Augmenting CRISPR applications in Drosophila with tR

Nature Methods 13, 852-854

DOI: 10.1038/nmeth.3972

Citation Report

#	Article	IF	CITATIONS
1	Rapid Evolution of Manifold CRISPR Systems for Plant Genome Editing. Frontiers in Plant Science, 2016, 7, 1683.	1.7	73
2	Empower multiplex cell and tissue-specific CRISPR-mediated gene manipulation with self-cleaving ribozymes and tRNA. Nucleic Acids Research, 2017, 45, gkw1048.	6.5	55
3	CRISPR/Cas9 in insects: Applications, best practices and biosafety concerns. Journal of Insect Physiology, 2017, 98, 245-257.	0.9	104
4	A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants, 2017, 3, 17018.	4.7	425
5	An integrated CRISPR Bombyx mori genome editing system with improved efficiency and expanded target sites. Insect Biochemistry and Molecular Biology, 2017, 83, 13-20.	1.2	34
6	Genome editing in Drosophila melanogaster: from basic genome engineering to the multipurpose CRISPR-Cas9 system. Science China Life Sciences, 2017, 60, 476-489.	2.3	12
7	Overcoming evolved resistance to population-suppressing homing-based gene drives. Scientific Reports, 2017, 7, 3776.	1.6	142
8	Accessing the Phenotype Gap: Enabling Systematic Investigation of Paralog Functional Complexity with CRISPR. Developmental Cell, 2017, 43, 6-9.	3.1	35
9	Dodging silver bullets: good CRISPR gene-drive design is critical for eradicating exotic vertebrates. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170799.	1.2	104
10	Optimized strategy for in vivo Cas9-activation in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9409-9414.	3.3	75
11	CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Nature Communications, 2017, 8, 2024.	5.8	232
12	Rescue of high-specificity Cas9 variants using sgRNAs with matched 5' nucleotides. Genome Biology, 2017, 18, 218.	3.8	73
13	Progress and Prospects of CRISPR/Cas Systems in Insects and Other Arthropods. Frontiers in Physiology, 2017, 8, 608.	1.3	126
14	Engineering the Drosophila Genome for Developmental Biology. Journal of Developmental Biology, 2017, 5, 16.	0.9	19
15	Gene Drive for Mosquito Control: Where Did It Come from and Where Are We Headed?. International Journal of Environmental Research and Public Health, 2017, 14, 1006.	1.2	80
16	Copper and Zinc Homeostasis: Lessons from Drosophila melanogaster. Frontiers in Genetics, 2017, 8, 223.	1.1	58
17	Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases. Genome Biology, 2017, 18, 191.	3.8	111
18	RNA Interference (RNAi) Screening in <i>Drosophila</i> . Genetics, 2018, 208, 853-874.	1.2	90

#	Article	IF	CITATIONS
19	Engineering Introns to Express RNA Guides for Cas9- and Cpf1-Mediated Multiplex Genome Editing. Molecular Plant, 2018, 11, 542-552.	3.9	81
20	Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems. Cellular and Molecular Life Sciences, 2018, 75, 3593-3607.	2.4	33
21	The multiplexed CRISPR targeting platforms. Drug Discovery Today: Technologies, 2018, 28, 53-61.	4.0	9
22	Identification of yellow gene family in Agrotis ipsilon and functional analysis of Aiyellow-y by CRISPR/Cas9. Insect Biochemistry and Molecular Biology, 2018, 94, 1-9.	1.2	40
23	Advances in Engineering the Fly Genome with the CRISPR-Cas System. Genetics, 2018, 208, 1-18.	1.2	154
24	(Po)STAC (Polycistronic SunTAg modified CRISPR) enables live-cell and fixed-cell super-resolution imaging of multiple genes. Nucleic Acids Research, 2018, 46, e30-e30.	6.5	36
25	Enhanced Genome Editing Tools For Multiâ€Gene Deletion Knockâ€Out Approaches Using Paired CRISPR sgRNAs in CHO Cells. Biotechnology Journal, 2018, 13, e1700211.	1.8	34
26	Multiplexed sgRNA Expression Allows Versatile Single Nonrepetitive DNA Labeling and Endogenous Gene Regulation. ACS Synthetic Biology, 2018, 7, 176-186.	1.9	33
27	CRISPR/Cpf1 enables fast and simple genome editing of <scp><i>Saccharomyces cerevisiae</i></scp> . Yeast, 2018, 35, 201-211.	0.8	100
28	Class 2 CRISPR/Cas: an expanding biotechnology toolbox for and beyond genome editing. Cell and Bioscience, 2018, 8, 59.	2.1	66
29	Improvement of the CRISPR-Cpf1 system with ribozyme-processed crRNA. RNA Biology, 2018, 15, 1458-1467.	1.5	29
30	A Customizable Protocol for String Assembly gRNA Cloning (STAgR). Journal of Visualized Experiments, 2018, , .	0.2	1
31	A <i>Drosophila </i> CRISPR/Cas9 Toolkit for Conditionally Manipulating Gene Expression in the Prothoracic Gland as a Test Case for Polytene Tissues. G3: Genes, Genomes, Genetics, 2018, 8, 3593-3605.	0.8	19
32	Combining Developmental and Perturbation-Seq Uncovers Transcriptional Modules Orchestrating Neuronal Remodeling. Developmental Cell, 2018, 47, 38-52.e6.	3.1	56
33	An Efficient Strategy for Generating Tissue-specific Binary Transcription Systems in & lt;em>Drosophila by Genome Editing. Journal of Visualized Experiments, 2018, , .	0.2	5
34	In vivo epigenome editing and transcriptional modulation using CRISPR technology. Transgenic Research, 2018, 27, 489-509.	1.3	26
35	Rationally-engineered reproductive barriers using CRISPR & Drosophila melanogaster. Scientific Reports, 2018, 8, 13125.	1.6	15
36	An expression atlas of variant ionotropic glutamate receptors identifies a molecular basis of carbonation sensing. Nature Communications, 2018, 9, 4252.	5.8	116

