The Brazilian Zika virus strain causes birth defects in ea

Nature 534, 267-271 DOI: 10.1038/nature18296

Citation Report

#	Article	IF	CITATIONS
2	Zika. Journal of King Abdulaziz University, Islamic Economics, 2016, 37, 831-833.	1.1	7
3	Article Commentary: Archival Collections are Important in the Study of the Biology, Diversity, and Evolution of Arboviruses. Evolutionary Bioinformatics, 2016, 12s2, EBO.S40569.	1.2	2
4	Zika antiviral chemotherapy: identification of drugs and promising starting points for drug discovery from an FDA-approved library. F1000Research, 2016, 5, 2523.	1.6	60
5	Use of transgenic <i>Aedes aegypti</i> in Brazil: risk perception and assessment. Bulletin of the World Health Organization, 2016, 94, 766-771.	3.3	23
6	DETECTION OF HUMAN ANTI-ZIKA VIRUS IgG BY ELISA USING AN ANTIGEN FROM in vitro INFECTED VERO CELLS: PRELIMINARY RESULTS. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2016, 58, 89.	1.1	9
7	ZIKA VIRUS: A REVIEW FROM THE VIRUS BASICS TO PROPOSED MANAGEMENT STRATEGIES. Mediterranean Journal of Hematology and Infectious Diseases, 2016, 8, 2016056.	1.3	11
8	Recent developments in vertical transmission of ZIKA virus. Oncotarget, 2016, 7, 62797-62798.	1.8	1
9	Zika virus productively infects primary human placenta-specific macrophages. JCI Insight, 2016, 1, .	5.0	153
10	Development of a Zika Virus Infection Model in Cynomolgus Macaques. Frontiers in Microbiology, 2016, 7, 2028.	3.5	106
11	Zika Fetal Neuropathogenesis: Etiology of a Viral Syndrome. PLoS Neglected Tropical Diseases, 2016, 10, e0004877.	3.0	65
12	Preventing Zika Virus Infection during Pregnancy Using a Seasonal Window of Opportunity for Conception. PLoS Biology, 2016, 14, e1002520.	5.6	15
13	Potential for Zika Virus to Establish a Sylvatic Transmission Cycle in the Americas. PLoS Neglected Tropical Diseases, 2016, 10, e0005055.	3.0	89
14	Zika (PRVABC59) Infection Is Associated with T cell Infiltration and Neurodegeneration in CNS of Immunocompetent Neonatal C57Bl/6 Mice. PLoS Pathogens, 2016, 12, e1006004.	4.7	146
15	Altered intrauterine ultrasound, fetal head circumference growth and neonatal outcomes among suspected cases of congenital Zika syndrome in Brazil. Revista Brasileira De Saude Materno Infantil, 2016, 16, S7-S15.	0.5	6
16	Surveillance of Zika virus infection and microcephaly in Brazil. Lancet, The, 2016, 388, 846-847.	13.7	21
17	Neuroteratogenic Viruses and Lessons for Zika Virus Models. Trends in Microbiology, 2016, 24, 622-636.	7.7	28
18	Modeling Zika Virus Infection in Mice. Cell Stem Cell, 2016, 19, 4-6.	11.1	30
19	Eliminating Cancer Stem Cells in CML with Combination Transcriptional Therapy. Cell Stem Cell, 2016, 19, 6-8.	11.1	4

TION RE

#	Article	IF	CITATIONS
20	Advances in Zika Virus Research: Stem Cell Models, Challenges, and Opportunities. Cell Stem Cell, 2016, 19, 690-702.	11.1	103
21	Genetic Ablation of AXL Does Not Protect Human Neural Progenitor Cells and Cerebral Organoids from Zika Virus Infection. Cell Stem Cell, 2016, 19, 703-708.	11.1	234
22	Editorial brain malformation surveillance in the Zika era. Birth Defects Research Part A: Clinical and Molecular Teratology, 2016, 106, 869-874.	1.6	5
23	Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proceedings of the United States of America, 2016, 113, 14408-14413.	7.1	432
24	Larval application of sodium channel homologous dsRNA restores pyrethroid insecticide susceptibility in a resistant adult mosquito population. Parasites and Vectors, 2016, 9, 397.	2.5	35
25	Zika virus infection induces mitosis abnormalities and apoptotic cell death of human neural progenitor cells. Scientific Reports, 2016, 6, 39775.	3.3	181
26	Estimation of Zika virus prevalence by appearance of microcephaly. BMC Infectious Diseases, 2016, 16, 754.	2.9	13
27	The Neurobiology of Zika Virus. Neuron, 2016, 92, 949-958.	8.1	101
28	ZIKV Strains' Different Phenotypes in Human Neural Cells Could be a Hint for the Emergence of the New Clinical Neurological Outcomes. EBioMedicine, 2016, 13, 35-36.	6.1	1
29	Mouse studies confirm the link between Zika virus infection and microcephaly. Nature Reviews Neurology, 2016, 12, 369-369.	10.1	11
30	Tracing the steps of Zika virus. Nature Reviews Microbiology, 2016, 14, 401-401.	28.6	13
31	The global threat of Zika virus to pregnancy: epidemiology, clinical perspectives, mechanisms, and impact. BMC Medicine, 2016, 14, 112.	5.5	78
32	Epidemiologic investigation of a family cluster of imported ZIKV cases in Guangdong, China: probable human-to-human transmission. Emerging Microbes and Infections, 2016, 5, 1-7.	6.5	17
33	Zika Virus–Associated Neurological Disease in the Adult: Guillain–Barré Syndrome, Encephalitis, and Myelitis. Seminars in Reproductive Medicine, 2016, 34, 273-279.	1.1	76
34	Pathogenesis and Molecular Mechanisms of Zika Virus. Seminars in Reproductive Medicine, 2016, 34, 266-272.	1.1	13
35	Zika Virus Infection in Mice Causes Panuveitis with Shedding of Virus in Tears. Cell Reports, 2016, 16, 3208-3218.	6.4	243
36	Zika Virus Strains Potentially Display Different Infectious Profiles in Human Neural Cells. EBioMedicine, 2016, 12, 161-169.	6.1	137
37	Organoids: Modeling Development and the Stem Cell Niche in a Dish. Developmental Cell, 2016, 38, 590-600.	7.0	334

#	Article	IF	CITATIONS
38	Zika virus infection and pregnancy: what we do and do not know. Pathogens and Global Health, 2016, 110, 262-268.	2.3	21
39	Characterization of a 2016 Clinical Isolate of Zika Virus in Non-human Primates. EBioMedicine, 2016, 12, 170-177.	6.1	118
40	Zika Virus—A Public Health Emergency of International Concern. JAMA Neurology, 2016, 73, 1395.	9.0	22
41	Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage. Development (Cambridge), 2016, 143, 4127-4136.	2.5	154
42	Zika Virus: Emergence, Phylogenetics, Challenges, and Opportunities. ACS Infectious Diseases, 2016, 2, 763-772.	3.8	25
43	Preventative Vaccines for Zika Virus Outbreak: Preliminary Evaluation. EBioMedicine, 2016, 13, 315-320.	6.1	104
44	Substrate profiling of Zika virus <scp>NS</scp> 2Bâ€ <scp>NS</scp> 3 protease. FEBS Letters, 2016, 590, 3459-3468.	2.8	45
45	Zika virus-associated brain damage: animal models and open issues. Emerging Microbes and Infections, 2016, 5, 1-2.	6.5	4
46	Structural Basis of Zika Virus-Specific Antibody Protection. Cell, 2016, 166, 1016-1027.	28.9	325
47	A Screen of FDA-Approved Drugs for Inhibitors of Zika Virus Infection. Cell Host and Microbe, 2016, 20, 259-270.	11.0	420
48	Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science, 2016, 353, 1129-1132.	12.6	461
49	Imaging of congenital Zika virus infection: the route to identification of prognostic factors. Prenatal Diagnosis, 2016, 36, 799-811.	2.3	65
50	Zika virus disease: a current review of the literature. Infection, 2016, 44, 695-705.	4.7	72
51	Building brains in a dish: Prospects for growing cerebral organoids from stem cells. Neuroscience, 2016, 334, 105-118.	2.3	49
52	Zika Virus NS4A and NS4B Proteins Deregulate Akt-mTOR Signaling in Human Fetal Neural Stem Cells to Inhibit Neurogenesis and Induce Autophagy. Cell Stem Cell, 2016, 19, 663-671.	11.1	437
53	Zika Virus Disrupts Phospho-TBK1 Localization and Mitosis in Human Neuroepithelial Stem Cells and Radial Glia. Cell Reports, 2016, 16, 2576-2592.	6.4	253
54	Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nature Medicine, 2016, 22, 1101-1107.	30.7	581
55	Zika virus — reigniting the TORCH. Nature Reviews Microbiology, 2016, 14, 707-715.	28.6	293

#	Article	IF	CITATIONS
56	Zika Virus Infects Neural Progenitors in the Adult Mouse Brain and Alters Proliferation. Cell Stem Cell, 2016, 19, 593-598.	11.1	242
57	Zika virus: from pathogenesis to disease control. FEMS Microbiology Letters, 2016, 363, fnw202.	1.8	62
58	Vaginal Exposure to Zika Virus during Pregnancy Leads to Fetal Brain Infection. Cell, 2016, 166, 1247-1256.e4.	28.9	347
59	Zika Virus Infection in Dexamethasone-immunosuppressed Mice Demonstrating Disseminated Infection with Multi-organ Involvement Including Orchitis Effectively Treated by Recombinant Type I Interferons. EBioMedicine, 2016, 14, 112-122.	6.1	77
60	Zika Virus Induced Mortality and Microcephaly in Chicken Embryos. Stem Cells and Development, 2016, 25, 1691-1697.	2.1	84
61	More pieces to the microcephaly–Zika virus puzzle in Brazil. Lancet Infectious Diseases, The, 2016, 16, 1307-1309.	9.1	27
62	AXL-Mediated Productive Infection of Human Endothelial Cells by Zika Virus. Circulation Research, 2016, 119, 1183-1189.	4.5	136
63	Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nature Medicine, 2016, 22, 1256-1259.	30.7	241
64	Dishing out mini-brains: Current progress and future prospects in brain organoid research. Developmental Biology, 2016, 420, 199-209.	2.0	256
65	Assessing the global threat from Zika virus. Science, 2016, 353, aaf8160.	12.6	311
66	Zika virus as a causative agent for primary microencephaly: the evidence so far. Archives of Microbiology, 2016, 198, 595-601.	2.2	26
67	Modeling Zika Virus Infection in Pregnancy. New England Journal of Medicine, 2016, 375, 481-484.	27.0	93
68	Neurodegenerative disorders share common features of "loss of function―states of a proposed mechanism of nervous system functions. Biomedicine and Pharmacotherapy, 2016, 83, 412-430.	5.6	18
69	The promises and challenges of human brain organoids as models of neuropsychiatric disease. Nature Medicine, 2016, 22, 1220-1228.	30.7	224
70	ZIKA virus elicits P53 activation and genotoxic stress in human neural progenitors similar to mutations involved in severe forms of genetic microcephaly and p53. Cell Death and Disease, 2016, 7, e2440-e2440.	6.3	88
71	A rhesus macaque model of Asian-lineage Zika virus infection. Nature Communications, 2016, 7, 12204.	12.8	353
72	Mosquito-transmitted viruses – the great Brazilian challenge. Brazilian Journal of Microbiology, 2016, 47, 38-50.	2.0	47
73	CNS disease models with human pluripotent stem cells in the CRISPR age. Current Opinion in Cell Biology, 2016, 43, 96-103.	5.4	19

#	Article	IF	CITATIONS
74	Dynamics of Human and Viral RNA Methylation during Zika Virus Infection. Cell Host and Microbe, 2016, 20, 666-673.	11.0	318
75	Zika virus infection during the period of maximal brain growth causes microcephaly and corticospinal neuron apoptosis in wild type mice. Scientific Reports, 2016, 6, 34793.	3.3	80
76	ZIKA virus reveals broad tissue and cell tropism during the first trimester of pregnancy. Scientific Reports, 2016, 6, 35296.	3.3	160
78	Modeling Brain Development Using Human Cells for the Study and Treatment of Zika Virus Infections. Current Behavioral Neuroscience Reports, 2016, 3, 381-383.	1.3	0
79	Zika Virus Infection and Development of a Murine Model. Neurotoxicity Research, 2016, 30, 131-134.	2.7	11
80	Stem Cell Models of Human Brain Development. Cell Stem Cell, 2016, 18, 736-748.	11.1	290
81	Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nature Immunology, 2016, 17, 1102-1108.	14.5	781
82	Western Zika Virus in Human Fetal Neural Progenitors Persists Long Term with Partial Cytopathic and Limited Immunogenic Effects. Cell Reports, 2016, 15, 2315-2322.	6.4	119
83	Zika virus causes brain defects in mice. Nature Reviews Neuroscience, 2016, 17, 399-399.	10.2	0
84	Neural stem cells attacked by Zika virus. Cell Research, 2016, 26, 753-754.	12.0	20
85	Zika virus update II: Recent development of animal models—Proofs of association with human pathogenesis. Journal of Medical Virology, 2016, 88, 1657-1658.	5.0	8
86	Identification of Zika Virus and Dengue Virus Dependency Factors using Functional Genomics. Cell Reports, 2016, 16, 232-246.	6.4	314
87	Zika in the Brain: New Models Shed Light on Viral Infection. Trends in Molecular Medicine, 2016, 22, 639-641.	6.7	12
88	Vaccine protection against Zika virus from Brazil. Nature, 2016, 536, 474-478.	27.8	460
89	Mechanisms of Zika Virus Infection and Neuropathogenesis. DNA and Cell Biology, 2016, 35, 367-372.	1.9	40
90	Zika virus-associated neurological disorders: a review. Brain, 2016, 139, 2122-2130.	7.6	391
91	Human tissues in a dish: The research and ethical implications of organoid technology. Science, 2017, 355, .	12.6	202
92	Zika virus disrupts molecular fingerprinting of human neurospheres. Scientific Reports, 2017, 7, 40780.	3.3	120

#	Article	IF	Citations
93	Zika Virus: Epidemiology, Pathogenesis and Human Disease. American Journal of the Medical Sciences, 2017, 353, 466-473.	1.1	28
94	Zika virus from a Southeast Asian perspective. Asian Pacific Journal of Tropical Medicine, 2017, 10, 1-5.	0.8	23
95	Systematic time-dependent visualization and quantitation of the neurogenic rate in brain organoids. Biochemical and Biophysical Research Communications, 2017, 483, 94-100.	2.1	3
96	Arbovirus epidemics and blood safety in Brazil. ISBT Science Series, 2017, 12, 233-238.	1.1	2
97	Mapping and Role of the CD8 + T Cell Response During Primary Zika Virus Infection in Mice. Cell Host and Microbe, 2017, 21, 35-46.	11.0	211
98	Molecular and cellular insights into Zika virus-related neuropathies. Journal of NeuroVirology, 2017, 23, 341-346.	2.1	15
99	The impact of Zika virus in the brain. Biochemical and Biophysical Research Communications, 2017, 492, 603-607.	2.1	22
100	Animal Models of Zika Virus Infection, Pathogenesis, and Immunity. Journal of Virology, 2017, 91, .	3.4	225
101	Possible Roles of New Mutations Shared by Asian and American Zika Viruses. Molecular Biology and Evolution, 2017, 34, msw270.	8.9	19
102	Preventive and therapeutic challenges in combating Zika virus infection: are we getting any closer?. Journal of NeuroVirology, 2017, 23, 347-357.	2.1	12
103	Recent Zika Virus Isolates Induce Premature Differentiation of Neural Progenitors in Human Brain Organoids. Cell Stem Cell, 2017, 20, 397-406.e5.	11.1	267
104	Zika Virus Targeting in the Developing Brain. Journal of Neuroscience, 2017, 37, 2161-2175.	3.6	168
105	Primary Human Placental Trophoblasts are Permissive for Zika Virus (ZIKV) Replication. Scientific Reports, 2017, 7, 41389.	3.3	114
106	Intrauterine Zika virus infection of pregnant immunocompetent mice models transplacental transmission and adverse perinatal outcomes. Nature Communications, 2017, 8, 14575.	12.8	154
107	Prospects for a Zika Virus Vaccine. Immunity, 2017, 46, 176-182.	14.3	79
109	A Reverse Genetics Platform That Spans the Zika Virus Family Tree. MBio, 2017, 8, .	4.1	59
110	Epidemiology, Prevention, and Potential Future Treatments of Sexually Transmitted Zika Virus Infection. Current Infectious Disease Reports, 2017, 19, 16.	3.0	33
111	Bridging Knowledge Gaps to Understand How Zika Virus Exposure and Infection Affect Child Development. JAMA Pediatrics, 2017, 171, 478.	6.2	64

#	Article	IF	CITATIONS
112	Zika virus causes testicular atrophy. Science Advances, 2017, 3, e1602899.	10.3	111
113	Ultrastructural Characterization of Zika Virus Replication Factories. Cell Reports, 2017, 18, 2113-2123.	6.4	274
114	Infant outcomes among women with Zika virus infectionÂduring pregnancy: results of a large prenatalÂZikaÂscreening program. American Journal of Obstetrics and Gynecology, 2017, 216, 292.e1-292.e8.	1.3	31
115	Zika-related microcephaly in experimental models. Temperature, 2017, 4, 13-14.	3.0	3
116	Zika Virus Pathogenesis and Tissue Tropism. Cell Host and Microbe, 2017, 21, 134-142.	11.0	337
117	Development of a high-throughput colorimetric Zika virus infection assay. Medical Microbiology and Immunology, 2017, 206, 175-185.	4.8	34
118	AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from other pathogenic flaviviruses. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2024-2029.	7.1	177
119	Ocular Findings in Children with Congenital Zika Syndrome. , 2017, , 47-57.		0
120	Zika virus: History, epidemiology, transmission, and clinical presentation. Journal of Neuroimmunology, 2017, 308, 50-64.	2.3	254
121	Chikungunya Virus and Zika Virus Expansion: An Imitation of Dengue Virus. , 2017, , 101-130.		2
122	Modeling neurodevelopmental and psychiatric diseases with human iPSCs. Journal of Neuroscience Research, 2017, 95, 1097-1109.	2.9	11
123	Modeling Williams syndrome with induced pluripotent stem cells. Neurogenesis (Austin, Tex), 2017, 4, e1283187.	1.5	11
124	Vulnerability of primitive human placental trophoblast to Zika virus. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1587-E1596.	7.1	152
125	Studying the effects of emerging infections on the fetus: Experience with West Nile and Zika viruses. Birth Defects Research, 2017, 109, 363-371.	1.5	12
126	Protective efficacy of Zika vaccine in AG129 mouse model. Scientific Reports, 2017, 7, 46375.	3.3	84
127	Maternal-Fetal Transmission of Zika Virus: Routes and Signals for Infection. Journal of Interferon and Cytokine Research, 2017, 37, 287-294.	1.2	44
128	The Natural Product Cavinafungin Selectively Interferes with Zika and Dengue Virus Replication by Inhibition of the Host Signal Peptidase. Cell Reports, 2017, 19, 451-460.	6.4	63
129	Advances in research on Zika virus. Asian Pacific Journal of Tropical Medicine, 2017, 10, 321-331.	0.8	30

#	Article	IF	CITATIONS
130	Human induced pluripotent stem cells for modelling neurodevelopmental disorders. Nature Reviews Neurology, 2017, 13, 265-278.	10.1	135
131	Zika virus infection of adult and fetal STAT2 knock-out hamsters. Virology, 2017, 507, 89-95.	2.4	49
132	Selective Activation of Type II Interferon Signaling by Zika Virus NS5 Protein. Journal of Virology, 2017, 91, .	3.4	88
133	Polysulfonate suramin inhibits Zika virus infection. Antiviral Research, 2017, 143, 186-194.	4.1	67
134	Characterization of the Zika virus two-component NS2B-NS3 protease and structure-assisted identification of allosteric small-molecule antagonists. Antiviral Research, 2017, 143, 218-229.	4.1	104
135	Congenital Zika Virus Infection Induces Severe Spinal Cord Injury. Clinical Infectious Diseases, 2017, 65, 687-690.	5.8	24
136	Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nature Reviews Drug Discovery, 2017, 16, 565-586.	46.4	227
137	Visual impairment in children with congenital Zika syndrome. Journal of AAPOS, 2017, 21, 295-299.e2.	0.3	69
138	Cell diversity and network dynamics in photosensitive human brain organoids. Nature, 2017, 545, 48-53.	27.8	933
139	Linearâ€Noâ€Threshold Default Assumptions are Unwarranted for Cytotoxic Endpoints Independently Triggered by Ultrasensitive Molecular Switches. Risk Analysis, 2017, 37, 1808-1816.	2.7	10
140	Overview on the Current Status of Zika Virus Pathogenesis and Animal Related Research. Journal of NeuroImmune Pharmacology, 2017, 12, 371-388.	4.1	18
141	Zika Virus Persistence in the Central Nervous System and Lymph Nodes of Rhesus Monkeys. Cell, 2017, 169, 610-620.e14.	28.9	191
142	<i>N</i> -Methyl- <scp>d</scp> -Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection. MBio, 2017, 8, .	4.1	70
143	Experimental Zika virus infection induces spinal cord injury and encephalitis in newborn Swiss mice. Experimental and Toxicologic Pathology, 2017, 69, 63-71.	2.1	55
144	<i>De Novo</i> Generation and Characterization of New Zika Virus Isolate Using Sequence Data from a Microcephaly Case. MSphere, 2017, 2, .	2.9	47
145	An update on Zika virus infection. Lancet, The, 2017, 390, 2099-2109.	13.7	496
146	Zika Virus and Patient Blood Management. Anesthesia and Analgesia, 2017, 124, 282-289.	2.2	15
147	Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network. Antiviral Research, 2017, 144, 223-246.	4.1	104

