Dual Catalysis Strategies in Photochemical Synthesis

Chemical Reviews 116, 10035-10074 DOI: 10.1021/acs.chemrev.6b00018

Citation Report

#	Article	IF	CITATIONS
2	Principles and Applications of Photoredox Catalysis:Trifluoromethylation and Beyond. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 1036-1046.	0.0	6
3	Synthesis and Photocatalytic Reactivity of Vinylsulfonium Ylides. Journal of Organic Chemistry, 2016, 81, 7201-7210.	1.7	19
4	Dual Photoredox/Gold Catalysis Arylative Cyclization of <i>o</i> -Alkynylphenols with Aryldiazonium Salts: A Flexible Synthesis of Benzofurans. Journal of Organic Chemistry, 2016, 81, 7182-7190.	1.7	79
5	Single-Electron Transmetalation via Photoredox/Nickel Dual Catalysis: Unlocking a New Paradigm for sp ³ –sp ² Cross-Coupling. Accounts of Chemical Research, 2016, 49, 1429-1439.	7.6	564
6	Highly Fluorinated Ir(III)–2,2′:6′,2″-Terpyridine–Phenylpyridine–X Complexes via Selective C–F Ad Robust Photocatalysts for Solar Fuel Generation and Photoredox Catalysis. Journal of the American Chemical Society, 2016, 138, 9460-9472.	ctivation: 6.6	58
7	9,10-Dicyanoanthracene Catalyzed Decarboxylative Alkynylation of Carboxylic Acids under Visible-Light Irradiation. Journal of Organic Chemistry, 2016, 81, 12357-12363.	1.7	53
8	Thiophenol-Catalyzed Visible-Light Photoredox Decarboxylative Couplings of <i>N</i> -(Acetoxy)phthalimides. Organic Letters, 2016, 18, 6400-6403.	2.4	82
9	Catalytic, Enantioselective Addition of Alkyl Radicals to Alkenes via Visible-Light-Activated Photoredox Catalysis with a Chiral Rhodium Complex. Journal of the American Chemical Society, 2016, 138, 6936-6939.	6.6	205
10	Anti-Markovnikov Oxidation of β-Alkyl Styrenes with H ₂ O as the Terminal Oxidant. Journal of the American Chemical Society, 2016, 138, 12037-12040.	6.6	148
11	Visibleâ€Lightâ€Induced Direct Oxidative Câ^'H Amidation of Heteroarenes with Sulfonamides. Chemistry - A European Journal, 2016, 22, 15669-15673.	1.7	68
12	Direct and Oxidant-Free Electron-Deficient Arylation of <i>N</i> Acyl-Protected Tetrahydroisoquinolines. Organic Letters, 2016, 18, 4686-4689.	2.4	36
13	Catalytic Asymmetric Câ [~] 'H Functionalization under Photoredox Conditions by Radical Translocation and Stereocontrolled Alkene Addition. Angewandte Chemie, 2016, 128, 13693-13696.	1.6	91
14	Unraveling the Key Features of the Reactive State of Decatungstate Anion in Hydrogen Atom Transfer (HAT) Photocatalysis. ACS Catalysis, 2016, 6, 7174-7182.	5.5	124
15	A Single Electron Transfer (SET) Approach to C–H Amidation of Hydrazones via Visible-Light Photoredox Catalysis. Organic Letters, 2016, 18, 5356-5359.	2.4	37
16	A visible-light-induced chemoselective radical/oxidative addition domino process to access α-chloro and α-alkoxy aryl ketones. Chemical Communications, 2016, 52, 13105-13108.	2.2	21
17	Catalytic Asymmetric Câ^'H Functionalization under Photoredox Conditions by Radical Translocation and Stereocontrolled Alkene Addition. Angewandte Chemie - International Edition, 2016, 55, 13495-13498.	7.2	231
18	Photoredox Catalysis in Organic Chemistry. Journal of Organic Chemistry, 2016, 81, 6898-6926.	1.7	2,156
19	Editorial for the Special Issue on Photocatalysis. Journal of Organic Chemistry, 2016, 81, 6895-6897.	1.7	21

#	Article	IF	CITATIONS
20	Photochemical Stereocontrol Using Tandem Photoredox–Chiral Lewis Acid Catalysis. Accounts of Chemical Research, 2016, 49, 2307-2315.	7.6	271
21	C–H functionalization of amines with aryl halides by nickel-photoredox catalysis. Chemical Science, 2016, 7, 7002-7006.	3.7	141
22	Nickel-Catalyzed Reductive Cross-Coupling of Aryl Bromides with Alkyl Bromides: Et ₃ N as the Terminal Reductant. Organic Letters, 2016, 18, 4012-4015.	2.4	133
23	Intermolecular C–H Quaternary Alkylation of Aniline Derivatives Induced by Visible-Light Photoredox Catalysis. Organic Letters, 2016, 18, 4538-4541.	2.4	37
24	Asymmetric Catalysis with Organic Azides and Diazo Compounds Initiated by Photoinduced Electron Transfer. Journal of the American Chemical Society, 2016, 138, 12636-12642.	6.6	160
25	Synergistic Diazoâ€OH Insertion/Coniaâ€Ene Cascade Catalysis for the Stereoselective Synthesis of <i>γ</i> â€Butyrolactones and Tetrahydrofurans. Chemistry - A European Journal, 2016, 22, 16062-16065.	1.7	23
26	Photoredox Catalysis for the Generation of Carbon Centered Radicals. Accounts of Chemical Research, 2016, 49, 1924-1936.	7.6	226
27	Visible-Light-Promoted Activation of Unactivated C(sp ³)–H Bonds and Their Selective Trifluoromethylthiolation. Journal of the American Chemical Society, 2016, 138, 16200-16203.	6.6	253
28	Ligandâ€Free Heck Reactions of Aryl Iodides: Significant Acceleration of the Rate through Visible Light Irradiation at Ambient Temperature. Advanced Synthesis and Catalysis, 2016, 358, 3736-3742.	2.1	31
29	Controlled Fluoroalkylation Reactions by Visible-Light Photoredox Catalysis. Accounts of Chemical Research, 2016, 49, 2284-2294.	7.6	391
30	Merging photoredox with copper catalysis: decarboxylative difluoroacetylation of α,β-unsaturated carboxylic acids with ICF ₂ CO ₂ Et. Chemical Communications, 2016, 52, 11827-11830.	2.2	66
31	Building Congested Ketone: Substituted Hantzsch Ester and Nitrile as Alkylation Reagents in Photoredox Catalysis. Journal of the American Chemical Society, 2016, 138, 12312-12315.	6.6	159
32	Highly Chemoselective Iridium Photoredox and Nickel Catalysis for the Cross oupling of Primary Aryl Amines with Aryl Halides. Angewandte Chemie, 2016, 128, 13413-13417.	1.6	71
33	Enantioselective rhodium/ruthenium photoredox catalysis en route to chiral 1,2-aminoalcohols. Chemical Communications, 2016, 52, 10183-10186.	2.2	66
34	Highly Chemoselective Iridium Photoredox and Nickel Catalysis for the Cross oupling of Primary Aryl Amines with Aryl Halides. Angewandte Chemie - International Edition, 2016, 55, 13219-13223.	7.2	166
35	Decarboxylative Alkyl–Alkyl Cross oupling Reactions. Angewandte Chemie - International Edition, 2016, 55, 11340-11342.	7.2	52
36	Visible light-induced carbonylation of indoles with arylsulfonyl chlorides and CO. Tetrahedron, 2016, 72, 8442-8448.	1.0	32
37	Utilization of microflow reactors to carry out synthetically useful organic photochemical reactions. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 29, 107-147.	5.6	71

#	Article	IF	CITATIONS
38	Visible-Light Photo-Arbuzov Reaction of Aryl Bromides and Trialkyl Phosphites Yielding Aryl Phosphonates. ACS Catalysis, 2016, 6, 8410-8414.	5.5	125
39	Decarboxylierende Alkylâ€Alkylâ€Kreuzkupplungen. Angewandte Chemie, 2016, 128, 11510-11512.	1.6	14
40	Synthesis of 1,4-Dicarbonyl Compounds from Silyl Enol Ethers and Bromocarbonyls, Catalyzed by an Organic Dye under Visible-Light Irradiation with Perfect Selectivity for the Halide Moiety over the Carbonyl Group. Organic Letters, 2016, 18, 5704-5707.	2.4	54
41	Aryl Ketones as Singleâ€Electronâ€Transfer Photoredox Catalysts in the Nickelâ€Catalyzed Homocoupling of Aryl Halides. European Journal of Organic Chemistry, 2016, 2016, 5822-5825.	1.2	31
42	Porphyrins as Photoredox Catalysts: Experimental and Theoretical Studies. Journal of the American Chemical Society, 2016, 138, 15451-15458.	6.6	153
43	Visible-Light Photoredox-Catalyzed Coupling Reaction of Azoles with α-Carbamoyl Sulfides. Journal of Organic Chemistry, 2016, 81, 7230-7236.	1.7	24
44	Recent Progress in Visible-Light Photoredox-Catalyzed Intermolecular 1,2-Difunctionalization of Double Bonds via an ATRA-Type Mechanism. Journal of Organic Chemistry, 2016, 81, 6945-6952.	1.7	250
45	Organic photoredox catalysis for the oxidation of silicates: applications in radical synthesis and dual catalysis. Chemical Communications, 2016, 52, 9877-9880.	2.2	81
46	Cascade Photoredox/Iodide Catalysis: Access to Difluoro-Î ³ -lactams via Aminodifluoroalkylation of Alkenes. Organic Letters, 2016, 18, 3266-3269.	2.4	92
47	Engineering an iridium-containing metal–organic molecular capsule for induced-fit geometrical conversion and dual catalysis. Chemical Communications, 2016, 52, 9628-9631.	2.2	32
48	Benzylic C(sp ³)–H Functionalization for C–N and C–O Bond Formation via Visible Light Photoredox Catalysis. Journal of Organic Chemistry, 2016, 81, 7161-7171.	1.7	89
49	Diastereoselective Synthesis of CF ₃ - and CF ₂ H-Substituted Spiroethers from Aryl-Fused Cycloalkenylalkanols by Photoredox Catalysis. Journal of Organic Chemistry, 2016, 81, 7064-7071.	1.7	65
50	Synthesis of Trifluoromethylated Sultones from Alkenols Using a Copper Photoredox Catalyst. Journal of Organic Chemistry, 2016, 81, 7139-7147.	1.7	75
51	Visibleâ€Lightâ€Mediated 5â€ <i>exo</i> â€ <i>dig</i> Cyclizations of Amidyl Radicals. European Journal of Organic Chemistry, 2017, 2017, 2108-2111.	1.2	49
52	Synthesis of Fused Pyran Derivatives via Visible-Light-Induced Cascade Cyclization of 1,7-Enynes with Acyl Chlorides. Organic Letters, 2017, 19, 512-515.	2.4	101
53	Improving the throughput of batch photochemical reactions using flow: Dual photoredox and nickel catalysis in flow for C(sp2) <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext></mml:mtext></mml:mrow></mml:math> C(sp3) cross-coupling. Bioorganic and Medicinal Chemistry. 2017. 25. 6190-6196.	1.4	37
54	Coupling of C(sp ³)–H bonds with C(sp ²)–O electrophiles: mild, general and selective. Chemical Communications, 2017, 53, 1192-1195.	2.2	29
55	Visibleâ€Lightâ€Promoted Nickel―and Organicâ€Dyeâ€Cocatalyzed Formylation Reaction of Aryl Halides and Triflates and Vinyl Bromides with Diethoxyacetic Acid as a Formyl Equivalent. Angewandte Chemie, 2017, 129, 1522-1527.	1.6	32

#	Article	IF	CITATIONS
56	Visibleâ€Lightâ€Promoted Nickel―and Organicâ€Dyeâ€Cocatalyzed Formylation Reaction of Aryl Halides and Triflates and Vinyl Bromides with Diethoxyacetic Acid as a Formyl Equivalent. Angewandte Chemie - International Edition, 2017, 56, 1500-1505.	7.2	115
57	Functionalization of C-H Bonds by Photoredox Catalysis. Chemical Record, 2017, 17, 754-774.	2.9	78
58	Hybrid Catalysis Enabling Room-Temperature Hydrogen Gas Release from <i>N</i> -Heterocycles and Tetrahydronaphthalenes. Journal of the American Chemical Society, 2017, 139, 2204-2207.	6.6	165
59	Visible-Light Driven Photocascade Catalysis: Union of <i>N</i> , <i>N</i> -Dimethylanilines and α-Azidochalcones in Flow Microreactors. Journal of Organic Chemistry, 2017, 82, 2249-2256.	1.7	41
60	Preparation of visible-light-activated metal complexes and their use in photoredox/nickel dual catalysis. Nature Protocols, 2017, 12, 472-492.	5.5	72
61	Metalâ€Free Visibleâ€Light Radical Iodoperfluoroalkylation of Terminal Alkenes and Alkynes. European Journal of Organic Chemistry, 2017, 2017, 2126-2129.	1.2	66
62	Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality. Accounts of Chemical Research, 2017, 50, 320-330.	7.6	256
63	Visibleâ€Lightâ€Promoted Asymmetric Crossâ€Dehydrogenative Coupling of Tertiary Amines to Ketones by Synergistic Multiple Catalysis. Angewandte Chemie - International Edition, 2017, 56, 3694-3698.	7.2	208
64	Visible-Light-Promoted Asymmetric Cross-Dehydrogenative Coupling of Tertiary Amines to Ketones by Synergistic Multiple Catalysis. Angewandte Chemie, 2017, 129, 3748-3752.	1.6	47
65	Visibleâ€Light Photocatalysis as an Enabling Tool for the Functionalization of Unactivated C(sp ³)â€Substrates. European Journal of Organic Chemistry, 2017, 2017, 1993-2007.	1.2	74
66	Construction of a visible light-driven hydrocarboxylation cycle of alkenes by the combined use of Rh(<scp>i</scp>) and photoredox catalysts. Chemical Communications, 2017, 53, 3098-3101.	2.2	128
67	Construction and Functionalization of Heteroarenes by Use of Photoredox Catalysis. European Journal of Organic Chemistry, 2017, 2017, 2072-2084.	1.2	49
68	Tandem cyclisation of vinyl radicals: a sustainable approach to indolines utilizing visible-light photoredox catalysis. Green Chemistry, 2017, 19, 1721-1725.	4.6	40
69	General and Efficient C–C Bond Forming Photoredox Catalysis with Semiconductor Quantum Dots. Journal of the American Chemical Society, 2017, 139, 4250-4253.	6.6	194
70	Cooperation of a Nickel–Bipyridine Complex with Light for Benzylic Câ^'H Arylation of Toluene Derivatives. Asian Journal of Organic Chemistry, 2017, 6, 669-672.	1.3	33
71	Photocascade Catalysis: A New Strategy for Cascade Reactions. ChemPhotoChem, 2017, 1, 148-158.	1.5	127
72	Mild, visible light-mediated decarboxylation of aryl carboxylic acids to access aryl radicals. Chemical Science, 2017, 8, 3618-3622.	3.7	131
73	Hydrogen Atom Transfer (HAT): A Versatile Strategy for Substrate Activation in Photocatalyzed Organic Synthesis, European Journal of Organic Chemistry, 2017, 2017, 2056-2071.	1.2	507

#	Article	IF	CITATIONS
74	Direct Phosphonation of Quinolinones and Coumarins Driven by the Photochemical Activity of Substrates and Products. Organic Letters, 2017, 19, 1394-1397.	2.4	91
75	Advances in Organocatalytic 1,6â€Addition Reactions: Enantioselective Construction of Remote Stereogenic Centers. Advanced Synthesis and Catalysis, 2017, 359, 888-912.	2.1	197
76	Mild, Redox-Neutral Alkylation of Imines Enabled by an Organic Photocatalyst. ACS Catalysis, 2017, 7, 1766-1770.	5.5	147
77	Synthesis of <i>N</i> , <i>N</i> â€dimethylaminopyreneâ€modified short peptides for chemical photocatalysis. Journal of Peptide Science, 2017, 23, 563-566.	0.8	11
78	Visible light promoted copper-catalyzed Markovnikov hydration of alkynes at room temperature. Tetrahedron Letters, 2017, 58, 1156-1159.	0.7	24
79	Photoredox/Nickel Dual Catalysis for the C(sp ³)–C(sp ³) Cross oupling of Alkylsilicates with Alkyl Halides. European Journal of Organic Chemistry, 2017, 2017, 2118-2121.	1.2	37
80	Transition-metal-free, visible-light induced cyclization of arylsulfonyl chlorides with o-azidoarylalkynes: a regiospecific route to unsymmetrical 2,3-disubstituted indoles. Chemical Communications, 2017, 53, 4203-4206.	2.2	39
81	A chiral ion-pair photoredox organocatalyst: enantioselective anti-Markovnikov hydroetherification of alkenols. Organic Chemistry Frontiers, 2017, 4, 1037-1041.	2.3	48
82	Die anellierende Erweiterung von π‣ystemen (APEXâ€Reaktion): ein rascher Zugang zu kondensierten Arenen, Heteroarenen und Nanographenen. Angewandte Chemie, 2017, 129, 11296-11317.	1.6	65
83	Photocatalysis in Organic Synthesis – Past, Present, and Future. European Journal of Organic Chemistry, 2017, 2017, 1979-1981.	1.2	224
84	Photocatalytic metal–organic frameworks for organic transformations. CrystEngComm, 2017, 19, 4126-4136.	1.3	116
85	Excited state relaxation processes of H ₂ -evolving Ru–Pd supramolecular photocatalysts containing a linear or non-linear bridge: a DFT and TDDFT study. Physical Chemistry Chemical Physics, 2017, 19, 11529-11539.	1.3	5
86	Lanthanide Ions Coupled with Photoinduced Electron Transfer Generate Strong Reduction Potentials from Visible Light. Chemistry - A European Journal, 2017, 23, 7900-7904.	1.7	41
87	Visible Light Induced Organic Transformations Using Metalâ€Organicâ€Frameworks (MOFs). Chemistry - A European Journal, 2017, 23, 11189-11209.	1.7	176
88	Visible-Light-Mediated Reactions of Electrophilic Radicals with Vinyl and Allyl Trifluoroborates. ACS Catalysis, 2017, 7, 4126-4130.	5.5	52
89	Visibleâ€Lightâ€Mediated [4+2] Cycloaddition of Styrenes: Synthesis of Tetralin Derivatives. Angewandte Chemie, 2017, 129, 7000-7004.	1.6	25
90	Utilization of MoS2 and graphene to enhance the photocatalytic activity of Cu2O for oxidative C C bond formation. Applied Catalysis B: Environmental, 2017, 213, 1-8.	10.8	52
91	Bidirectional Access to Radical Cation Dielsâ€Alder Reactions by Electrocatalysis. ChemElectroChem, 2017, 4, 1852-1855.	1.7	16

#	Article	IF	CITATIONS
92	Photo-induced copper-catalyzed C–H chalcogenation of azoles at room temperature. Chemical Communications, 2017, 53, 5906-5909.	2.2	85
93	Direct Coupling of Naphthalene and Sulfonimides Promoted by DDQ and Blue Light. Chemistry Letters, 2017, 46, 1014-1016.	0.7	19
94	Visible-Light-Induced Regioselective Cyanomethylation of Imidazopyridines and Its Application in Drug Synthesis. Journal of Organic Chemistry, 2017, 82, 5391-5397.	1.7	71
95	Pyridyl-Acyl Hydrazone Rotaxanes and Molecular Shuttles. Journal of the American Chemical Society, 2017, 139, 7104-7109.	6.6	64
96	Visibleâ€Lightâ€Mediated [4+2] Cycloaddition of Styrenes: Synthesis of Tetralin Derivatives. Angewandte Chemie - International Edition, 2017, 56, 6896-6900.	7.2	68
97	Enantioselective Michael Addition of Photogenerated o-Quinodimethanes to Enones Catalyzed by Chiral Amino Acid Esters. Organic Letters, 2017, 19, 2322-2325.	2.4	29
98	Merger of Visible-Light Photoredox Catalysis and C–H Activation for the Room-Temperature C-2 Acylation of Indoles in Batch and Flow. ACS Catalysis, 2017, 7, 3818-3823.	5.5	116
99	Metal-free direct alkylation of unfunctionalized allylic/benzylic sp ³ C–H bonds via photoredox induced radical cation deprotonation. Chemical Science, 2017, 8, 4654-4659.	3.7	120
100	Merging visible-light photoredox and copper catalysis in catalytic aerobic oxidation of amines to nitriles. Organic and Biomolecular Chemistry, 2017, 15, 328-332.	1.5	27
101	Enantioselective catalytic β-amination through proton-coupled electron transfer followed by stereocontrolled radical–radical coupling. Chemical Science, 2017, 8, 5757-5763.	3.7	77
102	A visible-light-activated rhodium complex in enantioselective conjugate addition of α-amino radicals with Michael acceptors. Chemical Communications, 2017, 53, 7665-7668.	2.2	99
103	Visible-light-induced selective synthesis of sulfoxides from alkenes and thiols using air as the oxidant. Green Chemistry, 2017, 19, 3520-3524.	4.6	116
104	Double Activation Catalysis for α′â€Alkylidene Cyclic Enones with Chiral Amines and Thiols. Chemistry - A European Journal, 2017, 23, 10678-10682.	1.7	16
105	A General Small-Scale Reactor To Enable Standardization and Acceleration of Photocatalytic Reactions. ACS Central Science, 2017, 3, 647-653.	5.3	195
106	Photoinduced difunctionalization of 2,3-dihydrofuran for the efficient synthesis of 2,3-disubstituted tetrahydrofurans. Organic Chemistry Frontiers, 2017, 4, 1640-1646.	2.3	11
107	Linking Re ^I and Pt ^{II} Chromophores with Aminopyridines: A Simple Route to Achieve a Complicated Photophysical Behavior. Chemistry - A European Journal, 2017, 23, 11301-11311.	1.7	10
108	Visibleâ€Lightâ€Mediated Dual Decarboxylative Coupling of Redoxâ€Active Esters with α,βâ€Unsaturated Carboxylic Acids. Chemistry - A European Journal, 2017, 23, 10259-10263.	1.7	51
109	Photoinduced Oxidative Formylation of <i>N</i> , <i>N</i> -Dimethylanilines with Molecular Oxygen without External Photocatalyst. Organic Letters, 2017, 19, 3386-3389.	2.4	88

#	Article	IF	CITATIONS
110	"Superâ€Reducing―Photocatalysis: Consecutive Energy and Electron Transfers with Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2017, 56, 10280-10281.	7.2	27
111	Direct Visible-Light-Excited Asymmetric Lewis Acid Catalysis of Intermolecular [2+2] Photocycloadditions. Journal of the American Chemical Society, 2017, 139, 9120-9123.	6.6	203
112	Understanding Rate Acceleration and Stereoinduction of an Asymmetric Giese Reaction Mediated by a Chiral Rhodium Catalyst. Journal of the American Chemical Society, 2017, 139, 8062-8065.	6.6	41
113	The Hitchhiker's Guide to Flow Chemistry. Chemical Reviews, 2017, 117, 11796-11893.	23.0	1,410
114	Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. Bulletin of the Chemical Society of Japan, 2017, 90, 967-1004.	2.0	257
115	Visible-Light-Promoted [2 + 2 + 2] Cyclization of Alkynes with Nitriles to Pyridines Using Pyrylium Salts as Photoredox Catalysts. Organic Letters, 2017, 19, 1958-1961.	2.4	49
116	A unified strategy for silver-, base-, and oxidant-free direct arylation of C–H bonds. Green Chemistry, 2017, 19, 2111-2117.	4.6	36
117	Visible light-induced tandem oxidative cyclization of 2-alkynylanilines with disulfides (diselenides) to 3-sulfenyl- and 3-selenylindoles under transition metal-free and photocatalyst-free conditions. Organic Chemistry Frontiers, 2017, 4, 1322-1330.	2.3	65
118	Aroyl chlorides as novel acyl radical precursors via visible-light photoredox catalysis. Organic Chemistry Frontiers, 2017, 4, 1331-1335.	2.3	78
119	Titanium dioxide visible light photocatalysis: surface association enables photocatalysis with visible light irradiation. Chemical Communications, 2017, 53, 4335-4338.	2.2	88
120	Annulative Ï€â€Extension (APEX): Rapid Access to Fused Arenes, Heteroarenes, and Nanographenes. Angewandte Chemie - International Edition, 2017, 56, 11144-11164.	7.2	220
121	Photoredox-Mediated Routes to Radicals: The Value of Catalytic Radical Generation in Synthetic Methods Development. ACS Catalysis, 2017, 7, 2563-2575.	5.5	468
122	Enhancing the Rate of Quantum-Dot-Photocatalyzed Carbon–Carbon Coupling by Tuning the Composition of the Dot's Ligand Shell. Journal of the American Chemical Society, 2017, 139, 4246-4249.	6.6	117
123	Entropic electrolytes for anodic cycloadditions of unactivated alkene nucleophiles. Chemical Communications, 2017, 53, 3960-3963.	2.2	38
124	Catalytic Dehydrogenative C–H Imidation of Arenes Enabled by Photo-generated Hole Donation to Sulfonimide. CheM, 2017, 2, 383-392.	5.8	86
125	Visible-Light-Promoted Tandem Difluoroalkylation–Amidation: Access to Difluorooxindoles from Free Anilines. Journal of Organic Chemistry, 2017, 82, 3943-3949.	1.7	51
126	Visible-Light-Promoted Atom Transfer Radical Cyclization of Unactivated Alkyl Iodides. ACS Catalysis, 2017, 7, 409-412.	5.5	80
127	Photoredox/BrÃ,nsted Acid Co-Catalysis Enabling Decarboxylative Coupling of Amino Acid and Peptide Redox-Active Esters with N-Heteroarenes. ACS Catalysis, 2017, 7, 907-911.	5.5	233

#	Article	IF	CITATIONS
128	Visible-Light-Driven, Radical-Triggered Tandem Cyclization of <i>o</i> -Hydroxyaryl Enaminones: Facile Access to 3-CF ₂ /CF ₃ -Containing Chromones. Organic Letters, 2017, 19, 146-149.	2.4	99
129	Photoinitiated Thiolâ€Ene "Click―Reaction: An Organocatalytic Alternative. Advanced Synthesis and Catalysis, 2017, 359, 323-328.	2.1	74
130	Transition Metal-Catalyzed C–H Amination: Scope, Mechanism, and Applications. Chemical Reviews, 2017, 117, 9247-9301.	23.0	1,707
131	Dual gold and photoredox catalysis: visible light-mediated intermolecular atom transfer thiosulfonylation of alkenes. Chemical Science, 2017, 8, 2610-2615.	3.7	154
132	Relay Visible-Light Photoredox Catalysis: Synthesis of Pyrazole Derivatives via Formal [4 + 1] Annulation and Aromatization. Organic Letters, 2017, 19, 214-217.	2.4	55
133	Metalâ€Free Photocatalytic Reductive Dehalogenation Using Visibleâ€Light: A Timeâ€Resolved Mechanistic Study. European Journal of Organic Chemistry, 2017, 2017, 2164-2169.	1.2	40
134	Porphyrin atalyzed Photochemical C–H Arylation of Heteroarenes. European Journal of Organic Chemistry, 2017, 2017, 2104-2107.	1.2	53
135	Bifunctional Photocatalysts for Enantioselective Aerobic Oxidation of β-Ketoesters. Journal of the American Chemical Society, 2017, 139, 63-66.	6.6	207
136	A laboratory-scale annular continuous flow reactor for UV photochemistry using excimer lamps for discrete wavelength excitation and its use in a wavelength study of a photodecarboxlyative cyclisation. Green Chemistry, 2017, 19, 1431-1438.	4.6	23
137	Visibleâ€Light, Photoredoxâ€Mediated Oxidative Tandem Nitrosoâ€Diels–Alder Reaction of Arylhydroxylamines with Conjugated Dienes. European Journal of Organic Chemistry, 2017, 2017, 2095-2098.	1.2	12
138	Visible-light-mediated aerobic selenation of (hetero)arenes with diselenides. Green Chemistry, 2017, 19, 5559-5563.	4.6	120
139	Visible-light induced tandem radical cyanomethylation and cyclization of N-aryl acrylamides: access to cyanomethylated oxindoles. RSC Advances, 2017, 7, 49299-49302.	1.7	20
140	Bifunctional organic sponge photocatalyst for efficient cross-dehydrogenative coupling of tertiary amines to ketones. Chemical Communications, 2017, 53, 12536-12539.	2.2	44
141	Synthesis of Arylamines via Aminium Radicals. Angewandte Chemie - International Edition, 2017, 56, 14948-14952.	7.2	107
142	An Ir-photoredox-catalyzed decarboxylative Michael addition of glyoxylic acid acetal as a formyl equivalent. Chemical Communications, 2017, 53, 11642-11645.	2.2	47
143	Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations. Journal of Materials Chemistry A, 2017, 5, 22933-22938.	5.2	176
144	Controllable Sulfoxidation and Sulfenylation with Organic Thiosulfate Salts via Dual Electron- and Energy-Transfer Photocatalysis. ACS Catalysis, 2017, 7, 7587-7592.	5.5	141
145	Radical cascade reactions triggered by single electron transfer. Nature Reviews Chemistry, 2017, 1, .	13.8	211

#	Article	IF	CITATIONS
146	Photosensitised regioselective [2+2]-cycloaddition of cinnamates and related alkenes. Chemical Communications, 2017, 53, 12072-12075.	2.2	72
147	Proximity-Induced Reactivity and Product Selectivity with a Rationally Designed Bifunctional Peptide Catalyst. ACS Catalysis, 2017, 7, 7704-7708.	5.5	16
148	General, Auxiliary-Enabled Photoinduced Pd-Catalyzed Remote Desaturation of Aliphatic Alcohols. Journal of the American Chemical Society, 2017, 139, 14857-14860.	6.6	131
149	Aryltrimethylstannane Cation Radical Fragmentation Selectivities That Depend on Codonor: Evidence for Reactions from Heterodimer Cation Radicals. Journal of Organic Chemistry, 2017, 82, 11052-11055.	1.7	2
150	Transition-Metal-Free Radical C(sp ³)–C(sp ²) and C(sp ³)–C(sp ³) Coupling Enabled by 2-Azaallyls as Super-Electron-Donors and Coupling-Partners. Journal of the American Chemical Society, 2017, 139, 16327-16333.	6.6	77
151	Visible Lightâ€Promoted Synthesis of Spiroepoxy Chromanone Derivatives via a Tandem Oxidation/Radical Cyclization/Epoxidation Process. Advanced Synthesis and Catalysis, 2017, 359, 3945-3949.	2.1	37
152	Alkinylierung von C(O)â€Hâ€Bindungen durch Photoredoxâ€vermittelten Wasserstoffatomtransfer. Angewandte Chemie, 2017, 129, 14915-14919.	1.6	15
153	Structuring Pd Nanoparticles on 2H-WS ₂ Nanosheets Induces Excellent Photocatalytic Activity for Cross-Coupling Reactions under Visible Light. Journal of the American Chemical Society, 2017, 139, 14767-14774.	6.6	160
154	Photoredox Generation of Carbonâ€Centered Radicals Enables the Construction of 1,1â€Difluoroalkene Carbonyl Mimics. Angewandte Chemie - International Edition, 2017, 56, 15073-15077.	7.2	276
155	Photoredox-Catalyzed Cross-Coupling of Enamides for the Assembly of β-Difluoroimine Synthons. Organic Letters, 2017, 19, 5653-5656.	2.4	24
156	Directed γ-C(sp ³)–H Alkylation of Carboxylic Acid Derivatives through Visible Light Photoredox Catalysis. Journal of the American Chemical Society, 2017, 139, 14897-14900.	6.6	160
157	Ru/Cu Photoredox or Cu/Ag Catalyzed C4–H Sulfonylation of 1-Naphthylamides at Room Temperature. Journal of Organic Chemistry, 2017, 82, 12119-12127.	1.7	63
158	Efficient Aryl Migration from an Aryl Ether to a Carboxylic Acid Group To Form an Ester by Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2017, 56, 13809-13813.	7.2	49
159	Visibleâ€Lightâ€Driven Palladiumâ€Catalyzed Radical Alkylation of Câ^'H Bonds with Unactivated Alkyl Bromides. Angewandte Chemie - International Edition, 2017, 56, 15683-15687.	7.2	181
160	A Mild Hydroaminoalkylation of Conjugated Dienes Using a Unified Cobalt and Photoredox Catalytic System. Journal of the American Chemical Society, 2017, 139, 15504-15508.	6.6	151
161	Heteromultimetallic catalysis for sustainable organic syntheses. Chemical Society Reviews, 2017, 46, 7399-7420.	18.7	135
162	Visibleâ€Lightâ€Driven Palladiumâ€Catalyzed Radical Alkylation of Câ^'H Bonds with Unactivated Alkyl Bromides. Angewandte Chemie, 2017, 129, 15889-15893.	1.6	36
163	Organocatalytic Enantioselective Protonation for Photoreduction of Activated Ketones and Ketimines Induced by Visible Light. Angewandte Chemie, 2017, 129, 14030-14034.	1.6	19

#	Article	IF	CITATIONS
164	A personal perspective on the future of flow photochemistry. Journal of Flow Chemistry, 2017, 7, 87-93.	1.2	85
165	Visible-light-enabled spirocyclization of alkynes leading to 3-sulfonyl and 3-sulfenyl azaspiro[4,5]trienones. Green Chemistry, 2017, 19, 5608-5613.	4.6	145
166	Ultrafast Electron Transfer from Upper Excited State of Encapsulated Azulenes to Acceptors across an Organic Molecular Wall. Journal of Physical Chemistry C, 2017, 121, 20205-20216.	1.5	12
167	Photoinduced, Copper-Catalyzed Decarboxylative C–N Coupling to Generate Protected Amines: An Alternative to the Curtius Rearrangement. Journal of the American Chemical Society, 2017, 139, 12153-12156.	6.6	273
168	Identifying key intermediates generated in situ from Cu(II) salt–catalyzed C–H functionalization of aromatic amines under illumination. Science Advances, 2017, 3, e1700666.	4.7	40
169	Carboxylation of Aromatic and Aliphatic Bromides and Triflates with CO ₂ by Dual Visibleâ€Light–Nickel Catalysis. Angewandte Chemie - International Edition, 2017, 56, 13426-13430.	7.2	173
170	Effect of Enhanced RuO ₂ Layer on the Sustainability of Ru/MMT Catalyst towards [3+2] Cycloaddition Reaction. ChemistrySelect, 2017, 2, 6949-6956.	0.7	5
171	Carboxylation of Aromatic and Aliphatic Bromides and Triflates with CO ₂ by Dual Visibleâ€Light–Nickel Catalysis. Angewandte Chemie, 2017, 129, 13611-13615.	1.6	50
172	Visible-light-induced tandem cyclization of 2-alkynylanilines with disulfides: a convenient method for accessing benzothiophenes under transition-metal-free and photocatalyst-free conditions. Organic and Biomolecular Chemistry, 2017, 15, 7678-7684.	1.5	22
173	Photoredox Imino Functionalizations of Olefins. Angewandte Chemie - International Edition, 2017, 56, 13361-13365.	7.2	216
174	Photoswitchable molecules as key ingredients to drive systems away from the global thermodynamic minimum. Chemical Society Reviews, 2017, 46, 5536-5550.	18.7	208
175	Efficient Aryl Migration from an Aryl Ether to a Carboxylic Acid Group To Form an Ester by Visibleâ€Light Photoredox Catalysis. Angewandte Chemie, 2017, 129, 13997-14001.	1.6	6
176	Room-Temperature Direct Arylation of Anilides under External Oxidant-Free Conditions Using CO ₂ -Derived Dimethyl Carbonate (DMC) as a ′Green′ Solvent. ChemistrySelect, 2017, 2, 7565-7569.	0.7	9
177	Photoinduced Nickel-Catalyzed Chemo- and Regioselective Hydroalkylation of Internal Alkynes with Ether and Amide α-Hetero C(sp ³)–H Bonds. Journal of the American Chemical Society, 2017, 139, 13579-13584.	6.6	192
178	Intermolecular Radical Addition to Carbonyls Enabled by Visible Light Photoredox Initiated Hole Catalysis. Journal of the American Chemical Society, 2017, 139, 13652-13655.	6.6	105
179	Heuristics, Protocol, and Considerations for Flow Chemistry in Photoredox Catalysis. ChemPhotoChem, 2017, 1, 539-543.	1.5	14
180	Cu/Pd cooperatively catalyzed tandem C–N and C–P bond formation: access to phosphorated 2H-indazoles. Organic and Biomolecular Chemistry, 2017, 15, 8458-8462.	1.5	17
181	Alkynylation of C(O)–H Bonds Enabled by Photoredoxâ€Mediated Hydrogenâ€Atom Transfer. Angewandte Chemie - International Edition, 2017, 56, 14723-14726.	7.2	89

