Effects of sardine-enriched diet on metabolic control, in drug-na \tilde{A} ve patients with type 2 diabetes: a pilot rand

Lipids in Health and Disease 15, 78 DOI: 10.1186/s12944-016-0245-0

Citation Report

CITATION	DEDODT

#	Article	IF	CITATIONS
1	Maternal Diet Supplementation with n-6/n-3 Essential Fatty Acids in a 1.2 : 1.0 Ratio Attenuates Metab Dysfunction in MSG-Induced Obese Mice. International Journal of Endocrinology, 2016, 2016, 1-10.	olic _{0.6}	10
2	Lifestyle recommendations for the prevention and management of metabolic syndrome: an international panel recommendation. Nutrition Reviews, 2017, 75, 307-326.	2.6	294
3	Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women. Scientific Reports, 2017, 7, 11079.	1.6	174
4	Impact of Omega-3 Fatty Acids on the Gut Microbiota. International Journal of Molecular Sciences, 2017, 18, 2645.	1.8	459
5	Fatty Acids Consumption: The Role Metabolic Aspects Involved in Obesity and Its Associated Disorders. Nutrients, 2017, 9, 1158.	1.7	162
6	Perna canaliculus and the Intestinal Microbiome. Marine Drugs, 2017, 15, 207.	2.2	5
7	The effect of n-3 PUFAs on circulating adiponectin and leptin in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Acta Diabetologica, 2018, 55, 641-652.	1.2	21
8	The Effect of Omega-3 on Circulating Adiponectin in Adults With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Canadian Journal of Diabetes, 2018, 42, 553-559.	0.4	18
9	Systematic Review of the Effect of Enteral Feeding on Gut Microbiota in Preterm Infants. JOGNN - Journal of Obstetric, Gynecologic, and Neonatal Nursing, 2018, 47, 451-463.	0.2	33
10	A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut, 2018, 67, 1974-1983.	6.1	332
11	Nutritional Value of Fish: Lipids, Proteins, Vitamins, and Minerals. Reviews in Fisheries Science and Aquaculture, 2018, 26, 243-253.	5.1	207
12	Impact of a Healthy Dietary Pattern on Gut Microbiota and Systemic Inflammation in Humans. Nutrients, 2018, 10, 1783.	1.7	71
13	The Gut-Brain Axis in Alzheimer's Disease and Omega-3. A Critical Overview of Clinical Trials. Nutrients, 2018, 10, 1267.	1.7	62
14	Fatty Acids, Gut Microbiota, and the Genesis of Obesity. , 0, , .		5
15	Alpinia oxyphyllaMiq. Extract Prevents Diabetes in Mice by Modulating Gut Microbiota. Journal of Diabetes Research, 2018, 2018, 1-10.	1.0	35
16	Systematic review assessing the effectiveness of dietary intervention on gut microbiota in adults with type 2 diabetes. Diabetologia, 2018, 61, 1700-1711.	2.9	74
17	The crosstalk of gut microbiota and chronic kidney disease: role of inflammation, proteinuria, hypertension, and diabetes mellitus. International Urology and Nephrology, 2018, 50, 1453-1466.	0.6	105
18	Effects of Fish n-3 PUFAs on Intestinal Microbiota and Immune System. Marine Drugs, 2019, 17, 374.	2.2	105