#	Article	IF	CITATIONS
148	DNA vaccination protects mice against Zika virus-induced damage to the testes. Nature Communications, 2017, 8, 15743.	12.8	90
149	Progress in human pluripotent stem cell-based modeling systems for neurological diseases. Neurogenesis (Austin, Tex), 2017, 4, e1324258.	1.5	0
150	Differential neuronal susceptibility and apoptosis in congenital <scp>Z</scp> ika virus infection. Annals of Neurology, 2017, 82, 121-127.	5.3	31
151	How does Zika virus cause microcephaly?. Genes and Development, 2017, 31, 849-861.	5.9	124
152	Visual and Motor Deficits in Grown-up Mice with Congenital Zika Virus Infection. EBioMedicine, 2017, 20, 193-201.	6.1	55
153	Neurodevelopmental protein Musashi-1 interacts with the Zika genome and promotes viral replication. Science, 2017, 357, 83-88.	12.6	152
154	T Cell Immunity and Zika Virus Vaccine Development. Trends in Immunology, 2017, 38, 594-605.	6.8	32
155	Zika Virus Hijacks Stress Granule Proteins and Modulates the Host Stress Response. Journal of Virology, 2017, 91, .	3.4	96
156	Zika Virus Infects Human Fetal Brain Microglia and Induces Inflammation. Clinical Infectious Diseases, 2017, 64, 914-920.	5.8	133
157	Zika infection and the development of neurological defects. Cellular Microbiology, 2017, 19, e12744.	2.1	87
158	The phenotypic spectrum of congenital Zika syndrome. American Journal of Medical Genetics, Part A, 2017, 173, 841-857.	1.2	167
159	The spectrum of neuropathological changes associated with congenital Zika virus infection. Acta Neuropathologica, 2017, 133, 983-999.	7.7	155
160	Molecular dynamics simulations of Zika virus NS3 helicase: Insights into RNA binding site activity. Biochemical and Biophysical Research Communications, 2017, 492, 643-651.	2.1	32
161	Zika virus evades interferon-mediated antiviral response through the co-operation of multiple nonstructural proteins in vitro. Cell Discovery, 2017, 3, 17006.	6.7	166
162	An update on stem cell biology and engineering for brain development. Molecular Psychiatry, 2017, 22, 808-819.	7.9	27
163	Potential mechanisms of Zikaâ€ŀinked microcephaly. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e273.	5.9	38
164	Decision making in the face of uncertainty: the challenge of emerging infectious diseases. Transfusion, 2017, 57, 723-728.	1.6	5
165	Increased activity of unlinked Zika virus NS2B/NS3 protease compared to linked Zika virus protease. Biochemical and Biophysical Research Communications, 2017, 492, 668-673.	2.1	21

		CITATION REPORT		
#	Article	IF		CITATIONS
166	The Race To Find Antivirals for Zika Virus. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	2	86
167	Host-Virus Interaction of ZIKA Virus in Modulating Disease Pathogenesis. Journal of NeuroImmun Pharmacology, 2017, 12, 219-232.	e 4.:	1	26
168	Identification of Zika virus epitopes reveals immunodominant and protective roles for dengue vir cross-reactive CD8+ T cells. Nature Microbiology, 2017, 2, 17036.	us 13	3.3	167
169	25-Hydroxycholesterol Protects Host against Zika Virus Infection and Its Associated Microcephal Mouse Model. Immunity, 2017, 46, 446-456.	y in a 14	.3	276
170	Translational applications of adult stem cell-derived organoids. Development (Cambridge), 2017 968-975.	144, 2.8	5	103
171	Using brain organoids to understand Zika virus-induced microcephaly. Development (Cambridge 144, 952-957.), 2017, 2.	5	201
172	Disease Modeling in Stem Cell-Derived 3D Organoid Systems. Trends in Molecular Medicine, 201 393-410.	7, 23, 6.'	7	575
173	Induction of Expansion and Folding in Human Cerebral Organoids. Cell Stem Cell, 2017, 20, 385-	396.e3. 11	.1	346
174	Primer on Microcephaly. NeoReviews, 2017, 18, e44-e51.	0.	8	4
175	Characterization of cytopathic factors through genome-wide analysis of the Zika viral proteins in fission yeast. Proceedings of the National Academy of Sciences of the United States of America, 114, E376-E385.	2017, 7.:	1	56
176	Zika Virus Infects Early- and Midgestation Human Maternal Decidual Tissues, Inducing Distinct In Tissue Responses in the Maternal-Fetal Interface. Journal of Virology, 2017, 91, .	nate 3.4	4	95
177	Determinants of orofacial clefting II: Effects of 5-Aza-2′-deoxycytidine on gene methylation du development of the first branchial arch. Reproductive Toxicology, 2017, 67, 100-110.	ring 2.	9	8
178	Mechanisms and possible controls of the in utero Zika virus infection: Where is the Holy Grail?. American Journal of Reproductive Immunology, 2017, 77, e12605.	1.2	2	4
179	Induced pluripotent stem cell technology: a decade of progress. Nature Reviews Drug Discovery, 16, 115-130.	2017, 46	5.4	1,076
180	Ocular Histopathologic Features of Congenital Zika Syndrome. JAMA Ophthalmology, 2017, 135	, 1163. 2.8	5	50
181	Introduction of Zika virus in Bangladesh: An impending public health threat. Asian Pacific Journal Tropical Medicine, 2017, 10, 925-928.	of	8	11
182	The Zika virus epidemic from an ophthalmologic perspective. Journal of AAPOS, 2017, 21, e53-e5	4. 0.	3	0
183	The African Zika virus MR-766 is more virulent and causes more severe brain damage than currer Asian lineage and Dengue virus. Development (Cambridge), 2017, 144, 4114-4124.	t 2.	5	76

#	Article	IF	CITATIONS
184	Modelling Zika Virus Infection of the Developing Human Brain In Vitro Using Stem Cell Derived Cerebral Organoids. Journal of Visualized Experiments, 2017, , .	0.3	23
185	Human antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus infection. Nature Immunology, 2017, 18, 1261-1269.	14.5	95
186	A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science, 2017, 358, 933-936.	12.6	399
187	Zika Virus Causes Persistent Infection in Porcine Conceptuses and may Impair Health in Offspring. EBioMedicine, 2017, 25, 73-86.	6.1	38
188	Zika Virus: Immune Evasion Mechanisms, Currently Available Therapeutic Regimens, and Vaccines. Viral Immunology, 2017, 30, 682-690.	1.3	17
189	Chloroquine, a FDA-approved Drug, Prevents Zika Virus Infection and its Associated Congenital Microcephaly in Mice. EBioMedicine, 2017, 24, 189-194.	6.1	144
190	Zika virus: An emerging challenge for obstetrics and gynecology. Taiwanese Journal of Obstetrics and Gynecology, 2017, 56, 585-592.	1.3	6
191	Nonhuman Primates: A Vital Model for Basic and Applied Research on Female Reproduction, Prenatal Development, and Women's Health. ILAR Journal, 2017, 58, 281-294.	1.8	48
192	Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease. Protein and Cell, 2017, 8, 823-833.	11.0	124
193	Zika virus infects renal proximal tubular epithelial cells with prolonged persistency and cytopathic effects. Emerging Microbes and Infections, 2017, 6, 1-7.	6.5	34
194	Ribavirin inhibits Zika virus (ZIKV) replication inÂvitro and suppresses viremia in ZIKV-infected STAT1-deficient mice. Antiviral Research, 2017, 146, 1-11.	4.1	82
195	Zika-Virus-Encoded NS2A Disrupts Mammalian Cortical Neurogenesis by Degrading Adherens Junction Proteins. Cell Stem Cell, 2017, 21, 349-358.e6.	11.1	163
196	The Zika threat to the periphery. Nature Neuroscience, 2017, 20, 1191-1192.	14.8	1
197	Development of a recombinant yellow fever vector expressing a HIV clade C founder envelope gp120. Journal of Virological Methods, 2017, 249, 85-93.	2.1	2
198	Fieldâ€Effect Biosensors for Onâ€ s ite Detection: Recent Advances and Promising Targets. Advanced Healthcare Materials, 2017, 6, 1700796.	7.6	44
199	Gestational Stage and IFN-λ Signaling Regulate ZIKV Infection In Utero. Cell Host and Microbe, 2017, 22, 366-376.e3.	11.0	137
200	The use of brain organoids to investigate neural development and disease. Nature Reviews Neuroscience, 2017, 18, 573-584.	10.2	528
201	Zika Virus-associated Ocular and Neurologic Disorders. Pediatric Infectious Disease Journal, 2017, 36, e341-e346.	2.0	8

#	Article	IF	CITATIONS
202	Zika Virus Infection. Pediatric Clinics of North America, 2017, 64, 937-951.	1.8	24
203	NGO Organizing for Environmental Sustainability in Brazil: Meaningful Work, Commonality, and Contradiction. SAGE Open, 2017, 7, 215824401770932.	1.7	4
204	Analytical and clinical performance of a Chikungunya qRT-PCR for Central and South America. Diagnostic Microbiology and Infectious Disease, 2017, 89, 35-39.	1.8	13
205	Microcephaly and Zika virus: Neuroradiological aspects, clinical findings and a proposed framework for early evaluation of child development. , 2017, 49, 70-82.		15
206	Zika virus directly infects peripheral neurons and induces cell death. Nature Neuroscience, 2017, 20, 1209-1212.	14.8	85
207	Sexual and Vertical Transmission of Zika Virus in anti-interferon receptor-treated Rag1-deficient mice. Scientific Reports, 2017, 7, 7176.	3.3	44
208	Phenotypic Differences between Asian and African Lineage Zika Viruses in Human Neural Progenitor Cells. MSphere, 2017, 2, .	2.9	83
209	Ethical Issues in the Use of Animal Models for Tissue Engineering: Reflections on Legal Aspects, Moral Theory, Three Rs Strategies, and Harm–Benefit Analysis. Tissue Engineering - Part C: Methods, 2017, 23, 850-862.	2.1	22
210	The missing pieces: Lack of Zika data from Africa complicates search for answers. Nature Medicine, 2017, 23, 904-906.	30.7	10
211	Potential for treatment and a Zika virus vaccine. Current Opinion in Pediatrics, 2017, 29, 114-121.	2.0	9
212	Organoid culture systems to study host–pathogen interactions. Current Opinion in Immunology, 2017, 48, 15-22.	5.5	131
213	Modeling of TREX1-Dependent Autoimmune Disease using Human Stem Cells Highlights L1 Accumulation as a Source of Neuroinflammation. Cell Stem Cell, 2017, 21, 319-331.e8.	11.1	254
214	Characterization of <i>cis</i> -Acting RNA Elements of Zika Virus by Using a Self-Splicing Ribozyme-Dependent Infectious Clone. Journal of Virology, 2017, 91, .	3.4	46
215	Viral Hijacking of Formins in Neurodevelopmental Pathologies. Trends in Molecular Medicine, 2017, 23, 778-785.	6.7	4
216	Zika virus and reproduction: facts, questions and current management. Human Reproduction Update, 2017, 23, 629-645.	10.8	42
217	The latest advancements in Zika virus vaccine development. Expert Review of Vaccines, 2017, 16, 951-954.	4.4	12
218	Zika Virus and the Eye: Where Are We Now and Where Are We Heading?. Current Ophthalmology Reports, 2017, 5, 264-269.	1.2	0
219	Present and future of modeling human brain development in 3D organoids. Current Opinion in Cell Biology, 2017, 49, 47-52.	5.4	88

#	Article	IF	Citations
220	New technologies for engineering neural tissue from stem cells. , 2017, , 181-204.		1
221	Ribosomal stress and Tp53-mediated neuronal apoptosis in response to capsid protein of the Zika virus. Scientific Reports, 2017, 7, 16652.	3.3	45
222	ZIKV infection regulates inflammasomes pathway for replication in monocytes. Scientific Reports, 2017, 7, 16050.	3.3	31
223	Characterization of large and small-plaque variants in the Zika virus clinical isolate ZIKV/Hu/S36/Chiba/2016. Scientific Reports, 2017, 7, 16160.	3.3	35
224	Repurposing of the anti-malaria drug chloroquine for Zika Virus treatment and prophylaxis. Scientific Reports, 2017, 7, 15771.	3.3	111
225	Consequences of congenital Zika virus infection. Current Opinion in Virology, 2017, 27, 1-7.	5.4	44
226	Outcomes of Congenital Zika Disease Depend on Timing of Infection and Maternal-Fetal Interferon Action. Cell Reports, 2017, 21, 1588-1599.	6.4	83
227	Zika Virus Infects Intermediate Progenitor Cells and Post-mitotic Committed Neurons in Human Fetal Brain Tissues. Scientific Reports, 2017, 7, 14883.	3.3	42
228	Specific Biomarkers Associated With Neurological Complications and Congenital Central Nervous System Abnormalities From Zika Virus–Infected Patients in Brazil. Journal of Infectious Diseases, 2017, 216, 172-181.	4.0	82
229	Early insights into Zikaâ€~̃s microcephaly physiopathology from the epicenter of the outbreak: teratogenic apoptosis in the central nervous system. Acta Obstetricia Et Gynecologica Scandinavica, 2017, 96, 1039-1044.	2.8	4
230	Non-model model organisms. BMC Biology, 2017, 15, 55.	3.8	164
231	Zika virus tropism and interactions in myelinating neural cell cultures: CNS cells and myelin are preferentially affected. Acta Neuropathologica Communications, 2017, 5, 50.	5.2	56
232	Immune Cell Dynamics in Rhesus Macaques Infected with a Brazilian Strain of Zika Virus. Journal of Immunology, 2017, 199, 1003-1011.	0.8	51
233	Zika virus: Global health challenge, threat and current situation. Journal of Medical Virology, 2017, 89, 943-951.	5.0	21
234	Electrochemical Biosensors for Early Stage Zika Diagnostics. Trends in Biotechnology, 2017, 35, 308-317.	9.3	77
235	Autopsy and Postmortem Studies Are Concordant: Pathology of Zika Virus Infection Is Neurotropic in Fetuses and Infants With Microcephaly Following Transplacental Transmission. Archives of Pathology and Laboratory Medicine, 2017, 141, 68-72.	2.5	68
236	Zika Virus: Pathology From the Pandemic. Archives of Pathology and Laboratory Medicine, 2017, 141, 49-59.	2.5	61
237	Inhibitory effect of flavonoids against NS2B-NS3 protease of ZIKA virus and their structure activity relationship. Biotechnology Letters, 2017, 39, 415-421.	2.2	77

#	Article	IF	CITATIONS
238	Anatomical, animal, and cellular evidence for Zika-induced pathogenesis of fetal microcephaly. Brain and Development, 2017, 39, 294-297.	1.1	4
239	Zika Virus Infection in Pregnancy, Microcephaly, and Maternal and Fetal Health: What We Think, What We Know, and What We Think We Know. Archives of Pathology and Laboratory Medicine, 2017, 141, 26-32.	2.5	114
240	Experimental Zika Virus Inoculation in a New World Monkey Model Reproduces Key Features of the Human Infection. Scientific Reports, 2017, 7, 17126.	3.3	58
241	NS3 helicase from dengue virus specifically recognizes viral RNA sequence to ensure optimal replication. Nucleic Acids Research, 2017, 45, 12904-12920.	14.5	61
243	Sex Matters in Neuroinfectious Diseases. Seminars in Neurology, 2017, 37, 694-704.	1.4	0
244	Follow-up brain imaging of 37 children with congenital Zika syndrome: case series study. BMJ: British Medical Journal, 2017, 359, j4188.	2.3	31
245	Prevalence and clinical profile of microcephaly in South America pre-Zika, 2005-14: prevalence and case-control study. BMJ: British Medical Journal, 2017, 359, j5018.	2.3	28
246	Small-Animal Models of Zika Virus. Journal of Infectious Diseases, 2017, 216, S919-S927.	4.0	22
247	Zika Virus RNA Replication and Persistence in Brain and Placental Tissue. Emerging Infectious Diseases, 2017–23, 405-414	4.3	184
248	Animal Models of Human Viral Diseases. , 2017, , 853-901.		8
248 249	Animal Models of Human Viral Diseases. , 2017, , 853-901. Zika puzzle in Brazil: peculiar conditions of viral introduction and dissemination - A Review. Memorias Do Instituto Oswaldo Cruz, 2017, 112, 319-327.	1.6	8
248 249 250	Animal Models of Human Viral Diseases. , 2017, , 853-901. Zika puzzle in Brazil: peculiar conditions of viral introduction and dissemination - A Review. Memorias Do Instituto Oswaldo Cruz, 2017, 112, 319-327. Zika Virus: Recent Advances towards the Development of Vaccines and Therapeutics. Viruses, 2017, 9, 143.	1.6 3.3	8 34 28
248 249 250 251	Animal Models of Human Viral Diseases., 2017, , 853-901. Zika puzzle in Brazil: peculiar conditions of viral introduction and dissemination - A Review. Memorias Do Instituto Oswaldo Cruz, 2017, 112, 319-327. Zika Virus: Recent Advances towards the Development of Vaccines and Therapeutics. Viruses, 2017, 9, 143. Effective Suckling C57BL/6, Kunming, and BALB/c Mouse Models with Remarkable Neurological Manifestation for Zika Virus Infection. Viruses, 2017, 9, 165.	1.6 3.3 3.3	8 34 28 31
248 249 250 251 252	Animal Models of Human Viral Diseases. , 2017, , 853-901. Zika puzzle in Brazil: peculiar conditions of viral introduction and dissemination - A Review. Memorias Do Instituto Oswaldo Cruz, 2017, 112, 319-327. Zika Virus: Recent Advances towards the Development of Vaccines and Therapeutics. Viruses, 2017, 9, 143. Effective Suckling C57BL/6, Kunming, and BALB/c Mouse Models with Remarkable Neurological Manifestation for Zika Virus Infection. Viruses, 2017, 9, 165. Zika Virus Exhibits Lineage-Specific Phenotypes in Cell Culture, in Aedes aegypti Mosquitoes, and in an Embryo Model. Viruses, 2017, 9, 383.	1.6 3.3 3.3 3.3	8 34 28 31 46
248 249 250 251 252 253	Animal Models of Human Viral Diseases. , 2017, , 853-901. Zika puzzle in Brazil: peculiar conditions of viral introduction and dissemination - A Review. Memorias Do Instituto Oswaldo Cruz, 2017, 112, 319-327. Zika Virus: Recent Advances towards the Development of Vaccines and Therapeutics. Viruses, 2017, 9, 143. Effective Suckling C57BL/6, Kunming, and BALB/c Mouse Models with Remarkable Neurological Manifestation for Zika Virus Infection. Viruses, 2017, 9, 165. Zika Virus Exhibits Lineage-Specific Phenotypes in Cell Culture, in Aedes aegypti Mosquitoes, and in an Embryo Model. Viruses, 2017, 9, 383. Understanding the Pathogenesis of Zika Virus Infection Using Animal Models. Immune Network, 2017, 17, 287.	1.6 3.3 3.3 3.3 3.3	8 34 28 31 46 19
248 249 250 251 252 253	Animal Models of Human Viral Diseases., 2017, , 853-901. Zika puzzle in Brazil: peculiar conditions of viral introduction and dissemination - A Review. Memorias Do Instituto Oswaldo Cruz, 2017, 112, 319-327. Zika Virus: Recent Advances towards the Development of Vaccines and Therapeutics. Viruses, 2017, 9, 143. Effective Suckling C57BL/6, Kunming, and BALB/c Mouse Models with Remarkable Neurological Manifestation for Zika Virus Infection. Viruses, 2017, 9, 165. Zika Virus Exhibits Lineage-Specific Phenotypes in Cell Culture, in Aedes aegypti Mosquitoes, and in an Embryo Model. Viruses, 2017, 9, 383. Understanding the Pathogenesis of Zika Virus Infection Using Animal Models. Immune Network, 2017, 17, 287. An Integrative Analysis Reveals a Central Role of P53 Activation via MDM2 in Zika Virus Infection Induced Cell Death. Frontiers in Cellular and Infection Microbiology, 2017, 7, 327.	1.6 3.3 3.3 3.3 3.6 3.9	8 34 28 31 46 19
248 249 250 251 252 253 253	Animal Models of Human Viral Diseases. , 2017, , 853-901. Zika puzzle in Brazil: peculiar conditions of viral introduction and dissemination - A Review. Memorias Do Instituto Oswaldo Cruz, 2017, 112, 319-327. Zika Virus: Recent Advances towards the Development of Vaccines and Therapeutics. Viruses, 2017, 9, 143. Effective Suckling C57BL/6, Kunming, and BALB/c Mouse Models with Remarkable Neurological Manifestation for Zika Virus Infection. Viruses, 2017, 9, 165. Zika Virus Exhibits Lineage-Specific Phenotypes in Cell Culture, in Aedes aegypti Mosquitoes, and in an Embryo Model. Viruses, 2017, 9, 383. Understanding the Pathogenesis of Zika Virus Infection Using Animal Models. Immune Network, 2017, 17, 287. An Integrative Analysis Reveals a Central Role of P53 Activation via MDM2 in Zika Virus Infection Induced Cell Death. Frontiers in Cellular and Infection Microbiology, 2017, 7, 327. Zika Virus: An Emerging Global Health Threat. Frontiers in Cellular and Infection Microbiology, 2017, 7, 486.	1.6 3.3 3.3 3.3 3.6 3.9 3.9	8 34 28 31 46 19 23 23

