Cell-in-Shell Hybrids: Chemical Nanoencapsulation of I

Accounts of Chemical Research 49, 792-800

DOI: 10.1021/acs.accounts.6b00087

Citation Report

#	Article	IF	CITATIONS
1	Cytocompatible Polymer Grafting from Individual Living Cells by Atomâ€Transfer Radical Polymerization. Angewandte Chemie, 2016, 128, 15532-15535.	2.0	11
2	Turning Diamagnetic Microbes into Multinary Micro-Magnets: Magnetophoresis and Spatio-Temporal Manipulation of Individual Living Cells. Scientific Reports, 2016, 6, 38517.	3. 3	25
3	Artificial Spores: Cytocompatible Coating of Living Cells with Plantâ€Derived Pyrogallol. Chemistry - an Asian Journal, 2016, 11, 3183-3187.	3.3	25
4	Cytocompatible Polymer Grafting from Individual Living Cells by Atomâ€Transfer Radical Polymerization. Angewandte Chemie - International Edition, 2016, 55, 15306-15309.	13.8	114
5	Multifunctionality of Silicified Nanoshells at Cell Interfaces of <i>Oryza sativa</i> . ACS Sustainable Chemistry and Engineering, 2016, 4, 6792-6799.	6.7	29
6	Nanoshell Assembly for Magnet-Responsive Oil-Degrading Bacteria. Langmuir, 2016, 32, 12552-12558.	3.5	60
7	Silica-based systems for oral delivery of drugs, macromolecules and cells. Advances in Colloid and Interface Science, 2017, 249, 346-362.	14.7	114
8	Nanoencapsulation of individual mammalian cells with cytoprotective polymer shell. Biomaterials, 2017, 133, 253-262.	11.4	48
9	Biphasic Supramolecular Selfâ€Assembly of Ferric Ions and Tannic Acid across Interfaces for Nanofilm Formation. Advanced Materials, 2017, 29, 1700784.	21.0	93
10	Chemically individual armoured bioreporter bacteria used for the in vivo sensing of ultra-trace toxic metal ions. Chemical Communications, 2017, 53, 8415-8418.	4.1	6
11	Cytoprotective Encapsulation of Individual Jurkat T Cells within Durable TiO ₂ Shells for Tâ€Cell Therapy. Angewandte Chemie - International Edition, 2017, 56, 10702-10706.	13.8	74
12	Polydopamine nanocoated whole-cell asymmetric biocatalysts. Chemical Communications, 2017, 53, 6617-6620.	4.1	37
13	Cytoprotective Encapsulation of Individual Jurkat T Cells within Durable TiO ₂ Shells for Tâ€Cell Therapy. Angewandte Chemie, 2017, 129, 10842-10846.	2.0	14
14	Formation of Turmeric-Based Thin Films: Universal, Transparent Coatings. Langmuir, 2017, 33, 3639-3646.	3.5	16
15	Three-Dimensional Encapsulation of <i>Saccharomyces cerevisiae</i> in Silicate Matrices Creates Distinct Metabolic States as Revealed by Gene Chip Analysis. ACS Nano, 2017, 11, 3560-3575.	14.6	17
16	Metal-phenolic networks as a versatile platform to engineer nanomaterials and biointerfaces. Nano Today, 2017, 12, 136-148.	11.9	411
17	Manganese Dioxide Nanozymes as Responsive Cytoprotective Shells for Individual Living Cell Encapsulation. Angewandte Chemie, 2017, 129, 13849-13853.	2.0	16
18	Manganese Dioxide Nanozymes as Responsive Cytoprotective Shells for Individual Living Cell Encapsulation. Angewandte Chemie - International Edition, 2017, 56, 13661-13665.	13.8	196

