directions of 2D nanochannels: Entirely different but tightly coupled. Nano Research, 2023, 16, 6298-6307.	5.8	6
412	Fluids and Electrolytes under Confinement in Single-Digit Nanopores. Chemical Reviews, 2023, 123, 2737-2831.	23.0	32
413	Interfacial friction at action: Interactions, regulation, and applications. Friction, 2023, 11, 2153-2180.	3.4	8
414	Disentangling 1/ <i>f</i> noise from confined ion dynamics. Faraday Discussions, 0, 246, 556-575.	1.6	2
415	Nanofluidic membrane for confined ion transport: From uniform to composite strategy. Materials Today, 2023, 65, 189-206.	8.3	3
416	Electrically Modulated Nanofiltration Membrane Based on an Arch-Bridged Graphene Structure for Multicomponent Molecular Separation. ACS Nano, 2023, 17, 6627-6637.	7.3	4
417	Beyond steric selectivity of ions using ångström-scale capillaries. Nature Nanotechnology, 2023, 18, 596-601.	15.6	10
418	Enhanced osmotic transport in individual double-walled carbon nanotube. Nature Communications, 2023, 14, .	5.8	12
444	Emerging Abnormal Phenomena in Confined Nanofluidics. Nanostructure Science and Technology, 2023, , 35-94.	0.1	О