Health impacts from cyanobacteria harmful algae bloor American Great Lakes

Harmful Algae 54, 194-212 DOI: 10.1016/j.hal.2016.02.002

Citation Report

#	Article	IF	CITATIONS
1	The re-eutrophication of Lake Erie: Harmful algal blooms and hypoxia. Harmful Algae, 2016, 56, 44-66.	4.8	389
2	Preface for Special Issue on "Global expansion of harmful cyanobacterial blooms: Diversity, ecology, causes, and controls― Harmful Algae, 2016, 54, 1-3.	4.8	20
3	Oxidative stress responses in the animal model, Daphnia pulex exposed to a natural bloom extract versus artificial cyanotoxin mixtures. Aquatic Toxicology, 2016, 179, 151-157.	4.0	23
4	An alternative explanation for cyanobacterial scum formation and persistence by oxygenic photosynthesis. Harmful Algae, 2016, 60, 27-35.	4.8	29
5	A Bacillus sp. strain with antagonistic activity against Fusarium graminearum kills Microcystis aeruginosa selectively. Science of the Total Environment, 2017, 583, 214-221.	8.0	41
6	Cyanobacterial Toxins in Freshwater and Food: Important Sources of Exposure to Humans. Annual Review of Food Science and Technology, 2017, 8, 281-304.	9.9	81
7	Algal bloom response and risk management: On-site response tools. Toxicon, 2017, 129, 144-152.	1.6	23
8	Spatial and temporal variations reveal the response of zooplankton to cyanobacteria. Harmful Algae, 2017, 64, 63-73.	4.8	21
9	Critical assessment of chitosan as coagulant to remove cyanobacteria. Harmful Algae, 2017, 66, 1-12.	4.8	24
10	Lettuce facing microcystins-rich irrigation water at different developmental stages: Effects on plant performance and microcystins bioaccumulation. Ecotoxicology and Environmental Safety, 2017, 143, 193-200.	6.0	28
11	Associations between county-level land cover classes and cyanobacteria blooms in the United States. Ecological Engineering, 2017, 108, 556-563.	3.6	24
12	Microcystin in Lake Erie fish: Risk to human health and relationship to cyanobacterial blooms. Journal of Great Lakes Research, 2017, 43, 1084-1090.	1.9	23
13	Biometric and physiological responses of Egeria densa Planch. cultivated with toxic and non-toxic strains of Microcystis. Aquatic Toxicology, 2017, 191, 201-208.	4.0	24
14	Green Applications of Carbon Nanostructures produced by Plasma Techniques. MRS Advances, 2017, 2, 2647-2659.	0.9	10
15	SWEET CubeSat – Water detection and water quality monitoring for the 21st century. Acta Astronautica, 2017, 140, 10-17.	3.2	12
16	Ten-year survey of cyanobacterial blooms in Ohio's waterbodies using satellite remote sensing. Harmful Algae, 2017, 66, 13-19.	4.8	30
17	A high throughput targeted and non-targeted method for the analysis of microcystins and anatoxin-A using on-line solid phase extraction coupled to liquid chromatography–quadrupole time-of-flight high resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 2017, 409, 4959-4969.	3.7	53
18	Management of toxic cyanobacteria for drinking water production of Ain Zada Dam. Environmental Monitoring and Assessment, 2017, 189, 361.	2.7	12

λτιών Ρερώ

#	Article	IF	CITATIONS
19	Tracking cyanobacteria blooms: Do different monitoring approaches tell the same story?. Science of the Total Environment, 2017, 575, 294-308.	8.0	51
20	Cyanobacterial bloom significantly boosts hypolimnelic anammox bacterial abundance in a subtropical stratified reservoir. FEMS Microbiology Ecology, 2017, 93, .	2.7	25
21	Machine learning approaches for cyanobacteria bloom prediction using metagenomic sequence data, a case study. , 2017, , .		0
22	Interspecific Relationship and Ecological Requirements of Two Potentially Harmful Cyanobacteria in a Deep South-Alpine Lake (L. Iseo, I). Water (Switzerland), 2017, 9, 993.	2.7	4
23	Impact of Land Use Activities in the Maumee River Watershed on Harmful Algal Blooms in Lake Erie. Case Studies in the Environment, 2017, 1, 1-8.	0.7	7
24	Are cyanobacteria total, specific and trait abundance regulated by the same environmental variables?. Annales De Limnologie, 2018, 54, 3.	0.6	7
25	InÂvivo assessment of the hepatotoxicity of a new Nostoc isolate from the Nile River: Nostoc sp. strain NRI. Toxicon, 2018, 143, 81-89.	1.6	1
26	Exposure to a cyanobacterial toxin increases larval amphibian susceptibility to parasitism. Parasitology Research, 2018, 117, 513-520.	1.6	6
27	Allelopathic effect of the rice straw aqueous extract on the growth of Microcystis aeruginosa. Ecotoxicology and Environmental Safety, 2018, 148, 953-959.	6.0	58
28	Immunomodulatory effects of selected cyanobacterial peptides inÂvitro. Toxicon, 2018, 149, 20-25.	1.6	9
29	Uptake and accumulation of Microcystin-LR based on exposure through drinking water: An animal model assessing the human health risk. Scientific Reports, 2018, 8, 4913.	3.3	60
30	Associations between cyanobacteria and indices of secondary production in the western basin of Lake Erie. Limnology and Oceanography, 2018, 63, S232.	3.1	7
31	Simultaneous uptake of NOM and Microcystin-LR by anion exchange resins: Effect of inorganic ions and resin regeneration. Chemosphere, 2018, 192, 113-121.	8.2	25
32	Aerosol Emissions from Great Lakes Harmful Algal Blooms. Environmental Science & Technology, 2018, 52, 397-405.	10.0	66
33	The dose makes the poison. Science of the Total Environment, 2018, 621, 649-653.	8.0	43
34	Long Time Sequence Monitoring of Chaohu Algal Blooms Based on Multi-source Optical and Radar Remote Sensing. , 2018, , .		3
35	Impact of Microcystin-LR on Liver Function Varies by Dose and Sex in Mice. Toxins, 2018, 10, 435.	3.4	17
36	Importance of bacterial biodegradation and detoxification processes of microcystins for environmental health. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2018, 21, 357-369	6.5	38

#	Article	IF	CITATIONS
37	Fishing in greener waters: Understanding the impact of harmful algal blooms on Lake Erie anglers and the potential for adoption of a forecast model. Journal of Environmental Management, 2018, 227, 248-255.	7.8	16
38	Tile Drainage and Anthropogenic Land Use Contribute to Harmful Algal Blooms and Microbiota Shifts in Inland Water Bodies. Environmental Science & Technology, 2018, 52, 8215-8223.	10.0	24
39	Flocculation–Dewatering Behavior of Microalgae at Different Growth Stages under Inorganic Polymeric Flocculant Treatment: The Relationships between Algal Organic Matter and Floc Dewaterability. ACS Sustainable Chemistry and Engineering, 2018, 6, 11087-11096.	6.7	25
40	Nitrogen cycling in Sandusky Bay, Lake Erie: oscillations between strong and weak export and implications for harmful algal blooms. Biogeosciences, 2018, 15, 2891-2907.	3.3	34
41	Identifying aerosolized cyanobacteria in the human respiratory tract: A proposed mechanism for cyanotoxin-associated diseases. Science of the Total Environment, 2018, 645, 1003-1013.	8.0	44
42	Microcystin concentrations can be predicted with phytoplankton biomass and watershed morphology. Inland Waters, 2018, 8, 273-283.	2.2	18
43	Algal Blooms and Cyanotoxins in Jordan Lake, North Carolina. Toxins, 2018, 10, 92.	3.4	30
44	Beyond Eutrophication: Vancouver Lake, WA, USA as a Model System for Assessing Multiple, Interacting Biotic and Abiotic Drivers of Harmful Cyanobacterial Blooms. Water (Switzerland), 2018, 10, 757.	2.7	17
45	Biology of Microalgae. , 2018, , 23-72.		57
46	Exposure routes and health effects of microcystins on animals and humans: A mini-review. Toxicon, 2018, 151, 156-162.	1.6	126
47	The Metabolome of a Cyanobacterial Bloom Visualized by MS/MS-Based Molecular Networking Reveals New Neurotoxic Smenamide Analogs (C, D, and E). Frontiers in Chemistry, 2018, 6, 316.	3.6	21
48	Spatial and temporal variations in cyanobacteria and microcystins in Aha Reservoir, Southwest China. Journal of Oceanology and Limnology, 2018, 36, 1126-1131.	1.3	7
49	Cyanobacteria reduce quagga mussel (<i>Dreissena rostriformis bugensis</i>) spawning and fertilization success. Freshwater Science, 2018, 37, 510-518.	1.8	10
50	Drivers of cyanobacteria dominance, composition and nitrogen fixing behavior in a shallow lake with alternative regimes in time and space, Laguna del Sauce (Maldonado, Uruguay). Hydrobiologia, 2019, 829, 61-76.	2.0	23
51	Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1373.	6.5	465
52	Geochemical Characterization of Iron and Steel Slag and Its Potential to Remove Phosphate and Neutralize Acid. Minerals (Basel, Switzerland), 2019, 9, 468.	2.0	15
53	Economic impact of harmful algal blooms on human health: a systematic review. Journal of Water and Health, 2019, 17, 499-516.	2.6	41
54	Dreissenid (quagga and zebra mussel) veligers are adversely affected by bloom forming cyanobacteria. Ecotoxicology and Environmental Safety, 2019, 182, 109426.	6.0	10

