A practical guide to hydrogels for cell culture

Nature Methods 13, 405-414

DOI: 10.1038/nmeth.3839

Citation Report

#	Article	IF	CITATIONS
1	Autobioluminescent Cellular Models for Enhanced Drug Discovery. , 2016, , .		1
2	Impact of the Molecular Environment on Thiol–Ene Coupling For Biofunctionalization and Conjugation. Bioconjugate Chemistry, 2016, 27, 2111-2123.	1.8	39
3	How cells respond to environmental cues – insights from bio-functionalized substrates. Journal of Cell Science, 2017, 130, 51-61.	1.2	93
4	In vitro systems to study nephropharmacology: 2D versus 3D models. European Journal of Pharmacology, 2016, 790, 36-45.	1.7	33
5	A semi-interpenetrating network of polyacrylamide and recombinant basement membrane allows pluripotent cell culture in a soft, ligand-rich microenvironment. Biomaterials, 2017, 121, 179-192.	5.7	24
6	Bioengineered 3D Glial Cell Culture Systems and Applications for Neurodegeneration and Neuroinflammation. SLAS Discovery, 2017, 22, 583-601.	1.4	55
7	Advances in multicellular spheroids formation. Journal of the Royal Society Interface, 2017, 14, 20160877.	1.5	343
8	Culturing human intestinal stem cells for regenerative applications in the treatment of inflammatory bowel disease. EMBO Molecular Medicine, 2017, 9, 558-570.	3.3	69
9	Bifunctional Poly(acrylamide) Hydrogels through Orthogonal Coupling Chemistries. Biomacromolecules, 2017, 18, 906-913.	2.6	21
10	Self-Assembling Multidomain Peptide Nanofibers for Delivery of Bioactive Molecules and Tissue Regeneration. Accounts of Chemical Research, 2017, 50, 714-722.	7.6	212
11	Polysucrose-based hydrogels for loading of small molecules and cell growth. Reactive and Functional Polymers, 2017, 115, 18-27.	2.0	5
12	The physics and chemistry of silica-in-silicates nanocomposite hydrogels and their phycocompatibility. Journal of Materials Chemistry B, 2017, 5, 2931-2940.	2.9	7
13	Generation and manipulation of hydrogel microcapsules by droplet-based microfluidics for mammalian cell culture. Lab on A Chip, 2017, 17, 1913-1932.	3.1	110
14	Supramolecular Nanofibrillar Thermoreversible Hydrogel for Growth and Release of Cancer Spheroids. Angewandte Chemie - International Edition, 2017, 56, 6083-6087.	7.2	66
15	Polymer Material Design by Microfluidics Inspired by Cell Biology and Cellâ€Free Biotechnology. Macromolecular Chemistry and Physics, 2017, 218, 1600429.	1.1	17
16	Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review. IEEE Transactions on Nanobioscience, 2017, 16, 523-540.	2.2	88
17	Cellularizing hydrogel-based scaffolds to repair bone tissue: How to create a physiologically relevant micro-environment?. Journal of Tissue Engineering, 2017, 8, 204173141771207.	2.3	90
18	Classification of Hydrogels Based on Their Source: A Review and Application in Stem Cell Regulation. Jom, 2017, 69, 1340-1347.	0.9	40

#	Article	IF	Citations
19	Chondrogenic differentiation of BMSCs encapsulated in chondroinductive polysaccharide/collagen hybrid hydrogels. Journal of Materials Chemistry B, 2017, 5, 5109-5119.	2.9	22
20	Cytocompatible polyion complex gel of poly(Pro-Hyp-Gly) for simultaneous rat bone marrow stromal cell encapsulation. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1480-1496.	1.9	3
21	Multicellular tumor invasion and plasticity in biomimetic materials. Biomaterials Science, 2017, 5, 1460-1479.	2.6	17
22	3D Cell Culture. Methods in Molecular Biology, 2017, , .	0.4	17
23	Revealing 3D Ultrastructure and Morphology of Stem Cell Spheroids by Electron Microscopy. Methods in Molecular Biology, 2017, 1612, 417-431.	0.4	6
24	Remarkable Modulation of Selfâ€Assembly in Short γâ€Peptides by Neighboring Ions and Orthogonal Hâ€Bonding. Chemistry - A European Journal, 2017, 23, 10352-10357.	1.7	4
25	3D cellular invasion platforms: how do paper-based cultures stack up?. Chemical Communications, 2017, 53, 7194-7210.	2.2	23
26	New Bioengineering Breakthroughs and Enabling Tools in Regenerative Medicine. Current Stem Cell Reports, 2017, 3, 83-97.	0.7	5
27	Multi-compartment encapsulation of communicating droplets and droplet networks in hydrogel as a model for artificial cells. Scientific Reports, 2017, 7, 45167.	1.6	66
28	Nerve Cells Decide to Orient inside an Injectable Hydrogel with Minimal Structural Guidance. Nano Letters, 2017, 17, 3782-3791.	4.5	165
29	New advances in probing cell–extracellular matrix interactions. Integrative Biology (United) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 342
30	Amino acid-based amphiphilic hydrogels: metal ion induced tuning of mechanical and thermal stability. RSC Advances, 2017, 7, 14461-14465.	1.7	30
31	Tissue engineering in orthopaedic sports medicine: current concepts. Journal of ISAKOS, 2017, 2, 60-66.	1.1	6
32	Soft Hydrogels Featuring In-Depth Surface Density Gradients for the Simple Establishment of 3D Tissue Models for Screening Applications. SLAS Discovery, 2017, 22, 635-644.	1.4	13
33	Choice of Capping Group in Tripeptide Hydrogels Influences Viability in the Threeâ€Dimensional Cell Culture of Tumor Spheroids. ChemPlusChem, 2017, 82, 383-389.	1.3	19
34	Thermoresponsive microgels containing trehalose as soft matrices for 3D cell culture. Biomaterials Science, 2017, 5, 234-246.	2.6	23
35	Supramolecular Nanofibrillar Thermoreversible Hydrogel for Growth and Release of Cancer Spheroids. Angewandte Chemie, 2017, 129, 6179-6183.	1.6	11
36	Potassium Acyltrifluoroborate (<scp>KAT</scp>) Ligations are Orthogonal to Thiolâ€∢i>Michael and <scp>SPAAC</scp> Reactions: Covalent Dual Immobilization of Proteins onto Synthetic <scp>PEG</scp> Hydrogels. Helvetica Chimica Acta, 2017, 100, e1600311.	1.0	18

#	Article	IF	CITATIONS
37	Fabrication of nanozyme@DNA hydrogel and its application in biomedical analysis. Nano Research, 2017, 10, 959-970.	5.8	58
38	A Generalizable Strategy for the 3D Bioprinting of Hydrogels from Nonviscous Photoâ€crosslinkable Inks. Advanced Materials, 2017, 29, 1604983.	11.1	414
39	In vitro tubulogenesis of Madin–Darby canine kidney (MDCK) spheroids occurs depending on constituent cell number and scaffold gel concentration. Journal of Theoretical Biology, 2017, 435, 110-115.	0.8	9
40	Tightening of gelatin chemically crosslinked networks assisted by physical gelation. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1850-1858.	2.4	5
41	Reproducible Dendronized PEG Hydrogels via SPAAC Cross-Linking. Biomacromolecules, 2017, 18, 4054-4059.	2.6	32
42	Three-dimensional neuronal cell culture: in pursuit of novel treatments for neurodegenerative disease. MRS Communications, 2017, 7, 320-331.	0.8	5
43	Synthesis and characterization of well-defined hydrogel matrices and their application to intestinal stem cell and organoid culture. Nature Protocols, 2017, 12, 2263-2274.	5 . 5	98
44	Cell Microenvironment pH Sensing in 3D Microgels Using Fluorescent Carbon Dots. ACS Biomaterials Science and Engineering, 2017, 3, 3620-3627.	2.6	41
45	Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 2017, 117, 12764-12850.	23.0	582
46	Design of biomimetic cellular scaffolds for co-culture system and their application. Journal of Tissue Engineering, 2017, 8, 204173141772464.	2.3	69
47	Peptide Hydrogelsâ€"A Tissue Engineering Strategy for the Prevention of Oesophageal Strictures. Advanced Functional Materials, 2017, 27, 1702424.	7.8	36
48	Atelocollagen-based Hydrogels Crosslinked with Oxidised Polysaccharides as Cell Encapsulation Matrix for Engineered Bioactive Stromal Tissue. Tissue Engineering and Regenerative Medicine, 2017, 14, 539-556.	1.6	10
49	Modular photo-induced RAFT polymerised hydrogels via thiol–ene click chemistry for 3D cell culturing. Polymer Chemistry, 2017, 8, 6123-6133.	1.9	18
51	Impermeable Robust Hydrogels via Hybrid Lamination. Advanced Healthcare Materials, 2017, 6, 1700520.	3.9	58
52	Bioprinting: uncovering the utility layer-by-layer. Journal of 3D Printing in Medicine, 2017, 1, 165-179.	1.0	13
53	Chemical reprogramming and transdifferentiation. Current Opinion in Genetics and Development, 2017, 46, 104-113.	1.5	75
54	Microfluidic hydrogel hanging-drop network for high-resolution microscopy of 3D microtissues. , 2017, , .		0
55	Beta-hairpin hydrogels as scaffolds for high-throughput drug discovery in three-dimensional cell culture. Analytical Biochemistry, 2017, 535, 25-34.	1.1	39

#	Article	IF	CITATIONS
56	In vitro evaluation of 3D bioprinted triâ€polymer network scaffolds for bone tissue regeneration. Journal of Biomedical Materials Research - Part A, 2017, 105, 3262-3272.	2.1	27
57	Advances in bioprinted cell-laden hydrogels for skin tissue engineering. Biomanufacturing Reviews, 2017, 2, 1.	4.8	72
58	Stiffness-dependent motility and Âproliferation uncoupled by deletion of CD44. Scientific Reports, 2017, 7, 16499.	1.6	48
59	3D microniches reveal the importance of cell size and shape. Nature Communications, 2017, 8, 1962.	5.8	145
60	A Bioinspired Alginate-Gum Arabic Hydrogel with Micro-/Nanoscale Structures for Controlled Drug Release in Chronic Wound Healing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22160-22175.	4.0	127
61	Current progresses of 3D bioprinting based tissue engineering. Quantitative Biology, 2017, 5, 136-142.	0.3	13
62	Cell Microencapsulation by Droplet Microfluidic Templating. Macromolecular Chemistry and Physics, 2017, 218, 1600380.	1.1	36
63	3D is not enough: Building up a cell instructive microenvironment for tumoral stroma microtissues. Acta Biomaterialia, 2017, 47, 1-13.	4.1	41
64	Getting the whole picture: High content screening using threeâ€dimensional cellular model systems and whole animal assays. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 152-159.	1.1	24
65	Cross-Linking Approaches to Tuning the Mechanical Properties of Peptide π-Electron Hydrogels. Bioconjugate Chemistry, 2017, 28, 751-759.	1.8	17
66	Beyond mouse cancer models: Three-dimensional human-relevant in vitro and non-mammalian in vivo models for photodynamic therapy. Mutation Research - Reviews in Mutation Research, 2017, 773, 242-262.	2.4	25
67	Poly(ethylene glycol) and Co-polymer Based-Hydrogels for Craniofacial Bone Tissue Engineering. , 2017, , 225-246.		2
68	Micro-Mechanical Viscoelastic Properties of Crosslinked Hydrogels Using the Nano-Epsilon Dot Method. Materials, 2017, 10, 889.	1.3	28
69	Nucleobase-Containing Polymers: Structure, Synthesis, and Applications. Polymers, 2017, 9, 666.	2.0	32
70	3-D Bioprinting of Neural Tissue for Applications in Cell Therapy and Drug Screening. Frontiers in Bioengineering and Biotechnology, 2017, 5, 69.	2.0	56
71	TGF- \hat{l}^21 Pretreatment Improves the Function of Mesenchymal Stem Cells in the Wound Bed. Frontiers in Cell and Developmental Biology, 2017, 5, 28.	1.8	35
72	Cell Microarray Technologies for High-Throughput Cell-Based Biosensors. Sensors, 2017, 17, 1293.	2.1	37
73	Cells in the third dimension. BioTechniques, 2017, 62, 93-98.	0.8	6

#	Article	IF	CITATIONS
74	Onâ€Demand Production of Flowâ€Reactor Cartridges by 3D Printing of Thermostable Enzymes. Angewandte Chemie - International Edition, 2018, 57, 5539-5543.	7.2	49
75	Engineering principles for guiding spheroid function in the regeneration of bone, cartilage, and skin. Biomedical Materials (Bristol), 2018, 13, 034109.	1.7	58
76	Microfluidic device for chemical and mechanical manipulation of suspended cells. Journal Physics D: Applied Physics, 2018, 51, 045403.	1.3	7
77	Hydrogels with reversible chemical environments for <i>in vitro</i> cell culture. Biomedical Materials (Bristol), 2018, 13, 045002.	1.7	9
78	Triple redox/temperature responsive diselenideâ€containing homopolypeptide micelles and supramolecular hydrogels thereof. Journal of Polymer Science Part A, 2018, 56, 1067-1077.	2.5	17
79	Fast, irreversible modification of cysteines through strain releasing conjugate additions of cyclopropenyl ketones. Organic and Biomolecular Chemistry, 2018, 16, 2164-2169.	1.5	32
80	Antibacterial Hydrogels. Advanced Science, 2018, 5, 1700527.	5.6	696
81	Enhanced multi-lineage differentiation of human mesenchymal stem/stromal cells within poly($<$ i>N-isopropylacrylamide-acrylic acid) microgel-formed three-dimensional constructs. Journal of Materials Chemistry B, 2018, 6, 1799-1814.	2.9	16
82	Engineering ellipsoidal cap-like hydrogel particles as building blocks or sacrificial templates for three-dimensional cell culture. Biomaterials Science, 2018, 6, 885-892.	2.6	9
83	Advanced Materials through Assembly of Nanocelluloses. Advanced Materials, 2018, 30, e1703779.	11.1	493
85	High-Throughput Formation of Mesenchymal Stem Cell Spheroids and Entrapment in Alginate Hydrogels. Methods in Molecular Biology, 2018, 1758, 139-149.	0.4	27
86	The interacting role of physical stiffness and tumor cells on the macrophages polarization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 552, 81-88.	2.3	5
87	Sequentially Moldable and Bondable Four-Dimensional Hydrogels Compatible with Cell Encapsulation. Biomacromolecules, 2018, 19, 2742-2749.	2.6	17
88	Circular dichroism studies of low molecular weight hydrogelators: The use of SRCD and addressing practical issues. Chirality, 2018, 30, 708-718.	1.3	3
89	Layer-by-Layer Assembly of Heparin and Peptide-Polyethylene Glycol Conjugates to Form Hybrid Nanothin Films of Biomatrices. ACS Applied Materials & Samp; Interfaces, 2018, 10, 14264-14270.	4.0	8
90	Deterministic Encapsulation of Human Cardiac Stem Cells in Variable Composition Nanoporous Gel Cocoons To Enhance Therapeutic Repair of Injured Myocardium. ACS Nano, 2018, 12, 4338-4350.	7.3	28
91	Engineering Proâ€Regenerative Hydrogels for Scarless Wound Healing. Advanced Healthcare Materials, 2018, 7, e1800016.	3.9	59
92	Porosity in Biomaterials: A Key Factor in the Development of Applied Materials in Biomedicine. , 2018 , , $1-20$.		1

#	Article	IF	Citations
93	Horseradish peroxidase-catalyzed hydrogelation for biomedical applications. Biomaterials Science, 2018, 6, 1286-1298.	2.6	116
94	Impact of substrate stiffness on dermal papilla aggregates in microgels. Biomaterials Science, 2018, 6, 1347-1357.	2.6	12
95	Emerging properties of hydrogels in tissue engineering. Journal of Tissue Engineering, 2018, 9, 204173141876828.	2.3	160
96	A highly efficient dual-diazonium reagent for protein crosslinking and construction of a virus-based gel. Organic and Biomolecular Chemistry, 2018, 16, 3353-3357.	1.5	10
97	Synthetic Hydrogels with Covalently Incorporated Saccharides Studied for Biomedical Applications – 15 Year Overview. Polymer Reviews, 2018, 58, 537-586.	5.3	18
98	Polyisocyanopeptide hydrogels: A novel thermo-responsive hydrogel supporting pre-vascularization and the development of organotypic structures. Acta Biomaterialia, 2018, 70, 129-139.	4.1	53
99	Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties. Acta Biomaterialia, 2018, 69, 218-233.	4.1	91
100	Development and In vitro Anticancer Evaluation of Selfâ€Assembled Supramolecular pH Responsive Hydrogels of Carboxymethyl Chitosan and Polyoxometalate. ChemistrySelect, 2018, 3, 1472-1479.	0.7	21
101	Dynamic electro-regulation of the stiffness gradient hydrogels. RSC Advances, 2018, 8, 6675-6679.	1.7	15
102	Two-photon lithography and microscopy of 3D hydrogel scaffolds for neuronal cell growth. Biomedical Physics and Engineering Express, 2018, 4, 027009.	0.6	72
103	Engineering mechanical microenvironment of macrophage and its biomedical applications. Nanomedicine, 2018, 13, 555-576.	1.7	19
104	Beyond the Proteolytic Activity: Examining the Functional Relevance of theÂAncillary Domains Using Tri-Dimensional (3D) Spheroid Invasion Assay. Methods in Molecular Biology, 2018, 1731, 155-168.	0.4	3
105	Magnetic Macroporous Hydrogels as a Novel Approach for Perfused Stem Cell Culture in 3D Scaffolds via Contactless Motion Control. Advanced Healthcare Materials, 2018, 7, e1701403.	3.9	28
107	Peptide-Based Hydrogels/Organogels: Assembly and Application. , 2018, , 205-226.		2
108	Rationally designed synthetic protein hydrogels with predictable mechanical properties. Nature Communications, 2018, 9, 620.	5.8	145
109	Membranes for Organs-On-Chips. , 2018, , 295-321.		3
110	Multifunctional Microwell Arrays for Single Cell Level Functional Analysis of Lymphocytes. Bioconjugate Chemistry, 2018, 29, 672-679.	1.8	18
111	Threeâ€dimensional liverâ€derived extracellular matrix hydrogel promotes liver organoids function. Journal of Cellular Biochemistry, 2018, 119, 4320-4333.	1.2	90

#	Article	IF	Citations
112	Nearâ€Infrared Lightâ€Sensitive Polyvinyl Alcohol Hydrogel Photoresist for Spatiotemporal Control of Cellâ€Instructive 3D Microenvironments. Advanced Materials, 2018, 30, 1705564.	11.1	87
113	Proteases and Cancer. Methods in Molecular Biology, 2018, , .	0.4	1
114	Injectable thermogel for 3D culture of stem cells. Biomaterials, 2018, 159, 91-107.	5.7	85
115	Fabrication of Amyloid Curli Fibers–Alginate Nanocomposite Hydrogels with Enhanced Stiffness. ACS Biomaterials Science and Engineering, 2018, 4, 2100-2105.	2.6	29
116	Herstellung direkt nutzbarer Durchflussreaktorkartuschen durch 3Dâ€Druck von thermostabilen Enzymen. Angewandte Chemie, 2018, 130, 5638-5642.	1.6	6
117	Photoreversible Covalent Hydrogels for Soft-Matter Additive Manufacturing. ACS Applied Materials & Amp; Interfaces, 2018, 10, 16793-16801.	4.0	105
118	Multicomponent peptide assemblies. Chemical Society Reviews, 2018, 47, 3659-3720.	18.7	264
119	Hydrogel microenvironments for cancer spheroid growth and drug screening. Science Advances, 2018, 4, eaas8998.	4.7	238
120	Different hydrogel architectures synthesized by gamma radiation based on chitosan and N,N-dimethylacrylamide. MRS Communications, 2018, 8, 617-623.	0.8	7
121	High-strength double network hydrogels as potential materials for artificial 3D scaffold of cell migration in vitro. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 549, 50-57.	2.3	12
122	Matrix elasticity regulates mesenchymal stem cell chemotaxis. Journal of Cell Science, 2018, 131, .	1.2	33
123	Random and oriented electrospun fibers based on a multicomponent, in situ clickable elastin-like recombinamer system for dermal tissue engineering. Acta Biomaterialia, 2018, 72, 137-149.	4.1	33
124	Current approaches in biomaterial-based hematopoietic stem cell niches. Acta Biomaterialia, 2018, 72, 1-15.	4.1	48
125	Tissue Engineering and Regenerative Medicine 2017: A Year in Review. Tissue Engineering - Part B: Reviews, 2018, 24, 327-344.	2.5	47
126	Hyaluronic Acid/Chitosan Coacervate-Based Scaffolds. Biomacromolecules, 2018, 19, 1198-1211.	2.6	37
127	Squaramide-Based Supramolecular Materials for Three-Dimensional Cell Culture of Human Induced Pluripotent Stem Cells and Their Derivatives. Biomacromolecules, 2018, 19, 1091-1099.	2.6	30
128	Intestinal barrier integrity and inflammatory bowel disease: Stem cellâ€based approaches to regenerate the barrier. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 923-935.	1.3	48
129	The role of the microenvironment in the biophysics of cancer. Seminars in Cell and Developmental Biology, 2018, 73, 107-114.	2.3	53

#	Article	IF	CITATIONS
130	Soft chitosan microbeads scaffold for 3D functional neuronal networks. Biomaterials, 2018, 156, 159-171.	5.7	65
131	Spatial Patterning of Hydrogels via 3D Covalent Transfer Stamping from a Fugitive Ink. Macromolecular Rapid Communications, 2018, 39, 1700564.	2.0	2
132	Nerve growth factor released from collagen scaffolds protects axotomized cholinergic neurons of the basal nucleus of Meynert in organotypic brain slices. Journal of Neuroscience Methods, 2018, 295, 77-86.	1.3	28
133	Electrical Programming of Soft Matter: Using Temporally Varying Electrical Inputs To Spatially Control Self Assembly. Biomacromolecules, 2018, 19, 364-373.	2.6	46
134	Inspired by Nature: Hydrogels as Versatile Tools for Vascular Engineering. Advances in Wound Care, 2018, 7, 232-246.	2.6	41
135	Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials, 2018, 154, 213-222.	5.7	368
136	Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Research, 2018, 11, 5556-5565.	5.8	91
137	Design and biological functionality of a novel hybrid Tiâ€6 <scp>A</scp> lâ€4 <scp>V</scp> /hydrogel system for reconstruction of bone defects. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1133-1144.	1.3	33
138	Rebooting the collagen gel: Artificial hydrogels for the study of epithelial mesenchymal transformation. Developmental Dynamics, 2018, 247, 332-339.	0.8	5
139	Extracellular matrix as a driver of progressive fibrosis. Journal of Clinical Investigation, 2018, 128, 45-53.	3.9	410
140	Ultrasonic Based Tissue Modelling and Engineering. Micromachines, 2018, 9, 594.	1.4	27
141	Microenvironments Designed to Support Growth and Function of Neuronal Cells. Frontiers in Materials, $2018, 5, \ldots$	1.2	41
142	Auditory disorders and future therapies with delivery systems. Journal of Tissue Engineering, 2018, 9, 204173141880845.	2.3	19
143	A Multi-well Format Polyacrylamide-based Assay for Studying the Effect of Extracellular Matrix Stiffness on the Bacterial Infection of Adherent Cells. Journal of Visualized Experiments, 2018, , .	0.2	8
144	Determination of the rheological properties of Matrigel for optimum seeding conditions in microfluidic cell cultures. AIP Advances, 2018, 8, .	0.6	28
145	Manipulating cell fate: dynamic control of cell behaviors on functional platforms. Chemical Society Reviews, 2018, 47, 8639-8684.	18.7	115
146	Spatio-Temporal Control of Cell Adhesion: Toward Programmable Platforms to Manipulate Cell Functions and Fate. Frontiers in Bioengineering and Biotechnology, 2018, 6, 190.	2.0	37
147	Injectable Biomimetic Hydrogels as Tools for Efficient T Cell Expansion and Delivery. Frontiers in Immunology, 2018, 9, 2798.	2.2	60