		CITATION R	EPORT	
#	Article		IF	CITATIONS
257	Zika Virus: Transmission, Detection, Control, and Prevention. Frontiers in Microbiology,	2017, 8, 110.	3.5	71
258	Zika Virus: What Have We Learnt Since the Start of the Recent Epidemic?. Frontiers in 2017, 8, 1554.	Microbiology,	3.5	44
259	Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Disruption. Frontiers in Microbiology, 2017, 8, 2557.	: Barrier	3.5	96
260	Transcriptional and Post-Transcriptional Mechanisms of the Development of Neocortica Frontiers in Neuroanatomy, 2017, 11, 102.	al Lamination.	1.7	38
261	Sophoraflavenone G Restricts Dengue and Zika Virus Infection via RNA Polymerase Inte Viruses, 2017, 9, 287.	rference.	3.3	12
262	Teratogens: a public health issue – a Brazilian overview. Genetics and Molecular Biolo 387-397.	ogy, 2017, 40,	1.3	26
263	Postmortem Findings for 7 Neonates with Congenital Zika Virus Infection. Emerging In Diseases, 2017, 23, 1164-1167.	fectious	4.3	51
264	Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from plants. PLoS ONE, 2017, 12, e0180632.	m edible	2.5	78
265	Zika Virus Antagonizes Type I Interferon Responses during Infection of Human Dendriti Pathogens, 2017, 13, e1006164.	c Cells. PLoS	4.7	242
266	Analysis of the T Cell Response to Zika Virus and Identification of a Novel CD8+ T Cell E Immunocompetent Mice. PLoS Pathogens, 2017, 13, e1006184.	pitope in	4.7	126
267	Zika Virus infection of rhesus macaques leads to viral persistence in multiple tissues. Pl 2017, 13, e1006219.	.oS Pathogens,	4.7	194
268	Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus macaques. PL 2017, 13, e1006378.	oS Pathogens,	4.7	201
269	Modeling Infectious Diseases in the Context of a Developing Immune System. Current Developmental Biology, 2017, 124, 277-329.	Topics in	2.2	55
270	Ontogeny of the B- and T-cell response in a primary Zika virus infection of a dengue-na during the 2016 outbreak in Miami, FL. PLoS Neglected Tropical Diseases, 2017, 11, e0	A⁻ve individual 006000.	3.0	48
271	Assessing Zika virus replication and the development of Zika-specific antibodies after a viral challenge in guinea pigs. PLoS ONE, 2017, 12, e0187720.	mid-gestation	2.5	24
272	Differential virulence between Asian and African lineages of Zika virus. PLoS Neglected Diseases, 2017, 11, e0005821.	Tropical	3.0	104
273	3D brain Organoids derived from pluripotent stem cells: promising experimental model development and neurodegenerative disorders. Journal of Biomedical Science, 2017, 24	s for brain 4, 59.	7.0	129
274	Zika virus transmission to mouse ear by mosquito bite: a laboratory model that replicat transmission process. Parasites and Vectors, 2017, 10, 346.	es the natural	2.5	22

#	Article	IF	Citations
275	Association between suspected Zika virus disease during pregnancy and giving birth to a newborn with congenital microcephaly: a matched case–control study. BMC Research Notes, 2017, 10, 457.	1.4	15
276	Zika virus congenital syndrome: experimental models and clinical aspects. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2017, 23, 41.	1.4	18
277	A review of Zika virus infections in pregnancy and implications for antenatal care in Singapore. Singapore Medical Journal, 2017, 58, 171-178.	0.6	22
278	Effects of Zika Virus Strain and <i>Aedes</i> Mosquito Species on Vector Competence. Emerging Infectious Diseases, 2017, 23, 1110-1117.	4.3	133
279	Yeast for virus research. Microbial Cell, 2017, 4, 311-330.	3.2	32
280	Transmission of Major Arboviruses in Brazil: The Role of Aedes aegypti and Aedes albopictus Vectors. , 0, , .		11
281	Clobal epidemiology of Zika and Chikungunya virus human infections. Microbiologia Medica, 2017, 32, .	0.1	5
282	Cross-reactive dengue human monoclonal antibody prevents severe pathologies and death from Zika virus infections. JCI Insight, 2017, 2, .	5.0	74
283	Global Alert: Zika Virus-an Emerging Arbovirus. Eurasian Journal of Medicine, 2017, 49, 142-147.	0.6	16
284	Risks associated with viral infections during pregnancy. Journal of Clinical Investigation, 2017, 127, 1591-1599.	8.2	199
285	Adverse outcomes of pregnancy-associated Zika virus infection. Seminars in Perinatology, 2018, 42, 155-167.	2.5	14
286	Translational potential of human brain organoids. Annals of Clinical and Translational Neurology, 2018, 5, 226-235.	3.7	31
287	The Use of Ex Vivo Organ Cultures in Tick-Borne Virus Research. ACS Infectious Diseases, 2018, 4, 247-256.	3.8	15
290	Niclosamide rescues microcephaly in a humanized <i>in vivo</i> model of Zika infection using human induced neural stem cells. Biology Open, 2018, 7, .	1.2	30
291	Insect cell-produced recombinant protein subunit vaccines protect against Zika virus infection. Antiviral Research, 2018, 154, 97-103.	4.1	28
292	Postnatal Zika virus infection is associated with persistent abnormalities in brain structure, function, and behavior in infant macaques. Science Translational Medicine, 2018, 10, .	12.4	75
293	Review: Evidence of Neurological Sequelae in Children With Acquired Zika Virus Infection. Pediatric Neurology, 2018, 85, 16-20.	2.1	31
294	Recombinant Zika Virus Subunits Are Immunogenic and Efficacious in Mice. MSphere, 2018, 3, .	2.9	42

#	Article	IF	CITATIONS
295	Human organoid cultures: transformative new tools for human virus studies. Current Opinion in Virology, 2018, 29, 79-86.	5.4	78
296	Biochemistry and Molecular Biology of Flaviviruses. Chemical Reviews, 2018, 118, 4448-4482.	47.7	211
297	Development of a chimeric Zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone. Nature Communications, 2018, 9, 673.	12.8	84
298	Zika virus infected primary microglia impairs NPCs proliferation and differentiation. Biochemical and Biophysical Research Communications, 2018, 497, 619-625.	2.1	60
299	Development of vaccines against Zika virus. Lancet Infectious Diseases, The, 2018, 18, e211-e219.	9.1	125
300	Comparative Histopathologic Lesions of the Male Reproductive Tract during Acute Infection of Zika Virus in AG129 and Ifnar Mice. American Journal of Pathology, 2018, 188, 904-915.	3.8	34
301	The structural proteins of epidemic and historical strains of Zika virus differ in their ability to initiate viral infection in human host cells. Virology, 2018, 516, 265-273.	2.4	47
302	Ophthalmologic Manifestations Associated With Zika Virus Infection. Pediatrics, 2018, 141, S161-S166.	2.1	61
303	Zika virus outbreak: a review of neurological complications, diagnosis, and treatment options. Journal of NeuroVirology, 2018, 24, 255-272.	2.1	32
304	AXL promotes Zika virus infection in astrocytes by antagonizing type I interferon signalling. Nature Microbiology, 2018, 3, 302-309.	13.3	129
305	Zika virus–related neurotropic flaviviruses infect human placental explants and cause fetal demise in mice. Science Translational Medicine, 2018, 10, .	12.4	85
306	Motor Abnormalities and Epilepsy in Infants and Children With Evidence of Congenital Zika Virus Infection. Pediatrics, 2018, 141, S167-S179.	2.1	94
307	Could PET imaging provide insights into Zika virus neurological sequelae progression?. Future Virology, 2018, 13, 75-78.	1.8	0
308	What we know and what we don't know about perinatal Zika virus infection: a systematic review. Expert Review of Anti-Infective Therapy, 2018, 16, 243-254.	4.4	13
309	Zika Virus Infection in Children. Infectious Disease Clinics of North America, 2018, 32, 215-224.	5.1	9
310	Cellular and Humoral Immunity Protect against Vaginal Zika Virus Infection in Mice. Journal of Virology, 2018, 92, .	3.4	54
311	Blocking Zika virus vertical transmission. Scientific Reports, 2018, 8, 1218.	3.3	55
312	The rise of three-dimensional human brain cultures. Nature, 2018, 553, 437-445.	27.8	373

ARTICLE IF CITATIONS # Development of Envelope Protein Antigens To Serologically Differentiate Zika Virus Infection from 313 3.9 53 Dengue Virus Infection. Journal of Clinical Microbiology, 2018, 56, . Chromosome 19 microRNAs exert antiviral activity independent from type III interferon signaling. 314 1.5 Placenta, 2018, 61, 33-38. MALDI imaging detects endogenous digoxin in glioblastoma cells infected by Zika virus—Would it be 315 1.6 9 the oncolytic key?. Journal of Mass Spectrometry, 2018, 53, 257-263. Erythrosin B is a potent and broad-spectrum orthosteric inhibitor of the flavivirus NS2B-NS3 316 protease. Antiviral Research, 2018, 150, 217-225. Is There More to Zika? Complex Cardiac Disease in a Case of Congenital Zika Syndrome. Neonatology, 317 2.0 14 2018, 113, 177-182. An infectious way to teach students about outbreaks. Epidemics, 2018, 23, 42-48. 3.0 Using immunocompromised mice to identify mechanisms of Zika virus transmission and pathogenesis. 319 4.4 13 Immunology, 2018, 153, 443-454. Discovery of a non-nucleoside RNA polymerase inhibitor for blocking Zika virus replication through 320 4.1 in silico screening. Antiviral Research, 2018, 151, 78-86. The contribution of GTF2I haploinsufficiency to Williams syndrome. Molecular and Cellular Probes, 321 2.1 18 2018, 40, 45-51. Sustained Specific and Cross-Reactive T Cell Responses to Zika and Dengue Virus NS3 in West Africa. 3.4 Journal of Virology, 2018, 92, . Reply to the letter by Joob and Wiwanitkit regarding our article on congenital Zika syndrome and 323 1.1 1 hydrocephalus. Child's Nervous System, 2018, 34, 185-186. Zika viral infection and neutralizing human antibody response in a BLT humanized mouse model. 324 2.4 Virology, 2018, 515, 235-242. In situ immune response and mechanisms of cell damage in central nervous system of fatal cases 325 3.3 14,531 microcephaly by Zika virus. Scientific Reports, 2018, 8, 1. Type I interferons instigate fetal demise after Zika virus infection. Science Immunology, 2018, 3, . 11.9 A Single Injection of Human Neutralizing Antibody Protects against Zika Virus Infection and 327 29 6.4 Microcephaly in Developing Mouse Embryos. Cell Reports, 2018, 23, 1424-1434. Characterisation of Zika virus infection in primary human astrocytes. BMC Neuroscience, 2018, 19, 5. 1.9 Experimental Zika Virus Infection in the Pregnant Common Marmoset Induces Spontaneous Fetal Loss 329 3.3 63 and Neurodevelopmental Abnormalities. Scientific Reports, 2018, 8, 6851. Neurotropism and behavioral changes associated with Zika infection in the vector <i>Aedes 6.5 aegypti</i>. Emerging Microbes and Infections, 2018, 7, 1-11.

#	Article	IF	CITATIONS
331	Zika virus propagation and release in human fetal astrocytes can be suppressed by neutral sphingomyelinase-2 inhibitor GW4869. Cell Discovery, 2018, 4, 19.	6.7	59
332	Zika Virus Infection Preferentially Counterbalances Human Peripheral Monocyte and/or NK Cell Activity. MSphere, 2018, 3, .	2.9	32
333	Fetal Neuropathology in Zika Virus-Infected Pregnant Female Rhesus Monkeys. Cell, 2018, 173, 1111-1122.e10.	28.9	104
334	Imaging of congenital central nervous system infections. Pediatric Radiology, 2018, 48, 513-523.	2.0	28
335	3D tissue engineering, an emerging technique for pharmaceutical research. Acta Pharmaceutica Sinica B, 2018, 8, 756-766.	12.0	49
336	Design and validation of an ontology-driven animal-free testing strategy for developmental neurotoxicity testing. Toxicology and Applied Pharmacology, 2018, 354, 136-152.	2.8	23
337	Rapid response to an emerging infectious disease – Lessons learned from development of a synthetic DNA vaccine targeting Zika virus. Microbes and Infection, 2018, 20, 676-684.	1.9	25
338	Zika virus: from an obscurity to a priority. Microbes and Infection, 2018, 20, 635-645.	1.9	25
339	Evaluation of Possible Consequences of Zika Virus Infection in the Developing Nervous System. Molecular Neurobiology, 2018, 55, 1620-1629.	4.0	5
340	Ocular effects of Zika virus—a review. Survey of Ophthalmology, 2018, 63, 166-173.	4.0	19
341	Next generation organoids for biomedical research and applications. Biotechnology Advances, 2018, 36, 132-149.	11.7	91
342	Modeling neuro-immune interactions during Zika virus infection. Human Molecular Genetics, 2018, 27, 41-52.	2.9	50
343	Taking the defensive: Immune control of Zika virus infection. Virus Research, 2018, 254, 21-26.	2.2	20
344	Chost probiotics with a combined regimen: a novel therapeutic approach against the Zika virus, an emerging world threat. Critical Reviews in Biotechnology, 2018, 38, 438-454.	9.0	15
345	Infectious causes of microcephaly: epidemiology, pathogenesis, diagnosis, and management. Lancet Infectious Diseases, The, 2018, 18, e1-e13.	9.1	92
346	Autism spectrum disorders and disease modeling using stem cells. Cell and Tissue Research, 2018, 371, 153-160.	2.9	14
347	A new threat to human reproduction system posed by Zika virus (ZIKV): From clinical investigations to experimental studies. Virus Research, 2018, 254, 10-14.	2.2	7
348	Stress-induced unfolded protein response contributes to Zika virus–associated microcephaly. Nature Neuroscience, 2018, 21, 63-71.	14.8	106

#	Article	IF	CITATIONS
349	Zika virus: The transboundary pathogen from mosquito and updates. Microbial Pathogenesis, 2018, 114, 476-482.	2.9	7
350	Suppression of Zika Virus Infection and Replication in Endothelial Cells and Astrocytes by PKA Inhibitor PKI 14-22. Journal of Virology, 2018, 92, .	3.4	49
351	Zika virus research models. Virus Research, 2018, 254, 15-20.	2.2	9
353	Contemporary Zika Virus Isolates Induce More dsRNA and Produce More Negative-Strand Intermediate in Human Astrocytoma Cells. Viruses, 2018, 10, 728.	3.3	16
354	Bovine central nervous system development. Pesquisa Veterinaria Brasileira, 2018, 38, 147-153.	0.5	7
355	Zika virus infection as a cause of congenital brain abnormalities and Guillain-Barré syndrome: From systematic review to living systematic review. F1000Research, 2018, 7, 196.	1.6	32
356	Zika Virus, Microcephaly and its Possible Global Spread. , 2018, , .		3
357	Zika Virus as a Possible Risk Factor for Autism Spectrum Disorder: Neuroimmunological Aspects. NeuroImmunoModulation, 2018, 25, 320-327.	1.8	33
359	The Cellular NMD Pathway Restricts Zika Virus Infection and Is Targeted by the Viral Capsid Protein. MBio, 2018, 9, .	4.1	60
360	Developmental Toxicology: Introduction and Historical Perspectives. , 2018, , 1-9.		0
361	Integrative Analysis of Zika Virus Genome RNA Structure Reveals Critical Determinants of Viral Infectivity. Cell Host and Microbe, 2018, 24, 875-886.e5.	11.0	89
362	Growth and adaptation of Zika virus in mammalian and mosquito cells. PLoS Neglected Tropical Diseases, 2018, 12, e0006880.	3.0	42
363	Zika Virus and Neurologic Disease. Neurologic Clinics, 2018, 36, 767-787.	1.8	13
364	Zika Virus Infection in Hypothalamus Causes Hormone Deficiencies and Leads to Irreversible Growth Delay and Memory Impairment in Mice. Cell Reports, 2018, 25, 1537-1547.e4.	6.4	24
365	Three-Dimensional Organoids in Cancer Research: The Search for the Holy Grail of Preclinical Cancer Modeling. OMICS A Journal of Integrative Biology, 2018, 22, 733-748.	2.0	26
366	Fetal Brain Infection Is Not a Unique Characteristic of Brazilian Zika Viruses. Viruses, 2018, 10, 541.	3.3	15
367	Melodic Intonation Therapy. , 2018, , 2121-2123.		0
368	Zika Virus Liquid Biopsy: A Dendritic Ru(bpy) ₃ ²⁺ -Polymer-Amplified ECL Diagnosis Strategy Using a Drop of Blood. ACS Central Science, 2018, 4, 1403-1411.	11.3	19

#	Article	IF	CITATIONS
369	Concurrent Guillain-Barré syndrome, transverse myelitis and encephalitis post-Zika: A case report and review of the pathogenic role of multiple arboviral immunity. Journal of the Neurological Sciences, 2018, 395, 47-53.	0.6	36
370	Differentiation enhances Zika virus infection of neuronal brain cells. Scientific Reports, 2018, 8, 14543.	3.3	26
371	Constitutive metanephric mesenchyme-specific expression of interferon-gamma causes renal dysplasia by regulating Sall1 expression. PLoS ONE, 2018, 13, e0197356.	2.5	0
372	Shaping Diversity Into the Brain's Form and Function. Frontiers in Neural Circuits, 2018, 12, 83.	2.8	17
373	Brain Organoids and the Study of Neurodevelopment. Trends in Molecular Medicine, 2018, 24, 982-990.	6.7	83
374	Chikungunya Virus and Zika Virus Transmission Cycles. , 2018, , 15-68.		1
375	Chikungunya Virus and Zika Virus in Europe. , 2018, , 193-214.		3
376	Research Models and Tools for the Identification of Antivirals and Therapeutics against Zika Virus Infection. Viruses, 2018, 10, 593.	3.3	16
377	Animal Models of Zika Virus Infection during Pregnancy. Viruses, 2018, 10, 598.	3.3	60
378	Animal Models for Chikungunya Virus and Zika Virus. , 2018, , 317-346.		1
379	Building Models of Brain Disorders with Three-Dimensional Organoids. Neuron, 2018, 100, 389-405.	8.1	237
380	Strain-Dependent Consequences of Zika Virus Infection and Differential Impact on Neural Development. Viruses, 2018, 10, 550.	3.3	36
381	An Alanine-to-Valine Substitution in the Residue 175 of Zika Virus NS2A Protein Affects Viral RNA Synthesis and Attenuates the Virus In Vivo. Viruses, 2018, 10, 547.	3.3	32
382	Evidence of natural Zika virus infection in neotropical non-human primates in Brazil. Scientific Reports, 2018, 8, 16034.	3.3	68
383	Zika virus shedding in the stool and infection through the anorectal mucosa in mice. Emerging Microbes and Infections, 2018, 7, 1-10.	6.5	14
384	Therapeutic treatment of Zika virus infection using a brain-penetrating antiviral peptide. Nature Materials, 2018, 17, 971-977.	27.5	74
385	Human Cortical Neuron Generation Using Cell Reprogramming: A Review of Recent Advances. Stem Cells and Development, 2018, 27, 1674-1692.	2.1	14
0.07	The Challenges Imposed by Dengue, Zika, and Chikungunya to Brazil. Frontiers in Immunology, 2018, 9,	4.8	52

		Citation R	EPORT	
#	ARTICLE	0 2180	IF	CITATIONS
387	Flavivirus Receptors: Diversity, identity, and Cell Entry. Frontiers in Immunology, 2018,	9, 2180.	4.8	122
388	Interferons and Proinflammatory Cytokines in Pregnancy and Fetal Development. Imm 397-412.	unity, 2018, 49,	14.3	336
389	Progress and potential in organoid research. Nature Reviews Genetics, 2018, 19, 671-6	587.	16.3	693
390	In situ inflammasome activation results in severe damage to the central nervous system virus microcephaly cases. Cytokine, 2018, 111, 255-264.	m in fatal Zika	3.2	44
391	Male offspring born to mildly ZIKV-infected mice are at risk of developing neurocogniti adulthood. Nature Microbiology, 2018, 3, 1161-1174.	ve disorders in	13.3	24
392	In silico approaches to Zika virus drug discovery. Expert Opinion on Drug Discovery, 20	018, 13, 825-835.	5.0	9
393	Are internet videos useful sources of information during global public health emergend study of YouTube videos during the 2015–16 Zika virus pandemic. Pathogens and G 112, 320-328.	:ies? A case Iobal Health, 2018,	2.3	125
394	Organoid as a culture system for viral vaccine strains. Clinical and Experimental Vaccin 2018, 7, 145.	e Research,	2.2	6
395	The emergence of Zika virus and its new clinical syndromes. Nature, 2018, 560, 573-58	31.	27.8	303
396	Host-Directed Antivirals: A Realistic Alternative to Fight Zika Virus. Viruses, 2018, 10, 4	-53.	3.3	41
397	Use and application of 3D-organoid technology. Human Molecular Genetics, 2018, 27,	, R99-R107.	2.9	143
398	Congenital Zika syndrome: Pitfalls in the placental barrier. Reviews in Medical Virology e1985.	, 2018, 28,	8.3	18
399	Motion-Based Immunological Detection of Zika Virus Using Pt-Nanomotors and a Cellp 2018, 12, 5709-5718.	phone. ACS Nano,	14.6	86
400	Induced pluripotent stem cells (iPSCs) as model to study inherited defects of neurotra inborn errors of metabolism. Journal of Inherited Metabolic Disease, 2018, 41, 1103-1	nsmission in 116.	3.6	3
401	Zika virus infection in immunocompetent pregnant mice causes fetal damage and plac in the absence of fetal infection. PLoS Pathogens, 2018, 14, e1006994.	ental pathology	4.7	83
403	Consequences of in utero exposure to Zika virus in offspring of AG129 mice. Scientific 9384.	Reports, 2018, 8,	3.3	27
404	Unilateral Phrenic Nerve Palsy in Infants with Congenital Zika Syndrome. Emerging Infe Diseases, 2018, 24, .	ectious	4.3	10
405	A Nanostructured Lipid Carrier for Delivery of a Replicating Viral RNA Provides Single, L Protection against Zika. Molecular Therapy, 2018, 26, 2507-2522.	ow-Dose	8.2	109