#	Article	IF	Citations
182	Organocatalytic Enantioselective Protonation for Photoreduction of Activated Ketones and Ketimines Induced by Visible Light. Angewandte Chemie - International Edition, 2017, 56, 13842-13846.	7.2	101
183	Asymmetric Visible-Light Photoredox Cross-Dehydrogenative Coupling of Aldehydes with Xanthenes. ACS Catalysis, 2017, 7, 7008-7013.	5.5	72
184	Oxidative functionalisation of alcohols and aldehydes via the merger of oxoammonium cations and photoredox catalysis. Organic and Biomolecular Chemistry, 2017, 15, 8295-8301.	1.5	25
185	Collective Approach to Advancing C–H Functionalization. ACS Central Science, 2017, 3, 936-943.	5.3	175
186	α-Alkylation of ketimines using visible light photoredox catalysis. RSC Advances, 2017, 7, 43655-43659.	1.7	9
187	Photoredox-Catalyzed Cascade Difluoroalkylation and Intramolecular Cyclization for Construction of Fluorinated Î ³ -Butyrolactones. Journal of Organic Chemistry, 2017, 82, 9824-9831.	1.7	61
188	Visible Lightâ€Induced Roomâ€Temperature Heck Reaction of Functionalized Alkyl Halides with Vinyl Arenes/Heteroarenes. Angewandte Chemie, 2017, 129, 14400-14404.	1.6	50
189	Visible Lightâ€Induced Roomâ€Temperature Heck Reaction of Functionalized Alkyl Halides with Vinyl Arenes/Heteroarenes. Angewandte Chemie - International Edition, 2017, 56, 14212-14216.	7.2	180
190	Photoredox Imino Functionalizations of Olefins. Angewandte Chemie, 2017, 129, 13546-13550.	1.6	68
192	Visible-light-mediated direct perfluoroalkylation and trifluoromethylation of free anilines. Tetrahedron Letters, 2017, 58, 3939-3941.	0.7	21
193	Frontier orbitals of photosubstitutionally active ruthenium complexes: an experimental study of the spectator ligands' electronic properties influence on photoreactivity. Dalton Transactions, 2017, 46, 9969-9980.	1.6	16
194	"Superâ€reduzierende―Photokatalyse: konsekutive Energie―und Elektronentransfers mit polycyclischen aromatischen Kohlenwasserstoffen. Angewandte Chemie, 2017, 129, 10414-10415.	1.6	15
195	Photoredox mediated nickel catalyzed C(sp ³)–H thiocarbonylation of ethers. Chemical Science, 2017, 8, 6613-6618.	3.7	37
196	Catalytic Intermolecular Dicarbofunctionalization of Styrenes with CO ₂ and Radical Precursors. Angewandte Chemie, 2017, 129, 11055-11059.	1.6	72
197	Catalytic Intermolecular Dicarbofunctionalization of Styrenes with CO ₂ and Radical Precursors. Angewandte Chemie - International Edition, 2017, 56, 10915-10919.	7.2	235
198	Visible light-induced cyclization reactions for the synthesis of 1,2,4-triazolines and 1,2,4-triazoles. Chemical Communications, 2017, 53, 9644-9647.	2.2	51
199	Photochemical Dual atalytic Synthesis of Alkynyl Sulfides. Angewandte Chemie - International Edition, 2017, 56, 12255-12259.	7.2	58
200	Photochemical Dual atalytic Synthesis of Alkynyl Sulfides. Angewandte Chemie, 2017, 129, 12423-12427.	1.6	15

#	Article	IF	CITATIONS
201	Approach to Comparing the Functional Group Tolerance of Reactions. Journal of Organic Chemistry, 2017, 82, 9154-9159.	1.7	93
202	Room temperature C(sp ²)–H oxidative chlorination via photoredox catalysis. Chemical Science, 2017, 8, 7009-7013.	3.7	60
203	Aminomethylation of Aryl Halides Using α-Silylamines Enabled by Ni/Photoredox Dual Catalysis. ACS Catalysis, 2017, 7, 6065-6069.	5.5	67
204	Photoorganocatalytic synthesis of lactones via a selective C–H activation–alkylation of alcohols. Green Chemistry, 2017, 19, 4451-4456.	4.6	51
205	Photoinduced, Copper-Catalyzed Alkylation of Amines: A Mechanistic Study of the Cross-Coupling of Carbazole with Alkyl Bromides. Journal of the American Chemical Society, 2017, 139, 12716-12723.	6.6	89
206	Visible light-induced transition metal-catalyzed transformations: beyond conventional photosensitizers. Chemical Society Reviews, 2017, 46, 6227-6240.	18.7	304
207	Visible-Light Induced Thiol–Ene Reaction on Natural Lignin. ACS Sustainable Chemistry and Engineering, 2017, 5, 9160-9168.	3.2	58
208	Visible Light Organic Photoredox-Catalyzed C–H Alkoxylation of Imidazopyridine with Alcohol. Journal of Organic Chemistry, 2017, 82, 13722-13727.	1.7	73
209	Design of a Photoredox Catalyst that Enables the Direct Synthesis of Carbamate-Protected Primary Amines via Photoinduced, Copper-Catalyzed <i>N</i> -Alkylation Reactions of Unactivated Secondary Halides. Journal of the American Chemical Society, 2017, 139, 18101-18106.	6.6	110
210	Direct Synthesis of Secondary Benzylic Alcohols Enabled by Photoredox/Ni Dual-Catalyzed Cross-Coupling. Journal of Organic Chemistry, 2017, 82, 13728-13734.	1.7	34
211	Copper-Catalyzed Alkylation of Aliphatic Amines Induced by Visible Light. Journal of the American Chemical Society, 2017, 139, 17707-17710.	6.6	115
212	Selective Single C(sp ³)–F Bond Cleavage in Trifluoromethylarenes: Merging Visible-Light Catalysis with Lewis Acid Activation. Journal of the American Chemical Society, 2017, 139, 18444-18447.	6.6	188
213	Visibleâ€Lightâ€Mediated Metalâ€Free Hydrosilylation of Alkenes through Selective Hydrogen Atom Transfer for Siâ^'H Activation. Angewandte Chemie - International Edition, 2017, 56, 16621-16625.	7.2	149
214	Origins of Enantioselectivity in Asymmetric Radical Additions to Octahedral Chiral-at-Rhodium Enolates: A Computational Study. Journal of the American Chemical Society, 2017, 139, 17902-17907.	6.6	58
215	Visibleâ€Lightâ€Mediated Metalâ€Free Hydrosilylation of Alkenes through Selective Hydrogen Atom Transfer for Siâ^'H Activation. Angewandte Chemie, 2017, 129, 16848-16852.	1.6	36
216	Visible-Light-Induced Aza-Pinacol Rearrangement: Ring Expansion of Alkylidenecyclopropanes. Organic Letters, 2017, 19, 6288-6291.	2.4	50
217	Site-selective and stereoselective functionalization of non-activated tertiary C–H bonds. Nature, 2017, 551, 609-613.	13.7	239
218	Achieving Molecular Complexity via Stereoselective Multiple Domino Reactions Promoted by a Secondary Amine Organocatalyst. Accounts of Chemical Research, 2017, 50, 2809-2821.	7.6	118

ARTICLE IF CITATIONS # Visible-Light-Mediated Annulation of Electron-Rich Alkenes and Nitrogen-Centered Radicals from <i>N</i>-Sulfonylallylamines: Construction of Chloromethylated Pyrrolidine Derivatives. Journal of 219 1.7 22 Organic Chemistry, 2017, 82, 13093-13108. Recent developments in transition-metal photoredox-catalysed reactions of carbonyl derivatives. 2.2 Chemical Communications, 2017, 53, 13093-13112. Metal-free photocatalyzed cross coupling of aryl (heteroaryl) bromides with isonitriles. 221 1.0 21 Tetrahedron, 2017, 73, 7094-7099. Chemo- and Regioselective Organo-Photoredox Catalyzed Hydroformylation of Styrenes via a Radical 121 Pathway. Journal of the American Chemical Society, 2017, 139, 9799-9802. Oxidative [1,2]-Brook Rearrangements Exploiting Single-Electron Transfer: Photoredox-Catalyzed 223 72 6.6 Alkylations and Arylations. Journal of the American Chemical Society, 2017, 139, 9487-9490. Visible-Light-Triggered Directly Reductive Arylation of Carbonyl/Iminyl Derivatives through Photocatalytic PCET. Organic Letters, 2017, 19, 3807-3810. 224 2.4 Visible-light-induced thiotrifluoromethylation of terminal alkenes with sodium triflinate and 225 2.2 63 benzenesulfonothioates. Chemical Communications, 2017, 53, 8968-8971. Visible-light-induced oxidative formylation of N-alkyl-N-(prop-2-yn-1-yl)anilines with molecular oxygen 48 in the absence of an external photosensitizer. Chemical Communications, 2017, 53, 8482-8485 227 The merger of transition metal and photocatalysis. Nature Reviews Chemistry, 2017, 1, . 13.8 1,591 Synthesis of 3-CF₂-Containing Chromones via a Visible-Light-Induced Radical Cascade 1.6 Reaction of <i>o</i>-Hydroxyaryl Enaminones. ACS Omega, 2017, 2, 3168-3174. Phosphorylation of Alkenyl and Aryl C–O Bonds via Photoredox/Nickel Dual Catalysis. Organic 229 2.4 92 Letters, 2017, 19, 3735-3738. Haloselective Cross-Coupling via Ni/Photoredox Dual Catalysis. ACS Catalysis, 2017, 7, 5129-5133. 5.5 46 Radical cascade cyclization of 1,n-envnes and divnes for the synthesis of carbocycles and 231 18.7 336 heterocycles. Chemical Society Reviews, 2017, 46, 4329-4346. Dual visible-light photoredox and palladium(<scp>ii</scp>) catalysis for dehydrogenative C2-acylation of indoles at room temperature. Organic and Biomolecular Chemistry, 2017, 15, 5899-5903. 1.5 Bipyridyl– and pyridylquinolyl–phenothiazine structures as potential photoactive ligands: Syntheses 233 0.7 1 and complexation to palladium. Tetrahedron Letters, 2017, 58, 3096-3100. Continuous Photo-Oxidation in a Vortex Reactor: Efficient Operations Using Air Drawn from the 234 Laboratory. Organic Process Research and Development, 2017, 21, 1042-1050. Chromium(III) Bis-Arylterpyridyl Complexes with Enhanced Visible Absorption via Incorporation of 235 1.9 42 Intraligand Charge-Transfer Transitions. Inorganic Chemistry, 2017, 56, 8212-8222. Photocatalytic <i>E</i> â†' <i>Z</i> Isomerization of Polarized Alkenes Inspired by the Visual Cycle: Mechanistic Dichotomy and Origin of Selectivity. Journal of Organic Chemistry, 2017, 82, 9955-9977.

#	Article	IF	CITATIONS
237	A sustainable synthesis of 2-aryl-3-carboxylate indolines from N-aryl enamines under visible light irradiation. Chemical Communications, 2017, 53, 8320-8323.	2.2	16
238	Synthesis of Tetrasubstituted Furans by Using Photoredoxâ€Catalyzed Coupling of 2â€Bromoâ€1,3â€dicarbonyl Compounds with Silyl Enol Ethers. Asian Journal of Organic Chemistry, 2017, 6, 414-417.	1.3	12
239	Photobiocatalytic alcohol oxidation using LED light sources. Green Chemistry, 2017, 19, 376-379.	4.6	44
240	Photoredox Generation of Carbonâ€Centered Radicals Enables the Construction of 1,1â€Difluoroalkene Carbonyl Mimics. Angewandte Chemie, 2017, 129, 15269-15273.	1.6	48
241	SOMO and Photoredox Asymmetric Organocatalysis. , 2017, , 1-85.		2
242	Oneâ€Pot Tandem Photoredox and Cross oupling Catalysis with a Single Palladium Carbodicarbene Complex. Angewandte Chemie - International Edition, 2018, 57, 4622-4626.	7.2	62
243	Photolytic Reactivity of Organometallic Chromium Bipyridine Complexes. Inorganic Chemistry, 2018, 57, 9611-9621.	1.9	9
244	Diastereo- and Enantioselective Formal [3 + 2] Cycloaddition of Cyclopropyl Ketones and Alkenes via Ti-Catalyzed Radical Redox Relay. Journal of the American Chemical Society, 2018, 140, 3514-3517.	6.6	107
245	Engaging sulfinate salts <i>via</i> Ni/photoredox dual catalysis enables facile C _{sp2} –SO ₂ R coupling. Chemical Science, 2018, 9, 3186-3191.	3.7	104
246	Heterogeneous Dual Photoredox-Lewis Acid Catalysis Using a Single Bifunctional Nanomaterial. ACS Catalysis, 2018, 8, 2914-2922.	5.5	23
247	Photokatalyse mit sichtbarem Licht: Welche Bedeutung hat sie für die organische Synthese?. Angewandte Chemie, 2018, 130, 10188-10228.	1.6	360
248	One-Pot Tandem Photoredox and Cross-Coupling Catalysis with a Single Palladium Carbodicarbene Complex. Angewandte Chemie, 2018, 130, 4712-4716.	1.6	15
249	Expanding the Scope of Photocatalysis: Atom Transfer Radical Addition of Bromoacetonitrile to Aliphatic Olefins. ChemCatChem, 2018, 10, 2466-2470.	1.8	15
252	Sequential Photoredox Catalysis for Cascade Aerobic Decarboxylative Povarov and Oxidative Dehydrogenation Reactions of <i>N</i> â€Aryl αâ€Amino Acids. Advanced Synthesis and Catalysis, 2018, 360, 1754-1760.	2.1	56
253	Origin of Stereocontrol in Photoredox Organocatalysis of Asymmetric α-Functionalizations of Aldehydes. Journal of Organic Chemistry, 2018, 83, 3333-3338.	1.7	11
254	Hydrogel-Embedded Model Photocatalytic System Investigated by Raman and IR Spectroscopy Assisted by Density Functional Theory Calculations and Two-Dimensional Correlation Analysis. Journal of Physical Chemistry A, 2018, 122, 2677-2687.	1.1	7
255	Halogenâ€Bondâ€Promoted α â^'H Amination of Ethers for the Synthesis of Hemiaminal Ethers. Advanced Synthesis and Catalysis, 2018, 360, 1761-1767.	2.1	30
256	Selective Hydrogen Atom Abstraction through Induced Bond Polarization: Direct αâ€Arylation of Alcohols through Photoredox, HAT, and Nickel Catalysis. Angewandte Chemie - International Edition, 2018, 57, 5369-5373.	7.2	151

#	Article	IF	CITATIONS
257	Preparation of chiral-at-metal catalysts and their use in asymmetric photoredox chemistry. Nature Protocols, 2018, 13, 605-632.	5.5	74
258	PQS-enabled visible-light iridium photoredox catalysis in water at room temperature. Green Chemistry, 2018, 20, 1233-1237.	4.6	86
259	Nickel Dual Photoredox Catalysis for the Synthesis of Aryl Amines. Organometallics, 2018, 37, 1468-1472.	1.1	33
260	Photochemical and Electrochemical Carbon Dioxide Utilization with Organic Compounds. Chinese Journal of Chemistry, 2018, 36, 644-659.	2.6	161
261	Peripherally Metalated Porphyrins with Applications in Catalysis, Molecular Electronics and Biomedicine. Chemistry - A European Journal, 2018, 24, 15442-15460.	1.7	54
262	Visibleâ€Lightâ€Accelerated Copper(II)â€Catalyzed Regio―and Chemoselective Oxoâ€Azidation of Vinyl Arenes. Angewandte Chemie - International Edition, 2018, 57, 8288-8292.	7.2	131
263	Hoveyda–Grubbs II Catalyst: A Useful Catalyst for One-Pot Visible-Light-Promoted Ring Contraction and Olefin Metathesis Reactions. Organic Letters, 2018, 20, 2774-2777.	2.4	30
264	Visibleâ€Lightâ€Driven Conversion of Alcohols into Iodide Derivatives with Iodoform. ChemPhotoChem, 2018, 2, 720-724.	1.5	11
265	A chiral nickel DBFOX complex as a bifunctional catalyst for visible-light-promoted asymmetric photoredox reactions. Chemical Science, 2018, 9, 4562-4568.	3.7	93
266	TiO ₂ Photocatalysis in Aromatic "Redox Tag―Guided Intermolecular Formal [2 + 2] Cycloadditions. Journal of Organic Chemistry, 2018, 83, 4948-4962.	1.7	38
267	Soft 2D nanoarchitectonics. NPG Asia Materials, 2018, 10, 90-106.	3.8	121
268	Selective Hydrogen Atom Abstraction through Induced Bond Polarization: Direct αâ€Arylation of Alcohols through Photoredox, HAT, and Nickel Catalysis. Angewandte Chemie, 2018, 130, 5467-5471.	1.6	42
269	Ni/Ti Dual Catalytic Cross-Coupling of Nitriles and Organobromides To Access Ketones. ACS Catalysis, 2018, 8, 4539-4544.	5.5	25
270	Ultrafast Energy Transfer in Dinuclear Complexes with Bridging 1,10-Phenanthroline-5,6-Dithiolate. Inorganic Chemistry, 2018, 57, 4849-4863.	1.9	10
271	<i>Cis</i> -Selective Decarboxylative Alkenylation of Aliphatic Carboxylic Acids with Vinyl Arenes Enabled by Photoredox/Palladium/Uphill Triple Catalysis. Organic Letters, 2018, 20, 2559-2563.	2.4	53
272	Why Cyclopropanation is not Involved in Photoinduced αâ€Alkylation of Ketones with Diazo Compounds. European Journal of Organic Chemistry, 2018, 2018, 6634-6642.	1.2	7
273	Visible light-promoted metal-free aerobic oxyphosphorylation of olefins: A facile approach to β-ketophosphine oxides. Tetrahedron Letters, 2018, 59, 2062-2065.	0.7	16
274	Identifying the potential of pulsed LED irradiation in synthesis: copper-photocatalysed C–F functionalisation. Chemical Communications, 2018, 54, 4589-4592.	2.2	35

#	Article	IF	CITATIONS
275	Visibleâ€Lightâ€Induced Nickelâ€Catalyzed Negishi Crossâ€Couplings by Exogenousâ€Photosensitizerâ€Free Photocatalysis. Angewandte Chemie - International Edition, 2018, 57, 8473-8477.	7.2	65
276	Visible-Light-Mediated Umpolung Reactivity of Imines: Ketimine Reductions with Cy ₂ NMe and Water. Organic Letters, 2018, 20, 2433-2436.	2.4	68
277	Autoxidation Photoredox Catalysis for the Synthesis of 2-Phosphinoylindoles. Organic Letters, 2018, 20, 2382-2385.	2.4	59
278	Combining photoredox and silver catalysis for azidotrifluoromethoxylation of styrenes. Chemical Communications, 2018, 54, 4473-4476.	2.2	47
279	Photoredox radical C–H oxygenation of aromatics with aroyloxylutidinium salts. Organic Chemistry Frontiers, 2018, 5, 1406-1410.	2.3	24
280	Asymmetric induction in photocatalysis – Discovering a new side to light-driven chemistry. Tetrahedron Letters, 2018, 59, 1286-1294.	0.7	62
281	Visibleâ€Light Photocatalysis: Does It Make a Difference in Organic Synthesis?. Angewandte Chemie - International Edition, 2018, 57, 10034-10072.	7.2	1,459
282	Site-selective phenol acylation mediated by thioacids via visible light photoredox catalysis. Organic Chemistry Frontiers, 2018, 5, 1312-1319.	2.3	8
283	Spin-Center Shift-Enabled Direct Enantioselective α-Benzylation of Aldehydes with Alcohols. Journal of the American Chemical Society, 2018, 140, 3322-3330.	6.6	129
284	General, Mild, and Selective Method for Desaturation of Aliphatic Amines. Journal of the American Chemical Society, 2018, 140, 2465-2468.	6.6	110
285	Anodically Coupled Electrolysis for the Heterodifunctionalization of Alkenes. Journal of the American Chemical Society, 2018, 140, 2438-2441.	6.6	208
286	Visible-Light-Induced External Radical-Triggered Annulation To Access CF ₂ -Containing Benzoxepine Derivatives. Organic Letters, 2018, 20, 1363-1366.	2.4	55
287	Cross oupling of Sodium Sulfinates with Aryl, Heteroaryl, and Vinyl Halides by Nickel/Photoredox Dual Catalysis. Angewandte Chemie - International Edition, 2018, 57, 1371-1375.	7.2	162
288	Dual catalysis for enantioselective convergent synthesis of enantiopure vicinal amino alcohols. Nature Communications, 2018, 9, 410.	5.8	92
289	Sulfonamides as new hydrogen atom transfer (HAT) catalysts for photoredox allylic and benzylic C–H arylations. Chemical Communications, 2018, 54, 3215-3218.	2.2	96
290	Computational Insights into the Reaction Mechanisms of Nickelâ€Catalyzed Hydrofunctionalizations and Nickelâ€Dependent Enzymes. Asian Journal of Organic Chemistry, 2018, 7, 522-536.	1.3	12
291	Palladiumâ€Catalyzed Atomâ€Transfer Radical Cyclization at Remote Unactivated C(sp ³)â^'H Sites: Hydrogenâ€Atom Transfer of Hybrid Vinyl Palladium Radical Intermediates. Angewandte Chemie - International Edition, 2018, 57, 2712-2715.	7.2	85
292	Integrating TEMPO and Its Analogues with Visibleâ€Light Photocatalysis. Chemistry - an Asian Journal, 2018, 13, 599-613.	1.7	52

#	Article	IF	CITATIONS
293	Visible-Light Photoredox/Nickel Dual Catalysis for the Cross-Coupling of Sulfinic Acid Salts with Aryl Iodides. Organic Letters, 2018, 20, 760-763.	2.4	75
294	Direct Synthesis of Polysubstituted Aldehydes via Visible‣ight Catalysis. Angewandte Chemie, 2018, 130, 2196-2200.	1.6	19
295	Irradiation-Induced Palladium-Catalyzed Decarboxylative Heck Reaction of Aliphatic <i>N</i> -(Acyloxy)phthalimides at Room Temperature. Organic Letters, 2018, 20, 888-891.	2.4	156
296	Decarboxylative C(sp3)–N cross-coupling via synergetic photoredox and copper catalysis. Nature Catalysis, 2018, 1, 120-126.	16.1	194
297	Palladiumâ€Catalyzed Atomâ€Transfer Radical Cyclization at Remote Unactivated C(sp 3)â^'H Sites: Hydrogenâ€Atom Transfer of Hybrid Vinyl Palladium Radical Intermediates. Angewandte Chemie, 2018, 130, 2742-2745.	1.6	15
298	Visible Light Promoted βâ€C—H Alkylation of βâ€Ketocarbonyls <i>via</i> a βâ€Enaminyl Radical Intermediate. Chinese Journal of Chemistry, 2018, 36, 311-320.	2.6	13
299	Synthesis of Phenols: Organophotoredox/Nickel Dual Catalytic Hydroxylation of Aryl Halides with Water. Angewandte Chemie, 2018, 130, 1986-1990.	1.6	29
300	αâ€Aminoxyâ€Acidâ€Auxiliaryâ€Enabled Intermolecular Radical γâ€C(sp ³)â^'H Functionalization of Ketones. Angewandte Chemie, 2018, 130, 1708-1712.	1.6	45
301	Synthesis of quinazolinone derivatives via a visible-light photocatalyzed denitrogenation rearrangement process. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 25-31.	2.0	7
302	Ultrafast Electron Transfer across a Nanocapsular Wall: Coumarins as Donors, Viologen as Acceptor, and Octa Acid Capsule as the Mediator. Journal of Physical Chemistry B, 2018, 122, 328-337.	1.2	19
303	Direct Transformation of Esters into Heterocyclic Fluorophores. Angewandte Chemie - International Edition, 2018, 57, 2436-2440.	7.2	67
304	Photoinduced Rearrangement of Dienones and Santonin Rerouted by Amines. Angewandte Chemie - International Edition, 2018, 57, 904-908.	7.2	7
305	αâ€Aminoxyâ€Acidâ€Auxiliaryâ€Enabled Intermolecular Radical γâ€C(sp ³)â^'H Functionalization of Ketones. Angewandte Chemie - International Edition, 2018, 57, 1692-1696.	7.2	141
306	Hydrophosphonodifluoromethylation of Alkenes via Thiyl-Radical/Photoredox Catalysis. Journal of Organic Chemistry, 2018, 83, 578-587.	1.7	31
307	Photoredox C–F Quaternary Annulation Catalyzed by a Strongly Reducing Iridium Species. ACS Catalysis, 2018, 8, 802-806.	5.5	37
308	Visible-light-induced iminyl radical formation <i>via</i> electron-donor–acceptor complexes: a photocatalyst-free approach to phenanthridines and quinolines. Organic Chemistry Frontiers, 2018, 5, 977-981.	2.3	51
309	Temperature Controlled Selective C–S or C–C Bond Formation: Photocatalytic Sulfonylation versus Arylation of Unactivated Heterocycles Utilizing Aryl Sulfonyl Chlorides. Organic Letters, 2018, 20, 648-651.	2.4	76
310	Photoinduced <i>N</i> â€Methylation and <i>N</i> â€Sulfonylation of Azobenzenes with DMSO Under Mild Reaction Conditions. Advanced Synthesis and Catalysis, 2018, 360, 1199-1208.	2.1	33

#	Article	IF	CITATIONS
311	Direkte Umwandlung von Estern in heterocyclische Fluorophore. Angewandte Chemie, 2018, 130, 2461-2465.	1.6	16
312	Direct Synthesis of Polysubstituted Aldehydes via Visible‣ight Catalysis. Angewandte Chemie - International Edition, 2018, 57, 2174-2178.	7.2	53
313	Asymmetric [4+2] annulations to construct norcamphor scaffolds with 2-cyclopentenone via double amine–thiol catalysis. Chemical Communications, 2018, 54, 1129-1132.	2.2	19
314	Dual Photoredox/Nickel-Catalyzed Regioselective Cross-Coupling of 2-Arylaziridines and Potassium Benzyltrifluoroborates: Synthesis of Î ² -Substitued Amines. Organic Letters, 2018, 20, 421-424.	2.4	41
315	Enantioselective Di-/Perfluoroalkylation of β-Ketoesters Enabled by Cooperative Photoredox/Nickel Catalysis. Organic Letters, 2018, 20, 461-464.	2.4	72
316	Dual Role of a Photocatalyst: Generation of Ni(0) Catalyst and Promotion of Catalytic C–N Bond Formation. ACS Catalysis, 2018, 8, 1456-1463.	5.5	69
317	Rose Bengal catalysed photo-induced selenylation of indoles, imidazoles and arenes: a metal free approach. Organic and Biomolecular Chemistry, 2018, 16, 880-885.	1.5	105
318	Visibleâ€Lightâ€Promoted Decarboxylative Giese Reactions of αâ€Aryl Ethenylphosphonates and the Application in the Synthesis of Fosmidomycin Analogue. Advanced Synthesis and Catalysis, 2018, 360, 1352-1357.	2.1	24
319	Alkene functionalization for the stereospecific synthesis of substituted aziridines by visible-light photoredox catalysis. Chemical Communications, 2018, 54, 1948-1951.	2.2	79
320	Photoinduced Rearrangement of Dienones and Santonin Rerouted by Amines. Angewandte Chemie, 2018, 130, 916-920.	1.6	1
321	Ultrafast Observation of a Photoredox Reaction Mechanism: Photoinitiation in Organocatalyzed Atom-Transfer Radical Polymerization. Journal of the American Chemical Society, 2018, 140, 1285-1293.	6.6	94
322	Visible light mediated aerobic photocatalytic activation of C H bond by riboflavin tetraacetate and N -hydroxysuccinimide. Tetrahedron Letters, 2018, 59, 658-662.	0.7	29
323	Heck Reaction of Electronically Diverse Tertiary Alkyl Halides. Organic Letters, 2018, 20, 357-360.	2.4	126
324	New Horizons of Photocatalytic Fluoromethylative Difunctionalization of Alkenes. CheM, 2018, 4, 409-437.	5.8	220
325	Ïf-Pt-BODIPY Complexes with Platinum Attachment to Carbon Atoms C2 or C3: Spectroscopic, Structural, and (Spectro)Electrochemical Studies and Photocatalysis. Organometallics, 2018, 37, 235-253.	1.1	18
326	Oxy-Alkylation of Allylamines with Unactivated Alkyl Bromides and CO ₂ via Visible-Light-Driven Palladium Catalysis. Organic Letters, 2018, 20, 3049-3052.	2.4	100
327	Regio―und chemoselektive Oxoâ€Azidierung von Vinylarenen, katalysiert durch Kupfer(II) und sichtbares Licht. Angewandte Chemie, 2018, 130, 8420-8424.	1.6	26
328	The Literature of Heterocyclic Chemistry, Part XVI, 2016. Advances in Heterocyclic Chemistry, 2018, 126, 173-254.	0.9	6

#	Article	IF	CITATIONS
329	Photocatalytic anion oxidation achieves direct aerobic difunctionalization of alkenes leading to β -thiocyanato alcohols. Tetrahedron, 2018, 74, 3038-3044.	1.0	13
330	An Electrocatalytic Approach to the Radical Difunctionalization of Alkenes. ACS Catalysis, 2018, 8, 5175-5187.	5.5	422
331	Exploiting Ancillary Ligation To Enable Nickel-Catalyzed C–O Cross-Couplings of Aryl Electrophiles with Aliphatic Alcohols. Journal of the American Chemical Society, 2018, 140, 5023-5027.	6.6	90
332	Selective remote C–H trifluoromethylation of aminoquinolines with CF ₃ SO ₂ Na under visible light irradiation in the absence of an external photocatalyst. Organic Chemistry Frontiers, 2018, 5, 1689-1697.	2.3	62
333	Eosin Y–Yb(OTf)3 catalyzed visible light mediated electrocyclization/indole ring opening towards the synthesis of heterobiaryl-pyrazolo[3,4-b]pyridines. New Journal of Chemistry, 2018, 42, 6617-6620.	1.4	15
334	Asymmetric [3+2] Photocycloadditions of Cyclopropanes with Alkenes or Alkynes through Visibleâ€Light Excitation of Catalystâ€Bound Substrates. Angewandte Chemie, 2018, 130, 5552-5556.	1.6	24
335	Asymmetric [3+2] Photocycloadditions of Cyclopropanes with Alkenes or Alkynes through Visibleâ€Light Excitation of Catalystâ€Bound Substrates. Angewandte Chemie - International Edition, 2018, 57, 5454-5458.	7.2	110
336	Benzimidazolium Naphthoxide Betaine Is a Visible Light Promoted Organic Photoredox Catalyst. Journal of Organic Chemistry, 2018, 83, 3921-3927.	1.7	39
337	Establishment of a molecular design to obtain visible-light-activated azoxy polymer actuators. Polymer Chemistry, 2018, 9, 2438-2445.	1.9	8
338	Photoredox Iridium–Nickel Dual-Catalyzed Decarboxylative Arylation Cross-Coupling: From Batch to Continuous Flow via Self-Optimizing Segmented Flow Reactor. Organic Process Research and Development, 2018, 22, 542-550.	1.3	101
339	Oxidative [4+2] annulation of styrenes with alkynes under external-oxidant-free conditions. Nature Communications, 2018, 9, 1225.	5.8	79
340	Photo-induced C–H bond activation of <i>N</i> , <i>N</i> ′-dialkylethylenediamine upon aza-Michael addition to 1,8-pyrenedione: facile synthesis of fluorescent pyrene derivatives. Organic Chemistry Frontiers, 2018, 5, 1679-1683.	2.3	8
341	UV PhotoVap: Demonstrating How a Simple and Versatile Reactor Based on a Conventional Rotary Evaporator Can Be Used for UV Photochemistry. Organic Process Research and Development, 2018, 22, 595-599.	1.3	14
342	Visible-Light-Driven Alkyne Hydro-/Carbocarboxylation Using CO ₂ via Iridium/Cobalt Dual Catalysis for Divergent Heterocycle Synthesis. Journal of the American Chemical Society, 2018, 140, 5257-5263.	6.6	184
343	Acceptorless Dehydrogenation of Hydrocarbons by Noble-Metal-Free Hybrid Catalyst System. Organic Letters, 2018, 20, 2042-2045.	2.4	44
344	Visibleâ€Lightâ€Induced Nickelâ€Catalyzed Negishi Cross ouplings by Exogenousâ€Photosensitizerâ€Free Photocatalysis. Angewandte Chemie, 2018, 130, 8609-8613.	1.6	11
345	A new approach to access difluoroalkylated diarylmethanes <i>via</i> visible-light photocatalytic cross-coupling reactions. Chemical Communications, 2018, 54, 3993-3996.	2.2	58
346	Asymmetric Organocatalysis and Photoredox Catalysis for the αâ€Functionalization of Tetrahydroisoquinolines. European Journal of Organic Chemistry, 2018, 2018, 1277-1280.	1.2	32

#	Article	IF	CITATIONS
347	Cu-Catalyzed Three-Component Carboamination of Alkenes. Journal of the American Chemical Society, 2018, 140, 58-61.	6.6	118
348	N -9 Alkylation of purines via light-promoted and metal-free radical relay. Chinese Chemical Letters, 2018, 29, 61-64.	4.8	6
349	Arylation of Aniline C(sp ³)â^'H Bonds with Phenols via an In Situ Activation Strategy. Asian Journal of Organic Chemistry, 2018, 7, 537-541.	1.3	17
350	Transition-metal-free, visible-light-induced oxidative cross-coupling for constructing β-acetylamino acrylosulfones from sodium sulfinates and enamides. Organic Chemistry Frontiers, 2018, 5, 92-97.	2.3	56
351	Green Photoâ€Organocatalytic Câ^'H Activation of Aldehydes: Selective Hydroacylation of Electronâ€Deficient Alkenes. Chemistry - A European Journal, 2018, 24, 1726-1731.	1.7	47
352	Oxidative dimerization of anilines with heterogeneous sulfonic acid catalysts. Green Chemistry, 2018, 20, 382-386.	4.6	13
353	Visible-Light-Photocatalyzed Synthesis of Phenanthridinones and Quinolinones via Direct Oxidative C–H Amidation. Organic Letters, 2018, 20, 240-243.	2.4	74
354	Substituted Hantzsch Esters as Versatile Radical Reservoirs in Photoredox Reactions. Advanced Synthesis and Catalysis, 2018, 360, 925-931.	2.1	63
355	Synthesis of Phenols: Organophotoredox/Nickel Dual Catalytic Hydroxylation of Aryl Halides with Water. Angewandte Chemie - International Edition, 2018, 57, 1968-1972.	7.2	85
356	Enantioselective Photochemical Organocascade Catalysis. Angewandte Chemie - International Edition, 2018, 57, 1068-1072.	7.2	104
357	Visibleâ€Lightâ€Promoted Alkylation of Indoles with Tertiary Amines by the Oxidation of a <i>sp</i> ³ Câ€H Bond. Advanced Synthesis and Catalysis, 2018, 360, 762-767.	2.1	16
358	Cross oupling of Sodium Sulfinates with Aryl, Heteroaryl, and Vinyl Halides by Nickel/Photoredox Dual Catalysis. Angewandte Chemie, 2018, 130, 1385-1389.	1.6	50
359	Redox-Tag Processes: Intramolecular Electron Transfer and Its Broad Relationship to Redox Reactions in General. Chemical Reviews, 2018, 118, 4592-4630.	23.0	139
360	Photocatalytic Synthesis of Î ³ -Lactones from Alkenes: High-Resolution Mass Spectrometry as a Tool To Study Photoredox Reactions. Organic Letters, 2018, 20, 36-39.	2.4	80
361	Photoredox and cobalt co-catalyzed C(sp ²)–H functionalization/C–O bond formation for synthesis of lactones under oxidant- and acceptor-free conditions. Organic Chemistry Frontiers, 2018, 5, 749-752.	2.3	44
362	Dichromatic Photocatalytic Substitutions of Aryl Halides with a Small Organic Dye. Chemistry - A European Journal, 2018, 24, 105-108.	1.7	113
363	From Molecules to Silicon-Based Biohybrid Materials by Ball Milling. ACS Sustainable Chemistry and Engineering, 2018, 6, 511-518.	3.2	15
364	Sulfur enterâ€Involved Photocatalyzed Reactions. Chemistry - an Asian Journal, 2018, 13, 2208-2242.	1.7	47