#	Article	IF	Citations
148	Biomaterials for cell transplantation. Nature Reviews Materials, 2018, 3, 441-456.	23.3	153
149	Resolving host–microbe interactions in the gut: the promise of in vitro models to complement in vivo research. Current Opinion in Microbiology, 2018, 44, 28-33.	2.3	17
150	Visualising the dynamics of live pancreatic microtumours self-organised through cell-in-cell invasion. Scientific Reports, 2018, 8, 14054.	1.6	7
151	Hydrogel Properties and Characterization Techniques. Polymers and Polymeric Composites, 2018, , 1-25.	0.6	0
152	Future Therapeutic Approaches for Alagille Syndrome. , 2018, , 167-193.		0
153	Alagille Syndrome., 2018,,.		2
154	Self-induced mechanical stress can trigger biofilm formation in uropathogenic Escherichia coli. Nature Communications, 2018, 9, 4087.	5.8	57
155	Review Article: Capturing the physiological complexity of the brain's neuro-vascular unit <i>in vitro</i> . Biomicrofluidics, 2018, 12, 051502.	1.2	15
156	Photopolymerizable Platelet Lysate Hydrogels for Customizable 3D Cell Culture Platforms. Advanced Healthcare Materials, 2018, 7, e1800849.	3.9	38
157	Cell Encapsulation. Polymers and Polymeric Composites, 2018, , 1-51.	0.6	0
158	Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37820-37828.	4.0	60
159	3D Bone Biomimetic Scaffolds for Basic and Translational Studies with Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2018, 19, 3150.	1.8	25
160	Optofluidic Modular Blocks for Onâ€Demand and Openâ€Source Prototyping of Microfluidic Systems. Small, 2018, 14, e1802769.	5.2	17
161	Sphere-Formation Assay: Three-Dimensional in vitro Culturing of Prostate Cancer Stem/Progenitor Sphere-Forming Cells. Frontiers in Oncology, 2018, 8, 347.	1.3	165
162	Photo Processing for Biomedical Hydrogels Design and Functionality: A Review. Polymers, 2018, 10, 11.	2.0	80
163	Hydrogels Incorporating Au@Polydopamine Nanoparticles: Robust Performance for Optical Sensing. Analytical Chemistry, 2018, 90, $11423-11430$.	3.2	52
164	Regenerative Medicine Therapies for Targeting Neuroinflammation After Stroke. Frontiers in Neurology, 2018, 9, 734.	1.1	52
165	The Application of Biomaterials to Tissue Engineering Neural Retina and Retinal Pigment Epithelium. Advanced Healthcare Materials, 2018, 7, e1800226.	3.9	32

#	ARTICLE	IF	CITATIONS
166	Stepwise control of host–guest interaction using a coordination polymer gel. Nature Communications, 2018, 9, 1987.	5.8	58
167	Microfluidic Hydrogel Hangingâ€Drop Network for Longâ€Term Culturing of 3D Microtissues and Simultaneous Highâ€Resolution Imaging. Advanced Biology, 2018, 2, 1800054.	3.0	13
168	Production of Elastin-like Protein Hydrogels for Encapsulation and Immunostaining of Cells in 3D. Journal of Visualized Experiments, 2018 , , .	0.2	20
169	The Biophysics of 3D Cell Migration. Annual Review of Biophysics, 2018, 47, 549-567.	4.5	35
170	Design of spherically structured 3D in vitro tumor models -Advances and prospects. Acta Biomaterialia, 2018, 75, 11-34.	4.1	155
171	Biogelx: Cell Culture on Self-Assembling Peptide Gels. Methods in Molecular Biology, 2018, 1777, 283-303.	0.4	13
172	Notchâ€inducing hydrogels reveal a perivascular switch of mesenchymal stem cell fate. EMBO Reports, 2018, 19, .	2.0	43
173	Tunable stiffness of graphene oxide/polyacrylamide composite scaffolds regulates cytoskeleton assembly. Chemical Science, 2018, 9, 6516-6522.	3.7	22
174	Bioprintable Alginate/Gelatin Hydrogel 3D In Vitro Model Systems Induce Cell Spheroid Formation. Journal of Visualized Experiments, 2018, , .	0.2	27
175	Biomimetic tumor microenvironments based on collagen matrices. Biomaterials Science, 2018, 6, 2009-2024.	2.6	63
176	Recent Advances in Engineering the Stem Cell Microniche in 3D. Advanced Science, 2018, 5, 1800448.	5.6	83
177	Distinct niches within the extracellular matrix dictate fibroblast function in (cell free) 3D lung tissue cultures. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L708-L723.	1.3	28
178	Tuneable hydrogels of Caf1 protein fibers. Materials Science and Engineering C, 2018, 93, 88-95.	3.8	9
179	Three-Dimensional in Vitro Cell Culture Models in Drug Discovery and Drug Repositioning. Frontiers in Pharmacology, 2018, 9, 6.	1.6	1,038
180	Modeling Tissue Polarity in Context. Journal of Molecular Biology, 2018, 430, 3613-3628.	2.0	16
181	Biomaterials for Enhancing Neuronal Repair. Frontiers in Materials, 2018, 5, .	1.2	29
182	2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Molecular Neurodegeneration, 2018, 13, 27.	4.4	157
183	Synthesis of Highly Biocompatible and Temperature-Responsive Physical Gels for Cryopreservation and 3D Cell Culture. ACS Applied Bio Materials, 2018, 1, 356-366.	2.3	33

#	Article	IF	CITATIONS
184	Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions?. International Journal of Molecular Sciences, 2018, 19, 181.	1.8	329
185	Mineral Surface-Templated Self-Assembling Systems: Case Studies from Nanoscience and Surface Science towards Origins of Life Research. Life, 2018, 8, 10.	1.1	26
186	Charge-Controlled Synthetic Hyaluronan-Based Cell Matrices. Molecules, 2018, 23, 769.	1.7	6
187	Microfluidics Fabrication of Soft Microtissues and Bottomâ€Up Assembly. Advanced Biology, 2018, 2, 1800119.	3.0	10
188	Relevance of 3d culture systems to study osteosarcoma environment. Journal of Experimental and Clinical Cancer Research, 2018, 37, 2.	3 . 5	47
189	Design of synthetic extracellular matrices for probing breast cancer cell growth using robust cyctocompatible nucleophilic thiol-yne addition chemistry. Biomaterials, 2018, 178, 435-447.	5.7	25
190	It's All in the Delivery: Designing Hydrogels for Cell and Non-viral Gene Therapies. Molecular Therapy, 2018, 26, 2087-2106.	3.7	68
191	Cancer cells' ability to mechanically adjust to extracellular matrix stiffness correlates with their invasive potential. Molecular Biology of the Cell, 2018, 29, 2378-2385.	0.9	182
192	Polypeptide Thermogels as Three-Dimensional Scaffolds for Cells. Tissue Engineering and Regenerative Medicine, 2018, 15, 521-530.	1.6	14
193	Engineering cardiac microphysiological systems to model pathological extracellular matrix remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H771-H789.	1.5	24
194	Recent progress in selected bio-nanomaterials and their engineering applications: An overview. Journal of Science: Advanced Materials and Devices, 2018, 3, 263-288.	1.5	81
195	Advances and Biomedical Applications of Polypeptide Hydrogels Derived from αâ€Amino Acid <i>N</i> â€Carboxyanhydride (NCA) Polymerizations. Advanced Healthcare Materials, 2018, 7, e1800020.	3.9	59
196	Collagen/chitosan/hyaluronic acid – based injectable hydrogels for tissue engineering applications – design, physicochemical and biological characterization. Colloids and Surfaces B: Biointerfaces, 2018, 170, 152-162.	2.5	75
197	RNA extraction from self-assembling peptide hydrogels to allow qPCR analysis of encapsulated cells. PLoS ONE, 2018, 13, e0197517.	1.1	11
198	Selfâ€Assembling Nanoclay Diffusion Gels for Bioactive Osteogenic Microenvironments. Advanced Healthcare Materials, 2018, 7, e1800331.	3.9	38
199	In vitro models of vitiligo. , 2018, , 129-149.		0
200	Fabrication of single gel with different mechanical stiffness using threeâ€dimensional mold. Journal of Biomedical Materials Research - Part A, 2019, 107, 6-11.	2.1	5
201	Near-physiological microenvironment simulation on chip to evaluate drug resistance of different loci in tumour mass. Talanta, 2019, 191, 67-73.	2.9	18

#	Article	IF	Citations
202	Liver Buds and Liver Organoids: New Tools for Liver Development, Disease and Medical Application. Stem Cell Reviews and Reports, 2019, 15, 774-784.	1.7	10
203	Hydrogel vehicles for sequential delivery of protein drugs to promote vascular regeneration. Advanced Drug Delivery Reviews, 2019, 149-150, 95-106.	6.6	52
204	Development of Supramolecular Semiconducting Mn(II)-Metallogel Based Active Device with Substantial Carrier Diffusion Length. ACS Applied Electronic Materials, 2019, 1, 1899-1908.	2.0	46
205	Keratinocytes maintain compartmentalization between dermal papilla and fibroblasts in 3D heterotypic triâ€cultures. Cell Proliferation, 2019, 52, e12668.	2.4	20
206	In Situ Singleâ€Cell Western Blot on Adherent Cell Culture. Angewandte Chemie - International Edition, 2019, 58, 13929-13934.	7.2	31
207	3D Bioprinting Technologies. , 2019, , 1-66.		1
208	Review of 3D cell culture with analysis in microfluidic systems. Analytical Methods, 2019, 11, 4220-4232.	1.3	86
209	Study on Microextrusion-based 3D Bioprinting and Bioink Crosslinking Mechanisms. Springer Theses, 2019, , .	0.0	9
210	Partitioning of hydrogels in 3D-printed microchannels. Lab on A Chip, 2019, 19, 3086-3093.	3.1	30
211	Influence of Hydrolyzed Polyacrylamide Hydrogel Stiffness on Podocyte Morphology, Phenotype, and Mechanical Properties. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32623-32632.	4.0	32
212	Method for the Direct Fabrication of Polyacrylamide Hydrogels with Controlled Stiffness in Polystyrene Multiwell Plates for Mechanobiology Assays. ACS Biomaterials Science and Engineering, 2019, 5, 4219-4227.	2.6	18
213	Bioadhesive functional hydrogels: Controlled release of catechol species with antioxidant and antiinflammatory behavior. Materials Science and Engineering C, 2019, 105, 110040.	3.8	55
214	HYDROGEL: AN UPDATED PRIMER. Journal of Critical Reviews, 0, , 1-10.	0.7	10
215	Fabrication of 3D scaffolds reproducing intestinal epithelium topography by high-resolution 3D stereolithography. Biomaterials, 2019, 221, 119404.	5 . 7	105
216	Development of 3D Biofabricated Cell Laden Hydrogel Vessels and a Lowâ€Cost Desktop Printed Perfusion Chamber for In Vitro Vessel Maturation. Macromolecular Bioscience, 2019, 19, e1900245.	2.1	22
217	Moving hydrogels to the fourth dimension. Nature Materials, 2019, 18, 914-915.	13.3	16
218	Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication, 2019, 11, 042001.	3.7	363
219	Micropocket hydrogel devices for all-in-one formation, assembly, and analysis of aggregate-based tissues. Biofabrication, 2019, 11, 045013.	3.7	24

#	Article	IF	CITATIONS
220	Rational Design and Development of Anisotropic and Mechanically Strong Gelatinâ€Based Stress Relaxing Hydrogels for Osteogenic/Chondrogenic Differentiation. Macromolecular Bioscience, 2019, 19, 1900099.	2.1	13
221	Advances in Hydrogels in Organoids and Organsâ€onâ€aâ€Chip. Advanced Materials, 2019, 31, e1902042.	11.1	212
222	The Bone Extracellular Matrix as an Ideal Milieu for Cancer Cell Metastases. Cancers, 2019, 11, 1020.	1.7	55
223	In Vitro Study of Vitiligo. , 2019, , 225-236.		0
224	Selfâ€Assembling Peptide Hydrogel Matrices Improve the Neurotrophic Potential of Human Adiposeâ€Derived Stem Cells. Advanced Healthcare Materials, 2019, 8, e1900410.	3.9	28
225	Bacteria-laden microgels as autonomous three-dimensional environments for stem cell engineering. Materials Today Bio, 2019, 2, 100011.	2.6	17
226	Effects of gamma sterilization on the physicomechanical and thermal properties of gelatinâ€based novel hydrogels. Polymer Engineering and Science, 2019, 59, 2533-2540.	1.5	5
227	In Situ Singleâ€Cell Western Blot on Adherent Cell Culture. Angewandte Chemie, 2019, 131, 14067-14072.	1.6	6
228	Aptamer-Functionalized Fibrin Hydrogel Improves Vascular Endothelial Growth Factor Release Kinetics and Enhances Angiogenesis and Osteogenesis in Critically Sized Cranial Defects. ACS Biomaterials Science and Engineering, 2019, 5, 6152-6160.	2.6	23
229	Fluorescent hydrogel test kit coordination with smartphone: Robust performance for on-site dimethoate analysis. Biosensors and Bioelectronics, 2019, 145, 111706.	5.3	35
230	Spatiotemporal Control of Viscoelasticity in Phototunable Hyaluronic Acid Hydrogels. Biomacromolecules, 2019, 20, 4126-4134.	2.6	81
231	Calcium Phosphate Nanoparticles for Therapeutic Applications in Bone Regeneration. Nanomaterials, 2019, 9, 1570.	1.9	102
232	Selective Manipulation and Trapping of Magnetically Barcoded Materials. Advanced Materials Interfaces, 2019, 6, 1901312.	1.9	1
233	Hydrogel scaffolds based on blood plasma cryoprecipitate and collagen derived from various sources: Structural, mechanical and biological characteristics. Bioactive Materials, 2019, 4, 334-345.	8.6	25
234	Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications. NPG Asia Materials, 2019, 11 , .	3.8	202
235	Bioinspired in Vitro Lung Airway Model for Inflammatory Analysis via Hydrophobic Nanochannel Membrane with Joint Three-Phase Interface. Analytical Chemistry, 2019, 91, 15804-15810.	3.2	5
236	Strategy to Identify Improved N-Terminal Modifications for Supramolecular Phenylalanine-Derived Hydrogelators. Langmuir, 2019, 35, 14939-14948.	1.6	24
237	Characterization and Analysis of Collective Cellular Behaviors in 3D Dextran Hydrogels with Homogenous and Clustered RGD Compositions. Materials, 2019, 12, 3391.	1.3	13

#	Article	IF	Citations
238	Fabrication of Complex Hydrogel Structures Using Suspended Layer Additive Manufacturing (SLAM). Advanced Functional Materials, 2019, 29, 1904845.	7.8	71
239	Models of the Gut for Analyzing the Impact of Food and Drugs. Advanced Healthcare Materials, 2019, 8, e1900968.	3.9	32
240	Deconstructed Microfluidic Bone Marrow Onâ€Aâ€Chip to Study Normal and Malignant Hemopoietic Cell–Niche Interactions. Small, 2019, 15, e1902971.	5.2	58
241	Impact of Hydrogel Stiffness on Differentiation of Human Adipose-Derived Stem Cell Microspheroids. Tissue Engineering - Part A, 2019, 25, 1369-1380.	1.6	71
242	Synthetic hydrogels identify matrix physicochemical properties required for renal epithelial cell tubulogenesis. Journal of Cell Science, 2019, 132, .	1.2	12
243	Physiologic Patient Derived 3D Spheroids for Anti-neoplastic Drug Screening to Target Cancer Stem Cells. Journal of Visualized Experiments, 2019, , .	0.2	8
244	Nanotopographical Surfaces for Regulating Cellular Mechanical Behaviors Investigated by Atomic Force Microscopy. ACS Biomaterials Science and Engineering, 2019, 5, 5036-5050.	2.6	17
245	Well-defined monolith morphology regulates cell adhesion and its functions. Materials Science and Engineering C, 2019, 105, 110108.	3.8	1
246	Chitosan hydrogel micro-bio-devices with complex capillary patterns via reactive-diffusive self-assembly. Acta Biomaterialia, 2019, 99, 211-219.	4.1	7
247	Life Science in Space: Experiments on Board the SJ-10 Recoverable Satellite. Research for Development, 2019, , .	0.2	6
248	Scalable Production of Monodisperse Functional Microspheres by Multilayer Parallelization of High Aspect Ratio Microfluidic Channels. Micromachines, 2019, 10, 592.	1.4	15
249	Polymeric DNA hydrogel: Design, synthesis and applications. Progress in Polymer Science, 2019, 98, 101163.	11.8	189
250	Simultaneous label-free autofluorescence-multiharmonic microscopy and beyond. APL Photonics, 2019, 4, .	3.0	20
251	Advanced cell culture platforms: a growing quest for emulating natural tissues. Materials Horizons, 2019, 6, 45-71.	6.4	114
252	Tailoring supramolecular guest–host hydrogel viscoelasticity with covalent fibrinogen double networks. Journal of Materials Chemistry B, 2019, 7, 1753-1760.	2.9	36
253	Combining Stem Cells and Biomaterial Scaffolds for Constructing Tissues and Cell Delivery. StemJournal, 2019, 1, 1-25.	0.8	62
254	Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues. Biofabrication, 2019, 11, 025009.	3.7	70
255	Paper-based Transwell assays: an inexpensive alternative to study cellular invasion. Analyst, The, 2019, 144, 206-211.	1.7	31

#	Article	IF	CITATIONS
256	PEG–Anthracene Hydrogels as an Onâ€Demand Stiffening Matrix To Study Mechanobiology. Angewandte Chemie, 2019, 131, 10017-10021.	1.6	19
257	3D printed coaxial nozzles for the extrusion of hydrogel tubes toward modeling vascular endothelium. Biofabrication, 2019, 11, 045009.	3.7	63
258	Fabrication techniques of tissue engineering scaffolds. , 2019, , 109-125.		6
259	Stacking up: a new approach for cell culture studies. Biomaterials Science, 2019, 7, 3249-3257.	2.6	6
260	A Microfluidic System for Oneâ€Chip Harvesting of Singleâ€Cellâ€Laden Hydrogels in Culture Medium. Advanced Biology, 2019, 3, e1900076.	3.0	21
261	Design Approaches for Generating Organ Constructs. Cell Stem Cell, 2019, 24, 877-894.	5.2	26
262	Precise Construction of Cell-Instructive 3D Microenvironments by Photopatterning a Biodegradable Hydrogel. Chemistry of Materials, 2019, 31, 4710-4719.	3.2	43
263	Extemporaneous Preparation of Injectable and Enzymatically Degradable 3D Cell Culture Matrices from an Animalâ€Componentâ€Free Recombinant Protein Based on Human Collagen Type I. Macromolecular Rapid Communications, 2019, 40, e1900127.	2.0	3
264	Recent advances in the design of injectable hydrogels for stem cell-based therapy. Journal of Materials Chemistry B, 2019, 7, 3775-3791.	2.9	71
265	Tunable and Reversible Gelatinâ€Based Bonding for Microfluidic Cell Culture. Advanced Engineering Materials, 2019, 21, 1900145.	1.6	12
266	Expansion Culture of Human Pluripotent Stem Cells and Production of Cardiomyocytes. Bioengineering, 2019, 6, 48.	1.6	23
267	Threadâ€Like Radicalâ€Polymerization via Autonomously Propelled (TRAP) Bots. Advanced Materials, 2019, 31, e1901573.	11.1	15
268	Regenerative and durable small-diameter graft as an arterial conduit. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12710-12719.	3.3	52
269	Selfâ€Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering?. Advanced Science, 2019, 6, 1801664.	5.6	314
270	PEG–Anthracene Hydrogels as an Onâ€Demand Stiffening Matrix To Study Mechanobiology. Angewandte Chemie - International Edition, 2019, 58, 9912-9916.	7.2	77
271	Mechanotransduction and Growth Factor Signaling in Hydrogel-Based Microenvironments. , 2019, , 87-87.		1
272	Hydrogel Properties and Characterization Techniques. Polymers and Polymeric Composites, 2019, , 429-452.	0.6	2
273	Photosensitive Hydrogel Creates Favorable Biologic Niches to Promote Spinal Cord Injury Repair. Advanced Healthcare Materials, 2019, 8, e1900013.	3.9	52

#	Article	IF	CITATIONS
274	Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials. Nature Materials, 2019, 18, 1005-1014.	13.3	168
275	Alginate and Probiotics Synergistically Reversed Dextran Sulfate Sodium Salt (DSS)-Induced Gut Barrier Damage. Macromolecular Research, 2019, 27, 888-894.	1.0	11
276	Mechanically robust photodegradable gelatin hydrogels for 3D cell culture and <i>in situ</i> mechanical modification. Polymer Chemistry, 2019, 10, 3180-3193.	1.9	25
277	Catching a SPY: Using the SpyCatcher-SpyTag and Related Systems for Labeling and Localizing Bacterial Proteins. International Journal of Molecular Sciences, 2019, 20, 2129.	1.8	79
278	Highly sensitive detection of antibodies in a soft bioactive three-dimensional bioorthogonal hydrogel. Journal of Materials Chemistry B, 2019, 7, 3220-3231.	2.9	20
279	Integration of biological systems with electronic-mechanical assemblies. Acta Biomaterialia, 2019, 95, 91-111.	4.1	23
280	Implementation of a High-Throughput Pilot Screen in Peptide Hydrogel-Based Three-Dimensional Cell Cultures. SLAS Discovery, 2019, 24, 714-723.	1.4	20
281	Cytotoxicity and bioadhesive properties of poly-N-isopropylacrylamide hydrogel. Heliyon, 2019, 5, e01474.	1.4	48
282	Rheological Analysis of the Gelation Kinetics of an Enzyme Cross-linked PEG Hydrogel. Biomacromolecules, 2019, 20, 2198-2206.	2.6	32
283	Hydrogelâ€coated polyurethane/urea shape memory polymer foams. Journal of Polymer Science Part A, 2019, 57, 1389-1395.	2.5	16
284	Technological advancements for the development of stem cell-based models for hepatotoxicity testing. Archives of Toxicology, 2019, 93, 1789-1805.	1.9	15
285	In vitro and in vivo technologies: an up to date overview in tissue engineering. , 2019, , 463-484.		0
286	Composite Nanostructures and Adhesion Analysis of Natural Plant Hydrogels Investigated by Atomic Force Microscopy. IEEE Transactions on Nanobioscience, 2019, 18, 448-455.	2.2	5
287	Engineering biomimetic and instructive materials for wound healing and regeneration. Current Opinion in Biomedical Engineering, 2019, 10, 97-106.	1.8	14
288	Mussel-Inspired Nanocomposite Hydrogel-Based Electrodes with Reusable and Injectable Properties for Human Electrophysiological Signals Detection. ACS Sustainable Chemistry and Engineering, 2019, 7, 7918-7925.	3.2	83
289	Nanoscale Multiparametric Imaging of Peptide-Assembled Nanofibrillar Hydrogels by Atomic Force Microscopy. IEEE Nanotechnology Magazine, 2019, 18, 315-328.	1.1	9
290	Glioblastoma heterogeneity and the tumour microenvironment: implications for preclinical research and development of new treatments. Biochemical Society Transactions, 2019, 47, 625-638.	1.6	104
291	Effect of Dibasic Calcium Phosphate Incorporation on Cellulose Nanocrystal/Chitosan Hydrogel Properties for the Treatment of Vertebral Compression Fractures. AAPS Journal, 2019, 21, 41.	2.2	11