#	Article	IF	CITATIONS
55	Oriented Functionalization of Magnetic Beads with <i>in Vivo</i> Biotinylated Nanobodies for Rapid MALDI-TOF MS Ultrasensitive Quantitation of Microcystins in Biological Samples. Analytical Chemistry, 2019, 91, 9925-9931.	6.5	13
56	Microcystin-LR removal by ion exchange: Investigating multicomponent interactions in natural waters. Environmental Pollution, 2019, 253, 790-799.	7.5	15
57	Clobal geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Archives of Toxicology, 2019, 93, 2429-2481.	4.2	230
58	Estimating the economic costs of algal blooms in the Canadian Lake Erie Basin. Harmful Algae, 2019, 87, 101624.	4.8	58
59	Development and evaluation of a sensitive, Diffusive Gradients in Thin-Films (DGT) method for determining microcystin-LR concentrations in freshwater and seawater. Harmful Algae, 2019, 89, 101668.	4.8	7
60	Controlling Lyngbya wollei in three Alabama, USA reservoirs: summary of a long-term management program. Applied Water Science, 2019, 9, 1.	5.6	8
61	Removal of Microcystis aeruginosa and control of algal organic matters by potassium ferrate(VI) pre-oxidation enhanced Fe(II) coagulation. Korean Journal of Chemical Engineering, 2019, 36, 1587-1594.	2.7	15
62	An Overview of Cyanobacteria Harmful Algal Bloom (CyanoHAB) Issues in Freshwater Ecosystems. , 0, ,		8
63	First Report of Microcystis Strains Producing MC-FR and -WR Toxins in Japan. Toxins, 2019, 11, 521.	3.4	9
64	Amphoteric starch-based bicomponent modified soil for mitigation of harmful algal blooms (HABs) with broad salinity tolerance: Flocculation, algal regrowth, and ecological safety. Water Research, 2019, 165, 115005.	11.3	46
65	Osmoregulatory disturbance in Neotropical fish exposed to the crude extracts of the cyanobacterium, Radiocystis fernandoi. Aquatic Toxicology, 2019, 216, 105315.	4.0	7
66	Effects of road salt on microbial communities: Halophiles as biomarkers of road salt pollution. PLoS ONE, 2019, 14, e0221355.	2.5	20
67	The effect of water treatment unit processes on cyanobacterial trichome integrity. Science of the Total Environment, 2019, 659, 1403-1414.	8.0	19
68	Urea Is Both a Carbon and Nitrogen Source for Microcystis aeruginosa: Tracking 13C Incorporation at Bloom pH Conditions. Frontiers in Microbiology, 2019, 10, 1064.	3.5	75
69	Detected cyanotoxins by UHPLC MS/MS technique in tropical reservoirs of northeastern Colombia. Toxicon, 2019, 167, 38-48.	1.6	19
70	A Bayesian risk assessment framework for microcystin violations of drinking water and recreational standards in the Bay of Quinte, Lake Ontario, Canada. Water Research, 2019, 162, 288-301.	11.3	28
71	Comprehensive multi-technique approach reveals the high diversity of microcystins in field collections and an associated isolate of Microcystis aeruginosa from a Turkish lake. Toxicon, 2019, 167, 87-100.	1.6	26
72	How Does Phosphorus Restriction Impact Soil Health Parameters in Midwestern Corn–Soybean Systems?. Agronomy Journal, 2019, 111, 1682-1692.	1.8	7

#	Article	IF	CITATIONS
73	Synthetic Haptens and Monoclonal Antibodies to the Cyanotoxin Anatoxinâ€a. Angewandte Chemie - International Edition, 2019, 58, 9134-9139.	13.8	14
74	Synthetic Haptens and Monoclonal Antibodies to the Cyanotoxin Anatoxinâ€a. Angewandte Chemie, 2019, 131, 9232-9237.	2.0	Ο
75	Machine Learning-Based Ensemble Prediction of Water-quality Variables Using Feature-level and Decision-level Fusion with Proximal Remote Sensing. Photogrammetric Engineering and Remote Sensing, 2019, 85, 269-280.	0.6	57
76	Variation in allelopathy of extracellular compounds produced by Cylindrotheca closterium against the harmful-algal-bloom dinoflagellate Prorocentrum donghaiense. Marine Environmental Research, 2019, 148, 19-25.	2.5	15
77	Regulation of five-antibiotic mixture on Microcystis aeruginosa exposed to sublethal doses of ultraviolet radiation. International Journal of Environmental Science and Technology, 2019, 16, 8229-8238.	3.5	3
78	Validation of 2015 Lake Erie MODIS image spectral decomposition using visible derivative spectroscopy and field campaign data. Journal of Great Lakes Research, 2019, 45, 466-479.	1.9	11
79	Removal of Microcystis blooms using enhanced colony formation and buoyancy by controlling extracellular polysaccharides and cation concentrations. International Journal of Environmental Science and Technology, 2019, 16, 4793-4802.	3.5	6
80	Toxins or medicines? Phytoplankton diets mediate host and parasite fitness in a freshwater system. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182231.	2.6	14
81	Predicting cyanobacteria bloom occurrence in lakes and reservoirs before blooms occur. Science of the Total Environment, 2019, 670, 837-848.	8.0	67
82	Assessing the relevance of top-down and bottom-up effects as phytoplankton structure drivers in a subtropical hypereutrophic shallow lake. Aquatic Ecology, 2019, 53, 265-280.	1.5	10
83	Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnology and Oceanography, 2019, 64, 1347-1370.	3.1	135
84	The Individual and Combined Effects of the Cyanotoxins, Anatoxin-a and Microcystin-LR, on the Growth, Toxin Production, and Nitrogen Fixation of Prokaryotic and Eukaryotic Algae. Toxins, 2019, 11, 43.	3.4	30
85	Quantitative assessment of the effects of human activities on phytoplankton communities in lakes and reservoirs. Science of the Total Environment, 2019, 665, 213-225.	8.0	33
86	Spatial and Temporal Variation in Paralytic Shellfish Toxin Production by Benthic Microseira (Lyngbya) wollei in a Freshwater New York Lake. Toxins, 2019, 11, 44.	3.4	24
87	Modulating the Effect of Iron and Total Organic Carbon on the Efficiency of a Hydrogen Peroxide-Based Algaecide for Suppressing Cyanobacteria. Water, Air, and Soil Pollution, 2019, 230, 1.	2.4	5
88	Nitrogen Treatment in Soil Beneath High-Flow and Low-Flow Onsite Wastewater Systems. Journal of Sustainable Water in the Built Environment, 2019, 5, 04019006.	1.6	2
89	Analyzing the Effects of Wind and Stratification on Surface Currents in a Large Lake. , 2019, , .		1
90	Merged-LSTM and multistep prediction of daily chlorophyll-a concentration for algal bloom forecast. IOP Conference Series: Earth and Environmental Science, 2019, 351, 012020.	0.3	9