	Сітаті	ION REPORT	
#	Article	IF	CITATIONS
365	Catalytic Photoreduction Induced by Visible Light. ChemPhotoChem, 2018, 2, 703-714.	1.5	26
366	Visible-light-mediated allylation of alkyl radicals with allylic sulfones <i>via</i> a deaminative strategy. Organic Chemistry Frontiers, 2018, 5, 3443-3446.	2.3	81
367	Nickel(ii)-catalyzed enantioselective α-alkylation of β-ketoamides with phenyliodonium ylideviaa radical process. Chemical Communications, 2018, 54, 12254-12257.	2.2	17
368	Mild dynamic kinetic resolution of amines by coupled visible-light photoredox and enzyme catalysis. Chemical Communications, 2018, 54, 14065-14068.	2.2	28
369	Recent advances in mono and binuclear gold photoredox catalysis. Catalysis Science and Technology, 2018, 8, 6019-6028.	2.1	62
370	Visible-light promoted dithioacetalization of aldehydes with thiols under aerobic and photocatalyst-free conditions. Green Chemistry, 2018, 20, 5117-5122.	4.6	34
371	Combining organocatalysis with photoorganocatalysis: photocatalytic hydroacylation of asymmetric organocatalytic Michael addition products. New Journal of Chemistry, 2018, 42, 18844-18849.	1.4	16
373	Visibleâ€Lightâ€Mediated Metalâ€Free Difunctionalization of Alkenes with CO ₂ and Silanes C(sp ³)â^'H Alkanes. Angewandte Chemie, 2018, 130, 17466-17470.	or 1.6	46
374	Recyclable alkylated fac-Ir(ppy)3 complex as a visible-light photoredox catalyst for the synthesis of 3-trifluoromethylated and 3-difluoroacetylated coumarins. Tetrahedron, 2018, 74, 7358-7363.	1.0	19
375	Visibleâ€Light Photocatalysis of the Ketyl Radical Coupling Reaction. Chemistry - A European Journal, 2019, 25, 2949-2961.	1.7	100
376	Photosensitization and Photocatalysis—Perspectives in Organic Synthesis. ACS Catalysis, 2018, 8, 12046-12055.	5.5	157
377	Visible-Light Photocatalyzed Deoxygenation of N-Heterocyclic <i>N</i> -Oxides. Organic Letters, 2018, 20, 7712-7716.	2.4	27
378	Formal Total Synthesis of Hybocarpone Enabled by Visible-Light-Promoted Benzannulation. Journal of Organic Chemistry, 2018, 83, 15524-15532.	1.7	7
379	Enantioselective Allylic Alkylation with 4-Alkyl-1,4-dihydro-pyridines Enabled by Photoredox/Palladium Cocatalysis. Journal of the American Chemical Society, 2018, 140, 16914-16919.	6.6	180
380	Resolving orbital pathways for intermolecular electron transfer. Nature Communications, 2018, 9, 4916.	5.8	19
381	Visible-Light-Induced C–O Bond Formation for the Construction of Five- and Six-Membered Cyclic Ethers and Lactones. Organic Letters, 2018, 20, 7437-7441.	2.4	40
382	Bromo- or Methoxy-Group-Promoted Umpolung Electron Transfer Enabled, Visible-Light-Mediated Synthesis of 2-Substituted Indole-3-glyoxylates. Organic Letters, 2018, 20, 6984-6989.	2.4	35
383	A Visibleâ€Lightâ€Promoted Metalâ€Free Strategy towards Arylphosphonates: Organicâ€Dyeâ€Catalyzed Phosphorylation of Arylhydrazines with Trialkylphosphites. Advanced Synthesis and Catalysis, 2018, 360, 4807-4813.	2.1	82

#	Article	IF	CITATIONS
384	Visibleâ€Lightâ€Mediated Metalâ€Free Difunctionalization of Alkenes with CO ₂ and Silanes or C(sp ³)â^'H Alkanes. Angewandte Chemie - International Edition, 2018, 57, 17220-17224.	7.2	227
385	Advances in the Synthesis of Lignan Natural Products. Molecules, 2018, 23, 3385.	1.7	44
386	Degenerative xanthate transfer to olefins under visible-light photocatalysis. Beilstein Journal of Organic Chemistry, 2018, 14, 3047-3058.	1.3	21
387	Visible-Light-Driven External-Reductant-Free Cross-Electrophile Couplings of Tetraalkyl Ammonium Salts. Journal of the American Chemical Society, 2018, 140, 17338-17342.	6.6	152
388	Synthesis of Elongated Esters from Alkenes. Angewandte Chemie, 2018, 130, 15681-15685.	1.6	0
389	Hydrogen Atom Transfer Reactions via Photoredox Catalyzed Chlorine Atom Generation. Angewandte Chemie - International Edition, 2018, 57, 15664-15669.	7.2	144
390	Synthesis of Elongated Esters from Alkenes. Angewandte Chemie - International Edition, 2018, 57, 15455-15459.	7.2	27
391	Redoxâ€Active Reagents for Photocatalytic Generation of the OCF ₃ Radical and (Hetero)Aryl Câ~'H Trifluoromethoxylation. Angewandte Chemie, 2018, 130, 13991-13995.	1.6	29
392	Photocatalytic Cycloadditions Enabled by a Lithium Perchlorate/Nitromethane Electrolyte Solution. European Journal of Organic Chemistry, 2018, 2018, 6720-6723.	1.2	5
393	Discovery of a Photoinduced Dark Catalytic Cycle Using <i>in Situ</i> LED-NMR Spectroscopy. Journal of the American Chemical Society, 2018, 140, 13843-13853.	6.6	30
394	Aerobic Catalytic Features in Photoredox- and Copper-Catalyzed Iodolactonization Reactions. Organic Letters, 2018, 20, 6462-6466.	2.4	28
395	A Toolbox Approach To Construct Broadly Applicable Metal-Free Catalysts for Photoredox Chemistry: Deliberate Tuning of Redox Potentials and Importance of Halogens in Donor–Acceptor Cyanoarenes. Journal of the American Chemical Society, 2018, 140, 15353-15365.	6.6	435
396	Deaminative Borylation of Aliphatic Amines Enabled by Visible Light Excitation of an Electron Donor–Acceptor Complex. Chemistry - A European Journal, 2018, 24, 17210-17214.	1.7	195
397	Carbonyl–Olefin Crossâ€Metathesis Through a Visibleâ€Lightâ€Induced 1,3â€Diol Formation and Fragmentation Sequence. Angewandte Chemie - International Edition, 2018, 57, 16219-16223.	7.2	54
398	Organocatalytic Enantioselective Addition of $\hat{I}\pm$ -Aminoalkyl Radicals to Isoquinolines. Organic Letters, 2018, 20, 6298-6301.	2.4	118
399	Cobalt- and rhodium-catalyzed carboxylation using carbon dioxide as the C1 source. Beilstein Journal of Organic Chemistry, 2018, 14, 2435-2460.	1.3	33
400	Catalyst-Controlled Regioselective Acylation of β-Ketoesters with α-Diazo Ketones Induced by Visible Light. Organic Letters, 2018, 20, 7278-7282.	2.4	31
401	Carbonylâ€Olefinâ€Kreuzmetathese mittels Lichtâ€induzierter 1,3â€Diolâ€Bildung―und Fragmentierungsseque Angewandte Chemie, 2018, 130, 16453-16457.	nz. 1:6	14

#	Article	IF	CITATIONS
402	Hydrogen Atom Transfer Reactions via Photoredox Catalyzed Chlorine Atom Generation. Angewandte Chemie, 2018, 130, 15890-15895.	1.6	28
403	Photocatalytic Three-Component Umpolung Synthesis of 1,3-Diamines. Organic Letters, 2018, 20, 6794-6798.	2.4	59
404	Radical/Polar Annulation Reactions (RPARs) Enable the Modular Construction of Cyclopropanes. Organic Letters, 2018, 20, 6840-6844.	2.4	57
405	Copper(II)-Catalyzed Asymmetric Photoredox Reactions: Enantioselective Alkylation of Imines Driven by Visible Light. Journal of the American Chemical Society, 2018, 140, 15850-15858.	6.6	172
406	Enantioselective [2+2] Photocycloaddition Reactions of Enones and Olefins with Visible Light Mediated by <i>N</i> , <i>N</i> ′â€Đioxide–Metal Complexes. Chemistry - A European Journal, 2018, 24, 19361-19367.	1.7	38
407	Intermolecular Reductive Couplings of Arylidene Malonates via Lewis Acid/Photoredox Cooperative Catalysis. Organic Letters, 2018, 20, 6877-6881.	2.4	39
408	Visibleâ€Lightâ€Mediated αâ€Oxygenation of 3â€(<i>N</i> , <i>N</i> â€Dimethylaminomethyl)â€Indoles to Aldeh European Journal of Organic Chemistry, 2018, 2018, 6624-6628.	ydes. 1.2	9
409	Dual photoredox and nickel-catalyzed desymmetric C–O coupling reactions: visible light-mediated enantioselective synthesis of 1,4-benzodioxanes. Organic Chemistry Frontiers, 2018, 5, 3098-3102.	2.3	39
410	Stepwise radical cation Diels–Alder reaction via multiple pathways. Beilstein Journal of Organic Chemistry, 2018, 14, 704-708.	1.3	15
411	Direct Photocatalytic Synthesis of Medium‣ized Lactams by Câ^'C Bond Cleavage. Angewandte Chemie, 2018, 130, 14421-14425.	1.6	30
412	<i>sp</i> ³ C–H Arylation and Alkylation Enabled by the Synergy of Triplet Excited Ketones and Nickel Catalysts. Journal of the American Chemical Society, 2018, 140, 12200-12209.	6.6	271
413	Enantioselective isoquinuclidine synthesis <i>via</i> sequential Diels–Alder/visible-light photoredox C–C bond cleavage: a formal synthesis of the indole alkaloid catharanthine. Organic Chemistry Frontiers, 2018, 5, 2934-2939.	2.3	13
414	Visible Light-Mediated Photocatalytic Metal-Free Cross-Coupling Reaction of Alkenyl Carboxylic Acids with Diarylphosphine Oxides Leading to β-Ketophosphine Oxides. Organic Letters, 2018, 20, 5947-5951.	2.4	50
415	Stereodivergent Synthesis of αâ€Aminomethyl Cinnamyl Ethers <i>via</i> Photoredox atalyzed Radical Relay Reaction. Chinese Journal of Chemistry, 2018, 36, 1147-1150.	2.6	26
416	Redoxâ€Active Reagents for Photocatalytic Generation of the OCF ₃ Radical and (Hetero)Aryl Câ^'H Trifluoromethoxylation. Angewandte Chemie - International Edition, 2018, 57, 13795-13799.	7.2	85
417	Reinventing the De Mayo reaction: synthesis of 1,5-diketones or 1,5-ketoesters <i>via</i> visible light [2+2] cycloaddition of l²-diketones or l²-ketoesters with styrenes. Chemical Communications, 2018, 54, 11602-11605.	2.2	39
418	Visible light-induced 4-phenylthioxanthone-catalyzed aerobic oxidation of triarylphosphines. Tetrahedron Letters, 2018, 59, 3880-3883.	0.7	7
419	Diastereoselective Allylation of Aldehydes by Dual Photoredox and Chromium Catalysis. Journal of the American Chemical Society, 2018, 140, 12705-12709.	6.6	175

#	Article	IF	CITATIONS
420	Direct Photocatalytic Synthesis of Medium‣ized Lactams by Câ^'C Bond Cleavage. Angewandte Chemie - International Edition, 2018, 57, 14225-14229.	7.2	104
421	Microtubingâ€Reactorâ€Assisted Aliphatic Câ^'H Functionalization with HCl as a Hydrogenâ€Atomâ€Transfer Catalyst Precursor in Conjunction with an Organic Photoredox Catalyst. Angewandte Chemie, 2018, 130, 12843-12847.	1.6	38
422	lr(ppy)3-Catalyzed, Visible-Light-Mediated Reaction of α-Chloro Cinnamates with Enol Acetates: An Apparent Halogen Paradox. Organic Letters, 2018, 20, 5794-5798.	2.4	22
423	Interception of Radicals by Molecular Oxygen and Diazo Compounds: Direct Synthesis of Oxalate Esters Using Visible-Light Catalysis. Organic Letters, 2018, 20, 5799-5802.	2.4	15
424	Catalytic Alkene Difunctionalization via Imidate Radicals. Journal of the American Chemical Society, 2018, 140, 11202-11205.	6.6	101
425	Visible Light-Mediated Decarboxylation Rearrangement Cascade of ï‰-Aryl- <i>N</i> -(acyloxy)phthalimides. Journal of Organic Chemistry, 2018, 83, 12192-12206.	1.7	30
426	Heterogeneous Organocatalysis for Photoredox Chemistry. ACS Catalysis, 2018, 8, 9790-9808.	5.5	165
427	Strongly Reducing (Diarylamino)anthracene Catalyst for Metal-Free Visible-Light Photocatalytic Fluoroalkylation. ACS Catalysis, 2018, 8, 9408-9419.	5.5	62
428	Nickel-Catalyzed Photoredox-Mediated Cross-Coupling of Aryl Electrophiles and Aryl Azides. ACS Catalysis, 2018, 8, 9120-9124.	5.5	37
429	One-Pot Photomediated Giese Reaction/Friedel–Crafts Hydroxyalkylation/Oxidative Aromatization To Access Naphthalene Derivatives from Toluenes and Enones. ACS Catalysis, 2018, 8, 6224-6229.	5.5	51
430	Photoorganocatalysis, small organic molecules and light in the service of organic synthesis: the awakening of a sleeping giant. Organic and Biomolecular Chemistry, 2018, 16, 4596-4614.	1.5	207
431	lodine-catalyzed diazo activation to access radical reactivity. Nature Communications, 2018, 9, 1972.	5.8	75
432	Cooperative Catalysis: A Strategy To Synthesize Trifluoromethyl-thioesters from Aldehydes. ACS Catalysis, 2018, 8, 5842-5846.	5.5	74
433	Hydroxylamine Derivatives as Nitrogenâ€Radical Precursors in Visibleâ€Light Photochemistry. Chemistry - A European Journal, 2018, 24, 12154-12163.	1.7	219
434	Radical Hydrosilylation of Alkynes Catalyzed by Eosin Y and Thiol under Visible Light Irradiation. Organic Letters, 2018, 20, 3174-3178.	2.4	62
435	A Bifunctional Photoaminocatalyst for the Alkylation of Aldehydes: Design, Analysis, and Mechanistic Studies. ACS Catalysis, 2018, 8, 5928-5940.	5.5	46
436	Chemoselective Peptide Modification via Photocatalytic Tryptophan β-Position Conjugation. Journal of the American Chemical Society, 2018, 140, 6797-6800.	6.6	97
437	2â€Azaallyl Anions as Lightâ€Tunable Superâ€Electronâ€Donors: Coupling with Aryl Fluorides, Chlorides, and Bromides. Advanced Synthesis and Catalysis, 2018, 360, 2854-2868.	2.1	39

	CITATION RE	PORT	
#	Article	IF	CITATIONS
438	Photocatalytic reverse polarity Povarov reaction. Chemical Science, 2018, 9, 6653-6658.	3.7	50
439	Nonadiabatic Curve-Crossing Model for the Visible-Light Photoredox Catalytic Generation of Radical Intermediate via a Concerted Mechanism. ACS Catalysis, 2018, 8, 7388-7396.	5.5	17
440	Merging visible-light photoredox and micellar catalysis: arylation reactions with anilines nitrosated <i>in situ</i> . Catalysis Science and Technology, 2018, 8, 3728-3732.	2.1	49
441	Chemoselective Photoredox Synthesis of Unprotected Primary Amines Using Ammonia. Organic Letters, 2018, 20, 4081-4085.	2.4	54
443	Metalâ€Catalyzed Synthesis and Use of Thioesters: Recent Developments. Chemistry - A European Journal, 2018, 24, 7092-7107.	1.7	133
444	Oxidative Functionalization of Cinnamaldehyde Derivatives: Control of Chemoselectivity by Organophotocatalysis and Dual Organocatalysis. Journal of Organic Chemistry, 2018, 83, 8962-8970.	1.7	21
445	Dearomative Cascade Photocatalysis: Divergent Synthesis through Catalyst Selective Energy Transfer. Journal of the American Chemical Society, 2018, 140, 8624-8628.	6.6	148
446	Visibleâ€Lightâ€Promoted Intermolecular Oxidative Dearomatization of βâ€Naphthols with <i>N</i> â€Hydroxycarbamates. Chemistry - A European Journal, 2018, 24, 12519-12523.	1.7	24
447	Formal enantioconvergent substitution of alkyl halides via catalytic asymmetric photoredox radical coupling. Nature Communications, 2018, 9, 2445.	5.8	130
448	Microtubingâ€Reactorâ€Assisted Aliphatic Câ^'H Functionalization with HCl as a Hydrogenâ€Atomâ€Transfer Catalyst Precursor in Conjunction with an Organic Photoredox Catalyst. Angewandte Chemie - International Edition, 2018, 57, 12661-12665.	7.2	167
449	Metallaphotoredox Difluoromethylation of Aryl Bromides. Angewandte Chemie - International Edition, 2018, 57, 12543-12548.	7.2	136
450	The energy-transfer-enabled biocompatible disulfide–ene reaction. Nature Chemistry, 2018, 10, 981-988.	6.6	143
451	Synthesis of 2,2-difluoro-homoallylic alcohols via ring-opening of gem-difluorocyclopropane and aerobic oxidation by photo-irradiation in the presence of an organic pigment. Organic and Biomolecular Chemistry, 2018, 16, 6106-6114.	1.5	18
452	A Fully Automated Continuousâ€Flow Platform for Fluorescence Quenching Studies and Stern–Volmer Analysis. Angewandte Chemie, 2018, 130, 11448-11452.	1.6	12
453	Recent Developments in the Photoâ€Mediated Generation of Silyl Radicals and Their Application in Organic Synthesis. ChemPhotoChem, 2018, 2, 839-846.	1.5	88
454	Photo-induced thiol coupling and C–H activation using nanocrystalline lead-halide perovskite catalysts. Catalysis Science and Technology, 2018, 8, 4257-4263.	2.1	106
455	A synergistic LUMO lowering strategy using Lewis acid catalysis in water to enable photoredox catalytic, functionalizing C–C cross-coupling of styrenes. Chemical Science, 2018, 9, 7096-7103.	3.7	40
456	Visibleâ€Lightâ€Promoted Redoxâ€Neutral Cyclopropanation Reactions of αâ€Substituted Vinylphosphonates and Other Michael Acceptors with Chloromethyl Silicate as Methylene Transfer Reagent. Advanced Synthesis and Catalysis, 2018, 360, 4459-4463.	2.1	43

		CITATION REPORT	
#	Article	IF	CITATIONS
457	Metallaphotoredox Difluoromethylation of Aryl Bromides. Angewandte Chemie, 2018, 130, 12723-12728.	1.6	28
458	Visible-Light-Promoted Cascade Alkene Trifluoromethylation and Dearomatization of Indole Derivatives via Intermolecular Charge Transfer. Organic Letters, 2018, 20, 4379-4383.	2.4	76
459	Application of coumarin dyes for organic photoredox catalysis. Chemical Communications, 2018, 54, 10044-10047.	2.2	64
460	Visible Light and Hydroxynaphthylbenzimidazoline Promoted Transition-Metal-Catalyst-Free Desulfonylation of <i>N-</i> Sulfonylamides and <i>N-</i> Sulfonylamines. Journal of Organic Chemistry, 2018, 83, 10813-10825.	1.7	38
461	Visible Lightâ€Induced Câ^'H Bond Functionalization: A Critical Review. Advanced Synthesis and Catalysis, 2018, 360, 4652-4698.	2.1	131
462	A Fully Automated Continuousâ€Flow Platform for Fluorescence Quenching Studies and Stern–Volmer Analysis. Angewandte Chemie - International Edition, 2018, 57, 11278-11282.	7.2	73
463	UVA- and Visible-Light-Mediated Generation of Carbon Radicals from Organochlorides Using Nonmetal Photocatalyst. Journal of Organic Chemistry, 2018, 83, 9381-9390.	1.7	57
464	Oxidative Cyclization Synthesis of Tetrahydroquinolines and Reductive Hydrogenation of Maleimides under Redox-Neutral Conditions. Organic Letters, 2018, 20, 2916-2920.	2.4	71
465	Visible-light-induced alkoxyl radical generation for inert chemical bond cleavage/functionalization. Chemical Communications, 2018, 54, 6105-6112.	2.2	119
466	Charge Carrier Activity on Single-Particle Photo(electro)catalysts: Toward Function in Solar Energy Conversion. Journal of the American Chemical Society, 2018, 140, 6729-6740.	6.6	50
467	Profiling and Application of Photoredox C(sp ³)–C(sp ²) Cross-Coupling in Medicinal Chemistry. ACS Medicinal Chemistry Letters, 2018, 9, 773-777.	1.3	69
468	Photoinduced Miyaura Borylation by a Rareâ€Earthâ€Metal Photoreductant: The Hexachlorocerate(III) Anion. Angewandte Chemie - International Edition, 2018, 57, 10999-11003.	7.2	91
469	Sulfur Radicals and Their Application. Topics in Current Chemistry, 2018, 376, 22.	3.0	49
470	Microwave-assisted valorization of pig bristles: towards visible light photocatalytic chalcocite composites. Green Chemistry, 2018, 20, 3001-3007.	4.6	20
471	Investigating radical cation chain processes in the electrocatalytic Diels–Alder reaction. Beilstein Journal of Organic Chemistry, 2018, 14, 642-647.	1.3	23
472	Cross oupling of Alkyl Redoxâ€Active Esters with Benzophenone Imines: Tandem Photoredox and Copper Catalysis. Angewandte Chemie, 2018, 130, 9645-9648.	1.6	35
473	Visibleâ€Lightâ€Triggered, Metal―and Photocatalystâ€Free Acylation of <i>N</i> â€Heterocycles. Advanced Synthesis and Catalysis, 2018, 360, 4184-4190.	2.1	65
474	Visible-Light-Induced C(sp ²)–P Bond Formation by Denitrogenative Coupling of Benzotriazoles with Phosphites. Organic Letters, 2018, 20, 5370-5374.	2.4	44

		CITATION REPORT		
#	Article		IF	CITATIONS
475	Detection of an Energy-Transfer Pathway in Cr-Photoredox Catalysis. ACS Catalysis, 2018, 8	, 9216-9225.	5.5	22
476	Catalytic enantioselective radical coupling of activated ketones with <i>N</i> -aryl glycines. Science, 2018, 9, 8094-8098.	Chemical	3.7	98
477	C–N Bond Formation from Allylic Alcohols via Cooperative Nickel and Titanium Catalysis. J Organic Chemistry, 2018, 83, 10646-10654.	ournal of	1.7	7
478	Merging Photoredox and Organometallic Catalysts in a Metal–Organic Framework Signifi Boosts Photocatalytic Activities. Angewandte Chemie - International Edition, 2018, 57, 140	cantly 90-14094.	7.2	121
479	Visible-Light-Enabled Construction of Thiocarbamates from Isocyanides, Thiols, and Water a Temperature. Organic Letters, 2018, 20, 5291-5295.	t Room	2.4	80
480	Merging Photoredox and Organometallic Catalysts in a Metal–Organic Framework Signifi Boosts Photocatalytic Activities. Angewandte Chemie, 2018, 130, 14286-14290.	cantly	1.6	29
481	Cross oupling of Alkyl Redoxâ€Active Esters with Benzophenone Imines: Tandem Photor Copper Catalysis. Angewandte Chemie - International Edition, 2018, 57, 9501-9504.	edox and	7.2	103
482	Continuous Visibleâ€Light Photoflow Approach for a Manganeseâ€Catalyzed (Het)Arene Câ Angewandte Chemie - International Edition, 2018, 57, 10625-10629.	î^'H Arylation.	7.2	83
483	Recent Applications of [Cu(dap)2]Cl in Visible Light-Mediated Photoredox Catalysis. Austral of Chemistry, 2018, 71, 547.	ian Journal	0.5	4
484	Photoinduced Miyaura Borylation by a Rareâ€Earthâ€Metal Photoreductant: The Hexachloro Anion. Angewandte Chemie, 2018, 130, 11165-11169.	ocerate(III)	1.6	21
485	Continuous Visibleâ€Light Photoflow Approach for a Manganese atalyzed (Het)Arene Cá Angewandte Chemie, 2018, 130, 10785-10789.	ì^'H Arylation.	1.6	23
486	Formal Giese addition of C(sp ³)–H nucleophiles enabled by visible light med catalysis of triplet enone diradicals. Chemical Science, 2018, 9, 5810-5815.	iated Ni	3.7	37
487	Catalytic promiscuity enabled by photoredox catalysis in nicotinamide-dependent oxidored. Nature Chemistry, 2018, 10, 770-775.	ıctases.	6.6	125
488	Regioselective Transition-Metal-Catalyzed C–H Functionalization of Anilines. Synthesis, 20 2693-2706.	018, 50,	1.2	24
489	Visible-light photoredox catalyzed cyclization of aryl alkynoates for the synthesis of trifluoromethylated coumarins. Catalysis Communications, 2018, 114, 70-74.		1.6	18
490	Electrocatalytic C–H Activation. ACS Catalysis, 2018, 8, 7086-7103.		5.5	535
491	Electrochemical strategies for C–H functionalization and C–N bond formation. Chemica Reviews, 2018, 47, 5786-5865.	al Society	18.7	736
492	Visibleâ€Light Induced Radical Silylation for the Synthesis of Dibenzosiloles via Dehydrogen Cyclization. Advanced Synthesis and Catalysis, 2018, 360, 3049-3054.	ative	2.1	29

#	Article	IF	CITATIONS
493	Enantioselective benzylic C–H arylation via photoredox and nickel dual catalysis. Nature Communications, 2019, 10, 3549.	5.8	142
494	Visibleâ€Lightâ€Induced Benzylic Câ€H Functionalization for the Synthesis of 2â€Arylquinazolines. European Journal of Organic Chemistry, 2019, 2019, 5934-5936.	1.2	9
495	Photochemical Alkene Isomerization for the Synthesis of Polysubstituted Furans and Pyrroles under Neutral Conditions. Chemistry - A European Journal, 2019, 25, 13114-13118.	1.7	17
496	Photocatalytic Reductive Formation of α-Tertiary Ethers from Ketals. Organic Letters, 2019, 21, 6668-6673.	2.4	29
497	Photoinduced Copper-Catalyzed Radical Aminocarbonylation of Cycloketone Oxime Esters. ACS Catalysis, 2019, 9, 8159-8164.	5.5	117
498	Photo–nickel dual catalytic benzoylation of aryl bromides. Chemical Communications, 2019, 55, 10796-10799.	2.2	33
499	Lightâ€Driven Intramolecular Câ^'N Crossâ€Coupling via a Longâ€Lived Photoactive Photoisomer Complex. Angewandte Chemie, 2019, 131, 14808-14814.	1.6	9
500	Lightâ€Driven Intramolecular Câ^'N Crossâ€Coupling via a Longâ€Lived Photoactive Photoisomer Complex. Angewandte Chemie - International Edition, 2019, 58, 14666-14672.	7.2	45
501	Photosensitized oxidative addition to gold(i) enables alkynylative cyclization of o-alkylnylphenols with iodoalkynes. Nature Chemistry, 2019, 11, 797-805.	6.6	84
502	Supramolecular photocatalyst of Palladium (II) Encapsulated within Dendrimer on TiO ₂ nanoparticles for Photoâ€induced Suzukiâ€Miyaura and Sonogashira Crossâ€Coupling reactions. Applied Organometallic Chemistry, 2019, 33, e5093.	1.7	15
503	3-Acetoxyquinuclidine as Catalyst in Electron Donor–Acceptor Complex-Mediated Reactions Triggered by Visible Light. ACS Catalysis, 2019, 9, 9103-9109.	5.5	97
504	Visible-Light Reductive Cyclization of Nonactivated Alkyl Chlorides. Synlett, 2019, 30, 1496-1507.	1.0	2
505	Photoredox atalyzed Cyclopropanation of 1,1â€Disubstituted Alkenes via Radicalâ€Polar Crossover Process. Advanced Synthesis and Catalysis, 2019, 361, 4215-4221.	2.1	36
506	Visible Light-Promoted Photocatalytic C-5 Carboxylation of 8-Aminoquinoline Amides and Sulfonamides via a Single Electron Transfer Pathway. Journal of Organic Chemistry, 2019, 84, 9869-9896.	1.7	28
507	Visible-light-mediated deuteration of silanes with deuterium oxide. Chemical Science, 2019, 10, 7340-7344.	3.7	60
508	Four-Component Photoredox-Mediated Azidoalkoxy-trifluoromethylation of Alkenes. Organic Letters, 2019, 21, 6005-6010.	2.4	28
509	Cascade Functionalization of C(sp ³)–Br/C(sp ²)–H Bonds: Access to Fused Benzo[<i>e</i>]isoindole-1,3,5-trione via Visible-Light-Induced Reductive Radical Relay Strategy. Organic Letters, 2019, 21, 6270-6274.	2.4	22
510	Visibleâ€Lightâ€Mediated Crossâ€Couplings and Câ^'H Activation via Dual Photoredox/Transitionâ€Metal Catalysis in Continuousâ€Flow Processes. Asian Journal of Organic Chemistry, 2019, 8, 1578-1587.	1.3	9

#	Article	IF	CITATIONS
511	Photochemical Hydroacylation of Michael Acceptors Utilizing an Aldehyde as Photoinitiator. ChemSusChem, 2019, 12, 4194-4201.	3.6	29
512	Visibleâ€Lightâ€Induced [4+2] Annulation of Thiophenes and Alkynes to Construct Benzene Rings. Angewandte Chemie - International Edition, 2019, 58, 12206-12210.	7.2	28
513	Visibleâ€Lightâ€Induced [4+2] Annulation of Thiophenes and Alkynes to Construct Benzene Rings. Angewandte Chemie, 2019, 131, 12334-12338.	1.6	2
514	Annulation of Benzamides with Arynes Using Palladium with Photoredox Dual Catalysis. Journal of Organic Chemistry, 2019, 84, 9007-9016.	1.7	31
515	Acyl Radicals from Benzothiazolines: Synthons for Alkylation, Alkenylation, and Alkynylation Reactions. Organic Letters, 2019, 21, 5462-5466.	2.4	46
516	Enantioselective Synthesis of N-Benzylic Heterocycles: A Nickel and Photoredox Dual Catalysis Approach. Organic Letters, 2019, 21, 8957-8961.	2.4	36
517	First-principle calculations of electronic and optical properties of Ti-doped <i>^{î2}</i> -Ga ₂ O ₃ with intrinsic defects. Materials Research Express, 2019, 6, 105920.	0.8	6
518	Aroylchlorination of 1,6-Dienes via a Photoredox Catalytic Atom-Transfer Radical Cyclization Process. Organic Letters, 2019, 21, 8615-8619.	2.4	31
519	Visible Light Irradiation of Acyl Oxime Esters and Styrenes Efficiently Constructs β-Carbonyl Imides by a Scission and Four-Component Reassembly Process. Organic Letters, 2019, 21, 8789-8794.	2.4	41
520	Reductive Arylation of Arylidene Malonates Using Photoredox Catalysis. ACS Catalysis, 2019, 9, 10350-10357.	5.5	44
521	Photochemical Asymmetric Nickelâ€Catalyzed Acyl Crossâ€Coupling. Angewandte Chemie - International Edition, 2019, 58, 16854-16858.	7.2	86
522	Photochemical Synthesis of Fused Five-membered O-heterocycles. Current Green Chemistry, 2019, 6, 155-183.	0.7	17
523	Visible-light-promoted organic dye catalyzed perfluoroalkylation of hydrazones under mild conditions. Tetrahedron Letters, 2019, 60, 151124.	0.7	16
524	Photoredox catalytic cascade radical addition/aromatization of methylene-2-oxazolines: Mild access to C(sp)-difluoro-oxazole derivatives. Tetrahedron Letters, 2019, 60, 151246.	0.7	5
525	Visible-Light-Mediated Amination of π-Nucleophiles with <i>N</i> -Aminopyridinium Salts. Journal of Organic Chemistry, 2019, 84, 15834-15844.	1.7	34
526	Photochemical Asymmetric Nickel atalyzed Acyl Cross oupling. Angewandte Chemie, 2019, 131, 17010-17014.	1.6	28
527	ortho â€Oxygenative 1,2â€Difunctionalization of Diarylalkynes under Merged Gold/Organophotoredox Relay Catalysis. Chemistry - an Asian Journal, 2019, 14, 4601-4606.	1.7	7
528	I ₂ -catalyzed intramolecular oxidative amination of C(sp ³)–H bond: efficient access to 3-acylimidazo[1,2- <i>a</i>]pyridines under neat condition. RSC Advances, 2019, 9, 2381-2385.	1.7	4

#	Article	IF	CITATIONS
529	Light-Induced Intramolecular Iodine-Atom Transfer Radical Addition of Alkyne: An Approach from Aryl Iodide to Alkenyl Iodide. Organic Letters, 2019, 21, 9133-9137.	2.4	19
530	Different Strategies for Designing Dual-Catalytic Enantioselective Processes: From Fully Cooperative to Non-cooperative Systems. Journal of the American Chemical Society, 2019, 141, 17952-17961.	6.6	72
531	s-Tetrazine Dyes: A Facile Generation of Photoredox Organocatalysts for Routine Oxidations. Journal of Organic Chemistry, 2019, 84, 16139-16146.	1.7	25
532	Visibleâ€Lightâ€Driven Enantioselective Aerobic Oxidation of βâ€Dicarbonyl Compounds Catalyzed by Cinchonaâ€Derived Phase Transfer Catalysts in Batch and Semiâ€Flow. Advanced Synthesis and Catalysis, 2019, 361, 5245-5252.	2.1	27
533	Asymmetric Dearomatization of Indole Derivatives with Nâ€Hydroxycarbamates Enabled by Photoredox Catalysis. Angewandte Chemie, 2019, 131, 18237-18242.	1.6	60
534	Visibleâ€Lightâ€Driven Intermolecular Reductive Ene–Yne Coupling by Iridium/Cobalt Dual Catalysis for C(sp ³)â^'C(sp ²) Bond Formation. Chemistry - A European Journal, 2019, 25, 15746-15750.	1.7	19
535	Controlling Photooxygenation with a Bifunctional Quinineâ€BODIPY Catalyst: towards Asymmetric Hydroxylation of βâ€Dicarbonyl Compounds. European Journal of Organic Chemistry, 2019, 2019, 6352-6358.	1.2	15
536	Asymmetric Dearomatization of Indole Derivatives with Nâ€Hydroxycarbamates Enabled by Photoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 18069-18074.	7.2	95
537	Visible light photocatalytic asymmetric synthesis of pyrrolo[1,2- <i>a</i>]indoles <i>via</i> intermolecular [3+2] cycloaddition. Chemical Communications, 2019, 55, 11303-11306.	2.2	22
538	Naphthalene diimides with improved solubility for visible light photoredox catalysis. Beilstein Journal of Organic Chemistry, 2019, 15, 2043-2051.	1.3	7
539	Visible-Light-Induced Oxidation/[3 + 2] Cycloaddition/Oxidative Aromatization to Construct Benzo[<i>a</i>]carbazoles from 1,2,3,4-Tetrahydronaphthalene and Arylhydrazine Hydrochlorides. Organic Letters, 2019, 21, 7179-7183.	2.4	15
540	Photoredox asymmetric catalytic enantioconvergent substitution of 3-chlorooxindoles. Chemical Communications, 2019, 55, 11362-11365.	2.2	49
541	Photoinduced hydroxylation of arylboronic acids with molecular oxygen under photocatalyst-free conditions. Green Chemistry, 2019, 21, 4971-4975.	4.6	21
542	Heterocycles via Cross Dehydrogenative Coupling. , 2019, , .		9
543	Double Thiol-Chiral BrÃ,nsted Base Catalysis: Asymmetric Cross Rauhut–Currier Reaction and Sequential [4 + 2] Annulation for Assembly of Different Activated Olefins. Organic Letters, 2019, 21, 7184-7188.	2.4	22
544	Combining Organocatalysis and Photoredox Catalysis: An Asymmetric Synthesis of Chiral β―Amino α― Substituted Tryptamines. ChemCatChem, 2019, 11, 5723-5727.	1.8	8
545	Visible-Light Photoredox-Catalyzed Decarboxylative Alkylation of Heteroarenes Using Carboxylic Acids with Hydrogen Release. Organic Letters, 2019, 21, 6930-6935.	2.4	59
546	Synthesis of Isoxazolidines by Intramolecular Hydroamination of <i>N</i> -Alkoxyamides in the Presence of a Visible-Light Photoredox Catalyst. Bulletin of the Chemical Society of Japan, 2019, 92, 1447-1449.	2.0	6