#	Article	IF	CITATIONS
292	Nanoarchitectonics for Biology. , 2019, , 209-229.		3
293	Design and Applications of Photoresponsive Hydrogels. Advanced Materials, 2019, 31, e1807333.	11.1	353
294	Matrix Remodeling Enhances the Differentiation Capacity of Neural Progenitor Cells in 3D Hydrogels. Advanced Science, 2019, 6, 1801716.	5.6	83
295	Engineering nanocellulose hydrogels for biomedical applications. Advances in Colloid and Interface Science, 2019, 267, 47-61.	7.0	286
296	Consideration of the Mechanical Properties of Hydrogels for Brain Tissue Engineering and Brain-on-a-chip. Biochip Journal, 2019, 13, 8-19.	2.5	49
297	Functionalized DNA Hydrogels Produced by Polymeraseâ€Catalyzed Incorporation of Nonâ€Natural Nucleotides as a Surface Coating for Cell Culture Applications. Advanced Healthcare Materials, 2019, 8, e1900080.	3.9	24
298	Pectin Methacrylate (PEMA) and Gelatin-Based Hydrogels for Cell Delivery: Converting Waste Materials into Biomaterials. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12283-12297.	4.0	61
299	Stable gold graphitic nanocapsule doped hydrogels for efficient photothermal antibacterial applications. Chemical Communications, 2019, 55, 5359-5362.	2.2	40
300	T-Cell Mechanobiology: Force Sensation, Potentiation, and Translation. Frontiers in Physics, 2019, 7, .	1.0	44
301	Controlling the Surface Chemistry of a Hydrogel for Spatially Defined Cell Adhesion. ACS Applied Materials & Samp; Interfaces, 2019, 11, 15411-15416.	4.0	15
302	Cell Encapsulation. Polymers and Polymeric Composites, 2019, , 377-427.	0.6	2
303	Constructing Three-Dimensional Microenvironments Using Engineered Biomaterials for Hematopoietic Stem Cell Expansion. Tissue Engineering - Part B: Reviews, 2019, 25, 312-329.	2.5	23
304	Structural and mechanical characterization of crosslinked and sterilised nanocellulose-based hydrogels for cartilage tissue engineering. Carbohydrate Polymers, 2019, 212, 242-251.	5.1	63
305	A simple layer-stacking technique to generate biomolecular and mechanical gradients in photocrosslinkable hydrogels. Biofabrication, 2019, 11, 025014.	3.7	24
306	Using Cell and Organ Culture Models to Analyze Responses of Bone Cells to Mechanical Stimulation. Methods in Molecular Biology, 2019, 1914, 99-128.	0.4	0
307	Inductive co-crosslinking of cellulose nanocrystal/chitosan hydrogels for the treatment of vertebral compression fractures. International Journal of Biological Macromolecules, 2019, 130, 88-98.	3.6	32
308	Cellular Based Strategies for Microvascular Engineering. Stem Cell Reviews and Reports, 2019, 15, 218-240.	5.6	14
309	Indoor nanoscale particulate matter-induced coagulation abnormality based on a human 3D microvascular model on a microfluidic chip. Journal of Nanobiotechnology, 2019, 17, 20.	4.2	25

#	Article	IF	CITATIONS
310	Rationally Designed 3D Hydrogels Model Invasive Lung Diseases Enabling High ontent Drug Screening. Advanced Materials, 2019, 31, e1806214.	11.1	45
311	Tunable synthetic extracellular matrices to investigate breast cancer response to biophysical and biochemical cues. APL Bioengineering, 2019, 3, 016101.	3.3	26
312	<i>In vitro</i> evaluation of barium titanate nanoparticle/alginate 3D scaffold for osteogenic human stem cell differentiation. Biomedical Materials (Bristol), 2019, 14, 035011.	1.7	12
313	Oxidized alginate hydrogels with the GHK peptide enhance cord blood mesenchymal stem cell osteogenesis: A paradigm for metabolomics-based evaluation of biomaterial design. Acta Biomaterialia, 2019, 88, 224-240.	4.1	55
314	Piezoelectric plastic compressed collagen-mesh scaffold for artificial skin. , 2019, , .		1
315	Human Adipose-Derived Hydrogel Characterization Based on <i>In Vitro</i> ASC Biocompatibility and Differentiation. Stem Cells International, 2019, 2019, 1-13.	1.2	23
316	Doubleâ€crosslinked reversible redoxâ€responsive hydrogels based on disulfide–thiol interchange. Journal of Polymer Science Part A, 2019, 57, 2590-2601.	2.5	19
317	An Active Temperature Sensor based on Encapsulated Flexible and Transparent Triboelectric Nanogenerator., 2019,,.		9
318	Mechano-chromic protein–polymer hybrid hydrogel to visualize mechanical strain. Soft Matter, 2019, 15, 9388-9393.	1.2	17
319	Cell-Electrospinning and Its Application for Tissue Engineering. International Journal of Molecular Sciences, 2019, 20, 6208.	1.8	106
320	One-Shot Preparation of Polyacrylamide/Poly(sodium styrenesulfonate) Double-Network Hydrogels for Rapid Optical Tissue Clearing. ACS Omega, 2019, 4, 21083-21090.	1.6	11
321	Development of improved dual-diazonium reagents for faster crosslinking of tobacco mosaic virus to form hydrogels. RSC Advances, 2019, 9, 29070-29077.	1.7	4
322	Fabrication of modular hyaluronan-PEG hydrogels to support 3D cultures of hepatocytes in a perfused liver-on-a-chip device. Biofabrication, 2019, 11, 015013.	3.7	61
323	2D Gelatin Methacrylate Hydrogels with Tunable Stiffness for Investigating Cell Behaviors. ACS Applied Bio Materials, 2019, 2, 570-576.	2.3	15
324	Anions reversibly responsive luminescent nanocellulose hydrogels for cancer spheroids culture and release. Biomaterials, 2019, 194, 161-170.	5.7	28
325	Selfâ∈Healing Supramolecular Hydrogels for Tissue Engineering Applications. Macromolecular Bioscience, 2019, 19, e1800313.	2.1	172
326	Threeâ€Dimensional Osteosarcoma Models for Advancing Drug Discovery and Development. Advanced Therapeutics, 2019, 2, 1800108.	1.6	16
327	A multiâ€site metastasisâ€onâ€aâ€chip microphysiological system for assessing metastatic preference of cancer cells. Biotechnology and Bioengineering, 2019, 116, 936-944.	1.7	96

#	Article	IF	CITATIONS
328	Three-Dimensional Stable Alginate-Nanocellulose Gels for Biomedical Applications: Towards Tunable Mechanical Properties and Cell Growing. Nanomaterials, 2019, 9, 78.	1.9	87
329	Synthetic Extracellular Matrices with Nonlinear Elasticity Regulate Cellular Organization. Biomacromolecules, 2019, 20, 826-834.	2.6	71
330	Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nature Biomedical Engineering, 2019, 3, 58-68.	11.6	499
331	Hydrogels with an embossed surface: An all-in-one platform for mass production and culture of human adipose-derived stem cell spheroids. Biomaterials, 2019, 188, 198-212.	5.7	60
332	Jammed Microgel Inks for 3D Printing Applications. Advanced Science, 2019, 6, 1801076.	5.6	270
333	A quantitative comparable study on multi-hierarchy conformation of acid and pepsin-solubilized collagens from the skin of grass carp (Ctenopharyngodon idella). Materials Science and Engineering C, 2019, 96, 446-457.	3.8	26
334	â€stimulated crosslinking of catecholâ€conjugated hydroxyethyl chitosan as a tissue adhesive. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 582-593.	1.6	16
335	Highâ€Throughput Scaffold System for Studying the Effect of Local Geometry and Topology on the Development and Orientation of Sprouting Blood Vessels. Advanced Functional Materials, 2020, 30, 1901335.	7.8	18
336	Hydrogel Adhesion: A Supramolecular Synergy of Chemistry, Topology, and Mechanics. Advanced Functional Materials, 2020, 30, 1901693.	7.8	507
337	Neural tissue engineering with structured hydrogels in CNS models and therapies. Biotechnology Advances, 2020, 42, 107370.	6.0	78
338	Embedding of Precision-Cut Lung Slices in Engineered Hydrogel Biomaterials Supports Extended <i>Ex Vivo</i> Culture. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 14-22.	1.4	42
339	Hydrogel screening approaches for bone and cartilage tissue regeneration. Annals of the New York Academy of Sciences, 2020, 1460, 25-42.	1.8	19
340	Nanocomposite hydrogels based on carbon dots and polymers. Chinese Chemical Letters, 2020, 31, 1443-1447.	4.8	50
341	Peptide gels of fully-defined composition and mechanics for probing cell-cell and cell-matrix interactions in vitro. Matrix Biology, 2020, 85-86, 15-33.	1.5	44
342	Multi-scale Mechanics of Collagen Networks: Biomechanical Basis of Matrix Remodeling in Cancer. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2020, , 343-387.	0.7	5
343	Voidâ€Free 3D Bioprinting for In Situ Endothelialization and Microfluidic Perfusion. Advanced Functional Materials, 2020, 30, 1908349.	7.8	96
344	Hydrogel microparticles for biomedical applications. Nature Reviews Materials, 2020, 5, 20-43.	23.3	646
345	Synthesis and assessment of poly(acrylic acid)/polyvinylpyrrolidone interpenetrating network as a matrix for oral mucosa cells. Journal of Biomaterials Applications, 2020, 34, 998-1008.	1.2	8

#	Article	IF	CITATIONS
346	Recent Advances in Enabling Technologies in 3D Printing for Precision Medicine. Advanced Materials, 2020, 32, e1902516.	11.1	126
347	Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues. Small, 2020, 16, e1902838.	5.2	109
348	Engineering Helical Modular Polypeptide-Based Hydrogels as Synthetic Extracellular Matrices for Cell Culture. Biomacromolecules, 2020, 21, 566-580.	2.6	23
349	Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polymer Chemistry, 2020, 11, 184-219.	1.9	331
350	Materials for blood brain barrier modeling in vitro. Materials Science and Engineering Reports, 2020, 140, 100522.	14.8	51
351	Layer-by-layer fabrication of 3D hydrogel structures using open microfluidics. Lab on A Chip, 2020, 20, 525-536.	3.1	34
352	Short to ultrashort peptide-based hydrogels as a platform for biomedical applications. Biomaterials Science, 2020, 8, 84-100.	2.6	83
353	Dynamic covalent polymers for biomedical applications. Materials Chemistry Frontiers, 2020, 4, 489-506.	3.2	94
354	A high-throughput approach to compare the biocompatibility of candidate bioink formulations. Bioprinting, 2020, 17, e00068.	2.9	16
355	Preparation of biomimetic gene hydrogel via polymerase chain reaction for cell-free protein expression. Science China Chemistry, 2020, 63, 99-106.	4.2	5
356	Combination Stiffness Gradient with Chemical Stimulation Directs Glioma Cell Migration on a Microfluidic Chip. Analytical Chemistry, 2020, 92, 892-898.	3.2	46
357	Multifunctional hydrogel based on ionic liquid with antibacterial performance. Journal of Molecular Liquids, 2020, 299, 112185.	2.3	36
358	Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials, 2020, 232, 119679.	5.7	295
359	Emerging Soft Conductors for Bioelectronic Interfaces. Advanced Functional Materials, 2020, 30, 1907184.	7.8	70
360	Lab-on-a-Chip for Cardiovascular Physiology and Pathology. Micromachines, 2020, 11, 898.	1.4	12
361	Three-dimensional cell models for extracellular vesicles production, isolation, and characterization. Methods in Enzymology, 2020, 645, 209-230.	0.4	1
362	Tailoring cellular microenvironments using scaffolds based on magnetically-responsive polymer brushes. Journal of Materials Chemistry B, 2020, 8, 10172-10181.	2.9	7
363	DNA-GEL, Novel Nanomaterial for Biomedical Applications and Delivery of Bioactive Molecules. Frontiers in Pharmacology, 2020, 11, 01345.	1.6	17

#	Article	IF	CITATIONS
364	CCL21-loaded 3D hydrogels for T cell expansion and differentiation. Biomaterials, 2020, 259, 120313.	5.7	43
365	Tailorable hydrogel of gelatin with silk fibroin and its activation/crosslinking for enhanced proliferation of fibroblast cells. International Journal of Biological Macromolecules, 2020, 164, 4073-4083.	3.6	19
366	Toward Brain-on-a-Chip: Human Induced Pluripotent Stem Cell-Derived Guided Neuronal Networks in Tailor-Made 3D Nanoprinted Microscaffolds. ACS Nano, 2020, 14, 13091-13102.	7.3	44
367	Development of fibrin hydrogel–based in vitro bioassay system for assessment of skin permeability to and pro-inflammatory activity mediated by zinc ion released from nanoparticles. Analytical and Bioanalytical Chemistry, 2020, 412, 8269-8282.	1.9	5
368	Polymer-loaded hydrogels serve as depots for lactate and mimic "cold―tumor microenvironments. Biomaterials Science, 2020, 8, 6056-6068.	2.6	8
369	Hydrogelâ^'Solid Hybrid Materials for Biomedical Applications Enabled by Surfaceâ€Embedded Radicals. Advanced Functional Materials, 2020, 30, 2004599.	7.8	26
370	Thiol-Methylsulfone-Based Hydrogels for 3D Cell Encapsulation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8062-8072.	4.0	27
371	Effect of varied hair protein fractions on the gel properties of keratin/chitosan hydrogels for the use in tissue engineering. Colloids and Surfaces B: Biointerfaces, 2020, 195, 111258.	2.5	40
372	Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel. Biomacromolecules, 2020, 21, 1875-1885.	2.6	75
373	Soft Hydrogels for Balancing Cell Proliferation and Differentiation. ACS Biomaterials Science and Engineering, 2020, 6, 4687-4701.	2.6	37
374	Modeling neoplastic disease with spheroids and organoids. Journal of Hematology and Oncology, 2020, 13, 97.	6.9	122
375	Bioprinting stem cells: building physiological tissues one cell at a time. American Journal of Physiology - Cell Physiology, 2020, 319, C465-C480.	2.1	18
377	Biomaterials-Based Model Systems to Study Tumor–Microenvironment Interactions., 2020,, 1217-1236.		4
378	Bioinspired biomaterials to develop cell-rich spherical microtissues for 3D in vitro tumor modeling., 2020,, 43-65.		3
379	Simplified Bioprinting-Based 3D Cell Culture Infection Models for Virus Detection. Viruses, 2020, 12, 1298.	1.5	10
380	Polydopamine Antioxidant Hydrogels for Wound Healing Applications. Gels, 2020, 6, 39.	2.1	28
381	Biopolymer Hydrogel Scaffold as an Artificial Cell Niche for Mesenchymal Stem Cells. Polymers, 2020, 12, 2550.	2.0	14
382	Biomaterials as ECM-like matrices for 3D in vitro tumor models. , 2020, , 157-173.		3

#	Article	IF	Citations
383	Three-dimensional tumor model and their implication in drug screening for tackling chemoresistance. , 2020, , 481-503.		1
384	Tailoring Common Hydrogels into 3D Cell Culture Templates. Advanced Healthcare Materials, 2020, 9, e2000519.	3.9	12
385	Host–Guest-Mediated Epitope Presentation on Self-Assembled Peptide Amphiphile Hydrogels. ACS Biomaterials Science and Engineering, 2020, 6, 4870-4880.	2.6	14
386	Upregulation of microRNA-155 Enhanced Migration and Function of Dendritic Cells in Three-dimensional Breast Cancer Microenvironment. Immunological Investigations, 2021, 50, 1058-1071.	1.0	8
387	Alginate-based hydrogels show the same complex mechanical behavior as brain tissue. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 111, 103979.	1.5	30
388	Multicomponent DNA Polymerization Motor Gels. Small, 2020, 16, e2002946.	5.2	14
389	Development of Three-Dimensional Cell Culture Scaffolds Using Laminin Peptide-Conjugated Agarose Microgels. Biomacromolecules, 2020, 21, 3765-3771.	2.6	25
390	Biomaterial Stiffness Guides Cross-talk between Chondrocytes: Implications for a Novel Cellular Response in Cartilage Tissue Engineering. ACS Biomaterials Science and Engineering, 2020, 6, 4476-4489.	2.6	28
391	Biomedical Application of Functional Materials in Organ-on-a-Chip. Frontiers in Bioengineering and Biotechnology, 2020, 8, 823.	2.0	40
392	3D Printing of Microgelâ€Loaded Modular Microcages as Instructive Scaffolds for Tissue Engineering. Advanced Materials, 2020, 32, e2001736.	11.1	42
393	The Influence of Swelling on Elastic Properties of Polyacrylamide Hydrogels. Frontiers in Materials, 2020, 7, .	1.2	65
394	Neural Progenitor Cells Alter Chromatin Organization and Neurotrophin Expression in Response to 3D Matrix Degradability. Advanced Healthcare Materials, 2020, 9, 2000754.	3.9	4
395	Distinct phenotypes of cancer cells on tissue matrix gel. Breast Cancer Research, 2020, 22, 82.	2.2	16
396	Microfluidic Systems with Embedded Cell Culture Chambers for High-Throughput Biological Assays. ACS Applied Bio Materials, 2020, 3, 6661-6671.	2.3	13
397	An L012@PAni-PAAm hydrogel composite based-electrochemiluminescence biosensor for in situ detection of H2O2 released from cardiomyocytes. Electrochimica Acta, 2020, 354, 136763.	2.6	28
398	Electro-responsive hydrogel-based microfluidic actuator platform for photothermal therapy. Lab on A Chip, 2020, 20, 3354-3364.	3.1	38
399	Lab in hydrogel portable kit: On-site monitoring of oxalate. Biosensors and Bioelectronics, 2020, 167, 112457.	5.3	26
400	Synthetic ECM: Bioactive Synthetic Hydrogels for 3D Tissue Engineering. Bioconjugate Chemistry, 2020, 31, 2253-2271.	1.8	65

#	Article	IF	CITATIONS
401	Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers. Nature Communications, 2020, 11, 4032.	5.8	129
402	Engineering the Extracellular Matrix to Model the Evolving Tumor Microenvironment. IScience, 2020, 23, 101742.	1.9	28
403	3D Hyaluronic Acid Hydrogels for Modeling Oligodendrocyte Progenitor Cell Behavior as a Function of Matrix Stiffness. Biomacromolecules, 2020, 21, 4962-4971.	2.6	18
404	A Thermally Reformable Protein Polymer. CheM, 2020, 6, 3132-3151.	5.8	9
405	Regenerative hepatology: In the quest for a modern prometheus?. Digestive and Liver Disease, 2020, 52, 1106-1114.	0.4	4
406	Flexible and Stretchable Photonics: The Next Stretch of Opportunities. ACS Photonics, 2020, 7, 2618-2635.	3.2	49
407	Enhanced stem cell retention and antioxidative protection with injectable, ROS-degradable PEG hydrogels. Biomaterials, 2020, 263, 120377.	5.7	45
408	Biofabrication of Hepatic Constructs by 3D Bioprinting of a Cellâ€Laden Thermogel: An Effective Tool to Assess Drugâ€Induced Hepatotoxic Response. Advanced Healthcare Materials, 2020, 9, e2001163.	3.9	41
409	Quantitatively Designed Cross-Linker-Clustered Maleimide–Dextran Hydrogels for Rationally Regulating the Behaviors of Cells in a 3D Matrix. ACS Applied Bio Materials, 2020, 3, 5759-5774.	2.3	8
410	Rheological Properties of Coordinated Physical Gelation and Chemical Crosslinking in Gelatin Methacryloyl (GelMA) Hydrogels. Macromolecular Bioscience, 2020, 20, e2000183.	2.1	59
411	Modulation of Thiol–Ene Coupling by the Molecular Environment of Polymer Backbones for Hydrogel Formation and Cell Encapsulation. ACS Applied Bio Materials, 2020, 3, 6497-6509.	2.3	18
412	Plant-Based Scaffolds Modify Cellular Response to Drug and Radiation Exposure Compared to Standard Cell Culture Models. Frontiers in Bioengineering and Biotechnology, 2020, 8, 932.	2.0	24
413	In Situ Forming, Silanized Hyaluronic Acid Hydrogels with Fine Control Over Mechanical Properties and In Vivo Degradation for Tissue Engineering Applications. Advanced Healthcare Materials, 2020, 9, e2000981.	3.9	12
414	Characterization and Proteomic Analysis of Decellularized Adipose Tissue Hydrogels Derived from Lean and Overweight/Obese Human Donors. Advanced Biology, 2020, 4, e2000124.	3.0	14
415	Progress and Challenges in Microengineering the Dental Pulp Vascular Microenvironment. Journal of Endodontics, 2020, 46, S90-S100.	1.4	19
416	Laser cavitation rheology for measurement of elastic moduli and failure strain within hydrogels. Scientific Reports, 2020, 10, 13144.	1.6	12
417	Widefield Fluorescence Microscopy in Preclinical Studies of Biomedical Materials, Scaffolds, and Biomedical Cell Products. Technical Physics, 2020, 65, 1524-1529.	0.2	0
418	3D Printing of a Reactive Hydrogel Bio-Ink Using a Static Mixing Tool. Polymers, 2020, 12, 1986.	2.0	31