#	ARTICLE	IF	CITATIONS
37	A Multiplex Genome Editing Method for Escherichia coli Based on CRISPR-Cas12a. Frontiers in Microbiology, 2018, 9, 2307.	1.5	52
38	Behavior of homing endonuclease gene drives targeting genes required for viability or female fertility with multiplexed guide RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9343-E9352.	3.3	96
39	A tRNA-based multiplex sgRNA expression system in zebrafish and its application to generation of transgenic albino fish. Scientific Reports, 2018, 8, 13366.	1.6	26
40	Cas9 versus Cas12a/Cpf1: Structure–function comparisons and implications for genome editing. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1481.	3.2	164
41	Optimized CRISPR-Cpf1 system for genome editing in zebrafish. Methods, 2018, 150, 11-18.	1.9	38
42	Humanized Flies and Resources for Cross-Species Study. Advances in Experimental Medicine and Biology, 2018, 1076, 277-288.	0.8	10
43	Drosophila Models for Human Diseases. Advances in Experimental Medicine and Biology, 2018, , .	0.8	13
44	Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiological Reviews, 2018, 98, 1205-1240.	13.1	31
45	One step generation of customizable gRNA vectors for multiplex CRISPR approaches through string assembly gRNA cloning (STAgR). PLoS ONE, 2018, 13, e0196015.	1.1	27
46	CRISPR-Based Perturbation of Gene Function in Drosophila Cells. , 2018, , 193-206.		0
47	Genetic editing and interrogation with Cpf1 and caged truncated pre-tRNA-like crRNA in mammalian cells. Cell Discovery, 2018, 4, 36.	3.1	13
48	Impact of Drosophila Models in the Study and Treatment of Friedreich's Ataxia. International Journal of Molecular Sciences, 2018, 19, 1989.	1.8	16
49	Reducing resistance allele formation in CRISPR gene drive. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5522-5527.	3.3	233
50	Sex Differences in Intestinal Carbohydrate Metabolism Promote Food Intake and Sperm Maturation. Cell, 2019, 178, 901-918.e16.	13.5	101
51	Unlimited Genetic Switches for Cell-Type-Specific Manipulation. Neuron, 2019, 104, 227-238.e7.	3.8	29
52	CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective. Applied Microbiology and Biotechnology, 2019, 103, 6919-6932.	1.7	102
53	A Secreted Ig-Domain Protein Required in Both Astrocytes and Neurons for Regulation of Drosophila Night Sleep. Current Biology, 2019, 29, 2547-2554.e2.	1.8	16
54	A CRISPR /LbCas12aâ€based method for highly efficient multiplex gene editing in Physcomitrella patens. Plant Journal, 2019, 100, 863-872.	2.8	14