		CITATION R	EPORT	
#	Article		IF	Citations
406	Untold stories of the Zika virus epidemic in Brazil. Reviews in Medical Virology, 2018, 2	28, e2000 .	8.3	4
407	Applications of gold nanoparticles in virus detection. Theranostics, 2018, 8, 1985-201	7.	10.0	256
408	Congenital Zika Virus Syndrome. , 2018, , 681-684.e1.			0
409	Zika virus E protein alters the properties of human fetal neural stem cells by modulatir circuitry. Cell Death and Differentiation, 2018, 25, 1837-1854.	ıg microRNA	11.2	42
410	Disruption of glial cell development by Zika virus contributes to severe microcephalic r Cell Discovery, 2018, 4, 43.	newborn mice.	6.7	47
411	Cross-reactive Dengue virus-specific CD8+ T cells protect against Zika virus during pre Communications, 2018, 9, 3042.	gnancy. Nature	12.8	93
412	Nonsteroidal Anti-inflammatory Drugs Potently Inhibit the Replication of Zika Viruses b Degradation of AXL. Journal of Virology, 2018, 92, .	by Inducing the	3.4	44
413	Evolution of Two Major Zika Virus Lineages: Implications for Pathology, Immune Respo Development. Frontiers in Immunology, 2018, 9, 1640.	onse, and Vaccine	4.8	86
414	Acute Zika Virus Infection in an Endemic Area Shows Modest Proinflammatory System Immunoactivation and Cytokine-Symptom Associations. Frontiers in Immunology, 201	ic 18, 9, 821.	4.8	36
415	Placental Inflammation and Fetal Injury in a Rare Zika Case Associated With Guillain-Ba and Abortion. Frontiers in Microbiology, 2018, 9, 1018.	arré Syndrome	3.5	29
416	Journey to the Center of the Fetal Brain: Environmental Exposures and Autophagy. Fro Cellular Neuroscience, 2018, 12, 118.	ntiers in	3.7	2
417	Disease Modeling Using 3D Organoids Derived from Human Induced Pluripotent Stem International Journal of Molecular Sciences, 2018, 19, 936.	Cells.	4.1	118
418	Molecular Responses to the Zika Virus in Mosquitoes. Pathogens, 2018, 7, 49.		2.8	13
419	Zika Virus Fatally Infects Wild Type Neonatal Mice and Replicates in Central Nervous S 2018, 10, 49.	ystem. Viruses,	3.3	39
420	A Fluorescent Cell-Based System for Imaging Zika Virus Infection in Real-Time. Viruses,	2018, 10, 95.	3.3	15
421	Probing Molecular Insights into Zika Virus–Host Interactions. Viruses, 2018, 10, 233	8.	3.3	64
422	A Review of the Ongoing Research on Zika Virus Treatment. Viruses, 2018, 10, 255.		3.3	37
423	Brain organoids as models to study human neocortex development and evolution. Cu Cell Biology, 2018, 55, 8-16.	rrent Opinion in	5.4	59

#	Article	IF	CITATIONS
424	Biomimetic Placenta-Fetus Model Demonstrating Maternal–Fetal Transmission and Fetal Neural Toxicity of Zika Virus. Annals of Biomedical Engineering, 2018, 46, 1963-1974.	2.5	28
425	Natural vertical transmission of dengue virus in Aedes aegypti and Aedes albopictus: a systematic review. Parasites and Vectors, 2018, 11, 77.	2.5	112
426	Microencephaly in fetal piglets following <i>in utero</i> inoculation of Zika virus. Emerging Microbes and Infections, 2018, 7, 1-11.	6.5	31
427	The Zika epidemic and abortion in Latin America: a scoping review. Global Health Research and Policy, 2018, 3, 15.	3.6	19
428	Maternal immunization with a DNA vaccine candidate elicits specific passive protection against post-natal Zika virus infection in immunocompetent BALB/c mice. Vaccine, 2018, 36, 3522-3532.	3.8	29
429	Structural view of the helicase reveals that <i>Zika virus</i> uses a conserved mechanism for unwinding RNA. Acta Crystallographica Section F, Structural Biology Communications, 2018, 74, 205-213.	0.8	7
430	Zika virus-induced hyper excitation precedes death of mouse primary neuron. Virology Journal, 2018, 15, 79.	3.4	28
431	Studying the Brain in a Dish: 3D Cell Culture Models of Human Brain Development and Disease. Current Topics in Developmental Biology, 2018, 129, 99-122.	2.2	27
432	An Immunocompetent Mouse Model of Zika Virus Infection. Cell Host and Microbe, 2018, 23, 672-685.e6.	11.0	192
433	Correlation between Apoptosis and in Situ Immune Response in Fatal Cases of Microcephaly Caused by Zika Virus. American Journal of Pathology, 2018, 188, 2644-2652.	3.8	32
434	Congenital Zika Virus Infection in Immunocompetent Mice Causes Postnatal Growth Impediment and Neurobehavioral Deficits. Frontiers in Microbiology, 2018, 9, 2028.	3.5	30
435	Persistent detection of Zika virus RNA from an infant with severe microcephaly – a case report. BMC Infectious Diseases, 2018, 18, 388.	2.9	17
436	E90 subunit vaccine protects mice from Zika virus infection and microcephaly. Acta Neuropathologica Communications, 2018, 6, 77.	5.2	17
437	Zika virus impairs the development of blood vessels in a mouse model of congenital infection. Scientific Reports, 2018, 8, 12774.	3.3	49
438	Direct Generation of Human Cortical Organoids from Primary Cells. Stem Cells and Development, 2018, 27, 1549-1556.	2.1	9
439	Why is congenital Zika syndrome asymmetrically distributed among human populations?. PLoS Biology, 2018, 16, e2006592.	5.6	32
440	NS1 codon usage adaptation to humans in pandemic Zika virus. Memorias Do Instituto Oswaldo Cruz, 2018, 113, e170385.	1.6	11
441	Critical role of CD4+ T cells and IFNÎ ³ signaling in antibody-mediated resistance to Zika virus infection. Nature Communications, 2018, 9, 3136.	12.8	64

-			_	
C		ON	Drnc	NDT
C	пап		REPU	ואכ

#	Article	IF	CITATIONS
442	A multi-faceted pandemic: a review of the state of knowledge on the Zika virus. Public Health Reviews, 2018, 39, 10.	3.2	23
443	Preliminary Studies on Immune Response and Viral Pathogenesis of Zika Virus in Rhesus Macaques. Pathogens, 2018, 7, 70.	2.8	18
444	Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry. Cell Discovery, 2018, 4, 31.	6.7	128
445	Zika-virus-infected human full-term placental explants display pro-inflammatory responses and undergo apoptosis. Archives of Virology, 2018, 163, 2687-2699.	2.1	24
446	Cortical organoids: why all this hype?. Current Opinion in Genetics and Development, 2018, 52, 22-28.	3.3	13
447	Translational Model of Zika Virus Disease in Baboons. Journal of Virology, 2018, 92, .	3.4	25
448	Zika Virus. , 2018, , 207-215.		0
449	Timing of gestational exposure to Zika virus is associated with postnatal growth restriction in aÂmurineAmodel. American Journal of Obstetrics and Gynecology, 2018, 219, 403.e1-403.e9.	1.3	20
451	Zika virus vaccines. Nature Reviews Microbiology, 2018, 16, 594-600.	28.6	98
452	Human induced pluripotent stem cell-derived glial cells and neural progenitors display divergent responses to Zika and dengue infections. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7117-7122.	7.1	107
453	Zika Virus. , 2018, , 1266-1267.e1.		0
454	Animal models in biological and biomedical research - experimental and ethical concerns. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20170238.	0.8	102
455	What cerebellar malformations tell us about cerebellar development. Neuroscience Letters, 2019, 688, 14-25.	2.1	20
456	Ribosomal biogenesis as an emerging target of neurodevelopmental pathologies. Journal of Neurochemistry, 2019, 148, 325-347.	3.9	71
457	Applications of Human Brain Organoids to Clinical Problems. Developmental Dynamics, 2019, 248, 53-64.	1.8	88
458	Construction of 3D in vitro models by bioprinting human pluripotent stem cells: Challenges and opportunities. Brain Research, 2019, 1723, 146393.	2.2	64
459	The Transcriptional and Protein Profile From Human Infected Neuroprogenitor Cells Is Strongly Correlated to Zika Virus Microcephaly Cytokines Phenotype Evidencing a Persistent Inflammation in the CNS. Frontiers in Immunology, 2019, 10, 1928.	4.8	49
460	Brain Organoids as Tools for Modeling Human Neurodevelopmental Disorders. Physiology, 2019, 34, 365-375.	3.1	32

#	Article	IF	CITATIONS
461	MicroRNAs 145 and 148a Are Upregulated During Congenital Zika Virus Infection. ASN Neuro, 2019, 11, 175909141985098.	2.7	24
462	Medicinal Biotechnology for Disease Modeling, Clinical Therapy, and Drug Discovery and Development. , 2019, , 89-128.		6
463	Introduction to Biotech Entrepreneurship: From Idea to Business. , 2019, , .		0
464	Zika Virus Infection Induces DNA Damage Response in Human Neural Progenitors That Enhances Viral Replication. Journal of Virology, 2019, 93, .	3.4	45
465	Recent advances in the applications of iPSC technology. Current Opinion in Biotechnology, 2019, 60, 250-258.	6.6	53
466	Cross-Protection of Dengue Virus Infection against Congenital Zika Syndrome, Northeastern Brazil. Emerging Infectious Diseases, 2019, 25, 1485-1493.	4.3	59
467	Rescue of Recombinant Zika Virus from a Bacterial Artificial Chromosome cDNA Clone. Journal of Visualized Experiments, 2019, , .	0.3	20
468	Nitrogen-doped porous carbon-based fluorescence sensor for the detection of ZIKV RNA sequences: fluorescence image analysis. Talanta, 2019, 205, 120091.	5.5	21
469	Generation of Zika virus–specific T cells from seropositive and virus-naÃ⁻ve donors for potential use as an autologous or "off-the-shelf―immunotherapeutic. Cytotherapy, 2019, 21, 840-855.	0.7	10
470	Zika virus differentially infects human neural progenitor cells according to their state of differentiation and dysregulates neurogenesis through the Notch pathway. Emerging Microbes and Infections, 2019, 8, 1003-1016.	6.5	64
471	Malformations of Human Neocortex in Development – Their Progenitor Cell Basis and Experimental Model Systems. Frontiers in Cellular Neuroscience, 2019, 13, 305.	3.7	32
472	In vitro and in silico Models to Study Mosquito-Borne Flavivirus Neuropathogenesis, Prevention, and Treatment. Frontiers in Cellular and Infection Microbiology, 2019, 9, 223.	3.9	10
473	Mosquito Adaptation to the Extreme Habitats of Urban Construction Sites. Trends in Parasitology, 2019, 35, 607-614.	3.3	20
474	The E3 ligase TRIM56 is a host restriction factor of Zika virus and depends on its RNA-binding activity but not miRNA regulation, for antiviral function. PLoS Neglected Tropical Diseases, 2019, 13, e0007537.	3.0	32
475	Zika virus infection of pregnant rats and associated neurological consequences in the offspring. PLoS ONE, 2019, 14, e0218539.	2.5	13
476	Host Immune Response to ZIKV in an Immunocompetent Embryonic Mouse Model of Intravaginal Infection. Viruses, 2019, 11, 558.	3.3	13
477	Zika Virus-Immune Plasmas from Symptomatic and Asymptomatic Individuals Enhance Zika Pathogenesis in Adult and Pregnant Mice. MBio, 2019, 10, .	4.1	30
478	Molecular mechanism of ligand bindings to Zika virus at SAM site. Chemical Physics Letters, 2019, 735, 136771.	2.6	0

#	Article	IF	CITATIONS
479	Alterations in visual acuity and visual development in infants 1-24Amonths old either exposed to or infected by Zika virus during gestation, with and without microcephaly. Journal of AAPOS, 2019, 23, 215.e1-215.e7.	0.3	13
480	High susceptibility, viral dynamics and persistence of South American Zika virus in New World monkey species. Scientific Reports, 2019, 9, 14495.	3.3	23
481	Adenovirus Vector-Based Vaccines Confer Maternal-Fetal Protection against Zika Virus Challenge in Pregnant IFN-αβRâ^'/â~' Mice. Cell Host and Microbe, 2019, 26, 591-600.e4.	11.0	26
482	Human Cerebral Organoids and Fetal Brain Tissue Share Proteomic Similarities. Frontiers in Cell and Developmental Biology, 2019, 7, 303.	3.7	58
483	Host and viral mechanisms of congenital Zika syndrome. Virulence, 2019, 10, 768-775.	4.4	24
484	Zika Virus-Mediated Death of Hippocampal Neurons Is Independent From Maturation State. Frontiers in Cellular Neuroscience, 2019, 13, 389.	3.7	18
485	Therapeutic Advances Against ZIKV: A Quick Response, a Long Way to Go. Pharmaceuticals, 2019, 12, 127.	3.8	11
486	The Ethics of Cerebral Organoid Research: Being Conscious of Consciousness. Stem Cell Reports, 2019, 13, 440-447.	4.8	56
487	Differences in Mitotic Spindle Architecture in Mammalian Neural Stem Cells Influence Mitotic Accuracy during Brain Development. Current Biology, 2019, 29, 2993-3005.e9.	3.9	29
488	Neanderthal clues to brain evolution in humans. Nature, 2019, 571, S10-S11.	27.8	0
489	Transgenic Aedes aegypti Mosquitoes Transfer Genes into a Natural Population. Scientific Reports, 2019, 9, 13047.	3.3	109
490	Genomic Mutational Signatures in Tumors Induced By High and Low Energy Radiation in Trp53-deficient Mouse Models. International Journal of Radiation Oncology Biology Physics, 2019, 105, E659.	0.8	0
491	<p>Cell Death And Zika Virus: An Integrated Network Of The Mechanisms Of Cell Injury</p> . Infection and Drug Resistance, 2019, Volume 12, 2917-2921.	2.7	7
492	Azithromycin Protects against Zika Virus Infection by Upregulating Virus-Induced Type I and III Interferon Responses. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	83
493	Congenital Zika Syndrome in a Brazil-Paraguay-Bolivia border region: Clinical features of cases diagnosed between 2015 and 2018. PLoS ONE, 2019, 14, e0223408.	2.5	20
494	Human brain development through the lens of cerebral organoid models. Brain Research, 2019, 1725, 146470.	2.2	22
495	Zika virus induces abnormal cranial osteogenesis by negatively affecting cranial neural crest development. Infection, Genetics and Evolution, 2019, 69, 176-189.	2.3	16
496	Persistence and clinical relevance of Zika virus in the male genital tract. Nature Reviews Urology, 2019, 16, 211-230.	3.8	63

#	Article	IF	CITATIONS
497	Zika Virus Protease Cleavage of Host Protein Septin-2 Mediates Mitotic Defects in Neural Progenitors. Neuron, 2019, 101, 1089-1098.e4.	8.1	55
498	Zika virus infection at mid-gestation results in fetal cerebral cortical injury and fetal death in the olive baboon. PLoS Pathogens, 2019, 15, e1007507.	4.7	55
499	CD4+ T cells promote humoral immunity and viral control during Zika virus infection. PLoS Pathogens, 2019, 15, e1007474.	4.7	51
500	Modeling Host-Virus Interactions in Viral Infectious Diseases Using Stem-Cell-Derived Systems and CRISPR/Cas9 Technology. Viruses, 2019, 11, 124.	3.3	19
501	A â€~Furry-Tale' of Zika Virus Infection: What Have We Learned from Animal Models?. Viruses, 2019, 11, 29.	3.3	20
502	Identification of potential Zika virus NS2B-NS3 protease inhibitors via docking, molecular dynamics and consensus scoring-based virtual screening. Journal of Molecular Modeling, 2019, 25, 194.	1.8	12
503	Update on the Animal Models and Underlying Mechanisms for ZIKV-Induced Microcephaly. Annual Review of Virology, 2019, 6, 459-479.	6.7	18
504	Genome-wide Integrative Analysis of Zika-Virus-Infected Neuronal Stem Cells Reveals Roles for MicroRNAs in Cell Cycle and Stemness. Cell Reports, 2019, 27, 3618-3628.e5.	6.4	50
505	Modeling of Fibrotic Lung Disease Using 3D Organoids Derived from Human Pluripotent Stem Cells. Cell Reports, 2019, 27, 3709-3723.e5.	6.4	175
506	Human Cytomegalovirus Disruption of Calcium Signaling in Neural Progenitor Cells and Organoids. Journal of Virology, 2019, 93, .	3.4	45
507	In-depth characterization of congenital Zika syndrome in immunocompetent mice: Antibody-dependent enhancement and an antiviral peptide therapy. EBioMedicine, 2019, 44, 516-529.	6.1	27
508	Novel electrochemical genosensor for Zika virus based on a poly-(3-amino-4-hydroxybenzoic) Tj ETQq1 1 0.78431	.4 ₇₈ BT /O	verlock 10 Ti
509	Assessing the utility of antivirals for preventing maternal-fetal transmission of zika virus in pregnant mice. Antiviral Research, 2019, 167, 104-109.	4.1	12
510	Assessing drug response in engineered brain microenvironments. Brain Research Bulletin, 2019, 150, 21-34.	3.0	10
511	Zika virus: Molecular responses and tissue tropism in the mammalian host. Reviews in Medical Virology, 2019, 29, e2050.	8.3	8
512	In utero infection of Zika virus leads to abnormal central nervous system development in mice. Scientific Reports, 2019, 9, 7298.	3.3	20
513	Late Neurological Consequences of Zika Virus Infection: Risk Factors and Pharmaceutical Approaches. Pharmaceuticals, 2019, 12, 60.	3.8	35
514	Developing animal models of Zika virus infection for novel drug discovery. Expert Opinion on Drug Discovery, 2019, 14, 577-589.	5.0	6

#	Article	IF	CITATIONS
515	Zika viruses of African and Asian lineages cause fetal harm in a mouse model of vertical transmission. PLoS Neglected Tropical Diseases, 2019, 13, e0007343.	3.0	70
516	Pathways Exploited by Flaviviruses to Counteract the Blood-Brain Barrier and Invade the Central Nervous System. Frontiers in Microbiology, 2019, 10, 525.	3.5	80
517	Congenital Zika Syndrome: Prevalence of low birth weight and associated factors. Bahia, 2015–2017. International Journal of Infectious Diseases, 2019, 82, 44-50.	3.3	22
518	Brain organoids: advances, applications and challenges. Development (Cambridge), 2019, 146, .	2.5	385
519	Organs to Cells and Cells to Organoids: The Evolution of in vitro Central Nervous System Modelling. Frontiers in Cellular Neuroscience, 2019, 13, 129.	3.7	66
520	Zika Virus Potentiates the Development of Neurological Defects and Microcephaly: Challenges and Control Strategies. Frontiers in Neurology, 2019, 10, 319.	2.4	9
521	Structural Basis for Neutralization and Protection by a Zika Virus-Specific Human Antibody. Cell Reports, 2019, 26, 3360-3368.e5.	6.4	24
522	Maternal immunity and antibodies to dengue virus promote infection and Zika virus–induced microcephaly in fetuses. Science Advances, 2019, 5, eaav3208.	10.3	79
523	Quantum Mechanics/Molecular Mechanics (QM/MM) Calculations Support a Concerted Reaction Mechanism for the Zika Virus NS2B/NS3 Serine Protease with Its Substrate. Journal of Physical Chemistry B, 2019, 123, 2889-2903.	2.6	22
524	Shortening of Zika virus CD-loop reduces neurovirulence while preserving antigenicity. PLoS Neglected Tropical Diseases, 2019, 13, e0007212.	3.0	4
525	Zika virus during pregnancy: From maternal exposure to congenital Zika virus syndrome. Prenatal Diagnosis, 2019, 39, 420-430.	2.3	54
526	Studying Human Neurological Disorders Using Induced Pluripotent Stem Cells: From 2D Monolayer to 3D Organoid and Blood Brain Barrier Models. , 2019, 9, 565-611.		88
527	The Unfolded Protein Response: A Key Player in Zika Virus-Associated Congenital Microcephaly. Frontiers in Cellular Neuroscience, 2019, 13, 94.	3.7	25
528	Pre-Clinical Pregnancy Models for Evaluating Zika Vaccines. Tropical Medicine and Infectious Disease, 2019, 4, 58.	2.3	6
529	The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence, 2019, 10, 376-413.	4.4	165
530	Zika Virus Impairs Neurogenesis and Synaptogenesis Pathways in Human Neural Stem Cells and Neurons. Frontiers in Cellular Neuroscience, 2019, 13, 64.	3.7	65
531	Viruses with masked pathogenicity and genetically susceptible hosts—How to discover potentially pathogenic viruses. Journal of Medical Virology, 2019, 91, 1365-1367.	5.0	3
532	Detecting Vertical Zika Transmission: Emerging Diagnostic Approaches for an Emerged Flavivirus. ACS Infectious Diseases, 2019, 5, 1055-1069.	3.8	7