CITATION REPORT

#	Article	IF	CITATIONS
19	The Gut Microbiome. , 2019, , 61-98.		2
20	Fish oil supplementation to a high-fat diet improves both intestinal health and the systemic obese phenotype. Journal of Nutritional Biochemistry, 2019, 72, 108216.	1.9	26
21	A Mechanistic Model of Gut–Brain Axis Perturbation and High-Fat Diet Pathways to Gut Microbiome Homeostatic Disruption, Systemic Inflammation, and Type 2 Diabetes. Biological Research for Nursing, 2019, 21, 384-399.	1.0	9
22	Polyunsaturated Fatty Acids and Glycemic Control in Type 2 Diabetes. Nutrients, 2019, 11, 1067.	1.7	51
23	Anti-inflammation effects of fucosylated chondroitin sulphate from <i>Acaudina molpadioides</i> by altering gut microbiota in obese mice. Food and Function, 2019, 10, 1736-1746.	2.1	101
24	Gut <i>Prevotella</i> as a possible biomarker of diet and its eubiotic versus dysbiotic roles: a comprehensive literature review. British Journal of Nutrition, 2019, 122, 131-140.	1.2	204
25	Seafood intake and the development of obesity, insulin resistance and type 2 diabetes. Nutrition Research Reviews, 2019, 32, 146-167.	2.1	40
26	n-3 Polyunsaturated Fatty Acids in Type 2 Diabetes Mellitus. , 2019, , 193-209.		4
27	Dietary fat, the gut microbiota, and metabolic health – A systematic review conducted within the MyNewGut project. Clinical Nutrition, 2019, 38, 2504-2520.	2.3	175
28	Potential of Omega-3 Polyunsaturated Fatty Acids in Managing Chemotherapy- or Radiotherapy-Related Intestinal Microbial Dysbiosis. Advances in Nutrition, 2019, 10, 133-147.	2.9	27
29	Interactions of dietary fat with the gut microbiota: Evaluation of mechanisms and metabolic consequences. Clinical Nutrition, 2020, 39, 994-1018.	2.3	61
30	Mutual Interactions among Exercise, Sport Supplements and Microbiota. Nutrients, 2020, 12, 17.	1.7	57
31	Nutraceuticals and probiotics in the management of psychiatric and neurological disorders: A focus on microbiota-gut-brain-immune axis. Brain, Behavior, and Immunity, 2020, 90, 403-419.	2.0	11
32	Long-term effects of increasing omega-3, omega-6 and total polyunsaturated fats on inflammatory bowel disease and markers of inflammation: a systematic review and meta-analysis of randomized controlled trials. European Journal of Nutrition, 2021, 60, 2293-2316.	1.8	40
33	Gut microbiota-derived trimethylamine-N-oxide: A bridge between dietary fatty acid and cardiovascular disease?. Food Research International, 2020, 138, 109812.	2.9	18
34	Investigating the potential of fish oil as a nutraceutical in an animal model of early life stress. Nutritional Neuroscience, 2022, 25, 356-378.	1.5	20
35	Functional Foods: An Approach to Modulate Molecular Mechanisms of Alzheimer's Disease. Cells, 2020, 9, 2347.	1.8	33
36	Immunometabolism, Micronutrients, and Bariatric Surgery: The Use of Transcriptomics and Microbiota-Targeted Therapies. Mediators of Inflammation, 2020, 2020, 1-18	1.4	3

	CITA	CITATION REPORT	
#	Article	IF	CITATIONS
37	Ellagic Acid as a Tool to Limit the Diabetes Burden: Updated Evidence. Antioxidants, 2020, 9, 1226.	2.2	40
38	Diet, Microbioma, and Diabetes in Aging. Current Geriatrics Reports, 2020, 9, 261-274.	1.1	0
39	Omega-3 Fatty Acids and Adipose Tissue: Inflammation and Browning. Annual Review of Nutrition, 2020 40, 25-49.	· 4.3	31
40	α-Linolenic Acid-Rich Diet Influences Microbiota Composition and Villus Morphology of the Mouse Small Intestine. Nutrients, 2020, 12, 732.	1.7	21
41	High-fat or high-sugar diets as trigger inflammation in the microbiota-gut-brain axis. Critical Reviews in Food Science and Nutrition, 2021, 61, 836-854.	5.4	67
42	Nutritional Lipids and Mucosal Inflammation. Molecular Nutrition and Food Research, 2021, 65, e1901269.	1.5	20
43	Perinatal nutritional intervention. , 2021, , 179-203.		1
44	Dietary Fish, Fish Nutrients, and Immune Function: A Review. Frontiers in Nutrition, 2020, 7, 617652.	1.6	30
45	The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes, 2021, 13, 1-24.	4.3	259
46	Prevention of Type 2 Diabetes through Sardines Consumption: An Integrative Review. Food Reviews International, 0, , 1-19.	4.3	4
47	Functional foods modulating inflammation and metabolism in chronic diseases: a systematic review. Critical Reviews in Food Science and Nutrition, 2022, 62, 4371-4392.	5.4	19
48	The Application of Supercritical Fluids Technology to Recover Healthy Valuable Compounds from Marine and Agricultural Food Processing By-Products: A Review. Processes, 2021, 9, 357.	1.3	31
49	High animal protein diet and gut microbiota in human health. Critical Reviews in Food Science and Nutrition, 2022, 62, 6225-6237.	5.4	36
50	Manipulation of intestinal microbiome as potential treatment for insulin resistance and type 2 diabetes. European Journal of Nutrition, 2021, 60, 2361-2379.	1.8	25
51	Gut microbiota in Immunoglobulin A Nephropathy: a Malaysian Perspective. BMC Nephrology, 2021, 22, 145.	0.8	14
52	The Influence of Nutrition on Adiponectin—A Narrative Review. Nutrients, 2021, 13, 1394.	1.7	19
53	A Triple Threat? The Role of Diet, Nutrition, and the Microbiota in T1D Pathogenesis. Frontiers in Nutrition, 2021, 8, 600756.	1.6	11
54	Potential benefits of high-added-value compounds from aquaculture and fish side streams on human gut microbiota. Trends in Food Science and Technology, 2021, 112, 484-494.	7.8	16