#	Article	IF	CITATIONS
55	Engineering nucleic acid chemistry for precise and controllable CRISPR/Cas9 genome editing. Science Bulletin, 2019, 64, 1841-1849.	4.3	15
56	Cutting back malaria: CRISPR/Cas9 genome editing of Plasmodium. Briefings in Functional Genomics, 2019, 18, 281-289.	1.3	38
57	A one-step tRNA-CRISPR system for genome-wide genetic interaction mapping in mammalian cells. Scientific Reports, 2019, 9, 14499.	1.6	7
58	KRAS regulation by small non-coding RNAs and SNARE proteins. Nature Communications, 2019, 10, 5118.	5.8	17
59	Yorkie and JNK revert syncytial muscles into myoblasts during Org-1–dependent lineage reprogramming. Journal of Cell Biology, 2019, 218, 3572-3582.	2.3	11
60	Light-Mediated Circuit Switching in the Drosophila Neuronal Clock Network. Current Biology, 2019, 29, 3266-3276.e3.	1.8	36
61	Synergistic effects of common schizophrenia risk variants. Nature Genetics, 2019, 51, 1475-1485.	9.4	184
62	Edit at will: Genotype independent plant transformation in the era of advanced genomics and genome editing. Plant Science, 2019, 281, 186-205.	1.7	57
63	Tissue-specific (ts)CRISPR as an efficient strategy for in vivo screening in Drosophila. Nature Communications, 2019, 10, 2113.	5.8	84
64	CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell and Bioscience, 2019, 9, 36.	2.1	124
65	CRISPR Gene Drive Efficiency and Resistance Rate Is Highly Heritable with No Common Genetic Loci of Large Effect. Genetics, 2019, 212, 333-341.	1.2	49
66	A fat-tissue sensor couples growth to oxygen availability by remotely controlling insulin secretion. Nature Communications, 2019, 10, 1955.	5.8	46
67	<scp>CRISPR</scp> â€LbCas12aâ€mediated modification of citrus. Plant Biotechnology Journal, 2019, 17, 1928-1937.	4.1	134
68	Enhanced Cas12a editing in mammalian cells and zebrafish. Nucleic Acids Research, 2019, 47, 4169-4180.	6.5	85
69	A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nature Communications, 2019, 10, 1053.	5.8	164
70	Decoupling tRNA promoter and processing activities enables specific Pol-II Cas9 guide RNA expression. Nature Communications, 2019, 10, 1490.	5.8	31
71	Daisy-chain gene drives for the alteration of local populations. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8275-8282.	3.3	154
72	Knockout rat models mimicking human atherosclerosis created by Cpf1-mediated gene targeting. Scientific Reports, 2019, 9, 2628.	1.6	39

#	ARTICLE	IF	Citations
73	The Drosophila fussel gene is required for bitter gustatory neuron differentiation acting within an Rpd3 dependent chromatin modifying complex. PLoS Genetics, 2019, 15, e1007940.	1.5	8
74	Robust Wnt signaling is maintained by a Wg protein gradient and Fz2 receptor activity in the developing <i>Drosophila</i> wing. Development (Cambridge), 2019, 146, .	1.2	51
75	Glycogen branching enzyme controls cellular iron homeostasis via Iron Regulatory Protein 1 and mitoNEET. Nature Communications, 2019, 10, 5463.	5.8	34
76	Improvement and use of CRISPR/Cas9 to engineer a sperm-marking strain for the invasive fruit pest Drosophila suzukii. BMC Biotechnology, 2019, 19, 85.	1.7	23
77	Single transcript unit <scp>CRISPR</scp> 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. Plant Biotechnology Journal, 2019, 17, 1431-1445.	4.1	120
78	Efficient somatic and germline genome engineering of <scp><i>Bactrocera dorsalis</i></scp> by the CRISPR/Cas9 system. Pest Management Science, 2019, 75, 1921-1932.	1.7	23
79	Plant Genome Editing with CRISPR Systems. Methods in Molecular Biology, 2019, , .	0.4	12
80	Recent Advances in CRISPR/Cas9-Mediated Genome Editing in Dictyostelium. Cells, 2019, 8, 46.	1.8	12
81	A Multiplexed CRISPR/Cas9 Editing System Based on the Endogenous tRNA Processing. Methods in Molecular Biology, 2019, 1917, 63-73.	0.4	7
82	Robust CRISPR/Cas9-Mediated Tissue-Specific Mutagenesis Reveals Gene Redundancy and Perdurance in <i>Drosophila</i> . Genetics, 2019, 211, 459-472.	1.2	50
83	5S rRNA Promoter for Guide RNA Expression Enabled Highly Efficient CRISPR/Cas9 Genome Editing in <i>Aspergillus niger</i> . ACS Synthetic Biology, 2019, 8, 1568-1574.	1.9	96
84	Identification of CR43467 encoding a long non-coding RNA as a novel genetic interactant with dFIG4, a CMT-causing gene. Experimental Cell Research, 2020, 386, 111711.	1.2	7
85	A glance at genome editing with CRISPR–Cas9 technology. Current Genetics, 2020, 66, 447-462.	0.8	57
86	Gene Knock-Ins in <i>Drosophila</i> Using Homology-Independent Insertion of Universal Donor Plasmids. Genetics, 2020, 214, 75-89.	1.2	31
87	Host-Informed Expression of CRISPR Guide RNA for Genomic Engineering in <i>Komagataella phaffii</i> ACS Synthetic Biology, 2020, 9, 26-35.	1.9	40
88	ELAV and FNE Determine Neuronal Transcript Signatures through EXon-Activated Rescue. Molecular Cell, 2020, 80, 156-163.e6.	4.5	29
89	No Evidence that Wnt Ligands Are Required for Planar Cell Polarity in Drosophila. Cell Reports, 2020, 32, 108121.	2.9	42
90	A pipeline for precise and efficient genome editing by sgRNA-Cas9 RNPs in <i>Drosophila</i> . Fly, 2020, 14, 34-48.	0.9	6