#	Article	IF	CITATIONS
533	Supramolecular arrangement of the full-length Zika virus NS5. PLoS Pathogens, 2019, 15, e1007656.	4.7	38
534	Protection of ZIKV infection-induced neuropathy by abrogation of acute antiviral response in human neural progenitors. Cell Death and Differentiation, 2019, 26, 2607-2621.	11.2	27
535	The potential contribution of impaired brain glucose metabolism to congenital Zika syndrome. Journal of Anatomy, 2019, 235, 468-480.	1.5	13
536	Assessment of the effectiveness of BG-Sentinel traps baited with CO2 and BG-Lure for the surveillance of vector mosquitoes in Miami-Dade County, Florida. PLoS ONE, 2019, 14, e0212688.	2.5	35
537	Organoids — Preclinical Models of Human Disease. New England Journal of Medicine, 2019, 380, 569-579.	27.0	212
538	Dengue and Zika Virus Cross-Reactive Human Monoclonal Antibodies Protect against Spondweni Virus Infection and Pathogenesis in Mice. Cell Reports, 2019, 26, 1585-1597.e4.	6.4	18
539	Induced pluripotent stem cells in disease modelling and drug discovery. Nature Reviews Genetics, 2019, 20, 377-388.	16.3	411
541	Proteolytic cleavage of host proteins by the Group IV viral proteases of Venezuelan equine encephalitis virus and Zika virus. Antiviral Research, 2019, 164, 106-122.	4.1	19
542	One Step Into the Future: New iPSC Tools to Advance Research in Parkinson's Disease and Neurological Disorders. Journal of Parkinson's Disease, 2019, 9, 265-281.	2.8	19
543	Zika virus infection induces RNAi-mediated antiviral immunity in human neural progenitors and brain organoids. Cell Research, 2019, 29, 265-273.	12.0	115
544	Guillain-Barre syndrome and Zika infection: identifying leading producers, countries relative specialization and collaboration. FEMS Microbiology Letters, 2019, 366, .	1.8	4
545	The effect of Zika virus infection in the ferret. Journal of Comparative Neurology, 2019, 527, 1706-1719.	1.6	10
546	Sevoflurane attenuates brain damage through inhibiting autophagy and apoptosis in cerebral ischemia‑reperfusion rats. Molecular Medicine Reports, 2020, 21, 123-130.	2.4	40
547	The Envelope Residues E152/156/158 of Zika Virus Influence the Early Stages of Virus Infection in Human Cells. Cells, 2019, 8, 1444.	4.1	17
548	iPSCs-Based Neural 3D Systems: A Multidimensional Approach for Disease Modeling and Drug Discovery. Cells, 2019, 8, 1438.	4.1	41
549	A diarylamine derived from anthranilic acid inhibits ZIKV replication. Scientific Reports, 2019, 9, 17703.	3.3	15
550	Zika Vaccine Development: Current Status. Mayo Clinic Proceedings, 2019, 94, 2572-2586.	3.0	69
551	Disease modelling in human organoids. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	254

#	Article	IF	CITATIONS
552	The Spectrum of Developmental Disability with Zika Exposure: What Is Known, What Is Unknown, and Implications for Clinicians. Journal of Developmental and Behavioral Pediatrics, 2019, 40, 387-395.	1.1	17
553	Impression Cytology Is a Non-invasive and Effective Method for Ocular Cell Retrieval of Zika Infected Babies: Perspectives in OMIC Studies. Frontiers in Molecular Neuroscience, 2019, 12, 279.	2.9	9
554	Study protocol for the multicentre cohorts of Zika virus infection in pregnant women, infants, and acute clinical cases in Latin America and the Caribbean: the ZIKAlliance consortium. BMC Infectious Diseases, 2019, 19, 1081.	2.9	11
555	Updated Imaging Findings in Congenital Zika Syndrome. Topics in Magnetic Resonance Imaging, 2019, 28, 1-14.	1.2	8
556	Ocular Manifestations and Visual Outcome in Children With Congenital Zika Syndrome. Topics in Magnetic Resonance Imaging, 2019, 28, 23-27.	1.2	18
557	Putative Cellular and Molecular Roles of Zika Virus in Fetal and Pediatric Neuropathologies. Pediatric and Developmental Pathology, 2019, 22, 5-21.	1.0	5
558	Congenital Zika Syndrome and Extra-Central Nervous System Detection of Zika Virus in a Pre-term Newborn in Mexico. Clinical Infectious Diseases, 2019, 68, 903-912.	5.8	17
559	Efficiencies and kinetics of infection in different cell types/lines by African and Asian strains of Zika virus. Journal of Medical Virology, 2019, 91, 179-189.	5.0	21
560	Structurally- and dynamically-driven allostery of the chymotrypsin-like proteases of SARS, Dengue and Zika viruses. Progress in Biophysics and Molecular Biology, 2019, 143, 52-66.	2.9	22
561	Genome-wide approaches to unravelling host–virus interactions in Dengue and Zika infections. Current Opinion in Virology, 2019, 34, 29-38.	5.4	6
562	Microevolution of medically important mosquitoes – A review. Acta Tropica, 2019, 191, 162-171.	2.0	25
563	Association of Severe Hydrocephalus With Congenital Zika Syndrome. JAMA Neurology, 2019, 76, 203.	9.0	28
564	Neurological Complications of Congenital Zika Virus Infection. Pediatric Neurology, 2019, 91, 3-10.	2.1	34
565	Zika Virus: Origins, Pathological Action, and Treatment Strategies. Frontiers in Microbiology, 2018, 9, 3252.	3.5	58
566	Neuronal migration in the CNS during development and disease: insights from <i>in vivo</i> and <i>in vitro</i> models. Development (Cambridge), 2019, 146, .	2.5	110
567	In vitro and ex vivo systems at the forefront of infection modeling and drug discovery. Biomaterials, 2019, 198, 228-249.	11.4	54
568	Zika virus and the nonmicrocephalic fetus: whyÂweÂshould still worry. American Journal of Obstetrics and Gynecology, 2019, 220, 45-56.	1.3	51
569	Use of induced pluripotent stem cells (iPSCs) and cerebral organoids in modeling the congenital infection and neuropathogenesis induced by Zika virus. Journal of Medical Virology, 2019, 91, 525-532.	5.0	11

#	Article	IF	CITATIONS
570	Research advancements in the neurological presentation of flaviviruses. Reviews in Medical Virology, 2019, 29, e2021.	8.3	9
571	Maternal pentachlorophenol exposure induces developmental toxicity mediated by autophagy on pregnancy mice. Ecotoxicology and Environmental Safety, 2019, 169, 829-836.	6.0	18
572	Can We Better Understand How Zika Leads to Microcephaly? A Systematic Review of the Effects of the Zika Virus on Human Brain Organoids. Journal of Infectious Diseases, 2019, 219, 734-745.	4.0	21
573	Upregulation of MicroRNA miR-9 Is Associated with Microcephaly and Zika Virus Infection in Mice. Molecular Neurobiology, 2019, 56, 4072-4085.	4.0	19
574	Seasonal and spatial distribution of Aedes aegypti and Aedes albopictus in a municipal urban park in São Paulo, SP, Brazil. Acta Tropica, 2019, 189, 104-113.	2.0	48
575	Neuroimaging findings using transfontanellar ultrasound in newborns with microcephaly: a possible association with congenital Zika virus infection. Journal of Maternal-Fetal and Neonatal Medicine, 2019, 32, 493-501.	1.5	16
576	Meeting Report: WHO consultation on considerations for regulatory expectations of Zika virus vaccines for use during an emergency. Vaccine, 2019, 37, 7443-7450.	3.8	22
577	Modeling genetic epilepsies in a dish. Developmental Dynamics, 2020, 249, 56-75.	1.8	27
578	Can in utero Zika virus exposure be a risk factor for schizophrenia in the offspring?. World Journal of Biological Psychiatry, 2020, 21, 2-11.	2.6	2
579	Drugs for the Treatment of Zika Virus Infection. Journal of Medicinal Chemistry, 2020, 63, 470-489.	6.4	63
580	Towards manufacturing of human organoids. Biotechnology Advances, 2020, 39, 107460.	11.7	44
581	Detection of Zika virus in paired urine and amniotic fluid samples from symptomatic and asymptomatic women and their babies during a disease outbreak: association with neurological symptoms in newborns. Journal of NeuroVirology, 2020, 26, 70-76.	2.1	1
582	Protective and Pathogenic Effects of Interferon Signaling During Pregnancy. Viral Immunology, 2020, 33, 3-11.	1.3	33
583	Immune Evasion Strategies Used by Zika Virus to Infect the Fetal Eye and Brain. Viral Immunology, 2020, 33, 22-37.	1.3	16
584	Congenital Zika syndrome is associated with maternal protein malnutrition. Science Advances, 2020, 6, eaaw6284.	10.3	55
585	Organoid and Assembloid Technologies for Investigating Cellular Crosstalk in Human Brain Development and Disease. Trends in Cell Biology, 2020, 30, 133-143.	7.9	148
586	Uncertainty in times of medical emergency: Knowledge gaps and structural ignorance during the Brazilian Zika crisis. Social Science and Medicine, 2020, 246, 112787.	3.8	30
587	Reverse engineering human brain evolution using organoid models. Brain Research, 2020, 1729, 146582.	2.2	25

#	Article	IF	CITATIONS
588	CNS organoids: an innovative tool for neurological disease modeling and drug neurotoxicity screening. Drug Discovery Today, 2020, 25, 456-465.	6.4	36
589	Isolation and Culture of Human-Induced Pluripotent Stem Cell-Derived Cerebral Organoid Cells. Methods in Molecular Biology, 2020, , 483-494.	0.9	3
590	Modeling alcohol-induced neurotoxicity using human induced pluripotent stem cell-derived three-dimensional cerebral organoids. Translational Psychiatry, 2020, 10, 347.	4.8	47
591	Cross-sectional study of the anthropometric characteristics of children with congenital Zika syndrome up to 12 months of life. BMC Pediatrics, 2020, 20, 479.	1.7	5
592	Influenza A virus causes maternal and fetal pathology via innate and adaptive vascular inflammation in mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24964-24973.	7.1	34
593	DEFA1B inhibits ZIKV replication and retards cell cycle progression through interaction with ORC1. Life Sciences, 2020, 263, 118564.	4.3	5
594	When glia meet induced pluripotent stem cells (iPSCs). Molecular and Cellular Neurosciences, 2020, 109, 103565.	2.2	15
595	Passive immunisation of convalescent human anti-Zika plasma protects against challenge with New World Zika virus in cynomolgus macaques. Npj Vaccines, 2020, 5, 86.	6.0	10
596	Amyloid precursor protein is a restriction factor that protects against Zika virus infection in mammalian brains. Journal of Biological Chemistry, 2020, 295, 17114-17127.	3.4	9
597	Recent progress in translational engineered <i>in vitro</i> models of the central nervous system. Brain, 2020, 143, 3181-3213.	7.6	64
598	Zika virus NS4A cytosolic region (residues 1–48) is an intrinsically disordered domain and folds upon binding to lipids. Virology, 2020, 550, 27-36.	2.4	25
599	AHR is a Zika virus host factor and a candidate target for antiviral therapy. Nature Neuroscience, 2020, 23, 939-951.	14.8	57
600	Immunopathology of Zika virus infection. Advances in Virus Research, 2020, 107, 223-246.	2.1	0
601	Modulation in phase and frequency of neural oscillations during epileptiform activity induced by neonatal Zika virus infection in mice. Scientific Reports, 2020, 10, 6763.	3.3	8
602	Implications of TORCH Diseases in Retinal Development—Special Focus on Congenital Toxoplasmosis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 585727.	3.9	12
603	Neurological Findings in Children without Congenital Microcephaly Exposed to Zika Virus in Utero: A Case Series Study. Viruses, 2020, 12, 1335.	3.3	18
604	Role of Inflammation in Virus Pathogenesis during Pregnancy. Journal of Virology, 2020, 95, .	3.4	23
605	Editorial: Brain Organoids: Modeling in Neuroscience. Frontiers in Cellular Neuroscience, 2020, 14, 602946.	3.7	2

#	Article	IF	CITATIONS
606	Zika virus depletes neural stem cells and evades selective autophagy by suppressing the Fanconi anemia protein <scp>FANCC</scp> . EMBO Reports, 2020, 21, e49183.	4.5	17
607	Small molecule inhibitors possibly targeting the rearrangement of Zika virus envelope protein. Antiviral Research, 2020, 182, 104876.	4.1	11
608	Axonal Extensions along Corticospinal Tracts from Transplanted Human Cerebral Organoids. Stem Cell Reports, 2020, 15, 467-481.	4.8	49
609	A survey of RNA viruses in mosquitoes from Mozambique reveals novel genetic lineages of flaviviruses and phenuiviruses, as well as frequent flavivirus-like viral DNA forms in Mansonia. BMC Microbiology, 2020, 20, 225.	3.3	4
610	Brain Organoids: Tiny Mirrors of Human Neurodevelopment and Neurological Disorders. Neuroscientist, 2021, 27, 388-426.	3.5	11
611	Intramuscular Delivery of Replicon RNA Encoding ZIKV-117 Human Monoclonal Antibody Protects against Zika Virus Infection. Molecular Therapy - Methods and Clinical Development, 2020, 18, 402-414.	4.1	63
612	Neurologic infections during pregnancy. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2020, 172, 79-104.	1.8	26
613	Brain organoids: Human 3D models to investigate neuronal circuits assembly, function and dysfunction. Brain Research, 2020, 1746, 147028.	2.2	25
614	Speech-language disorders in children with congenital Zika virus syndrome: A systematic review. International Journal of Pediatric Otorhinolaryngology, 2020, 138, 110309.	1.0	10
615	Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nature Neuroscience, 2020, 23, 1496-1508.	14.8	171
616	Identification of Molecular Signatures in Neural Differentiation and Neurological Diseases Using Digital Color-Coded Molecular Barcoding. Stem Cells International, 2020, 2020, 1-9.	2.5	3
617	No effect of prior Dengue virus 1 infection in mouse dams on long-term behavioral profiles in offspring infected with Zika virus during gestation. Neuroscience Letters, 2020, 739, 135448.	2.1	2
618	Mechanistic Target of Rapamycin Signaling Activation Antagonizes Autophagy To Facilitate Zika Virus Replication. Journal of Virology, 2020, 94, .	3.4	22
619	Neural progenitor cell pyroptosis contributes to Zika virus-induced brain atrophy and represents a therapeutic target. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23869-23878.	7.1	56
620	mRNA and miRNA profiling of Zika virus-infected human umbilical cord mesenchymal stem cells identifies miR-142-5p as an antiviral factor. Emerging Microbes and Infections, 2020, 9, 2061-2075.	6.5	27
621	Continuous epileptiform discharges during sleep as an evolutionary pattern in patients with congenital Zika virus syndrome. Epilepsia, 2020, 61, e107-e115.	5.1	6
622	Post-Vaccination Yellow Fever Antiserum Reduces Zika Virus in Embryoid Bodies When Placental Cells are Present. Vaccines, 2020, 8, 752.	4.4	2
623	Enhanced Immune Responses and Protective Immunity to Zika Virus Induced by a DNA Vaccine Encoding a Chimeric NS1 Fused With Type 1 Herpes Virus gD Protein. Frontiers in Medical Technology, 2020, 2, 604160.	2.5	2

ARTICLE IF CITATIONS # Focal epilepsy features in a child with Congenital Zika Syndrome. Epilepsy and Behavior Reports, 2020, 624 1.0 1 14, 100411. Multiscale 3D phenotyping of human cerebral organoids. Scientific Reports, 2020, 10, 21487. 3.3 Neurological consequences of exercise during prenatal Zika virus exposure to mice pups. 626 17 1.6 International Journal of Neuroscience, 2022, 132, 1091-1101. ML-SA1, a selective TRPML agonist, inhibits DENV2 and ZIKV by promoting lysosomal acidification and 24 protease activity. Antiviral Research, 2020, 182, 104922. Advanced "lab-on-a-chip―to detect viruses – Current challenges and future perspectives. Biosensors 628 10.1 99 and Bioelectronics, 2020, 163, 112291. 629 A Primer on Human Brain Organoids for the Neurosurgeon. Neurosurgery, 2020, 87, 620-629. 1.1 Modeling traumatic brain injury with human brain organoids. Current Opinion in Biomedical 630 3.4 15 Engineering, 2020, 14, 52-58. Autophagy Contributes to Host Immunity and Protection against Zika Virus Infection via Type I IFN Signaling. Mediators of Inflammation, 2020, 2020, 1-15. 632 A brief history of organoids. American Journal of Physiology - Cell Physiology, 2020, 319, C151-C165. 189 4.6 Human Brain Organoids to Decode Mechanisms of Microcephaly. Frontiers in Cellular Neuroscience, 2020, 14, 115. Immunogenicity and Efficacy of Zika Virus Envelope Domain III in DNA, Protein, and ChAdOx1 634 4.418 Adenoviral-Vectored Vaccines. Vaccines, 2020, 8, 307. <i>In vivo</i> imaging of Zika virus reveals dynamics of viral invasion in immune-sheltered tissues and 10.0 vertical propagation during pregnancy. Theranostics, 2020, 10, 6430-6447. Identification of Estrogen Receptor Modulators as Inhibitors of Flavivirus Infection. Antimicrobial 637 3.2 23 Agents and Chemotherapy, 2020, 64, . Peli1 signaling blockade attenuates congenital zika syndrome. PLoS Pathogens, 2020, 16, e1008538. 4.7 Molecular alterations in the extracellular matrix in the brains of newborns with congenital Zika 639 39 3.6 syndrome. Science Signaling, 2020, 13, . Midbrain Organoids: A New Tool to Investigate Parkinson's Disease. Frontiers in Cell and 640 46 Developmental Biology, 2020, 8, 359. Brain organoids as a model system for human neurodevelopment in health and disease., 2020, 205-221. 641 0 Application of Fused Organoid Models to Study Human Brain Development and Neural Disorders. 642 Frontiers in Cellular Neuroscience, 2020, 14, 133.

#	Article	IF	CITATIONS
643	The cyanobacterial saxitoxin exacerbates neural cell death and brain malformations induced by Zika virus. PLoS Neglected Tropical Diseases, 2020, 14, e0008060.	3.0	28
644	Neurodevelopment of children exposed intra-uterus by Zika virus: A case series. PLoS ONE, 2020, 15, e0229434.	2.5	48
645	Susceptibility of Chicken Embryos, Sheep, Cattle, Pigs, and Chickens to Zika Virus Infection. Frontiers in Veterinary Science, 2020, 7, 23.	2.2	5
646	Innovations in 3D Tissue Models of Human Brain Physiology and Diseases. Advanced Functional Materials, 2020, 30, 1909146.	14.9	50
647	Developmental basis of Zika virus-induced neuropathology. , 2020, , 79-97.		0
648	Induced pluripotent stem cells as models of human neurodevelopmental disorders. , 2020, , 99-127.		0
649	Intermolecular interactions of cn-716 and acyl-KR-aldehyde dipeptide inhibitors against Zika virus. Physical Chemistry Chemical Physics, 2020, 22, 15683-15695.	2.8	20
650	Susceptibility of the Elderly to SARS-CoV-2 Infection: ACE-2 Overexpression, Shedding, and Antibody-dependent Enhancement (ADE). Clinics, 2020, 75, e1912.	1.5	64
651	Human neurogenesis. , 2020, , 751-767.		0
652	Central nervous system infections in a tropical area: influence of emerging and rare infections. European Journal of Neurology, 2020, 27, 2242-2249.	3.3	7
653	Human organoids: model systems for human biology and medicine. Nature Reviews Molecular Cell Biology, 2020, 21, 571-584.	37.0	1,082
654	Role of microglia in the dissemination of Zika virus from mother to fetal brain. PLoS Neglected Tropical Diseases, 2020, 14, e0008413.	3.0	27
655	Neural In Vitro Models for Studying Substances Acting on the Central Nervous System. Handbook of Experimental Pharmacology, 2020, 265, 111-141.	1.8	11
656	Precise and Programmable Detection of Mutations Using Ultraspecific Riboregulators. Cell, 2020, 180, 1018-1032.e16.	28.9	57
657	Maternal-Fetal Interplay in Zika Virus Infection and Adverse Perinatal Outcomes. Frontiers in Immunology, 2020, 11, 175.	4.8	33
658	Harnessing the Potential of Stem Cells for Disease Modeling: Progress and Promises. Journal of Personalized Medicine, 2020, 10, 8.	2.5	16
659	Integrin αvβ5 Internalizes Zika Virus during Neural Stem Cells Infection and Provides a Promising Target for Antiviral Therapy. Cell Reports, 2020, 30, 969-983.e4.	6.4	63
660	Network of Interactions between ZIKA Virus Non-Structural Proteins and Human Host Proteins. Cells, 2020, 9, 153.	4.1	19

#	Article	IF	CITATIONS
661	A new class of broadly neutralizing antibodies that target the glycan loop of Zika virus envelope protein. Cell Discovery, 2020, 6, 5.	6.7	20
663	Tissue organoid models and applications. , 2020, , 1537-1549.		3
664	Induced pluripotent stem cell technology: venturing into the second decade. , 2020, , 435-443.		2
665	SBDiEM: A new mathematical model of infectious disease dynamics. Chaos, Solitons and Fractals, 2020, 136, 109828.	5.1	57
666	Engineering Human Brain Organoids: From Basic Research to Tissue Regeneration. Tissue Engineering and Regenerative Medicine, 2020, 17, 747-757.	3.7	15
667	Modeling Human Cytomegalovirus-Induced Microcephaly in Human iPSC-Derived Brain Organoids. Cell Reports Medicine, 2020, 1, 100002.	6.5	67
668	Zika virus infection differentially affects genome-wide transcription in neuronal cells and myeloid dendritic cells. PLoS ONE, 2020, 15, e0231049.	2.5	9
669	Airway organoids as models of human disease. Journal of Internal Medicine, 2021, 289, 604-613.	6.0	55
670	Brain organoids: an ensemble of bioassays to investigate human neurodevelopment and disease. Cell Death and Differentiation, 2021, 28, 52-67.	11.2	104
671	Modeling neurological disorders using brain organoids. Seminars in Cell and Developmental Biology, 2021, 111, 4-14.	5.0	23
672	Zika virus in Brazil and worldwide: a narrative review. Paediatrics and International Child Health, 2021, 41, 28-35.	1.0	23
673	Zika virusâ€induced brain malformations in chicken embryos. Birth Defects Research, 2021, 113, 22-31.	1.5	9
674	3D culture models to study SARS-CoV-2 infectivity and antiviral candidates: From spheroids to bioprinting. Biomedical Journal, 2021, 44, 31-42.	3.1	27
675	Great Expectations: Induced pluripotent stem cell technologies in neurodevelopmental impairments. International Journal of Medical Sciences, 2021, 18, 459-473.	2.5	7
676	Modeling brain development and diseases with human cerebral organoids. Current Opinion in Neurobiology, 2021, 66, 103-115.	4.2	15
677	Prenatal cytomegalovirus, rubella, and Zika virus infections associated with developmental disabilities: past, present, and future. Developmental Medicine and Child Neurology, 2021, 63, 135-143.	2.1	11
678	Modeling Poliovirus Infection Using Human Engineered Neural Tissue Enriched With Motor Neuron Derived From Embryonic Stem Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 593106.	3.7	0
679	Prenatal disorders and congenital Zika syndrome in squirrel monkeys. Scientific Reports, 2021, 11, 2698.	3.3	4