#	Article	IF	CITATIONS
547	Visible-light-initiated manganese-catalyzed Giese addition of unactivated alkyl iodides to electron-poor olefins. Chemical Communications, 2019, 55, 11707-11710.	2.2	37
548	α-Photooxygenation of chiral aldehydes with singlet oxygen. Beilstein Journal of Organic Chemistry, 2019, 15, 2076-2084.	1.3	4
549	Regioselective Alkylative Cross-Coupling of Remote Unactivated C(<i>sp</i> ³)–H Bonds. Journal of the American Chemical Society, 2019, 141, 14062-14067.	6.6	72
550	Probing Intramolecular Electron Transfer in Redox Tag Processes. Organic Letters, 2019, 21, 8519-8522.	2.4	21
551	Visible photocatalysis of novel oxime phosphonates: synthesis of β-aminophosphonates. Chemical Communications, 2019, 55, 11888-11891.	2.2	18
552	Three-component difluoroalkylamination of alkenes mediated by photoredox and iron cooperative catalysis. Organic and Biomolecular Chemistry, 2019, 17, 8541-8545.	1.5	18
553	Visible light induced alkene aminopyridylation using N-aminopyridinium salts as bifunctional reagents. Nature Communications, 2019, 10, 4117.	5.8	137
554	Recent advances in C–S bond construction to synthesize sulfone. Synthetic Communications, 2019, 49, 3227-3264.	1.1	30
555	Metal-supported and -assisted stereoselective cooperative photoredox catalysis. Dalton Transactions, 2019, 48, 15338-15357.	1.6	13
556	Cuprous cluster as effective single-molecule metallaphotocatalyst in white light-driven C H arylation. Journal of Catalysis, 2019, 378, 270-276.	3.1	9
557	Photoredox-catalyzed oxo-amination of aryl cyclopropanes. Nature Communications, 2019, 10, 4367.	5.8	65
558	Lewis Acid-Catalyzed Selective Reductive Decarboxylative Pyridylation of <i>N</i> -Hydroxyphthalimide Esters: Synthesis of Congested Pyridine-Substituted Quaternary Carbons. ACS Catalysis, 2019, 9, 10142-10151.	5.5	42
559	Access to Isoxazolidines through Visible-Light-Induced Difunctionalization of Alkenes. ACS Catalysis, 2019, 9, 9599-9605.	5.5	38
560	Lichtgetriebene Einâ€Elektronenâ€Transferprozesse als Funktionsprinzip in der Schwefel―und Selenâ€Multikatalyse. Angewandte Chemie, 2019, 131, 17288-17306.	1.6	13
561	Lightâ€Driven Singleâ€Electron Transfer Processes as an Enabling Principle in Sulfur and Selenium Multicatalysis. Angewandte Chemie - International Edition, 2019, 58, 17130-17147.	7.2	40
562	Plasmonic catalysis for the Suzuki–Miyaura cross-coupling reaction using palladium nanoflowers. New Journal of Chemistry, 2019, 43, 4349-4355.	1.4	24
563	Innovation in protecting-group-free natural product synthesis. Nature Reviews Chemistry, 2019, 3, 85-107.	13.8	48
564	Photoredoxâ€Coupled Fâ€Nucleophilic Addition: Allylation of <i>gem</i> â€Difluoroalkenes. Angewandte Chemie - International Edition, 2019, 58, 3918-3922.	7.2	85

#	Article	IF	CITATIONS
565	Enantioselective Radical Hydroacylation of Enals with α-Ketoacids Enabled by Photoredox/Amine Cocatalysis. Organic Letters, 2019, 21, 913-916.	2.4	74
566	Regiodivergent Hydroaminoalkylation of Alkynes and Allenes by a Combined Rhodium and Photoredox Catalytic System. Angewandte Chemie, 2019, 131, 3430-3435.	1.6	19
567	Reductive Cyclization of Unactivated Alkyl Chlorides with Tethered Alkenes under Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 4869-4874.	7.2	63
568	Reductive Cyclization of Unactivated Alkyl Chlorides with Tethered Alkenes under Visibleâ€Light Photoredox Catalysis. Angewandte Chemie, 2019, 131, 4923-4928.	1.6	11
569	Visible Light-induced Palladium-catalysis in Organic Synthesis. Chemistry Letters, 2019, 48, 181-191.	0.7	67
570	Four Oxidation States in a Single Photoredox Nickelâ€Based Catalytic Cycle: A Computational Study. Angewandte Chemie - International Edition, 2019, 58, 3898-3902.	7.2	27
571	Aminoxyl-Catalyzed Electrochemical Diazidation of Alkenes Mediated by a Metastable Charge-Transfer Complex. Journal of the American Chemical Society, 2019, 141, 2825-2831.	6.6	126
572	Four Oxidation States in a Single Photoredox Nickelâ€Based Catalytic Cycle: A Computational Study. Angewandte Chemie, 2019, 131, 3938-3942.	1.6	3
573	Photoredoxâ€Coupled Fâ€Nucleophilic Addition: Allylation of <i>gem</i> â€Difluoroalkenes. Angewandte Chemie, 2019, 131, 3958-3962.	1.6	17
574	Hydrogen and Sulfonyl Radical Generation for the Hydrogenation and Arylsulfonylation of Alkenes Driven by Photochemical Activity of Hydrogen Bond Donorâ€Acceptor Complexes. Advanced Synthesis and Catalysis, 2019, 361, 1606-1616.	2.1	18
575	Katalyse mit durch sichtbares Licht angeregten Palladiumkomplexen. Angewandte Chemie, 2019, 131, 11710-11722.	1.6	32
576	Alkenylation of unactivated alkyl bromides through visible light photocatalysis. Chemical Communications, 2019, 55, 107-110.	2.2	61
577	Cooperative iodine and photoredox catalysis for direct oxidative lactonization of carboxylic acids. Chemical Communications, 2019, 55, 933-936.	2.2	32
578	Photo-organocatalytic synthesis of acetals from aldehydes. Green Chemistry, 2019, 21, 669-674.	4.6	56
579	Photoinduced decarboxylative azidation of cyclic amino acids. Organic and Biomolecular Chemistry, 2019, 17, 1839-1842.	1.5	33
580	Visible-Light Induction/BrÃ,nsted Acid Catalysis in Relay for the Enantioselective Synthesis of Tetrahydroquinolines. Organic Letters, 2019, 21, 4173-4176.	2.4	23
581	Reductive C–C Coupling by Desulfurizing Gold-Catalyzed Photoreactions. ACS Catalysis, 2019, 9, 6118-6123.	5.5	50
582	Site-Selective Functionalization of Pyridinium Derivatives via Visible-Light-Driven Photocatalysis with Quinolinone. Journal of the American Chemical Society, 2019, 141, 9239-9248.	6.6	98

#	Article	IF	CITATIONS
583	Selective C–F bond carboxylation of <i>gem</i> -difluoroalkenes with CO ₂ by photoredox/palladium dual catalysis. Chemical Science, 2019, 10, 6721-6726.	3.7	99
584	Electrochemistry and Photoredox Catalysis: A Comparative Evaluation in Organic Synthesis. Molecules, 2019, 24, 2122.	1.7	82
585	Photocatalytic hydrogen evolution of 1-tetralones to α-naphthols by continuous-flow technology. Catalysis Science and Technology, 2019, 9, 3337-3341.	2.1	7
586	Visible-light-induced deboronative alkylarylation of acrylamides with organoboronic acids. Organic and Biomolecular Chemistry, 2019, 17, 6612-6619.	1.5	35
587	A ruthenium bisoxazoline complex as a photoredox catalyst for nitro compound reduction under visible light. Dalton Transactions, 2019, 48, 9949-9953.	1.6	9
588	Intramolecular Homolytic Substitution Enabled by Photoredox Catalysis: Sulfur, Phosphorus, and Silicon Heterocycle Synthesis from Aryl Halides. Organic Letters, 2019, 21, 5295-5300.	2.4	34
589	Visible-Light-Promoted, Catalyst-Free Gomberg–Bachmann Reaction: Synthesis of Biaryls. Journal of Organic Chemistry, 2019, 84, 9297-9306.	1.7	32
590	Three-Component Synthesis of Isoquinoline Derivatives by a Relay Catalysis with a Single Rhodium(III) Catalyst. Organic Letters, 2019, 21, 4971-4975.	2.4	30
591	On-DNA Decarboxylative Arylation: Merging Photoredox with Nickel Catalysis in Water. ACS Combinatorial Science, 2019, 21, 588-597.	3.8	72
592	Photoinduced Divergent Alkylation/Acylation of Pyridine <i>N</i> Oxides with Alkynes under Anaerobic and Aerobic Conditions. Organic Letters, 2019, 21, 5321-5325.	2.4	62
593	Semiheterogeneous Dual Nickel/Photocatalytic (Thio)etherification Using Carbon Nitrides. Organic Letters, 2019, 21, 5331-5334.	2.4	92
594	Electrochemicalâ€/Photoredox Aspects of Transition Metalâ€Catalyzed Directed Câ^'H Bond Activation. ChemCatChem, 2019, 11, 5160-5187.	1.8	47
595	Photoredox-Catalyzed Enantioselective $\hat{I}\pm$ -Deuteration of Azaarenes with D2O. IScience, 2019, 16, 410-419.	1.9	64
596	Visible-Light-Promoted Manganese-Catalyzed Atom Transfer Radical Cyclization of Unactivated Alkyl Iodides. Organic Letters, 2019, 21, 5586-5590.	2.4	37
597	Enantioselective photoredox dehalogenative protonation. Chemical Science, 2019, 10, 6629-6634.	3.7	53
598	Involving Single-Atom Silver(0) in Selective Dehalogenation by AgF under Visible-Light Irradiation. ACS Catalysis, 2019, 9, 6335-6341.	5.5	45
599	Cobaltâ€Catalyzed Allylic Alkylation Enabled by Organophotoredox Catalysis. Angewandte Chemie, 2019, 131, 9297-9301.	1.6	6
600	Ring-opening C(sp ³)–C coupling of cyclobutanone oxime esters for the preparation of cyanoalkyl containing heterocycles enabled by photocatalysis. Organic Chemistry Frontiers, 2019, 6, 2765-2770.	2.3	58

#	Article	IF	CITATIONS
601	Combination of illumination and high resolution NMR spectroscopy: Key features and practical aspects, photochemical applications, and new concepts. Progress in Nuclear Magnetic Resonance Spectroscopy, 2019, 114-115, 86-134.	3.9	52
602	Visible-Light-Induced Organocatalytic Borylation of Aryl Chlorides. Journal of the American Chemical Society, 2019, 141, 9124-9128.	6.6	107
603	Visible light triggered photo-decomposition of vinyl azides to (<i>E</i>)-stilbene derivatives <i>via</i> 1,2-acyl migration. Organic and Biomolecular Chemistry, 2019, 17, 5971-5981.	1.5	12
604	Improved Conditions for the Visible-Light Driven Hydrocarboxylation by Rh(I) and Photoredox Dual Catalysts Based on the Mechanistic Analyses. Frontiers in Chemistry, 2019, 7, 371.	1.8	18
605	Enantioselective reduction of azaarene-based ketones <i>via</i> visible light-driven photoredox asymmetric catalysis. Chemical Communications, 2019, 55, 7534-7537.	2.2	66
606	Visibleâ€Lightâ€Photosensitized Aryl and Alkyl Decarboxylative Functionalization Reactions. Angewandte Chemie - International Edition, 2019, 58, 10514-10520.	7.2	163
607	Visibleâ€Lightâ€Induced Ringâ€Opening of Hydrogenolysis Spirocyclopropyl Oxindoles Through Photoredox Catalysis. European Journal of Organic Chemistry, 2019, 2019, 4085-4088.	1.2	7
608	Electron Donor–Acceptor Complex Enabled Decarboxylative Sulfonylation of Cinnamic Acids under Visible-Light Irradiation. Journal of Organic Chemistry, 2019, 84, 8691-8701.	1.7	52
609	Visibleâ€Lightâ€Photosensitized Aryl and Alkyl Decarboxylative Functionalization Reactions. Angewandte Chemie, 2019, 131, 10624-10630.	1.6	42
610	Chromoselective access to Z- or E- allylated amines and heterocycles by a photocatalytic allylation reaction. Nature Communications, 2019, 10, 2634.	5.8	38
611	A synthetic chemist's guide to electroanalytical tools for studying reaction mechanisms. Chemical Science, 2019, 10, 6404-6422.	3.7	255
612	Nitrate-Mediated Alcohol Oxidation on Cadmium Sulfide Photocatalysts. ACS Catalysis, 2019, 9, 5732-5741.	5.5	60
613	Site‣elective, Remote sp ³ Câ^'H Carboxylation Enabled by the Merger of Photoredox and Nickel Catalysis. Chemistry - A European Journal, 2019, 25, 9001-9005.	1.7	78
614	Synergistic combination of visible-light photo-catalytic electron and energy transfer facilitating multicomponent synthesis of β-functionalized α,α-diarylethylamines. Chemical Communications, 2019, 55, 6405-6408.	2.2	19
615	Sichtbares Licht ermöglicht Rutheniumâ€katalysierte <i>meta</i> â€Hâ€Alkylierung bei Raumtemperatur. Angewandte Chemie, 2019, 131, 9925-9930.	1.6	39
616	Visibleâ€Lightâ€Enabled Rutheniumâ€Catalyzed <i>meta</i> â^'H Alkylation at Room Temperature. Angewand Chemie - International Edition, 2019, 58, 9820-9825.	te 7.2	134
617	The Evolution of High-Throughput Experimentation in Pharmaceutical Development and Perspectives on the Future. Organic Process Research and Development, 2019, 23, 1213-1242.	1.3	279
618	Chirality and Excited State Proton Transfer: From Sensing to Asymmetric Synthesis. ChemPhotoChem, 2019, 3, 580.	1.5	9

#	Article	IF	CITATIONS
619	Visible-light-induced radical cyclization of <i>N</i> -allylbenzamides with CF ₃ SO ₂ Na to trifluoromethylated dihydroisoquinolinones in water at room temperature. Green Chemistry, 2019, 21, 3362-3369.	4.6	46
620	Visible-Light-Triggered Cyanoalkylation of <i>para</i> -Quinone Methides and Its Application to the Synthesis of GPR40 Agonists. Organic Letters, 2019, 21, 4137-4142.	2.4	43
622	Potassium Alkylpentafluorosilicates, Primary Alkyl Radical Precursors in the C-1 Alkylation of Tetrahydroisoquinolines. Organic Letters, 2019, 21, 3981-3985.	2.4	15
623	Catalyst-Controlled C–H Functionalization of Adamantanes Using Selective H-Atom Transfer. ACS Catalysis, 2019, 9, 5708-5715.	5.5	68
624	Synthesis of Tri―and Difluoromethoxylated Compounds by Visibleâ€Light Photoredox Catalysis. Angewandte Chemie, 2019, 131, 11289-11299.	1.6	27
625	Synthetic applications of light, electricity, mechanical force and flow. Nature Reviews Chemistry, 2019, 3, 290-304.	13.8	51
626	Dual nickel- and photoredox-catalyzed reductive cross-coupling of aryl vinyl halides and unactivated tertiary alkyl bromides. Chemical Communications, 2019, 55, 5918-5921.	2.2	40
627	Photocatalyzed borylation using water-soluble quantum dots. Chemical Communications, 2019, 55, 6201-6204.	2.2	38
628	βâ€ S elective Aroylation of Activated Alkenes by Photoredox Catalysis. Angewandte Chemie, 2019, 131, 7396-7401.	1.6	7
629	Cobaltâ€Catalyzed Allylic Alkylation Enabled by Organophotoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 9199-9203.	7.2	59
630	Photochemical C–H bond coupling for (hetero)aryl C(sp ²)–C(sp ³) bond construction. Organic and Biomolecular Chemistry, 2019, 17, 4951-4963.	1.5	37
631	Facile Preparation of Spirolactones by an Alkoxycarbonyl Radical Cyclization–Cross oupling Cascade. Angewandte Chemie, 2019, 131, 8649-8653.	1.6	9
632	High-Performance Photocatalysts for Organic Reactions. Environmental Chemistry for A Sustainable World, 2019, , 219-270.	0.3	3
633	Visible-Light-Controlled Ruthenium-Catalyzed Olefin Metathesis. Journal of the American Chemical Society, 2019, 141, 6791-6796.	6.6	74
634	Heteroarene Phosphinylalkylation via a Catalytic, Polarity-Reversing Radical Cascade. ACS Catalysis, 2019, 9, 5330-5335.	5.5	73
635	Synthesis of Alkyl Halides from Aldehydes via Deformylative Halogenation. Organic Letters, 2019, 21, 3848-3854.	2.4	26
636	Iminyl Radical-Triggered 1,5-Hydrogen-Atom Transfer/Heck-Type Coupling by Visible-Light Photoredox Catalysis. Journal of Organic Chemistry, 2019, 84, 6475-6482.	1.7	27
637	Facile Preparation of Spirolactones by an Alkoxycarbonyl Radical Cyclization–Cross oupling Cascade. Angewandte Chemie - International Edition, 2019, 58, 8561-8565.	7.2	48

#	Article	IF	CITATIONS
638	Radical Cation Dielsâ€Alder Reactions of Nonâ€Conjugated Alkenes as Dienophiles by Electrocatalysis. Chinese Journal of Chemistry, 2019, 37, 561-564.	2.6	9
639	Continuousâ€Flow Visible Light Organophotocatalysis for Direct Arylation of 2 <i>H</i> â€Indazoles: Fast Access to Drug Molecules. ChemSusChem, 2019, 12, 2581-2586.	3.6	39
640	βâ€Selective Aroylation of Activated Alkenes by Photoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 7318-7323.	7.2	47
641	Synthesis of novel thioxanthone-containing macromolecular photosensitizer and its photocatalytic property. Polymer, 2019, 174, 101-108.	1.8	8
642	Photocatalytic Atom Transfer Radical Addition to Olefins Utilizing Novel Photocatalysts. Molecules, 2019, 24, 1644.	1.7	23
643	Visibleâ€Lightâ€Mediated Synthesis of βâ€Chloro Ketones from Aryl Cyclopropanes. Angewandte Chemie - International Edition, 2019, 58, 8577-8580.	7.2	52
644	Site-Selective and Stereoselective C–H Alkylations of Carbohydrates via Combined Diarylborinic Acid and Photoredox Catalysis. Journal of the American Chemical Society, 2019, 141, 5149-5153.	6.6	106
645	Visibleâ€Lightâ€Promoted Polycyclizations of Dienynes. Angewandte Chemie, 2019, 131, 6775-6779.	1.6	2
646	Resource Economy by Metallaelectrocatalysis: Merging Electrochemistry and C H Activation. Trends in Chemistry, 2019, 1, 63-76.	4.4	174
647	Dual copper- and photoredox-catalysed C(sp ²)–C(sp ³) coupling. Chemical Communications, 2019, 55, 4238-4241.	2.2	14
648	Photoinitiated carbonyl-metathesis: deoxygenative reductive olefination of aromatic aldehydes <i>via</i> photoredox catalysis. Chemical Science, 2019, 10, 4580-4587.	3.7	52
649	Recent Developments in Radicalâ€Mediated Transformations of Organohalides. European Journal of Organic Chemistry, 2019, 2019, 2769-2806.	1.2	42
650	Illuminating Photoredox Catalysis. Trends in Chemistry, 2019, 1, 111-125.	4.4	333
651	Asymmetric Photocatalysis with Bis-cyclometalated Rhodium Complexes. Accounts of Chemical Research, 2019, 52, 833-847.	7.6	198
652	Photoredox/rhodium catalysis in C–H activation for the synthesis of nitrogen containing heterocycles. Organic Chemistry Frontiers, 2019, 6, 2319-2323.	2.3	27
653	Decarboxylative hydrazination of unactivated carboxylic acids by cerium photocatalysis. Chemical Communications, 2019, 55, 3489-3492.	2.2	103
654	Durch sichtbares Licht vermittelte Synthese von β hlorketonen aus Arylcyclopropanen. Angewandte Chemie, 2019, 131, 8665-8669.	1.6	5
655	Radical Cation Diels–Alder Reactions by TiO ₂ Photocatalysis. Organic Letters, 2019, 21, 2246-2250.	2.4	38

#	Article	IF	CITATIONS
656	Photoredox Catalysis Enables Access to N-Functionalized 2,1-Borazaronaphthalenes. Organic Letters, 2019, 21, 2880-2884.	2.4	14
657	2-Azadienes as Enamine Umpolung Synthons for the Preparation of Chiral Amines. Synlett, 2019, 30, 1253-1268.	1.0	8
658	Room temperature catalytic dehydrogenation of cyclic amines with the liberation of H ₂ using water as a solvent. Green Chemistry, 2019, 21, 2119-2128.	4.6	47
659	Merging Catalysis in Single Electron Steps with Photoredox Catalysis—Efficient and Sustainable Radical Chemistry. ACS Catalysis, 2019, 9, 3208-3212.	5.5	65
660	Substitution Pattern‧elective Olefin Cross ouplings. ChemElectroChem, 2019, 6, 4165-4168.	1.7	10
661	Photoredox Radical/Polar Crossover Enables Construction of Saturated Nitrogen Heterocycles. Organic Letters, 2019, 21, 2317-2321.	2.4	51
662	3-Amino-fluorene-2,4-dicarbonitriles (AFDCs) as Photocatalysts for the Decarboxylative Arylation of α-Amino Acids and α-Oxy Acids with Arylnitriles. Organic Letters, 2019, 21, 2130-2133.	2.4	36
663	Catalytic Enantioselective Addition of Prochiral Radicals to Vinylpyridines. Journal of the American Chemical Society, 2019, 141, 5437-5443.	6.6	167
664	Regulatory Mechanism and Kinetic Assessment of Energy Transfer Catalysis Mediated by Visible Light. ACS Catalysis, 2019, 9, 3672-3684.	5.5	31
665	Neue Rollen für photoangeregtes Eosinâ€Y in photochemischen Reaktionen. Angewandte Chemie, 2019, 131, 384-386.	1.6	13
666	Photochemistry of Carbonyl Compounds: Application in Metalâ€Free Reactions. ChemPhotoChem, 2019, 3, 506-520.	1.5	59
667	Visibleâ€Lightâ€Promoted Polycyclizations of Dienynes. Angewandte Chemie - International Edition, 2019, 58, 6703-6707.	7.2	20
668	Visibleâ€Light Photoredoxâ€Catalyzed and Copperâ€Promoted Trifluoromethoxylation of Arenediazonium Tetrafluoroborates. Angewandte Chemie, 2019, 131, 7922-7926.	1.6	8
669	Visibleâ€Light Photoredoxâ€Catalyzed and Copperâ€Promoted Trifluoromethoxylation of Arenediazonium Tetrafluoroborates. Angewandte Chemie - International Edition, 2019, 58, 7840-7844.	7.2	53
670	Photo-Biocatalysis: Biotransformations in the Presence of Light. ACS Catalysis, 2019, 9, 4115-4144.	5.5	219
671	Perylenequinonoid-catalyzed photoredox activation for the direct arylation of (het)arenes with sunlight. Organic and Biomolecular Chemistry, 2019, 17, 4364-4369.	1.5	40
672	Nickel(II) Tetraphenylporphyrin as an Efficient Photocatalyst Featuring Visible Light Promoted Dual Redox Activities. Advanced Synthesis and Catalysis, 2019, 361, 3200-3209.	2.1	56
673	Practical heterogeneous photoredox/nickel dual catalysis for C–N and C–O coupling reactions. Chemical Communications, 2019, 55, 4853-4856.	2.2	93

#	Article	IF	CITATIONS
675	Rapid Assessment of the Reaction onditionâ€Based Sensitivity of Chemical Transformations. Angewandte Chemie - International Edition, 2019, 58, 8572-8576.	7.2	239
676	Metalâ€Free Photocatalysts for Câ^'H Bond Oxygenation Reactions with Oxygen as the Oxidant. ChemSusChem, 2019, 12, 2898-2910.	3.6	95
677	Visible-Light-Initiated Manganese-Catalyzed <i>E</i> -Selective Hydrosilylation and Hydrogermylation of Alkynes. Organic Letters, 2019, 21, 2750-2754.	2.4	103
678	Synthesis of Tri―and Difluoromethoxylated Compounds by Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 11171-11181.	7.2	105
679	Visible-Light-Mediated Synthesis of 1,2,4-Dithiazolidines from β-Ketothioamides through a Hydrogen-Atom-Transfer Photocatalytic Approach of Eosin Y. Journal of Organic Chemistry, 2019, 84, 5404-5412.	1.7	30
680	Evaluierung der Reaktionsbedingungsâ€basierten Sensitivitächemischer Transformationen. Angewandte Chemie, 2019, 131, 8660-8664.	1.6	83
681	Catalystâ€Free Deaminative Functionalizations of Primary Amines by Photoinduced Singleâ€Electron Transfer. Angewandte Chemie - International Edition, 2019, 58, 5697-5701.	7.2	250
682	Progress in Difluoroalkylation of Organic Substrates by Visible Light Photoredox Catalysis. Advanced Synthesis and Catalysis, 2019, 361, 1500-1537.	2.1	143
683	Catalystâ€Free Deaminative Functionalizations of Primary Amines by Photoinduced Singleâ€Electron Transfer. Angewandte Chemie, 2019, 131, 5753-5757.	1.6	51
684	Synthesis of Cyclic Compounds via Photoinduced Radical Cyclization Cascade of C=C bonds. Chemical Record, 2019, 19, 424-439.	2.9	26
685	Reductive annulations of arylidene malonates with unsaturated electrophiles using photoredox/Lewis acid cooperative catalysis. Chemical Science, 2019, 10, 3353-3359.	3.7	25
686	Tandem copper and photoredox catalysis in photocatalytic alkene difunctionalization reactions. Beilstein Journal of Organic Chemistry, 2019, 15, 351-356.	1.3	13
687	A Redoxâ€Active Nickel Complex that Acts as an Electron Mediator in Photochemical Giese Reactions. Angewandte Chemie, 2019, 131, 5007-5011.	1.6	24
688	A Redoxâ€Active Nickel Complex that Acts as an Electron Mediator in Photochemical Giese Reactions. Angewandte Chemie - International Edition, 2019, 58, 4953-4957.	7.2	101
689	Bioorganometallic B12 as Versatile Catalyst for Green Organic Synthesis. , 2019, , 379-398.		0
690	Visible light-mediated C P bond formation reactions. Science Bulletin, 2019, 64, 337-350.	4.3	152
691	Time-Resolved Spectroscopic Observation and Characterization of Water-Assisted Photoredox Reactions of Selected Aromatic Carbonyl Compounds. Accounts of Chemical Research, 2019, 52, 726-737.	7.6	22
692	Open-Air Alkylation Reactions in Photoredox-Catalyzed DNA-Encoded Library Synthesis. Journal of the American Chemical Society, 2019, 141, 3723-3732.	6.6	250

#	Article	IF	CITATIONS
693	Visible-light activated metal catalyst-free vicinal diazidation of olefins with sulfonium iodate(<scp>i</scp>) species. Chemical Communications, 2019, 55, 2833-2836.	2.2	33
694	Catalytic radical difluoromethoxylation of arenes and heteroarenes. Chemical Science, 2019, 10, 3217-3222.	3.7	43
695	Proton-coupled multi-electron transfer and its relevance for artificial photosynthesis and photoredox catalysis. Chemical Communications, 2019, 55, 4004-4014.	2.2	77
696	Anionic Cyclometalated Platinum(II) Tetrazolato Complexes as Viable Photoredox Catalysts. Organometallics, 2019, 38, 1108-1117.	1.1	32
697	Visible-Light-Activated Divergent Reactivity of Dienones: Dimerization in Neat Conditions and Regioselective <i>E</i> to <i>Z</i> Isomerization in the Solvent. Organic Letters, 2019, 21, 1578-1582.	2.4	29
698	Cross coupling of alkylsilicates with acyl chlorides <i>via</i> photoredox/nickel dual catalysis: a new synthesis method for ketones. Organic Chemistry Frontiers, 2019, 6, 1378-1382.	2.3	37
699	Synthesis of Chromenoisoxazolidines from Substituted Salicylic Nitrones via Visible-Light Photocatalysis. Organic Letters, 2019, 21, 1388-1392.	2.4	22
700	Toward ideal carbon dioxide functionalization. Chemical Science, 2019, 10, 3905-3926.	3.7	137
701	Catalytic Wackerâ€ŧype Oxidations Using Visible Light Photoredox Catalysis. ChemCatChem, 2019, 11, 1889-1892.	1.8	12
702	Visible-Light-Induced Remote C(sp ³)–H Pyridylation of Sulfonamides and Carboxamides. Organic Letters, 2019, 21, 9719-9723.	2.4	59
703	Accelerated Discovery in Photocatalysis by a Combined Screening Approach Involving MS Tags. Organic Letters, 2019, 21, 9747-9752.	2.4	7
704	Visible-light-mediated direct C3-arylation of 2 <i>H</i> -indazoles enabled by an electron-donor–acceptor complex. Organic and Biomolecular Chemistry, 2019, 17, 9698-9702.	1.5	36
705	Visible-light-promoted hydroxysulfonylation of alkylidenecyclopropanes: synthesis of cyclopropane-containing β-hydroxysulfones. Organic Chemistry Frontiers, 2019, 6, 3944-3949.	2.3	15
706	Redox reactions of small organic molecules using ball milling and piezoelectric materials. Science, 2019, 366, 1500-1504.	6.0	305
707	Asymmetric aerobic decarboxylative Povarov reactions of <i>N</i> -aryl α-amino acids with methylenephthalimidines <i>via</i> cooperative photoredox and chiral BrÃ,nsted acid catalysis. Chemical Communications, 2019, 55, 12916-12919.	2.2	62
708	Recent advances in modified TiO ₂ for photo-induced organic synthesis. Organic and Biomolecular Chemistry, 2019, 17, 9977-9989.	1.5	36
709	Light-driven proton reduction with in situ supported copper nanoparticles. International Journal of Hydrogen Energy, 2019, 44, 31892-31901.	3.8	0
710	Redox-Neutral Borylation of Aryl Sulfonium Salts via C–S Activation Enabled by Light. Organic Letters, 2019, 21, 9688-9692.	2.4	53

#	Article	IF	CITATIONS
711	Photoswitchable Regiodivergent Azidation of Olefins with Sulfonium Iodate(I) Reagent. Organic Letters, 2019, 21, 9990-9994.	2.4	20
712	Photoinduced Electron Transfer-Promoted Reactions Using Exciplex-Type Organic Photoredox Catalyst Directly Linking Donor and Acceptor Arenes. Molecules, 2019, 24, 4453.	1.7	2
713	Three-Component Olefin Dicarbofunctionalization Enabled by Nickel/Photoredox Dual Catalysis. Journal of the American Chemical Society, 2019, 141, 20069-20078.	6.6	162
714	On the reactions of methyl radicals with nitrilotris(methylenephosphonic-acid) complexes in aqueous solutions. Journal of Coordination Chemistry, 2019, 72, 3445-3457.	0.8	3
715	Practical C–P bond formation via heterogeneous photoredox and nickel synergetic catalysis. Chinese Journal of Catalysis, 2019, 40, 1841-1846.	6.9	12
716	Visible light-driven cross-coupling reactions of alkyl halides with phenylacetylene derivatives for C(sp ³)–C(sp) bond formation catalyzed by a B ₁₂ complex. Chemical Communications, 2019, 55, 13070-13073.	2.2	33
717	EDA complex directed N-centred radical generation from nitrosoarenes: a divergent synthetic approach. Chemical Communications, 2019, 55, 13590-13593.	2.2	13
718	Blue light photoredox-catalysed acetalation of alkynyl bromides. RSC Advances, 2019, 9, 36213-36216.	1.7	8
719	Combining Flavin Photocatalysis and Organocatalysis: Metal-Free Aerobic Oxidation of Unactivated Benzylic Substrates. Organic Letters, 2019, 21, 114-119.	2.4	79
720	Alkylâ€Câ€Câ€Bindungsbildung durch Nickel/Photoredoxâ€Kreuzkupplung. Angewandte Chemie, 2019, 131, 6212-6224.	1.6	101
721	Visible light-driven organic photochemical synthesis in China. Science China Chemistry, 2019, 62, 24-57.	4.2	374
722	Catalysis with Palladium Complexes Photoexcited by Visible Light. Angewandte Chemie - International Edition, 2019, 58, 11586-11598.	7.2	191
723	<i>De novo</i> Design of Organic Photocatalysts: Bithiophene Derivatives for the Visibleâ€light Induced Câ^'H Functionalization of Heteroarenes. Advanced Synthesis and Catalysis, 2019, 361, 945-950.	2.1	43
724	"Snapshots―of Intramolecular Electron Transfer in Redox Tag-Guided [2 + 2] Cycloadditions. Journal of Organic Chemistry, 2019, 84, 1882-1886.	1.7	17
725	Photoredox Alkenylation of Carboxylic Acids and Peptides: Synthesis of Covalent Enzyme Inhibitors. Journal of Organic Chemistry, 2019, 84, 2379-2392.	1.7	24
726	Metal-Free Visible Light Hydroperfluoroalkylation of Unactivated Alkenes Using Perfluoroalkyl Bromides. Organic Letters, 2019, 21, 138-141.	2.4	27
727	New Roles for Photoexcited Eosinâ€Y in Photochemical Reactions. Angewandte Chemie - International Edition, 2019, 58, 378-380.	7.2	125
728	3d Transition Metals for C–H Activation. Chemical Reviews, 2019, 119, 2192-2452.	23.0	1,666

#	Article	IF	CITATIONS
729	Cross-Coupling and Related Reactions: Connecting Past Success to the Development of New Reactions for the Future. Organometallics, 2019, 38, 3-35.	1.1	267
730	Combining Photoâ€Organo Redox―and Enzyme Catalysis Facilitates Asymmetric Câ€H Bond Functionalization. European Journal of Organic Chemistry, 2019, 2019, 80-84.	1.2	58
731	Aliphatic Radical Relay Heck Reaction at Unactivated C(sp ³)â^'H Sites of Alcohols. Angewandte Chemie, 2019, 131, 1808-1812.	1.6	22
732	Aliphatic Radical Relay Heck Reaction at Unactivated C(sp ³)â^'H Sites of Alcohols. Angewandte Chemie - International Edition, 2019, 58, 1794-1798.	7.2	97
733	Visibleâ€Light Photoredox Catalysis Enables the Biomimetic Synthesis of Nyingchinoidsâ€A, B, and D, and Rasumatraninâ€D. Angewandte Chemie, 2019, 131, 2817-2820.	1.6	0
734	Photoinduced cyclization of alkynoates to coumarins with N-lodosuccinimide as a free-radical initiator under ambient andÂmetal-free conditions. Tetrahedron, 2019, 75, 1044-1051.	1.0	22
735	Mechanism of Photoredox-Initiated C–C and C–N Bond Formation by Arylation of IPrAu(I)–CF ₃ and IPrAu(I)–Succinimide. Journal of the American Chemical Society, 2019, 141, 4308-4315.	6.6	48
736	Outer-Sphere Control for Divergent Multicatalysis with Common Catalytic Moieties. Journal of Organic Chemistry, 2019, 84, 1664-1672.	1.7	7
737	Regiodivergent Hydroaminoalkylation of Alkynes and Allenes by a Combined Rhodium and Photoredox Catalytic System. Angewandte Chemie - International Edition, 2019, 58, 3392-3397.	7.2	68
738	Visibleâ€Lightâ€Induced, Manganeseâ€Catalyzed Tandem Cyclization of 2â€Biphenyl Isocyanides with Cyclopropanols for the Synthesis of 6â€ <i>β</i> â€Ketoalkyl Phenanthridines. Asian Journal of Organic Chemistry, 2019, 8, 385-390.	1.3	12
739	Asymmetric Formal [5 + 3] Cycloadditions with Unmodified Morita–Baylis–Hillman Alcohols via Double Activation Catalysis. ACS Catalysis, 2019, 9, 1258-1263.	5.5	33
740	A Laser Driven Flow Chemistry Platform for Scaling Photochemical Reactions with Visible Light. ACS Central Science, 2019, 5, 109-115.	5.3	138
741	Visibleâ€Light Photoredox Catalysis Enables the Biomimetic Synthesis of Nyingchinoidsâ€A, B, and D, and Rasumatraninâ€D. Angewandte Chemie - International Edition, 2019, 58, 2791-2794.	7.2	24
742	Photocatalytic Fluorination Reactions. , 2019, , 183-221.		0
743	Photocatalysis in the Dark: Nearâ€Infrared Light Driven Photoredox Catalysis by an Upconversion Nanoparticle/Photocatalyst System. ChemPhotoChem, 2019, 3, 24-27.	1.5	36
744	Acyl Radical Chemistry via Visible-Light Photoredox Catalysis. Synthesis, 2019, 51, 303-333.	1.2	164
745	Dual Catalytic Switchable Divergent Synthesis: An Asymmetric Visible-Light Photocatalytic Approach to Fluorine-Containing γ-Keto Acid Frameworks. Journal of Organic Chemistry, 2019, 84, 60-72.	1.7	35
746	Progress of electrochemical С(sp ²)-H phosphonation. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 415-419.	0.8	14