#	Article	IF	CITATIONS
91	A versatile toolkit for CRISPR-Cas13-based RNA manipulation in Drosophila. Genome Biology, 2020, 21, 279.	3.8	59
92	CRISPR/Cas9 Genome Editing Technology: A Valuable Tool for Understanding Plant Cell Wall Biosynthesis and Function. Frontiers in Plant Science, 2020, 11, 589517.	1.7	24
93	Frizzled-Dependent Planar Cell Polarity without Secreted Wnt Ligands. Developmental Cell, 2020, 54, 583-592.e5.	3.1	43
94	Two CRISPR/Cas9 Systems Developed in Thermomyces dupontii and Characterization of Key Gene Functions in Thermolide Biosynthesis and Fungal Adaptation. Applied and Environmental Microbiology, 2020, 86, .	1.4	6
95	Development of multiplex genome editing toolkits for citrus with high efficacy in biallelic and homozygous mutations. Plant Molecular Biology, 2020, 104, 297-307.	2.0	51
96	Expanding the horizons of genome editing in the fruit fly with Cas12a. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24019-24021.	3.3	0
97	CRISPR-based engineering of gene knockout cells by homology-directed insertion in polyploid Drosophila S2R+ cells. Nature Protocols, 2020, 15, 3478-3498.	5 . 5	5
98	Noncanonical Roles of tRNAs: tRNA Fragments and Beyond. Annual Review of Genetics, 2020, 54, 47-69.	3.2	126
99	Multiplexed conditional genome editing with Cas12a in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22890-22899.	3 . 3	42
100	A CRISPR homing gene drive targeting a haplolethal gene removes resistance alleles and successfully spreads through a cage population. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24377-24383.	3.3	91
101	Development and Application of CRISPR/Cas in Microbial Biotechnology. Frontiers in Bioengineering and Biotechnology, 2020, 8, 711.	2.0	37
102	Multiplex genome editing in Ashbya gossypii using CRISPR-Cpf1. New Biotechnology, 2020, 57, 29-33.	2.4	19
103	Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs. Science Advances, 2020, 6, eaaz0525.	4.7	79
104	Genome engineering in insects: focus on the CRISPR/Cas9 system. , 2020, , 219-249.		11
105	Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nature Communications, 2020, 11, 1281.	5.8	279
106	Muscle development : a view from adult myogenesis in Drosophila. Seminars in Cell and Developmental Biology, 2020, 104, 39-50.	2.3	22
107	A fly model establishes distinct mechanisms for synthetic CRISPR/Cas9 sex distorters. PLoS Genetics, 2020, 16, e1008647.	1.5	45
108	Expanding the CRISPR Toolbox in Culicine Mosquitoes: <i>In Vitro</i> Validation of Pol III Promoters. ACS Synthetic Biology, 2020, 9, 678-681.	1.9	24