	CITATION RE	PORT	
#	ARTICLE	IF	CITATIONS
680	In vivo mouse models to investigate the microcephaly associated with Zika virus. , 2021, , 451-462.		1
681	Molecular mechanisms of Zika virus-induced neurological pathology. , 2021, , 83-93.		Ο
682	Safe-in-Man Broad Spectrum Antiviral Agents. Advances in Experimental Medicine and Biology, 2021, 1322, 313-337.	1.6	1
683	Human stem cell models to study host–virus interactions in the central nervous system. Nature Reviews Immunology, 2021, 21, 441-453.	22.7	35
684	Molecular mechanisms of Zika fever in inducing birth defects: an update. , 2021, , 87-109.		0
685	Outline of animal study for lead/vaccine testing. , 2021, , 225-232.		0
686	Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Current Topics in Developmental Biology, 2021, 142, 477-530.	2.2	15
687	<scp>Valosinâ€containing protein ATPase activity regulates the morphogenesis of Zika virus replication organelles and virusâ€induced cell death</scp> . Cellular Microbiology, 2021, 23, e13302.	2.1	11
688	Hofbauer cells and placental viral infection. , 2021, , 295-309.		2
689	Use of induced pluripotent stem cells and cerebral organoids to profile Zika virus infection: Features and findings. , 2021, , 85-95.		0
690	The innate immune response during Zika virus infection. , 2021, , 19-29.		1
691	17βâ€estradiol reduces SARS oVâ€2 infection in vitro. Physiological Reports, 2021, 9, e14707.	1.7	42
692	Dual effects of insect fecundity overdispersion on the Wolbachia establishment and the implications for epidemic biocontrol. Journal of Pest Science, 2021, 94, 1519-1529.	3.7	1
693	Urological sequels in the scope of the Congenital Zika Syndrome. , 2021, , 279-288.		0
694	Induced pluripotent stem cells in intestinal diseases. , 2021, , 101-122.		0
695	Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery. International Journal of Molecular Sciences, 2021, 22, 1203.	4.1	26
696	Differentiation of Stem Cells into Neuronal Lineage: In Vitro Cell Culture and In Vivo Transplantation in Animal Models. Pancreatic Islet Biology, 2021, , 73-102.	0.3	0
697	Generation of human midbrain organoids from induced pluripotent stem cells. MNI Open Research, 0, 3, 1.	1.0	7

		CITATION R	EPORT	
#	Article		IF	CITATIONS
698	Microfluidic Organoids-on-a-Chip: Quantum Leap in Cancer Research. Cancers, 2021, 1	3, 737.	3.7	49
699	Curcumin-loaded mesoporous silica nanoparticles with dual-imaging and temperature of inhibits the infection of Zika virus. Microporous and Mesoporous Materials, 2021, 314,	control 110886.	4.4	11
700	Functional Mapping of AGO-Associated Zika Virus-Derived Small Interfering RNAs in Ne Frontiers in Cellular and Infection Microbiology, 2021, 11, 628887.	ural Stem Cells.	3.9	11
701	SARS-CoV-2 Infection and Disease Modelling Using Stem Cell Technology and Organoid Journal of Molecular Sciences, 2021, 22, 2356.	ls. International	4.1	13
702	Recent progresses and remaining challenges for the detection of Zika virus. Medicinal F Reviews, 2021, 41, 2039-2108.	lesearch	10.5	16
703	Recent African strains of Zika virus display higher transmissibility and fetal pathogenicit strains. Nature Communications, 2021, 12, 916.	ry than Asian	12.8	80
704	Differential Longevity of Memory CD4 and CD8 T Cells in a Cohort of the Mothers With ZIKV Infection and Their Children. Frontiers in Immunology, 2021, 12, 610456.	a History of	4.8	5
705	Pattern-Reversal Visual Evoked Potential in Children With Congenital Zika Syndrome. Jo Pediatric Ophthalmology and Strabismus, 2021, 58, 78-83.	ournal of	0.7	1
706	Three-dimensional, multifunctional neural interfaces for cortical spheroids and enginee assembloids. Science Advances, 2021, 7, .	red	10.3	128
707	Zika Virus Pathogenesis: A Battle for Immune Evasion. Vaccines, 2021, 9, 294.		4.4	12
708	Mapping the Ethical Issues of Brain Organoid Research and Application. AJOB Neurosci 81-94.	ence, 2022, 13,	1.1	49
709	Congenital Deafness and Recent Advances Towards Restoring Hearing Loss. Current Pr e76.	otocols, 2021, 1,	2.9	10
710	Association between Viral Infections and Risk of Autistic Disorder: An Overview. Interna Journal of Environmental Research and Public Health, 2021, 18, 2817.	itional	2.6	39
711	The Neurobiology of Zika Virus: New Models, New Challenges. Frontiers in Neuroscienc 654078.	e, 2021, 15,	2.8	3
712	TLR3 Activation by Zika Virus Stimulates Inflammatory Cytokine Production Which Dar Antiviral Response Induced by RIG-I-Like Receptors. Journal of Virology, 2021, 95, .	npens the	3.4	19
713	Histopathological lesions of congenital Zika syndrome in newborn squirrel monkeys. So Reports, 2021, 11, 6099.	cientific	3.3	4
714	Viral use and subversion of membrane organization and trafficking. Journal of Cell Scien	nce, 2021, 134, .	2.0	12
715	Contact-Dependent Transmission of Langat and Tick-Borne Encephalitis Virus in Type I Receptor 1-Deficient Mice. Journal of Virology, 2021, 95, .	Interferon	3.4	7

#	Article	IF	CITATIONS
716	In vitro study of Hesperetin and Hesperidin as inhibitors of zika and chikungunya virus proteases. PLoS ONE, 2021, 16, e0246319.	2.5	17
717	Malformações congênitas causadas por vÃrus. Research, Society and Development, 2021, 10, e44610414110.	0.1	0
718	The Neurobiology of Modern Viral Scourges: ZIKV and COVID-19. Neuroscientist, 2022, 28, 438-452.	3.5	4
719	Immune cells enhance Zika virusâ€mediated neurologic dysfunction in brain of mice with humanized immune systems. Developmental Neurobiology, 2021, 81, 389-399.	3.0	4
720	Harnessing pluripotent stem cells as models to decipher human evolution. FEBS Journal, 2022, 289, 2992-3010.	4.7	11
721	Maternal natural killer cells at the intersection between reproduction and mucosal immunity. Mucosal Immunology, 2021, 14, 991-1005.	6.0	20
722	Plasma lipidome profiling of newborns with antenatal exposure to Zika virus. PLoS Neglected Tropical Diseases, 2021, 15, e0009388.	3.0	6
723	Engineered NS1 for Sensitive, Specific Zika Virus Diagnosis from Patient Serology. Emerging Infectious Diseases, 2021, 27, 1427-1437.	4.3	7
724	Mechanisms Underlying Host Range Variation in Flavivirus: From Empirical Knowledge to Predictive Models. Journal of Molecular Evolution, 2021, 89, 329-340.	1.8	3
726	Advances in development and application of human organoids. 3 Biotech, 2021, 11, 257.	2.2	31
729	Human pluripotent stem cell-derived brain organoids as in vitro models for studying neural disorders and cancer. Cell and Bioscience, 2021, 11, 99.	4.8	11
730	Zika virus employs the host antiviral RNase L protein to support replication factory assembly. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
731	Molecular mechanisms of Zika virus teratogenesis from animal studies: a systematic review protocol. Systematic Reviews, 2021, 10, 160.	5.3	2
732	Oligodendrocytes are susceptible to Zika virus infection in a mouse model of perinatal exposure: Implications for CNS complications. Clia, 2021, 69, 2023-2036.	4.9	17
733	Replication Variance of African and Asian Lineage Zika Virus Strains in Different Cell Lines, Mosquitoes and Mice. Microorganisms, 2021, 9, 1250.	3.6	3
734	Automation of Organoid Cultures: Current Protocols and Applications. SLAS Discovery, 2021, 26, 1138-1147.	2.7	8
735	An inactivated recombinant rabies virus displaying the Zika virus prM-E induces protective immunity against both pathogens. PLoS Neglected Tropical Diseases, 2021, 15, e0009484.	3.0	10
736	Mosquito-borne arboviruses in Uganda: history, transmission and burden. Journal of General Virology, 2021, 102, .	2.9	2

		CITATION REPORT	
#	Article	IF	Citations
737	Experimental Models for SARS-CoV-2 Infection. Molecules and Cells, 2021, 44, 377-383.	2.6	6
738	From Brain Organoids to Networking Assembloids: Implications for Neuroendocrinology and Str Medicine. Frontiers in Physiology, 2021, 12, 621970.	ess 2.8	22
739	Impact of prior Dengue immunity on Zika vaccine protection in rhesus macaques and mice. PLos Pathogens, 2021, 17, e1009673.	\$ 4.7	7
740	The Effects of Environmental Adversities on Human Neocortical Neurogenesis Modeled in Brain Organoids. Frontiers in Molecular Biosciences, 2021, 8, 686410.	3.5	14
741	The Application of Brain Organoid Technology in Stroke Research: Challenges and Prospects. Frontiers in Cellular Neuroscience, 2021, 15, 646921.	3.7	14
742	From the Farm to the Lab: How Chicken Embryos Contribute to the Field of Teratology. Frontiers Genetics, 2021, 12, 666726.	s in 2.3	7
743	AAV ablates neurogenesis in the adult murine hippocampus. ELife, 2021, 10, .	6.0	45
744	Microfabricated disk technology: Rapid scale up in midbrain organoid generation. Methods, 202 465-477.	2, 203, <u>3.8</u>	15
745	The impact of (ab)normal maternal environment on cortical development. Progress in Neurobiol 2021, 202, 102054.	ogy, 5.7	11
746	Discovery of an imidazonaphthyridine and a riminophenazine as potent anti-Zika virus agents th a replicon-based high-throughput screening. Virus Research, 2021, 299, 198388.	rough 2.2	12
747	Non-human Primate Models to Investigate Mechanisms of Infection-Associated Fetal and Pediat Injury, Teratogenesis and Stillbirth. Frontiers in Genetics, 2021, 12, 680342.	ric 2.3	13
748	Three Immunocompetent Small Animal Models That Do Not Support Zika Virus Infection. Pathog 2021, 10, 971.	gens, 2.8	2
750	Inhibition of Tryptophan Catabolism Is Associated With Neuroprotection During Zika Virus Infec Frontiers in Immunology, 2021, 12, 702048.	tion. 4.8	6
751	Neuroinvasiveness of the MR766 strain of Zika virus in IFNAR-/-Âmice maps to prM residues cons amongst African genotype viruses. PLoS Pathogens, 2021, 17, e1009788.	served 4.7	18
752	The Ablation of Envelope Protein Glycosylation Enhances the Neurovirulence of ZIKV and Cell Apoptosis in Newborn Mice. Journal of Immunology Research, 2021, 2021, 1-10.	2.2	4
753	Novel Scalable and Simplified System to Generate Microglia-Containing Cerebral Organoids Fror Human Induced Pluripotent Stem Cells. Frontiers in Cellular Neuroscience, 2021, 15, 682272.	n 3.7	23
754	The evolution of Brazilian Health Sciences and the present situation. The Lancet Regional Health Americas, 2021, 3, 100044.	2.6	0
755	Aberrant NAD+ metabolism underlies Zika virus–induced microcephaly. Nature Metabolism, 2 1109-1124.	021, 3, 11.9	33

#	Article	IF	CITATIONS
756	Organoids in modelling infectious diseases. Drug Discovery Today, 2022, 27, 223-233.	6.4	14
758	Characterization of subclinical ZIKV infection in immune-competent guinea pigs and mice. Journal of General Virology, 2021, 102, .	2.9	3
759	Organoid modeling of Zika and herpes simplex virus 1 infections reveals virus-specific responses leading to microcephaly. Cell Stem Cell, 2021, 28, 1362-1379.e7.	11.1	67
760	Organoids: a novel modality in disease modeling. Bio-Design and Manufacturing, 2021, 4, 689-716.	7.7	33
761	The Age of Brain Organoids: Tailoring Cell Identity and Functionality for Normal Brain Development and Disease Modeling. Frontiers in Neuroscience, 2021, 15, 674563.	2.8	18
763	Congenital Viral, Bacterial, and Parasitic Infections. , 2021, , 339-358.		0
764	The clinical spectrum and immunopathological mechanisms underlying ZIKV-induced neurological manifestations. PLoS Neglected Tropical Diseases, 2021, 15, e0009575.	3.0	10
765	Congenital Infections of the Nervous System. CONTINUUM Lifelong Learning in Neurology, 2021, 27, 1105-1126.	0.8	2
766	Standardization and Evaluation of an Anti-ZIKV IgM ELISA Assay for the Serological Diagnosis of Zika Virus Infection. American Journal of Tropical Medicine and Hygiene, 2021, 105, 936-941.	1.4	3
767	Modeling PTEN overexpression-induced microcephaly in human brain organoids. Molecular Brain, 2021, 14, 131.	2.6	12
768	Cortical organoids model early brain development disrupted by 16p11.2 copy number variants in autism. Molecular Psychiatry, 2021, 26, 7560-7580.	7.9	61
769	Differences in Placental Histology Between Zika Virus–infected Teenagers and Older Women. International Journal of Gynecological Pathology, 2021, Publish Ahead of Print, .	1.4	1
770	The pyriproxyfen metabolite, 4′–OH–PPF, disrupts thyroid hormone signaling in neural stem cells, modifying neurodevelopmental genes affected by ZIKA virus infection Environmental Pollution, 2021, 285, 117654.	7.5	7
771	Zika Virus NS1 Suppresses VE-Cadherin and Claudin-5 via hsa-miR-101-3p in Human Brain Microvascular Endothelial Cells. Molecular Neurobiology, 2021, 58, 6290-6303.	4.0	12
772	Brain Organoids: Studying Human Brain Development and Diseases in a Dish. Stem Cells International, 2021, 2021, 1-16.	2.5	10
773	An update on preclinical pregnancy models of Zika virus infection for drug and vaccine discovery. Expert Opinion on Drug Discovery, 2022, 17, 19-25.	5.0	7
775	Are the Organoid Models an Invaluable Contribution to ZIKA Virus Research?. Pathogens, 2021, 10, 1233.	2.8	6
776	Embryonic Stage of Congenital Zika Virus Infection Determines Fetal and Postnatal Outcomes in Mice. Viruses, 2021, 13, 1807.	3.3	2

#	Article	IF	Citations
779	Human Embryos, Induced Pluripotent Stem Cells, and Organoids: Models to Assess the Effects of Environmental Plastic Pollution. Frontiers in Cell and Developmental Biology, 2021, 9, 709183.	3.7	6
780	Biomaterial-guided stem cell organoid engineering for modeling development and diseases. Acta Biomaterialia, 2021, 132, 23-36.	8.3	27
781	Neurodevelopment in normocephalic children with and without prenatal Zika virus exposure. Archives of Disease in Childhood, 2022, 107, 244-250.	1.9	15
782	Generating Cerebral Organoids from Human Pluripotent Stem Cells. Methods in Molecular Biology, 2022, 2389, 177-199.	0.9	5
783	Applications of Brain Organoids for Infectious Diseases. Journal of Molecular Biology, 2022, 434, 167243.	4.2	17
784	Gas6 drives Zika virus-induced neurological complications in humans and congenital syndrome in immunocompetent mice. Brain, Behavior, and Immunity, 2021, 97, 260-274.	4.1	10
785	Three dimensional bioelectronic interfaces to small-scale biological systems. Current Opinion in Biotechnology, 2021, 72, 1-7.	6.6	12
787	Neurological Complications of the COVID-19 Pandemic: What Have We Got So Far?. Advances in Experimental Medicine and Biology, 2021, 1321, 21-31.	1.6	9
788	Modeling SARS-CoV-2 infection in individuals with opioid use disorder with brain organoids. Journal of Tissue Engineering, 2021, 12, 204173142098529.	5.5	6
789	Zika virus infection disrupts development of both neurons and glial cells. , 2021, , 189-198.		0
790	Viral and Host Cellular Factors Used by Neurotropic Viruses. , 2021, , 75-83.		1
791	Pluripotent stem cell–derived brain-region-specific organoids. , 2021, , 1-43.		0
792	Clinical and Preclinical Evidence for Adverse Neurodevelopment after Postnatal Zika Virus Infection. Tropical Medicine and Infectious Disease, 2021, 6, 10.	2.3	9
793	Evaluating Zika Virus Pathogenesis in Immunocompromised Mice. Methods in Molecular Biology, 2020, 2142, 23-40.	0.9	1
794	Three-Dimensional Models for Studying Neurodegenerative and Neurodevelopmental Diseases. Advances in Experimental Medicine and Biology, 2020, 1195, 35-41.	1.6	1
795	Zika virus Infection and Potential Mechanisms Implicated in Neuropsychiatric Complications. Agents and Actions Supplements, 2020, , 207-221.	0.2	1
796	Modeling Inflammation on Neurodevelopmental Disorders Using Pluripotent Stem Cells. Advances in Neurobiology, 2020, 25, 207-218.	1.8	3
798	Dengue Virus and Other Flaviviruses (Zika): Biology, Pathogenesis, Epidemiology, and Vaccine Development. , 2017, , 141-167.		2

#	Article	IF	CITATIONS
799	Exploring the Lead Compounds for Zika Virus NS2B-NS3 Protein: an e-Pharmacophore-Based Approach. Applied Biochemistry and Biotechnology, 2019, 187, 194-210.	2.9	14
800	Different Gene Networks Are Disturbed by Zika Virus Infection in A Mouse Microcephaly Model. Genomics, Proteomics and Bioinformatics, 2020, 18, 737-748.	6.9	12
801	Zika virus infection confers protection against West Nile virus challenge in mice. Emerging Microbes and Infections, 2017, 6, 1-6.	6.5	20
802	Long-term alterations in brain and behavior after postnatal Zika virus infection in infant macaques. Nature Communications, 2020, 11, 2534.	12.8	38
803	Axl is not an indispensable factor for Zika virus infection in mice. Journal of General Virology, 2017, 98, 2061-2068.	2.9	62
804	In vitro and in vivo models for studying Zika virus biology. Journal of General Virology, 2018, 99, 1529-1550.	2.9	40
805	Basic insights into Zika virus infection of neuroglial and brain endothelial cells. Journal of General Virology, 2020, 101, 622-634.	2.9	12
818	Diagnostic Testing for Zika: Observing Rapid Translation During a Public Health Emergency. Clinical and Translational Science, 2018, 11, 103-105.	3.1	10
819	IL-1 receptor antagonist therapy mitigates placental dysfunction and perinatal injury following Zika virus infection. JCl Insight, 2019, 4, .	5.0	35
820	Organoid based personalized medicine: from bench to bedside. Cell Regeneration, 2020, 9, 21.	2.6	67
821	Brain organoids and insights on human evolution. F1000Research, 2019, 8, 760.	1.6	7
822	Generation of human midbrain organoids from induced pluripotent stem cells. MNI Open Research, 0, 3, 1.	1.0	10
823	Does Zika Virus Cause Microcephaly - Applying the Bradford Hill Viewpoints. PLOS Currents, 2017, 9, .	1.4	8
824	Hydrocephalus and arthrogryposis in an immunocompetent mouse model of ZIKA teratogeny: A developmental study. PLoS Neglected Tropical Diseases, 2017, 11, e0005363.	3.0	43
825	Emerging trends of Zika apprehension in an epidemic setting. PLoS Neglected Tropical Diseases, 2018, 12, e0006167.	3.0	6
826	Animal models of congenital zika syndrome provide mechanistic insight into viral pathogenesis during pregnancy. PLoS Neglected Tropical Diseases, 2020, 14, e0008707.	3.0	25
827	Zika Virus Tissue and Blood Compartmentalization in Acute Infection of Rhesus Macaques. PLoS ONE, 2017, 12, e0171148.	2.5	102
828	Laboratory strains of Aedes aegypti are competent to Brazilian Zika virus. PLoS ONE, 2017, 12, e0171951.	2.5	42

#	Article	IF	CITATIONS
829	Does adaptation to vertebrate codon usage relate to flavivirus emergence potential?. PLoS ONE, 2018, 13, e0191652.	2.5	11
830	Congenital Zika syndrome: A systematic review. PLoS ONE, 2020, 15, e0242367.	2.5	87
831	A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses. PLoS Pathogens, 2017, 13, e1006258.	4.7	200
832	Past, Present, and Future of Brain Organoid Technology. Molecules and Cells, 2019, 42, 617-627.	2.6	63
833	<scp>SARS</scp> oVâ€2 targets neurons of 3D human brain organoids. EMBO Journal, 2020, 39, e106230.	7.8	401
834	Early stimulation in the development of children with microcephaly: maternal perception. Revista Brasileira De Enfermagem, 2019, 72, 139-146.	0.7	8
835	T-cell Responses in Individuals Infected with Zika Virus and in Those Vaccinated Against Dengue Virus. Pathogens and Immunity, 2017, 2, 274.	3.1	18
836	Production, Titration and Imaging of Zika Virus in Mammalian Cells. Bio-protocol, 2018, 8, e3115.	0.4	7
837	敲除型干扰ç′å⊷ä¼′′çš"å°é¼ä½œä¸ºæ"ŸæŸ"å…æœ‰ç^†åٶ潜力的é«~致ç−…性ç−…æ⁻'的动ç%	∞ @æ "jåž‹	. Zzzological F
839	From microcephaly to megalencephaly: determinants of brain size. Dialogues in Clinical Neuroscience, 2018, 20, 267-282.	3.7	61
840	Unilateral Phrenic Nerve Palsy in Infants with Congenital Zika Syndrome. Emerging Infectious Diseases, 2018, 24, .	4.3	1
841	A Review on the Current Knowledge on ZIKV Infection and the Interest of Organoids and Nanotechnology on Development of Effective Therapies against Zika Infection. International Journal of Molecular Sciences, 2021, 22, 35.	4.1	13
842	Neurological Development, Epilepsy, and the Pharmacotherapy Approach in Children with Congenital Zika Syndrome: Results from a Two-Year Follow-up Study. Viruses, 2020, 12, 1083.	3.3	11
843	Beyond the Surface: Endocytosis of Mosquito-Borne Flaviviruses. Viruses, 2021, 13, 13.	3.3	22
844	Broadly Active Antiviral Compounds Disturb Zika Virus Progeny Release Rescuing Virus-Induced Toxicity in Brain Organoids. Viruses, 2021, 13, 37.	3.3	15
845	Emerging and Reemerging Human Viral Diseases. Annals of Microbiology and Research, 2018, 2, .	0.1	4
846	Consequences of Zika Virus Infection During Fetal Stage and Pregnancy Safe Drugs: An Update. International Journal of Pharmacology, 2017, 13, 370-377.	0.3	4