#	Article	IF	CITATIONS
419	Injectable Hydrogels for Sustained Codelivery of Subunit Vaccines Enhance Humoral Immunity. ACS Central Science, 2020, 6, 1800-1812.	5.3	113
420	Dopamine enhances the mechanical and biological properties of enzyme-induced mineralized hydrogels. Journal of Materials Chemistry B, 2020, 8, 9052-9061.	2.9	8
421	An Electroactive Oligoâ€EDOT Platform for Neural Tissue Engineering. Advanced Functional Materials, 2020, 30, 2003710.	7.8	32
422	Creating CRISPR-responsive smart materials for diagnostics and programmable cargo release. Nature Protocols, 2020, 15, 3030-3063.	5.5	42
423	Tailoring Gelation Mechanisms for Advanced Hydrogel Applications. Advanced Functional Materials, 2020, 30, 2002759.	7.8	148
424	Paramagnetic Functionalization of Biocompatible Scaffolds for Biomedical Applications: A Perspective. Bioengineering, 2020, 7, 153.	1.6	9
425	Hydrogels and Dentin–Pulp Complex Regeneration: From the Benchtop to Clinical Translation. Polymers, 2020, 12, 2935.	2.0	44
426	Fluorescent Nanofibrillar Hydrogels of Carbon Dots and Cellulose Nanocrystals and Their Biocompatibility. ACS Sustainable Chemistry and Engineering, 2020, 8, 18492-18499.	3.2	28
427	Organoid-based Models to Study the Role of Host-microbiota Interactions in IBD. Journal of Crohn's and Colitis, 2021, 15, 1222-1235.	0.6	40
428	Environmental control of crack propagation in polymer hydrogels. Mechanics of Soft Materials, 2020, 2, 1.	0.4	10
429	Modulating Functionalized Poly(ethylene glycol) Diacrylate Hydrogel Mechanical Properties through Competitive Crosslinking Mechanics for Soft Tissue Applications. Polymers, 2020, 12, 3000.	2.0	19
430	Physiomimetic Models of Adenomyosis. Seminars in Reproductive Medicine, 2020, 38, 179-196.	0.5	11
431	Interfacial nanoarchitectonics for responsive cellular biosystems. Materials Today Bio, 2020, 8, 100075.	2.6	13
432	<p>ZIF-8 Modified Polypropylene Membrane: A Biomimetic Cell Culture Platform with a View to the Improvement of Guided Bone Regeneration</p> . International Journal of Nanomedicine, 2020, Volume 15, 10029-10043.	3.3	26
433	Creating <i>In Vitro</i> Three-Dimensional Tumor Models: A Guide for the Biofabrication of a Primary Osteosarcoma Model. Tissue Engineering - Part B: Reviews, 2021, 27, 514-529.	2.5	14
434	Aqueous Suspensions of Cellulose Oligomer Nanoribbons for Growth and Natural Filtration-Based Separation of Cancer Spheroids. Langmuir, 2020, 36, 13890-13898.	1.6	9
435	An in vitro assessment of the response of THPâ€1 macrophages to varying stiffness of a glycolâ€chitosan hydrogel for vocal fold tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2021, 109, 1337-1352.	2.1	13
436	Polymer Hydrogels to Guide Organotypic and Organoid Cultures. Advanced Functional Materials, 2020, 30, 2000097.	7.8	61

#	Article	IF	CITATIONS
437	Structural characterization of fibrous synthetic hydrogels using fluorescence microscopy. Soft Matter, 2020, 16, 4210-4219.	1.2	31
438	High-throughput screening in multicellular spheroids for target discovery in the tumor microenvironment. Expert Opinion on Drug Discovery, 2020, 15, 955-967.	2.5	11
439	Dynamic peptide-folding mediated biofunctionalization and modulation of hydrogels for 4D bioprinting. Biofabrication, 2020, 12, 035031.	3.7	41
440	Robot Cookies – Plant Cell Packs as an Automated High-Throughput Screening Platform Based on Transient Expression. Frontiers in Bioengineering and Biotechnology, 2020, 8, 393.	2.0	27
441	Main-Chain Liquid Crystalline Hydrogels that Support 3D Stem Cell Culture. Biomacromolecules, 2020, 21, 2365-2375.	2.6	3
442	Inducing mesenchymal stem cell attachment on non-cell adhesive hydrogels through click chemistry. Chemical Communications, 2020, 56, 7661-7664.	2.2	6
443	Formulation of Sugar/Hydrogel Inks for Rapid Thermal Response 4D Architectures with Sugar-derived Macropores. Scientific Reports, 2020, 10, 7527.	1.6	29
444	Computational models of melanoma. Theoretical Biology and Medical Modelling, 2020, 17, 8.	2.1	11
445	Mechano-therapeutics: Targeting Mechanical Signaling in Fibrosis and Tumor Stroma., 2020, 212, 107575.		69
446	Poly(ethylene glycol)-based biofunctional hydrogels mediated by peroxidase-catalyzed cross-linking reactions. Polymer Journal, 2020, 52, 899-911.	1.3	11
447	Rapidly curable hyaluronic acid-catechol hydrogels inspired by scallops as tissue adhesives for hemostasis and wound healing. European Polymer Journal, 2020, 134, 109763.	2.6	37
448	Stimuli-responsive sugar-derived hydrogels: A modern approach in cancer biology. , 2020, , 617-649.		5
449	Synthetic alternatives to Matrigel. Nature Reviews Materials, 2020, 5, 539-551.	23.3	498
450	Towards systems tissue engineering: Elucidating the dynamics, spatial coordination, and individual cells driving emergent behaviors. Biomaterials, 2020, 255, 120189.	5.7	8
451	Tissue engineering of the biliary tract and modelling of cholestatic disorders. Journal of Hepatology, 2020, 73, 918-932.	1.8	14
452	Reconfigurable Surface with Photodefinable Physicochemical Properties for User-Designable Cell Scaffolds. ACS Applied Bio Materials, 2020, 3, 2230-2238.	2.3	1
453	3D printing and characterization of human nasoseptal chondrocytes laden dual crosslinked oxidized alginate-gelatin hydrogels for cartilage repair approaches. Materials Science and Engineering C, 2020, 116, 111189.	3.8	57
454	Hydrogel-Colloid Composite Bioinks for Targeted Tissue-Printing. Biomacromolecules, 2020, 21, 2949-2965.	2.6	17

#	Article	IF	CITATIONS
455	From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics. Journal of Materials Chemistry B, 2020, 8, 6667-6685.	2.9	55
456	Composite Hydrogels in Three-Dimensional in vitro Models. Frontiers in Bioengineering and Biotechnology, 2020, 8, 611.	2.0	62
457	Colloids-at-surfaces: Physicochemical approaches for facilitating cell adhesion on hybrid hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125185.	2.3	14
458	Oxidized starch cross-linked porous collagen-based hydrogel for spontaneous agglomeration growth of adipose-derived stem cells. Materials Science and Engineering C, 2020, 116, 111165.	3.8	15
459	Identification and Analysis of Key Parameters for the Ossification on Particle Functionalized Composites Hydrogel Materials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38862-38872.	4.0	17
460	Going beyond RGD: screening of a cell-adhesion peptide library in 3D cell culture. Biomedical Materials (Bristol), 2020, 15, 055033.	1.7	8
461	Hydrogels Derivatized With Cationic Moieties or Functional Peptides as Efficient Supports for Neural Stem Cells. Frontiers in Neuroscience, 2020, 14, 475.	1.4	7
462	Vapor-deposited functional polymer thin films in biological applications. Journal of Materials Chemistry B, 2020, 8, 6588-6609.	2.9	48
463	Effect of cell imprinting on viability and drug susceptibility of breast cancer cells to doxorubicin. Acta Biomaterialia, 2020, 113, 119-129.	4.1	13
464	Engineered Biomaterial Platforms to Study Fibrosis. Advanced Healthcare Materials, 2020, 9, e1901682.	3.9	53
465	Modeling the Human Bone–Tumor Niche: Reducing and Replacing the Need for Animal Data. JBMR Plus, 2020, 4, e10356.	1.3	5
466	Human Dermal Fibroblast Viability and Adhesion on Cellulose Nanomaterial Coatings: Influence of Surface Characteristics. Biomacromolecules, 2020, 21, 1560-1567.	2.6	27
467	Replicating landmine blast loading in cellular in vitro models. Physical Biology, 2020, 17, 056001.	0.8	0
468	Pre-culture of mesenchymal stem cells within RGD-modified hyaluronic acid hydrogel improves their resilience to ischaemic conditions. Acta Biomaterialia, 2020, 107, 78-90.	4.1	22
469	100th Anniversary of Macromolecular Science Viewpoint: Synthetic Protein Hydrogels. ACS Macro Letters, 2020, 9, 512-524.	2.3	58
470	Designer Selfâ€Assembling Peptide Hydrogels to Engineer 3D Cell Microenvironments for Cell Constructs Formation and Precise Oncology Remodeling in Ovarian Cancer. Advanced Science, 2020, 7, 1903718.	5.6	77
471	Tools for probing host-bacteria interactions in the gut microenvironment: From molecular to cellular levels. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127116.	1.0	4
472	In Situ High-Resolution AFM Imaging and Force Probing of Cell Culture Medium-Forming Nanogranular Surfaces for Cell Growth. IEEE Transactions on Nanobioscience, 2020, 19, 385-393.	2.2	8

#	Article	IF	Citations
473	3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules, 2020, 21, 1968-1994.	2.6	297
474	Hydrogels in the clinic. Bioengineering and Translational Medicine, 2020, 5, e10158.	3.9	244
475	Modeling the Efficacy of Oncolytic Adenoviruses In Vitro and In Vivo: Current and Future Perspectives. Cancers, 2020, 12, 619.	1.7	11
476	Emerging Methods for Enhancing Pluripotent Stem Cell Expansion. Frontiers in Cell and Developmental Biology, 2020, 8, 70.	1.8	28
477	Extracellular Matrix Production by Mesenchymal Stromal Cells in Hydrogels Facilitates Cell Spreading and Is Inhibited by FGFâ€2. Advanced Healthcare Materials, 2020, 9, 1901669.	3.9	31
478	Targeted Drug Delivery via the Use of ECM-Mimetic Materials. Frontiers in Bioengineering and Biotechnology, 2020, 8, 69.	2.0	37
479	Three-dimensional culture systems in central nervous system research., 2020,, 571-601.		2
480	Matrix Stiffness Regulates Chemosensitivity, Stemness Characteristics, and Autophagy in Breast Cancer Cells. ACS Applied Bio Materials, 2020, 3, 4474-4485.	2.3	30
481	Understanding ER+ Breast Cancer Dormancy Using Bioinspired Synthetic Matrices for Longâ€Term 3D Culture and Insights into Late Recurrence. Advanced Biology, 2020, 4, e2000119.	3.0	17
482	The Importance of Mechanical Forces for in vitro Endothelial Cell Biology. Frontiers in Physiology, 2020, 11, 684.	1.3	102
483	Shell-Forming Stimulus-Active Hydrogel Composite Membranes: Concept and Modeling. Micromachines, 2020, 11, 541.	1.4	19
484	Design, characterization and evaluation of \hat{l}^2 -hairpin peptide hydrogels as a support for osteoblast cell growth and bovine lactoferrin delivery. RSC Advances, 2020, 10, 18222-18230.	1.7	6
485	Engineering the cellular mechanical microenvironment to regulate stem cell chondrogenesis: Insights from a microgel model. Acta Biomaterialia, 2020, 113, 393-406.	4.1	37
486	Redox-responsive functionalized hydrogel marble for the generation of cellular spheroids. Journal of Bioscience and Bioengineering, 2020, 130, 416-423.	1.1	7
487	Development of Advanced Biodevices Using Quantum Beam Microfabrication Technology. Quantum Beam Science, 2020, 4, 14.	0.6	7
488	Engineered hydrogels for brain tumor culture and therapy. Bio-Design and Manufacturing, 2020, 3, 203-226.	3.9	24
489	An eco-friendly supramolecular hydrogel based-on [NaP5W30O110]14â^' as a giant inorganic cluster crosslinker: Green synthesis, characterization, and study of thermal and mechanical properties. Journal of Molecular Structure, 2020, 1221, 128752.	1.8	3
490	Novel Techniques to Study the Bone-Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1225, 1-18.	0.8	12

#	Article	IF	CITATIONS
491	Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties. Nature Materials, 2020, 19, 797-806.	13.3	140
492	Nonswelling, Ultralow Content Inverse Electronâ€Demand Diels–Alder Hyaluronan Hydrogels with Tunable Gelation Time: Synthesis and In Vitro Evaluation. Advanced Functional Materials, 2020, 30, 1903978.	7.8	44
493	3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering Reports, 2020, 140, 100543.	14.8	494
494	Progress toward finding the perfect match: hydrogels for treatment of central nervous system injury. Materials Today Advances, 2020, 6, 100039.	2.5	22
495	Integrated Biophysical Characterization of Fibrillar Collagen-Based Hydrogels. ACS Biomaterials Science and Engineering, 2020, 6, 1408-1417.	2.6	15
496	Mobility Tuning of Polyrotaxane Surfaces to Stimulate Myocyte Differentiation. Macromolecular Bioscience, 2020, 20, 1900424.	2.1	14
497	Heparin-based hydrogel scaffolding alters the transcriptomic profile and increases the chemoresistance of MDA-MB-231 triple-negative breast cancer cells. Biomaterials Science, 2020, 8, 2786-2796.	2.6	15
498	Novel cytokine-loaded PCL-PEG scaffold composites for spinal cord injury repair. RSC Advances, 2020, 10, 6306-6314.	1.7	11
499	Cellâ€Instructive Multiphasic Gelâ€Inâ€Gel Materials. Advanced Functional Materials, 2020, 30, 1908857.	7.8	34
500	Photocurable chitosan as bioink for cellularized therapies towards personalized scaffold architecture. Bioprinting, 2020, 18, e00082.	2.9	53
501	Photocurable Albumin Methacryloyl Hydrogels as a Versatile Platform for Tissue Engineering. ACS Applied Bio Materials, 2020, 3, 920-934.	2.3	33
502	Gelator Length Precisely Tunes Supramolecular Hydrogel Stiffness and Neuronal Phenotype in 3D Culture. ACS Biomaterials Science and Engineering, 2020, 6, 1196-1207.	2.6	36
503	Selfâ€healing injectable gelatin hydrogels for localized therapeutic cell delivery. Journal of Biomedical Materials Research - Part A, 2020, 108, 1112-1121.	2.1	55
504	Synthesis and characterization of thiolâ€acrylate hydrogels using a baseâ€catalyzed Michael addition for 3D cell culture applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2294-2307.	1.6	19
505	Hydrogel machines. Materials Today, 2020, 36, 102-124.	8.3	625
506	Threeâ€Dimensional (3D) cell culture monitoring: Opportunities and challenges for impedance spectroscopy. Biotechnology and Bioengineering, 2020, 117, 1230-1240.	1.7	52
507	Relaxation of Extracellular Matrix Forces Directs Crypt Formation and Architecture in Intestinal Organoids. Advanced Healthcare Materials, 2020, 9, e1901214.	3.9	58
508	Functional DNA-based hydrogel intelligent materials for biomedical applications. Journal of Materials Chemistry B, 2020, 8, 1991-2009.	2.9	60

#	Article	IF	CITATIONS
509	Assembling Living Building Blocks to Engineer Complex Tissues. Advanced Functional Materials, 2020, 30, 1909009.	7.8	76
510	Stiffness and topography of biomaterials dictate cellâ€matrix interaction in musculoskeletal cells at the bioâ€interface: A concise progress review. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2426-2440.	1.6	14
511	Hydrogel membranes: A review. Materials Science and Engineering C, 2020, 114, 111023.	3.8	117
512	Hematopoietic stem cells. , 2020, , 757-764.		0
513	3D printing of a biocompatible low molecular weight supramolecular hydrogel by dimethylsulfoxide water solvent exchange. Additive Manufacturing, 2020, 33, 101162.	1.7	11
514	Status and future scope of hydrogels in wound healing: Synthesis, materials and evaluation. European Polymer Journal, 2020, 130, 109609.	2.6	133
515	Highly elastic superabsorbent collagen/PVP/PAA/PEO hydrogels crosslinked via e-beam radiation. Radiation Physics and Chemistry, 2020, 174, 108898.	1.4	24
516	Composition and Mechanism of Three-Dimensional Hydrogel System in Regulating Stem Cell Fate. Tissue Engineering - Part B: Reviews, 2020, 26, 498-518.	2.5	28
517	Modelling human CNS injury with human neural stem cells in 2- and 3-Dimensional cultures. Scientific Reports, 2020, 10, 6785.	1.6	15
518	Imaging the Cell Morphological Response to 3D Topography and Curvature in Engineered Intestinal Tissues. Frontiers in Bioengineering and Biotechnology, 2020, 8, 294.	2.0	21
520	Fundamentals and Applications of Photo-Cross-Linking in Bioprinting. Chemical Reviews, 2020, 120, 10662-10694.	23.0	222
521	Cells-Grab-on Particles: A Novel Approach to Control Cell Focal Adhesion on Hybrid Thermally Annealed Hydrogels. ACS Biomaterials Science and Engineering, 2020, 6, 3933-3944.	2.6	31
522	Alginate Microencapsulation for Three-Dimensional In Vitro Cell Culture. ACS Biomaterials Science and Engineering, 2021, 7, 2864-2879.	2.6	41
523	Synthesis, characterization and rheological study of Arabic gum-grafted-poly (methacrylic acid) hydrogels. Polymer Bulletin, 2021, 78, 3399-3423.	1.7	21
524	Microchamber microfluidics combined with thermogellable glycomicrogels – Platform for single cells study in an artificial cellular microenvironment. Materials Science and Engineering C, 2021, 119, 111647.	3.8	7
525	Biocompatibility study of modified injectable hyaluronic acid hydrogel with mannitol/BSA to alveolar bone cells. Journal of Biomaterials Applications, 2021, 35, 1294-1303.	1.2	9
526	Characterization of adiposeâ€derived stromal/stem cell spheroids versus singleâ€eell suspension in cell survival and arrest of osteoarthritis progression. Journal of Biomedical Materials Research - Part A, 2021, 109, 869-878.	2.1	13
527	2D-Planar decorated 3D-network enables strong synergistic mechanics and programmable shape transformations for alginate-based hydrogels. Chemical Engineering Journal, 2021, 405, 126619.	6.6	15

#	Article	IF	CITATIONS
528	Matrix Stiffness Modulates Patient-Derived Glioblastoma Cell Fates in Three-Dimensional Hydrogels. Tissue Engineering - Part A, 2021, 27, 390-401.	1.6	36
529	Terminally crossâ€inking polyrotaxane hydrogels applicable for cellular microenvironments. Journal of Applied Polymer Science, 2021, 138, 49706.	1.3	9
530	Advanced hydrogels for the repair of cartilage defects and regeneration. Bioactive Materials, 2021, 6, 998-1011.	8.6	201
531	Let's Talk About Sex—Biological Sex Is Underreported in Biomaterial Studies. Advanced Healthcare Materials, 2021, 10, e2001034.	3.9	26
532	Stiffness Tomography of Ultraâ€Soft Nanogels by Atomic Force Microscopy. Angewandte Chemie, 2021, 133, 2310-2317.	1.6	4
533	Stiffness Tomography of Ultraâ€Soft Nanogels by Atomic Force Microscopy. Angewandte Chemie - International Edition, 2021, 60, 2280-2287.	7.2	39
534	Construction of multienzyme-hydrogel sensor with smartphone detector for on-site monitoring of organophosphorus pesticide. Sensors and Actuators B: Chemical, 2021, 327, 128922.	4.0	41
535	Stiffness distribution of a spherical gel structure and bifurcation analysis with application to stem-cell differentiation. International Journal of Non-Linear Mechanics, 2021, 129, 103640.	1.4	2
536	Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications. Advanced Materials, 2021, 33, e2004349.	11.1	212
537	<i>In vivo</i> vocal fold augmentation using an injectable polyethylene glycol hydrogel based on click chemistry. Biomaterials Science, 2021, 9, 108-115.	2.6	9
538	Transduction of cell and matrix geometric cues by the actin cytoskeleton. Current Opinion in Cell Biology, 2021, 68, 64-71.	2.6	12
539	Antiâ€VEGFâ€R2 Aptamer and RGD Peptide Synergize in a Bifunctional Hydrogel for Enhanced Angiogenic Potential. Macromolecular Bioscience, 2021, 21, e2000337.	2.1	26
540	Microscopyâ€guided laser ablation for the creation of complex skin models with folliculoid appendages. Bioengineering and Translational Medicine, 2021, 6, e10195.	3.9	4
541	Gel rupture during dynamic swelling. Soft Matter, 2021, 17, 1513-1520.	1.2	9
542	Controlled release of baricitinib from a thermos-responsive hydrogel system inhibits inflammation by suppressing JAK2/STAT3 pathway in acute spinal cord injury. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111532.	2.5	30
543	<i>In situ</i> and non-cytotoxic cross-linking strategy for 3D printable biomaterials. Soft Matter, 2021, 17, 1008-1015.	1.2	12
544	Organs-on-chips: into the next decade. Nature Reviews Drug Discovery, 2021, 20, 345-361.	21.5	459
545	Tunable Hydrogels: Introduction to the World of Smart Materials for Biomedical Applications. Advances in Biochemical Engineering/Biotechnology, 2021, 178, 1-35.	0.6	1

#	Article	IF	CITATIONS
546	Polymeric materials for immune engineering: Molecular interaction to biomaterial design. Acta Biomaterialia, 2021, 133, 139-152.	4.1	30
547	Cell-Laden Bioactive Poly(ethylene glycol) Hydrogels for Studying Mesenchymal Stem Cell Behavior in Myocardial Infarct-Stiffness Microenvironments. Cardiovascular Engineering and Technology, 2021, 12, 183-199.	0.7	11
548	User-defined, temporal presentation of bioactive molecules on hydrogel substrates using supramolecular coiled coil complexes. Biomaterials Science, 2021, 9, 4374-4387.	2.6	7
549	Photopatterned biomolecule immobilization to guide three-dimensional cell fate in natural protein-based hydrogels. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	61
550	3D printing biomimetic materials and structures for biomedical applications. Bio-Design and Manufacturing, 2021, 4, 405-428.	3.9	66
551	Post-decellularization techniques ameliorate cartilage decellularization process for tissue engineering applications. Journal of Tissue Engineering, 2021, 12, 204173142098356.	2.3	20
552	Modulation of hydrogel stiffness by external stimuli: soft materials for mechanotransduction studies. Journal of Materials Chemistry B, 2021, 9, 7578-7596.	2.9	22
553	Multiple local therapeutics based on nano-hydrogel composites in breast cancer treatment. Journal of Materials Chemistry B, 2021, 9, 1521-1535.	2.9	32
554	3D cell culture for pharmaceutical application. , 2021, , 261-282.		0
555	3D Tumor Spheroid Models for In Vitro Therapeutic Screening of Nanoparticles. Advances in Experimental Medicine and Biology, 2021, 1295, 243-270.	0.8	14
557	Progressive stretch enhances growth and maturation of 3D stem-cell-derived myocardium. Theranostics, 2021, 11, 6138-6153.	4.6	34
558	Soft Substrate Culture to Mechanically Control Cardiac Myofibroblast Activation. Methods in Molecular Biology, 2021, 2299, 171-179.	0.4	1
559	A bio-inspired fluorescent nano-injectable hydrogel as a synergistic drug delivery system. New Journal of Chemistry, 2021, 45, 3079-3087.	1.4	8
560	Proteinaceous Hydrogels for Bioengineering Advanced 3D Tumor Models. Advanced Science, 2021, 8, 2003129.	5.6	41
561	Electrospun hydrogels for dynamic culture systems: advantages, progress, and opportunities. Biomaterials Science, 2021, 9, 4228-4245.	2.6	15
562	Harnessing Mechanobiology for Tissue Engineering. Developmental Cell, 2021, 56, 180-191.	3.1	54
563	Unravelling the antimicrobial activity of peptide hydrogel systems: current and future perspectives. Soft Matter, 2021, 17, 8001-8021.	1.2	25
564	Decellularized Human Lung as Complex Three-Dimensional Tissue Culture Models to Study Functional Behavior of. Methods in Molecular Biology, 2021, 2299, 447-456.	0.4	2