#	Article	IF	Citations
109	Olfactory receptor and circuit evolution promote host specialization. Nature, 2020, 579, 402-408.	13.7	131
110	Ecdysone-dependent feedback regulation of prothoracicotropic hormone times developmental maturation. Development (Cambridge), 2020, 147, .	1.2	16
111	Targeted gene disruption by CRISPR/xCas9 system in Drosophila melanogaster. Archives of Insect Biochemistry and Physiology, 2020, 104, e21662.	0.6	6
112	Hedgehog Signaling Modulates Glial Proteostasis and Lifespan. Cell Reports, 2020, 30, 2627-2643.e5.	2.9	29
113	A toxin-antidote CRISPR gene drive system for regional population modification. Nature Communications, 2020, 11, 1082.	5.8	100
114	Spatial and temporal control of gene manipulation in Drosophila via drug-activated Cas9 nucleases. Insect Biochemistry and Molecular Biology, 2020, 120, 103336.	1.2	10
115	Efficient expression of multiple guide RNAs for CRISPR/Cas genome editing. ABIOTECH, 2020, 1, 123-134.	1.8	17
116	One-Day Construction of Multiplex Arrays to Harness Natural CRISPR-Cas Systems. ACS Synthetic Biology, 2020, 9, 1129-1137.	1.9	9
117	JNK-dependent intestinal barrier failure disrupts host–microbe homeostasis during tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9401-9412.	3.3	47
118	Large-Scale Transgenic <i>Drosophila</i> Resource Collections for Loss- and Gain-of-Function Studies. Genetics, 2020, 214, 755-767.	1.2	81
119	Circadian regulation of mitochondrial uncoupling and lifespan. Nature Communications, 2020, 11, 1927.	5.8	53
120	Identification of Genes Contributing to a Long Circadian Period in <i>Drosophila Melanogaster</i> Journal of Biological Rhythms, 2021, 36, 239-253.	1.4	11
121	Development of insect cell line using CRISPR technology. Progress in Molecular Biology and Translational Science, 2021, 180, 1-20.	0.9	3
122	Internal state configures olfactory behavior and early sensory processing in <i>Drosophila</i> larvae. Science Advances, 2021, 7, .	4.7	51
123	Efficient multiplexed genome engineering with a polycistronic tRNA and CRISPR guide-RNA reveals an important role of detonator in reproduction of Drosophila melanogaster. PLoS ONE, 2021, 16, e0245454.	1.1	7
124	Mapping Genetic Interactions in Human Cancer Cells Using a One-Step tRNA-CRISPR System. Methods in Molecular Biology, 2021, 2381, 175-187.	0.4	1
125	Ecd promotes U5 snRNP maturation and Prp8 stability. Nucleic Acids Research, 2021, 49, 1688-1707.	6.5	10
126	Using CRISPR-Cas9-based genome engineering tools in Drosophila melanogaster. Progress in Molecular Biology and Translational Science, 2021, 180, 85-121.	0.9	1

#	ARTICLE	IF	CITATIONS
127	The Versatile Type V CRISPR Effectors and Their Application Prospects. Frontiers in Cell and Developmental Biology, 2020, 8, 622103.	1.8	16
128	Upgraded CRISPR/Cas9 tools for tissue-specific mutagenesis in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
129	Efficient genome editing in wheat using Cas9 and Cpf1 (AsCpf1 and LbCpf1) nucleases. Functional and Integrative Genomics, 2021, 21, 355-366.	1.4	19
131	<i>Drosophila</i> Fezf functions as a transcriptional repressor to direct layer-specific synaptic connectivity in the fly visual system. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
132	A robust and flexible CRISPR/Cas9-based system for neutrophil-specific gene inactivation in zebrafish. Journal of Cell Science, 2021, 134, .	1.2	8
133	A novel nonâ€invasive identification of genome editing mutants from insect exuviae. Insect Science, 2022, 29, 21-32.	1.5	2
134	Chemical Modification and Transformation Strategies of Guide RNAs in CRISPR as9 Gene Editing Systems. ChemPlusChem, 2021, 86, 587-600.	1.3	5
135	Transneuronal Dpr12/DIPâ€Î′ interactions facilitate compartmentalized dopaminergic innervation of <i>Drosophila</i> mushroom body axons. EMBO Journal, 2021, 40, e105763.	3.5	15
136	<i>Drosophila</i> USP22/nonstop polarizes the actin cytoskeleton during collective border cell migration. Journal of Cell Biology, 2021, 220, .	2.3	6
137	A cross-species approach for the identification of Drosophila male sterility genes. G3: Genes, Genomes, Genetics, 2021, 11 , .	0.8	2
138	Hox dosage contributes to flight appendage morphology in Drosophila. Nature Communications, 2021, 12, 2892.	5.8	30
139	A Review: Computational Approaches to Design sgRNA of CRISPR-Cas9. Current Bioinformatics, 2022, 17, 2-18.	0.7	3
140	Engineered reproductively isolated species drive reversible population replacement. Nature Communications, 2021, 12, 3281.	5.8	21
141	One-step CRISPR-Cas9 protocol for the generation of plug & play conditional knockouts in Drosophila melanogaster. STAR Protocols, 2021, 2, 100560.	0.5	1
142	The Phylogenetic Roots of Addiction: Compulsive Drug Seeking, Natural and Drug-Sensitive Reward, and the Acquisition of Learned Habits. Brain, Behavior and Evolution, 2020, 95, 1-5.	0.9	0
143	The steroid-hormone ecdysone coordinates parallel pupariation neuromotor and morphogenetic subprograms via epidermis-to-neuron Dilp8-Lgr3 signal induction. Nature Communications, 2021, 12, 3328.	5.8	7
144	CRISPR–Act3.0 for highly efficient multiplexed gene activation in plants. Nature Plants, 2021, 7, 942-953.	4.7	99
145	Get ready for the CRISPR/Cas system: A beginner's guide to the engineering and design of guide RNAs. Journal of Gene Medicine, 2021, 23, e3377.	1.4	3