# 55	ARTICLE High-Fat Diet Induced Gut Microbiota Alterations Associating With Ghrelin/Jak2/Stat3 Up-Regulation to Promote Benign Prostatic Hyperplasia Development. Frontiers in Cell and Developmental Biology, 2021, 9 615928	IF 1.8	CITATIONS
56	Bacterial Diversity of Breast Milk in Healthy Spanish Women: Evolution from Birth to Five Years Postpartum. Nutrients, 2021, 13, 2414.	1.7	10
57	Fishroesomes as carriers with antioxidant and anti-inflammatory bioactivities. Biomedicine and Pharmacotherapy, 2021, 140, 111680.	2.5	8
58	The role of a Mediterranean diet and physical activity in decreasing age-related inflammation through modulation of the gut microbiota composition. British Journal of Nutrition, 2022, 128, 1299-1314.	1.2	10
59	The gut–liver–brain axis: dietary and therapeutic interventions. , 2021, , 205-236.		2
60	Maternal n-3 polyunsaturated fatty acids restructure gut microbiota of offspring mice and decrease their susceptibility to mammary gland cancer. Food and Function, 2021, 12, 8154-8168.	2.1	5
61	The prebiotic effects of omega-3 fatty acid supplementation: A six-week randomised intervention trial. Gut Microbes, 2021, 13, 1-11.	4.3	63
64	Microbiome Changes after Type 2 Diabetes Treatment: A Systematic Review. Medicina (Lithuania), 2021, 57, 1084.	0.8	4
65	Omega-3 index and type 2 diabetes: Systematic review and meta-analysis. Prostaglandins Leukotrienes and Essential Fatty Acids, 2021, 174, 102361.	1.0	7
66	Beneficial effects of eicosapentaenoic acid on the metabolic profile of obese female mice entails upregulation of HEPEs and increased abundance of enteric Akkermansia muciniphila. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159059.	1.2	9
68	Dietary Regulation of Gut-Brain Axis in Alzheimer's Disease: Importance of Microbiota Metabolites. Frontiers in Neuroscience, 2021, 15, 736814.	1.4	24
69	Resolvin D1 ameliorates hepatic steatosis by remodeling the gut microbiota and restoring the intestinal barrier integrity in DSS-induced chronic colitis. International Immunopharmacology, 2022, 103, 108500.	1.7	3
70	Back to basic – dietary microbial modulation for colorectal cancer prevention – for Hong Kong Chinese. Archives of Community Medicine and Public Health, 2020, , 257-260.	0.1	0
71	A Systematic Review and Meta-analysis of Dietary Interventions Modulating Gut Microbiota and Cardiometabolic Diseases—Striving for New Standards in Microbiome Studies. Gastroenterology, 2022, 162, 1911-1932.	0.6	19
72	Dietary manipulation of the gut microbiome in inflammatory bowel disease patients: Pilot study. Gut Microbes, 2022, 14, 2046244.	4.3	29
73	Structured Long-Chain Omega-3 Fatty Acids for Improvement of Cognitive Function during Aging. International Journal of Molecular Sciences, 2022, 23, 3472.	1.8	9
74	Omega-3 Fatty Acids and Balanced Gut Microbiota on Chronic Inflammatory Diseases: A Close Look at Ulcerative Colitis and Rheumatoid Arthritis Pathogenesis. Journal of Medicinal Food, 2022, 25, 341-354.	0.8	3
75	Development and nutritional index of ready to use fish products (RUFPs) from small fish species: Future superfoods for consumers. Applied Food Research, 2022, 2, 100111.	1.4	2