#	Article	IF	CITATIONS
91	Insight Into the Molecular Mechanisms for Microcystin Biodegradation in Lake Erie and Lake Taihu. Frontiers in Microbiology, 2019, 10, 2741.	3.5	18
92	Manure Management at Ohio Confined Animal Feeding Facilities in the Maumee River Watershed. Journal of Great Lakes Research, 2019, 45, 1162-1170.	1.9	14
93	Measurement of Cyanobacterial Bloom Magnitude using Satellite Remote Sensing. Scientific Reports, 2019, 9, 18310.	3.3	78
94	An algicidal Streptomyces amritsarensis strain against Microcystis aeruginosa strongly inhibits microcystin synthesis simultaneously. Science of the Total Environment, 2019, 650, 34-43.	8.0	56
95	Chlorophyll nitrogen isotope values track shifts between cyanobacteria and eukaryotic algae in a natural phytoplankton community in Lake Erie. Organic Geochemistry, 2019, 128, 71-77.	1.8	9
96	Spectral discrimination of planktonic cyanobacteria and microalgae based on deep UV fluorescence. Sensors and Actuators B: Chemical, 2019, 284, 228-235.	7.8	8
97	Fluorescence resonance energy transfer based quantum dot-Aptasensor for the selective detection of microcystin-LR in eutrophic water. Chemical Engineering Journal, 2019, 359, 1493-1501.	12.7	44
98	Cyanobacteria reduce motility of quagga mussel (Dreissena rostriformis bugensis) sperm. Environmental Toxicology and Chemistry, 2019, 38, 368-374.	4.3	5
99	Neurotoxin BMAA and its isomeric amino acids in cyanobacteria and cyanobacteria-based food supplements. Journal of Hazardous Materials, 2019, 365, 346-365.	12.4	25
100	Enhanced real-time cyanobacterial fluorescence monitoring through chlorophyll-a interference compensation corrections. Water Research, 2019, 148, 86-96.	11.3	26
101	Removal of Microcystin-LR from spiked natural and synthetic waters by anion exchange. Science of the Total Environment, 2019, 655, 571-580.	8.0	22
102	Use of macrophytes allelopathy in the biocontrol of harmful Microcystis aeruginosa blooms. Water Science and Technology: Water Supply, 2019, 19, 245-253.	2.1	24
103	Cyanobacterial blooms modify food web structure and interactions in western Lake Erie. Harmful Algae, 2020, 92, 101586.	4.8	27
104	Deep learning-based retrieval of cyanobacteria pigment in inland water for in-situ and airborne hyperspectral data. Ecological Indicators, 2020, 110, 105879.	6.3	21
105	Drone-based hyperspectral remote sensing of cyanobacteria using vertical cumulative pigment concentration in a deep reservoir. Remote Sensing of Environment, 2020, 236, 111517.	11.0	56
106	A systematic review of analytical methods for the detection and quantification of β- <i>N</i> -methylamino- <scp>l</scp> -alanine (BMAA). Analyst, The, 2020, 145, 13-28.	3.5	23
107	Biomass of the Cyanobacterium Lyngbya wollei Alters Copper Algaecide Exposure and Risks to a Non-target Organism. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 228-234.	2.7	0
108	Benefits of machine learning and sampling frequency on phytoplankton bloom forecasts in coastal areas. Ecological Informatics, 2020, 60, 101174.	5.2	14

#	Article	IF	CITATIONS
109	Advances in forecasting harmful algal blooms using machine learning models: A case study with Planktothrix rubescens in Lake Geneva. Harmful Algae, 2020, 99, 101906.	4.8	34
110	Identifying the Influence of Land Cover and Human Population on Chlorophyll a Concentrations Using a Pseudo-Watershed Analytical Framework. Water (Switzerland), 2020, 12, 3215.	2.7	5
111	Algal Bloom–Related Illness: Improving Health Outcomes in Primary Care. Journal for Nurse Practitioners, 2020, 16, 679-682.	0.8	4
112	Evaluating sediments as an ecosystem service in western Lake Erie via quantification of nutrient cycling pathways and selected gene abundances. Journal of Great Lakes Research, 2020, 46, 920-932.	1.9	18
113	Microcystin in multiple life stages of Hexagenia limbata, with implications for toxin transfer. Journal of Great Lakes Research, 2020, 46, 666-671.	1.9	6
114	Atmospheric Progression of Microcystin-LR from Cyanobacterial Aerosols. Environmental Science and Technology Letters, 2020, 7, 740-745.	8.7	11
115	Characteristics of Fluorescence Spectra, UV Spectra, and Specific Growth Rates during the Outbreak of Toxic Microcystis Aeruginosa FACHB-905 and Non-Toxic FACHB-469 under Different Nutrient Conditions in a Eutrophic Microcosmic Simulation Device. Water (Switzerland), 2020, 12, 2305.	2.7	3
116	Limnological Differences in a Two-Basin Lake Help to Explain the Occurrence of Anatoxin-a, Paralytic Shellfish Poisoning Toxins, and Microcystins. Toxins, 2020, 12, 559.	3.4	9
117	Physical drivers facilitating a toxigenic cyanobacterial bloom in a major Great Lakes tributary. Limnology and Oceanography, 2020, 65, 2866-2882.	3.1	19
118	Rapid-assessment test strips: effectiveness for cyanotoxin monitoring in a northern temperate lake. Lake and Reservoir Management, 2020, 36, 444-453.	1.3	3
119	Episodic Decrease in Temperature Increases mcy Gene Transcription and Cellular Microcystin in Continuous Cultures of Microcystis aeruginosa PCC 7806. Frontiers in Microbiology, 2020, 11, 601864.	3.5	23
120	Using Bayesian hierarchical modelling to capture cyanobacteria dynamics in Northern European lakes. Water Research, 2020, 186, 116356.	11.3	8
121	Adsorption Media for the Removal of Soluble Phosphorus from Subsurface Drainage Water. International Journal of Environmental Research and Public Health, 2020, 17, 7693.	2.6	9
122	An overview on cyanobacterial blooms and toxins production: their occurrence and influencing factors. Toxin Reviews, 2022, 41, 326-346.	3.4	27
123	Nitrogen flux into metabolites and microcystins changes in response to different nitrogen sources in <scp><i>Microcystis aeruginosa</i>NIES</scp> â€843. Environmental Microbiology, 2020, 22, 2419-2431.	3.8	18
124	Endocytosis in microcystis aeruginosa accelerates the synthesis of microcystins in the presence of lanthanum(III). Harmful Algae, 2020, 93, 101791.	4.8	11
125	The Occurrence of Potential Harmful Cyanobacteria and Cyanotoxins in the Obrzyca River (Poland), a Source of Drinking Water. Toxins, 2020, 12, 284.	3.4	15
126	Freshwater neurotoxins and concerns for human, animal, and ecosystem health: A review of anatoxin-a and saxitoxin. Science of the Total Environment, 2020, 736, 139515.	8.0	102

#	Article	IF	CITATIONS
127	A sensitive and accurate method for simultaneous analysis of algal toxins in freshwater using UPLC-MS/MS and 15N-microcystins as isotopically labelled internal standards. Science of the Total Environment, 2020, 738, 139727.	8.0	15
128	The magnitude and drivers of harmful algal blooms in China's lakes and reservoirs: A national-scale characterization. Water Research, 2020, 181, 115902.	11.3	126
129	Influence of eugenol on algal growth, cell physiology of cyanobacteria Microcystis aeruginosa and its interaction with signaling molecules. Chemosphere, 2020, 255, 126935.	8.2	17
130	Microalgae proteins: production, separation, isolation, quantification, and application in food and feed. Critical Reviews in Food Science and Nutrition, 2021, 61, 1976-2002.	10.3	138
131	Effects of the manipulation of submerged macrophytes, large zooplankton, and nutrients on a cyanobacterial bloom: A mesocosm study in a tropical shallow reservoir. Environmental Pollution, 2020, 265, 114997.	7.5	38
132	Global scanning of cylindrospermopsin: Critical review and analysis of aquatic occurrence, bioaccumulation, toxicity and health hazards. Science of the Total Environment, 2020, 738, 139807.	8.0	43
133	Optimization of an MMPB Lemieux Oxidation method for the quantitative analysis of microcystins in fish tissue by LC-QTOF MS. Science of the Total Environment, 2020, 737, 140209.	8.0	16
134	Cyanobacterial Classification with the Toxicity Using MALDI Biotyper. Journal of the American Society for Mass Spectrometry, 2020, 31, 1572-1578.	2.8	5
135	Effects of erythromycin and sulfamethoxazole on Microcystis aeruginosa: Cytotoxic endpoints, production and release of microcystin-LR. Journal of Hazardous Materials, 2020, 399, 123021.	12.4	54
136	Harmful Algal Bloom Toxins in Aerosol Generated from Inland Lake Water. Environmental Science & Technology, 2020, 54, 4769-4780.	10.0	74
137	Highlighting of the antialgal activity of organic extracts of Moroccan macrophytes: potential use in cyanobacteria blooms control. Environmental Science and Pollution Research, 2020, 27, 19630-19637.	5.3	6
138	"New―cyanobacterial blooms are not new: two centuries of lake production are related to ice cover and land use. Ecosphere, 2020, 11, e03170.	2.2	15
139	Modeling cyanobacterial blooms in tropical reservoirs: The role of physicochemical variables and trophic interactions. Science of the Total Environment, 2020, 744, 140659.	8.0	38
140	Impact of chlorination and pre-ozonation on disinfection by-products formation from aqueous suspensions of cyanobacteria: Microcystis aeruginosa, Anabaena aequalis and Oscillatoria tenuis. Water Research, 2020, 183, 116070.	11.3	8
141	Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to toxic Microcystis aeruginosa and thermal stress. Science of the Total Environment, 2020, 743, 140754.	8.0	18
142	Effects of H2O2 on growth, metabolic activity and membrane integrity in three strains of Microcystis aeruginosa. Environmental Science and Pollution Research, 2020, 27, 38916-38927.	5.3	10
143	Salty sensors, fresh ideas: The use of molecular and imaging sensors in understanding plankton dynamics across marine and freshwater ecosystems. Limnology and Oceanography Letters, 2020, 5, 169-184.	3.9	11
144	Suppressing Cyanobacteria with Hydrogen Peroxide Is More Effective at High Light Intensities. Toxins, 2020, 12, 18.	3.4	37