#	ARTICLE	IF	CITATIONS
147	The tracrRNA in CRISPR Biology and Technologies. Annual Review of Genetics, 2021, 55, 161-181.	3.2	27
148	Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states. Cancer Cell, 2021, 39, 1150-1162.e9.	7.7	160
149	Regulatory regions in natural transposable element insertions drive interindividual differences in response to immune challenges in Drosophila. Genome Biology, 2021, 22, 265.	3.8	22
153	Central and Peripheral Clock Control of Circadian Feeding Rhythms. Journal of Biological Rhythms, 2021, 36, 548-566.	1.4	12
154	Genomic knockout of hsp23 both decreases and increases fitness under opposing thermal extremes in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 2021, 139, 103652.	1.2	4
155	Conditional gene expression in invertebrate animal models. Journal of Genetics and Genomics, 2021, 48, 14-31.	1.7	8
156	The <i>Drosophila Neprilysin 4</i> gene is essential for sperm function following sperm transfer to females. Genes and Genetic Systems, 2021, 96, 177-186.	0.2	3
157	The Hox Transcription Factor Ubx Ensures Somatic Myogenesis by Suppressing the Mesodermal Master Regulator Twist. Cell Reports, 2021, 34, 108577.	2.9	8
158	Temporal progression of Drosophila medulla neuroblasts generates the transcription factor combination to control T1 neuron morphogenesis. Developmental Biology, 2020, 464, 35-44.	0.9	19
159	Precise genome engineering in $\langle i \rangle$ Drosophila $\langle i \rangle$ using prime editing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	65
160	Katanin p60-like 1 sculpts the cytoskeleton in mechanosensory cilia. Journal of Cell Biology, 2021, 220, .	2.3	9
161	Identification of <i>FoxP</i> circuits involved in locomotion and object fixation in <i>Drosophila</i> Open Biology, 2020, 10, 200295.	1.5	5
190	CRISPR/Cas9 knockout of female-biased genes AeAct-4 or myo-fem in Ae. aegypti results in a flightless phenotype in female, but not male mosquitoes. PLoS Neglected Tropical Diseases, 2020, 14, e0008971.	1.3	19
191	CRISPR-induced double-strand breaks trigger recombination between homologous chromosome arms. Life Science Alliance, 2019, 2, e201800267.	1.3	48
192	The Hox transcription factor Ubx stabilizes lineage commitment by suppressing cellular plasticity in Drosophila. ELife, 2019, 8 , .	2.8	22
193	Thermosensitive alternative splicing senses and mediates temperature adaptation in Drosophila. ELife, $2019, 8, .$	2.8	53
194	Neuron-specific knockouts indicate the importance of network communication to Drosophila rhythmicity. ELife, 2019, 8, .	2.8	48
195	Dissection of central clock function in Drosophila through cell-specific CRISPR-mediated clock gene disruption. ELife, 2019, 8, .	2.8	45

#	Article	IF	CITATIONS
196	A large-scale resource for tissue-specific CRISPR mutagenesis in Drosophila. ELife, 2020, 9, .	2.8	115
197	Expansion of CRISPR Targeting Sites Using an Integrated Gene-Editing System in Apis mellifera. Insects, 2021, 12, 954.	1.0	2
198	Bivalent individualization during chromosome territory formation in Drosophila spermatocytes by controlled condensin II protein activity and additional force generators. PLoS Genetics, 2021, 17, e1009870.	1.5	7
199	Cas9-mediated genome editing reveals a significant contribution of calcium signaling pathways to anhydrobiosis in Pv11 cells. Scientific Reports, 2021, 11, 19698.	1.6	5
220	The decoy SNARE Tomosyn sets tonic versus phasic release properties and is required for homeostatic synaptic plasticity. ELife, 2021, 10, .	2.8	18
222	Drosophila Models to Study Long Noncoding RNAs Related to Neurological Disorders. RNA Technologies, 2020, , 405-430.	0.2	0
228	Design and Evaluation of Guide RNA Transcripts with a 3′-Terminal HDV Ribozyme to Enhance CRISPR-Based Gene Inactivation. Methods in Molecular Biology, 2021, 2167, 205-224.	0.4	1
230	Drosophila balancer reengineering using polycistronic gRNA for CRISPR/Cas9 gene editing. MicroPublication Biology, 2018, 2018, .	0.1	0
231	Conditional CRISPR-Cas Genome Editing in Drosophila to Generate Intestinal Tumors. Cells, 2021, 10, 3156.	1.8	4
232	AMPK adapts metabolism to developmental energy requirement during dendrite pruning in Drosophila. Cell Reports, 2021, 37, 110024.	2.9	12
233	CRISPR-Cas9 effectors facilitate generation of single-sex litters and sex-specific phenotypes. Nature Communications, 2021, 12, 6926.	5.8	15
234	Reengineering of the CRISPR/Cas System. , 2022, , 149-186.		0
235	Ecdysteroid kinase-like (EcKL) paralogs confer developmental tolerance to caffeine in Drosophila melanogaster. Current Research in Insect Science, 2022, 2, 100030.	0.8	4
236	Twist regulates Yorkie activity to guide lineage reprogramming of syncytial alary muscles. Cell Reports, 2022, 38, 110295.	2.9	4
237	Microvilli-derived extracellular vesicles carry Hedgehog morphogenic signals for Drosophila wing imaginal disc development. Current Biology, 2022, 32, 361-373.e6.	1.8	14
238	The role of the epidermis enhancer element in positive and negative transcriptional regulation of <i>ebony</i> in <i>Drosophila melanogaster</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	4
240	Efficient gene editing in a medaka (Oryzias latipes) cell line and embryos by SpCas9/tRNA-gRNA. Journal of Zhejiang University: Science B, 2022, 23, 74-83.	1.3	2
242	The gut hormone Allatostatin C/Somatostatin regulates food intake and metabolic homeostasis under nutrient stress. Nature Communications, 2022, 13, 692.	5.8	26