#	Article	IF	CITATIONS
747	Heterogeneous Photocatalyzed Câ^'C Crossâ€coupling Reactions Under Visibleâ€light and Nearâ€infrared Light Irradiation. ChemCatChem, 2019, 11, 669-683.	1.8	41
748	Metalâ€Free Visibleâ€Light Photocatalytic Tandem Radical Addition–Cyclization Strategy for the Synthesis of Sulfonylâ€Containing Isoquinolinediones. European Journal of Organic Chemistry, 2019, 2019, 939-948.	1.2	25
749	Alkyl Carbon–Carbon Bond Formation by Nickel/Photoredox Crossâ€Coupling. Angewandte Chemie - International Edition, 2019, 58, 6152-6163.	7.2	465
750	Corroles as triplet photosensitizers. Coordination Chemistry Reviews, 2019, 379, 121-132.	9.5	81
751	Minisciâ€Type C–H Cyanoalkylation of Heteroarenes Through N–O/C–C Bonds Cleavage. European Journal of Organic Chemistry, 2020, 2020, 1439-1442.	1.2	14
752	Aromatic Chemistry in the Excited State: Facilitating Metalâ€Free Substitutions and Crossâ€Couplings. Angewandte Chemie, 2020, 132, 1802-1812.	1.6	6
753	Visible-light-promoted oxidative coupling of styrene with cyclic ethers. Science China Chemistry, 2020, 63, 42-46.	4.2	25
754	Aromatic Chemistry in the Excited State: Facilitating Metalâ€Free Substitutions and Crossâ€Couplings. Angewandte Chemie - International Edition, 2020, 59, 1786-1796.	7.2	60
755	Visibleâ€Lightâ€Mediated Regioselective Allylation, Benzylation, and Silylation of Methyleneâ€Malononitriles via Photoredoxâ€Induced Radical Cation Fragmentation. European Journal of Organic Chemistry, 2020, 2020, 1459-1465.	1.2	28
756	Tackling Remote <i>sp</i> ^{<i>3</i>} Câ^'H Functionalization via Ni atalyzed "chainâ€walkingâ€ Reactions. Israel Journal of Chemistry, 2020, 60, 195-206.	1.0	156
757	Making Copper Photocatalysis Even More Robust and Economic: Photoredox Catalysis with [Cu ^{II} (dmp) ₂ Cl]Cl. European Journal of Organic Chemistry, 2020, 2020, 1523-1533.	1.2	51
758	A green road map for heterogeneous photocatalysis. Pure and Applied Chemistry, 2020, 92, 63-73.	0.9	4
759	Green Metalâ€Free Photochemical Hydroacylation of Unactivated Olefins. Angewandte Chemie, 2020, 132, 1752-1758.	1.6	46
760	Green Metalâ€Free Photochemical Hydroacylation of Unactivated Olefins. Angewandte Chemie - International Edition, 2020, 59, 1735-1741.	7.2	79
761	Photoinduced Decarboxylative Aminoâ€Fluoroalkylation of Maleic Anhydride. Chemistry - A European Journal, 2020, 26, 419-422.	1.7	6
762	Photoredoxkatalytische αâ€Alkoxypentafluorosulfanylierung von αâ€Methyl―und αâ€Phenylstyrol mithilfe von SF 6. Angewandte Chemie, 2020, 132, 306-310.	1.6	33
763	Photoredox Catalytic αâ€Alkoxypentafluorosulfanylation of αâ€Methyl―and αâ€Phenylstyrene Using SF ₆ . Angewandte Chemie - International Edition, 2020, 59, 300-303.	7.2	68
764	Photochemical Carbopyridylation of Alkenes Using <i>N</i> â€Alkenoxypyridinium Salts as Bifunctional Reagents. Angewandte Chemie - International Edition, 2020, 59, 2049-2054.	7.2	69

#	Article	IF	CITATIONS
765	Pyridinium Salts as Redoxâ€Active Functional Group Transfer Reagents. Angewandte Chemie - International Edition, 2020, 59, 9264-9280.	7.2	192
766	Naphthochromenones: Organic Bimodal Photocatalysts Engaging in Both Oxidative and Reductive Quenching Processes. Angewandte Chemie - International Edition, 2020, 59, 1302-1312.	7.2	48
767	Addressing the Reproducibility of Photocatalytic Carbon Dioxide Reduction. ChemCatChem, 2020, 12, 1603-1608.	1.8	13
768	Photochemical Strategies for Carbon–Heteroatom Bond Formation. European Journal of Organic Chemistry, 2020, 2020, 1379-1392.	1.2	44
769	Pyridiniumsalze als redoxaktive Reagenzien zur Übertragung funktioneller Gruppen. Angewandte Chemie, 2020, 132, 9350-9366.	1.6	27
770	A Ni-Ir Dual Photocatalytic Liebeskind Coupling of Sulfonium Salts for the Synthesis of 2-Benzylpyrrolidines. European Journal of Organic Chemistry, 2020, 2020, 1466-1471.	1.2	23
771	Aluminum(III) Salen Complexes as Active Photoredox Catalysts. European Journal of Organic Chemistry, 2020, 2020, 1486-1490.	1.2	24
772	Recent Advances in the Electrochemical Synthesis and Functionalization of Indole Derivatives. Advanced Synthesis and Catalysis, 2020, 362, 2102-2119.	2.1	75
773	Dearomative Photocatalytic Construction of Bridged 1,3â€Diazepanes. Angewandte Chemie - International Edition, 2020, 59, 4121-4130.	7.2	53
774	Photocatalyst- and transition-metal-free α-allylation of <i>N</i> -aryl tetrahydroisoquinolines mediated by visible light. Green Chemistry, 2020, 22, 646-650.	4.6	35
775	A DFT Study on the Redox Active Behavior of Carbene and Pyridine Ligands in the Oxidative and Reductive Quenching Cycles of Ruthenium Photoredox Catalysts. Catalysts, 2020, 10, 80.	1.6	5
776	Siteâ€Selective 1,2â€Dicarbofunctionalization of Vinyl Boronates through Dual Catalysis. Angewandte Chemie, 2020, 132, 4400-4404.	1.6	25
777	Pentafluorophenyl Esters: Highly Chemoselective Ketyl Precursors for the Synthesis of α,α-Dideuterio Alcohols Using Sml ₂ and D ₂ O as a Deuterium Source. Organic Letters, 2020, 22, 1249-1253.	2.4	20
778	Photochemical oxidation of benzylic primary and secondary alcohols utilizing air as the oxidant. Green Chemistry, 2020, 22, 471-477.	4.6	95
779	Visible light photoredox catalyzed deprotection of 1,3-oxathiolanes. Organic and Biomolecular Chemistry, 2020, 18, 288-291.	1.5	10
780	Visible-light-driven spirocyclization of epoxides <i>via</i> dual titanocene and photoredox catalysis. Chemical Science, 2020, 11, 839-844.	3.7	46
781	Ternary Catalysis: A Stepping Stone toward Multicatalysis. ACS Catalysis, 2020, 10, 3462-3489.	5.5	70
782	1,2-Amino Alcohols via Cr/Photoredox Dual-Catalyzed Addition of α-Amino Carbanion Equivalents to Carbonyls. Journal of the American Chemical Society, 2020, 142, 2168-2174.	6.6	87

#	Article	IF	CITATIONS
783	<i>cis</i> â€Selective Transfer Semihydrogenation of Alkynes by Merging Visibleâ€Light Catalysis with Cobalt Catalysis. Advanced Synthesis and Catalysis, 2020, 362, 1032-1038.	2.1	21
784	N-Heterocyclic carbene/photo-cocatalyzed oxidative Smiles rearrangement: synthesis of aryl salicylates from <i>O</i> -aryl salicylaldehydes. Chemical Communications, 2020, 56, 1525-1528.	2.2	61
785	Photocatalytic site-selective C–H difluoroalkylation of aromatic aldehydes. Chemical Communications, 2020, 56, 1497-1500.	2.2	20
786	Heterogeneous visible-light-induced Meerwein hydration reaction of alkenes in water using mpg-C ₃ N ₄ as a recyclable photocatalyst. Green Chemistry, 2020, 22, 411-416.	4.6	46
787	Synthesis of substituted 2-alkylquinolines by visible-light photoredox catalysis. Organic and Biomolecular Chemistry, 2020, 18, 86-92.	1.5	9
788	Visible-light-induced intramolecular radical cascade of α-bromo- <i>N</i> -benzyl-alkylamides: a new strategy to synthesize tetracyclic <i>N</i> -fused indolo[2,1- <i>a</i>]isoquinolin-6(5 <i>H</i>)-ones. Organic and Biomolecular Chemistry, 2020, 18, 263-271.	1.5	17
789	Merging photochemistry with electrochemistry in organic synthesis. Organic Chemistry Frontiers, 2020, 7, 131-135.	2.3	111
790	Cascade cyclization reactions of alkylidenecyclopropanes for the construction of polycyclic lactams and lactones by visible light photoredox catalysis. Organic Chemistry Frontiers, 2020, 7, 374-379.	2.3	20
791	Investigation of Lewis Acid-Carbonyl Solution Interactions via Infrared-Monitored Titration. Journal of Organic Chemistry, 2020, 85, 820-832.	1.7	14
792	Metalla-electrocatalyzed C–H Activation by Earth-Abundant 3d Metals and Beyond. Accounts of Chemical Research, 2020, 53, 84-104.	7.6	431
793	Metalâ€Free Visibleâ€Lightâ€Mediated Aromatization of 1,2–Dihydronaphthalenes. European Journal of Organic Chemistry, 2020, 2020, 1482-1485.	1.2	4
794	Photochemical Carbopyridylation of Alkenes Using <i>N</i> â€Alkenoxypyridinium Salts as Bifunctional Reagents. Angewandte Chemie, 2020, 132, 2065-2070.	1.6	17
795	Reactor Technology Concepts for Flow Photochemistry. ChemPhotoChem, 2020, 4, 235-254.	1.5	62
796	Naphthochromenones: Organic Bimodal Photocatalysts Engaging in Both Oxidative and Reductive Quenching Processes. Angewandte Chemie, 2020, 132, 1318-1328.	1.6	9
797	Visible Light-Induced Amide Bond Formation. Organic Letters, 2020, 22, 371-375.	2.4	57
798	Cerium photocatalyzed dehydrogenative lactonization of 2-arylbenzoic acids. Organic and Biomolecular Chemistry, 2020, 18, 983-987.	1.5	35
799	Visible light-induced aerobic oxidative cross-coupling reaction: preparation of α-indolyl glycine derivatives. New Journal of Chemistry, 2020, 44, 313-316.	1.4	25
800	Siteâ€Selective 1,2â€Dicarbofunctionalization of Vinyl Boronates through Dual Catalysis. Angewandte Chemie - International Edition, 2020, 59, 4370-4374.	7.2	115

#	Article	IF	CITATIONS
801	Nâ€Heterocyclic Carbene Catalyzed Photoenolization/Diels–Alder Reaction of Acid Fluorides. Angewandte Chemie - International Edition, 2020, 59, 3190-3194.	7.2	109
802	Dialkylation of 1,3-Dienes by Dual Photoredox and Chromium Catalysis. ACS Catalysis, 2020, 10, 1621-1627.	5.5	116
803	Visibleâ€Lightâ€Induced Selective Defluoroborylation of Polyfluoroarenes, <i>gem</i> â€Difluoroalkenes, and Trifluoromethylalkenes. Angewandte Chemie - International Edition, 2020, 59, 4009-4016.	7.2	146
804	Palladium-Catalyzed Dual Ligand-Enabled Alkylation of Silyl Enol Ether and Enamide under Irradiation: Scope, Mechanism, and Theoretical Elucidation of Hybrid Alkyl Pd(I)-Radical Species. ACS Catalysis, 2020, 10, 1334-1343.	5.5	79
805	Arylsilylation of Electron-Deficient Alkenes via Cooperative Photoredox and Nickel Catalysis. ACS Catalysis, 2020, 10, 777-782.	5.5	56
806	Durch Nâ€heterocyclische Carbene katalysierte Photoenolisierungsâ€Dielsâ€Alderâ€Reaktion von Särefluoriden. Angewandte Chemie, 2020, 132, 3216-3220.	1.6	20
807	Visible light-mediated photocatalytic phosphorylation of vinyl azides: A mild synthesis of β-ketophosphine oxides. Synthetic Communications, 2020, 50, 380-387.	1.1	14
808	Recent advances in catalyst-free photochemical reactions via electron-donor-acceptor (EDA) complex process. Tetrahedron Letters, 2020, 61, 151506.	0.7	148
809	Recent progress in the development of transition-metal based photoredox catalysts. Coordination Chemistry Reviews, 2020, 405, 213129.	9.5	154
810	BrÃ,nsted acid catalysis of photosensitized cycloadditions. Chemical Science, 2020, 11, 856-861.	3.7	45
811	A Retrosynthetic Approach for Photocatalysis. European Journal of Organic Chemistry, 2020, 2020, 1193-1244.	1.2	43
812	Organo Photoinduced Decarboxylative Alkylation of Coumarins with <i>N</i> -(Acyloxy)phthalimide. Journal of Organic Chemistry, 2020, 85, 1193-1201.	1.7	38
813	Visible light-mediated photocatalytic bromination of 2-arylimidazo[1,2- <i>a</i>]pyridines using CBr ₄ as bromine source. Synthetic Communications, 2020, 50, 197-206.	1.1	25
814	Photoredox catalysis with aryl sulfonium salts enables site-selective late-stage fluorination. Nature Chemistry, 2020, 12, 56-62.	6.6	194
815	Synthetische Photoelektrochemie. Angewandte Chemie, 2020, 132, 11828-11844.	1.6	40
816	Synthetic Photoelectrochemistry. Angewandte Chemie - International Edition, 2020, 59, 11732-11747.	7.2	261
817	General Access to <i>C</i> -Centered Radicals: Combining a Bioinspired Photocatalyst with Boronic Acids in Aqueous Media. ACS Catalysis, 2020, 10, 12727-12737.	5.5	47
818	Visibleâ€Light Photoredox Alkylation of Heteroaromatic Bases Using Ethyl Acetate as Alkylating Agent. European Journal of Organic Chemistry, 2020, 2020, 6447-6454.	1.2	6

#	Article	IF	CITATIONS
819	Powering the Future: How Can Electrochemistry Make a Difference in Organic Synthesis?. CheM, 2020, 6, 2484-2496.	5.8	270
820	Visible-Light Photocatalysis as an Enabling Technology for Drug Discovery: A Paradigm Shift for Chemical Reactivity. ACS Medicinal Chemistry Letters, 2020, 11, 2120-2130.	1.3	63
821	Shining Light on Câ^'S Bonds: Recent Advances in Câ^'C Bond Formation Reactions via Câ^'S Bond Cleavage under Photoredox Catalysis. Chemistry - an Asian Journal, 2020, 15, 3637-3659.	1.7	30
822	Ni-Catalyzed Reductive and Merged Photocatalytic Cross-Coupling Reactions toward sp ³ /sp ² -Functionalized Isoquinolones: Creating Diversity at C-6 and C-7 to Address Bioactive Analogues. ACS Omega, 2020, 5, 27591-27606.	1.6	6
823	Generation of Carbocations under Photoredox Catalysis: Electrophilic Aromatic Substitution with 1-Fluoroalkylbenzyl Bromides. Organic Letters, 2020, 22, 8670-8675.	2.4	14
824	Catalytic, Metal-Free Amide Synthesis from Aldehydes and Imines Enabled by a Dual-Catalyzed Umpolung Strategy under Redox-Neutral Conditions. ACS Catalysis, 2020, 10, 12960-12966.	5.5	66
825	The direct C3 chalcogenylation of indolines using a graphene-oxide-promoted and visible-light-induced synergistic effect. New Journal of Chemistry, 2020, 44, 17245-17251.	1.4	10
826	A supramolecular bifunctional iridium photoaminocatalyst for the enantioselective alkylation of aldehydes. Dalton Transactions, 2020, 49, 14497-14505.	1.6	4
827	Visible-light-induced cascade dearomatization cyclization between alkynes and indole-derived bromides: a facile strategy to synthesize spiroindolenines. Chemical Communications, 2020, 56, 14047-14050.	2.2	13
828	Visibleâ€Light Cercosporin Catalyzed Sulfenylation of Electronâ€Rich Compounds with Thiols under Transitionâ€Metalâ€Free Conditions. ChemistrySelect, 2020, 5, 11583-11589.	0.7	10
829	Green and efficient synthesis of pinacol over photoactive acetonyl-platinum complexes on Pt nanoparticle surfaces photocatalyst. Inorganic Chemistry Communication, 2020, 121, 108227.	1.8	3
830	External-photocatalyst-free visible-light-mediated aerobic oxidation and 1,4-bisfunctionalization of <i>N</i> -alkyl isoquinolinium salts. Organic Chemistry Frontiers, 2020, 7, 2405-2413.	2.3	20
831	LiBr-promoted photoredox neutral Minisci hydroxyalkylations of quinolines with aldehydes. Green Chemistry, 2020, 22, 8233-8237.	4.6	40
832	Ynamide Smiles Rearrangement Triggered by Visible-Light-Mediated Regioselective Ketyl–Ynamide Coupling: Rapid Access to Functionalized Indoles and Isoquinolines. Journal of the American Chemical Society, 2020, 142, 3636-3644.	6.6	147
833	Visible light-emitting diode light-driven one-pot four component synthesis of poly-functionalized imidazoles under catalyst- and solvent-free conditions. New Journal of Chemistry, 2020, 44, 13295-13300.	1.4	15
834	New Redox Strategies in Organic Synthesis by Means of Electrochemistry and Photochemistry. ACS Central Science, 2020, 6, 1317-1340.	5.3	270
835	Synthesis of amino-diamondoid pharmacophores <i>via</i> photocatalytic C–H aminoalkylation. Chemical Communications, 2020, 56, 9699-9702.	2.2	29
836	Selective 1,2â€Arylâ€Aminoalkylation of Alkenes Enabled by Metallaphotoredox Catalysis. Angewandte Chemie, 2020, 132, 18066-18072.	1.6	12

#	Article	IF	CITATIONS
837	Visible Light-Induced α-C(sp3)–H Acetalization of Saturated Heterocycles Catalyzed by a Dimeric Gold Complex. Organic Letters, 2020, 22, 5844-5849.	2.4	27
838	Understanding the Synergistic Effects Observed When Using Tethered Dual Catalysts for Heat and Light Activated Catalysis. ChemCatChem, 2020, 12, 5091-5097.	1.8	4
840	Synergistic Activation of Amides and Hydrocarbons for Direct C(sp ³)–H Acylation Enabled by Metallaphotoredox Catalysis. Angewandte Chemie, 2020, 132, 17081-17090.	1.6	13
841	Acid Catalysis via Acidâ€Promoted Electron Transfer. Bulletin of the Korean Chemical Society, 2020, 41, 1217-1232.	1.0	28
842	Eosin Y-Catalyzed Synthesis of 3-Aminoimidazo[1,2- <i>a</i>]Pyridines via the HAT Process under Visible Light through Formation of the C–N Bond. ACS Omega, 2020, 5, 29854-29863.	1.6	30
843	Manufacturing chemicals with light: any role in the circular economy?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190260.	1.6	5
844	Single electron transfer-based peptide/protein bioconjugations driven by biocompatible energy input. Communications Chemistry, 2020, 3, .	2.0	33
845	Oxidative Photocatalytic Homo- and Cross-Coupling of Phenols: Nonenzymatic, Catalytic Method for Coupling Tyrosine. ACS Catalysis, 2020, 10, 14615-14623.	5.5	27
846	Synergistic Dual Transition Metal Catalysis. Chemical Reviews, 2020, 120, 13382-13433.	23.0	212
847	Excited-state hydrogen detachment from a tris-(o-phenylenediamine) iron(ii) complex in THF at room temperature. Chemical Communications, 2020, 56, 15414-15417.	2.2	1
848	Application of Discrete Firstâ€Row Transitionâ€Metal Complexes as Photosensitisers. ChemPlusChem, 2020, 85, 2611-2618.	1.3	10
849	Visibleâ€Light Photoredox Catalyzed Câ^'N Coupling of Quinoxalineâ€2(1 <i>H</i>)â€ones with Azoles without External Photosensitizer. ChemCatChem, 2020, 12, 5261-5268.	1.8	31
850	Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chemical Reviews, 2020, 120, 9790-9833.	23.0	241
851	Visibleâ€Light Photoredoxâ€Catalyzed Remote Difunctionalizing Carboxylation of Unactivated Alkenes with CO ₂ . Angewandte Chemie, 2020, 132, 21307-21314.	1.6	21
852	Radicalâ€Cation Cascade to Aryltetralin Cyclic Ether Lignans Under Visible‣ight Photoredox Catalysis. Angewandte Chemie, 2020, 132, 21381-21388.	1.6	2
853	Recyclable Ruthenium Catalyst for Distal <i>meta</i> â^H Activation. Chemistry - A European Journal, 2020, 26, 15290-15297.	1.7	18
854	Light opens a new window for N-heterocyclic carbene catalysis. Chemical Science, 2020, 11, 10605-10613.	3.7	114
855	When metal-catalyzed C–H functionalization meets visible-light photocatalysis. Beilstein Journal of Organic Chemistry, 2020, 16, 1754-1804.	1.3	66

#	Article	IF	CITATIONS
856	Graphitic Carbon Nitride Polymer as a Recyclable Photoredox Catalyst for Decarboxylative Alkynylation of Carboxylic Acids. Advanced Synthesis and Catalysis, 2020, 362, 3898-3904.	2.1	20
857	Cooperative NHC and Photoredox Catalysis for the Synthesis of βâ€Trifluoromethylated Alkyl Aryl Ketones. Angewandte Chemie - International Edition, 2020, 59, 19956-19960.	7.2	162
858	Shining Light on Ti ^{IV} Complexes: Exceptional Tools for Metallaphotoredox Catalysis. European Journal of Organic Chemistry, 2020, 2020, 6955-6965.	1.2	37
859	Composition-Dependent Hydrogen-Bonding Motifs and Dynamics in BrÃ,nsted Acid–Base Mixtures. Journal of Physical Chemistry B, 2020, 124, 7229-7238.	1.2	7
860	Visible light-induced photocatalytic C–H ethoxycarbonylmethylation of imidazoheterocycles with ethyl diazoacetate. RSC Advances, 2020, 10, 27984-27988.	1.7	20
861	<i>anti</i> -Hydroarylation of Activated Internal Alkynes: Merging Pd and Energy Transfer Catalysis. Organic Letters, 2020, 22, 6473-6478.	2.4	30
862	Radical ation Cascade to Aryltetralin Cyclic Ether Lignans Under Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2020, 59, 21195-21202.	7.2	18
863	Visibleâ€Light Photoredoxâ€Catalyzed Remote Difunctionalizing Carboxylation of Unactivated Alkenes with CO ₂ . Angewandte Chemie - International Edition, 2020, 59, 21121-21128.	7.2	102
864	Mn-Catalysed photoredox hydroxytrifluoromethylation of aliphatic alkenes using CF3SO2Na. Organic and Biomolecular Chemistry, 2020, 18, 6483-6486.	1.5	13
865	Copper Makes the Difference: Visible Light-Mediated Atom Transfer Radical Addition Reactions of Iodoform with Olefins. ACS Catalysis, 2020, 10, 9899-9906.	5.5	56
866	Computational Modeling of Selected Photoactivated Processes. Topics in Organometallic Chemistry, 2020, , 131-152.	0.7	0
867	Development of BrÃ,nsted Base–Photocatalyst Hybrid Systems for Highly Efficient C–C Bond Formation Reactions of Malonates with Styrenes. ACS Catalysis, 2020, 10, 10546-10550.	5.5	27
868	Room-Temperature Synthesis of Isoindolone Spirosuccinimides: Merger of Visible-Light Photocatalysis and Cobalt-Catalyzed C–H Activation. Journal of Organic Chemistry, 2020, 85, 15287-15304.	1.7	34
869	Visible light driven perovskite-based photocatalysts: A new candidate for green organic synthesis by photochemical protocol. Current Research in Green and Sustainable Chemistry, 2020, 3, 100031.	2.9	33
870	Visible-Light-Mediated Aminoquinolate Diarylboron-Catalyzed Metal-Free Hydroxylation of Organoboronic Acids under Air and Room Temperature. ACS Sustainable Chemistry and Engineering, 2020, 8, 13894-13899.	3.2	21
871	Chiral 1,3,2-Oxazaborolidine Catalysts for Enantioselective Photochemical Reactions. Accounts of Chemical Research, 2020, 53, 1933-1943.	7.6	49
872	Synthesis of a B ₁₂ –BODIPY dyad for B ₁₂ -inspired photochemical transformations of a trichloromethylated organic compound. Chemical Communications, 2020, 56, 11945-11948.	2.2	9
873	Green Catalysts: Applied and Synthetic Photosynthesis. Catalysts, 2020, 10, 1016.	1.6	10

#	Article	IF	CITATIONS
874	Recent advances in light-driven C–H bond activation and building C–C bonds with CO2as a feedstock for carbon capture and utilization technology. Green Chemistry, 2020, 22, 6682-6713.	4.6	19
875	Photosensitized direct C–H fluorination and trifluoromethylation in organic synthesis. Beilstein Journal of Organic Chemistry, 2020, 16, 2151-2192.	1.3	31
876	Catalytic generation of alkoxy radicals from unfunctionalized alcohols. Chemical Science, 2020, 11, 11124-11141.	3.7	116
877	Preparation of Chiral Photosensitive Organocatalysts and Their Application for the Enantioselective Synthesis of 1,2-Diamines. Journal of Organic Chemistry, 2020, 85, 12843-12855.	1.7	19
878	Boosting Photocatalytic Activities for Organic Transformations through Merging Photocatalyst and Transition-Metal Catalyst in Flexible Polymers. ACS Catalysis, 2020, 10, 11758-11767.	5.5	38
879	Metal-free visible light-promoted synthesis of isothiazoles: a catalytic approach for N–S bond formation from iminyl radicals under batch and flow conditions. Green Chemistry, 2020, 22, 6792-6797.	4.6	17
880	Eosin Y: Homogeneous Photocatalytic In-Flow Reactions and Solid-Supported Catalysts for In-Batch Synthetic Transformations. Applied Sciences (Switzerland), 2020, 10, 5596.	1.3	12
881	Lightâ€Mediated Carboxylation Using Carbon Dioxide. ChemSusChem, 2020, 13, 6201-6218.	3.6	62
882	Photocatalytic Hydromethylation and Hydroalkylation of Olefins Enabled by Titanium Dioxide Mediated Decarboxylation. Journal of the American Chemical Society, 2020, 142, 17913-17918.	6.6	37
883	Radical Carbonylative Synthesis of Heterocycles by Visible Light Photoredox Catalysis. Catalysts, 2020, 10, 1054.	1.6	21
884	Visibleâ€Lightâ€Induced Cysteineâ€Specific Bioconjugation: Biocompatible Thiol–Ene Click Chemistry. Angewandte Chemie, 2020, 132, 22703-22711.	1.6	5
885	Recent advances in cobalt-catalyzed allylic functionalization. Organic and Biomolecular Chemistry, 2020, 18, 7740-7750.	1.5	28
886	Radicalâ€Mediated Nonâ€Dearomative Strategies in Construction of Spiro Compounds. Advanced Synthesis and Catalysis, 2020, 362, 4462-4486.	2.1	27
887	Visible-Light-Driven Catalytic Reductive Carboxylation with CO ₂ . ACS Catalysis, 2020, 10, 10871-10885.	5.5	146
888	Photocatalyzed allylic derivatization reactions. Catalysis Science and Technology, 2020, 10, 6754-6768.	2.1	5
889	Visible light promoted cross-dehydrogenative coupling: a decade update. Green Chemistry, 2020, 22, 6632-6681.	4.6	132
890	Visibleâ€Lightâ€Induced Cysteineâ€Specific Bioconjugation: Biocompatible Thiol–Ene Click Chemistry. Angewandte Chemie - International Edition, 2020, 59, 22514-22522.	7.2	42
891	Photochemical Functionalization of Heterocycles with EBX Reagents: Câ^H Alkynylation versus Deconstructive Ring Cleavage**. Chemistry - A European Journal, 2020, 26, 14453-14460.	1.7	33

#	Article	IF	CITATIONS
892	Access to Cyanoimines Enabled by Dual Photoredox/Copper-Catalyzed Cyanation of <i>O</i> -Acyl Oximes. Organic Letters, 2020, 22, 7315-7320.	2.4	17
893	A Triformylphloroglucinol-based Covalent Organic Polymer: Synthesis, Characterization and Its Application in Visible-light-driven Oxidative Coupling Reactions of Primary Amines. Chemical Research in Chinese Universities, 2020, 36, 1017-1023.	1.3	9
894	Photo-induced 1,2-carbohalofunctionalization of C–C multiple bonds <i>via</i> ATRA pathway. Organic and Biomolecular Chemistry, 2020, 18, 8278-8293.	1.5	34
895	Tracking down the brominated single electron oxidants in recent organic red-ox transformations: photolysis and photocatalysis. Organic and Biomolecular Chemistry, 2020, 18, 8294-8345.	1.5	18
896	Kooperative NHC―und Photoredoxâ€Katalyse zur Synthese βâ€ŧrifluormethylierter Alkylarylketone. Angewandte Chemie, 2020, 132, 20129-20134.	1.6	28
897	Mechanistic Insight into the Photoredox-Nickel-HAT Triple Catalyzed Arylation and Alkylation of α-Amino C _{sp3} –H Bonds. Journal of the American Chemical Society, 2020, 142, 16942-16952.	6.6	69
898	Late stage C–H functionalization <i>via</i> chalcogen and pnictogen salts. Chemical Science, 2020, 11, 10047-10060.	3.7	45
899	Visible-light-mediated Barbier allylation of aldehydes and ketones <i>via</i> dual titanium and photoredox catalysis. Organic Chemistry Frontiers, 2020, 7, 3434-3438.	2.3	25
900	A sodium trifluoromethanesulfinate-mediated photocatalytic strategy for aerobic oxidation of alcohols. Chemical Communications, 2020, 56, 12443-12446.	2.2	25
901	Visible Light-Driven α-Alkylation of <i>N</i> -Aryl tetrahydroisoquinolines Initiated by Electron Donor–Acceptor Complexes. Organic Letters, 2020, 22, 7290-7294.	2.4	32
902	Acridine Photocatalysis: Insights into the Mechanism and Development of a Dual-Catalytic Direct Decarboxylative Conjugate Addition. ACS Catalysis, 2020, 10, 11448-11457.	5.5	41
903	Visibleâ€Lightâ€Induced Vicinal Dichlorination of Alkenes through LMCT Excitation of CuCl ₂ . Angewandte Chemie - International Edition, 2020, 59, 23603-23608.	7.2	75
904	Recent advances in tandem selenocyclization and tellurocyclization with alkenes and alkynes. Organic Chemistry Frontiers, 2020, 7, 3100-3119.	2.3	118
905	Redox-Neutral Photocatalytic Radical Cascade Cyclization for the Synthesis of CH ₂ CN/CF ₂ COOEt/CF ₃ -Containing Benzo[4,5]imidazo[2,1- <i>a</i>]isoquinolin-6(5 <i>H</i>)-One Derivatives. Journal of Organic Chemistry, 2020. 85, 11892-11901.	1.7	38
906	Black TiO ₂ nanoparticles with efficient photocatalytic activity under visible light at low temperature: regioselective C–N bond cleavage toward the synthesis of thioureas, sulfonamides, and propargylamines. Catalysis Science and Technology, 2020, 10, 6825-6839.	2.1	17
907	Phenylglyoxylic Acid: An Efficient Initiator for the Photochemical Hydrogen Atom Transfer Câ^'H Functionalization of Heterocycles. ChemSusChem, 2020, 13, 5934-5944.	3.6	36
908	Enantioselective Dual-Catalysis: A Sequential Michael Addition/Asymmetric Transfer Hydrogenation of α-Nitrosulfone and Enones. ACS Catalysis, 2020, 10, 10381-10389.	5.5	18
909	Visibleâ€Lightâ€Induced Vicinal Dichlorination of Alkenes through LMCT Excitation of CuCl ₂ . Angewandte Chemie, 2020, 132, 23809-23814.	1.6	10

#	Article	IF	CITATIONS
910	Visible-light-mediated semi-heterogeneous black TiO ₂ /nickel dual catalytic C (sp ²)–P bond formation toward aryl phosphonates. Dalton Transactions, 2020, 49, 17147-17151.	1.6	12
911	Organophotoredox-Catalyzed Formation of Alkyl–Aryl and â^'Alkyl C–S/Se Bonds from Coupling of Redox-Active Esters with Thio/Selenosulfonates. Organic Letters, 2020, 22, 9562-9567.	2.4	33
912	Electron Donor–Acceptor Complex-Initiated Photochemical Cyanation for the Preparation of α-Amino Nitriles. Organic Letters, 2020, 22, 9638-9643.	2.4	26
913	Photoredox-Catalyzed Intermolecular Hydroalkylative Dearomatization of Electron-Deficient Indole Derivatives. Organic Letters, 2020, 22, 9699-9705.	2.4	26
914	Photoredox/Cobalt-Catalyzed C(sp ³)–H Bond Functionalization toward Phenanthrene Skeletons with Hydrogen Evolution. Organic Letters, 2020, 22, 9627-9632.	2.4	26
915	Redox-neutral decarboxylative photocyclization of anthranilic acids. Green Chemistry, 2020, 22, 8243-8247.	4.6	8
916	Electron Density Difference Analysis on the Oxidative and Reductive Quenching Cycles of Classical Iridium and Ruthenium Photoredox Catalysts. Journal of Physical Chemistry A, 2020, 124, 4223-4234.	1.1	14
917	Regioselective Cross-Electrophile Coupling of Epoxides and (Hetero)aryl lodides via Ni/Ti/Photoredox Catalysis. ACS Catalysis, 2020, 10, 5821-5827.	5.5	64
918	Alkyne–Alkene [2 + 2] cycloaddition based on visible light photocatalysis. Nature Communications, 2020, 11, 2509.	5.8	54
919	Flow Photochemistry as a Tool in Organic Synthesis. Chemistry - A European Journal, 2020, 26, 16952-16974.	1.7	77
920	Arene dearomatization through a catalytic N-centered radical cascade reaction. Nature Communications, 2020, 11, 2528.	5.8	61
921	Modular and Selective Arylation of Aryl Germanes (Câ~GeEt ₃) over Câ~Bpin, Câ~SiR ₃ and Halogens Enabled by Lightâ€Activated Gold Catalysis. Angewandte Chemie - International Edition, 2020, 59, 15543-15548.	7.2	80
922	Modular and Selective Arylation of Aryl Germanes (Câ^'GeEt 3) over Câ^'Bpin, Câ^'SiR 3 and Halogens Enabled by Lightâ€Activated Gold Catalysis. Angewandte Chemie, 2020, 132, 15673-15678.	1.6	13
923	Insights into the Mechanism of Gold(I) Oxidation with Aryldiazonium Salts. Chemistry - A European Journal, 2020, 26, 16206-16221.	1.7	24
924	Catalytic and Photochemical Strategies to Stabilized Radicals Based on Anomeric Nucleophiles. Journal of the American Chemical Society, 2020, 142, 11102-11113.	6.6	39
925	High-throughput photocapture approach for reaction discovery. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13261-13266.	3.3	47
926	Recent applications of biphotonic processes in organic synthesis. Organic Chemistry Frontiers, 2020, 7, 1709-1716.	2.3	30
927	Photochemical synthesis of acetals utilizing Schreiner's thiourea as the catalyst. Green Chemistry, 2020, 22, 3539-3545.	4.6	34