#	Article	IF	CITATIONS
145	Suppression of water-bloom cyanobacterium Microcystis aeruginosa by algaecide hydrogen peroxide maximized through programmed cell death. Journal of Hazardous Materials, 2020, 393, 122394.	12.4	55
146	Biotransformations, Antioxidant System Responses, and Histopathological Indexes in the Liver of Fish Exposed to Cyanobacterial Extract. Environmental Toxicology and Chemistry, 2020, 39, 1041-1051.	4.3	11
147	Stochastic dynamics of Cyanobacteria in longâ€ŧerm highâ€frequency observations of a eutrophic lake. Limnology and Oceanography Letters, 2020, 5, 331-336.	3.9	22
148	Monitoring of Cyanobacteria in Water Using Spectrophotometry and First Derivative of Absorbance. Water (Switzerland), 2020, 12, 124.	2.7	15
149	Meteolakes: An operational online three-dimensional forecasting platform for lake hydrodynamics. Water Research, 2020, 172, 115529.	11.3	34
150	Assessing the potential health risk of cyanobacteria and cyanotoxins in Lake Naivasha, Kenya. Hydrobiologia, 2020, 847, 1041-1056.	2.0	5
151	Pilot application of drone observations and pigment marker detection by HPLC in studies of cyanobacterial harmful algal blooms in Bulgarian inland waters. Marine and Freshwater Research, 2020, 71, 606.	1.3	11
152	Machine Learning Approaches for Predicting Health Risk of Cyanobacterial Blooms in Northern European Lakes. Water (Switzerland), 2020, 12, 1191.	2.7	19
153	Binational Efforts Addressing Cyanobacterial Harmful Algal Blooms in the Great Lakes. Handbook of Environmental Chemistry, 2020, , 109-133.	0.4	9
154	Monitoring inland water quality using remote sensing: potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth-Science Reviews, 2020, 205, 103187.	9.1	254
155	Conserving the Amazon River Basin: The case study of the Yahuarcaca Lakes System in Colombia. Science of the Total Environment, 2020, 724, 138186.	8.0	5
156	Factors influencing distribution patterns of cyanobacteria in an upland lake of the Kumaun Himalayas, India. Archives of Environmental and Occupational Health, 2021, 76, 123-133.	1.4	4
157	Fatty acid response of the invasive bivalve Limnoperna fortunei fed with Microcystis aeruginosa exposed to high temperature. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2021, 240, 108925.	2.6	4
158	Harmful Cyanobacterial Blooms (HCBs): innovative green bioremediation process based on anti-cyanobacteria bioactive natural products. Archives of Microbiology, 2021, 203, 31-44.	2.2	10
159	Exploring nutrient and light limitation of algal production in a shallow turbid reservoir. Environmental Pollution, 2021, 269, 116210.	7.5	19
160	Effects of class imbalance on resampling and ensemble learning for improved prediction of cyanobacteria blooms. Ecological Informatics, 2021, 61, 101202.	5.2	28
161	Toxic Cyanobacteria: A Growing Threat to Water and Air Quality. Environmental Science & Technology, 2021, 55, 44-64.	10.0	146
162	Diagnostic Fragmentation Filtering for Cyanopeptolin Detection. Environmental Toxicology and Chemistry, 2021, 40, 1087-1097.	4.3	5

#	Article	IF	CITATIONS
163	Phosphorus recovery from wastewater using pyridineâ€based ionâ€exchange resins: Role of impregnated iron oxide nanoparticles and preloaded Lewis acid (Cu ²⁺). Water Environment Research, 2021, 93, 774-786.	2.7	14
164	Photocatalytic treatment of natural waters. Reality or hype? The case of cyanotoxins remediation. Water Research, 2021, 188, 116543.	11.3	88
165	Monitoring, Managing, and Communicating Risk of Harmful Algal Blooms (HABs) in Recreational Resources across Canada. Environmental Health Insights, 2021, 15, 117863022110144.	1.7	17
166	A Review of Holography in the Aquatic Sciences: In situ Characterization of Particles, Plankton, and Small Scale Biophysical Interactions. Frontiers in Marine Science, 2021, 7, .	2.5	43
167	Effect of juvenile omni-benthivorous fish (Carassius carassius) disturbance on the efficiency of lanthanum-modified bentonite (LMB) for eutrophication control: a mesocosm study. Environmental Science and Pollution Research, 2021, 28, 21779-21788.	5.3	4
168	Primary role of increasing urea-N concentration in a novel Microcystis densa bloom: Evidence from ten years of field investigations and laboratory experiments. Ecotoxicology and Environmental Safety, 2021, 208, 111713.	6.0	1
169	Removal of cyanobacteria and cyanotoxins by ferrate from polluted lake water. Environmental Science and Pollution Research, 2021, 28, 27084-27094.	5.3	5
170	Cyanotoxins in drinking water supply reservoir (Legedadi, Central Ethiopia): implications for public health safety. SN Applied Sciences, 2021, 3, 1.	2.9	7
171	Rapid uptake and slow depuration: Health risks following cyanotoxin accumulation in mussels?. Environmental Pollution, 2021, 271, 116400.	7.5	13
172	Stress tolerance of two freshwater invaders exposed to Microcystis aeruginosa and microcystin-LR. Hydrobiologia, 2021, 848, 2369-2382.	2.0	6
173	The Use of Constructed Wetland for Mitigating Nitrogen and Phosphorus from Agricultural Runoff: A Review. Water (Switzerland), 2021, 13, 476.	2.7	33
174	Development of methods to estimate microcystins removal and water treatment resiliency using mechanistic risk modelling. Water Research, 2021, 190, 116763.	11.3	4
175	Quantitative Photoresponse of the First Photosynthetic Biomaterials: Physical Measurements and Analysis of Microalgae Systems. Physica Status Solidi (B): Basic Research, 2021, 258, 2000475.	1.5	0
176	Green filters of Eucalyptus globulus for microalgae harvesting from freshwater reservoir and reuse of biomass harvested for pellet production. Chemical Engineering Research and Design, 2021, 147, 497-504.	5.6	4
177	Assessing Impacts of Changes in External Nutrient Loadings on a Temperate Chinese Drinking Water Reservoir. Frontiers in Environmental Science, 2021, 9, .	3.3	3
178	Dynamics of microcystins and saxitoxin in the Indian River Lagoon, Florida. Harmful Algae, 2021, 103, 102012.	4.8	18
179	Investigation of cyanobacteria blooms in paper mill wastewaters and assessment of zinc as a control agent. International Journal of Environmental Science and Technology, 0, , 1.	3.5	1
180	Three-Dimensional Printing of Hydrogel Filters Containing Algae Cells for Copper Removal From Contaminated Water. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2021–143	2.2	6

#	Article	IF	CITATIONS
181	Harvesting freshwater algae with tannins from the bark of forest species: Comparison of methods and pelletization of the biomass obtained. Chemosphere, 2021, 268, 129313.	8.2	14
182	Increasingly severe cyanobacterial blooms and deep water hypoxia coincide with warming water temperatures in reservoirs. Global Change Biology, 2021, 27, 2507-2519.	9.5	45
183	Prediction of algal bloom occurrence based on the naive Bayesian model considering satellite image pixel differences. Ecological Indicators, 2021, 124, 107416.	6.3	15
184	A Streptomyces globisporus strain kills Microcystis aeruginosa via cell-to-cell contact. Science of the Total Environment, 2021, 769, 144489.	8.0	37
185	Considering Harmful Algal Blooms. , 0, , .		0
186	Efficient integration of plasmonic Ag/AgCl with perovskite-type LaFeO3: Enhanced visible-light photocatalytic activity for removal of harmful algae. Journal of Hazardous Materials, 2021, 409, 125018.	12.4	66
187	Hazardous cyanobacteria integrity response to velocity gradient and powdered activated carbon in water treatment plants. Science of the Total Environment, 2021, 773, 145110.	8.0	9
188	A critical and intensive review on assessment of water quality parameters through geospatial techniques. Environmental Science and Pollution Research, 2021, 28, 41612-41626.	5.3	10
189	Effects of Hydrogen Peroxide on Cyanobacterium <i>Microcystis aeruginosa</i> in the Presence of Nanoplastics. ACS ES&T Water, 2021, 1, 1596-1607.	4.6	22
190	Prevalence and persistence of microcystin in shoreline lake sediments and porewater, and associated potential for human health risk. Chemosphere, 2021, 272, 129581.	8.2	17
191	Overview of PCR Methods Applied for the Identification of Freshwater Toxigenic Cyanobacteria. , 0, , .		2
192	Stormwater on the margins: Influence of race, gender, and education on willingness to participate in stormwater management. Journal of Environmental Management, 2021, 290, 112552.	7.8	6
193	Effects of acute exposure to microcystins on hypothalamic-pituitary-adrenal (HPA), -gonad (HPG) and -thyroid (HPT) axes of female rats. Science of the Total Environment, 2021, 778, 145196.	8.0	29
194	Harmful algal bloom resources for livestock veterinarians. Journal of the American Veterinary Medical Association, 2021, 259, 151-161.	0.5	3
195	Response of Magnetite/Lanthanum hydroxide composite on cyanobacterial bloom. Chemosphere, 2021, 275, 130017.	8.2	4
196	On–Off–On Fluorescent Chemosensors Based on N/P-Codoped Carbon Dots for Detection of Microcystin-LR. ACS Applied Nano Materials, 2021, 4, 6852-6860.	5.0	37
197	Comparative analysis of Microcystis buoyancy in western Lake Erie and Saginaw Bay of Lake Huron. Harmful Algae, 2021, 108, 102102.	4.8	10
198	Development of a sub-seasonal cyanobacteria prediction model by leveraging local and global scale predictors. Harmful Algae, 2021, 108, 102100.	4.8	8