#	Article	IF	CITATIONS
245	Liver X receptor-agonist treatment rescues degeneration in a Drosophila model of hereditary spastic paraplegia. Acta Neuropathologica Communications, 2022, 10, 40.	2.4	3
246	The Blimp-1 transcription factor acts in non-neuronal cells to regulate terminal differentiation of the <i>Drosophila</i> eye. Development (Cambridge), 2022, 149, .	1.2	5
247	The role of lysine palmitoylation/myristoylation in the function of the TEAD transcription factors. Scientific Reports, 2022, 12, 4984.	1.6	8
248	The opposing chloride cotransporters KCC and NKCC control locomotor activity in constant light and during long days. Current Biology, 2022, 32, 1420-1428.e4.	1.8	7
249	The MicroRNA miR-277 Controls Physiology and Pathology of the Adult Drosophila Midgut by Regulating the Expression of Fatty Acid β-Oxidation-Related Genes in Intestinal Stem Cells. Metabolites, 2022, 12, 315.	1.3	5
250	The Challenges in Developing Efficient and Robust Synthetic Homing Endonuclease Gene Drives. Frontiers in Bioengineering and Biotechnology, 2022, 10, 856981.	2.0	11
252	Microbial iron cycling during palsa hillslope collapse promotes greenhouse gas emissions before complete permafrost thaw. Communications Earth & Environment, 2022, 3, .	2.6	11
253	Exploiting a Y chromosome-linked Cas9 for sex selection and gene drive. Nature Communications, 2021, 12, 7202.	5 . 8	9
256	State-of-the-art CRISPR for in vivo and cell-based studies in Drosophila. Trends in Genetics, 2022, 38, 437-453.	2.9	26
257	Dorsal clock networks drive temperature preference rhythms in Drosophila. Cell Reports, 2022, 39, 110668.	2.9	10
261	Dual nicotinic acetylcholine receptor subunit gene knockouts reveal limits to functional redundancy. Pesticide Biochemistry and Physiology, 2022, 184, 105118.	1.6	6
264	Sites of Transcription Initiation Drive mRNA Isoform Selection. SSRN Electronic Journal, 0, , .	0.4	0
265	An expanded toolkit for Drosophila gene tagging using synthesized homology donor constructs for CRISPR-mediated homologous recombination. ELife, 0, 11 , .	2.8	25
267	Damage-responsive neuro-glial clusters coordinate the recruitment of dormant neural stem cells in Drosophila. Developmental Cell, 2022, 57, 1661-1675.e7.	3.1	9
268	Optimization of Nuclear Localization Signal Composition Improves CRISPR-Cas12a Editing Rates in Human Primary Cells., 2022, 1, 271-284.		5
269	Divergent expression of paralogous genes by modification of shared enhancer activity through a promoter-proximal silencer. Current Biology, 2022, 32, 3545-3555.e4.	1.8	12
271	Broadening prime editing toolkits using RNA-Pol-II-driven engineered pegRNA. Molecular Therapy, 2022, 30, 2923-2932.	3.7	11
273	Copy number changes in co-expressed odorant receptor genes enable selection for sensory differences in drosophilid species. Nature Ecology and Evolution, 2022, 6, 1343-1353.	3.4	9