#	Article	IF	Citations
565	Printing the Pathway Forward in Bone Metastatic Cancer Research: Applications of 3D Engineered Models and Bioprinted Scaffolds to Recapitulate the Bone–Tumor Niche. Cancers, 2021, 13, 507.	1.7	20
566	Bioprinting for the Biologist. Cell, 2021, 184, 18-32.	13.5	152
567	Polymerization mechanisms initiated by spatio-temporally confined light. Nanophotonics, 2021, 10, 1211-1242.	2.9	71
568	Advances of hydrogel dressings in diabetic wounds. Biomaterials Science, 2021, 9, 1530-1546.	2.6	154
569	Hyaluronic Acid and Regenerative Medicine: New Insights into the Stroke Therapy. Current Molecular Medicine, 2021, 20, 675-691.	0.6	7
570	Electrodynamic assisted self-assembled fibrous hydrogel microcapsules: a novel 3D <i>in vitro</i> platform for assessment of nanoparticle toxicity. RSC Advances, 2021, 11, 4921-4934.	1.7	8
571	NGF Released from Blood Cells or CollagenÂHydrogels as a Therapeutic Target in Alzheimer's Disease?. Advances in Experimental Medicine and Biology, 2021, 1331, 193-202.	0.8	2
572	Biomimetic Culture Strategies for the Clinical Expansion of Mesenchymal Stromal Cells. ACS Biomaterials Science and Engineering, 2023, 9, 3742-3759.	2.6	5
573	Equine Tenocyte Seeding on Gelatin Hydrogels Improves Elongated Morphology. Polymers, 2021, 13, 747.	2.0	6
575	3D Patterning within Hydrogels for the Recreation of Functional Biological Environments. Advanced Functional Materials, 2021, 31, 2009574.	7.8	35
576	Precise control of synthetic hydrogel network structure via linear, independent synthesis-swelling relationships. Science Advances, 2021, 7, .	4.7	54
578	Dopamine-Functionalized Gellan Gum Hydrogel as a Candidate Biomaterial for a Retinal Pigment Epithelium Cell Delivery System. ACS Applied Bio Materials, 2021, 4, 1771-1782.	2.3	14
579	Preparation of Self-Healable and Spinnable Hydrogel by Dynamic Boronate Ester Bond from Hyperbranched Polyglycerol and Boronic Acid-Containing Polymer. Macromolecular Research, 2021, 29, 140-148.	1.0	8
581	Potential of Drug Efficacy Evaluation in Lung and Kidney Cancer Models Using Organ-on-a-Chip Technology. Micromachines, 2021, 12, 215.	1.4	12
582	Actively Driven Fluctuations in a Fibrin Network. Frontiers in Physics, 2021, 8, .	1.0	4
583	Hypoxia Onset in Mesenchymal Stem Cell Spheroids: Monitoring With Hypoxia Reporter Cells. Frontiers in Bioengineering and Biotechnology, 2021, 9, 611837.	2.0	26
584	Wielding the Doubleâ€Edged Sword of Inflammation: Building Biomaterialâ€Based Strategies for Immunomodulation in Ischemic Stroke Treatment. Advanced Functional Materials, 2021, 31, 2010674.	7.8	10
585	ChondroGELesis: Hydrogels to harness the chondrogenic potential of stem cells. Materials Science and Engineering C, 2021, 121, 111822.	3.8	14

#	Article	IF	Citations
586	Rapid Evaluation of Novel Therapeutic Strategies Using a 3D Collagen-Based Tissue-Like Model. Frontiers in Bioengineering and Biotechnology, 2021, 9, 574035.	2.0	2
587	Cyclic Thiosulfinates as a Novel Class of Disulfide Cleavable Cross-Linkers for Rapid Hydrogel Synthesis. Bioconjugate Chemistry, 2021, 32, 584-594.	1.8	10
588	hDPSC-laden GelMA microspheres fabricated using electrostatic microdroplet method for endodontic regeneration. Materials Science and Engineering C, 2021, 121, 111850.	3.8	34
589	Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications. Biomacromolecules, 2021, 22, 1027-1052.	2.6	138
590	Modulating the physico-mechanical properties of polyacrylamide/gelatin hydrogels for tissue engineering application. Polymer Bulletin, 2022, 79, 1821-1842.	1.7	4
591	3D printing novel in vitro cancer cell culture model systems for lung cancer stem cell study. Materials Science and Engineering C, 2021, 122, 111914.	3.8	32
592	Largeâ€Scale Fabrication of 3D Scaffoldâ€Based Patterns of Microparticles and Breast Cancer Cells using Reusable Acoustofluidic Device. Advanced Engineering Materials, 2021, 23, 2001377.	1.6	11
593	Singleâ€Cell Microgels for Diagnostics and Therapeutics. Advanced Functional Materials, 2021, 31, 2009946.	7.8	14
594	Multiplexing physical stimulation on single human induced pluripotent stem cell-derived cardiomyocytes for phenotype modulation. Biofabrication, 2021, 13, 025004.	3.7	12
595	A Hydrogel Platform that Incorporates Laminin Isoforms for Efficient Presentation of Growth Factors – Neural Growth and Osteogenesis. Advanced Functional Materials, 2021, 31, 2010225.	7.8	21
596	Applications of Biomaterials in 3D Cell Culture and Contributions of 3D Cell Culture to Drug Development and Basic Biomedical Research. International Journal of Molecular Sciences, 2021, 22, 2491.	1.8	58
597	In vitro biomimetic models for glioblastoma-a promising tool for drug response studies. Drug Resistance Updates, 2021, 55, 100753.	6.5	30
598	Engineering Tissue Barrier Models on Hydrogel Microfluidic Platforms. ACS Applied Materials & Samp; Interfaces, 2021, 13, 13920-13933.	4.0	42
599	Extracellular Matrix-Based Hydrogels to Tailoring Tumor Organoids. ACS Biomaterials Science and Engineering, 2021, 7, 4128-4135.	2.6	25
600	Injectable cuttlefish HAP and macromolecular fibroin protein hydrogel for natural bone mimicking matrix for enhancement of osteoinduction progression. Reactive and Functional Polymers, 2021, 160, 104841.	2.0	22
601	Preparation and characterization of gelatin-polysaccharide composite hydrogels for tissue engineering. PeerJ, 2021, 9, e11022.	0.9	21
602	Highly Stretchable Flame-Retardant Skin for Soft Robotics with Hydrogel–Montmorillonite-Based Translucent Matrix. Soft Robotics, 2022, 9, 98-118.	4.6	9
603	Evaluating Poly(Acrylamide―co â€Acrylic Acid) Hydrogels Stress Relaxation to Direct the Osteogenic Differentiation of Mesenchymal Stem Cells. Macromolecular Bioscience, 2021, 21, 2100069.	2.1	8

#	Article	IF	CITATIONS
604	Survival of Primordial Follicles. , 2021, , 364-380.		0
605	A flexible microfluidic system for single-cell transcriptome profiling elucidates phased transcriptional regulators of cell cycle. Scientific Reports, 2021, 11, 7918.	1.6	7
606	Design of alginate based microâ€gels via electro fluid dynamics to construct microphysiological cell culture systems. Polymers for Advanced Technologies, 2021, 32, 2981-2989.	1.6	8
607	Realizing tissue integration with supramolecular hydrogels. Acta Biomaterialia, 2021, 124, 1-14.	4.1	29
608	A targeted rheological bioink development guideline and its systematic correlation with printing behavior. Biofabrication, 2021, 13, 035021.	3.7	38
609	Freeze–Thawing-Induced Macroporous Catechol Hydrogels with Shape Recovery and Sponge-like Properties. ACS Biomaterials Science and Engineering, 2021, 7, 4318-4329.	2.6	17
610	Equilibrium Swelling of Biocompatible Thermo-Responsive Copolymer Gels. Gels, 2021, 7, 40.	2.1	10
611	Guest–Host Supramolecular Assembly of Injectable Hydrogel Nanofibers for Cell Encapsulation. ACS Biomaterials Science and Engineering, 2021, 7, 4164-4174.	2.6	28
612	A hydrogel reveals an elusive cancer stem cell. Cell Death and Disease, 2021, 12, 415.	2.7	0
613	Using 3D in vitro cell culture models in anti-cancer drug discovery. Expert Opinion on Drug Discovery, 2021, 16, 841-850.	2.5	16
614	Nuclear mechanosensing drives chromatin remodelling in persistently activated fibroblasts. Nature Biomedical Engineering, 2021, 5, 1485-1499.	11.6	71
615	Applications of Macrocyclic Host Molecules in Immune Modulation and Therapeutic Delivery. Frontiers in Chemistry, 2021, 9, 658548.	1.8	12
616	Hybrid 3D Printing of Advanced Hydrogel-Based Wound Dressings with Tailorable Properties. Pharmaceutics, 2021, 13, 564.	2.0	48
617	A tissue-engineered human trabecular meshwork hydrogel for advanced glaucoma disease modeling. Experimental Eye Research, 2021, 205, 108472.	1.2	34
618	Integrating Biomaterials and Genome Editing Approaches to Advance Biomedical Science. Annual Review of Biomedical Engineering, 2021, 23, 493-516.	5.7	4
619	3D Bioprinting Allows the Establishment of Long-Term 3D Culture Model for Chronic Lymphocytic Leukemia Cells. Frontiers in Immunology, 2021, 12, 639572.	2.2	26
620	On the Three-Dimensional Correlation Between Myofibroblast Shape and Contraction. Journal of Biomechanical Engineering, 2021, 143, .	0.6	6
621	An overview of bio-actuation in collagen hydrogels: a mechanobiological phenomenon. Biophysical Reviews, 2021, 13, 387-403.	1.5	5

#	Article	IF	CITATIONS
622	Hydrogel Scaffolds to Deliver Cell Therapies for Wound Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 660145.	2.0	69
623	Mesenchymal Stem Cells Cultured in 3D System Inhibit Non-Small Cell Lung Cancer Cells through p38 MAPK and CXCR4/AKT Pathways by IL-24 Regulating. Molecular Biology, 2021, 55, 589-603.	0.4	2
624	Computational study of extrusion bioprinting with jammed gelatin microgel-based composite ink. Additive Manufacturing, 2021, 41, 101963.	1.7	19
625	Bull sperm selection by attachment to hyaluronic acid semiâ€interpenetrated hydrogels. Reproduction in Domestic Animals, 2022, 57, 228-232.	0.6	4
626	The Lack of a Representative Tendinopathy Model Hampers Fundamental Mesenchymal Stem Cell Research. Frontiers in Cell and Developmental Biology, 2021, 9, 651164.	1.8	9
627	A thermo-responsive collagen-nanocellulose hydrogel for the growth of intestinal organoids. Materials Science and Engineering C, 2021, 124, 112051.	3.8	32
628	Overcoming functional challenges in autologous and engineered fat grafting trends. Trends in Biotechnology, 2022, 40, 77-92.	4.9	14
629	Introducing Bacteria and Synthetic Biomolecules along Engineered DNA Fibers. Small, 2021, 17, e2100136.	5.2	3
630	Tunable Cross-Linking and Adhesion of Gelatin Hydrogels via Bioorthogonal Click Chemistry. ACS Biomaterials Science and Engineering, 2021, 7, 4330-4346.	2.6	25
631	Investigation on the Composition of Agarose–Collagen I Blended Hydrogels as Matrices for the Growth of Spheroids from Breast Cancer Cell Lines. Pharmaceutics, 2021, 13, 963.	2.0	19
632	Aptamerâ€functionalized hydrogels: An emerging class of biomaterials for protein delivery, cell capture, regenerative medicine, and molecular biosensing. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1731.	3.3	12
633	Surface stiffness depended gingival mesenchymal stem cell sensitivity to oxidative stress. Free Radical Biology and Medicine, 2021, 169, 62-73.	1.3	8
634	Collagen hydrogels with controllable combined cues of elasticity and topography to regulate cellular processes. Biomedical Materials (Bristol), 2021, 16, 045037.	1.7	17
635	Protein Hydrogels: The Swiss Army Knife for Enhanced Mechanical and Bioactive Properties of Biomaterials. Nanomaterials, 2021, 11, 1656.	1.9	27
637	Tumor cell invasion into Matrigel: optimized protocol for RNA extraction. BioTechniques, 2021, 70, 327-335.	0.8	0
638	Advances in Extracellular Matrix-Mimetic Hydrogels to Guide Stem Cell Fate. Cells Tissues Organs, 2022, 211, 703-720.	1.3	11
639	Advances in 3D peptide hydrogel models in cancer research. Npj Science of Food, 2021, 5, 14.	2.5	18
640	Hydrogels in Electrophoresis: Applications and Advances. Analytical Sciences, 2021, 37, 807-816.	0.8	4

#	Article	IF	CITATIONS
641	Controlling the Friction of Gels by Regulating Interfacial Oxygen During Polymerization. Tribology Letters, 2021, 69, 86.	1.2	12
642	Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Frontiers in Cellular and Infection Microbiology, 2021, 11, 668632.	1.8	208
643	Engineering <i>in vitro</i> human neural tissue analogs by 3D bioprinting and electrostimulation. APL Bioengineering, 2021, 5, 020901.	3.3	15
644	Self-Assembling Polypeptide Hydrogels as a Platform to Recapitulate the Tumor Microenvironment. Cancers, 2021, 13, 3286.	1.7	11
645	Tumor necrosis factor alpha and interleukin 1 beta suppress myofibroblast activation via nuclear factor kappa B signaling in 3D-cultured mitral valve interstitial cells. Acta Biomaterialia, 2021, 127, 159-168.	4.1	8
646	Fibrillar Nanomembranes of Recombinant Spider Silk Protein Support Cell Co-culture in an <i>In Vitro</i> Blood Vessel Wall Model. ACS Biomaterials Science and Engineering, 2021, 7, 3332-3339.	2.6	15
647	Scaffolds for the manufacture of cultured meat. Critical Reviews in Biotechnology, 2022, 42, 311-323.	5.1	64
648	Tripeptide based nontoxic hydrogelators as carrier of vitamin B12 and doxorubicin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126483.	2.3	3
649	Mammalian and Fish Gelatin Methacryloyl–Alginate Interpenetrating Polymer Network Hydrogels for Tissue Engineering. ACS Omega, 2021, 6, 17433-17441.	1.6	21
650	Nanofibrillar Hydrogels by Temperature Driven Selfâ€Assembly: New Structures for Cell Growth and Their Biological and Medical Implications. Advanced Materials Interfaces, 2021, 8, 2002202.	1.9	12
651	The Combined Influence of Viscoelastic and Adhesive Cues on Fibroblast Spreading and Focal Adhesion Organization. Cellular and Molecular Bioengineering, 2021, 14, 427-440.	1.0	21
652	Hydrogels with Tunable Physical Cues and Their Emerging Roles in Studies of Cellular Mechanotransduction. Advanced NanoBiomed Research, 2021, 1, 2100059.	1.7	9
653	Mechanobiology of the female reproductive system. Reproductive Medicine and Biology, 2021, 20, 371-401.	1.0	12
654	Robust Gels Composed of Self-Assembled Cello-oligosaccharide Networks. Bulletin of the Chemical Society of Japan, 2021, 94, 2279-2289.	2.0	20
655	A tuned gelatin methacryloyl (GelMA) hydrogel facilitates myelination of dorsal root ganglia neurons in vitro. Materials Science and Engineering C, 2021, 126, 112131.	3.8	15
656	Biomimetic Supramolecular Drug Delivery Hydrogels for Accelerated Skin Tissue Regeneration. ACS Biomaterials Science and Engineering, 2021, 7, 4581-4590.	2.6	11
657	Adhesion-mediated mechanosignaling forces mitohormesis. Cell Metabolism, 2021, 33, 1322-1341.e13.	7.2	65
658	Translation of Collagen Ultrastructure to Biomaterial Fabrication for Materialâ€Independent but Highly Efficient Topographic Immunomodulation. Advanced Materials, 2021, 33, e2101228.	11.1	23

#	Article	IF	CITATIONS
659	Generation of Hepatobiliary Cell Lineages from Human Induced Pluripotent Stem Cells: Applications in Disease Modeling and Drug Screening. International Journal of Molecular Sciences, 2021, 22, 8227.	1.8	5
660	Three-Dimensional Printability of an ECM-Based Gelatin Methacryloyl (GelMA) Biomaterial for Potential Neuroregeneration. ACS Omega, 2021, 6, 21368-21383.	1.6	17
661	Hydrogels for Large-Scale Expansion of Stem Cells. Acta Biomaterialia, 2021, 128, 1-20.	4.1	36
663	Scaffolds Designing from Protein-loadable Coaxial Electrospun Fibermats of poly(acrylamide)-co-poly(diacetone acrylamide) and Gelatin. Current Applied Polymer Science, 2021, 04,	0.2	0
664	Cell Viability Assays in Three-Dimensional Hydrogels: A Comparative Study of Accuracy. Tissue Engineering - Part C: Methods, 2021, 27, 401-410.	1.1	23
665	Engineering and Monitoring 3D Cell Constructs with Time-Evolving Viscoelasticity for the Study of Liver Fibrosis In Vitro. Bioengineering, 2021, 8, 106.	1.6	8
666	Microgel assembly: Fabrication, characteristics and application in tissue engineering and regenerative medicine. Bioactive Materials, 2022, 9, 105-119.	8.6	73
667	Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models. Advanced Drug Delivery Reviews, 2021, 174, 265-293.	6.6	53
668	Bioinspired Microstructure Platform for Modular Cell‣aden Microgel Fabrication. Macromolecular Bioscience, 2021, 21, 2100110.	2.1	2
669	Digitally Driven Aerosol Jet Printing to Enable Customisable Neuronal Guidance. Frontiers in Cell and Developmental Biology, 2021, 9, 722294.	1.8	7
670	Simultaneous 2D and 3D cell culture array for multicellular geometry, drug discovery and tumor microenvironment reconstruction. Biofabrication, 2021, 13, 045013.	3.7	23
671	Photoreactive Hydrogel Stiffness Influences Volumetric Muscle Loss Repair. Tissue Engineering - Part A, 2022, 28, 312-329.	1.6	12
672	Microphysiological Systems: Stakeholder Challenges to Adoption in Drug Development. Cells Tissues Organs, 2022, 211, 269-281.	1.3	16
673	Applications of Functionalized Hydrogels in the Regeneration of the Intervertebral Disc. BioMed Research International, 2021, 2021, 1-19.	0.9	12
674	Direct comparison of angiogenesis in natural and synthetic biomaterials reveals that matrix porosity regulates endothelial cell invasion speed and sprout diameter. Acta Biomaterialia, 2021, 135, 260-273.	4.1	22
675	Fibrillar biopolymer-based scaffolds to study macrophage-fibroblast crosstalk in wound repair. Biological Chemistry, 2021, 402, 1309-1324.	1.2	3
676	Physical modification approaches to enhance cell supporting potential of poly (vinyl alcohol)â€based hydrogels. Journal of Applied Polymer Science, 2022, 139, 51485.	1.3	12
677	Skeletal muscle progenitors are sensitive to collagen architectural features of fibril size and cross linking. American Journal of Physiology - Cell Physiology, 2021, 321, C330-C342.	2.1	17

#	Article	IF	CITATIONS
678	An Optimized O9-1/Hydrogel System for Studying Mechanical Signals in Neural Crest Cells. Journal of Visualized Experiments, 2021, , .	0.2	0
679	Protein nanomechanics in biological context. Biophysical Reviews, 2021, 13, 435-454.	1.5	21
680	Current Insights and Advancements in Head and Neck Cancer: Emerging Biomarkers and Therapeutics with Cues from Single Cell and 3D Model Omics Profiling. Frontiers in Oncology, 2021, 11, 676948.	1.3	5
681	In Situ Hydroxyapatite Synthesis Enhances Biocompatibility of PVA/HA Hydrogels. International Journal of Molecular Sciences, 2021, 22, 9335.	1.8	17
682	Studying evolution of the primary body axis in vivo and in vitro. ELife, 2021, 10, .	2.8	17
683	On mechanical properties of nanocomposite hydrogels: Searching for superior properties. Nano Materials Science, 2022, 4, 83-96.	3.9	25
684	Neutrally charged self-assembling peptide hydrogel recapitulates in vitro mechanisms of breast cancer progression. Materials Science and Engineering C, 2021, 127, 112200.	3.8	19
685	Cell-matrix reciprocity in 3D culture models with nonlinear elasticity. Bioactive Materials, 2022, 9, 316-331.	8.6	36
686	<scp>RGD</scp> â€pectin microfiber patches for guiding muscle tissue regeneration. Journal of Biomedical Materials Research - Part A, 2022, 110, 515-524.	2.1	10
687	3D-bioprinted cancer-on-a-chip: level-up organotypic in vitro models. Trends in Biotechnology, 2022, 40, 432-447.	4.9	36
688	Mechanical Studies of the Third Dimension in Cancer: From 2D to 3D Model. International Journal of Molecular Sciences, 2021, 22, 10098.	1.8	22
689	Evaluation of in vitro human skin models for studying effects of external stressors and stimuli and developing treatment modalities. View, 2022, 3, 20210012.	2.7	16
691	Synthetic hydrogels as blood clot mimicking wound healing materials. Progress in Biomedical Engineering, 2021, 3, 042006.	2.8	11
692	In Vitro Magnetic Techniques for Investigating Cancer Progression. Cancers, 2021, 13, 4440.	1.7	4
694	Adipose Tissue-Derived Stromal Cells Alter the Mechanical Stability and Viscoelastic Properties of Gelatine Methacryloyl Hydrogels. International Journal of Molecular Sciences, 2021, 22, 10153.	1.8	14
695	<i>MechAnalyze</i> : An Algorithm for Standardization and Automation of Compression Test Analysis. Tissue Engineering - Part C: Methods, 2021, 27, 529-542.	1.1	3
696	Engineered neural circuits for modeling brain physiology and neuropathology. Acta Biomaterialia, 2021, 132, 379-400.	4.1	25
697	Comparison of three different acidic solutions in tendon decellularized extracellular matrix bio-ink fabrication for 3D cell printing. Acta Biomaterialia, 2021, 131, 262-275.	4.1	25