#	Article	lF	CITATIONS
19	Control over Silica Particle Growth and Particle–Biomolecule Interactions Facilitates Silica Encapsulation of Mammalian Cells with Thickness Control. ACS Biomaterials Science and Engineering, 2017, 3, 2098-2109.	5.2	3
20	Antimicrobial spray nanocoating of supramolecular Fe(III)-tannic acid metal-organic coordination complex: applications to shoe insoles and fruits. Scientific Reports, 2017, 7, 6980.	3.3	75
21	Use of Tethered Hydrogel Microcoatings for Mesenchymal Stem Cell Equilibrium, Differentiation, and Selfâ€Organization into Microtissues. Advanced Biology, 2017, 1, e1700116.	3.0	3
22	Magnetization of individual yeast cells by in situ formation of iron oxide on cell surfaces. Solid State Sciences, 2017, 71, 29-32.	3.2	6
23	Branched Gold Nanoparticle Coating of <i>Clostridium novyi</i> â€NT Spores for CTâ€Guided Intratumoral Injection. Small, 2017, 13, 1602722.	10.0	44
24	Self-assembly of inorganic nanoparticles: Ab ovo. Europhysics Letters, 2017, 119, 66008.	2.0	22
25	Artificial Spores: Immunoprotective Nanocoating of Red Blood Cells with Supramolecular Ferric Ion-Tannic Acid Complex. Polymers, 2017, 9, 140.	4.5	48
26	Development of Freezeâ€resistant Aluminum Surfaces by Tannic Acid Coating and Subsequent Immobilization of Antifreeze Proteins. Bulletin of the Korean Chemical Society, 2018, 39, 559-562.	1.9	5
27	Controlling the Growth of Staphylococcus epidermidis by Layer-By-Layer Encapsulation. ACS Applied Materials & Diterfaces, 2018, 10, 16250-16259.	8.0	23
28	Layer-by-layer assembly of nanorods on a microsphere <i>via</i> electrostatic interactions. Soft Matter, 2018, 14, 4541-4550.	2.7	12
29	<i>Shewanella oneidensis</i> as a living electrode for controlled radical polymerization. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4559-4564.	7.1	68
30	Strategic Advances in Formation of Cellâ€inâ€Shell Structures: From Syntheses to Applications. Advanced Materials, 2018, 30, e1706063.	21.0	102
31	Targeted and theranostic applications for nanotechnologies in medicine., 2018,, 399-511.		7
32	Physical Biology of the Materials–Microorganism Interface. Journal of the American Chemical Society, 2018, 140, 1978-1985.	13.7	115
33	In Situ Selfâ€Assembly of Coacervate Microdroplets into Viable Artificial Cell Wall with Heritability. Advanced Functional Materials, 2018, 28, 1705699.	14.9	26
34	Concise Review: Fabrication, Customization, and Application of Cell Mimicking Microparticles in Stem Cell Science. Stem Cells Translational Medicine, 2018, 7, 232-240.	3.3	15
35	Single cells in nanoshells for the functionalization of living cells. Nanoscale, 2018, 10, 3112-3129.	5.6	66
36	A bilayered nanoshell for durable protection of single yeast cells against multiple, simultaneous hostile stimuli. Chemical Science, 2018, 9, 4730-4735.	7.4	23

#	Article	IF	CITATIONS
37	Mussel-Inspired Self-Healing Double-Cross-Linked Hydrogels by Controlled Combination of Metal Coordination and Covalent Cross-Linking. Biomacromolecules, 2018, 19, 1402-1409.	5.4	95
38	Cationic Polymers for Coating Living Cells. Macromolecular Research, 2018, 26, 1185-1192.	2.4	9
39	Iron Gall Ink Revisited: In Situ Oxidation of Fe(II)–Tannin Complex for Fluidicâ€Interface Engineering. Advanced Materials, 2018, 30, e1805091.	21.0	65
40	Artificial Spores: Bioinspired Architecture of Living Cells with Cytocompatible Nanoshells. Bulletin of the Korean Chemical Society, 2018, 39, 845-846.	1.9	0
41	Cellâ€Surface Engineering for Advanced Cell Therapy. Chemistry - A European Journal, 2018, 24, 15725-15743.	3.3	24
42	Enzymatic film formation of nature-derived phenolic amines. Nanoscale, 2018, 10, 13351-13355.	5 . 6	29
43	Cloaked Exosomes: Biocompatible, Durable, and Degradable Encapsulation. Small, 2018, 14, e1802052.	10.0	41
44	Therapeutic Potential of Biomineralizationâ€Based Engineering. Advanced Therapeutics, 2018, 1, 1800079.	3.2	18
45	Nanoarchitectonics meets cell surface engineering: shape recognition of human cells by halloysite-doped silica cell imprints. Beilstein Journal of Nanotechnology, 2019, 10, 1818-1825.	2.8	24
46	Encapsulation of live cells by metal-organic frameworks for viability protection. Science China Materials, 2019, 62, 885-891.	6.3	9
47	Plant seed-inspired cell protection, dormancy, and growth for large-scale biofabrication. Biofabrication, 2019, 11, 025008.	7.1	23
48	Iron gall ink revisited: hierarchical formation of Fe(<scp>iii</scp>)–tannic acid coacervate particles in microdroplets for protein condensation. Chemical Communications, 2019, 55, 2142-2145.	4.1	25
49	Regulations of organism by materials: a new understanding of biological inorganic chemistry. Journal of Biological Inorganic Chemistry, 2019, 24, 467-481.	2.6	16
50	DNA-templated synthesis of biomimetic cell wall for nanoencapsulation and protection of mammalian cells. Nature Communications, 2019, 10, 2223.	12.8	64
51	Extracellular silica nanocoat formed by layer-by-layer (LBL) self-assembly confers aluminum resistance in root border cells of pea (Pisum sativum). Journal of Nanobiotechnology, 2019, 17, 53.	9.1	15
52	SupraCells: Living Mammalian Cells Protected within Functional Modular Nanoparticleâ€Based Exoskeletons. Advanced Materials, 2019, 31, e1900545.	21.0	96
53	Layer-by-Layer Assembly for Nanoarchitectonics. , 2019, , 89-121.		1
54	Enhancement of biocatalyst activity and protection against stressors using a microbial exoskeleton. Scientific Reports, 2019, 9, 3158.	3.3	18