#	Article	IF	CITATIONS
274	HAP40 is a conserved central regulator of Huntingtin and a potential modulator of Huntington's disease pathogenesis. PLoS Genetics, 2022, 18, e1010302.	1.5	5
275	Mosquito Population Modification for Malaria Control. , 0, , .		0
276	Development of multiple transgenic CRISPR/Cas9 methods for genome editing in the fall armyworm, Spodoptera frugiperda. Journal of Pest Science, 2023, 96, 1637-1650.	1.9	5
277	Current and Prospective Applications of CRISPR-Cas12a in Pluricellular Organisms. Molecular Biotechnology, 2023, 65, 196-205.	1.3	5
279	PARA: A New Platform for the Rapid Assembly of gRNA Arrays for Multiplexed CRISPR Technologies. Cells, 2022, 11, 2467.	1.8	7
280	Dopamine and GPCR-mediated modulation of DN1 clock neurons gates the circadian timing of sleep. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
281	Tissue-Specific CRISPR-Cas9 Screening in Drosophila. Methods in Molecular Biology, 2022, , 157-176.	0.4	4
282	Prime Editing for Precise Genome Engineering in Drosophila. Methods in Molecular Biology, 2022, , 113-134.	0.4	1
283	A Notch-dependent transcriptional mechanism controls expression of temporal patterning factors in Drosophila medulla. ELife, $0,11,.$	2.8	5
284	What have we learned about sleep from selective breeding strategies?. Sleep, 2022, 45, .	0.6	2
286	Pheromone sensing in Drosophila requires support cell-expressed Osiris 8. BMC Biology, 2022, 20, .	1.7	8
287	The fly homolog of <i>SUPT16H </i> , a gene associated with neurodevelopmental disorders, is required in a cell-autonomous fashion for cell survival. Human Molecular Genetics, 2023, 32, 984-997.	1.4	6
288	Driving down malaria transmission with engineered gene drives. Frontiers in Genetics, 0, 13, .	1.1	3
290	A critical developmental window for ELAV/Hu-dependent mRNA signatures at the onset of neuronal differentiation. Cell Reports, 2022, 41, 111542.	2.9	2
291	Shadow enhancers modulate distinct transcriptional parameters that differentially effect downstream patterning events. Development (Cambridge), 2022, 149, .	1.2	1
292	<i>Drosophila melanogaster</i> i>as a Model for Gene Drive Systems. , 2022, , 200-223.		0
293	Establishment and application of a silkworm CRISPR/Cas9 tool for conditionally manipulating gene disruption in the epidermis. Insect Biochemistry and Molecular Biology, 2022, 151, 103861.	1.2	0
294	Resistance to genetic control., 2023, , 299-327.		0

#	Article	IF	CITATIONS
295	Highly efficient multiplex base editing: One-shot deactivation of eight genes in Shewanella oneidensis MR-1. Synthetic and Systems Biotechnology, 2023, 8, 1-10.	1.8	3
298	CRISPR/Cas9 for Insect Pests Management: A Comprehensive Review of Advances and Applications. Agriculture (Switzerland), 2022, 12, 1896.	1.4	14
300	Multiplexing with CRISPR-Cas Arrays., 2022,,.		0
301	Paralog Explorer: A resource for mining information about paralogs in common research organisms. Computational and Structural Biotechnology Journal, 2022, 20, 6570-6577.	1.9	7
303	Chapter 29: Perspectives on the genetic manipulation of mosquitoes: advancements in studying sensory biology in vector insects. , 2022, , 743-771.		1
306	The NAD+ precursor NMN activates dSarm to trigger axon degeneration in Drosophila. ELife, 0, 11, .	2.8	10
307	CRISPR-Cas Genome Editing for Insect Pest Stress Management in Crop Plants. Stresses, 2022, 2, 493-514.	1.8	9
308	Applications of CRISPR/Cas genome editing in economically important fruit crops: recent advances and future directions. Molecular Horticulture, 2023, 3, .	2.3	5
309	The Interplay Between Developmental Stage and Environment Underlies the Adaptive Effect of a Natural Transposable Element Insertion. Molecular Biology and Evolution, 2023, 40, .	3.5	4
310	The role of Evi/Wntless in exporting Wnt proteins. Development (Cambridge), 2023, 150, .	1.2	1
314	Multiplexed genome engineering for porcine fetal fibroblasts with gRNA–tRNA arrays based on CRISPR/Cas9. Animal Biotechnology, 2023, 34, 4703-4712.	0.7	0
316	Heterodimerization-dependent secretion of bone morphogenetic proteins in Drosophila. Developmental Cell, 2023, 58, 645-659.e4.	3.1	8
317	Screening of Drosophila microRNA-degradation sequences reveals Argonaute1 mRNA's role in regulating miR-999. Nature Communications, 2023, 14, .	5.8	11
318	Expression of retrotransposons contributes to aging in <i>Drosophila</i> . Genetics, 2023, 224, .	1.2	3
369	CRISPR-Based Genetic Control Strategies for Insect Pests to Mitigate Classical Insecticidal Approaches. , 2024, , 667-707.		0
370	Multiplex genome editing in plants through CRISPR-Cas. , 2024, , 127-142.		О