#	Article	IF	CITATIONS
698	Fabrication approaches for high-throughput and biomimetic disease modeling. Acta Biomaterialia, 2021, 132, 52-82.	4.1	5
699	Decellularized peripheral nerve as an injectable delivery vehicle for neural applications. Journal of Biomedical Materials Research - Part A, 2022, 110, 595-611.	2.1	10
700	Conducting polymer hydrogels as a sustainable platform for advanced energy, biomedical and environmental applications. Science of the Total Environment, 2021, 786, 147430.	3.9	19
701	Magnetically-propelled fecal surrogates for modeling the impact of solid-induced shear forces on primary colonic epithelial cells. Biomaterials, 2021, 276, 121059.	5.7	3
702	Rebuilding the hematopoietic stem cell niche: Recent developments and future prospects. Acta Biomaterialia, 2021, 132, 129-148.	4.1	15
703	Engineering hydrogels for personalized disease modeling and regenerative medicine. Acta Biomaterialia, 2021, 132, 4-22.	4.1	27
704	Super Absorbent polymers and their Composites for Application in Agriculture. International Journal for Research in Applied Science and Engineering Technology, 2021, 9, 665-672.	0.1	0
705	Responsive-DNA hydrogel based intelligent materials: Preparation and applications. Chemical Engineering Journal, 2021, 420, 130384.	6.6	24
706	Biomaterials for intestinal organoid technology and personalized disease modeling. Acta Biomaterialia, 2021, 132, 272-287.	4.1	9
707	Intravital imaging technology guides FAK-mediated priming in pancreatic cancer precision medicine according to Merlin status. Science Advances, 2021, 7, eabh0363.	4.7	23
708	Myoblast mechanotransduction and myotube morphology is dependent on BAG3 regulation of YAP and TAZ. Biomaterials, 2021, 277, 121097.	5.7	12
709	Hydrogels: A potential platform for induced pluripotent stem cell culture and differentiation. Colloids and Surfaces B: Biointerfaces, 2021, 207, 111991.	2.5	13
710	Alginate self-adhesive hydrogel combined with dental pulp stem cells and FGF21 repairs hemisection spinal cord injury via apoptosis and autophagy mechanisms. Chemical Engineering Journal, 2021, 426, 130827.	6.6	21
711	InÂVitro Models to Study Respiratory Biology and Diseases. , 2022, , 773-778.		0
712	Click-functionalized hydrogel design for mechanobiology investigations. Molecular Systems Design and Engineering, 2021, 6, 670-707.	1.7	15
713	Mapping mechanical properties of biological materials via an add-on Brillouin module to confocal microscopes. Nature Protocols, 2021, 16, 1251-1275.	5.5	38
715	Engineered Microgelsâ€"Their Manufacturing and Biomedical Applications. Micromachines, 2021, 12, 45.	1.4	20
716	Oxygen inhibition of free-radical polymerization is the dominant mechanism behind the "mold effect― on hydrogels. Soft Matter, 2021, 17, 6394-6403.	1.2	34

#	Article	IF	Citations
717	Characterizations of Hydrogels. Biomaterials Science Series, 2021, , 48-76.	0.1	0
718	A directional 3D neurite outgrowth model for studying motor axon biology and disease. Scientific Reports, 2021, 11, 2080.	1.6	30
719	Polysaccharide hydrogel based 3D printed tumor models for chemotherapeutic drug screening. Scientific Reports, 2021, 11, 372.	1.6	45
720	Engineered Tools to Study Intercellular Communication. Advanced Science, 2021, 8, 2002825.	5.6	39
721	Oneâ€shot radical polymerization of vinyl monomers with different reactivity accompanying spontaneous delay of polymerization for the synthesis of doubleâ€network hydrogels. Polymer International, 2020, 69, 954-963.	1.6	6
722	Polyethyleneimineâ€Polyoxometalateâ€Based Supramolecular Selfâ€assembled pHâ€Responsive Hydrogels: Formulation and in vitro Evaluation. ChemistrySelect, 2017, 2, 5905-5912.	0.7	14
723	Fabrication of Adhesive Substrate for Incorporating Hydrogels to Investigate the Influence of Stiffness on Cancer Cell Behavior. Methods in Molecular Biology, 2021, 2174, 277-297.	0.4	5
724	Cell Recovery of Hydrogel-Encapsulated Cells for Molecular Analysis. Methods in Molecular Biology, 2019, 2054, 3-21.	0.4	8
725	Biofabrication in Tissue Engineering. , 2020, , 289-312.		7
726	Porosity in Biomaterials: A Key Factor in the Development of Applied Materials in Biomedicine. , 2019, , 3503-3522.		4
727	VE-cadherin functionalized injectable PAMAM/HA hydrogel promotes endothelial differentiation of hMSCs and vascularization. Applied Materials Today, 2020, 20, 100690.	2.3	13
728	A fully defined 3D matrix for ex vivo expansion of human colonic organoids from biopsy tissue. Biomaterials, 2020, 262, 120248.	5.7	16
729	Micro- and nanotechnology for neural electrode-tissue interfaces. Biosensors and Bioelectronics, 2020, 170, 112645.	5.3	42
730	Dynamic bond crosslinked poly(\hat{l}^3 -glutamic acid)/Salecan derived hydrogel as a platform for 3D cell culture. Materials Letters, 2020, 273, 127936.	1.3	5
731	Extrusion-based 3D bioprinting of alginate-based tissue constructs. Procedia CIRP, 2020, 95, 143-148.	1.0	14
732	Conditional Network Assembly and Targeted Protein Retention via Environmentally Responsive, Engineered Î ² -Roll Peptides. Biomacromolecules, 2017, 18, 2139-2145.	2.6	9
733	Novel Light-Responsive Biocompatible Hydrogels Produced by Initiated Chemical Vapor Deposition. ACS Applied Materials & Deposition and September 17408-17416.	4.0	45
734	An Optogenetic Platform to Dynamically Control the Stiffness of Collagen Hydrogels. ACS Biomaterials Science and Engineering, 2021, 7, 408-414.	2.6	15

#	ARTICLE	IF	CITATIONS
735	Viscoelastic hydrogels for 3D cell culture. Biomaterials Science, 2017, 5, 1480-1490.	2.6	230
736	Hydrogels as artificial matrices for cell seeding in microfluidic devices. RSC Advances, 2020, 10, 43682-43703.	1.7	62
737	Microrheology for biomaterial design. APL Bioengineering, 2020, 4, 041508.	3.3	20
738	Hydrogel biomaterials to support and guide vascularization. Progress in Biomedical Engineering, 2021, 3, 012002.	2.8	8
746	Mechano-responsiveness of fibrillar adhesions on stiffness-gradient gels. Journal of Cell Science, 2020, 133, .	1.2	27
747	Interpenetrating polymer network hydrogels as bioactive scaffolds for tissue engineering. Reviews in Chemical Engineering, 2022, 38, 347-361.	2.3	28
748	Mesenchymal stromal cell activation by breast cancer secretomes in bioengineered 3D microenvironments. Life Science Alliance, 2019, 2, e201900304.	1.3	37
749	Transcriptomic Analysis of Na $\tilde{\mathbb{A}}$ -ve Human Embryonic Stem Cells Cultured in Three-Dimensional PEG Scaffolds. Biomolecules, 2021, 11, 21.	1.8	4
750	Esophageal cancer research today and tomorrow: Lessons from algae and other perspectives. AIMS Genetics, 2018, 05, 075-090.	1.9	12
751	Towards an advanced cell-based in vitro glioma model system. AIMS Genetics, 2018, 05, 091-112.	1.9	14
752	Collagen for brain repair: therapeutic perspectives. Neural Regeneration Research, 2018, 13, 595.	1.6	46
753	Enhancing survival, engraftment, and osteogenic potential of mesenchymal stem cells. World Journal of Stem Cells, 2019, 11, 748-763.	1.3	56
754	Alginate-Based Hydrogel Containing Taurine-Loaded Chitosan Nanoparticles in Biomedical Application. Archives of Neuroscience, 2019, In Press, .	0.1	7
755	Injectable hydrogel mediated delivery of gene-engineered adipose-derived stem cells for enhanced osteoarthritis treatment. Biomaterials Science, 2021, 9, 7603-7616.	2.6	14
756	Recent Advances in Hydrogels and Stem Cells. , 2021, , 589-618.		1
758	Fundamental Biomaterial Considerations in the Development of a 3D Model Representative of Primary Open Angle Glaucoma. Bioengineering, 2021, 8, 147.	1.6	5
759	Interaction Between Hyaluronic Acid Semiâ€Interpenetrated Hydrogel with Bull Spermatozoa: Studies of Sperm Attachment–Release and Sperm Quality. Advanced Materials Interfaces, 2021, 8, 2101155.	1.9	5
760	Screen Printing Tissue Models Using Chemically Cross-Linked Hydrogel Systems: A Simple Approach To Efficiently Make Highly Tunable Matrices. ACS Biomaterials Science and Engineering, 2021, 7, 5007-5013.	2.6	5

#	Article	IF	CITATIONS
761	Tissue Adhesion-Anisotropic Polyrotaxane Hydrogels Bilayered with Collagen. Gels, 2021, 7, 168.	2.1	3
762	Self-Assembly of Dendritic DNA into a Hydrogel: Application in Three-Dimensional Cell Culture. ACS Applied Materials & DNA into a Hydrogel: Application in Three-Dimensional Cell Culture. ACS Applied Materials & DNA into a Hydrogel: Application in Three-Dimensional Cell Culture. ACS Applied Materials & DNA into a Hydrogel: Application in Three-Dimensional Cell Culture. ACS Applied Materials & DNA into a Hydrogel: Application in Three-Dimensional Cell Culture. ACS Applied Materials & DNA into a Hydrogel: Application in Three-Dimensional Cell Culture. ACS Applied Materials & DNA into a Hydrogel: Application in Three-Dimensional Cell Culture. ACS Applied Materials & DNA into a Hydrogel: Application in Three-Dimensional Cell Culture. ACS Applied Materials & DNA into a Hydrogel: Applied Materials & DNA into a H	4.0	23
763	An Insight into Skeletal Networks Analysis for Smart Hydrogels. Advanced Functional Materials, 2022, 32, 2108489.	7.8	10
764	Acoustic characterization of tissue-mimicking materials for ultrasound perfusion imaging research. Ultrasound in Medicine and Biology, 2022, 48, 124-142.	0.7	22
765	3-D Culture of Marine Sponge Cells for Production of Bioactive Compounds. Marine Drugs, 2021, 19, 569.	2.2	5
766	Muscle Regeneration of the Tongue: A Review of Current Clinical and Regenerative Research Strategies. Tissue Engineering - Part B: Reviews, 2022, 28, 1022-1034.	2.5	2
767	Modelling Human Physiology on-Chip: Historical Perspectives and Future Directions. Micromachines, 2021, 12, 1250.	1.4	9
768	Biobanking of human gut organoids for translational research. Experimental and Molecular Medicine, 2021, 53, 1451-1458.	3.2	21
769	Structurally anisotropic hydrogels for tissue engineering. Trends in Chemistry, 2021, 3, 1002-1026.	4.4	28
770	3Dâ€Printed Reinforcement Scaffolds with Targeted Biodegradation Properties for the Tissue Engineering of Articular Cartilage. Advanced Healthcare Materials, 2021, 10, e2101094.	3.9	13
771	3D Bioprinting of Non-viscous Bioink. Springer Theses, 2019, , 81-104.	0.0	0
772	Three-Dimensional Cell Culture and Tissue Restoration of Neural Stem Cells Under Microgravity. Research for Development, 2019, , 235-279.	0.2	1
773	PECVD Yöntemi ile Polimerik Hidrojel İnce Filmlerin Üretimi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 2019, 8, 1019-1028.	0.1	0
775	Hydrogels Based on Collagen and Dextran for Bioartificial Tissues. IFMBE Proceedings, 2020, , 385-389.	0.2	0
777	Biomedical cell product model for preclinical studies carried out on a large laboratory animal. Vestnik Transplantologii I Iskusstvennykh Organov, 2020, 22, 142-156.	0.1	0
779	Calcium Oscillation Frequency Is a Potential Functional Complex Physiological Relevance Indicator for a Neuroblastoma-Based 3D Culture Model. ACS Biomaterials Science and Engineering, 2020, 6, 4314-4323.	2.6	1
780	Hylozoic by Design: Converging Material and Biological Complexities for Cellâ€Driven Living Materials with 4D Behaviors. Advanced Functional Materials, 2022, 32, 2108057.	7.8	9
781	Extracellular Matrix Hydrogels Originated from Different Organs Mediate Tissue-Specific Properties and Function. International Journal of Molecular Sciences, 2021, 22, 11624.	1.8	17

#	Article	IF	CITATIONS
782	3D bioprinted drug-resistant breast cancer spheroids for quantitative in situ evaluation of drug resistance. Acta Biomaterialia, 2022, 138, 228-239.	4.1	31
783	Development of bioactive catechol functionalized nanoparticles applicable for 3D bioprinting. Materials Science and Engineering C, 2021, 131, 112515.	3.8	10
788	Bioprinting of Complex Multicellular Organs with Advanced Functionalityâ€"Recent Progress and Challenges Ahead. Advanced Materials, 2022, 34, e2101321.	11.1	31
789	Self-renewal or quiescence? Orchestrating the fate of mesenchymal stem cells by matrix viscoelasticity via PI3K/Akt-CDK1 pathway. Biomaterials, 2021, 279, 121235.	5.7	8
791	Editorial: Synthesis of Novel Hydrogels With Unique Mechanical Properties. Frontiers in Chemistry, 2020, 8, 595392.	1.8	2
793	Validation of a pseudo-3D phantom for radiobiological treatment plan verifications. Physics in Medicine and Biology, 2020, 65, 225039.	1.6	1
796	Manipulation of cancer cells in a sessile droplet <i>via</i> travelling surface acoustic waves. Lab on A Chip, 2021, 22, 47-56.	3.1	10
797	Bioinspired dual dynamic network hydrogels promote cartilage regeneration through regulating BMSCÅchondrogenic differentiation. Materials Today Chemistry, 2022, 23, 100648.	1.7	13
798	Bioprinting silk fibroin using two-photon lithography enables control over the physico-chemical material properties and cellular response. Bioprinting, 2022, 25, e00183.	2.9	15
799	Targeting Tumor-Stromal Interactions in Pancreatic Cancer: Impact of Collagens and Mechanical Traits. Frontiers in Cell and Developmental Biology, 2021, 9, 787485.	1.8	25
800	The ECM: To Scaffold, or Not to Scaffold, That Is the Question. International Journal of Molecular Sciences, 2021, 22, 12690.	1.8	54
801	Cardiomyogenic Differentiation Potential of Human Dilated Myocardium-Derived Mesenchymal Stem/Stromal Cells: The Impact of HDAC Inhibitor SAHA and Biomimetic Matrices. International Journal of Molecular Sciences, 2021, 22, 12702.	1.8	7
802	Squarate Cross-Linked Gelatin Hydrogels as Three-Dimensional Scaffolds for Biomedical Applications. Langmuir, 2021, 37, 14050-14058.	1.6	3
803	3D Cell Culture Systems: Tumor Application, Advantages, and Disadvantages. International Journal of Molecular Sciences, 2021, 22, 12200.	1.8	152
804	Injectable and adhesive hydrogels for dealing with wounds. Expert Opinion on Biological Therapy, 2022, 22, 519-533.	1.4	13
805	Wafer-Scale Patterning of Protein Templates for Hydrogel Fabrication. Micromachines, 2021, 12, 1386.	1.4	0
806	Recent Advances in Multicellular Tumor Spheroid Generation for Drug Screening. Biosensors, 2021, 11, 445.	2.3	36
807	Broadly Applicable Hydrogel Fabrication Procedures Guided by Yap/Tazâ€Activity Reveal Stiffness, Adhesiveness and Nuclear Projected Area as Checkpoints for Mechanosensing. Advanced Healthcare Materials, 2021, , 2102276.	3.9	4

#	Article	IF	CITATIONS
808	Advancements in 3D Cell Culture Systems for Personalizing Anti-Cancer Therapies. Frontiers in Oncology, 2021, 11, 782766.	1.3	29
809	Spatiotemporal control of myofibroblast activation in acoustically-responsive scaffolds via ultrasound-induced matrix stiffening. Acta Biomaterialia, 2022, 138, 133-143.	4.1	10
810	Engineering Modular 3D Liver Culture Microenvironments In Vitro to Parse the Interplay between Biophysical and Biochemical Microenvironment Cues on Hepatic Phenotypes. Advanced NanoBiomed Research, 2022, 2, 2100049.	1.7	2
811	High-Throughput Culture Method of Induced Pluripotent Stem Cell-Derived Alveolar Epithelial Cells. Tissue Engineering - Part C: Methods, 2021, 27, 639-648.	1.1	2
812	Multiscale Characterization of the Mechanical Properties of Fibrin and Polyethylene Glycol (PEG) Hydrogels for Tissue Engineering Applications. Macromolecular Chemistry and Physics, 2022, 223, 2100366.	1.1	13
813	Hydrogel, Electrospun and Composite Materials for Bone/Cartilage and Neural Tissue Engineering. Materials, 2021, 14, 6899.	1.3	19
814	Complex Tumor Spheroid Formation and One-Step Cancer-Associated Fibroblasts Purification from Hepatocellular Carcinoma Tissue Promoted by Inorganic Surface Topography. Nanomaterials, 2021, 11, 3233.	1.9	4
815	Programmable and contractile materials through cell encapsulation in fibrous hydrogel assemblies. Science Advances, 2021, 7, eabi8157.	4.7	36
816	3D bioprinting and photocrosslinking: emerging strategies & Eamp; future perspectives. Materials Science and Engineering C, 2022, 134, 112576.	3.8	28
817	Translating Therapeutic Microgels into Clinical Applications. Advanced Healthcare Materials, 2022, 11, e2101989.	3.9	26
818	Responsive Telechelic Block Copolymers for Enhancing the Elasticity of Nanoemulsions. ACS Applied Nano Materials, 2022, 5, 5934-5943.	2.4	5
819	Biomimetic multifactor stimulation method for analyzing the synergism of matrix stiffness and inorganic polyphosphates on cellular behaviors. Talanta, 2022, 241, 123222.	2.9	2
820	Bioinspired tunable hydrogels: An update on methods of preparation, classification, and biomedical and therapeutic applications. International Journal of Pharmaceutics, 2022, 612, 121368.	2.6	15
821	Recent Advances in Zwitterionic Hydrogels: Preparation, Property, and Biomedical Application. Gels, 2022, 8, 46.	2.1	45
823	Quality assessment of lemon (Citrus aurantifolia, swingle) coated with self-healed multilayer films based on chitosan/carboxymethyl cellulose under cold storage conditions. International Journal of Biological Macromolecules, 2022, 200, 12-24.	3.6	18
825	Hydrogels. , 2022, , 221-242.		0
826	Exploiting maleimide-functionalized hyaluronan hydrogels to test cellular responses to physical and biochemical stimuli. Biomedical Materials (Bristol), 2022, 17, 025001.	1.7	4
827	Regulation of cell attachment, spreading, and migration by hydrogel substrates with independently tunable mesh size. Acta Biomaterialia, 2022, 141, 178-189.	4.1	14

#	ARTICLE	IF	CITATIONS
828	Hydrogel based tissue engineering and its future applications in personalized disease modeling and regenerative therapy. Beni-Suef University Journal of Basic and Applied Sciences, 2022, 11, 3.	0.8	26
829	Decellularized Colorectal Cancer Matrices as Bioactive Scaffolds for Studying Tumor-Stroma Interactions. Cancers, 2022, 14, 359.	1.7	10
830	Multiparametric Material Functionality of Microtissueâ€Based InÂVitro Models as Alternatives to Animal Testing. Advanced Science, 2022, 9, e2105319.	5.6	6
831	Engineered in vitro models: mimicking in vivo physiology. , 2022, , 555-609.		O
832	Effect of Polymer Topology and Residue Chirality on Biodegradability of Polypeptide Hydrogels. ACS Biomaterials Science and Engineering, 2022, 8, 626-637.	2.6	4
833	Rational Design of Hydrogel Networks with Dynamic Mechanical Properties to Mimic Matrix Remodeling. Advanced Healthcare Materials, 2022, 11, e2101947.	3.9	12
834	Collagen-based materials in reproductive medicine and engineered reproductive tissues. Journal of Leather Science and Engineering, 2022, 4, .	2.7	14
837	Controlled Fabrication of Bioactive Microtubes for Screening Anti-Tongue Squamous Cell Migration Drugs. Frontiers in Chemistry, 2022, 10, 771027.	1.8	0
838	Facile and Versatile Method for Micropatterning Poly(acrylamide) Hydrogels Using Photocleavable Comonomers. ACS Applied Materials & Samp; Interfaces, 2022, 14, 3643-3652.	4.0	10
839	Reversible Protein Capture and Release by Redox-Responsive Hydrogel in Microfluidics. Polymers, 2022, 14, 267.	2.0	5
840	Designer DNA biomolecules as a defined biomaterial for 3D bioprinting applications. Materials Horizons, 2022, 9, 1141-1166.	6.4	17
841	Luciferin-Bioinspired Click Ligation Enables Hydrogel Platforms with Fine-Tunable Properties for 3D Cell Culture. ACS Applied Materials & Samp; Interfaces, 2022, 14, 5017-5032.	4.0	7
842	Recent advances in 3D hydrogel culture systems for mesenchymal stem cell-based therapy and cell behavior regulation. Journal of Materials Chemistry B, 2022, 10, 1486-1507.	2.9	23
843	Nucleus-cytoskeleton communication impacts on OCT4-chromatin interactions in embryonic stem cells. BMC Biology, 2022, 20, 6.	1.7	10
844	Three-Dimensional Avian Hematopoietic Stem Cell Cultures as a Model for Studying Disease Pathogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 730804.	1.8	1
845	Application of Porcine Kidney-Derived Extracellular Matrix as Coating, Hydrogel, and Scaffold Material for Renal Proximal Tubular Epithelial Cell. BioMed Research International, 2022, 2022, 1-18.	0.9	2
846	Using Polyacrylamide Hydrogels to Model Physiological Aortic Stiffness Reveals that Microtubules Are Critical Regulators of Isolated Smooth Muscle Cell Morphology and Contractility. Frontiers in Pharmacology, 2022, 13, 836710.	1.6	8
847	Conductive ionic liquid/chitosan hydrogels for neuronal cell differentiation. Engineered Regeneration, 2022, 3, 1-12.	3.0	3