#	Article	IF	Citations
55	Bioinspired Metal–Polyphenol Materials: Self-Healing and Beyond. Biomimetics, 2019, 4, 30.	3.3	43
56	Probing photodissociation dynamics using ring polymer molecular dynamics. Journal of Chemical Physics, 2019, 150, 114105.	3.0	6
57	Atom Transfer Radical Polymerization for Biorelated Hybrid Materials. Biomacromolecules, 2019, 20, 4272-4298.	5.4	69
58	Click Reaction for Reversible Encapsulation of Single Yeast Cells. ACS Nano, 2019, 13, 14459-14467.	14.6	41
59	Cell armor for protection against environmental stress: Advances, challenges and applications in micro- and nanoencapsulation of mammalian cells. Acta Biomaterialia, 2019, 95, 3-31.	8.3	50
60	Genetically Encoded Stimuli-Responsive Cytoprotective Hydrogel Capsules for Single Cells Provide Novel Genotype–Phenotype Linkage. Chemistry of Materials, 2019, 31, 1899-1907.	6.7	18
61	Biomedical Applications of Layerâ€byâ€Layer Selfâ€Assembly for Cell Encapsulation: Current Status and Future Perspectives. Advanced Healthcare Materials, 2019, 8, e1800939.	7.6	93
62	Bacterial nanoencapsulation with cytocompatible atom transfer radical polymerization for improved Cr(VI) removal. Chemical Engineering Journal, 2020, 387, 124068.	12.7	6
63	A thin hydrogel barrier linked onto cell surface sialic acids through covalent bonds induces cancer cell death <i>in vivo</i> . Biomaterials Science, 2020, 8, 577-585.	5.4	8
64	Biofunctionalized nanomaterials for in situ clean-up of hydrocarbon contamination: A quantum jump in global bioremediation research. Journal of Environmental Management, 2020, 256, 109913.	7.8	35
65	Ascorbic acid-mediated reductive disassembly of Fe ³⁺ -tannic acid shells in degradable single-cell nanoencapsulation. Chemical Communications, 2020, 56, 13748-13751.	4.1	26
66	Metal-organic frameworks (MOFs) for biopreservation: From biomacromolecules, living organisms to biological devices. Nano Today, 2020, 35, 100985.	11.9	69
67	Single cell electron collectors for highly efficient wiring-up electronic abiotic/biotic interfaces. Nature Communications, 2020, 11 , 4087.	12.8	114
68	Polymer-chlorella cells conjugating with aggregation-induced functionality switch towards hydrogen evolution. Science China Technological Sciences, 2020, 63, 1416-1425.	4.0	10
69	Fabrication and Characterization of Neurocompatible Ulvan-Based Layer-by-Layer Films. Langmuir, 2020, 36, 11610-11617.	3.5	12
70	Cytoprotective Coating of <scp>HeLa</scp> Cells with Titanium Dioxide. Bulletin of the Korean Chemical Society, 2020, 41, 851-855.	1.9	3
71	Synthesis and Characterization of Silk Ionomers for Layer-by-Layer Electrostatic Deposition on Individual Mammalian Cells. Biomacromolecules, 2020, 21, 2829-2843.	5.4	23
72	Cytoprotection, Genoprotection, and Dermal Exposure Assessment of Chitosan-Based Agronanofungicides. Pharmaceutics, 2020, 12, 497.	4.5	3