#	Article	IF	CITATIONS
199	The Lake Erie HABs Grab: A binational collaboration to characterize the western basin cyanobacterial harmful algal blooms at an unprecedented high-resolution spatial scale. Harmful Algae, 2021, 108, 102080.	4.8	15
200	Adaptation and Validation of a Sentinel-Based Chlorophyll-a Retrieval Software for the Central European Freshwater Lake, Balaton. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2021, 89, 335-344.	1.1	5
201	Inhibitory effects of Prorocentrum donghaiense allelochemicals on Sargassum fusiformis zygotes probed by JIP-test based on fast chlorophyll fluorescence kinetics. Marine Environmental Research, 2021, 170, 105453.	2.5	4
202	A new lake algae detection method supported by a droneâ€based multispectral camera. Lakes and Reservoirs: Research and Management, 2021, 26, e12377.	0.9	3
203	Beyond the Mass Balance: Watershed Phosphorus Legacies and the Evolution of the Current Water Quality Policy Challenge. Water Resources Research, 2021, 57, e2020WR029316.	4.2	29
204	Bloom and bust: Historical trends of harmful algal blooms in Muskegon Lake, Michigan, a Great Lakes estuary. Freshwater Science, 2021, 40, 463-477.	1.8	0
205	Challenges of managing harmful algal blooms in US drinking water systems. Nature Sustainability, 2021, 4, 958-964.	23.7	23
206	Research progress in the functionalization of microcystin-LR based on interdisciplinary technologies. Coordination Chemistry Reviews, 2021, 443, 214041.	18.8	35
207	Cellular oxidative stress stimulated by microcystin: review. Research, Society and Development, 2021, 10, e422101119765.	0.1	2
208	Effect of thermal stratified flow on algal blooms in a tributary bay of the Three Gorges reservoir. Journal of Hydrology, 2021, 601, 126648.	5.4	21
209	Multi-proxy approaches to investigate cyanobacteria invasion from a eutrophic lake into the circumjacent groundwater. Water Research, 2021, 204, 117578.	11.3	10
210	Time- and dose-dependent allelopathic effects and mechanisms of kaempferol on toxigenic Microcystis growth. Ecotoxicology and Environmental Safety, 2021, 222, 112508.	6.0	12
211	Synthesis of ecotoxicological studies on cyanotoxins in freshwater habitats – Evaluating the basis for developing thresholds protective of aquatic life in the United States. Science of the Total Environment, 2021, 795, 148864.	8.0	27
212	Self-floating photocatalytic hydrogel for efficient removal of Microcystis aeruginosa and degradation of microcystins-LR. Chemosphere, 2021, 284, 131283.	8.2	11
213	Effective orthophosphate removal from surface water using hydrogen-oxidizing bacteria: Moving towards applicability. Science of the Total Environment, 2021, 800, 149648.	8.0	5
214	High-resolution temporal detection of cyanobacterial blooms in a deep and oligotrophic lake by high-frequency buoy data. Environmental Research, 2022, 203, 111848.	7.5	8
215	Cyanobacteria Growth in Nitrogen- & Phosphorus-Spiked Water from a Hypereutrophic Reservoir in Kentucky, USA. Journal of Environmental Protection, 2021, 12, 75-89.	0.7	3
216	Early warning signals precede cyanobacterial blooms in multiple wholeâ€lake experiments. Ecological Monographs, 2018, 88, 188-203.	5.4	54

#	Article	IF	CITATIONS
217	N-β-Methylamino-L-Alanine and Its Naturally Occurring Isomers in Cyanobacterial Blooms in Lake Winnipeg. Neurotoxicity Research, 2018, 33, 133-142.	2.7	19
218	Cyanobacterial (blue-green algae) toxins. , 2020, , 467-478.		7
219	Effects of a Cyanobacterial Toxin on Trematode Cercariae. Journal of Parasitology, 2019, 105, 598.	0.7	5
220	Causes, Human Health Impacts and Control of Harmful Algal Blooms: A Comprehensive Review. Environmental Pollution and Protection, 2018, 3, 40-55.	0.2	7
222	Role of Aerosolized Coal Fly Ash in the Global Plankton Imbalance: Case of Florida's Toxic Algae Crisis. Asian Journal of Biology, 0, , 1-24.	0.3	6
223	Impact of Spectral Resolution on Quantifying Cyanobacteria in Lakes and Reservoirs: A Machine-Learning Assessment. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-20.	6.3	8
224	Hepatic nodular alterations in wild fish from a hyper-eutrophic freshwater system with cyanobacterial blooms: a species and seasonal comparison. Environmental Science and Pollution Research, 2022, 29, 15729-15742.	5.3	0
225	Immunotoxic Effects Induced by Microcystins and Cylindrospermopsin: A Review. Toxins, 2021, 13, 711.	3.4	19
226	From burned slopes to streams: how wildfire affects nitrogen cycling and retention in forests and fire-prone watersheds. Biogeochemistry, 2022, 157, 51-68.	3.5	14
227	Evidence for toxic cyanobacteria in sediments and the water-sediment interface of a tropical drinking water reservoir. Limnologica, 2021, 91, 125924.	1.5	5
228	Current Trend of Metagenomic Data Analytics for Cyanobacteria Blooms. Journal of Geoscience and Environment Protection, 2017, 05, 198-213.	0.5	4
229	Influence of Cultivation Conditions on Lysing Activity of Bacillus amiloliquefaciens Strain IMV-7571. MikrobiolohichnyÄ-Zhurnal, 2019, 81, 25-35.	0.6	0
230	A Meta-Analysis on Harmful Algal Bloom (HAB) Detection and Monitoring: A Remote Sensing Perspective. Remote Sensing, 2021, 13, 4347.	4.0	28
231	Screening of Human Phycotoxin Poisoning Symptoms in Coastal Communities of Nigeria: Socio-Economic Consideration of Harmful Algal Blooms. Journal of Environmental Protection, 2020, 11, 718-734.	0.7	1
232	Multifunctional Biofilter to Effectively Remove Toxins. ACS Applied Bio Materials, 2021, 4, 731-741.	4.6	2
233	Macrófitas acuáticas, plantas terrestres y su importancia en el control de los florecimientos de cianobacterias. Una revisión documental. , 2020, , 38-53.		1
234	An investigation on machine-learning models for the prediction of cyanobacteria growth. Fundamental and Applied Limnology, 2020, 194, 85-94.	0.7	3
235	Inactivation of Microcystis Aeruginosa by peracetic acid combined with ultraviolet: Performance and characteristics. Water Research, 2022, 208, 117847.	11.3	21