847	Modelling neurodegenerative diseases in vitro : Recent advances in 3D iPSC technologies. AIMS Cell and Tissue Engineering, 2018, 2, 1-23.		0.4	7
-----	--	--	-----	---

\sim			<u> </u>	
CH	TAT	ION	KED	ORT

#	ARTICLE	IF	CITATIONS
848	Case Report: Microcephaly in Twins due to the Zika Virus. American Journal of Tropical Medicine and Hygiene, 2017, 97, 151-154.	1.4	10
849	Responding to the Zika Epidemic: Preparation of a Neurodevelopmental Testing Protocol to Evaluate Young Children in Rural Guatemala. American Journal of Tropical Medicine and Hygiene, 2019, 100, 438-444.	1.4	12
850	Zika virus and pregnancy in Brazil: What happened?. Journal of the Turkish German Gynecology Association, 2018, 19, 39-47.	0.6	12
851	Generation of human liver organoids from pluripotent stem cell-derived hepatic endoderms. PeerJ, 2020, 8, e9968.	2.0	24
852	ZIKV Infection and miRNA Network in Pathogenesis and Immune Response. Viruses, 2021, 13, 1992.	3.3	8
853	Organoid Models for Infectious Disease. Annual Review of Medicine, 2022, 73, 167-182.	12.2	20
854	Neuroimmune Evasion of Zika Virus to Facilitate Viral Pathogenesis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 662447.	3.9	5
855	Effect of Serial Systemic and Intratumoral Injections of Oncolytic ZIKVBR in Mice Bearing Embryonal CNS Tumors. Viruses, 2021, 13, 2103.	3.3	8
856	NS2Bâ€NS3 protease inhibitors as promising compounds in the development of antivirals against Zika virus: A systematic review. Journal of Medical Virology, 2022, 94, 442-453.	5.0	17
857	Mosquito-borne arboviruses in Uganda: history, transmission and burden. Journal of General Virology, 2021, 102, .	2.9	0
858	Pathogenesis and virulence of flavivirus infections. Virulence, 2021, 12, 2814-2838.	4.4	31
859	Unraveling Human Brain Development and Evolution Using Organoid Models. Frontiers in Cell and Developmental Biology, 2021, 9, 737429.	3.7	9
860	BAF45b Is Required for Efficient Zika Virus Infection of HAP1 Cells. Viruses, 2021, 13, 2007.	3.3	2
861	Mountains, Melting Pot, and Microcosm: Health Care Delay and Dengue/Zika Interplay on Hawaii Island. Creative Nursing, 2016, 22, 233-242.	0.5	1
864	Navigating the Zika panic. F1000Research, 2016, 5, 1914.	1.6	1
865	Brief Insights into Zika-Microcephaly Mechanism. Clinical & Experimental Pharmacology, 2017, 07, .	0.3	Ο
867	Congenital Viral Infections. , 2017, , 1-46.		0
870	"How Safe is Safe Enough?―Using Beck's Risk Society Constructs to Facilitate Changes to Unsustainable Notions of Accountability. Advances in Public Interest Accounting, 2017, , 167-219.	0.2	1

# 873	ARTICLE Zika Virus and Microcephaly: An Enemy of Public Health. Amadeus International Multidisciplinary Journal, 2017, 2, 17.	IF 0.0	CITATIONS 0
874	Microcephaly. , 2018, , 1-9.		0
876	Microcephaly. , 2018, , 2171-2179.		0
879	O surto de Zika vÃrus: produção cientÃfica após Declaração de Emergência Nacional em Saúde Pública. Archives of Health Investigation, 2018, 7, .	0.1	1
881	Cerebral organoids: a promising model in cellular technologies. Vavilovskii Zhurnal Genetiki I Selektsii, 2018, 22, 168-178.	1.1	0
886	Discourses/4. Brazil: Accessing the Rights of Children with Disabilities: Attitudes Towards and Challenges for SEND in Brazil. International Perspectives on Early Childhood Education and Development, 2019, , 187-203.	0.3	0
889	Proteome analysis of neural stem cells and neurospheres infected with Zika Virus. , 0, , .		0
891	Espace, territoires et maladies vectoriellesÂ: enseignements des Suds pour lutter contre la menace des arboviroses au Brésil�. Confins, 2019, , .	0.1	0
892	Zika virus infection. Radiologia Brasileira, 2019, 52, IX-X.	0.7	1
893	Organoids: a new research model for SARS-CoV-2infection and treatment. Scientia Sinica Vitae, 2023, 53, 238-249.	0.3	1
895	São Paulo School of Advanced Sciences on Vaccines: an overview. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2020, 26, e20190061.	1.4	1
896	Three-dimensional models of human brain development. , 2020, , 257-278.		2
897	Systemic and Ophthalmic Manifestations of Zika. International Ophthalmology Clinics, 2020, 60, 3-12.	0.7	1
898	Developmental and reproductive toxicology. , 2020, , 241-248.		0
899	From Mosquito Bites to Sexual Transmission: Evaluating Mouse Models of Zika Virus Infection. Viruses, 2021, 13, 2244.	3.3	4
900	Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional Systems. Chemical Reviews, 2022, 122, 5277-5316.	47.7	31
901	Flavivirus vaccines: Virus-like particles and single-round infectious particles as promising alternatives. Vaccine, 2021, 39, 6990-7000.	3.8	8
905	Neuropathogenesis of Zika Virus Infection : Potential Roles of Antibody-Mediated Pathology. Acta Medica Kinki University, 2016, 41, 37-52.	3.0	9

#	Article	IF	CITATIONS
906	Animal Models of Zika Virus. Comparative Medicine, 2017, 67, 242-252.	1.0	24
907	Does Zika Virus Really Causes Microcephaly in Children Whose Mothers Became Infected with the Virus during Their Pregnancy?. Iranian Journal of Public Health, 2018, 47, 613-614.	0.5	0
908	Zika Virus Takes a Transplacental Route to Infect Fetuses: Insights from an Animal Model. Missouri Medicine, 2017, 114, 168-170.	0.3	7
909	Virus Cooperation, ZIKV Viremia and in Utero Fetus Infection. Women Health Care and Issues, 2019, 2, .	0.0	1
911	sEVsRVGÂselectively delivers antiviral siRNA to fetus brain, inhibits ZIKV infection and mitigates ZIKV-induced microcephaly in mouse model. Molecular Therapy, 2022, 30, 2078-2091.	8.2	22
912	Methodologies for Generating Brain Organoids to Model Viral Pathogenesis in the CNS. Pathogens, 2021, 10, 1510.	2.8	5
913	Research Progress, Challenges, and Breakthroughs of Organoids as Disease Models. Frontiers in Cell and Developmental Biology, 2021, 9, 740574.	3.7	19
914	Human brain organogenesis: Toward a cellular understanding of development and disease. Cell, 2022, 185, 42-61.	28.9	97
915	Breakthroughs in microbiology made possible with organoids. PLoS Pathogens, 2021, 17, e1010080.	4.7	6
916	A Rat Model of Prenatal Zika Virus Infection and Associated Long-Term Outcomes. Viruses, 2021, 13, 2298.	3.3	5
917	Non-infectious mechanisms of neurological damage due to infection. Journal of the Neurological Sciences, 2021, 431, 120057.	0.6	0
918	Two-dimensional material-based virus detection. Science China Chemistry, 2022, 65, 497-513.	8.2	13
919	Virus Cooperation, ZIKV Viremia and in Utero Fetus Infection. Women Health Care and Issues, 2019, 2, 01-05.	0.0	1
920	Zika vÃrus e itinerÃ;rios terapêuticos: os impactos da pós-epidemia no estado Rio Grande do Norte. Ilha Revista De Antropologia, 2020, 22, 169-199.	0.3	1
921	SÃndrome congênita pelo Zika VÃrus (SCZ) e seus aspectos estomatológicos: uma revisão sistematizada. Archives of Health Investigation, 2021, 10, 1426-1430.	0.1	0
922	Human Brain Organoids as an In Vitro Model System of Viral Infectious Diseases. Frontiers in Immunology, 2021, 12, 792316.	4.8	12
923	Autosomal Recessive Primary Microcephaly: Not Just a Small Brain. Frontiers in Cell and Developmental Biology, 2021, 9, 784700.	3.7	28
924	Epilepsy and EEG Abnormalities in Congenital Zika Syndrome. Journal of Clinical Neurophysiology, 2022, 39, 248-252.	1.7	3

	CHATON R	EPORT	
#	Article	IF	CITATIONS
925	Modeling human neurodevelopmental diseases with brain organoids. Cell Regeneration, 2022, 11, 1.	2.6	22
926	Clinical Features and Neurodevelopmental Outcomes for Infants with Perinatal Vertical Transmission of Zika Virus, Colombia. Emerging Infectious Diseases, 2022, 28, 453-456.	4.3	0
927	Molecular tweezers – a new class of potent broad-spectrum antivirals against enveloped viruses. Chemical Communications, 2022, 58, 2954-2966.	4.1	6
928	Clinical Features and Neurodevelopmental Outcomes for Infants with Perinatal Vertical Transmission of Zika Virus, Colombia. Emerging Infectious Diseases, 2022, 28, 453-456.	4.3	0
929	Human Brain Organoids and Consciousness. Neuroethics, 2022, 15, 1.	2.8	23
931	mRNA Vaccine Protects against Zika Virus. Vaccines, 2021, 9, 1464.	4.4	23
933	Brain and Retinal Organoids for Disease Modeling: The Importance of In Vitro Blood–Brain and Retinal Barriers Studies. Cells, 2022, 11, 1120.	4.1	5
934	Zika Virus Neuropathogenesis: The Different Brain Cells, Host Factors and Mechanisms Involved. Frontiers in Immunology, 2022, 13, 773191.	4.8	11
935	Recent Progress in Graphene- and Related Carbon-Nanomaterial-based Electrochemical Biosensors for Early Disease Detection. ACS Biomaterials Science and Engineering, 2022, 8, 964-1000.	5.2	37
936	Human Brain Organoids as Models for Central Nervous System Viral Infection. Viruses, 2022, 14, 634.	3.3	20
937	Neurodevelopment in Children Exposed to Zika in utero: Clinical and Molecular Aspects. Frontiers in Genetics, 2022, 13, 758715.	2.3	12
938	ZIKV Teratogenesis: Clinical Findings in Humans, Mechanisms and Experimental Models. Frontiers in Virology, 2022, 1, .	1.4	0
939	Neurodevelopmental outcome of infants without central nervous system anomalies born to symptomatic RT-PCR ZIKV positive women. PLoS Neglected Tropical Diseases, 2022, 16, e0009854.	3.0	0
940	Advanced human developmental toxicity and teratogenicity assessment using human organoid models. Ecotoxicology and Environmental Safety, 2022, 235, 113429.	6.0	32
942	Consequences of Viral Infection and Cytokine Production During Pregnancy on Brain Development in Offspring. Frontiers in Immunology, 2022, 13, 816619.	4.8	15
943	Zika virus vertical transmission in interferon receptor1-antagonized Rag1â^'/â^' mice results in postnatal brain abnormalities and clinical disease. Acta Neuropathologica Communications, 2022, 10, 46.	5.2	4
944	60 anos de Fapesp: Uma polÃŧica de Estado para o desenvolvimento. Estudos Avancados, 2022, 36, 299-316.	0.5	0
945	Neuroimaging and motor development of twins with congenital microcephaly associated with Zika virus: a case report. Acta Fisiátrica, 2021, 28, 195-200.	0.1	0

#	Article	IF	CITATIONS
947	Zika Virus Overview: Transmission, Origin, Pathogenesis, Animal Model and Diagnosis. Zoonoses, 2021, 1, .	1.1	10
948	Focus on organoids: cooperation and interconnection with extracellular vesicles – Is this the future of in vitro modeling?. Seminars in Cancer Biology, 2022, 86, 367-381.	9.6	5
949	Techniques for Developing and Assessing Immune Responses Induced by Synthetic DNA Vaccines for Emerging Infectious Diseases. Methods in Molecular Biology, 2022, 2410, 229-263.	0.9	1
950	Regulatory Role of Host MicroRNAs in Flaviviruses Infection. Frontiers in Microbiology, 2022, 13, 869441.	3.5	7
951	What Makes Organoids Good Models of Human Neurogenesis?. Frontiers in Neuroscience, 2022, 16, 872794.	2.8	5
980	Viral Infections and Temporal Programming of Autism Spectrum Disorders in the Mother's Womb. Frontiers in Virology, 2022, 2, .	1.4	0
981	Child Neurology Care in Latin America: Challenges and Potential Solutions. Pediatric Neurology, 2022, 132, 19-22.	2.1	2
982	Anthropometric Parameters of Children with Congenital Zika Virus Exposure in the First Three Years of Life. Viruses, 2022, 14, 876.	3.3	3
983	A bacteriumâ€like particle vaccine displaying Zika virus prMâ€E induces systemic immune responses in mice. Transboundary and Emerging Diseases, 2022, 69, .	3.0	8
984	3D Bioprinted Neuralâ€Like Tissue as a Platform to Study Neurotropism of Mouseâ€Adapted SARSâ€CoVâ€2. Advanced Biology, 2022, 6, e2200002.	2.5	4
985	The distinguishing NS5-M114V mutation in American Zika virus isolates has negligible impacts on virus replication and transmission potential. PLoS Neglected Tropical Diseases, 2022, 16, e0010426.	3.0	4
986	Induced Pluripotent Stem Cells. , 2022, , 1-25.		16
988	Intrinsic antiviral immunity of barrier cells revealed by an iPSC-derived blood-brain barrier cellular model. Cell Reports, 2022, 39, 110885.	6.4	8
989	Congenital Zika Virus Infection Impairs Corpus Callosum Development. SSRN Electronic Journal, 0, , .	0.4	0
991	Human Neutrophils Present Mild Activation by Zika Virus But Reduce the Infection of Susceptible Cells. Frontiers in Immunology, 0, 13, .	4.8	1
992	Growth hormone attenuates the brain damage caused by ZIKV infection in mice. Virologica Sinica, 2022, , .	3.0	1
993	Zika Virus Strains and Dengue Virus Induce Distinct Proteomic Changes in Neural Stem Cells and Neurospheres. Molecular Neurobiology, 2022, 59, 5549-5563.	4.0	2
994	A gossypol derivative effectively protects against Zika and dengue virus infection without toxicity. BMC Biology, 2022, 20, .	3.8	3

#	Article	IF	CITATIONS
995	The Myeloid Cell Secretome Regulates Zika Flavivirus Infection of Developing and Malignant Human Neural Progenitor Cells. SSRN Electronic Journal, 0, , .	0.4	0
996	3D Human Organoids: The Next "Viral―Model for the Molecular Basis of Infectious Diseases. Biomedicines, 2022, 10, 1541.	3.2	6
997	Modeling infectious diseases of the central nervous system with human brain organoids. Translational Research, 2022, 250, 18-35.	5.0	2
998	Cortical Organoids to Model Microcephaly. Cells, 2022, 11, 2135.	4.1	3
999	Development and characterization of an inducible assay system to measure Zika virus capsid interactions. Journal of Medical Virology, 2022, 94, 5392-5400.	5.0	0
1000	Recent advances in organoid engineering: A comprehensive review. Applied Materials Today, 2022, 29, 101582.	4.3	8
1001	Bioengineered Co-culture of organoids to recapitulate host-microbe interactions. Materials Today Bio, 2022, 16, 100345.	5.5	10
1002	Disputas epistemológicas na associação causal entre Zika vÃŧus e sÃndrome congênita: uma análise de controvérsia. Ciencia E Saude Coletiva, 2022, 27, 3171-3180.	0.5	0
1003	Epistemological disputes in the causal link between Zika virus and congenital syndrome: a controversy analysis. Ciencia E Saude Coletiva, 2022, 27, 3171-3180.	0.5	0
1004	Applications of human brain organoids. Organoid, 0, 2, e13.	0.0	0
1005	Usutu Virus Infects Human Placental Explants and Induces Congenital Defects in Mice. Viruses, 2022, 14, 1619.	3.3	2
1006	Using 2D and 3D pluripotent stem cell models to study neurotropic viruses. Frontiers in Virology, 0, 2,	1.4	3
1007	Toward the next generation of vascularized human neural organoids. Medicinal Research Reviews, 2023, 43, 31-54.	10.5	11
1008	Zika virus causes placental pyroptosis and associated adverse fetal outcomes by activating GSDME. ELife, 0, 11, .	6.0	16
1009	Zika Virus (ZIKV): A New Perspective on the Nanomechanical and Structural Properties. Viruses, 2022, 14, 1727.	3.3	4
1010	Drugs to limit Zika virus infection and implication for maternal-fetal health. Frontiers in Virology, 0, 2, .	1.4	3
1011	microRNAs Control Antiviral Immune Response, Cell Death and Chemotaxis Pathways in Human Neuronal Precursor Cells (NPCs) during Zika Virus Infection. International Journal of Molecular Sciences, 2022, 23, 10282.	4.1	6
1012	SARS-CoV-2 infection and replication kinetics in different human cell types: The role of autophagy, cellular metabolism and ACE2 expression. Life Sciences, 2022, 308, 120930.	4.3	14

#	Article	IF	CITATIONS
1013	Overexpression of estrogen receptor GPER1 and G1 treatment reduces SARS-CoV-2 infection in BEAS-2B bronchial cells. Molecular and Cellular Endocrinology, 2022, 558, 111775.	3.2	4
1014	3D engineered tissue models for studying human-specific infectious viral diseases. Bioactive Materials, 2023, 21, 576-594.	15.6	2
1015	Prenatal Zika Virus Exposure is Associated with Lateral Geniculate Nucleus Abnormalities in Juvenile Rhesus Macaques. SSRN Electronic Journal, 0, , .	0.4	0
1016	Tricin attenuates cerebral ischemia/reperfusion injury through inhibiting nerve cell autophagy, apoptosis and inflammation by regulating the PI3K/Akt pathway. Human and Experimental Toxicology, 2022, 41, 096032712211259.	2.2	9
1017	An overview of Zika virus genotypes and their infectivity. Revista Da Sociedade Brasileira De Medicina Tropical, 0, 55, .	0.9	5
1018	Heparin Protects Human Neural Progenitor Cells from Zika Virus-Induced Cell Death While Preserving Their Differentiation into Mature Neuroglial Cells. Journal of Virology, 2022, 96, .	3.4	2
1019	Myeloid cell interferon secretion restricts Zika flavivirus infection of developing and malignant human neural progenitor cells. Neuron, 2022, 110, 3936-3951.e10.	8.1	7
1020	Infection of 3D Brain Organoids with Human Pathogenic Viruses Under Biosafety Level-3 Conditions with Subsequent Inactivation to Study Viral Replication, Pathomechanisms, and Other Viral Infection-Mediated Effects. Neuromethods, 2023, , 191-220.	0.3	1
1021	Understanding the Tissue Specificity of ZIKV Infection in Various Animal Models for Vaccine Development. Vaccines, 2022, 10, 1517.	4.4	1
1022	The impact of antidepressants on human neurodevelopment: Brain organoids as experimental tools. Seminars in Cell and Developmental Biology, 2023, 144, 67-76.	5.0	4
1023	ZIKV-envelope proteins induce specific humoral and cellular immunity in distinct mice strains. Scientific Reports, 2022, 12, .	3.3	3
1024	Copper regulation disturbance linked to oxidative stress and cell death during Zika virus infection in human astrocytes. Journal of Cellular Biochemistry, 0, , .	2.6	1
1025	SARS-CoV-2 promotes microglial synapse elimination in human brain organoids. Molecular Psychiatry, 2022, 27, 3939-3950.	7.9	41
1027	Zika Virus Infection Downregulates Connexin 43, Disrupts the Cardiomyocyte Gap Junctions and Induces Heart Diseases in A129 Mice. Journal of Virology, 2022, 96, .	3.4	4
1028	SARS oVâ€2 cellular tropism and direct multiorgan failure in COVIDâ€19 patients: Bioinformatic predictions, experimental observations, and open questions. Cell Biology International, 2023, 47, 308-326.	3.0	7
1029	Human cerebral organoids — a new tool for clinical neurology research. Nature Reviews Neurology, 2022, 18, 661-680.	10.1	49
1030	Adaptation to host cell environment during experimental evolution of Zika virus. Communications Biology, 2022, 5, .	4.4	5
1031	Mechanisms of Zika astrocyte infection and neuronal toxicity. , 2022, .		0