#	Article	IF	CITATIONS
73	Enzymatically degradable, starch-based layer-by-layer films: application to cytocompatible single-cell nanoencapsulation. Soft Matter, 2020, 16, 6063-6071.	2.7	15
74	Sol–Gelâ€Based Advanced Porous Silica Materials for Biomedical Applications. Advanced Functional Materials, 2020, 30, 1909539.	14.9	125
75	Selfâ€assembling of <i>Shewanella</i> @ <scp>rGO</scp> @Pd bionanohybrid for synergistic bioâ€abiotic removal of Cr(<scp>VI</scp>). Journal of Chemical Technology and Biotechnology, 2020, 95, 2222-2228.	3.2	9
76	Genetic Control of Radical Cross-linking in a Semisynthetic Hydrogel. ACS Biomaterials Science and Engineering, 2020, 6, 1375-1386.	5.2	13
77	Binding Capability and Non–biofouling Efficacy of Poly[2â€(methacryloyloxy)ethylâ€4â€pentynoateâ€ <i>co</i> â€oligo(ethylene Glycol) Methacrylate] Films on Gold Surfaces. Bulletin of the Korean Chemical Society, 2020, 41, 223-226.	1.9	3
78	Astrocyteâ€Encapsulated Hydrogel Microfibers Enhance Neuronal Circuit Generation. Advanced Healthcare Materials, 2020, 9, 1901072.	7.6	9
79	Coffee Melanoidinâ€Based Multipurpose Film Formation: Application to Single ell Nanoencapsulation. ChemNanoMat, 2020, 6, 379-385.	2.8	16
80	Singleâ€Cell Nanoencapsulation: From Passive to Active Shells. Advanced Materials, 2020, 32, e1907001.	21.0	73
81	Copper Metal Organic Polyhedron (Cu-MOP) Hydrogel as Responsive Cytoprotective Shell for Living Cell Encapsulation. ACS Applied Bio Materials, 2020, 3, 3268-3275.	4.6	4
82	Chitosan-Based Agronanochemicals as a Sustainable Alternative in Crop Protection. Molecules, 2020, 25, 1611.	3.8	118
83	Plasmonic nanoparticles assemblies templated by helical bacteria and resulting optical activity. Chirality, 2020, 32, 899-906.	2.6	5
84	Single-cell yolk-shell nanoencapsulation for long-term viability with size-dependent permeability and molecular recognition. National Science Review, 2021, 8, nwaa097.	9.5	23
85	Modular Assembly of Red Blood Cell Superstructures from Metal–Organic Framework Nanoparticleâ€Based Building Blocks. Advanced Functional Materials, 2021, 31, 2005935.	14.9	28
86	A cytoprotective graphene oxide-polyelectrolytes nanoshell for single-cell encapsulation. Frontiers of Chemical Science and Engineering, 2021, 15, 410-420.	4.4	6
87	Bioinspired cell-in-shell systems in biomedical engineering and beyond: Comparative overview and prospects. Biomaterials, 2021, 266, 120473.	11.4	21
88	Towards applications of bioentities@MOFs in biomedicine. Coordination Chemistry Reviews, 2021, 429, 213651.	18.8	121
89	Cryptobiosis-inspired assembly of "AND―logic gate platform for potential tumor-specific drug delivery. Acta Pharmaceutica Sinica B, 2021, 11, 534-543.	12.0	8
90	Singleâ€Cell Nanoencapsulation of <i>Saccharomyces cerevisiae</i> by Cytocompatible Layerâ€byâ€Layer Assembly of Eggshell Membrane Hydrolysate and Tannic Acid. Advanced NanoBiomed Research, 2021, 1, 2000037.	3.6	8