#	Article	IF	CITATIONS
928	Effect of Reaction Media on Photosensitized [2+2] ycloaddition of Cinnamates. ChemistryOpen, 2020, 9, 649-656.	0.9	8
929	3d metallaelectrocatalysis for resource economical syntheses. Chemical Society Reviews, 2020, 49, 4254-4272.	18.7	150
930	Photoâ€Difunctionalization and Photoâ€Oxidative Cleavage of the C–C Double Bond of Styrenes in the Presence of Nanosized Cadmium Sulfide (CdS) as a Highly Efficient Photoâ€Induced Reusable Nanocatalyst. European Journal of Organic Chemistry, 2020, 2020, 3834-3843.	1.2	22
931	Development and Execution of a Production-Scale Continuous [2 + 2] Photocycloaddition. Organic Process Research and Development, 2020, 24, 2139-2146.	1.3	31
932	Oxidative C–S Bond Cleavage of Benzyl Thiols Enabled by Visible-Light-Mediated Silver(II) Complexes. Organic Letters, 2020, 22, 4395-4399.	2.4	17
933	Metal-Mediated and Metal-Catalyzed Reactions Under Mechanochemical Conditions. ACS Catalysis, 2020, 10, 8344-8394.	5.5	188
934	Evidence for Photocatalyst Involvement in Oxidative Additions of Nickel-Catalyzed Carboxylate <i>O</i> -Arylations. Journal of the American Chemical Society, 2020, 142, 11042-11049.	6.6	46
935	Light and oxygen-enabled sodium trifluoromethanesulfinate-mediated selective oxidation of C–H bonds. Green Chemistry, 2020, 22, 4357-4363.	4.6	68
936	Switching the Mallory Reaction to Synthesis of Naphthalenes, Benzannulated Heterocycles, and Their Derivatives. Journal of Organic Chemistry, 2020, 85, 8749-8759.	1.7	23
937	Direct C–H Arylation of Aldehydes by Merging Photocatalyzed Hydrogen Atom Transfer with Palladium Catalysis. ACS Catalysis, 2020, 10, 7543-7551.	5.5	80
938	Process intensification of a photochemical oxidation reaction using a Rotor-Stator Spinning Disk Reactor: A strategy for scale up. Chemical Engineering Journal, 2020, 400, 125875.	6.6	56
939	Dual aminoquinolate diarylboron and nickel catalysed metallaphotoredox platform for carbon–oxygen bond construction. Chemical Communications, 2020, 56, 8273-8276.	2.2	40
940	Recent Advances in Photocatalytic Functionalization of Quinoxalinâ€2â€ones. European Journal of Organic Chemistry, 2020, 2020, 6148-6172.	1.2	70
941	Thiosulfonylation of Unactivated Alkenes with Visible-Light Organic Photocatalysis. ACS Catalysis, 2020, 10, 8765-8779.	5.5	62
942	Phosphoranyl Radical Fragmentation Reactions Driven by Photoredox Catalysis. ACS Catalysis, 2020, 10, 7250-7261.	5.5	112
943	Development of tethered dual catalysts: synergy between photo- and transition metal catalysts for enhanced catalysis. Chemical Science, 2020, 11, 6256-6267.	3.7	20
944	The Synthesis of Chiral Allyl Carbamates via Merger of Photoredox and Nickel Catalysis. Advanced Synthesis and Catalysis, 2020, 362, 3213-3222.	2.1	13
945	Synergistic Activation of Amides and Hydrocarbons for Direct C(sp ³)–H Acylation Enabled by Metallaphotoredox Catalysis. Angewandte Chemie - International Edition, 2020, 59, 16933-16942.	7.2	77

#	Article	IF	CITATIONS
946	Cross-Electrophile Coupling of Unactivated Alkyl Chlorides. Journal of the American Chemical Society, 2020, 142, 11691-11697.	6.6	131
947	Visibleâ€Lightâ€Enabled Multicomponent Cascade Transformation from Indoles to 2â€Azidoindolinâ€3â€yl 2â€Aminobenzoates. Advanced Synthesis and Catalysis, 2020, 362, 3131-3136.	2.1	12
948	Efficient chemoselective hydrogenation of nitrobenzene to aniline, azoxybenzene and azobenzene over CQDs/Znln2S4 nanocomposites under visible light. Journal of Catalysis, 2020, 389, 241-246.	3.1	50
949	Photoredox Organic Synthesis Employing Heterogeneous Photocatalysts with Emphasis on Halide Perovskite. Chemistry - A European Journal, 2020, 26, 13118-13136.	1.7	39
950	Visible light promoted formation of N─S bond by photocatalyst Eosin Y. Journal of Heterocyclic Chemistry, 2020, 57, 3493.	1.4	4
951	Synthesis of an anthraquinone-containing polymeric photosensitizer and its application in aerobic photooxidation of thioethers. RSC Advances, 2020, 10, 10661-10665.	1.7	6
952	Combined Photoredox and Iron Catalysis for the Cyclotrimerization of Alkynes. Angewandte Chemie - International Edition, 2020, 59, 13473-13478.	7.2	47
953	Visibleâ€Lightâ€Promoted Catalytic Ringâ€Opening Isomerization of 1,2â€Disubstituted Cyclopropanols to Linear Ketones. European Journal of Organic Chemistry, 2020, 2020, 2431-2434.	1.2	13
954	Visibleâ€Lightâ€Induced Palladiumâ€Catalyzed Generation of Aryl Radicals from Aryl Triflates. Angewandte Chemie - International Edition, 2020, 59, 10316-10320.	7.2	82
955	Visible light-promoted ring-opening functionalization of three-membered carbo- and heterocycles. Chemical Society Reviews, 2020, 49, 2546-2556.	18.7	145
956	Reusable, homogeneous water soluble photoredox catalyzed oxidative dehydrogenation of N-heterocycles in a biphasic system: application to the synthesis of biologically active natural products. Green Chemistry, 2020, 22, 2575-2587.	4.6	32
957	Sila―and Germacarboxylic Acids: Precursors for the Corresponding Silyl and Germyl Radicals. Angewandte Chemie, 2020, 132, 10726-10731.	1.6	11
958	Enantioselective α-Allylation of Anilines Enabled by a Combined Palladium and Photoredox Catalytic System. ACS Catalysis, 2020, 10, 4710-4716.	5.5	40
959	Sila―and Germacarboxylic Acids: Precursors for the Corresponding Silyl and Germyl Radicals. Angewandte Chemie - International Edition, 2020, 59, 10639-10644.	7.2	73
960	Dual Catalytic Platform for Enabling sp ³ α C–H Arylation and Alkylation of Benzamides. ACS Catalysis, 2020, 10, 4671-4676.	5.5	94
961	Combined Photoredox and Iron Catalysis for the Cyclotrimerization of Alkynes. Angewandte Chemie, 2020, 132, 13575-13580.	1.6	3
962	Transition-metal-free C(sp ³)–H/C(sp ³)–H dehydrogenative coupling of saturated heterocycles with <i>N</i> -benzyl imines. Chemical Science, 2020, 11, 7619-7625.	3.7	32
963	Recent advances in photoredox and nickel dual-catalyzed cascade reactions: pushing the boundaries of complexity. Chemical Science, 2020, 11, 4051-4064.	3.7	241

#	Article	IF	CITATIONS
964	Site-Selective Thiolation of (Multi)halogenated Heteroarenes. Journal of the American Chemical Society, 2020, 142, 6913-6919.	6.6	42
965	Photoinitiated decarboxylative C3-difluoroarylmethylation of quinoxalin-2(1 <i>H</i>)-ones with potassium 2,2-difluoro-2-arylacetates in water. RSC Advances, 2020, 10, 10559-10568.	1.7	20
966	Kinetically Controlled Radical Addition/Elimination Cascade: From Alkynyl Aziridine to Fluorinated Allenes. Organic Letters, 2020, 22, 2419-2424.	2.4	16
967	Photocatalyzed Diastereoselective Isomerization of Cinnamyl Chlorides to Cyclopropanes. Journal of the American Chemical Society, 2020, 142, 6206-6215.	6.6	41
968	The Dark Side of Photocatalysis: One Thousand Ways to Close the Cycle. European Journal of Organic Chemistry, 2020, 2020, 2783-2806.	1.2	35
969	Synthesis of monofluorooxazoles with quaternary C–F centers through photoredox-catalyzed radical addition of methylene-2-oxazolines. Organic and Biomolecular Chemistry, 2020, 18, 2223-2226.	1.5	3
970	Visible light-driven Suzuki–Miyaura reaction by self-supported Pd nanocatalysts in the formation of Stille coupling-based photoactive microporous organic polymers. Catalysis Science and Technology, 2020, 10, 5535-5543.	2.1	11
971	Treating a Global Health Crisis with a Dose of Synthetic Chemistry. ACS Central Science, 2020, 6, 1017-1030.	5.3	25
972	Helical Carbenium Ion: A Versatile Organic Photoredox Catalyst for Red-Light-Mediated Reactions. Journal of the American Chemical Society, 2020, 142, 12056-12061.	6.6	79
973	Excitonic Effects in Polymeric Photocatalysts. Angewandte Chemie - International Edition, 2020, 59, 22828-22839.	7.2	94
974	Lightâ€Promoted Organocatalysis with Nâ€Heterocyclic Carbenes. ChemPhotoChem, 2020, 4, 5147-5153.	1.5	44
975	Intermolecular Dearomatization of Naphthalene Derivatives by Photoredoxâ€Catalyzed 1,2â€Hydroalkylation. Angewandte Chemie - International Edition, 2020, 59, 18062-18067.	7.2	38
976	Visible-Light-Enabled <i>Ortho</i> -Selective Aminopyridylation of Alkenes with <i>N</i> -Aminopyridinium Ylides. Journal of the American Chemical Society, 2020, 142, 12420-12429.	6.6	84
977	Visible-light-induced anti-Markovnikov hydrosulfonation of styrene derivatives. Organic Chemistry Frontiers, 2020, 7, 2069-2074.	2.3	40
978	Theoretical mechanistic study of metallaphotoredox catalysis: C–N cross-coupling <i>via</i> Ni(<scp>ii</scp>)-mediated If-bond metathesis. Organic Chemistry Frontiers, 2020, 7, 2168-2178.	2.3	17
979	Intermolecular Dearomatization of Naphthalene Derivatives by Photoredox atalyzed 1,2â€Hydroalkylation. Angewandte Chemie, 2020, 132, 18218-18223.	1.6	3
980	Light Runs Across Iron Catalysts in Organic Transformations. Chemistry - A European Journal, 2020, 26, 15052-15064.	1.7	47
981	Upgrading ketone synthesis direct from carboxylic acids and organohalides. Nature Communications, 2020, 11, 3312.	5.8	65

#	Article	IF	CITATIONS
982	Electron transfer in the confined environments of metal–organic coordination supramolecular systems. Chemical Society Reviews, 2020, 49, 5561-5600.	18.7	75
983	Photoredox Generation of Sulfonyl Radicals and Coupling with Electron Deficient Olefins. Organic Letters, 2020, 22, 5746-5748.	2.4	25
984	Aryl dechlorination and defluorination with an organic super-photoreductant. Photochemical and Photobiological Sciences, 2020, 19, 1035-1041.	1.6	36
985	Cp ₂ Ti ^{III} Cl Catalysis in a New Light. ChemPhotoChem, 2020, 4, 659-663.	1.5	17
986	Redox-Neutral P(O)–N Coupling between P(O)–H Compounds and Azides via Dual Copper and Photoredox Catalysis. Organic Letters, 2020, 22, 6143-6149.	2.4	27
987	Light-Mediated Chiral Phosphate Catalysis for Asymmetric Dicarbofunctionalization of Enamides. ACS Catalysis, 2020, 10, 8247-8253.	5.5	40
988	Recent advances in phosphoranyl radical-mediated deoxygenative functionalisation. Organic Chemistry Frontiers, 2020, 7, 2319-2324.	2.3	47
989	Selective 1,2â€Arylâ€Aminoalkylation of Alkenes Enabled by Metallaphotoredox Catalysis. Angewandte Chemie - International Edition, 2020, 59, 17910-17916.	7.2	52
990	Highâ€performance photocatalysts for the selective oxidation of alcohols to carbonyl compounds. Canadian Journal of Chemical Engineering, 2020, 98, 2259-2293.	0.9	9
991	Single Electron Activation of Aryl Carboxylic Acids. IScience, 2020, 23, 101266.	1.9	56
992	Excitonic Effects in Polymeric Photocatalysts. Angewandte Chemie, 2020, 132, 23024-23035.	1.6	15
993	Visibleâ€Lightâ€Induced Selective Defluoroborylation of Polyfluoroarenes, <i>gem</i> â€Difluoroalkenes, and Trifluoromethylalkenes. Angewandte Chemie, 2020, 132, 4038-4045.	1.6	34
994	Bromomethyl Silicate: A Robust Methylene Transfer Reagent for Radicalâ€Polar Crossover Cyclopropanation of Alkenes. European Journal of Organic Chemistry, 2020, 2020, 1778-1781.	1.2	23
995	Visibleâ€Lightâ€Driven Photocatalyst―and Additiveâ€Free Crossâ€Coupling of βâ€Ketothioamides with αâ€Di 1,3â€Diketones: Access to Highly Functionalized Thiazolines. Chemistry - A European Journal, 2020, 26, 8083-8089.	azo 1.7	26
996	Dehydrogenation and α-functionalization of secondary amines by visible-light-mediated catalysis. Organic and Biomolecular Chemistry, 2020, 18, 2103-2112.	1.5	14
997	Gadolinium Photocatalysis: Dearomative [2+2] Cycloaddition/Ringâ€Expansion Sequence with Indoles. Angewandte Chemie, 2020, 132, 9726-9732.	1.6	18
998	A Unified and Practical Method for Carbon–Heteroatom Cross oupling using Nickel/Photo Dual Catalysis. Chemistry - A European Journal, 2020, 26, 5168-5173.	1.7	49
999	Photoredoxâ€Mediated Netâ€Neutral Radical/Polar Crossover Reactions. Israel Journal of Chemistry, 2020, 60, 281-293.	1.0	108

#	Article	IF	CITATIONS
1000	Visible-light-promoted acyl radical cascade reaction for accessing acylated isoquinoline-1,3(2 <i>H</i> ,4 <i>H</i>)-dione derivatives. Organic and Biomolecular Chemistry, 2020, 18, 1940-1948.	1.5	25
1001	Pushing the boundaries of C–H bond functionalization chemistry using flow technology. Journal of Flow Chemistry, 2020, 10, 13-71.	1.2	76
1002	Protocol for Visible-Light-Promoted Desulfonylation Reactions Utilizing Catalytic Benzimidazolium Aryloxide Betaines and Stoichiometric Hydride Donor Reagents. Journal of Organic Chemistry, 2020, 85, 4344-4353.	1.7	24
1003	The Merger of Photoredox and Cobalt Catalysis. Trends in Chemistry, 2020, 2, 410-426.	4.4	114
1004	Heterogeneous Photocatalysis in Organic Synthesis. ChemPhotoChem, 2020, 4, 456-475.	1.5	147
1005	Scaling continuous API synthesis from milligram to kilogram: extending the enabling benefits of micro to the plant. Journal of Flow Chemistry, 2020, 10, 73-92.	1.2	59
1006	Cp ₂ TiCl ₂ -Catalyzed Photoredox Allylation of Aldehydes with Visible Light. ACS Catalysis, 2020, 10, 3857-3863.	5.5	55
1007	Aminomethylation of Oxabenzonorbornadienes via the Merger of Photoredox and Nickel Catalysis. Organic Letters, 2020, 22, 2442-2447.	2.4	17
1008	Synthesis of Enantioenriched α-Deuterated α-Amino Acids Enabled by an Organophotocatalytic Radical Approach. Organic Letters, 2020, 22, 1557-1562.	2.4	61
1009	Catalytic Approaches for the Direct Heterofunctionalization of Aliphatic Carboxylic Acids and Their Equivalents with Group 16 Elements. Chemistry - an Asian Journal, 2020, 15, 673-689.	1.7	10
1010	Gadolinium Photocatalysis: Dearomative [2+2] Cycloaddition/Ringâ€Expansion Sequence with Indoles. Angewandte Chemie - International Edition, 2020, 59, 9639-9645.	7.2	68
1011	Scalable Continuous Vortex Reactor for Gram to Kilo Scale for UV and Visible Photochemistry. Organic Process Research and Development, 2020, 24, 201-206.	1.3	43
1012	Catalytic Acceptorless Dehydrogenation of Aliphatic Alcohols. Journal of the American Chemical Society, 2020, 142, 4493-4499.	6.6	112
1013	Borylation of Diazonium Salts by Highly Emissive and Crystalline Carbon Dots in Water. ChemSusChem, 2020, 13, 1715-1719.	3.6	25
1014	Continuous Flow Photochemistry for the Preparation of Bioactive Molecules. Molecules, 2020, 25, 356.	1.7	72
1015	Nickel/Photoredox atalyzed Asymmetric Reductive Cross oupling of Racemic α hloro Esters with Aryl Iodides. Angewandte Chemie, 2020, 132, 5210-5215.	1.6	24
1016	Multiâ€Photon Excitation in Photoredox Catalysis: Concepts, Applications, Methods. Angewandte Chemie - International Edition, 2020, 59, 10266-10284.	7.2	246
1017	Selective Dehydrogenative Acylation of Enamides with Aldehydes Leading to Valuable β-Ketoenamides. Organic Letters, 2020, 22, 944-949.	2.4	23

#	Article	IF	CITATIONS
1018	Merging Visible Light Photocatalysis and <scp>l</scp> -/ <scp>d</scp> -Proline Catalysis: Direct Asymmetric Oxidative Dearomatization of 2-Arylindoles To Access C2-Quaternary Indolin-3-ones. Organic Letters, 2020, 22, 1076-1080.	2.4	45
1019	α-Amino Radicals via Photocatalytic Single-Electron Reduction of Imine Derivatives. ACS Catalysis, 2020, 10, 2009-2025.	5.5	107
1020	Nickel/Photo-Cocatalyzed Asymmetric Acyl-Carbamoylation of Alkenes. Journal of the American Chemical Society, 2020, 142, 2180-2186.	6.6	169
1021	Multiphotonenâ€Anregung in der Photoredoxkatalyse: Konzepte, Anwendungen und Methoden. Angewandte Chemie, 2020, 132, 10350-10370.	1.6	44
1022	Polymer Nanofibers Exhibiting Remarkable Activity in Driving the Living Polymerization under Visible Light and Reusability. Advanced Science, 2020, 7, 1902451.	5.6	22
1023	Reductive Electrophotocatalysis: Merging Electricity and Light To Achieve Extreme Reduction Potentials. Journal of the American Chemical Society, 2020, 142, 2087-2092.	6.6	263
1024	Potent Reductants via Electron-Primed Photoredox Catalysis: Unlocking Aryl Chlorides for Radical Coupling. Journal of the American Chemical Society, 2020, 142, 2093-2099.	6.6	224
1025	A lutidine-promoted photoredox catalytic atom-transfer radical cyclization reaction for the synthesis of 4-bromo-3,3-dialkyl-octahydro-indol-2-ones. Chemical Communications, 2020, 56, 2206-2209.	2.2	12
1026	Photoredox Catalysis of Aromatic βâ€Ketoesters for in Situ Production of Transient and Persistent Radicals for Organic Transformation. Angewandte Chemie - International Edition, 2020, 59, 5365-5370.	7.2	37
1027	Cationic Iron(III) Salt as an Initiator for Radical Cationâ€induced [4+2] Cycloaddition. Asian Journal of Organic Chemistry, 2020, 9, 395-398.	1.3	8
1028	Intermolecular Iodofluoroalkylation of Unactivated Alkynes and Alkenes Mediated by Manganese Catalysts. Advanced Synthesis and Catalysis, 2020, 362, 1131-1137.	2.1	29
1029	Enantioselective Radicalâ€Polar Crossover Reactions of Indanonecarboxamides with Alkenes. Angewandte Chemie - International Edition, 2020, 59, 4846-4850.	7.2	15
1030	Nickel/Photoredox atalyzed Asymmetric Reductive Cross oupling of Racemic α hloro Esters with Aryl Iodides. Angewandte Chemie - International Edition, 2020, 59, 5172-5177.	7.2	117
1031	Photoinduced Heterogeneous Câ [°] 'H Arylation by a Reusable Hybrid Copper Catalyst. Chemistry - A European Journal, 2020, 26, 3509-3514.	1.7	24
1032	Enantioselective Radicalâ€Polar Crossover Reactions of Indanonecarboxamides with Alkenes. Angewandte Chemie, 2020, 132, 4876-4880.	1.6	4
1033	Photoredox Catalysis of Aromatic βâ€Ketoesters for in Situ Production of Transient and Persistent Radicals for Organic Transformation. Angewandte Chemie, 2020, 132, 5403-5408.	1.6	8
1034	Organophotoredoxâ€Catalyzed Cascade Radical Annulation of 2â€(Allyloxy)arylaldehydes with <i>N</i> â€(acyloxy)phthalimides: Towards Alkylated Chromanâ€4â€one Derivatives. Chemistry - an Asian Journal, 2020, 15, 568-572.	1.7	36
1035	Photoredox/Nickel Dual-Catalyzed Reductive Cross Coupling of Aryl Halides Using an Organic Reducing Agent. Organic Letters, 2020, 22, 1611-1617.	2.4	40

#	Article	IF	CITATIONS
1036	Copper-Catalyzed Photoinduced Enantioselective Dual Carbofunctionalization of Alkenes. Organic Letters, 2020, 22, 1490-1494.	2.4	67
1037	Dearomative Photocatalytic Construction of Bridged 1,3â€Diazepanes. Angewandte Chemie, 2020, 132, 4150-4159.	1.6	10
1038	Crystalâ€toâ€Crystal Synthesis of Photocatalytic Metal–Organic Frameworks for Visibleâ€Light Reductive Coupling and Mechanistic Investigations. ChemSusChem, 2020, 13, 3418-3428.	3.6	2
1039	Harnessing Energyâ€Transfer in Nâ€Centered Radicalâ€Mediated Synthesis of Pyrrolidines. European Journal of Organic Chemistry, 2020, 2020, 3213-3218.	1.2	9
1040	Upscaling Photoredox Cross-Coupling Reactions in Batch Using Immersion-Well Reactors. Organic Process Research and Development, 2020, 24, 1185-1193.	1.3	21
1041	Radical Capture at Nickel(II) Complexes: C–C, C–N, and C–O Bond Formation. Organometallics, 2020, 39, 1710-1718.	1.1	12
1042	Visible-Light-Induced Radical Carbo-Cyclization/ <i>gem</i> -Diborylation through Triplet Energy Transfer between a Gold Catalyst and Aryl lodides. Journal of the American Chemical Society, 2020, 142, 10485-10493.	6.6	54
1043	Photocatalytic hydrogen atom transfer: the philosopher's stone for late-stage functionalization?. Green Chemistry, 2020, 22, 3376-3396.	4.6	157
1044	Visibleâ€Lightâ€Induced Palladiumâ€Catalyzed Generation of Aryl Radicals from Aryl Triflates. Angewandte Chemie, 2020, 132, 10402-10406.	1.6	14
1045	Photoredoxâ€Catalyzed Isomerization of Highly Substituted Allylic Alcohols by Câ^'H Bond Activation. Angewandte Chemie - International Edition, 2020, 59, 11660-11668.	7.2	19
1046	Green chemistry: efficient acetalization of aldehydes with alcohols using the acid red 52 photocatalyst. Environmental Chemistry Letters, 2020, 18, 1353-1359.	8.3	12
1047	A review of enantioselective dual transition metal/photoredox catalysis. Science China Chemistry, 2020, 63, 637-647.	4.2	120
1048	Radical-Cation Vinylcyclopropane Rearrangements by TiO ₂ Photocatalysis. Journal of Organic Chemistry, 2020, 85, 6551-6566.	1.7	28
1049	Decarboxylative Thiolation of Redox-Active Esters to Thioesters by Merging Photoredox and Copper Catalysis. Organic Letters, 2020, 22, 3692-3696.	2.4	41
1050	A dual light-driven palladium catalyst: Breaking the barriers in carbonylation reactions. Science, 2020, 368, 318-323.	6.0	185
1051	Metal–Organic Framework with Dual Active Sites in Engineered Mesopores for Bioinspired Synergistic Catalysis. Journal of the American Chemical Society, 2020, 142, 8602-8607.	6.6	53
1052	PPh ₃ /Nal driven photocatalytic decarboxylative radical cascade alkylarylation reaction of 2-isocyanobiaryls. RSC Advances, 2020, 10, 16510-16514.	1.7	30
1053	Aldehydes as powerful initiators for photochemical transformations. Beilstein Journal of Organic Chemistry, 2020, 16, 833-857.	1.3	65

#	Article	IF	CITATIONS
1054	Late-Stage Diversification of Natural Products. ACS Central Science, 2020, 6, 622-635.	5.3	203
1055	Photoredox atalyzed Isomerization of Highly Substituted Allylic Alcohols by Câ^'H Bond Activation. Angewandte Chemie, 2020, 132, 11757-11765.	1.6	5
1056	Photoredox/palladium-cocatalyzed enantioselective alkylation of secondary benzyl carbonates with 4-alkyl-1,4-dihydropyridines. Science China Chemistry, 2020, 63, 687-691.	4.2	20
1057	Photoredox Catalysis: 1,4-Conjugate Addition of <i>N</i> -Methyl Radicals to Electron-Deficient Olefins via Decarboxylation of <i>N</i> -Substituted Acetic Acids. Organic Letters, 2020, 22, 3418-3422.	2.4	13
1058	Visible-Light-Driven Reductive Carboarylation of Styrenes with CO ₂ and Aryl Halides. Journal of the American Chemical Society, 2020, 142, 8122-8129.	6.6	171
1059	Synthesis of unsymmetrical ketones by applying visible-light benzophenone/nickel dual catalysis for direct benzylic acylation. Chemical Communications, 2020, 56, 6082-6085.	2.2	35
1060	C(<i>sp</i> ³)â^²C(<i>sp</i> ³) Crossâ€Coupling of Alkyl Bromides and Ethers Mediated by Metal and Visible Light Photoredox Catalysis. Advanced Synthesis and Catalysis, 2020, 362, 2367-2372.	2.1	37
1061	Cooperative photoredox and chiral hydrogen-bonding catalysis. Organic Chemistry Frontiers, 2020, 7, 1283-1296.	2.3	72
1062	Visible Light-Driven Radical-Mediated C–C Bond Cleavage/Functionalization in Organic Synthesis. Chemical Reviews, 2021, 121, 506-561.	23.0	638
1063	Metalâ€free Photochemical Atom Transfer Radical Addition (ATRA) of BrCCl ₃ to Alkenes. European Journal of Organic Chemistry, 2021, 2021, 96-101.	1.2	15
1064	Oligosilanes as Silyl Radical Precursors through Oxidative Siâ^'Si Bond Cleavage Using Redox Catalysis. Angewandte Chemie, 2021, 133, 685-689.	1.6	10
1065	Photochemical Synthesis of Benzimidazoles from Diamines and Aldehydes. European Journal of Organic Chemistry, 2021, 2021, 422-428.	1.2	19
1066	Dumbbellâ€Shaped 2,2'â€Bipyridines: Controlled Metal Monochelation and Application to Niâ€Catalyzed Crossâ€Couplings. Chemistry - A European Journal, 2021, 27, 2289-2293.	1.7	5
1067	Stereoinduction in Metallaphotoredox Catalysis. Angewandte Chemie - International Edition, 2021, 60, 1714-1726.	7.2	161
1068	Stereoinduktion in der Metallaphotoredoxkatalyse. Angewandte Chemie, 2021, 133, 1738-1750.	1.6	24
1069	Photo-induced anti-Markovnikov hydroalkylation of unactivated alkenes employing a dual-component initiator. Chinese Chemical Letters, 2021, 32, 681-684.	4.8	6
1070	Photocatalytic Generation of Ï€â€Allyltitanium Complexes via Radical Intermediates. Angewandte Chemie, 2021, 133, 1585-1590.	1.6	15
1071	Photocatalytic Generation of ï€â€Allyltitanium Complexes via Radical Intermediates. Angewandte Chemie - International Edition, 2021, 60, 1561-1566.	7.2	62

#	Article	IF	CITATIONS
1072	Catalytic Decarboxylative Câ^'N Formation to Generate Alkyl, Alkenyl, and Aryl Amines. Angewandte Chemie - International Edition, 2021, 60, 1845-1852.	7.2	21
1073	Radical Carbonyl Propargylation by Dual Catalysis. Angewandte Chemie - International Edition, 2021, 60, 2464-2471.	7.2	56
1074	Recent advances in synthesis of organosilicons via radical strategies. Chinese Chemical Letters, 2021, 32, 1280-1292.	4.8	56
1075	Radical Carbonyl Propargylation by Dual Catalysis. Angewandte Chemie, 2021, 133, 2494-2501.	1.6	17
1076	Harnessing Photoexcited Redox Centers of Semiconductor Photocatalysts for Advanced Synthetic Chemistry. Solar Rrl, 2021, 5, 2000444.	3.1	11
1077	Catalytic Decarboxylative Câ^'N Formation to Generate Alkyl, Alkenyl, and Aryl Amines. Angewandte Chemie, 2021, 133, 1873-1880.	1.6	3
1078	Visibleâ€Lightâ€Promoted Metalâ€Free Synthesis of (Hetero)Aromatic Nitriles from C(sp ³)â^'H Bonds**. Angewandte Chemie - International Edition, 2021, 60, 2439-2445.	7.2	39
1079	Copperâ€Catalyzed Asymmetric Coupling of Allenyl Radicals with Terminal Alkynes to Access Tetrasubstituted Allenes. Angewandte Chemie - International Edition, 2021, 60, 2160-2164.	7.2	99
1080	Advances in the Synthesis of π onjugated Polymers by Photopolymerization. ChemPhotoChem, 2021, 5, 4-11.	1.5	15
1081	Lightâ€Driven Enantioselective Synthesis of Pyrroline Derivatives by a Radical/Polar Cascade Reaction. Angewandte Chemie, 2021, 133, 4605-4610.	1.6	0
1082	Selective 1,2â€Aminoisothiocyanation of 1,3â€Dienes Under Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2021, 60, 4085-4089.	7.2	68
1083	Recent advances in visible-light photocatalytic deuteration reactions. Organic Chemistry Frontiers, 2021, 8, 426-444.	2.3	56
1084	Visible light mediated synthesis of 4-aryl-1,2-dihydronaphthalene derivatives <i>via</i> single-electron oxidation or MHAT from methylenecyclopropanes. Organic Chemistry Frontiers, 2021, 8, 94-100.	2.3	14
1085	Metal–Organic Layers Hierarchically Integrate Three Synergistic Active Sites for Tandem Catalysis. Angewandte Chemie - International Edition, 2021, 60, 3115-3120.	7.2	25
1086	Selective 1,2â€Aminoisothiocyanation of 1,3â€Dienes Under Visibleâ€Light Photoredox Catalysis. Angewandte Chemie, 2021, 133, 4131-4135.	1.6	2
1087	The xanthate route to lactams. Tetrahedron, 2021, 79, 131852.	1.0	4
1088	Catalytic Photoredox Allylation of Aldehydes Promoted by a Cobalt Complex. Advanced Synthesis and Catalysis, 2021, 363, 1105-1111.	2.1	27
1089	Visible-light induced divergent dearomatization of indole derivatives: controlled access to cyclobutane-fused polycycles and 2-substituted indolines. Organic Chemistry Frontiers, 2021, 8, 319-325.	2.3	27

#	Article	IF	CITATIONS
1090	Lightâ€Driven Enantioselective Synthesis of Pyrroline Derivatives by a Radical/Polar Cascade Reaction. Angewandte Chemie - International Edition, 2021, 60, 4555-4560.	7.2	15
1091	Threeâ€Component Alkene Difunctionalization by Direct and Selective Activation of Aliphatic Câ^'H Bonds. Angewandte Chemie - International Edition, 2021, 60, 7405-7411.	7.2	94
1092	Solar and visible-light active nano Ni/g-C3N4 photocatalyst for carbon monoxide (CO) and ligand-free carbonylation reactions. Catalysis Science and Technology, 2021, 11, 956-969.	2.1	12
1093	Organic photoredox catalyzed C–H silylation of quinoxalinones or electron-deficient heteroarenes under ambient air conditions. Green Chemistry, 2021, 23, 314-319.	4.6	62
1094	Photochemical metal-free aerobic oxidation of thiols to disulfides. Green Chemistry, 2021, 23, 546-551.	4.6	58
1095	Metal–Organic Layers Hierarchically Integrate Three Synergistic Active Sites for Tandem Catalysis. Angewandte Chemie, 2021, 133, 3152-3157.	1.6	4
1096	Superiority of Iridium Photocatalyst and Role of Quinuclidine in Selective α-C(sp ³)–H Alkylation: Theoretical Insights. Journal of Organic Chemistry, 2021, 86, 484-492.	1.7	3
1097	Visible-light-induced denitrogenative phosphorylation of benzotriazinones: a metal- and additive-free method for accessing <i>ortho</i> -phosphorylated benzamide derivatives. Green Chemistry, 2021, 23, 296-301.	4.6	21
1098	A General Approach to Intermolecular Olefin Hydroacylation through Lightâ€Induced HAT Initiation: An Efficient Synthesis of Longâ€Chain Aliphatic Ketones and Functionalized Fatty Acids. Chemistry - A European Journal, 2021, 27, 4412-4419.	1.7	7
1099	Synthesis of <i>N</i> -aryl amines enabled by photocatalytic dehydrogenation. Chemical Science, 2021, 12, 1915-1923.	3.7	12
1100	Visible-light-induced metal-free cascade cyclization of <i>N</i> -arylpropiolamides to 3-phosphorylated, trifluoromethylated and thiocyanated azaspiro[4.5]trienones. Organic Chemistry Frontiers, 2021, 8, 760-766.	2.3	50
1101	Photocatalysis in Dual Catalysis Systems for Carbonâ€Nitrogen Bond Formation. Advanced Synthesis and Catalysis, 2021, 363, 937-979.	2.1	48
1102	Photochemical Reaction of <i>N</i> , <i>N</i> â€Dimethylanilines with Nâ€Substituted Maleimides Utilizing Benzaldehyde as the Photoinitiator. European Journal of Organic Chemistry, 2021, 2021, 1168-1173.	1.2	14
1103	Visible-light-induced photoredox-catalyzed synthesis of benzimidazo[2,1-a]iso-quinoline-6(5H)-ones. Chinese Chemical Letters, 2021, 32, 1229-1232.	4.8	64
1104	Cooperative photoredox and palladium catalysis: recent advances in various functionalization reactions. Catalysis Science and Technology, 2021, 11, 742-767.	2.1	30
1105	Copper atalyzed Asymmetric Coupling of Allenyl Radicals with Terminal Alkynes to Access Tetrasubstituted Allenes. Angewandte Chemie, 2021, 133, 2188-2192.	1.6	14
1106	Visible Light–Initiated Synergistic/Cascade Reactions over Metal–Organic Frameworks. Solar Rrl, 2021, 5, 2000454.	3.1	24
1107	Visibleâ€Lightâ€Promoted Metalâ€Free Synthesis of (Hetero)Aromatic Nitriles from C(sp 3)â^'H Bonds**. Angewandte Chemie, 2021, 133, 2469-2475.	1.6	3