#	Article	IF	CITATIONS
848	Polyphenol-based hydrogels: Pyramid evolution from crosslinked structures to biomedical applications and the reverse design. Bioactive Materials, 2022, 17, 49-70.	8.6	64
849	Bioorthogonally Crossâ€Linked Hyaluronan–Laminin Hydrogels for 3D Neuronal Cell Culture and Biofabrication. Advanced Healthcare Materials, 2022, 11, e2102097.	3.9	10
850	Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin. International Journal of Biological Macromolecules, 2022, 202, 644-656.	3.6	51
851	Lysine-functionalized chondroitin sulfate improves the biological properties of collagen/chitosan-based injectable hydrogels. International Journal of Biological Macromolecules, 2022, 202, 318-331.	3.6	9
852	Highly adhesive and self-healing \hat{I}^3 -PGA/PEDOT:PSS conductive hydrogels enabled by multiple hydrogen bonding for wearable electronics. Nano Energy, 2022, 95, 106991.	8.2	104
853	Preparation, properties and drug controlled release of chitin-based hydrogels: An updated review. Carbohydrate Polymers, 2022, 283, 119177.	5.1	42
854	Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydrate Polymers, 2022, 283, 119161.	5.1	110
855	Perfusable cell-laden micropatterned hydrogels for delivery of spatiotemporal vascular-like cues to tissues. Organs-on-a-Chip, 2022, 4, 100017.	1.8	0
856	Metabolic labeling of secreted matrix to investigate cell–material interactions in tissue engineering and mechanobiology. Nature Protocols, 2022, 17, 618-648.	5.5	14
857	Programmable DNA Hydrogels as Artificial Extracellular Matrix. Small, 2022, 18, e2107640.	5.2	41
858	Synthesis and Characterization of Cationic Hydrogels from Thiolated Copolymers for Independent Manipulation of Mechanical and Chemical Properties of Cell Substrates. Macromolecular Bioscience, 2022, , 2100453.	2.1	2
859	Crosslinking effect of dialdehyde cholesterol modified starch nanoparticles on collagen hydrogel. Carbohydrate Polymers, 2022, 285, 119237.	5.1	19
860	3D Bio-printing For Skin Tissue Regeneration: Hopes and Hurdles. Current Stem Cell Research and Therapy, 2022, 17, 415-439.	0.6	4
861	Mechanical reinforcement of granular hydrogels. Chemical Science, 2022, 13, 3082-3093.	3.7	27
862	Finding the sweet spot: a library of hydrogels with tunable degradation for tissue model development. Journal of Materials Chemistry B, 2022, 10, 2194-2203.	2.9	4
864	Bioadaptive Porous 3D Scaffolds Comprising Cellulose and Chitosan Nanofibers Constructed by Pickering Emulsion Templating. Advanced Functional Materials, 2022, 32, .	7.8	15
865	Cell Culture in Microfluidic Droplets. Chemical Reviews, 2022, 122, 7061-7096.	23.0	56
866	Multiscale Invasion Assay for Probing Macrophage Response to Gram-Negative Bacteria. Frontiers in Chemistry, 2022, 10, 842602.	1.8	4

#	Article	IF	CITATIONS
867	Chemically and mechanically defined hyaluronan hydrogels emulate the extracellular matrix for unbiased in vivo and in vitro organoid formation and drug testing in cancer. Materials Today, 2022, 56, 96-113.	8.3	9
868	Nonswelling and Hydrolytically Stable Hydrogels Uncover Cellular Mechanosensing in 3D. Advanced Science, 2022, 9, e2105325.	5.6	11
869	Cardiac Tissue-like 3D Microenvironment Enhances Route towards Human Fibroblast Direct Reprogramming into Induced Cardiomyocytes by microRNAs. Cells, 2022, 11, 800.	1.8	11
870	Cellulosic-Based Conductive Hydrogels for Electro-Active Tissues: A Review Summary. Gels, 2022, 8, 140.	2.1	17
871	Characterization and structure-property relationships of an injectable thiol-Michael addition hydrogel toward compatibility with glioblastoma therapy. Acta Biomaterialia, 2022, 144, 266-278.	4.1	5
872	Introducing Zirconium Organic Gels for Efficient Radioiodine Gas Removal. Inorganic Chemistry, 2022, 61, 4818-4824.	1.9	13
873	Advances in microfabrication technologies in tissue engineering and regenerative medicine. Artificial Organs, 2022, 46, .	1.0	16
875	Biophysics Role and Biomimetic Culture Systems of ECM Stiffness in Cancer EMT. Global Challenges, 2022, 6, .	1.8	5
876	Synthesis of Poly(acrylic acid)-Cysteine-Based Hydrogels with Highly Customizable Mechanical Properties for Advanced Cell Culture Applications. ACS Omega, 2022, 7, 9108-9117.	1.6	3
877	Cod Gelatin as an Alternative to Cod Collagen in Hybrid Materials for Regenerative Medicine. Macromolecular Research, 2022, 30, 212-221.	1.0	9
878	Chitosan Hydrogel Supplemented with Metformin Promotes Neuron–like Cell Differentiation of Gingival Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2022, 23, 3276.	1.8	10
879	Synthesis, selective decoration and photocrosslinking of <scp>selfâ€immolative</scp> poly(thioester)â€PEG hydrogels. Polymer International, 2022, 71, 906-911.	1.6	5
880	Inkjetâ€Patterned Microdroplets as Individual Microenvironments for Adherent Single Cell Culture. Small, 2022, 18, e2107992.	5.2	9
881	Extracellular Matrix Stiffness and TGF \hat{l}^2 2 Regulate YAP/TAZ Activity in Human Trabecular Meshwork Cells. Frontiers in Cell and Developmental Biology, 2022, 10, 844342.	1.8	25
882	Pigeon egg white protein-based transparent durable hydrogel via monodisperse ionic surfactant-mediated protein condensation. Scientific Reports, 2022, 12, 4633.	1.6	1
883	Antifouling IPNs made of poly(ethylene glycol)/poly(N-isopropyl acrylamide) using gamma radiation. MRS Communications, 2022, 12, 272.	0.8	0
884	Solid multifunctional granular bioink for constructing chondroid basing on stem cell spheroids and chondrocytes. Biofabrication, 2022, 14, 035003.	3.7	9
885	Injectable hyaluronic acid hydrogel encapsulated with Si-based NiO nanoflower by visible light cross-linking: Its antibacterial applications. International Journal of Biological Macromolecules, 2022, 208, 149-158.	3.6	7

#	Article	IF	CITATIONS
886	Effect of Solvent on the Mechanical and Structural Properties of $\langle i \rangle N \langle i \rangle$ -Alkyldiamide Organogels. Langmuir, 2021, 37, 14898-14910.	1.6	3
887	Repairing rat calvarial defects by adipose mesenchymal stem cells and novel freeze-dried three-dimensional nanofibrous scaffolds. BioImpacts, 2023, 13, 31-42.	0.7	3
888	An injectable self-assembling hydrogel based on RGD peptidomimetic \hat{l}^2 -sheets as multifunctional biomaterials. Materials Science and Engineering C, 2022, 133, 112633.	3.8	9
889	Progress in Vocal Fold Regenerative Biomaterials: An Immunological Perspective. Advanced NanoBiomed Research, 2022, 2, .	1.7	7
890	Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduction and Targeted Therapy, 2021, 6, 426.	7.1	274
891	A tough nitric oxide-eluting hydrogel coating suppresses neointimal hyperplasia on vascular stent. Nature Communications, 2021, 12, 7079.	5.8	54
892	Cell3: a new vision for study of the endomembrane system in mammalian cells. Bioscience Reports, 2021, 41, .	1.1	1
894	Direct Microextrusion Printing of a Low Viscosity Hydrogel on a Supportive Microstructured Bioprinting Substrate for the Vasculogenesis of Endothelial Cells. Advanced Materials Technologies, 2022, 7, .	3.0	4
895	3D Printed Biocatalytic Living Materials with Dualâ€Network Reinforced Bioinks. Small, 2022, 18, e2104820.	5.2	29
896	Nanofiber curvature with Rho GTPase activity increases mouse embryonic fibroblast random migration velocity. Integrative Biology (United Kingdom), 2021, 13, 295-308.	0.6	3
897	Regulating Bacterial Behavior within Hydrogels of Tunable Viscoelasticity. Advanced Science, 2022, 9, e2106026.	5.6	35
898	A Brief Overview of Bioinspired Robust Hydrogel Based Shape Morphing Functional Structure for Biomedical Soft Robotics. Frontiers in Materials, 2022, 9, .	1.2	4
899	Programming hydrogels to probe spatiotemporal cell biology. Cell Stem Cell, 2022, 29, 678-691.	5.2	28
912	Generating Large Numbers of Pancreatic Microtumors on Alginate-Gelatin Hydrogels for Quantitative Imaging of Tumor Growth and Photodynamic Therapy Optimization. Methods in Molecular Biology, 2022, 2451, 91-105.	0.4	3
913	Microfluidic harvesting of breast cancer tumor spheroid-derived extracellular vesicles from immobilized microgels for single-vesicle analysis. Lab on A Chip, 2022, 22, 2502-2518.	3.1	8
914	3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models. Nanoscale, 2022, 14, 8112-8129.	2.8	51
915	Recent advances in spheroid-based microfluidic models to mimic the tumour microenvironment. Analyst, The, 2022, 147, 2023-2034.	1.7	14
916	Integrative lymph node-mimicking models created with biomaterials and computational tools to study the immune system. Materials Today Bio, 2022, 14, 100269.	2.6	9

#	Article	IF	CITATIONS
917	Elastomeric Optical Waveguides by Extrusion Printing. Advanced Materials Technologies, 2022, 7, .	3.0	4
918	A parallelized, perfused 3D triculture model of leukemia for in vitro drug testing of chemotherapeutics. Biofabrication, 2022, 14, 035011.	3.7	4
919	DNA-Based Daisy Chain Rotaxane Nanocomposite Hydrogels as Dual-Programmable Dynamic Scaffolds for Stem Cell Adhesion. ACS Applied Materials & Samp; Interfaces, 2022, 14, 20739-20748.	4.0	5
920	A Co-Polymerizable Linker for the Covalent Attachment of Fibronectin Makes pHEMA Hydrogels Cell-Adhesive. Gels, 2022, 8, 258.	2.1	3
921	Incorporation of Natural and Recombinant Collagen Proteins within Fmoc-Based Self-Assembling Peptide Hydrogels. Gels, 2022, 8, 254.	2.1	6
922	Deep-learning-based 3D cellular force reconstruction directly from volumetric images. Biophysical Journal, 2022, 121, 2180-2192.	0.2	5
923	Algal Polysaccharides-Based Hydrogels: Extraction, Synthesis, Characterization, and Applications. Marine Drugs, 2022, 20, 306.	2.2	24
924	Engineering a 3D hydrogel system to study optic nerve head astrocyte morphology and behavior. Experimental Eye Research, 2022, 220, 109102.	1.2	3
925	Porous Scaffold-Hydrogel Composites Spatially Regulate 3D Cellular Mechanosensing. Frontiers in Medical Technology, 2022, 4, 884314.	1.3	2
926	Implications of Three-Dimensional Cell Culture in Cancer Therapeutic Research. Frontiers in Oncology, 2022, 12, .	1.3	15
927	Advances in Hydrogel-Based Microfluidic Blood–Brain-Barrier Models in Oncology Research. Pharmaceutics, 2022, 14, 993.	2.0	12
928	Fiberlike Micelle Networks from the Solution Self-Assembly of B–A–B Triblock Copolymers with Crystallizable Terminal Polycarbonate Segments. Macromolecules, 0, , .	2.2	1
929	Current insights into the bone marrow niche: From biology in vivo to bioengineering ex vivo. Biomaterials, 2022, 286, 121568.	5.7	16
930	Tuning of 2D cultured human fibroblast behavior using lumichrome photocrosslinked collagen hydrogels. Materials Today Communications, 2022, 31, 103635.	0.9	6
931	3D Printing of Noncytotoxic High-Resolution Microchannels in Bisphenol-A Ethoxylate Dimethacrylate Tissue-Mimicking Materials. 3D Printing and Additive Manufacturing, 2023, 10, 1101-1109.	1.4	0
933	Process optimization and optimal tolerancing to improve dimensional accuracy of vat-photopolymerized functionally graded hydrogels. Results in Engineering, 2022, 14, 100442.	2.2	7
934	Hybrid Stents Based on Magnetic Hydrogels for Biomedical Applications. ACS Applied Bio Materials, 2022, 5, 2598-2607.	2.3	3
936	Recent Advances in 3D Bioprinting: A Review of Cellulose-Based Biomaterials Ink. Polymers, 2022, 14, 2260.	2.0	10

#	Article	IF	CITATIONS
937	Peripheral Nerve Decellularization for <i>In Vitro</i> Extracellular Matrix Hydrogel Use: A Comparative Study. ACS Biomaterials Science and Engineering, 0, , .	2.6	2
939	Development and Characterization of 3D Hybrid Spheroids for the Investigation of the Crosstalk Between B-Cell Non-Hodgkin Lymphomas and Mesenchymal Stromal Cells. OncoTargets and Therapy, 0, Volume 15, 683-697.	1.0	4
940	Hydrogel Stamping for Rapid, Multiplexed, Point-of-Care Immunostaining of Cells and Tissues. ACS Applied Materials & Early: Interfaces, 2022, 14, 27613-27622.	4.0	7
941	Recent advances in lung-on-a-chip models. Drug Discovery Today, 2022, 27, 2593-2602.	3.2	32
942	Bioink Formulation and Machine Learning-Empowered Bioprinting Optimization. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	10
943	Modelling the Tumor Microenvironment: Recapitulating Nano- and Micro-Scale Properties that Regulate Tumor Progression. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
944	Formulation of Dermal Tissue Matrix Bioink by a Facile Decellularization Method and Process Optimization for 3D Bioprinting toward Translation Research. Macromolecular Bioscience, 2022, 22, .	2.1	8
945	Secondary Nucleation-Triggered Physical Cross-Links and Tunable Stiffness in Seeded Supramolecular Hydrogels. Journal of the American Chemical Society, 2022, 144, 11306-11315.	6.6	31
946	Polydopamine, harness of the antibacterial potentials-A review. Materials Today Bio, 2022, 15, 100329.	2.6	19
948	Stoichiometric Postâ€Modification of Hydrogel Microparticles Dictates Neural Stem Cell Fate in Microporous Annealed Particle Scaffolds. Advanced Materials, 2022, 34, .	11.1	19
949	CAR T Cell Locomotion in Solid Tumor Microenvironment. Cells, 2022, 11, 1974.	1.8	15
950	Organoid systems for recapitulating the intestinal stem cell niche and modeling disease in vitro. Advances in Stem Cells and Their Niches, 2022, , 57-96.	0.1	1
954	Recapitulating the liver niche in vitro. Advances in Stem Cells and Their Niches, 2022, , 1-55.	0.1	1
955	A readyâ€toâ€use fast gelation/liquefying hydrogel towards enzyme free threeâ€dimensional cell culture. Journal of Polymer Science, 0, , .	2.0	0
956	Effects of Netarsudil-Family Rho Kinase Inhibitors on Human Trabecular Meshwork Cell Contractility and Actin Remodeling Using a Bioengineered ECM Hydrogel. Frontiers in Ophthalmology, 0, 2, .	0.2	5
957	Visible-Light Stiffness Patterning of GelMA Hydrogels Towards In Vitro Scar Tissue Models. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	5
958	Exploiting Meltable Protein Hydrogels to Encapsulate and Culture Cells in 3D. Macromolecular Bioscience, 2022, 22, .	2.1	3
959	Exploring an aromatic dicarboxylic acid-grafted supramolecular Cd(II)-metallogel: The mechanically flexible stuff for achieving MoS2, MoSe2, WS2, GO, and h(BN) 2D nanosheets-dispersed versatile supramolecular gel-nano composites. Journal of Physics and Chemistry of Solids, 2022, 170, 110903.	1.9	4

#	Article	IF	CITATIONS
960	Shape-Tunable UV-Printed Solid Drugs for Personalized Medicine. Polymers, 2022, 14, 2714.	2.0	2
961	Behavior of colloidal gels made of thermoresponsive anisotropic nanoparticles. Scientific Reports, 2022, 12, .	1.6	2
962	Intramolecular Covalent Bonds in Gramâ€Positive Bacterial Surface Proteins. ChemBioChem, 2022, 23, .	1.3	1
963	Three-Dimensional Culture for <i>In Vitro</i> Folliculogenesis in the Aspect of Methods and Materials. Tissue Engineering - Part B: Reviews, 2022, 28, 1242-1257.	2.5	6
964	Recent Advances in Microgels: From Biomolecules to Functionality. Small, 2022, 18, .	5.2	20
965	Thermo/redox-responsive dissolvable gelatin-based microsphere for efficient cell harvesting during 3D cell culturing., 2022, 139, 213008.		4
966	A Parkinson's disease model composed of 3D bioprinted dopaminergic neurons within a biomimetic peptide scaffold. Biofabrication, 2022, 14, 044103.	3.7	14
967	3D Printed Solutions for Spheroid Engineering and Cancer Research. International Journal of Molecular Sciences, 2022, 23, 8188.	1.8	5
968	The degradation of gelatin/alginate/fibrin hydrogels is cell type dependent and can be modulated by targeting fibrinolysis. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	8
969	Advances in 3D Bioprinting for Cancer Biology and Precision Medicine: From Matrix Design to Application. Advanced Healthcare Materials, 2022, 11 , .	3.9	23
970	Hydrogels as functional components in artificial cell systems. Nature Reviews Chemistry, 2022, 6, 562-578.	13.8	47
971	Modified hyaluronic acid-collagen matrices trigger efficient gene transfer and prohealing behavior in fibroblasts for improved wound repair. Acta Biomaterialia, 2022, 150, 138-153.	4.1	12
972	A multidisciplinary perspective on the latest trends in artificial cartilage fabrication to mimic real tissue. Applied Materials Today, 2022, 29, 101603.	2.3	2
973	Porous yet dense matrices: using ice to shape collagen 3D cell culture systems with increased physiological relevance. Biomaterials Science, 2022, 10, 6939-6950.	2.6	3
974	Recent advances in 3D printing hydrogel for topical drug delivery. , 2022, 1, .		2
975	Matrix Metalloproteases from Adipose Tissue-Derived Stromal Cells Are Spatiotemporally Regulated by Hydrogel Mechanics in a 3D Microenvironment. Bioengineering, 2022, 9, 340.	1.6	10
976	Synthesis of Novel Hyaluronic Acid Sulfonated Hydrogels Using Safe Reactants: A Chemical and Biological Characterization. Gels, 2022, 8, 480.	2.1	3
977	Recent Advances in Cellulose-Based Hydrogels for Tissue Engineering Applications. Polymers, 2022, 14, 3335.	2.0	31

#	Article	IF	CITATIONS
978	Customized Multifunctional Peptide Hydrogel Scaffolds for CAR-T-Cell Rapid Proliferation and Solid Tumor Immunotherapy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 37514-37527.	4.0	12
979	Efficacy of Nerve-Derived Hydrogels to Promote Axon Regeneration Is Influenced by the Method of Tissue Decellularization. International Journal of Molecular Sciences, 2022, 23, 8746.	1.8	1
980	Adhesive peptide and polymer density modulate 3D cell traction forces within synthetic hydrogels. Biomaterials, 2022, 288, 121710.	5.7	3
981	Musculoskeletal tissues-on-a-chip: role of natural polymers in reproducing tissue-specific microenvironments. Biofabrication, 2022, 14, 042001.	3.7	7
982	Off-the-shelf, heparinized small diameter vascular graft limits acute thrombogenicity in a porcine model. Acta Biomaterialia, 2022, 151, 134-147.	4.1	5
983	Mechanical regulation of signal transduction in angiogenesis. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	13
984	Biomimetic Hydrogels in the Study of Cancer Mechanobiology: Overview, Biomedical Applications, and Future Perspectives. Gels, 2022, 8, 496.	2.1	4
985	Self-Healing Injectable Hydrogels for Tissue Regeneration. Chemical Reviews, 2023, 123, 834-873.	23.0	190
986	Bioprinting: from Technique to Application in Tissue Engineering and Regenerative Medicine. Current Molecular Medicine, 2022, 23, .	0.6	2
987	Engineering approaches for cardiac organoid formation and their characterization. Translational Research, 2022, 250, 46-67.	2.2	9
988	Generation of 3D Spheroids Using a Thiol–Acrylate Hydrogel Scaffold to Study Endocrine Response in ER ⁺ Breast Cancer. ACS Biomaterials Science and Engineering, 2022, 8, 3977-3985.	2.6	5
989	Optically transparent and stretchable pure bacterial nanocellulose. Journal of Polymer Research, 2022, 29, .	1,2	1
990	Characterization and functional performance of a commercial human conjunctival epithelial cell line. Experimental Eye Research, 2022, 223, 109220.	1.2	2
991	Three-dimensional mechanical characterization of murine skeletal muscle using quantitative micro-elastography. Biomedical Optics Express, 2022, 13, 5879.	1.5	2
992	Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering. Chemical Reviews, 2022, 122, 16839-16909.	23.0	43
993	Cross-evaluation of stiffness measurement methods for hydrogels. Polymer, 2022, 258, 125316.	1.8	10
994	DEAE- Cellulose-based composite hydrogel for 3D printing application: Physicochemical, mechanical, and biological optimization. Materials Today Communications, 2022, 33, 104335.	0.9	3
995	Carbon dots in hydrogels and their applications. , 2023, , 149-160.		0

#	Article	IF	CITATIONS
996	Side-chain halogen effects on self-assembly and hydrogelation of cationic phenylalanine derivatives. Soft Matter, 2022, 18, 5999-6008.	1.2	2
997	Mechanical stimuli in lung regeneration. , 2022, , 153-168.		0
998	Intelligent hydrogels and their biomedical applications. Materials Advances, 2022, 3, 7757-7772.	2.6	9
999	Soft substrates direct stem cell differentiation into the chondrogenic lineage without the use of growth factors. Journal of Tissue Engineering, 2022, 13, 204173142211221.	2.3	14
1000	Estimation of Aortic Valve Interstitial Cell-Induced 3D Remodeling of Poly(Ethylene Glycol) Hydrogel Environments Using an Inverse Finite Element Approach. SSRN Electronic Journal, 0, , .	0.4	0
1001	Systematically Assessing Natural Compounds' Wound Healing Potential with Spheroid and Scratch Assays. Advances in Experimental Medicine and Biology, 2022, , 227-241.	0.8	1
1002	Analysis of Cell Proliferation by Three-Dimensional Culture. Methods in Molecular Biology, 2022, , 197-207.	0.4	0
1003	A defined heat pretreatment of gelatin enables control of hydrolytic stability, stiffness, and microstructural architecture of fibrin–gelatin hydrogel blends. Biomaterials Science, 2022, 10, 5552-5565.	2.6	5
1004	Engineered 3D Matrices with Spatiotemporally Tunable Properties. Biomaterials Science Series, 2022, , 282-308.	0.1	0
1005	A Beginner's Guide to the Characterization of Hydrogel Microarchitecture for Cellular Applications. Gels, 2022, 8, 535.	2.1	23
1006	Modelling adult stem cells and their niche in health and disease with epithelial organoids. Seminars in Cell and Developmental Biology, 2023, 144, 20-30.	2.3	3
1007	Role of stiffness and physico-chemical properties of tumour microenvironment on breast cancer cell stemness. Acta Biomaterialia, 2022, 152, 273-289.	4.1	9
1008	Nanostructured Surface Functionalization of Polyacrylamide Hydrogels Below the Length Scale of Hydrogel Heterogeneity. ACS Applied Materials & Samp; Interfaces, 2022, 14, 43937-43945.	4.0	7
1010	Engineering physical microenvironments to study innate immune cell biophysics. APL Bioengineering, 2022, 6, 031504.	3.3	1
1011	The marriage of Xenes and Hydrogels: Fundamentals, Applications, and Outlook. Innovation(China), 2022, , 100327.	5.2	5
1012	Kidney-on-a-Chip: Mechanical Stimulation and Sensor Integration. Sensors, 2022, 22, 6889.	2.1	12
1013	Multiple Cell Cultures for MRI Analysis. International Journal of Molecular Sciences, 2022, 23, 10109.	1.8	1
1014	Engineered biomaterials to guide spheroid formation, function, and fabrication into 3D tissue constructs. Acta Biomaterialia, 2023, 165, 4-18.	4.1	22