CITATION REPORT

#	Article	IF	CITATIONS
76	Trialling a microbiome-targeted dietary intervention in children with ADHD—the rationale and a non-randomised feasibility study. Pilot and Feasibility Studies, 2022, 8, .	0.5	1
77	Fatty Acids as a Tool to Boost Cancer Immunotherapy Efficacy. Frontiers in Nutrition, 0, 9, .	1.6	12
78	The Role of the Gut Microbiota in the Effects of Early-Life Stress and Dietary Fatty Acids on Later-Life Central and Metabolic Outcomes in Mice. MSystems, 2022, 7, .	1.7	4
79	The impact of dietary, surgical, and pharmacological interventions on gut microbiota in individuals with diabetes mellitus: A systematic review. Diabetes Research and Clinical Practice, 2022, 189, 109944.	1.1	1
80	An Infancy-Onset 20-Year Dietary Counselling Intervention and Gut Microbiota Composition in Adulthood. Nutrients, 2022, 14, 2667.	1.7	2
81	Dietary Fatty Acids, Gut Microbiome, and Gut–Brain Communication: A Current Perspective. , 2022, , 121-138.		Ο
82	Dietary Patterns and Gut Microbiota Changes in Inflammatory Bowel Disease: Current Insights and Future Challenges. Nutrients, 2022, 14, 4003.	1.7	23
83	Advances in the study of the relationship between Alzheimer's disease and the gastrointestinal microbiome. , 2022, 8, 465-475.		2
84	Ten-dimensional hyphenation including simulated static gastro-intestinal digestion on the adsorbent surface, planar assays, and bioactivity evaluation for meal replacement products. Food and Function, 2023, 14, 344-353.	2.1	5
85	Meat Consumption and Gut Microbiota: a Scoping Review of Literature and Systematic Review of Randomized Controlled Trials in Adults. Advances in Nutrition, 2023, 14, 215-237.	2.9	10
86	The Potential Cardiometabolic Effects of Long-Chain ï‰-3 Polyunsaturated Fatty Acids: Recent Updates and Controversies. Advances in Nutrition, 2023, 14, 612-628.	2.9	8
87	The roles of dietary lipids and lipidomics in gut-brain axis in type 2 diabetes mellitus. Journal of Translational Medicine, 2023, 21, .	1.8	18
88	n-3 PUFA poor seafood consumption is associated with higher risk of gout, whereas n-3 PUFA rich seafood is not: NHANES 2007–2016. Frontiers in Nutrition, 0, 10, .	1.6	2
89	Eating more sardines instead of fish oil supplementation: Beyond omega-3 polyunsaturated fatty acids, a matrix of nutrients with cardiovascular benefits. Frontiers in Nutrition, 0, 10, .	1.6	3
90	The Polyunsaturated Fatty Acids Eicosapentaenoic Acid and Docosahexaenoic Acid, and Vitamin K ₁ Modulate the Gut Microbiome: A Study Using an In Vitro Shime Model. Journal of Dietary Supplements, 2024, 21, 135-153.	1.4	1
92	Gut microbiota bridges dietary nutrients and host immunity. Science China Life Sciences, 2023, 66, 2466-2514.	2.3	11
93	EPA and Mixed Omega-3 Fatty Acids: Impact on Dyslipidemia and Cardiovascular Events in Patients with Diabetes. Contemporary Diabetes, 2023, , 681-704.	0.0	0

CITATION REPORT