#	Article	IF	CITATIONS
236	Novel high throughput sequencing - fluorometric approach demonstrates Microcystis blooms across western Lake Erie are promoted by grazing resistance and nutrient enhanced growth. Harmful Algae, 2021, 110, 102126.	4.8	6
237	EFFICACY OF REJUVENATION OF LAKES IN BENGALURU, INDIA. Green Chemistry & Technology Letters, 2020, 6, 14-26.	0.3	5
238	Occurrence of cyanobacteria in water used for food production: A review. Physics and Chemistry of the Earth, 2022, 125, 103101.	2.9	29
239	Short-Term Rainfall Impairs Cyanobacterial Bloom Formation in an Eutrophic Subtropical Urban Reservoir in Warm Season. SSRN Electronic Journal, 0, , .	0.4	0
240	Detection of Microcystin-LR in the Cells and Natural Lake Water Samples by A Unique Fluorescence-Based Method. Journal of Fluorescence, 2022, 32, 505-519.	2.5	6
241	Exploring the photocatalytic inactivation mechanism of Microcystis aeruginosa under visible light using Ag3PO4/g-C3N4. Environmental Science and Pollution Research, 2022, 29, 29993-30003.	5.3	10
242	Effect of algal blooms outbreak and decline on phosphorus migration in Lake Taihu, China. Environmental Pollution, 2022, 296, 118761.	7.5	27
243	Evaluation of a Peroxide-Based Algaecide for Cyanobacteria Control: A Mesocosm Trial in Lake Okeechobee, FL, USA. Water (Switzerland), 2022, 14, 169.	2.7	8
244	Trends and Causes of Raw Water Quality Indicators in the Five Most Famous Lakes of Jiangsu Province, China. International Journal of Environmental Research and Public Health, 2022, 19, 1580.	2.6	2
245	Staying afloat: The effect of algae contamination on <scp>Lake Erie</scp> housing prices. American Journal of Agricultural Economics, 2022, 104, 1701-1723.	4.3	8
246	Atmospheric chemical processes of microcystin-LR at the interface of sea spray aerosol. Chemosphere, 2022, 294, 133726.	8.2	0
247	Dynamic Responses of Endosymbiotic Microbial Communities Within Microcystis Colonies in North American Lakes to Altered Nitrogen, Phosphorus, and Temperature Levels. Frontiers in Microbiology, 2021, 12, 781500.	3.5	3
248	A Novel Wide-Range Freshwater Cyanophage MinS1 Infecting the Harmful Cyanobacterium Microcystis aeruginosa. Viruses, 2022, 14, 433.	3.3	9
249	The monthly variation tendency of microcystin-LR levels in the Huangpu River (China) by applications of ELISA and HPLC. Environmental Science and Pollution Research, 2022, 29, 56876-56884.	5.3	2
250	Estimation of cyanobacteria pigments in the main rivers of South Korea using spatial attention convolutional neural network with hyperspectral imagery. GIScience and Remote Sensing, 2022, 59, 547-567.	5.9	11
251	Importance and vulnerability of lakes and reservoirs supporting drinking water in China. Fundamental Research, 2023, 3, 265-273.	3.3	42
252	Beyond marginal: Estimating the demand for water quality. Resources and Energy Economics, 2022, 68, 101299.	2.5	1
253	Are little brown bats (Myotis lucifugus) impacted by dietary exposure to microcystin?✰. Harmful Algae, 2022, 114, 102221.	4.8	1

#	Article	IF	CITATIONS
254	Higher sensitivity to Cu2+ exposure of Microcystis aeruginosa in late lag phase is beneficial to its control. Water Research, 2022, 214, 118207.	11.3	21
255	Joint effects and mechanisms of luteolin and kaempferol on toxigenic Microcystis growth—Comprehensive analysis on two isomers interaction in binary mixture. Journal of Environmental Management, 2022, 312, 114904.	7.8	2
256	Short-term rainfall limits cyanobacterial bloom formation in a shallow eutrophic subtropical urban reservoir in warm season. Science of the Total Environment, 2022, 827, 154172.	8.0	12
257	Innovative method of utilising hydrogen peroxide for source water management of cyanobacteria. Environmental Science and Pollution Research, 2022, 29, 22651-22660.	5.3	3
258	Abundant Allelochemicals and the Inhibitory Mechanism of the Phenolic Acids in Water Dropwort for the Control of Microcystis aeruginosa Blooms. Plants, 2021, 10, 2653.	3.5	10
259	Temporal Patterns of Bacterial and Viral Communities during Algae Blooms of a Reservoir in Macau. Toxins, 2021, 13, 894.	3.4	2
260	Visualizing and quantifying the spatiotemporal expansion of the Blue Lentic Belt in Alabama and Mississippi. Water Research, 2022, 217, 118444.	11.3	1
274	Assessing the microcystins concentration through optimized protein phosphatase inhibition assay in environmental samples. Journal of Microbiology, 2022, 60, 602-609.	2.8	3
275	Effects of Light and Temperature on the Metabolic Profiling of Two Habitat-Dependent Bloom-Forming Cyanobacteria. Metabolites, 2022, 12, 406.	2.9	8
276	Changes in the Ecological Status of Rivers Caused by the Functioning of Natural Barriers. Water (Switzerland), 2022, 14, 1522.	2.7	4
277	A validation of satellite derived cyanobacteria detections with state reported events and recreation advisories across U.S. lakes. Harmful Algae, 2022, 115, 102191.	4.8	14
278	Microalgae as a sustainable source of edible proteins and bioactive peptides – Current trends and future prospects. Food Research International, 2022, 157, 111338.	6.2	47
279	Microcystin Contamination and Toxicity: Implications for Agriculture and Public Health. Toxins, 2022, 14, 350.	3.4	36
281	Importance and main ecological and environmental problems of lakes in China. Chinese Science Bulletin, 2022, 67, 3503-3519.	0.7	7
282	Grazing impacts of rotifer zooplankton on a cyanobacteria bloom in a shallow temperate lake (Vancouver Lake, WA, USA). Hydrobiologia, 2022, 849, 2683-2703.	2.0	4
283	Perceived Intensification in Harmful Algal Blooms Is a Wave of Cumulative Threat to the Aquatic Ecosystems. Biology, 2022, 11, 852.	2.8	17
284	Harmonizing science and management options to reduce risks of cyanobacteria. Harmful Algae, 2022, 116, 102264.	4.8	17
285	Integrative monitoring strategy for marine and freshwater harmful algal blooms and toxins across the freshwaterâ€toâ€marine continuum. Integrated Environmental Assessment and Management, 2023, 19, 586-604.	2.9	9

#	Article	IF	Citations
286	Isolation, identification of algicidal bacteria and contrastive study on algicidal properties against Microcystis aeruginosa. Biochemical Engineering Journal, 2022, 185, 108525.	3.6	9
287	Prediction of Microcystis Occurrences and Analysis Using Machine Learning in High-Dimension, Low-Sample-Size and Imbalanced Water Quality Data. Harmful Algae, 2022, 117, 102273.	4.8	10
288	Selection and characterization of plant-derived alkaloids with strong antialgal inhibition: growth inhibition selectivity and inhibitory mechanism. Harmful Algae, 2022, 117, 102272.	4.8	8
289	Fungal organisms: A check for harmful algal blooms. , 2022, , 91-115.		2
290	Interactions between tannins allelochemicals and extracellular polymeric substance (EPS) of Microcystis aeruginosa. Environmental Science and Pollution Research, 2022, 29, 83211-83219.	5.3	6
291	Impact of Cyanotoxin Ingestion on Liver Cancer Development Using an At-Risk Two-Staged Model of Mouse Hepatocarcinogenesis. Toxins, 2022, 14, 484.	3.4	4
292	Detection and Occurrence of Microcystins and Nodularins in Lake Manatee and Lake Washington-Two Floridian Drinking Water Systems. Frontiers in Water, 0, 4, .	2.3	2
293	Growth and Mechanical Characterization of Mycelium-Based Composites towards Future Bioremediation and Food Production in the Material Manufacturing Cycle. Biomimetics, 2022, 7, 103.	3.3	11
294	The global social-economic dimension of biological invasions by plankton: Grossly underestimated costs but a rising concern for water quality benefits?. Water Research, 2022, 222, 118918.	11.3	8
295	Low Levels of Contaminants Stimulate Harmful Algal Organisms and Enrich Their Toxins. Environmental Science & Technology, 2022, 56, 11991-12002.	10.0	33
296	Nitrogen-dependent luteolin effect on Microcystis growth and microcystin-pollution risk — Novel mechanism insights unveiled by comparative proteomics and gene expression. Environmental Pollution, 2022, 311, 119848.	7.5	5
297	Abnormal neurobehavior in fish early life stages after exposure to cyanobacterial exudates. Ecotoxicology and Environmental Safety, 2022, 245, 114119.	6.0	8
298	Harmful cyanobacterial aerosolization dynamics in the airshed of a eutrophic estuary. Science of the Total Environment, 2022, 852, 158383.	8.0	9
299	Drone-based particle monitoring above two harmful algal blooms (HABs) in the USA. Environmental Science Atmospheres, 2022, 2, 1351-1363.	2.4	6
300	Deep Learning-Based Water Quality Retrieval in an Impounded Lake Using Landsat 8 Imagery: An Application in Dongping Lake. Remote Sensing, 2022, 14, 4505.	4.0	11
301	A Virtual Sensing Concept for Nitrogen and Phosphorus Monitoring Using Machine Learning Techniques. Sensors, 2022, 22, 7338.	3.8	5
302	Recreational water illness in Canada: a changing risk landscape in the context of climate change. Canadian Journal of Public Health, 2022, 113, 940-943.	2.3	1
303	Can the presence of green microalgae reverse the allelopathic effects of the submerged macrophyte Egeria densa on the toxin-producing cyanobacterium Raphidiopsis raciborskii?. Hydrobiologia, 2022, 849, 4391-4406.	2.0	4