#	Article	IF	CITATIONS
1108	Recent Advances in Asymmetric Organomulticatalysis. Advanced Synthesis and Catalysis, 2021, 363, 352-387.	2.1	37
1109	Multiâ€Photocatalyst Cascades: Merging Singlet Oxygen Photooxygenations with Photoredox Catalysis for the Synthesis of Alkaloid Frameworks. Angewandte Chemie, 2021, 133, 4381-4387.	1.6	4
1110	Multiâ€Photocatalyst Cascades: Merging Singlet Oxygen Photooxygenations with Photoredox Catalysis for the Synthesis of Alkaloid Frameworks. Angewandte Chemie - International Edition, 2021, 60, 4335-4341.	7.2	11
1111	Progress in Visible Lightâ€Induced Difluroalkylation of Olefins. Chemical Record, 2021, 21, 69-86.	2.9	27
1112	Photoactive Nickel Complexes in Crossâ€Coupling Catalysis. Chemistry - A European Journal, 2021, 27, 2270-2278.	1.7	67
1113	Visibleâ€Lightâ€Promoted Formation of C—C and C—P Bonds Derived from Evolution of Bromoalkynes under Additiveâ€Free Conditions: Synthesis of 1,1â€Dibromoâ€1â€enâ€3â€ynes and Alkynylphosphine Oxides. Cl Journal of Chemistry, 2021, 39, 873-878.	h ine se	12
1114	Photoâ€biocatalytic Cascades: Combining Chemical and Enzymatic Transformations Fueled by Light. ChemBioChem, 2021, 22, 790-806.	1.3	73
1115	Oligosilanes as Silyl Radical Precursors through Oxidative Siâ^'Si Bond Cleavage Using Redox Catalysis. Angewandte Chemie - International Edition, 2021, 60, 675-679.	7.2	50
1116	Photochemical Methods for Peptide Macrocyclisation. Chemistry - A European Journal, 2021, 27, 69-88.	1.7	22
1117	Organic Superbases in Recent Synthetic Methodology Research. Chemistry - A European Journal, 2021, 27, 4216-4229.	1.7	65
1118	Decatungstate-mediated solar photooxidative cleavage of C bonds using air as an oxidant in water. Green Chemistry, 2021, 23, 5936-5943.	4.6	21
1119	Post-synthetic modifications (PSM) on metal–organic frameworks (MOFs) for visible-light-initiated photocatalysis. Dalton Transactions, 2021, 50, 13201-13215.	1.6	32
1120	Hole-mediated photoredox catalysis: tris(<i>p</i> -substituted)biarylaminium radical cations as tunable, precomplexing and potent photooxidants. Organic Chemistry Frontiers, 2021, 8, 1132-1142.	2.3	72
1121	Recent advances in the direct construction of enantioenriched stereocenters through addition of radicals to internal alkenes. Chemical Society Reviews, 2021, 50, 8857-8873.	18.7	32
1122	Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Organic Chemistry Frontiers, 2021, 8, 4886-4913.	2.3	59
1123	Phthalide synthesis through dehydrogenated lactonization of the C(sp ³)–H bond by photoredox catalysis. Green Chemistry, 2021, 23, 8212-8216.	4.6	9
1124	Metallaphotoredox catalysis for multicomponent coupling reactions. Green Chemistry, 2021, 23, 5379-5393.	4.6	64
1125	Homogeneous catalytic C(sp ³)–H functionalization of gaseous alkanes. Chemical Communications, 2021, 57, 9956-9967.	2.2	21

#	Article	IF	CITATIONS
1126	Generation of aryl radicals by redox processes. Recent progress in the arylation methodology. Russian Chemical Reviews, 2021, 90, 116-170.	2.5	11
1127	Photochemistry in Flow for Drug Discovery. Topics in Medicinal Chemistry, 2021, , 71-119.	0.4	1
1128	Visible-light-mediated three-component Minisci reaction for heteroarylethyl alcohols synthesis. Green Chemistry, 2021, 23, 7963-7968.	4.6	10
1129	Convenient C(sp ³)–H bond functionalisation of light alkanes and other compounds by iron photocatalysis. Green Chemistry, 2021, 23, 6984-6989.	4.6	95
1130	The central role of the metal ion for photoactivity: Zn– vs. Ni–Mabiq. Chemical Science, 2021, 12, 7521-7532.	3.7	11
1131	Atom-transfer radical addition of fluoroalkyl bromides to alkenes <i>via</i> a photoredox/copper catalytic system. Chemical Communications, 2021, 57, 5219-5222.	2.2	15
1132	Recent advancements in the development of molecular organic photocatalysts. Organic and Biomolecular Chemistry, 2021, 19, 4816-4834.	1.5	50
1133	Recent advances in visible light-activated radical coupling reactions triggered by (i) ruthenium, (ii) iridium and (iii) organic photoredox agents. Chemical Society Reviews, 2021, 50, 9540-9685.	18.7	205
1134	Merging radical-polar crossover/cycloisomerization processes: access to polyfunctional furans enabled by metallaphotoredox catalysis. Organic Chemistry Frontiers, 2021, 8, 1732-1738.	2.3	13
1135	Decarboxylative 1,4-carbocyanation of 1,3-enynes to access tetra-substituted allenes <i>via</i> copper/photoredox dual catalysis. Chemical Science, 2021, 12, 11316-11321.	3.7	51
1136	Light in Gold Catalysis. Chemical Reviews, 2021, 121, 8868-8925.	23.0	213
1137	Integration of Earth-Abundant Photosensitizers and Catalysts in Metal–Organic Frameworks Enhances Photocatalytic Aerobic Oxidation. ACS Catalysis, 2021, 11, 1024-1032.	5.5	47
1138	Highly Chemoselective Deoxygenation of N-Heterocyclic <i>N</i> -Oxides Using Hantzsch Esters as Mild Reducing Agents. Journal of Organic Chemistry, 2021, 86, 2876-2894.	1.7	13
1139	Competitive Desulfonylative Reduction and Oxidation of α-Sulfonylketones Promoted by Photoinduced Electron Transfer with 2-Hydroxyaryl-1,3-dimethylbenzimidazolines under Air. Journal of Organic Chemistry, 2021, 86, 2556-2569.	1.7	11
1140	Photoinduced homolytic decarboxylative acylation/cyclization of unactivated alkenes with α-keto acid under external oxidant and photocatalyst free conditions: access to quinazolinone derivatives. Chemical Communications, 2021, 57, 6050-6053.	2.2	43
1141	Merging CF ₃ SO ₂ Na photocatalysis with palladium catalysis to enable decarboxylative cross-coupling for the synthesis of aromatic ketones at room temperature. Organic Chemistry Frontiers, 2021, 8, 3427-3433.	2.3	8
1142	Concomitant shape and palladium engineering of hollow conjugated microporous photocatalysts to boost visible light-induced hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 22262-22268.	5.2	7
1143	Regiodivergent sulfonylarylation of 1,3-enynes <i>via</i> nickel/photoredox dual catalysis. Chemical Science, 2021, 12, 13564-13571.	3.7	54

#	Article	IF	CITATIONS
1144	Nickel-catalyzed formation of quaternary carbon centers using tertiary alkyl electrophiles. Chemical Society Reviews, 2021, 50, 4162-4184.	18.7	106
1145	Preparation of hexafluoroisopropyl esters by oxidative esterification of aldehydes using sodium persulfate. Organic and Biomolecular Chemistry, 2021, 19, 2986-2990.	1.5	8
1146	Photocatalyst- and additive-free decarboxylative alkylation of <i>N</i> -aryl tetrahydroisoquinolines induced by visible light. Organic Chemistry Frontiers, 2021, 8, 2473-2479.	2.3	23
1147	Visible-light-responsive lanthanide coordination polymers for highly efficient photocatalytic aerobic oxidation of amines and thiols. New Journal of Chemistry, 2021, 45, 15767-15775.	1.4	4
1148	Generation of azolium dienolates as versatile nucleophilic synthons <i>via N</i> -heterocyclic carbene catalysis. Organic Chemistry Frontiers, 2021, 8, 6138-6166.	2.3	52
1149	Visibleâ€Lightâ€Promoted Switchable Synthesis of Câ€3â€Functionalized Quinoxalinâ€2(1 <i>H</i>)â€ones. Adva Synthesis and Catalysis, 2021, 363, 1443-1448.	nced 2.1	25
1150	Synthesis of chiral branched allylamines through dual photoredox/nickel catalysis. Organic and Biomolecular Chemistry, 2021, 19, 8578-8585.	1.5	5
1151	Sensitization-initiated electron transfer <i>via</i> upconversion: mechanism and photocatalytic applications. Chemical Science, 2021, 12, 9922-9933.	3.7	50
1152	Photocatalytic three-component radical cascade: a general route to heterocyclic-substituted alkyl sulfones. Organic Chemistry Frontiers, 2021, 8, 5316-5321.	2.3	19
1153	Thioxanthone: a powerful photocatalyst for organic reactions. Organic and Biomolecular Chemistry, 2021, 19, 5237-5253.	1.5	104
1154	Biocatalytic Cross-Coupling of Aryl Halides with a Genetically Engineered Photosensitizer Artificial Dehalogenase. Journal of the American Chemical Society, 2021, 143, 617-622.	6.6	32
1155	Photoredox/nickel-catalyzed hydroacylation of ethylene with aromatic acids. Chemical Communications, 2021, 57, 9064-9067.	2.2	15
1156	Photocatalyst- and Transition-Metal-Free Visible-Light-Promoted Intramolecular C(sp ²)–S Formation. Organic Letters, 2021, 23, 2078-2083.	2.4	24
1157	Silane- and peroxide-free hydrogen atom transfer hydrogenation using ascorbic acid and cobalt-photoredox dual catalysis. Nature Communications, 2021, 12, 966.	5.8	58
1158	Stereoselective organocatalysis and flow chemistry. Physical Sciences Reviews, 2021, 6, .	0.8	3
1159	Acetal Addition to Electron-Deficient Alkenes with Hydrogen Atom Transfer as a Radical Chain Propagation Step. Journal of Organic Chemistry, 2021, 86, 3674-3682.	1.7	11
1160	Dual Photoredox-/Palladium-Catalyzed Cross-Electrophile Couplings of Polyfluoroarenes with Aryl Halides and Triflates. Organometallics, 2021, 40, 2246-2252.	1.1	15
1161	Stereodivergent synthesis of C-glycosamino acids via Pd/Cu dual catalysis. Science China Chemistry, 2021, 64, 552-557.	4.2	11

#	Article	IF	CITATIONS
1162	Employing Photocatalysis for the Design and Preparation of DNAâ€Encoded Libraries: A Case Study. Chemical Record, 2021, 21, 616-630.	2.9	14
1163	Lightâ€Driven Alcohol Splitting by Heterogeneous Photocatalysis: Recent Advances, Mechanism and Prospects. Chemistry - an Asian Journal, 2021, 16, 460-473.	1.7	16
1165	Photocatalytic Generation of ï€-Allyltitanium Complexes from Butadiene via a Radical Strategy. Synthesis, 2021, 53, 1889-1900.	1.2	4
1166	Visible Lightâ€Induced [3+2] Cyclization Reactions of Hydrazones with Hypervalent Iodine Diazo Reagents for the Synthesis of 1â€Aminoâ€1,2,3â€Triazoles. Advanced Synthesis and Catalysis, 2021, 363, 2133-2139.	2.1	19
1167	Photocatalytic Umpolung Synthesis of Nucleophilic π-Allylcobalt Complexes for Allylation of Aldehydes. ACS Catalysis, 2021, 11, 2992-2998.	5.5	32
1168	State of the Art of Bodipyâ€Based Photocatalysts in Organic Synthesis. European Journal of Organic Chemistry, 2021, 2021, 1809-1824.	1.2	49
1169	Threeâ€Component Alkene Difunctionalization by Direct and Selective Activation of Aliphatic Câ^'H Bonds. Angewandte Chemie, 2021, 133, 7481-7487.	1.6	8
1170	Hydroarylation of Activated Alkenes Enabled by Proton-Coupled Electron Transfer. ACS Catalysis, 2021, 11, 4422-4429.	5.5	51
1171	Visibleâ€Light Promoted C–O Bond Formation with an Integrated Carbon Nitride–Nickel Heterogeneous Photocatalyst. Angewandte Chemie - International Edition, 2021, 60, 8494-8499.	7.2	61
1172	Eosin Y as a direct hydrogen-atom transfer photocatalyst for the C3-H acylation of quinoxalin-2(1H)-ones. Tetrahedron Letters, 2021, 68, 152915.	0.7	26
1173	Direct Access to Primary Amines from Alkenes by Selective Metalâ€Free Hydroamination. Angewandte Chemie - International Edition, 2021, 60, 9875-9880.	7.2	33
1174	Direct catalytic asymmetric synthesis of α-chiral bicyclo[1.1.1]pentanes. Nature Communications, 2021, 12, 1644.	5.8	39
1175	Photoinduced Activation of Unactivated C(sp 3)â€H Bonds and Acylation Reactions. ChemistrySelect, 2021, 6, 2523-2528.	0.7	9
1176	Visibleâ€Light Promoted C–O Bond Formation with an Integrated Carbon Nitride–Nickel Heterogeneous Photocatalyst. Angewandte Chemie, 2021, 133, 8575-8580.	1.6	2
1177	Diastereoselective and Stereodivergent Synthesis of 2â€Cinnamylpyrrolines Enabled by Photoredox atalyzed Iminoalkenylation of Alkenes. Angewandte Chemie, 2021, 133, 9758-9765.	1.6	5
1178	Combined Theoretical and Experimental Investigation of Lewis Acid-Carbonyl Interactions for Metathesis. ACS Catalysis, 2021, 11, 4381-4394.	5.5	6
1179	Organic Electrochemistry: Molecular Syntheses with Potential. ACS Central Science, 2021, 7, 415-431.	5.3	335
1180	Understanding the Origin of the Chiral Recognition of Esters with Octahedral Chiral Cobalt Complexes. Asian Journal of Organic Chemistry, 2021, 10, 886-890.	1.3	10

#	Article	IF	CITATIONS
1181	The effect of the rate of photoinduced electron transfer on the photodecarboxylation efficiency in phthalimide photochemistry. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 408, 113109.	2.0	3
1182	C–H Functionalization via Electrophotocatalysis and Photoelectrochemistry: Complementary Synthetic Approach. ACS Sustainable Chemistry and Engineering, 2021, 9, 4324-4340.	3.2	29
1183	Visible-Light-Induced Catalyst-Free Carboxylation of Acylsilanes with Carbon Dioxide. Organic Letters, 2021, 23, 2303-2307.	2.4	26
1184	Regioselective Radical Amino-Functionalizations of Allyl Alcohols via Dual Catalytic Cross-Coupling. ACS Catalysis, 2021, 11, 3473-3477.	5.5	16
1185	Dual Palladium/Photoredox-Catalyzed Enantioselective and Regioselective Decarboxylative Hydroaminoalkylation of Allenes. ACS Catalysis, 2021, 11, 3343-3350.	5.5	27
1186	Diastereoselective and Stereodivergent Synthesis of 2â€Cinnamylpyrrolines Enabled by Photoredoxâ€Catalyzed Iminoalkenylation of Alkenes. Angewandte Chemie - International Edition, 2021, 60, 9672-9679.	7.2	40
1187	Direct Access to Primary Amines from Alkenes by Selective Metalâ€Free Hydroamination. Angewandte Chemie, 2021, 133, 9963-9968.	1.6	5
1188	Visible-light-induced sequential sulfonylation/hydroxylation of allylacetamides leading to β-tert-hydroxy sulfones. Tetrahedron, 2021, 83, 131999.	1.0	4
1189	Synthetic Semiconductor Photoelectrochemistry. Chemical Record, 2021, 21, 2223-2238.	2.9	17
1190	A facile access for multisubstituted trifluoromethyl olefins by visible light catalysis. Tetrahedron Letters, 2021, 66, 152829.	0.7	9
1191	Emerging concepts in photocatalytic organic synthesis. IScience, 2021, 24, 102209.	1.9	109
1193	Bifunctional reagents in organic synthesis. Nature Reviews Chemistry, 2021, 5, 301-321.	13.8	119
1194	Photoredox Propargylation of Aldehydes Catalytic in Titanium. Journal of Organic Chemistry, 2021, 86, 7002-7009.	1.7	18
1195	C(sp ³)–H methylation enabled by peroxide photosensitization and Ni-mediated radical coupling. Science, 2021, 372, 398-403.	6.0	107
1196	One-Pot Enantioselective Construction of Polycyclic Tetrahydroquinoline Scaffolds through Asymmetric Organo/Photoredox Catalysis via Triple-Reaction Sequence. Organic Letters, 2021, 23, 3287-3293.	2.4	10
1197	Mediator-Enabled Electrocatalysis with Ligandless Copper for Anaerobic Chan–Lam Coupling Reactions. Journal of the American Chemical Society, 2021, 143, 6257-6265.	6.6	44
1198	Recent Development in Defects Engineered Photocatalysts: An Overview of the Experimental and Theoretical Strategies. Energy and Environmental Materials, 2022, 5, 68-114.	7.3	81
1199	Visibleâ€Lightâ€Induced Manganeseâ€Catalyzed Reactions: Present Approach and Future Prospects. Advanced Synthesis and Catalysis, 2021, 363, 2969-2995.	2.1	31

#	Article	IF	CITATIONS
1200	Photochemical Activation of Aromatic Aldehydes: Synthesis of Amides, Hydroxamic Acids and Esters. Chemistry - A European Journal, 2021, 27, 7915-7922.	1.7	23
1201	Photochemical Regioselective C(sp ³)–H Amination of Amides Using <i>N</i> -Haloimides. Organic Letters, 2021, 23, 3389-3393.	2.4	16
1202	Dual organic dyes as a pseudo-redox mediation system to promotion of tandem oxidation /[3+2] cycloaddition reactions under visible light. Tetrahedron, 2021, 89, 132166.	1.0	11
1203	Nickel/Photoredox Dual Catalytic Cross-Coupling of Alkyl and Amidyl Radicals to Construct C(sp ³)–N Bonds. ACS Catalysis, 2021, 11, 5026-5034.	5.5	19
1204	Selective Deposition of Catalytic Metals on Plasmonic Au Nanocups for Room-Light-Active Photooxidation of <i>o</i> -Phenylenediamine. ACS Applied Materials & Interfaces, 2021, 13, 51855-51866.	4.0	12
1205	Visible-Light-Induced Formation of Thiavinyl 1,3-Dipoles: A Metal-Free [3+2] Oxidative Cyclization with Alkynes as Easy Access to Thiophenes. Organic Letters, 2021, 23, 3453-3459.	2.4	13
1206	Covalent Organic Frameworks toward Diverse Photocatalytic Aerobic Oxidations. Chemistry - A European Journal, 2021, 27, 7738-7744.	1.7	22
1207	TiO ₂ /AC Composites for Adsorption-Photocatalytic of Methyl Orange. IOP Conference Series: Materials Science and Engineering, 2021, 1143, 012077.	0.3	2
1208	Sunlight Photocatalytic Synthesis of Aryl Hydrazides by Decatungstateâ€Promoted Acylation under Room Temperature. ChemistrySelect, 2021, 6, 3922-3925.	0.7	5
1210	Atom-transfer radical cyclization of α-bromocarboxamides under organophotocatalytic conditions. Tetrahedron Letters, 2021, 69, 152952.	0.7	3
1211	Benzylic Câ^'H acylation by cooperative NHC and photoredox catalysis. Nature Communications, 2021, 12, 2068.	5.8	112
1212	Metallaphotoredox Dearomatization of Indoles by a Benzamide-Empowered [4 + 2] Annulation: Facile Access to Indolo[2,3-c]isoquinolin-5-ones. ACS Catalysis, 2021, 11, 5054-5060.	5.5	28
1213	Reaching the Full Potential of Electroorganic Synthesis by Paired Electrolysis. Chemical Record, 2021, 21, 2574-2584.	2.9	44
1214	Development of Selective Reactions Using Ball Milling. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2021, 79, 492-502.	0.0	1
1215	Visibleâ€Lightâ€Driven Selective Airâ€Oxygenation of Câ^'H Bond via CeCl ₃ Catalysis in Water. ChemSusChem, 2021, 14, 2689-2693.	3.6	16
1216	Light-Mediated Cross-Coupling of Anomeric Trifluoroborates. Organic Letters, 2021, 23, 4289-4293.	2.4	30
1217	Enhancing Visible-Light Photocatalysis <i>via</i> Endohedral Functionalization of Single-Walled Carbon Nanotubes with Organic Dyes. ACS Applied Materials & Interfaces, 2021, 13, 24877-24886.	4.0	19
1218	Highly Regio- and Enantioselective Reductive Coupling of Alkynes and Aldehydes via Photoredox Cobalt Dual Catalysis. Journal of the American Chemical Society, 2021, 143, 7306-7313.	6.6	74

#	Article	IF	CITATIONS
1219	Recent advances in (hetero)dimetallic systems towards tandem catalysis. Coordination Chemistry Reviews, 2021, 434, 213803.	9.5	26
1221	Copperâ€Photocatalyzed Hydroboration of Alkynes and Alkenes. Angewandte Chemie - International Edition, 2021, 60, 14498-14503.	7.2	60
1222	Organoboron Compounds in Visible Light-driven Photoredox Catalysis. Current Organic Chemistry, 2021, 25, 994-1027.	0.9	5
1223	Visibleâ€Light Mediated Metalâ€Free Crossâ€Electrophile Coupling of Isatin Derivatives with Electronâ€Poor Alkenes. Asian Journal of Organic Chemistry, 2021, 10, 1708-1712.	1.3	4
1224	Copperâ€Photocatalyzed Hydroboration of Alkynes and Alkenes. Angewandte Chemie, 2021, 133, 14619-14624.	1.6	13
1225	Visibleâ€Lightâ€Induced Iminothiolation of Unactivated Alkenes. Asian Journal of Organic Chemistry, 2021, 10, 1386-1389.	1.3	5
1226	Stereoselective Preparation of <i>C</i> â€Aryl Glycosides <i>via</i> Visibleâ€Lightâ€Induced Nickelâ€Catalyzed Reductive Crossâ€Coupling of Glycosyl Chlorides and Aryl Bromides. Advanced Synthesis and Catalysis, 2021, 363, 3025-3029.	2.1	26
1228	Ruthenium(II)-carboxylate-catalyzed C4/C6–H dual alkylations of indoles. Tetrahedron Letters, 2021, 72, 153064.	0.7	5
1229	Recent Advances in Organic Synthesis Using Lightâ€Mediated Nâ€Heterocyclic Carbene Catalysis. European Journal of Organic Chemistry, 2021, 2021, 4603-4610.	1.2	17
1230	Using Light to Modify the Selectivity of Transition Metal Catalysed Transformations. Angewandte Chemie - International Edition, 2021, 60, 20594-20605.	7.2	18
1231	Recent Visible Light and Metal Free Strategies in [2+2] and [4+2] Photocycloadditions. European Journal of Organic Chemistry, 2021, 2021, 3303-3321.	1.2	28
1232	Visible-Light Driven Selective C–N Bond Scission in <i>anti</i> -Bimane-Like Derivatives. Organic Letters, 2021, 23, 5294-5298.	2.4	5
1233	Electron Donorâ€Acceptor Complex Enabled Photocyanation of Tertiary Amines with a Stable and Userâ€Friendly Cyanobenziodoxolone Reagent. ChemPhotoChem, 2021, 5, 906-910.	1.5	5
1234	Katalytische Erzeugung von Carbanionen durch Carbonylâ€Umpolung. Angewandte Chemie, 2021, 133, 21792-21802.	1.6	7
1235	Synthesis of benzothiazoles using fluorescein as an efficient photocatalyst under visible light. Molecular Catalysis, 2021, 510, 111693.	1.0	8
1236	Direct C3 Carbamoylation of 2 <i>H</i> â€Indazoles. European Journal of Organic Chemistry, 2021, 2021, 3382-3385.	1.2	11
1237	DFT Mechanistic Study of Ir ^{III} /Ni ^{II} -Metallaphotoredox-Catalyzed Difluoromethylation of Aryl Bromides. Inorganic Chemistry, 2021, 60, 8682-8691.	1.9	7
1238	Visibleâ€Lightâ€Induced Homolysis of Earthâ€Abundant Metalâ€Substrate Complexes: A Complementary Activation Strategy in Photoredox Catalysis. Angewandte Chemie - International Edition, 2021, 60, 21100-21115.	7.2	190

#	Article	IF	CITATIONS
1239	Multigram Synthesis of Trioxanes Enabled by a Supercritical CO ₂ Integrated Flow Process. Organic Process Research and Development, 2021, 25, 1873-1881.	1.3	10
1240	Versatile Open-Source Photoreactor Architecture for Photocatalysis Across the Visible Spectrum. Organic Letters, 2021, 23, 5277-5281.	2.4	9
1241	Visible-Light-Induced Carbonylation of Indoles with Phenols under Metal-Free Conditions: Synthesis of Indole-3-carboxylates. Organic Letters, 2021, 23, 4769-4773.	2.4	5
1242	Photoredox-Catalyzed Benzylic Esterification via Radical-Polar Crossover. Organic Letters, 2021, 23, 5113-5117.	2.4	23
1243	Catalystâ€Free Decarbonylative Trifluoromethylthiolation Enabled by Electron Donorâ€Acceptor Complex Photoactivation. Advanced Synthesis and Catalysis, 2021, 363, 3507-3520.	2.1	38
1244	Photocatalysis: A Green Tool for Redox Reactions. Synlett, 2022, 33, 129-149.	1.0	23
1245	Mechanistic Investigation and Optimization of Photoredox Anti-Markovnikov Hydroamination. Journal of the American Chemical Society, 2021, 143, 10232-10242.	6.6	28
1246	Using Light to Modify the Selectivity of Transition Metal Catalysed Transformations. Angewandte Chemie, 2021, 133, 20762-20773.	1.6	8
1247	Durch sichtbares Licht induzierte Homolyse unedler, gut verfügbarer Metallsubstratkomplexe: Eine komplementÃre Aktivierungsstrategie in der Photoredoxkatalyse. Angewandte Chemie, 2021, 133, 21268-21284.	1.6	9
1248	Catalytic Generation of Carbanions through Carbonyl Umpolung. Angewandte Chemie - International Edition, 2021, 60, 21624-21634.	7.2	49
1249	Photo-induced thiolate catalytic activation of inert Caryl-hetero bonds for radical borylation. CheM, 2021, 7, 1653-1665.	5.8	55
1250	Reductive Radical Conjugate Addition of Alkyl Electrophiles Catalyzed by a Cobalt/Iridium Photoredox System. Organic Letters, 2021, 23, 6046-6051.	2.4	7
1251	Synthesis of CF ₃ -Containing Spirocyclic Indolines via a Red-Light-Mediated Trifluoromethylation/Dearomatization Cascade. Journal of Organic Chemistry, 2021, 86, 10640-10653.	1.7	21
1252	Discovery and characterization of a novel perylenephotoreductant for the activation of aryl halides. Journal of Catalysis, 2021, 399, 111-120.	3.1	5
1253	Recent Advances in Photoredoxâ€Mediated Radical Conjugate Addition Reactions: An Expanding Toolkit for the Giese Reaction. Angewandte Chemie, 2021, 133, 21286-21319.	1.6	15
1254	Photoredox Dual Catalysis: A Fertile Playground for the Discovery of New Reactivities. European Journal of Inorganic Chemistry, 2021, 2021, 3421-3431.	1.0	29
1255	Copperâ€₱hotocatalyzed Hydrosilylation of Alkynes and Alkenes under Continuous Flow. Chemistry - A European Journal, 2021, 27, 11818-11822.	1.7	36
1256	A Nanocrystal Catalyst Incorporating a Surface Bound Transition Metal to Induce Photocatalytic Sequential Electron Transfer Events. Journal of the American Chemical Society, 2021, 143, 11361-11369.	6.6	47

# 1257	ARTICLE Non-innocent Radical Ion Intermediates in Photoredox Catalysis: Parallel Reduction Modes Enable Coupling of Diverse Aryl Chlorides. Journal of the American Chemical Society, 2021, 143, 10882-10889.	IF 6.6	Citations 140
1258	Dual Catalysis Relay: Coupling of Aldehydes and Alkenes Enabled by Visible-Light and NHC-Catalyzed Cross-Double C–H Functionalizations. ACS Catalysis, 2021, 11, 9715-9721.	5.5	50
1259	Quantum Dot Photocatalysts for Organic Transformations. Journal of Physical Chemistry Letters, 2021, 12, 7180-7193.	2.1	48
1260	Mild oxidation of benzyl alcohols to benzyl aldehydes or ketones catalyzed by visible light. Tetrahedron Letters, 2021, 76, 153234.	0.7	3
1261	Strategic Use of Visible-Light Photoredox Catalysis in Natural Product Synthesis. Chemical Reviews, 2022, 122, 1717-1751.	23.0	199
1262	Strongly Red-Emissive Molecular Ruby [Cr(bpmp) ₂] ³⁺ Surpasses [Ru(bpy) ₃] ²⁺ . Journal of the American Chemical Society, 2021, 143, 11843-11855.	6.6	66
1263	Hydroalkylation of Unactivated Olefins via Visible-Light-Driven Dual Hydrogen Atom Transfer Catalysis. Journal of the American Chemical Society, 2021, 143, 11251-11261.	6.6	59
1265	Tandem photoelectrochemical and photoredox catalysis for efficient and selective aryl halides functionalization by solar energy. Matter, 2021, 4, 2354-2366.	5.0	24
1266	Visible-Light Radical–Radical Coupling vs. Radical Addition: Disentangling a Mechanistic Knot. Catalysts, 2021, 11, 922.	1.6	2
1267	Solvent-Minimized Synthesis of 4CzIPN and Related Organic Fluorophores via Ball Milling. Journal of Organic Chemistry, 2021, 86, 14095-14101.	1.7	17
1268	Cooperative Photoredox- and Nickel-Catalyzed Alkylative Cyclization Reactions of Alkynes with 4-Alkyl-1,4-dihydropyridines. Journal of Organic Chemistry, 2021, 86, 12577-12590.	1.7	15
1269	Practical iridium-catalyzed direct α-arylation of N-heteroarenes with (hetero)arylboronic acids by H2O-mediated H2 evolution. Nature Communications, 2021, 12, 4206.	5.8	20
1270	Enantioselective Photochemical Reactions Enabled by Triplet Energy Transfer. Chemical Reviews, 2022, 122, 1626-1653.	23.0	197
1271	Recent Advances in Photoredoxâ€Mediated Radical Conjugate Addition Reactions: An Expanding Toolkit for the Giese Reaction. Angewandte Chemie - International Edition, 2021, 60, 21116-21149.	7.2	124
1272	Lightâ€Driven Carbene Catalysis for the Synthesis of Aliphatic and αâ€Amino Ketones. Angewandte Chemie, 2021, 133, 18069-18075.	1.6	6
1273	Lightâ€Driven Carbene Catalysis for the Synthesis of Aliphatic and αâ€Amino Ketones. Angewandte Chemie - International Edition, 2021, 60, 17925-17931.	7.2	68
1274	Electrochemical Activation of Diverse Conventional Photoredox Catalysts Induces Potent Photoreductant Activity**. Angewandte Chemie, 2021, 133, 21588-21595.	1.6	14
1275	Tandem Photoredox-Chiral Phosphoric Acid Catalyzed Radical–Radical Cross-Coupling for Enantioselective Synthesis of 3-Hydroxyoxindoles. Organic Letters, 2021, 23, 7112-7117.	2.4	11

#	Article	IF	CITATIONS
1276	Photoredox Catalytic Three-Component Amidoazidation of 1,3-Dienes. ACS Catalysis, 2021, 11, 10871-10877.	5.5	33
1277	Three-Component Carbosilylation of Alkenes by Merging Iron and Visible-Light Photocatalysis. Organic Letters, 2021, 23, 6510-6514.	2.4	38
1278	Electrochemical Activation of Diverse Conventional Photoredox Catalysts Induces Potent Photoreductant Activity**. Angewandte Chemie - International Edition, 2021, 60, 21418-21425.	7.2	72
1279	Recent advances in radical chemistry proceeding through pro-aromatic radicals. CheM, 2021, 7, 2060-2100.	5.8	69
1280	Unlocking the Accessibility of Alkyl Radicals from Boronic Acids through Solvent-Assisted Organophotoredox Activation. ACS Catalysis, 2021, 11, 10862-10870.	5.5	35
1281	Photoinduced Hydrocarboxylation via Thiol-Catalyzed Delivery of Formate Across Activated Alkenes. Journal of the American Chemical Society, 2021, 143, 13022-13028.	6.6	71
1282	Double activation of oxygen intermediates of oxygen reduction reaction by dual inorganic/organic hybrid electrocatalysts. Nano Energy, 2021, 86, 106048.	8.2	5
1283	Cooperativity in Transition Metal Tetrylene Complexes. European Journal of Inorganic Chemistry, 2021, 2021, 3488-3498.	1.0	40
1284	Recent Progress in Enolonium Chemistry under Metalâ€Free Conditions. Chemical Record, 2022, 22, .	2.9	10
1285	A single-molecule blueprint for synthesis. Nature Reviews Chemistry, 2021, 5, 695-710.	13.8	24
1286	Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C–H Bonds Elaboration. Chemical Reviews, 2022, 122, 1875-1924.	23.0	442
1287	Organic Photoredox Catalysts Exhibiting Long Excited-State Lifetimes. Synlett, 0, , .	1.0	1
1288	The Dependence of Chemical Quantum Yields of Visible Light Photoredox Catalysis on the Irradiation Power. ChemPhotoChem, 2021, 5, 1009-1019.	1.5	10
1289	Semi-heterogeneous photo-Cu-dual-catalytic cross-coupling reactions using polymeric carbon nitrides. Science Bulletin, 2022, 67, 71-78.	4.3	31
1290	Enantioselective Reductive Homocoupling of Allylic Acetates Enabled by Dual Photoredox/Palladium Catalysis: Access to <i>C</i> ₂ -Symmetrical 1,5-Dienes. Journal of the American Chemical Society, 2021, 143, 12836-12846.	6.6	27
1291	Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chemical Reviews, 2022, 122, 2752-2906.	23.0	330
1292	Advances in the <i>E → Z</i> Isomerization of Alkenes Using Small Molecule Photocatalysts. Chemical Reviews, 2022, 122, 2650-2694.	23.0	184
1293	Visible-Light-Induced Deaminative Alkylation/Cyclization of Alkyl Amines with <i>N</i> -Methacryloyl-2-phenylbenzoimidazoles in Continuous-Flow Organo-Photocatalysis. Journal of Organic Chemistry, 2021, 86, 12908-12921.	1.7	26

#	Article	IF	Citations
1294	Synthetische molekulare Photoelektrochemie: neue synthetische Anwendungen, mechanistische Einblicke und Möglichkeiten zur Skalierung. Angewandte Chemie, 2022, 134, .	1.6	3
1295	Synthetic Molecular Photoelectrochemistry: New Frontiers in Synthetic Applications, Mechanistic Insights and Scalability. Angewandte Chemie - International Edition, 2022, 61, .	7.2	90
1296	Mechanistic study on the photo carboxylation of benzylic C-H bonds by xanthone and Ni(0) catalysts. Molecular Catalysis, 2021, 514, 111785.	1.0	3
1297	Controllable synthesis of benzoxazinones and 2-hydroxy-3-indolinones by visible-light-promoted 5-endo-dig N-radical cyclization cascade. Cell Reports Physical Science, 2021, 2, 100577.	2.8	9
1298	Photocatalytic Câ^'F Bond Activation of Fluoroarenes, <i>gem</i> â€Difluoroalkenes and Trifluoromethylarenes. Asian Journal of Organic Chemistry, 2021, 10, 2454-2472.	1.3	32
1299	The serendipitous effect of KF in Ritter reaction: Photo-induced amino-alkylation of alkenes. IScience, 2021, 24, 102969.	1.9	11
1300	Cooperative NHC/Photoredox Catalyzed Ringâ€Opening of Aryl Cyclopropanes to 1â€Aroyloxylatedâ€3â€Acylated Alkanes. Angewandte Chemie - International Edition, 2021, 60, 25252-25257.	7.2	82
1301	Direct 1,2â€Dicarbonylation of Alkenes towards 1,4â€Diketones via Photoredox Catalysis. Angewandte Chemie, 0, , .	1.6	10
1302	Photoredox-Catalyzed C–H Functionalization Reactions. Chemical Reviews, 2022, 122, 1925-2016.	23.0	388
1303	Direct 1,2â€Dicarbonylation of Alkenes towards 1,4â€Diketones via Photocatalysis. Angewandte Chemie - International Edition, 2021, 60, 26822-26828.	7.2	41
1304	Metalâ€ŧo‣igand Ratioâ€Dependent Chemodivergent Asymmetric Synthesis. Angewandte Chemie, 2021, 133, 23074.	1.6	0
1305	Cooperative NHC/Photoredox Catalyzed Ringâ€Opening of Aryl Cyclopropanes to 1â€Aroyloxylatedâ€3â€Acylated Alkanes. Angewandte Chemie, 0, , .	1.6	2
1306	Visibleâ€Lightâ€Catalyzed Nâ€Radicalâ€Enabled Cyclization of Alkenes for the Synthesis of Fiveâ€Membered Nâ€Heterocycles. ChemSusChem, 2021, 14, 4658-4670.	3.6	22
1307	Nano Ni/g 3 N 4 Photocatalyzed Aerobic Oxidative Coupling Reaction toward Alkyl Aryl Ketones Derivatives under Visible Light Irradiation. ChemistrySelect, 2021, 6, 9128-9133.	0.7	1
1308	Light-Induced Single-Electron Transfer Processes involving Sulfur Anions as Catalysts. Journal of the American Chemical Society, 2021, 143, 15530-15537.	6.6	48
1309	Late-Stage <i>N</i> -Me Selective Arylation of Trialkylamines Enabled by Ni/Photoredox Dual Catalysis. Journal of the American Chemical Society, 2021, 143, 16364-16369.	6.6	31
1310	Selective Azidooxygenation of Alkenes Enabled by Photo-induced Radical Transfer Using Aryl-λ ³ -azidoiodane Species. ACS Omega, 2021, 6, 26623-26639.	1.6	9
1311	Metalâ€toâ€Ligand Ratioâ€Dependent Chemodivergent Asymmetric Synthesis. Angewandte Chemie - International Edition, 2021, 60, 22892-22899.	7.2	16