#	Article	IF	CITATIONS
91	Organism–Materials Integration: A Promising Strategy for Biomedical Applications. Advanced NanoBiomed Research, 2021, 1, 2000044.	3.6	3
92	Layer-by-layer assembly of Au and CdS nanoparticles on the surface of bacterial cells for photo-assisted bioanodes in microbial fuel cells. Journal of Materials Chemistry B, 2021, 9, 1638-1646.	5.8	18
93	Singleâ€Cell Nanoencapsulation of <i>Saccharomyces cerevisiae</i> by Cytocompatible Layerâ€byâ€Layer Assembly of Eggshell Membrane Hydrolysate and Tannic Acid. Advanced NanoBiomed Research, 2021, 1, 2170013.	3.6	1
94	Bioinspired Cell Silicification: From Extracellular to Intracellular. Journal of the American Chemical Society, 2021, 143, 6305-6322.	13.7	32
95	A Decade of Advances in Singleâ€Cell Nanocoating for Mammalian Cells. Advanced Healthcare Materials, 2021, 10, e2100347.	7.6	43
96	Thickness Enhancement of Layerâ€byâ€Layer Multilayered Films Using Counter Polyelectrolyteâ€Induced Colloidal Particles. Bulletin of the Korean Chemical Society, 2021, 42, 1199-1203.	1.9	0
97	Rapid Single-Step Growth of MOF Exoskeleton on Mammalian Cells for Enhanced Cytoprotection. ACS Biomaterials Science and Engineering, 2021, 7, 3075-3081.	5.2	9
98	Coating with flexible DNA network enhanced T-cell activation and tumor killing for adoptive cell therapy. Acta Pharmaceutica Sinica B, 2021, 11, 1965-1977.	12.0	5
99	Polymerâ€Assisted Metallization of Mammalian Cells. Advanced Materials, 2021, 33, e2102348.	21.0	12
100	In Situ Strategy for Biomimetic Construction of Calcium Phosphate Mineral Shells on Microbial Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 9854-9860.	6.7	8
101	Poly(Î ³ -glutamic acid) Nanocoating To Enhance the Viability of Pseudomonas stutzeri NRCB010 through Cell Surface Engineering. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39957-39966.	8.0	5
102	Enzyme-mediated film formation of melanin-like species from ortho-diphenols: Application to single-cell nanoencapsulation. Applied Surface Science Advances, 2021, 5, 100098.	6.8	5
103	MOFs and Biomacromolecules for Biomedical Applications. , 2021, , 379-432.		0
104	Thermal regelation of single particles and particle clusters in ice. Soft Matter, 2021, 17, 1779-1787.	2.7	1
105	Enzyme-Mediated Kinetic Control of Fe ³⁺ â€"Tannic Acid Complexation for Interface Engineering. ACS Applied Materials & Samp; Interfaces, 2021, 13, 52385-52394.	8.0	16
107	Preparation and Description of Magnetic Modified Colloidal Particles of Silicon Dioxide for Recognition of HeLa Cells. UÄenye Zapiski Kazanskogo Gosudarstvennogo Universiteta: Seriâ Estestvennye Nauki, 2020, 162, 557-572.	0.3	0
108	Techniques for Improving Microbial Inoculants as a Tool for Sustainable Development., 2021,, 599-627.		1
109	Encapsulation of Chlamydomonas reinhardtii into a metal-phenolic network. Algal Research, 2022, 61, 102569.	4.6	2