#	Article	IF	CITATIONS
1015	Impact of Novel Teflon-DCA Nanogel Matrix on Cellular Bioactivity. Journal of Pharmaceutical Sciences, 2023, 112, 700-707.	1.6	9
1016	Applications of Polypeptide Hydrogels in Cartilage-Regeneration Engineering. Journal of Shanghai Jiaotong University (Science), 0, , .	0.5	1
1017	Design of hydrogel-based scaffolds for in vitro three-dimensional human skin model reconstruction. Acta Biomaterialia, 2022, 153, 13-37.	4.1	15
1018	Degradation of hydrogel beads for the detection of serum bicarbonate levels for the diagnosis of metabolic alkalosis at the point of care. Soft Matter, 2022, 18, 8147-8156.	1.2	1
1019	Extracellular matrix mechanobiology in cancer cell migration. Acta Biomaterialia, 2023, 163, 351-364.	4.1	12
1020	A Porous Gelatin Methacrylateâ€Based Material for 3D Cellâ€Laden Constructs. Macromolecular Bioscience, 2023, 23, .	2.1	1
1021	A quick pipeline for the isolation of 3D cell cultureâ€derived extracellular vesicles. Journal of Extracellular Vesicles, 2022, 11, .	5.5	5
1022	Engineered Tissue for Cardiac Regeneration: Current Status and Future Perspectives. Bioengineering, 2022, 9, 605.	1.6	4
1023	Harvestable tumour spheroids initiated in a gelatin-carboxymethyl cellulose hydrogel for cancer targeting and imaging with fluorescent gold nanoclusters. In Vitro Models, 2022, 1, 437-446.	1.0	1
1024	Novel hydrogel system eliminates subculturing and improves retention of nonsenescent mesenchymal stem cell populations. Regenerative Medicine, 2023, 18, 23-36.	0.8	2
1025	Printing Structurally Anisotropic Biocompatible Fibrillar Hydrogel for Guided Cell Alignment. Gels, 2022, 8, 685.	2.1	7
1026	3D Scaffolds Fabrication via Bicomponent Microgels Assembly: Process Optimization and In Vitro Characterization. Micromachines, 2022, 13, 1726.	1.4	2
1027	Hydrogels for brain repair: application to Parkinson's disease. Expert Opinion on Drug Delivery, 2022, 19, 1521-1537.	2.4	0
1028	An interdisciplinary framework for the characterization of extracellular matrix-hydrogels for biomedical applications. Matter, 2022, 5, 3659-3705.	5.0	5
1029	Advances in the Translation of Electrochemical Hydrogelâ€Based Sensors. Advanced Healthcare Materials, 2023, 12, .	3.9	15
1030	Biomedical polymer scaffolds mimicking bone marrow niches to advance <i>in vitro</i> expansion of hematopoietic stem cells. Journal of Materials Chemistry B, 2022, 10, 9755-9769.	2.9	3
1031	Graft Polymerization of Acrylamide in an Aqueous Dispersion of Collagen in the Presence of Tributylborane. Polymers, 2022, 14, 4900.	2.0	5
1032	3D conductive material strategies for modulating and monitoring cells. Progress in Materials Science, 2023, 133, 101041.	16.0	3

#	Article	IF	CITATIONS
1033	Biomimetic Calcium Phosphate Coated Macro-Microporous Poly($\hat{l}\mu$ -caprolactone)/Silk Fibroin (PCL/SF) Scaffold for Bone Tissue Engineering. Macromolecular Research, 0, , .	1.0	0
1034	ZipperCells Exhibit Enhanced Accumulation and Retention at the Site of Myocardial Infarction. Advanced Healthcare Materials, 2023, 12, .	3.9	5
1035	Hydrogel platform capable of molecularly resolved pulling on cells for mechanotransduction. Materials Today Bio, 2022, 17, 100476.	2.6	1
1037	Physico-biological evaluation of 3D printed dECM/TOCN/alginate hydrogel based scaffolds for cartilage tissue regeneration., 2023, 145, 213239.		11
1038	Chapter 14. Tissue Engineered Models of Metastasis: Focus on Bone Metastasis. Biomaterials Science Series, 2022, , 384-414.	0.1	0
1039	Chapter 5. Mimicking Chemical Features of the Tumor Microenvironment. Biomaterials Science Series, 2022, , 97-140.	0.1	0
1040	Chapter 4. Mimicking Mechanical Features of the Tumor Microenvironment. Biomaterials Science Series, 2022, , 60-96.	0.1	0
1041	Oxidized hyaluronic acid/adipic acid dihydrazide hydrogel as cell microcarriers for tissue regeneration applications. E-Polymers, 2022, 22, 949-958.	1.3	0
1042	Study on Gelatin Biomaterial for Embryonic Stem Cell Culture by Measuring Young's Modulus via Atomic Force Microscopy. Applied Science and Convergence Technology, 2022, 31, 171-174.	0.3	0
1043	Recent advances in engineering hydrogels for niche biomimicking and hematopoietic stem cell culturing. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	1
1045	Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. Journal of Translational Medicine, 2022, 20, .	1.8	5
1046	Concentration Dependent Effect of Quaternary Amines on the Adhesion of U251-MG Cells. Gels, 2022, 8, 827.	2.1	2
1047	Amyloidâ€Based Albumin Hydrogels. Advanced Healthcare Materials, 2023, 12, .	3.9	3
1048	Current Advances in 3D Dynamic Cell Culture Systems. Gels, 2022, 8, 829.	2.1	11
1049	Tuning the Mechanical Properties of Multiarm RAFT-Based Block Copolyelectrolyte Hydrogels <i>via</i> lonic Cross-Linking for 3D Cell Cultures. Biomacromolecules, 2023, 24, 57-68.	2.6	3
1050	Anion Effects on the Supramolecular Self-Assembly of Cationic Phenylalanine Derivatives. Langmuir, 2022, 38, 15494-15505.	1.6	6
1051	pH and Thrombin Concentration Are Decisive in Synthesizing Stiff, Stable, and Openâ€Porous Fibrinâ€Collagen Hydrogel Blends without Chemical Crossâ€Linker. Advanced Healthcare Materials, 2023, 12, .	3.9	3
1052	Human Albuminâ€Based Hydrogels for Their Potential Xenoâ€Free Microneedle Applications. Macromolecular Bioscience, 2023, 23, .	2.1	5

#	Article	IF	CITATIONS
1053	Three-dimensional highly porous hydrogel scaffold for neural circuit dissection and modulation. Acta Biomaterialia, 2023, 157, 252-262.	4.1	4
1055	Human mini-blood–brain barrier models for biomedical neuroscience research: a review. Biomaterials Research, 2022, 26, .	3.2	6
1056	The Impact of the Cellular Environment and Aging on Modeling Alzheimer's Disease in 3D Cell Culture Models. Advanced Science, 2023, 10 , .	5.6	9
1058	Interplay of Fluid Mechanics and Matrix Stiffness in Tuning the Mechanical Behaviors of Single Cells Probed by Atomic Force Microscopy. Langmuir, 2023, 39, 1309-1319.	1.6	4
1059	Sustained release of valproic acid loaded on chitosan nanoparticles within hybrid of alginate/chitosan hydrogel with/without stem cells in regeneration of spinal cord injury. Progress in Biomaterials, 2023, 12, 75-86.	1.8	10
1060	Fast cycling of intermittent hypoxia in a physiomimetic 3D environment: A novel tool for the study of the parenchymal effects of sleep apnea. Frontiers in Pharmacology, 0, 13, .	1.6	0
1061	Design and Development of Extracellular Matrix Proteinâ€Based Microcapsules as Tools for Bacteria Investigation. Advanced Healthcare Materials, 0, , 2202789.	3.9	0
1062	Fabrication and Performance Evaluation of Gelatin/Sodium Alginate Hydrogel-Based Macrophage and MSC Cell-Encapsulated Paracrine System with Potential Application in Wound Healing. International Journal of Molecular Sciences, 2023, 24, 1240.	1.8	11
1063	Influence of extracellular matrix composition on tumour cell behaviour in a biomimetic in vitro model for hepatocellular carcinoma. Scientific Reports, 2023, 13, .	1.6	5
1064	Physical properties and cellular responses of gelatin methacryloyl bulk hydrogels and highly ordered porous hydrogels. , 0, 2, .		5
1065	Mimicking the neural stem cell niche: An engineerâ \in ^{Ms} view of cell: material interactions. Frontiers in Chemical Engineering, 0, 4, .	1.3	1
1066	Spheroid Engineering in Microfluidic Devices. ACS Omega, 2023, 8, 3630-3649.	1.6	11
1067	Progress of Microfluidic Hydrogelâ€Based Scaffolds and Organâ€onâ€Chips for the Cartilage Tissue Engineering. Advanced Materials, 2023, 35, .	11.1	26
1068	Assessing cell migration in hydrogels: An overview of relevant materials and methods. Materials Today Bio, 2023, 18, 100537.	2.6	8
1069	Three-dimensional cell cultures as preclinical models to assess the biological activity of phytochemicals in breast cancer. Toxicology and Applied Pharmacology, 2023, 460, 116376.	1.3	3
1070	Print parameter optimisation for a Pluronic F-127 and alginate hybrid hydrogel. Bioprinting, 2023, 30, e00257.	2.9	5
1071	Extracellular matrix and extracellular matrix-derived materials in reproductive medicine., 0, 2, .		0
1073	Circulating Tumor Cells in Cancer Diagnostics and Prognostics by Single-Molecule and Single-Cell Characterization. ACS Sensors, 2023, 8, 406-426.	4.0	11

#	Article	IF	Citations
1074	Advancements in modelling human blood brain-barrier on a chip. Biofabrication, 2023, 15, 022003.	3.7	6
1075	Supramolecular Phenylalanine-Derived Hydrogels for the Sustained Release of Functional Proteins. ACS Biomaterials Science and Engineering, 2023, 9, 784-796.	2.6	4
1076	Application of Polymer Hydrogels in the Prevention of Postoperative Adhesion: A Review. Gels, 2023, 9, 98.	2.1	12
1077	Mechanical Evaluation of Hydrogel–Elastomer Interfaces Generated through Thiol–Ene Coupling. ACS Applied Polymer Materials, 2023, 5, 1364-1373.	2.0	0
1078	Physical and biological advances in endothelial cell-based engineered co-culture model systems. Seminars in Cell and Developmental Biology, 2023, 147, 58-69.	2.3	5
1079	Physical Sciences in Cancer: Recent Advances and Insights at the Interface. Current Cancer Research, 2023, , 301-328.	0.2	0
1080	Nanocellulose-Based Biomaterial Ink Hydrogel for Uptake/Release of Bovine Serum Albumin. Polymers, 2023, 15, 837.	2.0	0
1081	Design, Synthesis, and Application of a Waterâ€soluble Photocage for Aqueous Cyclopentadieneâ€based Dielsâ€Alder Photoclick Chemistry in Hydrogels. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
1082	The potential of hydrogels as a niche for promoting neurogenesis and regulating neuroinflammation in ischemic stroke. Materials and Design, 2023, 229, 111916.	3.3	1
1083	Traction force reconstruction assessment on real three-dimensional matrices and cellular morphologies. International Journal of Engineering Science, 2023, 186, 103828.	2.7	O
1084	Harnessing cell-material interactions to control stem cell secretion for osteoarthritis treatment. Biomaterials, 2023, 296, 122091.	5.7	1
1085	Peptide-based hydrogel for enhanced bone repair. Materials and Design, 2023, 229, 111862.	3.3	4
1086	Chemically identical gels I – under-crosslinked networks. Journal of the Mechanics and Physics of Solids, 2023, 175, 105278.	2.3	2
1087	A simple and effective scaffold for mouse hepatic stellate cell primary culture. American Journal of Physiology - Cell Physiology, O, , .	2.1	0
1088	A review on directional muscle cell growth in scaffolding biomaterials with aligned porous structures for cultivated meat production. Food Research International, 2023, 168, 112755.	2.9	5
1089	Advances in Xanthan Gum-Based Systems for the Delivery of Therapeutic Agents. Pharmaceutics, 2023, 15, 402.	2.0	19
1090	Engineering Hydrogels for Modulation of Dendritic Cell Function. Gels, 2023, 9, 116.	2.1	3
1091	3D multicellular systems in disease modelling: From organoids to organ-on-chip. Frontiers in Cell and Developmental Biology, $0,11,.$	1.8	5

#	Article	IF	Citations
1092	Towards using 3D cellular cultures to model the activation and diverse functions of macrophages. Biochemical Society Transactions, 2023, 51, 387-401.	1.6	1
1093	Simple Technique for Microscopic Evaluation of Active Cellular Invasion into 3D Hydrogel Constructs. ACS Biomaterials Science and Engineering, 2023, 9, 1243-1250.	2.6	O
1094	Nanomaterial-based biohybrid hydrogel in bioelectronics. Nano Convergence, 2023, 10, .	6.3	15
1095	Hydrogel-mediated drug delivery for treating stroke. Chinese Chemical Letters, 2023, 34, 108205.	4.8	9
1096	3D printed structured porous hydrogel promotes osteogenic differentiation of BMSCs. Materials and Design, 2023, 227, 111729.	3.3	6
1097	Adjusting Degree of Modification and Composition of gelAGE-Based Hydrogels Improves Long-Term Survival and Function of Primary Human Fibroblasts and Endothelial Cells in 3D Cultures. Biomacromolecules, 2023, 24, 1497-1510.	2.6	5
1098	Towards next generation polymer surfaces: Nano- and microlayers of star macromolecules and their design for applications in biology and medicine. Progress in Polymer Science, 2023, 139, 101657.	11.8	5
1099	Smart Hydrogels for Bone Reconstruction via Modulating the Microenvironment. Research, 2023, 6, .	2.8	14
1100	Enhanced Rupture Force in a Cut-Dispersed Double-Network Hydrogel. Gels, 2023, 9, 158.	2.1	1
1101	Userâ€Controlled 4D Biomaterial Degradation with Substrateâ€Selective Sortase Transpeptidases for Singleâ€Cell Biology. Advanced Materials, 2023, 35, .	11.1	11
1102	Machine learning for soft and liquid molecular materials. , 2023, 2, 298-315.		2
1103	Estimation of aortic valve interstitial cell-induced 3D remodeling of poly(ethylene glycol) hydrogel environments using an inverse finite element approach. Acta Biomaterialia, 2023, 160, 123-133.	4.1	2
1105	Design, Synthesis, and Application of a Waterâ€soluble Photocage for Aqueous Cyclopentadieneâ€based Dielsâ€Alder Photoclick Chemistry in Hydrogels. Angewandte Chemie, 2023, 135, .	1.6	0
1106	Green Chemistry Principles for Nano- and Micro-Sized Hydrogel Synthesis. Molecules, 2023, 28, 2107.	1.7	9
1107	Compressional stress stiffening & Department of the soft hydrogels â€" how to avoid artefacts in their rheological characterisation. Soft Matter, 2023, 19, 2053-2057.	1.2	2
1108	Characterizing the nanostructures and mechanical properties of hydrogels by atomic force microscopy., 2023,, 105-134.		0
1109	Cell–extracellular matrix mechanotransduction in 3D. Nature Reviews Molecular Cell Biology, 2023, 24, 495-516.	16.1	72
1110	3D-Printing of Silk Nanofibrils Reinforced Alginate for Soft Tissue Engineering. Pharmaceutics, 2023, 15, 763.	2.0	13

#	Article	IF	CITATIONS
1111	Designed peptide amphiphiles as scaffolds for tissue engineering. Advances in Colloid and Interface Science, 2023, 314, 102866.	7.0	9
1112	Photoâ€Responsive Hydrogel for Contactless Dressing Change to Attenuate Secondary Damage and Promote Diabetic Wound Healing. Advanced Healthcare Materials, 2023, 12, .	3.9	9
1113	Tissueâ€mimetic culture enhances mesenchymal stem cell secretome capacity to improve regenerative activity of keratinocytes and fibroblasts in vitro. Wound Repair and Regeneration, 2023, 31, 367-383.	1.5	4
1114	Systematic Comparison of Commercial Hydrogels Revealed That a Synergy of Laminin and Strain-Stiffening Promotes Directed Migration of Neural Cells. ACS Applied Materials & Directed Migration of Neural Cells. ACS Applied Migration of Neural Cells. AC	4.0	4
1115	Surface roughness modulates EGFR signaling and stemness of triple-negative breast cancer cells. Frontiers in Cell and Developmental Biology, $0,11,.$	1.8	1
1117	Dynamic bioinspired coculture model for probing ER ⁺ breast cancer dormancy in the bone marrow niche. Science Advances, 2023, 9, .	4.7	4
1118	Bioconjugation of COL1 protein on liquid-like solid surfaces to study tumor invasion dynamics. Biointerphases, $2023, 18, \ldots$	0.6	4
1119	Recent Advances on Cell Culture Platforms for In Vitro Drug Screening and Cell Therapies: From Conventional to Microfluidic Strategies. Advanced Healthcare Materials, 2023, 12, .	3.9	12
1120	Substrate viscoelasticity affects human macrophage morphology and phagocytosis. Soft Matter, 2023, 19, 2438-2445.	1.2	2
1121	Liquid crystalline matrix-induced viscoelastic mechanical stimulation modulates activation and phenotypes of macrophage. Journal of Biomaterials Applications, 2023, 37, 1568-1581.	1.2	0
1122	In vitro and in vivo evaluation of hydrogel-based scaffold for bone tissue engineering application. Arabian Journal of Chemistry, 2023, 16, 104799.	2.3	8
1124	Surface physical cues mediate the uptake of foreign particles by cancer cells. APL Bioengineering, 2023, 7, .	3.3	1
1125	Three-Dimensional Human Bone Marrow Organoids for the Study and Application of Normal and Abnormal Hematoimmunopoiesis. Journal of Immunology, 2023, 210, 895-904.	0.4	2
1126	Numerical investigation of moving gel wall formation in a Y-shaped microchannel. SN Applied Sciences, 2023, 5, .	1.5	2
1127	Recent Advances in Organâ€onâ€Chips Integrated with Bioprinting Technologies for Drug Screening. Advanced Healthcare Materials, 2023, 12, .	3.9	8
1128	Role of three-dimensional cell culture in therapeutics and diagnostics: an updated review. Drug Delivery and Translational Research, 2023, 13, 2239-2253.	3.0	7
1129	Surface modifications of COP-based microfluidic devices for improved immobilisation of hydrogel proteins: long-term 3D culture with contractile cell types and ischaemia model. Lab on A Chip, 0, , .	3.1	0
1130	3D bioprinting using a new photo-crosslinking method for muscle tissue restoration. Npj Regenerative Medicine, 2023, 8, .	2.5	14

#	Article	IF	CITATIONS
1131	New water-soluble photo-initiators for two-photon polymerization based on benzylidene cyclopentanones. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 442, 114743.	2.0	0
1132	Towards a More Realistic In Vitro Meat: The Cross Talk between Adipose and Muscle Cells. International Journal of Molecular Sciences, 2023, 24, 6630.	1.8	1
1133	Integration of Extracellular Matrices into Organâ€onâ€Chip Systems. Advanced Healthcare Materials, 2023, 12, .	3.9	8
1134	Hydrogel armed with Bmp2 mRNA-enriched exosomes enhances bone regeneration. Journal of Nanobiotechnology, 2023, 21, .	4.2	8
1135	Key aspects for conception and construction of co-culture models of tumor-stroma interactions. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	2.0	2
1136	Applications and Advances of Multicellular Tumor Spheroids: Challenges in Their Development and Analysis. International Journal of Molecular Sciences, 2023, 24, 6949.	1.8	5
1137	Biophysical Regulation of TGF \hat{I}^2 Signaling in the Tumor Microenvironment. Current Cancer Research, 2023, , 159-200.	0.2	1
1138	Formalin-free fixation and xylene-free tissue processing preserves cell-hydrogel interactions for histological evaluation of 3D calcium alginate tissue engineered constructs. , 0, 2, .		0
1139	Shearâ€Triggered Release of Lipid Nanoparticles from Tissueâ€Mimetic Hydrogels. Macromolecular Rapid Communications, 0, , .	2.0	0
1140	Phase Separation Microparticles as a Three-Dimensional Cell Culture System To Promote Stem Cell Expansion. Biomacromolecules, 2023, 24, 2184-2195.	2.6	1
1141	Recent Advances in Antimicrobial Peptide Hydrogels. International Journal of Molecular Sciences, 2023, 24, 7563.	1.8	6
1142	A new approach to the development and assessment of doxorubicin-loaded nanoliposomes for the treatment of osteosarcoma in 2D and 3D cell culture systems. Heliyon, 2023, 9, e15495.	1.4	1
1143	Encapsulation in tendon and ligament regeneration. , 2023, , 557-588.		0
1144	Imageable AuNP-ECM Hydrogel Tissue Implants for Regenerative Medicine. Pharmaceutics, 2023, 15, 1298.	2.0	0
1149	Superabsorbent Polymer's Role in Nanomedicines. , 2023, , 201-229.		0
1200	Magnetically Anisotropic Hydrogels for Tissue Engineering. Biomaterials Science, 0, , .	2.6	1
1220	Mechanisms and influencing factors of peptide hydrogel formation and biomedicine applications of hydrogels. Soft Matter, 2023, 19, 7479-7493.	1.2	1
1231	Injectable organo-hydrogels influenced by click chemistry as a paramount stratagem in the conveyor belt of pharmaceutical revolution. Journal of Materials Chemistry B, 2023, 11, 10761-10777.	2.9	1

#	Article	IF	CITATIONS
1237	3D Models of Sarcomas: The Next-generation Tool for Personalized Medicine. Phenomics, 0, , .	0.9	0
1243	Organ-Derived Extracellular Matrix (ECM) Hydrogels: Versatile Systems to Investigate the Impact of Biomechanics and Biochemistry on Cells in Disease Pathology. , 2023, , 1-27.		O
1246	Hydrogels for dental applications. , 2024, , 725-748.		0
1248	The polymer and materials science of the bacterial fimbriae Caf1. Biomaterials Science, 0, , .	2.6	1
1266	Natural Hydrogels for Drug Delivery Systems. , 2023, , 149-167.		0
1298	Recent progress in biomaterials-driven ferroptosis for cancer therapy. Biomaterials Science, 2024, 12, 288-307.	2.6	O
1311	Silk protein: an emerging biomaterial for tumor modeling. , 2024, , 629-652.		0
1312	Biomaterials to enhance adoptive cell therapy. , 0, , .		O
1318	Polymers in advanced drug and gene delivery. , 2024, , 291-332.		0
1329	Natural polymer hydrogels and aerogels for biomedical applications. , 2024, , 125-157.		O