#	Article	IF	CITATIONS
304	Toxicity effects of disinfection byproduct chloroacetic acid to Microcystis aeruginosa: Cytotoxicity and mechanisms. Journal of Environmental Sciences, 2023, 129, 229-239.	6.1	5
305	Distribution and diversity of cyanobacteria in the Azores Archipelago: An annotated checklist. Biodiversity Data Journal, 0, 10, .	0.8	3
306	Efficient Microcystis aeruginosa coagulation and removal by palladium clusters doped g-C3N4 with no light irradiation. Ecotoxicology and Environmental Safety, 2022, 246, 114148.	6.0	8
307	Screening of cyanotoxin producing genes in Ecuadorian freshwater systems. Acta Limnologica Brasiliensia, 0, 34, .	0.4	0
308	Channel head response to anthropogenic landscape modification: A case study from the North Carolina Piedmont, USA, with implications for water quality. Earth Surface Processes and Landforms, 0, , .	2.5	1
309	Nitrogen Limitation of Intense and Toxic Cyanobacteria Blooms in Lakes within Two of the Most Visited Parks in the USA: The Lake in Central Park and Prospect Park Lake. Toxins, 2022, 14, 684.	3.4	0
310	Review: Current understanding on biological filtration for the removal of microcystins. Chemosphere, 2023, 313, 137160.	8.2	4
311	Research on the Algal Density Change Features of Water Bodies in Urban Parks and the Environmental Driving Factors. Sustainability, 2022, 14, 15263.	3.2	0
312	Characterizing ocean surface contamination: Composition, film thickness, and rheology. Marine Pollution Bulletin, 2023, 186, 114287.	5.0	0
313	Removal of algae using hydrodynamic cavitation, ozonation and oxygen peroxide: Taguchi optimization (case study: Raw water of sanandaj water treatment plant). Chemical Engineering Research and Design, 2023, 169, 896-908.	5.6	7
314	Monitoring water health with autonomous single-rotor unmanned aerial vehicles. IEEE Potentials, 2023, 42, 35-43.	0.3	0
315	Mechanism of cyanobacterial bloom control by magnetic lanthanum-based material. Science of the Total Environment, 2023, 861, 160603.	8.0	1
316	Large scale seasonal forecasting of peak season algae metrics in the Midwest and Northeast U.S Water Research, 2023, 229, 119402.	11.3	1
317	Long-range dependence and extreme values of precipitation, phosphorus load, and Cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	5
318	Wetlands as a Local Scale Management Tool to Reduce Algal Growth Potential. Wetlands, 2022, 42, .	1.5	1
319	Microcystin as a biogeochemical cycle: Pools, fluxes, and fates of the cyanotoxin in inland waters. Limnology and Oceanography Letters, 0, , .	3.9	2
320	Analyzing eutrophication and harmful algal bloom dynamics in a deep Mediterranean hypereutrophic reservoir. Environmental Science and Pollution Research, 2023, 30, 37607-37621.	5.3	8
321	Ultrasensitive Aptasensor for Microcystin-LR Detection in Food Samples Based on Target-Activated Assembly of Y-Shaped Hairpin Probes. Journal of Agricultural and Food Chemistry, 2022, 70, 16446-16452.	5.2	3

#	Article	IF	CITATIONS
322	Ultrasensitive Electrochemical Phosphate Detection by Pyridine-zinc(II) Complex. Canadian Journal of Chemistry, 0, , .	1.1	0
323	Sub-chronic exposure to waterborne extracellular microcystin-LR impairs calcium homeostasis in rainbow trout. Ecotoxicology and Environmental Safety, 2023, 251, 114542.	6.0	0
324	Potential Submerged Macrophytes to Mitigate Eutrophication in a High-Elevation Tropical Shallow Lake—A Mesocosm Experiment in the Andes. Water (Switzerland), 2023, 15, 75.	2.7	2
325	A Feasibility Study into the Production of a Mussel Matrix Reference Material for the Cyanobacterial Toxins Microcystins and Nodularins. Toxins, 2023, 15, 27.	3.4	2
326	Comparative metabolomic analysis of exudates of microcystin-producing and microcystin-free Microcystis aeruginosa strains. Frontiers in Microbiology, 0, 13, .	3.5	6
327	Antibodies as Biomarkers: Effect of Microcystin Exposure. Biomarkers in Disease, 2023, , 85-106.	0.1	0
328	Protein synthesis inhibition in neuronal activities. , 2023, , 355-369.		0
329	Trends in Lake Erie phytoplankton biomass and community structure during a 20-year period of rapid environmental change. Journal of Great Lakes Research, 2023, 49, 672-684.	1.9	2
331	Coexistence of <i>Synechococcus</i> and <i>Microcystis</i> Blooms in a Tropical Urban Reservoir and Their Links with Microbiomes. Environmental Science & amp; Technology, 2023, 57, 1613-1624.	10.0	8
332	Detections of cyanobacteria harmful algal blooms (cyanoHABs) in New York State, United States (2012–2020). Lake and Reservoir Management, 2023, 39, 21-36.	1.3	3
333	Sequencing the genomes of LPP-1, the first isolated cyanophage, and its relative LPP-2 reveal different integration mechanisms in closely related phages. Harmful Algae, 2023, 124, 102409.	4.8	2
334	Co-occurrence of freshwater and marine phycotoxins: A record of microcystins and domoic acid in Bogue Sound, North Carolina (2015 to 2020). Harmful Algae, 2023, 125, 102412.	4.8	2
335	Dual characteristics of Bellamya aeruginosa encountering Microcystis aeruginosa: Algal control and toxin depuration. Ecotoxicology and Environmental Safety, 2023, 252, 114596.	6.0	1
336	Trends in Lake Erie zooplankton biomass and community structure during a 25-year period of rapid environmental change. Journal of Great Lakes Research, 2023, 49, 685-697.	1.9	2
337	Cyanotoxins in groundwater; occurrence, potential sources, health impacts and knowledge gap for public health. Toxicon, 2023, 226, 107077.	1.6	7
338	Occurrence and fate of biotoxins and their transformation products in the aquatic environment. , 2023, , 203-232.		0
339	Freshwater Cyanobacterial Toxins, Cyanopeptides and Neurodegenerative Diseases. Toxins, 2023, 15, 233.	3.4	4
340	Patterns and impacts of cyanobacteria in a deep, thermally stratified, oligotrophic lake. AWWA Water Science, 2023, 5, .	2.1	3

#	Article	IF	CITATIONS
341	Metabolomics Reveals Strain-Specific Cyanopeptide Profiles and Their Production Dynamics in Microcystis aeruginosa and M. flos-aquae. Toxins, 2023, 15, 254.	3.4	4
342	Recent advancement in water quality indicators for eutrophication in global freshwater lakes. Environmental Research Letters, 2023, 18, 063004.	5.2	12

843 Eutrophication assessment in Pannonian Basin (the case of LudaÅ; Lake Special Nature Reserve and Palić) Tj ETQq0.0 0 rgBT/Overlock

344	Scenario-based land use modeling for nutrient management in the Skaneateles Lake Watershed. Environmental Challenges, 2023, 12, 100739.	4.2	0
345	Fuzzy-based global water quality assessment and water quality cells identification using satellite data. Marine Pollution Bulletin, 2023, 193, 115148.	5.0	2
346	Spatio-temporal evolution of eutrophication and water quality in the Turawa dam reservoir, Poland. Scientific Reports, 2023, 13, .	3.3	4
347	Towards a quantitative definition of Cyanobacteria blooms. Environmental Reviews, 2023, 31, 643-651.	4.5	1
348	The Economics of Nutrient Pollution from Agriculture. Annual Review of Resource Economics, 2023, 15, 105-130.	3.7	2
349	Applications-oriented algicidal efficacy research and in-depth mechanism of a novel strain Brevibacillus sp. on Microcystis aeruginosa. Environmental Pollution, 2023, 330, 121812.	7.5	4
350	Wildfires in the western United States are mobilizing PM _{2.5} -associated nutrients and may be contributing to downwind cyanobacteria blooms. Environmental Sciences: Processes and Impacts, 2023, 25, 1049-1066.	3.5	6
352	Cyanotoxins, biosynthetic gene clusters, and factors modulating cyanotoxin biosynthesis. World Journal of Microbiology and Biotechnology, 2023, 39, .	3.6	3
353	Predicting water quality variability in a Mediterranean hypereutrophic monomictic reservoir using Sentinel 2 MSI: the importance of considering model functional form. Environmental Monitoring and Assessment, 2023, 195, .	2.7	0
354	Climate change amplifies the risk of potentially toxigenic cyanobacteria. Global Change Biology, 2023, 29, 5240-5249.	9.5	3
355	Toxic Algae in Inland Waters of the Conterminous United States—A Review and Synthesis. Water (Switzerland), 2023, 15, 2808.	2.7	3
356	Geographic Variability, Seasonality, and Increase in ASPCA Animal Poison Control Center Harmful Blue-Green Algae Calls—United States and Canada, 2010–2022. Toxins, 2023, 15, 505.	3.4	0
357	The Effects of PorphyraÂyezoensis Polysaccharides on Intestinal Health of Spotted Sea Bass, Lateolabrax maculatus. Fishes, 2023, 8, 419.	1.7	0
358	Decision Support Framework for Optimal Reservoir Operation to Mitigate Cyanobacterial Blooms in Rivers. Sustainability, 2023, 15, 12789.	3.2	0
360	Simulating the effects of behavioral and physical heterogeneity on nonpoint source pollution. Journal of the American Water Resources Association, 2024, 60, 43-56.	2.4	0