#	Article	IF	CITATIONS
110	<i>In situ</i> silver nanoparticle coating of virions for quantification at single virus level. Nanoscale, 2022, 14, 2296-2303.	5.6	8
111	Hydrogen Bondingâ€Based Layerâ€byâ€Layer Assembly of Natureâ€Derived Eggshell Membrane Hydrolysates and Coffee Melanoidins in Singleâ€Cell Nanoencapsulation. ChemNanoMat, 2022, 8, .	2.8	2
112	Encapsulation of Commensal Skin Bacteria within Membraneâ€inâ€Gel Patches. Advanced Materials Interfaces, 2022, 9, .	3.7	3
113	Fungal–Mineral Interactions Modulating Intrinsic Peroxidase-like Activity of Iron Nanoparticles: Implications for the Biogeochemical Cycles of Nutrient Elements and Attenuation of Contaminants. Environmental Science & Description (2022), 2022, 56, 672-680.	10.0	23
114	Nanocell hybrids for green chemistry. Trends in Biotechnology, 2022, 40, 974-986.	9.3	15
115	Hydrogenâ€Bonded Organic Framework (HOF)â€Based Singleâ€Neural Stem Cell Encapsulation and Transplantation to Remodel Impaired Neural Networks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	41
116	Hydrogenâ€Bonded Organic Framework (HOF)â€Based Singleâ€Neural Stem Cell Encapsulation and Transplantation to Remodel Impaired Neural Networks. Angewandte Chemie, 2022, 134, .	2.0	6
117	Biomimetic mineralization: An emerging organism engineering strategy for biomedical applications. Journal of Inorganic Biochemistry, 2022, 232, 111815.	3.5	18
118	A single-cell nanocoating of probiotics for enhanced amelioration of antibiotic-associated diarrhea. Nature Communications, 2022, 13, 2117.	12.8	74
119	Metal-organic framework-erythrocytic hybrid surfaces with enhanced oxygen reduction performance for enzymatic biofuel cells–An updated strategy. Journal of Power Sources, 2022, 535, 231411.	7.8	1
121	Molecular Trade-Offs between Lattice Oxygen and Oxygen Vacancy Drive Organic Pollutant Degradation in Fungal Biomineralized Exoskeletons. Environmental Science & Dechnology, 2022, 56, 8132-8141.	10.0	7
122	Cellâ€inâ€Catalyticâ€Shell Nanoarchitectonics: Catalytic Empowerment of Individual Living Cells by Singleâ€Cell Nanoencapsulation. Advanced Materials, 2022, 34, .	21.0	20
123	The philosophy of extreme biomimetics. Sustainable Materials and Technologies, 2022, 32, e00447.	3.3	5
124	Sustainable colorimetric/luminescent sensors enabled by armored lipid nanoparticles. Nano Convergence, 2022, 9, .	12.1	2
125	Extracellular pH Monitoring of Live Single Cells in Microdroplets Using Dual-Labelled Fluorinated Silica Nanoparticles and Time-Domain Dual Lifetime Referencing. Chemosensors, 2022, 10, 379.	3.6	2
126	Single-cell technologies: From research to application. Innovation(China), 2022, 3, 100342.	9.1	13
127	ARMOR: Autoâ€Assembled Resilient Biomimetic Calcified Ornaments for Selective Cell Protection by Dualâ€Aptamerâ€Driven Hybridization Chain Reaction. Angewandte Chemie, 2023, 135, .	2.0	0
128	ARMOR: Autoâ€Assembled Resilient Biomimetic Calcified Ornaments for Selective Cell Protection by Dualâ€Aptamerâ€Driven Hybridization Chain Reaction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	8

#	Article	IF	CITATIONS
129	Cytoprotection of Probiotic Lactobacillus acidophilus with Artificial Nanoshells of Nature-Derived Eggshell Membrane Hydrolysates and Coffee Melanoidins in Single-Cell Nanoencapsulation. Polymers, 2023, 15, 1104.	4.5	5
130	Vortex-assisted, nanoarchitectonic manipulation of microparticles with flavonoid-Fe ³⁺ complex in biphasic water–oil systems. Chemical Communications, 2023, 59, 4612-4615.	4.1	O
131	Bioempowerment of Therapeutic Living Cells by Singleâ€Cell Surface Engineering. Advanced Therapeutics, 2023, 6, .	3.2	2
132	Polymerization in living organisms. Chemical Society Reviews, 2023, 52, 2911-2945.	38.1	11
133	Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials. Beilstein Journal of Nanotechnology, 0, 14, 522-534.	2.8	1
134	Fugetaxis of Cellâ€inâ€Catalyticâ€Coat Nanobiohybrids in Glucose Gradients. Small, 2023, 19, .	10.0	1
135	Microalgae–material hybrid for enhanced photosynthetic energy conversion: a promising path towards carbon neutrality. National Science Review, 2023, 10, .	9.5	7
136	Hydrogen-bonded supramolecular crystal: A manual exoskeleton for bioentity. Matter, 2023, 6, 2635-2646.	10.0	1
137	Tandem-biocatalysis reactors constructed by topological evolution of CaCO3 particles into hollow metal hydroxide spheres. Nature Communications, 2023, 14, .	12.8	0
138	A Micrometric Transformer: Compositional Nanoshell Transformation of Fe ³⁺ â€Trimesicâ€Acid Complex with Concomitant Payload Release in Cellâ€inâ€Catalyticâ€Shell Nanobiohybrids. Advanced Science, 2024, 11, .	11.2	1
139	Yolk–Shell Encapsulation of Cells by Biomimetic Mineralization and Visible Light-Induced Surface Graft Polymerization. Biomacromolecules, 2023, 24, 6032-6040.	5.4	0
140	Scaling up of dual-chamber microbial electrochemical systems – An appraisal using systems design approach. Science of the Total Environment, 2024, 912, 169186.	8.0	0
141	Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chemical Society Reviews, 2024, 53, 1167-1315.	38.1	1
142	Nanoarchitectonics: the method for everything in materials science. Bulletin of the Chemical Society of Japan, 2024, 97, .	3.2	4
143	Organismal Function Enhancement through Biomaterial Intervention. Nanomaterials, 2024, 14, 377.	4.1	0