#	Article	IF	CITATIONS
1032	The CD8+ and CD4+ T Cell Immunogen Atlas of Zika Virus Reveals E, NS1 and NS4 Proteins as the Vaccine Targets. Viruses, 2022, 14, 2332.	3.3	2
1033	Research models of neurodevelopmental disorders: The right model in the right place. Frontiers in Neuroscience, 0, 16, .	2.8	1
1034	SARS-CoV-2 infects human brain organoids causing cell death and loss of synapses that can be rescued by treatment with Sofosbuvir. PLoS Biology, 2022, 20, e3001845.	5.6	27
1035	GPI-anchored ligand-BioID2-tagging system identifies Galectin-1 mediating Zika virus entry. IScience, 2022, 25, 105481.	4.1	1
1036	Induced Pluripotent Stem Cells. , 2022, , 895-919.		0
1037	Fetuses and infants with Amyoplasia congenita in congenital Zika syndrome: The evidence of a viral cause. A narrative review of 144 cases. European Journal of Paediatric Neurology, 2022, , .	1.6	0
1038	Modeling congenital brain malformations with brain organoids: a narrative review. Translational Pediatrics, 2023, 12, 68-78.	1.2	1
1039	Transcriptome profiling and Calreticulin expression in Zika virus -infected Aedes aegypti. Infection, Genetics and Evolution, 2023, 107, 105390.	2.3	1
1040	Brain organoids: Establishment and application. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	4
1041	Natural Compounds as Non-Nucleoside Inhibitors of Zika Virus Polymerase through Integration of In Silico and In Vitro Approaches. Pharmaceuticals, 2022, 15, 1493.	3.8	6
1042	Would Zika virus Infection in Pregnancy Be a Sentence of Poor Neurological Prognosis for Exposed Children? Neurodevelopmental Outcomes in a Cohort from Brazilian Amazon. Viruses, 2022, 14, 2659.	3.3	2
1043	Visual Acuity alterations in heavily impaired Congenital Zika Syndrome (CZS) children. Frontiers in Ophthalmology, 0, 2, .	0.5	0
1044	Clinical and experimental evidence for transplacental vertical transmission of flaviviruses. Antiviral Research, 2023, 210, 105512.	4.1	2
1045	Recent Development of Brain Organoids for Biomedical Application. Macromolecular Bioscience, 2023, 23, .	4.1	2
1046	Interfer(on)ing with Zika virus. Neuron, 2022, 110, 3853-3854.	8.1	1
1047	Influence of Dosing Regimen and Adjuvant Type on the Immunogenicity of Novel Recombinant Zika Virus-Like Particles. Microbiology Spectrum, 0, , .	3.0	0
1048	Mouse models of Zika virus transplacental transmission. Antiviral Research, 2023, 210, 105500.	4.1	1
1049	Nuclear accumulation of host transcripts during Zika Virus Infection. PLoS Pathogens, 2023, 19, e1011070.	4.7	1

#	Article	IF	CITATIONS
1050	Mechanics of morphogenesis in neural development: In vivo, in vitro, and in silico. Brain Multiphysics, 2023, 4, 100062.	2.3	0
1051	Maternal Immune Response to ZIKV Triggers High-Inflammatory Profile in Congenital Zika Syndrome. Viruses, 2023, 15, 220.	3.3	2
1052	Differential Susceptibility of Fetal Retinal Pigment Epithelial Cells, hiPSC- Retinal Stem Cells, and Retinal Organoids to Zika Virus Infection. Viruses, 2023, 15, 142.	3.3	2
1053	iPS cell technologies toward overcoming neurological diseases. Folia Pharmacologica Japonica, 2023, 158, 57-63.	0.2	Ο
1054	Zika virus cleaves GSDMD to disseminate prognosticable and controllable oncolysis in a human glioblastoma cell model. Molecular Therapy - Oncolytics, 2023, 28, 104-117.	4.4	6
1055	Stem Cell–Based Organoid Models of Neurodevelopmental Disorders. Biological Psychiatry, 2023, 93, 622-631.	1.3	8
1056	Differential proteomics of Zika virus (ZIKV) infection reveals molecular changes potentially involved in immune system evasion by a Brazilian strain of ZIKV. Archives of Virology, 2023, 168, .	2.1	1
1057	Patient-specific 3D bioprinting for in situ tissue engineering and regenerative medicine. , 2023, , 149-178.		1
1058	Development and applications of mRNA treatment based on lipid nanoparticles. Biotechnology Advances, 2023, 65, 108130.	11.7	10
1060	Rational Development of Live-Attenuated Zika Virus Vaccines. Pathogens, 2023, 12, 194.	2.8	2
1060 1061	Rational Development of Live-Attenuated Zika Virus Vaccines. Pathogens, 2023, 12, 194. Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nature Reviews Genetics, 2023, 24, 687-711.	2.8 16.3	2
1060 1061 1062	Rational Development of Live-Attenuated Zika Virus Vaccines. Pathogens, 2023, 12, 194. Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nature Reviews Genetics, 2023, 24, 687-711. Zika virus leads to olfactory disorders in mice by targeting olfactory ensheathing cells. EBioMedicine, 2023, 89, 104457.	2.8 16.3 6.1	2 21 6
1060 1061 1062 1063	Rational Development of Live-Attenuated Zika Virus Vaccines. Pathogens, 2023, 12, 194. Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nature Reviews Genetics, 2023, 24, 687-711. Zika virus leads to olfactory disorders in mice by targeting olfactory ensheathing cells. EBioMedicine, 2023, 89, 104457. NS1 from Two Zika Virus Strains Differently Interact with a Membrane: Insights to Understand Their Differential Virulence. Journal of Chemical Information and Modeling, 2023, 63, 1386-1400.	2.8 16.3 6.1 5.4	2 21 6 1
1060 1061 1062 1063	Rational Development of Live-Attenuated Zika Virus Vaccines. Pathogens, 2023, 12, 194.Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nature Reviews Genetics, 2023, 24, 687-711.Zika virus leads to olfactory disorders in mice by targeting olfactory ensheathing cells. EBioMedicine, 2023, 89, 104457.NS1 from Two Zika Virus Strains Differently Interact with a Membrane: Insights to Understand Their Differential Virulence. Journal of Chemical Information and Modeling, 2023, 63, 1386-1400.Human brain organoids to explore SARSâ€CoVâ€2â€induced effects on the central nervous system. Reviews in Medical Virology, 2023, 33, .	2.8 16.3 6.1 5.4 8.3	2 21 6 1 7
1060 1061 1062 1063 1064	Rational Development of Live-Attenuated Zika Virus Vaccines. Pathogens, 2023, 12, 194.Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nature Reviews Genetics, 2023, 24, 687-711.Zika virus leads to olfactory disorders in mice by targeting olfactory ensheathing cells. EBioMedicine, 2023, 89, 104457.NS1 from Two Zika Virus Strains Differently Interact with a Membrane: Insights to Understand Their Differential Virulence. Journal of Chemical Information and Modeling, 2023, 63, 1386-1400.Human brain organoids to explore SARSâ€CoVâ€2â€induced effects on the central nervous system. Reviews in Medical Virology, 2023, 33, .Comparative mutational analysis of the Zika virus genome from different geographical locations and its effect on the efficacy of Zika virus-specific neutralizing antibodies. Frontiers in Microbiology, 0, 14, .	2.8 16.3 6.1 5.4 8.3 3.5	2 21 6 1 7 2
1060 1061 1062 1063 1065 1066	Rational Development of Live-Attenuated Zika Virus Vaccines. Pathogens, 2023, 12, 194. Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nature Reviews Genetics, 2023, 24, 687-711. Zika virus leads to olfactory disorders in mice by targeting olfactory ensheathing cells. EBioMedicine, 2023, 89, 104457. NS1 from Two Zika Virus Strains Differently Interact with a Membrane: Insights to Understand Their Differential Virulence. Journal of Chemical Information and Modeling, 2023, 63, 1386-1400. Human brain organoids to explore SARS&CoV&C2&E:Anduced effects on the central nervous system. Reviews in Medical Virology, 2023, 33, . Comparative mutational analysis of the Zika virus genome from different geographical locations and its effect on the efficacy of Zika virus-specific neutralizing antibodies. Frontiers in Microbiology, 0, 14, . Zika Virus Infection Damages the Testes in Pubertal Common Squirrel Monkeys (Saimiri collinsi).	2.8 16.3 6.1 5.4 8.3 3.5 3.3	2 21 6 1 7 2
1060 1061 1062 1063 1065 1066	Rational Development of Live-Attenuated Zika Virus Vaccines. Pathogens, 2023, 12, 194.Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nature Reviews Genetics, 2023, 24, 687-711.Zika virus leads to olfactory disorders in mice by targeting olfactory ensheathing cells. EBioMedicine, 2023, 89, 104457.NS1 from Two Zika Virus Strains Differently Interact with a Membrane: Insights to Understand Their Differential Virulence. Journal of Chemical Information and Modeling, 2023, 63, 1386-1400.Human brain organoids to explore SARSa€CoVa€2a€induced effects on the central nervous system. Reviews in Medical Virology, 2023, 33, .Comparative mutational analysis of the Zika virus genome from different geographical locations and its effect on the efficacy of Zika virus-specific neutralizing antibodies. Frontiers in Microbiology, 0, 14, .Zika Virus Infection Damages the Testes in Pubertal Common Squirrel Monkeys (Saimiri collinsi). Viruses, 2023, 15, 615.Association between genetic variants in TREM1, CXCL10, IL4, CXCL8 and TLR7 genes with the occurrence of congenital Zika syndrome and severe microcephaly. Scientific Reports, 2023, 13, .	2.8 16.3 6.1 5.4 8.3 3.5 3.3 3.3	2 21 6 1 7 2 2 0

#	Article	IF	CITATIONS
1069	Diagnostic and vaccine potential of Zika virus envelope protein (E) derivates produced in bacterial and insect cells. Frontiers in Immunology, 0, 14, .	4.8	1
1070	Revolutionizing Disease Modeling: The Emergence of Organoids in Cellular Systems. Cells, 2023, 12, 930.	4.1	10
1071	Direct and indirect impact of SARS-CoV-2 on the brain. Human Genetics, 2023, 142, 1317-1326.	3.8	5
1072	A Ferritin Nanoparticle-Based Zika Virus Vaccine Candidate Induces Robust Humoral and Cellular Immune Responses and Protects Mice from Lethal Virus Challenge. Vaccines, 2023, 11, 821.	4.4	4
1073	Salivary Detection of Zika Virus Infection Using ATR-FTIR Spectroscopy Coupled with Machine Learning Algorithms and Univariate Analysis: A Proof-of-Concept Animal Study. Diagnostics, 2023, 13, 1443.	2.6	1
1075	iPSC-derived three-dimensional brain organoid models and neurotropic viral infections. Journal of NeuroVirology, 2023, 29, 121-134.	2.1	5
1076	Monodelphis domestica as a Fetal Intra-Cerebral Inoculation Model for Zika Virus Pathogenesis. Pathogens, 2023, 12, 733.	2.8	0
1077	Zika Virus affects neurobehavioral development, and causes oxidative stress associated to blood–brain barrier disruption in a rat model of congenital infection. Brain, Behavior, and Immunity, 2023, 112, 29-41.	4.1	1
1078	Development trends of human organoidâ€based <scp>COVID</scp> â€19 research based on bibliometric analysis. Cell Proliferation, 2023, 56, .	5.3	3
1079	Viral Infections of the Fetus and Newborn. , 2024, , 450-486.e24.		0
1079 1080	Viral Infections of the Fetus and Newborn. , 2024, , 450-486.e24. Different outcomes of neonatal and adult Zika virus infection on startle reflex and prepulse inhibition in mice. Behavioural Brain Research, 2023, 451, 114519.	2.2	0
1079 1080 1081	Viral Infections of the Fetus and Newborn., 2024, , 450-486.e24. Different outcomes of neonatal and adult Zika virus infection on startle reflex and prepulse inhibition in mice. Behavioural Brain Research, 2023, 451, 114519. Maternal Th17 Profile after Zika Virus Infection Is Involved in Congenital Zika Syndrome Development in Children. Viruses, 2023, 15, 1320.	2.2	0 0 0
1079 1080 1081 1082	Viral Infections of the Fetus and Newborn., 2024, , 450-486.e24. Different outcomes of neonatal and adult Zika virus infection on startle reflex and prepulse inhibition in mice. Behavioural Brain Research, 2023, 451, 114519. Maternal Th17 Profile after Zika Virus Infection Is Involved in Congenital Zika Syndrome Development in Children. Viruses, 2023, 15, 1320. A Comprehensive Review on Herbal Nanoparticulate System through Intranasal Route for Management of Congenital-Neuro Zika Therapy. Current Bioactive Compounds, 2023, 19, .	2.2 3.3 0.5	0 0 0 0
1079 1080 1081 1082 1083	Viral Infections of the Fetus and Newborn., 2024, , 450-486.e24. Different outcomes of neonatal and adult Zika virus infection on startle reflex and prepulse inhibition in mice. Behavioural Brain Research, 2023, 451, 114519. Maternal Th17 Profile after Zika Virus Infection Is Involved in Congenital Zika Syndrome Development in Children. Viruses, 2023, 15, 1320. A Comprehensive Review on Herbal Nanoparticulate System through Intranasal Route for Management of Congenital-Neuro Zika Therapy. Current Bioactive Compounds, 2023, 19, . Neurotoxic properties of the Zika virus envelope protein. Experimental Neurology, 2023, 367, 114469.	2.2 3.3 0.5 4.1	0 0 0 0
1079 1080 1081 1082 1083	Viral Infections of the Fetus and Newborn. , 2024, , 450-486.e24.Different outcomes of neonatal and adult Zika virus infection on startle reflex and prepulse inhibition in mice. Behavioural Brain Research, 2023, 451, 114519.Maternal Th17 Profile after Zika Virus Infection Is Involved in Congenital Zika Syndrome Development in Children. Viruses, 2023, 15, 1320.A Comprehensive Review on Herbal Nanoparticulate System through Intranasal Route for Management of Congenital-Neuro Zika Therapy. Current Bioactive Compounds, 2023, 19, .Neurotoxic properties of the Zika virus envelope protein. Experimental Neurology, 2023, 367, 114469.Human pluripotent stem cell (hPSC) and organoid models of autism: opportunities and limitations. Translational Psychiatry, 2023, 13, .	2.2 3.3 0.5 4.1 4.8	0 0 0 0 1 3
1079 1080 1081 1082 1083 1084	Viral Infections of the Fetus and Newborn. , 2024, , 450-486.e24.Different outcomes of neonatal and adult Zika virus infection on startle reflex and prepulse inhibition in mice. Behavioural Brain Research, 2023, 451, 114519.Maternal Th17 Profile after Zika Virus Infection Is Involved in Congenital Zika Syndrome Development in Children. Viruses, 2023, 15, 1320.A Comprehensive Review on Herbal Nanoparticulate System through Intranasal Route for Management of Congenital-Neuro Zika Therapy. Current Bioactive Compounds, 2023, 19, .Neurotoxic properties of the Zika virus envelope protein. Experimental Neurology, 2023, 367, 114469.Human pluripotent stem cell (hPSC) and organoid models of autism: opportunities and limitations. Translational Psychiatry, 2023, 13, .Viruses and autism: A Bi-mutual cause and effect. World Journal of Virology, 0, 12, 172-192.	2.2 3.3 0.5 4.1 4.8 2.9	0 0 0 0 1 3 4
 1079 1080 1081 1082 1083 1084 1085 1086 	Viral Infections of the Fetus and Newborn. , 2024, , 450-486.e24.Different outcomes of neonatal and adult Zika virus infection on startle reflex and prepulse inhibition in mice. Behavioural Brain Research, 2023, 451, 114519.Maternal Th17 Profile after Zika Virus Infection Is Involved in Congenital Zika Syndrome Development in Children. Viruses, 2023, 15, 1320.A Comprehensive Review on Herbal Nanoparticulate System through Intranasal Route for Management of Congenital-Neuro Zika Therapy. Current Bioactive Compounds, 2023, 19, .Neurotoxic properties of the Zika virus envelope protein. Experimental Neurology, 2023, 367, 114469.Human pluripotent stem cell (hPSC) and organoid models of autism: opportunities and limitations. Translational Psychiatry, 2023, 13, .Viruses and autism: A Bi-mutual cause and effect. World Journal of Virology, 0, 12, 172-192.Effects on Children, Part 2. Risk, Systems and Decisions, 2023, 203-246.	2.2 3.3 0.5 4.1 4.8 2.9	 0 0 0 0 0 1 3 4 0

ARTICLE

Proposal of Model for Evaluation of Viral Kinetics of African/Asian/Brazilian—Zika virus Strains (Step) Tj ETQq0 0 0.3gBT /Overlock 10 Tf

1089	Human 3D brain organoids: steering the demolecularization of brain and neurological diseases. Cell Death Discovery, 2023, 9, .	4.7	5
1090	Zika virus infection histories in brain development. DMM Disease Models and Mechanisms, 2023, 16, .	2.4	0
1091	Morphological and Molecular Changes in the Cortex and Cerebellum of Immunocompetent Mice Infected with Zika Virus. Viruses, 2023, 15, 1632.	3.3	1
1092	Zika-specific neutralizing antibodies targeting inter-dimer envelope epitopes. Cell Reports, 2023, 42, 112942.	6.4	2
1094	Zika virus co-opts microRNA networks to persist in placental niches detected by spatial transcriptomics. American Journal of Obstetrics and Gynecology, 2024, 230, 251.e1-251.e17.	1.3	1
1095	Developing brain under renewed attack: viral infection during pregnancy. Frontiers in Neuroscience, 0, 17, .	2.8	0
1098	DNA damage and repair: underlying mechanisms leading to microcephaly. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	0
1099	Prenatal Zika virus exposure is associated with lateral geniculate nucleus abnormalities in juvenile rhesus macaques. NeuroReport, 2023, 34, 786-791.	1.2	0
1100	Lipid droplets in Zika neuroinfection: Potential targets for intervention?. Memorias Do Instituto Oswaldo Cruz, 0, 118, .	1.6	0
1101	Stem Cell-Derived Neural Organoids: From the Origin to Next Generation. , 2023, , 1-19.		0
1102	Prenatal Zika virus infection has sex-specific effects on infant physical development and mother-infant social interactions. Science Translational Medicine, 2023, 15, .	12.4	2
1103	Interplay Between Zika Virus-Induced Autophagy and Neural Stem Cell Fate Determination. Molecular Neurobiology, 0, , .	4.0	0
1104	Congenital Zika Virus Infection Impairs Corpus Callosum Development. Viruses, 2023, 15, 2336.	3.3	0
1105	Causes of microcephaly in humanâ \in "theoretical considerations. Frontiers in Neuroscience, 0, 17, .	2.8	0
1106	Brain organoids: A revolutionary tool for modeling neurological disorders and development of therapeutics. Biotechnology and Bioengineering, 2024, 121, 489-506.	3.3	3
1107	The "microcephalic hydrocephalus―paradox as a paradigm of altered neural stem cell biology. Cerebral Cortex, 2024, 34, .	2.9	1
1108	Does the Presence or a High Titer of Yellow Fever Virus Antibodies Interfere with Pregnancy Outcomes in Women with Zika Virus Infection?. Viruses, 2023, 15, 2244.	3.3	0

#	Article	IF	CITATIONS
1109	Use of 2D minilungs from human embryonic stem cells to study the interaction of Cryptococcus neoformans with the respiratory tract. Microbes and Infection, 2023, , 105260.	1.9	0
1110	Prevalence of urologic sequelae and bladder and bowel dysfunctions in patients with congenital Zika syndrome: A multicenter evaluation of the Zika virus bladder and bowel sequelae assistance network. Journal of Pediatric Urology, 2023, , .	1.1	0
1111	Role of Maternal Immune Factors in Neuroimmunology of Brain Development. Molecular Neurobiology, 0, , .	4.0	0
1112	Reverse Genetics of Zika Virus Using a Bacterial Artificial Chromosome. Methods in Molecular Biology, 2024, , 185-206.	0.9	0
1115	siRNA lipid nanoparticles for CXCL12 silencing modulate brain immune response during Zika infection. Biomedicine and Pharmacotherapy, 2024, 170, 115981.	5.6	0
1116	Bibliometric analysis of cerebral organoids and diseases in the last 10 years. , 2023, 9, 431-445.		0
1117	Characterization of CD8 ⁺ T cells in immune-privileged organs of ZIKV-infected <i>Ifnar1</i> ^{â^'/â''} mice. Journal of Virology, 2024, 98, .	3.4	0
1118	Brain organoids and organoid intelligence from ethical, legal, and social points of view. Frontiers in Artificial Intelligence, 0, 6, .	3.4	1
1119	Microinstrumentation for Brain Organoids. Advanced Healthcare Materials, 0, , .	7.6	0
1121	Telencephalic organoids as model systems to study cortical development and diseases. Organoid, 0, 4, e1.	0.0	0
1122	Repurposing of Zika virus live-attenuated vaccine (ZIKV-LAV) strains as oncolytic viruses targeting human glioblastoma multiforme cells. Journal of Translational Medicine, 2024, 22, .	4.4	0
1123	Organoids in virology. , 2024, 2, .		0
1124	Revealing the clinical potential of high-resolution organoids. Advanced Drug Delivery Reviews, 2024, 207, 115202.	13.7	0
1125	Zika purified inactivated virus (ZPIV) vaccine reduced vertical transmission in pregnant immunocompetent mice. Npj Vaccines, 2024, 9, .	6.0	1
1126	Animal Models for Infectious Disease Vaccine Development. , 2024, , 791-847.		0
1127	Zika virus infection impairs synaptogenesis, induces neuroinflammation, and could be an environmental risk factor for autism spectrum disorder outcome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2024, 1870, 167097.	3.8	0
1128	Postnatal Zika virus infection leads to morphological and cellular alterations within the neurogenic niche. DMM Disease Models and Mechanisms, 2024, 17, .	2.4	0
1129	Interactions Between Extracellular Vesicles and Autophagy in Neuroimmune Disorders. Neuroscience Bulletin, 0, , .	2.9	0

#	Article	IF	CITATIONS
1130	New candidate genes potentially involved in Zika virus teratogenesis. Computers in Biology and Medicine, 2024, 173, 108259.	7.0	0
1131	Parechovirus infection in human brain organoids: host innate inflammatory response and not neuro-infectivity correlates to neurologic disease. Nature Communications, 2024, 15, .	12.8	0
1132	Brain organoid protocols and limitations. Frontiers in Cellular Neuroscience, 0, 18, .	3.7	0