#	Article	IF	CITATIONS
361	Determining the Spectral Requirements for Cyanobacteria Detection for the CyanoSat Hyperspectral Imager with Machine Learning. Sensors, 2023, 23, 7800.	3.8	2
362	A Perspective on Removal of Cyanotoxins from Water Through Advanced Oxidation Processes. Global Challenges, 2023, 7, .	3.6	1
363	Collaborative valuation of ecosystem services to inform lake remediation. Environmental Science and Policy, 2023, 150, 103595.	4.9	0
364	Spatiotemporal variation in the water quality of Vembanad Lake, Kerala, India: a remote sensing approach. Environmental Monitoring and Assessment, 2023, 195, .	2.7	0
365	Secondary Organic Aerosol Formation from Cyanobacterial-Derived Volatile Organic Compounds. ACS Earth and Space Chemistry, 2023, 7, 1798-1813.	2.7	0
366	Algal Blooms in Lakes in China Over the Past Two Decades: Patterns, Trends, and Drivers. Water Resources Research, 2023, 59, .	4.2	0
367	Routine monitoring of western Lake Erie to track water quality changes associated with cyanobacterial harmful algal blooms. Earth System Science Data, 2023, 15, 3853-3868.	9.9	3
368	Ecological implications of fish removal: Insights from <scp>gutâ€content</scp> analysis of roach (<scp><i>Rutilus rutilus</i></scp>) and European perch (<scp><i>Perca fluviatilis</i></scp>) in a eutrophic shallow lake. Journal of Fish Biology, 2023, 103, 1321-1334.	1.6	0
369	Control of cyanobacterial bloom and purification of bloom-laden water by sequential electro-oxidation and electro-oxidation-coagulation. Journal of Hazardous Materials, 2024, 462, 132729.	12.4	0
370	Bioavailable iron concentrations regulate phytoplankton growth and bloom formation in low-nutrient lakes. Science of the Total Environment, 2023, 902, 166399.	8.0	1
371	Summer dynamics of cyanobacteria in an oligo-mesotrophic temperate lake in Northwest Ireland. Hydrobiologia, 2023, 850, 4327-4341.	2.0	0
372	Harmful Cyanobacterial Blooms: Biological Traits, Mechanisms, Risks, and Control Strategies. Annual Review of Environment and Resources, 2023, 48, 123-147.	13.4	5
373	Ab initio modeling and ligand docking of quercetin and the MC-LR transporter protein Oatp1b2/OATP1B3. , 2023, 1, 100011.		0
374	Monitoring phycocyanin concentrations in high-latitude inland lakes using Sentinel-3 OLCI data: The case of Lake Hulun, China. Ecological Indicators, 2023, 155, 110960.	6.3	2
375	Socioeconomic consequences of cyanobacterial harmful algal blooms in small-scale fishing communities of Winam Gulf, Lake Victoria. Journal of Great Lakes Research, 2023, , 102236.	1.9	0
376	Immunotoxicity of cynobacterial toxin Microcystin-LR is mitigated by Quercitin and himalaya tonic Liv52. Toxicon, 2023, 234, 107310.	1.6	0
377	Managing cyanobacteria with a water quality control curtain in Iron Gate Reservoir, California. Lake and Reservoir Management, 2023, 39, 291-310.	1.3	0
378	Prediction of algal bloom using a combination of sparse modeling and a machine learning algorithm: Automatic relevance determination and support vector machine. Ecological Informatics, 2023, 78, 102337.	5.2	Ο

#	Article	IF	CITATIONS
379	Magnetically recyclable Cu2+ doped Fe3O4@biochar for in-situ inactivation of Microcystis aeruginosa: Performance and reusability. Science of the Total Environment, 2024, 907, 167903.	8.0	2
380	Important Role of Overland Flows and Tile Field Pathways in Nutrient Transport. Environmental Science & Technology, 0, , .	10.0	0
381	Recent Advances in Cyanotoxin Synthesis and Applications: A Comprehensive Review. Microorganisms, 2023, 11, 2636.	3.6	1
382	Microcystin-LR Biodestruction by Autochthonous Microbiota of Different Water Bodies in the Northwest of Russia. Biology Bulletin, 2023, 50, 1376-1387.	0.5	1
383	Harmful algal blooms in agricultural irrigation: risks, benefits, and management. Frontiers in Water, 0, 5, .	2.3	0
385	Concentration of total microcystins associates with nitrate and nitrite, and may disrupt the nitrogen cycle, in warm-monomictic lakes of the southcentral United States. Harmful Algae, 2023, 130, 102542.	4.8	1
386	A Case Series of Potential Pediatric Cyanotoxin Exposures Associated with Harmful Algal Blooms in Northwest Ohio. Infectious Disease Reports, 2023, 15, 726-734.	3.1	0
387	Seasonal community dynamics and toxicity potential of cyanobacteria in Lough Arrow, an oligo-mesotrophic lake in the north-west of Ireland. Limnologica, 2023, 103, 126124.	1.5	0
389	Projected climate change impact on cyanobacterial bloom phenology in temperate rivers based on temperature dependency. Water Research, 2024, 249, 120928.	11.3	0
390	One-Week-Ahead Prediction of Cyanobacterial Harmful Algal Blooms in Iowa Lakes. Environmental Science & Technology, 2023, 57, 20636-20646.	10.0	0
391	Cyanobacterial anatoxin-a does not induce in vitro developmental neurotoxicity, but changes gene expression patterns in co-exposure with all-trans retinoic acid. Toxicology Letters, 2024, 391, 39-44.	0.8	0
392	Aerosolized Cyanobacterial Harmful Algal Bloom Toxins: Microcystin Congeners Quantified in the Atmosphere. Environmental Science & Technology, 0, , .	10.0	0
393	Reduction of the toxin microcystin-LR with different types of sediments. Sustainable Environment Research, 2023, 33, .	4.2	1
394	A Processâ€Based Model to Track Water Pollutant Generation at High Resolution and Its Pathway to Discharge. Water Resources Research, 2023, 59, .	4.2	0
395	Effects of bifenthrin on microcrustaceans grazing behavior on a phytoplankton assemblage dominated by Cyanobacteria. Environmental Science and Pollution Research, 0, , .	5.3	0
396	Isolation of Toxin-Producing Cyanobacteria from Aquatic Samples with Anabaena. , 2023, , 71-76.		0
397	Effects of Harmful Cyanobacteria on Drinking Water Source Quality and Ecosystems. Toxins, 2023, 15, 703.	3.4	0
398	Microbiome analysis reveals <i>Microcystis</i> blooms endogenously seeded from benthos within wastewater maturation ponds. Applied and Environmental Microbiology, 0, , .	3.1	0

#	Article	IF	CITATIONS
399	Deep learning-based efficient drone-borne sensing of cyanobacterial blooms using a clique-based feature extraction approach. Science of the Total Environment, 2023, , 169540.	8.0	0
400	Development of an algal bloom satellite and in situ metadata hub with case studies in Canada. Ecological Informatics, 2024, 79, 102447.	5.2	0
401	Non-linear impacts of harmful algae blooms on the coastal tourism economy. Journal of Environmental Management, 2024, 351, 119811.	7.8	0
402	Cyanobacteria and cyanotoxins in the environment and water intakes: Reports, diversity of congeners, detection by mass spectrometry and their impact on health. Toxicon, 2023, , 107589.	1.6	0
403	Cyanobacteria Harmful Algae Blooms: Causes, Impacts, and Risk Management. Water, Air, and Soil Pollution, 2024, 235, .	2.4	0
405	Harmful Cyanobacterial Blooms: Going beyond the "Green―to Monitor and Predict HCBs. Hydrobiology, 2024, 3, 11-30.	1.7	0
406	Understanding the Water Quality Dynamics in a Large Tropical Reservoir Under Hydrological Drought Conditions. Water, Air, and Soil Pollution, 2024, 235, .	2.4	0
407	Secondary metabolites in cyanobacteria. , 2024, , 283-311.		0
408	Upstream nitrogen availability determines the Microcystis salt tolerance and influences microcystins release in brackish water. Water Research, 2024, 252, 121213.	11.3	0
409	A Protein Phosphatase 2A-Based Assay to Detect Okadaic Acids and Microcystins. Journal of Marine Science and Engineering, 2024, 12, 244.	2.6	0
410	Cyanopeptolins and Anabaenopeptins Are the Dominant Cyanopeptides from Planktothrix Strains Collected in Canadian Lakes. Toxins, 2024, 16, 110.	3.4	0
411	A Machine Learning and Remote Sensingâ€Based Model for Algae Pigment and Dissolved Oxygen Retrieval on a Small Inland Lake. Water Resources Research, 2024, 60, .	4.2	0
412	Monitoring cyanobacterial blooms: a strategy combining predictive modeling and remote sensing approaches. Environmental Earth Sciences, 2024, 83, .	2.7	0
413	Nutrient dynamics in rivers and lakes. , 2024, , .		0