#	Article	IF	CITATIONS
1312	Nickel/Photo-Cocatalyzed C(sp2)–H Allylation of Aldehydes and Formamides. Organic Letters, 2021, 23, 7672-7677.	2.4	17
1313	Surface functionalized Pt/SnNb2O6 nanosheets for visible-light-driven the precise hydrogenation of furfural to furfuryl alcohol. Journal of Energy Chemistry, 2022, 66, 566-575.	7.1	16
1314	Highly chemoselective deoxygenation of N-heterocyclic <i>N</i> -oxides under transition metal-free conditions. Organic and Biomolecular Chemistry, 2021, 19, 3735-3742.	1.5	6
1315	Visible light induced hydrophosphinylation of unactivated alkenes catalyzed by salicylaldehyde. Green Chemistry, 2021, 23, 3600-3606.	4.6	11
1316	Ruthenium-catalyzed C–H amination of aroylsilanes. Organic and Biomolecular Chemistry, 2021, 19, 6313-6321.	1.5	11
1317	Carbon dioxide based methodologies for the synthesis of fine chemicals. Organic and Biomolecular Chemistry, 2021, 19, 5725-5757.	1.5	20
1318	Polymer green chemistry. , 2021, , 3-22.		1
1319	Semiconductor nanocrystal photocatalysis for the production of solar fuels. Journal of Chemical Physics, 2021, 154, 030901.	1.2	32
1320	Metallaphotoredox-catalyzed C–H activation: regio-selective annulation of allenes with benzamide. Organic Chemistry Frontiers, 2021, 8, 928-935.	2.3	16
1321	Quantifying Uncertainties in Solvation Procedures for Modeling Aqueous Phase Reaction Mechanisms. Journal of Physical Chemistry A, 2021, 125, 154-164.	1.1	24
1322	Recent advances in catalytic synthesis of medium-ring lactones and their derivatives. Catalysis Science and Technology, 2021, 11, 6931-6946.	2.1	11
1323	Photocatalytic decarboxylative alkylations of C(sp3)-H and C(sp2)-H bonds enabled by ammonium iodide in amide solvent. Science China Chemistry, 2021, 64, 439-444.	4.2	68
1324	Cyanation: a photochemical approach and applications in organic synthesis. Organic Chemistry Frontiers, 2021, 8, 3166-3200.	2.3	38
1325	Asymmetric [2+2] photocycloaddition via charge transfer complex for the synthesis of tricyclic chiral ethers. Chemical Communications, 2021, 57, 3046-3049.	2.2	14
1326	Visible-light-induced oxidative coupling of vinylarenes with diselenides leading to α-aryl and α-alkyl selenomethyl ketones. Green Chemistry, 2021, 23, 1840-1846.	4.6	20
1327	Visible-light-induced iodine-anion-catalyzed decarboxylative/deaminative C–H alkylation of enamides. Organic Chemistry Frontiers, 2021, 8, 4466-4472.	2.3	34
1328	Visible-light-promoted decarboxylative addition cyclization of <i>N</i> -aryl glycines and azobenzenes to access 1,2,4-triazolidines. Green Chemistry, 2021, 23, 5806-5811.	4.6	24
1329	Construction of Peptide Macrocycles via Radical-Mediated Intramolecular C–H Alkylations. Organic Letters, 2021, 23, 716-721.	2.4	10

#	Article	IF	CITATIONS
1330	Visible-Light-Mediated Z-Stereoselective Monoalkylation of β,β-Dichlorostyrenes by Photoredox/Nickel Dual Catalysis. Synlett, 2021, 32, 1513-1518.	1.0	4
1331	Selective C(sp ³)–H activation of simple alkanes: visible light-induced metal-free synthesis of phenanthridines with H ₂ O ₂ as a sustainable oxidant. Green Chemistry, 2021, 23, 6926-6930.	4.6	32
1332	The role of metal–organic porous frameworks in dual catalysis. Inorganic Chemistry Frontiers, 2021, 8, 3618-3658.	3.0	30
1333	Sunlight-mediated [3 + 2] cycloaddition of azobenzenes with arynes: an approach toward the carbazole skeleton. Organic Chemistry Frontiers, 2021, 8, 5045-5051.	2.3	16
1334	Recent advances in the chemistry of ketyl radicals. Chemical Society Reviews, 2021, 50, 5349-5365.	18.7	87
1335	Understanding the mechanism of direct visible-light-activated [2 + 2] cycloadditions mediated by Rh and Ir photocatalysts: combined computational and spectroscopic studies. Chemical Science, 2021, 12, 9673-9681.	3.7	16
1336	An organophotoredox-catalyzed redox-neutral cascade involving <i>N</i> -(acyloxy)phthalimides and maleimides. Organic Chemistry Frontiers, 2021, 8, 2256-2262.	2.3	30
1337	Visible light-induced recyclable g-C ₃ N ₄ catalyzed thiocyanation of C(sp ²)–H bonds in sustainable solvents. Green Chemistry, 2021, 23, 3677-3682.	4.6	96
1338	Synthesis of Arylamines via Aminium Radicals. Angewandte Chemie, 2017, 129, 15144-15148.	1.6	29
1339	Enantioselective Photochemical Organocascade Catalysis. Angewandte Chemie, 2018, 130, 1080-1084.	1.6	38
1340	Visibleâ€Light Photocatalysis of Asymmetric [2+2] Cycloaddition in Cageâ€Confined Nanospace Merging Chirality with Tripletâ€State Photosensitization. Angewandte Chemie, 2020, 132, 8739-8747.	1.6	16
1341	Visibleâ€Light Photocatalysis of Asymmetric [2+2] Cycloaddition in Cageâ€Confined Nanospace Merging Chirality with Tripletâ€State Photosensitization. Angewandte Chemie - International Edition, 2020, 59, 8661-8669.	7.2	92
1342	Recent advances in catalytic silylation of hydroxylâ€bearing compounds: A green technique for protection of alcohols using Si–O bond formations. Applied Organometallic Chemistry, 2021, 35, e6131.	1.7	7
1343	Visible Light-Mediated Installation of Halogen Functionalities into Multiple Bond Systems. ChemistrySelect, 2017, 2, 9136-9146.	0.7	7
1344	Mechanistic Pathways Toward the Synthesis of Heterocycles Under Cross-Dehydrogenative Conditions. , 2019, , 329-356.		4
1345	Green organic synthesis by photochemical protocol. , 2020, , 155-198.		4
1346	Photocatalysis: A step closer to the perfect synthesis. Journal of Organometallic Chemistry, 2020, 920, 121335.	0.8	12
1347	Direct Access to Monoprotected Homoallylic 1,2-Diols via Dual Chromium/Photoredox Catalysis. ACS Catalysis, 2020, 10, 11841-11847.	5.5	52

#	Article	IF	Citations
1348	Quaternary Charge-Transfer Complex Enables Photoenzymatic Intermolecular Hydroalkylation of Olefins. Journal of the American Chemical Society, 2021, 143, 97-102.	6.6	84
1349	Direct C–H difluoromethylation of heterocycles via organic photoredox catalysis. Nature Communications, 2020, 11, 638.	5.8	103
1350	Catalyst-free Organic Synthesis: An Introduction. RSC Green Chemistry, 2017, , 1-10.	0.0	4
1351	Organometallic Chemistry in Flow in the Pharmaceutical Industry. RSC Green Chemistry, 2019, , 86-128.	0.0	4
1352	Synthesis of 3-sulfonylquinolines by visible-light promoted metal-free cascade cycloaddition involving <i>N</i> -propargylanilines and sodium sulfinates. New Journal of Chemistry, 2020, 44, 3189-3193.	1.4	22
1353	Cobalt fluorides: preparation, reactivity and applications in catalytic fluorination and C–F functionalization. Chemical Communications, 2020, 56, 8512-8523.	2.2	15
1354	Visible-light-induced aerobic oxidative desulfurization of 2-mercaptobenzimidazoles <i>via</i> a sulfinyl radical. Green Chemistry, 2020, 22, 5594-5598.	4.6	16
1355	Radical addition-polar termination cascade: efficient strategy for photoredox-neutral-catalysed cyclopropanation and Giese-type reactions of alkenyl <i>N</i> -methyliminodiacetyl boronates. Organic Chemistry Frontiers, 2020, 7, 1588-1592.	2.3	18
1356	Cloud-inspired multiple scattering for light intensified photochemical flow reactors. Reaction Chemistry and Engineering, 2020, 5, 1058-1063.	1.9	11
1357	General and selective synthesis of primary amines using Ni-based homogeneous catalysts. Chemical Science, 2020, 11, 4332-4339.	3.7	29
1358	Introduction of a 7-aza-6-MeO-indoline auxiliary in Lewis-acid/photoredox cooperative catalysis: highly enantioselective aminomethylation of α,β-unsaturated amides. Chemical Science, 2020, 11, 5168-5174.	3.7	19
1359	Recent Advances on Copper-Catalyzed C–C Bond Formation via C–H Functionalization. Synthesis, 2020, 52, 2613-2622.	1.2	5
1360	EC-Backward-E Electrochemistry in Radical Cation Diels-Alder Reactions. Journal of the Electrochemical Society, 2020, 167, 155518.	1.3	11
1361	Mechanistic Studies on TiO ₂ Photoelectrochemical Radical Cation [2 + 2] Cycloadditions. Journal of the Electrochemical Society, 2020, 167, 155529.	1.3	9
1362	Visible Light Responsive Metal Oxide Photoanodes for Photoelectrochemical Water Splitting: a Comprehensive Review on Rational Materials Design. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2018, 33, 173.	0.6	23
1363	Defluoroborylation Reactions of Fluoroarenes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 883-894.	0.0	5
1364	Recent Advances in the Oxidative Coupling Reaction of Enol Derivatives. Chinese Journal of Organic Chemistry, 2021, 41, 3414.	0.6	5
1365	Remote Control: Stereoselective Coordination of Electron-Deficient 2,2'-bipyridine Ligands to Re(I) and Ir(III) Cores. Dalton Transactions, 2021, 50, 16459-16463.	1.6	3

#	Article	IF	CITATIONS
1366	Visible-light-induced sulfonylation of Baylis–Hillman acetates under metal- and oxidant-free conditions. New Journal of Chemistry, 2021, 45, 22243-22248.	1.4	9
1367	Metalâ€ŧoâ€Metal Distance Modulated Au(I)/Ru(II) Cyclophanyl Complexes: Cooperative Effects in Photoredox Catalysis. Chemistry - A European Journal, 2021, 27, 15188-15201.	1.7	8
1368	Photoredox Catalyzed Sulfonylation of Multisubstituted Allenes with Ru(bpy)3Cl2 or Rhodamine B. Journal of Organometallic Chemistry, 2022, 957, 122125.	0.8	3
1369	Chiral Photocatalyst Structures in Asymmetric Photochemical Synthesis. Chemical Reviews, 2022, 122, 1654-1716.	23.0	179
1370	"How Should I Think about Voltage? What Is Overpotential?― Establishing an Organic Chemistry Intuition for Electrochemistry. Journal of Organic Chemistry, 2021, 86, 15875-15885.	1.7	45
1371	Nickel-Catalyzed Etherification of Phenols and Aryl Halides through Visible-Light-Induced Energy Transfer. Organic Letters, 2021, 23, 8327-8332.	2.4	25
1372	Asymmetric Photocatalysis Enabled by Chiral Organocatalysts. ChemCatChem, 2022, 14, .	1.8	46
1373	Visible Light-Induced Transition Metal Catalysis. Chemical Reviews, 2022, 122, 1543-1625.	23.0	322
1374	Direct C–H Thiolation for Selective Cross-Coupling of Arenes with Thiophenols via Aerobic Visible-Light Catalysis. Organic Letters, 2021, 23, 8082-8087.	2.4	21
1375	<scp>Singleâ€chain</scp> polymers as homogeneous oxidative photoredox catalysts. Journal of Polymer Science, 2021, 59, 2867-2877.	2.0	5
1376	Enantioselective Radical S _N 2-Type Alkylation of Morita–Baylis–Hillman Adducts Using Dual Photoredox/Palladium Catalysis. Organic Letters, 2021, 23, 8322-8326.	2.4	16
1377	Photoredox Iridium–Nickel Dual Catalyzed Cross-Electrophile Coupling: From a Batch to a Continuous Stirred-Tank Reactor via an Automated Segmented Flow Reactor. Organic Process Research and Development, 2021, 25, 2323-2330.	1.3	12
1378	Activation of Chromium Catalysts by Photoexcited Hantzsch Ester for Decarboxylative Allylation of Aldehydes with Butadiene. Organic Letters, 2021, 23, 8077-8081.	2.4	16
1379	Anti-Markovnikov hydro(amino)alkylation of vinylarenes via photoredox catalysis. Nature Communications, 2021, 12, 5956.	5.8	18
1380	Red-Light-Induced N,N′-Dipropyl-1,13-dimethoxyquinacridinium-Catalyzed [3+2] Cycloaddition of Cyclopropylamines with Alkenes or Alkynes. Synlett, 2022, 33, 1194-1198.	1.0	10
1381	Asymmetric Photochemical Synthesis Based on Selective Excitation of Charge-Transfer Complexes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 144-152.	0.0	0
1382	Lewis Acid Catalysis in Intermolecular [2+2] Photocycloaddition of Coumarin-3-carboxamide Bearing 2-Oxazolidinone Auxiliary with n-Propyl Vinyl Ether and Vinyl Pivalate. Heterocycles, 2018, 97, 591.	0.4	0
1383	Cross-Dehydrogenative Coupling in the Synthesis and Functionalization of Fused Imidazoheterocycles. , 2019, , 107-141.		4

#	Article	IF	CITATIONS
1384	Visible-Light Photoredox Catalysis: New Strategies for Radical Reactions. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 414-423.	0.0	0
1385	A System of Photocatalysis for NAD+ Regeneration of Product of (S)-1-Pheylethanol by Enzymic Catalysis. Bulletin of Chemical Reaction Engineering and Catalysis, 2019, 14, 421.	0.5	0
1386	Red-Light-Mediated Barton–McCombie Reaction. Bulletin of the Chemical Society of Japan, 2020, 93, 936-941.	2.0	5
1387	Synthesis of Bicyclic <i>N</i> -Heterocycles via Photoredox Cycloaddition of Imino-Alkynes and Imino-Alkenes. ACS Catalysis, 2021, 11, 13670-13679.	5.5	13
1388	Single-Electron Strategies in Organometallic Methods: Photoredox, Electrocatalysis, Radical Relay, and Beyond. , 2022, , 339-403.		4
1389	Engineering metal-organic frameworks for efficient photocatalytic conversion of CO2 into solar fuels. Coordination Chemistry Reviews, 2022, 450, 214245.	9.5	64
1390	Research progress and prospects of photocatalytic devices with perovskite ferroelectric semiconductors. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 127706.	0.2	5
1391	Photoaccelerated energy transfer catalysis of the Suzuki–Miyaura coupling through ligand regulation on Ir(iii)–Pd(ii) bimetallic complexes. RSC Advances, 2020, 10, 42874-42882.	1.7	5
1392	Photochemical C–H acetalization of O-heterocycles utilizing phenylglyoxylic acid as the photoinitiator. Photochemical and Photobiological Sciences, 2022, 21, 687-694.	1.6	9
1393	Mechanistic Understanding of Arylation vs Alkylation of Aliphatic C _{sp3} –H Bonds by Decatungstate–Nickel Catalysis. ACS Catalysis, 2021, 11, 13973-13982.	5.5	15
1394	Development of a Quinolinium/Cobaloxime Dual Photocatalytic System for Oxidative C–C Cross-Couplings <i>via</i> H ₂ Release. ACS Catalysis, 2021, 11, 14148-14158.	5.5	33
1395	Metal-Free Hydrosilylation Polymerization by Merging Photoredox and Hydrogen Atom Transfer Catalysis. Journal of the American Chemical Society, 2021, 143, 19167-19177.	6.6	17
1396	Visible-Light-Mediated Cross Dehydrogenative Coupling of Thiols with Aldehydes: Metal-Free Synthesis of Thioesters at Room Temperature. Journal of Organic Chemistry, 2021, 86, 16965-16976.	1.7	17
1397	Visible light mediated aerobic oxidative hydroxylation of 2-oxindole-3-carboxylate esters: an alternative approach to 3-hydroxy-2-oxindoles. Heterocyclic Communications, 2020, 26, 168-175.	0.6	0
1398	In-flow enantioselective homogeneous organic synthesis. Green Processing and Synthesis, 2021, 10, 768-778.	1.3	2
1399	Acetylation of alcohols and amines under visible light irradiation: diacetyl as an acylation reagent and photosensitizer. Organic Chemistry Frontiers, 2022, 9, 311-319.	2.3	5
1400	Metal-Catalyzed Amination: C N Bond Formation. , 2021, , .		0
1401	s-Tetrazine: Robust and Green Photoorganocatalyst for Aerobic Oxidation of N,N-Disubstituted Hydroxylamines to Nitrones. Synlett, 2022, 33, 177-181.	1.0	3

#	Article	IF	CITATIONS
1402	Deoxygenative Functionalizations of Aldehydes, Ketones and Carboxylic Acids. Angewandte Chemie, 2022, 134, e202112770.	1.6	12
1403	Excitedâ€6tate Copper Catalysis for the Synthesis of Heterocycles. Angewandte Chemie, 2022, 134, .	1.6	1
1404	The Chosen Few: Parallel Library Reaction Methodologies for Drug Discovery. Journal of Organic Chemistry, 2022, 87, 1880-1897.	1.7	28
1405	Metallaphotoredox: The Merger of Photoredox and Transition Metal Catalysis. Chemical Reviews, 2022, 122, 1485-1542.	23.0	660
1406	Recent Advances in C-F Bond Cleavage Enabled by Visible Light Photoredox Catalysis. Molecules, 2021, 26, 7051.	1.7	34
1407	Deoxygenative Functionalizations of Aldehydes, Ketones and Carboxylic Acids. Angewandte Chemie - International Edition, 2022, 61, .	7.2	42
1408	Use of Green Solvents in Metallaphotoredox Cross-Electrophile Coupling Reactions Utilizing a Lipophilic Modified Dual Ir/Ni Catalyst System. Journal of Organic Chemistry, 2021, 86, 17428-17436.	1.7	5
1409	Light-Induced Organic Transformations by Covalent Organic Frameworks as Reticular Platforms for Selective Photosynthesis. ACS Sustainable Chemistry and Engineering, 2021, 9, 15694-15721.	3.2	18
1410	Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chemical Reviews, 2022, 122, 2017-2291.	23.0	211
1411	Recent Advances in Benzocyclobutene Chemistry. Asian Journal of Organic Chemistry, 2021, 10, 3166-3185.	1.3	13
1412	Generation of Oxyphosphonium Ions byÂPhotoredox/Cobaloxime Catalysis for Scalable Amide and Peptide Synthesis in Batch and Continuousâ€Flow. Angewandte Chemie, 0, , .	1.6	4
1413	Nickelâ€Catalyzed Allylic Substitution Reactions: An Evolving Alternative. European Journal of Inorganic Chemistry, 2022, 2022, e202100820.	1.0	20
1414	Excitedâ€State Copper Catalysis for the Synthesis of Heterocycles. Angewandte Chemie - International Edition, 2022, 61, e202113841.	7.2	28
1415	Photoredox-Catalyzed Cascade Reactions Involving Aryl Radical: Total Synthesis of (±)-Norascyronone A and (±)-Eudesmol. Organic Letters, 2021, 23, 9073-9077.	2.4	7
1416	Acridine Orange Hemi(Zinc Chloride) Salt as a Lewis Acidâ€Photoredox Hybrid Catalyst for the Generation of <i>α</i> arbonyl Radicals. Advanced Synthesis and Catalysis, 2022, 364, 755-765.	2.1	13
1417	Phytic acid-assisted fabrication of superhydrophilic Ru 3D electrode for electrocatalytic hydrogenation of p-Nitrophenol. International Journal of Hydrogen Energy, 2022, 47, 2187-2199.	3.8	8
1418	Recent Applications of Rare Earth Complexes in Photoredox Catalysis for Organic Synthesis. Current Organic Chemistry, 2022, 26, 6-41.	0.9	9
1419	Ternary Electron Donor–Acceptor Complex Enabled Enantioselective Radical Additions to α, β-Unsaturated Carbonyl Compounds. ACS Catalysis, 2021, 11, 14811-14818.	5.5	14

#	Article	IF	CITATIONS
1421	Learning Green Chemistry and its principles from Nature's process and development of green procedures mimicking nature. Chemistry Teacher International, 2022, 4, 127-141.	0.9	4
1422	Photo-induced catalytic halopyridylation of alkenes. Nature Communications, 2021, 12, 6538.	5.8	23
1423	Generation of Oxyphosphonium Ions by Photoredox/Cobaloxime Catalysis for Scalable Amide and Peptide Synthesis in Batch and Continuousâ€Flow. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
1424	Mild Synthesis of 3,4-Dihydroisoquinolin-1(2 <i>H</i>)-ones via Rh(III)-Catalyzed Tandem C–H-Allylation/N-Alkylation Annulation with 2-Methylidenetrimethylene Carbonate. Journal of Organic Chemistry, 2021, 86, 17063-17070.	1.7	5
1425	<pre><scp>Visibleâ€Lightâ€Promoted</scp> [3 + 2] Cycloaddition of <scp>2<i>H</i>â€Azirines</scp> with Q Access to Substituted Benzo[<i>f</i>]isoindoleâ€4,9â€diones. Chinese Journal of Chemistry, 2022, 40, 719-724.</pre>	uinones: 2.6	9
1426	Catalytic one-carbon homologation of α-amino acids to β-amino aldehydes. Chem Catalysis, 2021, 1, 1427-1436.	2.9	16
1427	From Esters to Ketones via a Photoredoxâ€Assisted Reductive Acyl Cross oupling Strategy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
1428	From Esters to Ketones via a Photoredoxâ€Assisted Reductive Acyl Cross oupling Strategy. Angewandte Chemie, 2022, 134, .	1.6	5
1429	Photoelectrochemical Decarboxylative C–H Alkylation of Quinoxalin-2(1 <i>H</i>)-ones. ACS Sustainable Chemistry and Engineering, 2021, 9, 16820-16828.	3.2	14
1430	Syntheses of new chiral chimeric photo-organocatalysts. RSC Advances, 2021, 11, 36663-36669.	1.7	10
1431	Progress in Visible-Light Catalyzed C—F Bond Functionalization of <i>gem</i> -Difluoroalkenes. Chinese Journal of Organic Chemistry, 2021, 41, 4192.	0.6	8
1432	Selective 1,4-arylsulfonation of 1,3-enynes <i>via</i> photoredox/nickel dual catalysis. Organic Chemistry Frontiers, 2022, 9, 788-794.	2.3	14
1433	Exploring Eosin Y as a bimodular catalyst: organophotoacid mediated Minisci-type acylation of <i>N</i> -heteroarenes. Chemical Communications, 2022, 58, 1776-1779.	2.2	10
1434	UV light-driven asymmetric vinylogous aldol reaction of isatins with 2-alkylbenzophenones and enantioselective synthesis of 3-hydroxyoxindoles. Organic Chemistry Frontiers, 2022, 9, 643-648.	2.3	4
1435	Photochemical and electrochemical C–N borylation of arylhydrazines. Chemical Communications, 2022, 58, 1716-1719.	2.2	8
1436	The Morita–Baylis–Hillman reaction for non-electron-deficient olefins enabled by photoredox catalysis. Chemical Science, 2022, 13, 1478-1483.	3.7	14
1437	Capturing Atom-Specific Electronic Structural Dynamics of Transition-Metal Complexes with Ultrafast Soft X-Ray Spectroscopy. Annual Review of Physical Chemistry, 2022, 73, 187-208.	4.8	6
1438	Light-enabled alkenylation of iodocarboranes with unactivated alkenes. Dalton Transactions, 2021, 51, 104-110.	1.6	8

#	Article	IF	Citations
1439	Recent advances in γ-C(sp3)–H bond activation of amides, aliphatic amines, sulfanilamides and amino acids. Coordination Chemistry Reviews, 2022, 455, 214255.	9.5	18
1440	Organic Photoredox-Catalyzed Cycloadditions Under Single-Chain Polymer Confinement. ACS Catalysis, 2020, 10, 13251-13256.	5.5	11
1441	C–C Bond Formation Through Cross-Electrophile Coupling Reactions. , 2022, , 89-119.		1
1442	Opportunities and challenges of visible-light-driven triple-synergistic catalysis. Chem Catalysis, 2022, 2, 458-467.	2.9	15
1443	Visible-light induced synthesis of 8H-indolo[3,2,1-de]phenanthridin-8-ones and related heterocycles using benzothiadiazole as photocatalyst. Tetrahedron Letters, 2022, 91, 153648.	0.7	1
1444	Enantioselective Reductive <scp>Crossâ€Coupling</scp> of Aryl/Alkenyl Bromides with Benzylic Chlorides <i>via</i> Photoredox/Biimidazoline Nickel Dual Catalysis. Chinese Journal of Chemistry, 2022, 40, 1033-1038.	2.6	21
1445	Proton-Coupled Electron Transfer: The Engine of Energy Conversion and Storage. Journal of the American Chemical Society, 2022, 144, 1069-1081.	6.6	72
1446	Enantioselective Radical Reactions Using Chiral Catalysts. Chemical Reviews, 2022, 122, 5842-5976.	23.0	136
1447	Radical Carbonyl Umpolung Arylation via Dual Nickel Catalysis. Journal of the American Chemical Society, 2022, 144, 1899-1909.	6.6	47
1448	Photoredox/nickel dual catalyzed stereospecific synthesis of distal alkenyl ketones. Chemical Communications, 2022, 58, 1171-1174.	2.2	10
1449	Allylic C(sp3)–H arylation of olefins via ternary catalysis. , 2022, 1, 59-68.		22
1450	Catalyst-free visible light-induced decarboxylative amination of glycine derivatives with azo compounds. New Journal of Chemistry, 2022, 46, 465-469.	1.4	4
1451	Recent Advances in Visible-Light Photoredox Catalysis for the Thiol-Ene/Yne Reactions. Molecules, 2022, 27, 619.	1.7	22
1452	1,3-Oxyalkynylation of Aryl Cyclopropanes with Ethylnylbenziodoxolones Using Photoredox Catalysis. Organic Letters, 2022, 24, 949-954.	2.4	21
1453	Asymmetric synthesis of cyclic β-amino carbonyl derivatives by a formal [3 + 2] photocycloaddition. Chemical Communications, 2022, 58, 1334-1337.	2.2	17
1454	Preparation of nitriles from aldehydes using ammonium persulfate by means of a nitroxide-catalysed oxidative functionalisation reaction. Organic and Biomolecular Chemistry, 2022, 20, 667-671.	1.5	8
1455	Recent Advances in Visible-Light-Mediated Amide Synthesis. Molecules, 2022, 27, 517.	1.7	29
1456	One-Pot Dual Catalysis of a Photoactive Coordination Polymer and Palladium Acetate for the Highly Efficient Cross-Coupling Reaction via Interfacial Electron Transfer. Inorganic Chemistry, 2022, 61, 2695-2705.	1.9	8

#	Article	IF	CITATIONS
1457	Nickelâ€Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angewandte Chemie, 0, , .	1.6	8
1458	Nickelâ€Mediated Enantioselective Photoredox Allylation of Aldehydes with Visible Light. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
1459	Visible-Light-Enabled Allylic C–H Oxidation: Metal-free Photocatalytic Generation of Enones. ACS Catalysis, 2022, 12, 1375-1381.	5.5	19
1460	Pyrylium salts acting as both energy transfer and electron transfer photocatalysts for <i>E</i> → <i>Z</i> isomerization of activated alkenes and cyclization of cinnamic or biaryl carboxylic acids. Organic Chemistry Frontiers, 2022, 9, 973-978.	2.3	7
1461	Direct decarboxylative Giese reactions. Chemical Society Reviews, 2022, 51, 1415-1453.	18.7	87
1462	Suzuki-type cross-coupling of alkyl trifluoroborates with acid fluoride enabled by NHC/photoredox dual catalysis. Chemical Science, 2022, 13, 2584-2590.	3.7	42
1463	Singleâ€Operation Decarboxylative Mannich Reaction/Asymmetric Transfer Hydrogenation Cascade Process Directly Accesses 1,3â€Distereocentered βâ€Sulfonamido Alcohols. Advanced Synthesis and Catalysis, 2022, 364, 994-1001.	2.1	3
1464	Two-Carbon Ring Expansion of Cyclobutanols to Cyclohexenones Enabled by Indole Radical Cation Intermediate: Development and Application to a Total Synthesis of Uleine. ACS Catalysis, 2022, 12, 1209-1215.	5.5	15
1465	Springboard Role for Iridium Photocatalyst: Theoretical Insight of C(sp ³)â^'N Crossâ€Coupling by Photoredoxâ€Mediated Iridium/Copper Dual Catalysis versus Singleâ€Copper Catalysis. ChemCatChem, 2022, 14, .	1.8	7
1466	Hexafluoroisopropanolâ€Promoted or BrĄ̃nsted Acidâ€Mediated Photochemical [2+2] Cycloadditions of Alkynes with Maleimides. ChemSusChem, 2022, 15, .	3.6	18
1467	Development of a high intensity parallel photoreactor for high throughput screening. Reaction Chemistry and Engineering, 2022, 7, 354-360.	1.9	18
1468	Synthesis of β-nitro ketones from geminal bromonitroalkanes and silyl enol ethers by visible light photoredox catalysis. Chemical Communications, 2022, 58, 1780-1783.	2.2	15
1469	A nickel/organoboron catalyzed metallaphotoredox platform for C(sp ²)–P and C(sp ²)–S bond construction. Organic Chemistry Frontiers, 2022, 9, 1070-1076.	2.3	11
1470	A Photocatalytic System Composed of Benzimidazolium Aryloxide and Tetramethylpiperidine 1-Oxyl to Promote Desulfonylative α-Oxyamination Reactions of α-Sulfonylketones. ACS Omega, 2022, 7, 4655-4666.	1.6	6
1471	The advent and development of organophotoredox catalysis. Chemical Communications, 2022, 58, 1263-1283.	2.2	78
1472	Visible-Light-Induced, Graphene Oxide-Promoted C3-Chalcogenylation of Indoles Strategy under Transition-Metal-Free Conditions. Molecules, 2022, 27, 772.	1.7	10
1473	Remote C(sp ³)â^'H Acylation of Amides and Cascade Cyclization via Nâ€Heterocyclic Carbene Organocatalysis. Angewandte Chemie, 2022, 134, .	1.6	5
1474	Irradiation with UV Light Accelerates the Migita–Kosugi–Stille Coupling Reaction in Air. Chemistry Letters, 2022, 51, 124-126.	0.7	1

#	Article	IF	CITATIONS
1475	Recent Advances in Photobiocatalysis for Selective Organic Synthesis. Organic Process Research and Development, 2022, 26, 1900-1913.	1.3	25
1476	Recent advances in glycosylation involving novel anomeric radical precursors. Journal of Carbohydrate Chemistry, 2021, 40, 361-400.	0.4	22
1477	Recent advances of visible-light photocatalysis in the functionalization of organic compounds. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 50, 100488.	5.6	64
1478	Remote C(sp ³)â^'H Acylation of Amides and Cascade Cyclization via Nâ€Heterocyclic Carbene Organocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	45
1479	Recent advances in radical-mediated transformations of 1,3-dienes. Chinese Journal of Catalysis, 2022, 43, 548-557.	6.9	45
1480	Photocatalytic redox-neutral reaction of γ-indolyl α-keto esters. Organic Chemistry Frontiers, 2022, 9, 1875-1883.	2.3	2
1481	Unimolecular cooperative metallaphotocatalysis with conjugately bridged Ir–Ni complexes and its applications in organic coupling reactions. Organic Chemistry Frontiers, 2022, 9, 1797-1807.	2.3	7
1482	Development of anthrazoline photocatalysts for promoting amination and amidation reactions. Chemical Communications, 2022, 58, 3529-3532.	2.2	7
1483	Thermoneutral synthesis of spiro-1,4-cyclohexadienes by visible-light-driven dearomatization of benzylmalonates. Green Chemistry, 2022, 24, 2772-2776.	4.6	8
1484	Photoredox/Nickel Dual Catalysis Enables the Synthesis of Alkyl Cyclopropanes via C(sp ³)–C(sp ³) Cross Electrophile Coupling of Unactivated Alkyl Electrophiles. Organic Letters, 2022, 24, 1298-1302.	2.4	9
1485	Photoredox-Catalyzed Oxidation of Anions for the Atom-Economical Hydro-, Amido-, and Dialkylation of Alkenes. Journal of Organic Chemistry, 2022, 87, 3498-3510.	1.7	3
1486	A Unified Mechanism for the PhCOCOOHâ€mediated Photochemical Reactions: Revisiting its Action and Comparison to Known Photoinitiators. Chemistry - A European Journal, 2022, 28, .	1.7	11
1487	Visible-light photocatalysis promoted by solid- and liquid-phase immobilized transition metal complexes in organic synthesis. Coordination Chemistry Reviews, 2022, 458, 214331.	9.5	22
1488	Combined Photoredox and Carbene Catalysis for the Synthesis of α-Amino Ketones from Carboxylic Acids. ACS Catalysis, 2022, 12, 2522-2531.	5.5	38
1489	Stereoselective, Ruthenium-Photocatalyzed Synthesis of 1,2-Diaminotruxinic Bis-amino Acids from 4-Arylidene-5(4H)-oxazolones. Journal of Organic Chemistry, 2022, , .	1.7	6
1490	Organoboronic Acids: A Chance for Improving Photochemistry. Current Organic Chemistry, 2022, 26, 348-355.	0.9	1
1491	Alkynyl Sulfonium Salts Can Be Employed as Chalcogenâ€Bonding Catalysts and Generate Alkynyl Radicals under Blueâ€Light Irradiation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	36
1492	Alkynyl Sulfonium Salts Can Be Employed as Chalcogenâ€Bonding Catalysts and Generate Alkynyl Radicals under Blueâ€Light Irradiation. Angewandte Chemie, 2022, 134, .	1.6	8

#	Article	IF	CITATIONS
1493	Applications of Halogen-Atom Transfer (XAT) for the Generation of Carbon Radicals in Synthetic Photochemistry and Photocatalysis. Chemical Reviews, 2022, 122, 2292-2352.	23.0	206
1494	Application of bioorganometallic B12 in green organic synthesis. Vitamins and Hormones, 2022, 119, 23-42.	0.7	1
1495	Visible-light-mediated intramolecular radical cyclization of α-brominated amide-tethered alkylidenecyclopropanes. Chemical Communications, 2022, 58, 3653-3656.	2.2	10
1496	Visible-light induced dearomatization reactions. Chemical Society Reviews, 2022, 51, 2145-2170.	18.7	122
1497	Phosphorescent Ir(<scp>iii</scp>) complexes derived from purine nucleobases. Dalton Transactions, 2022, 51, 5138-5150.	1.6	7
1498	Photoinduced ligand to metal charge transfer enabling cerium mediated decarboxylative alkylation of quinoxalin-2(1 <i>H</i>)-ones. Chemical Communications, 2022, 58, 3831-3834.	2.2	18
1499	Organophotoredox catalytic four-component radical-polar crossover cascade reactions for the stereoselective synthesis of Î ² -amido sulfones. Green Chemistry, 2022, 24, 3120-3124.	4.6	16
1500	Phase-transfer catalyzed Michael/ammonolysis cascade reactions of enaminones and olefinic azlactones: a new approach to structurally diverse quinoline-2,5-diones. Organic and Biomolecular Chemistry, 2022, 20, 3201-3210.	1.5	5
1501	Visible light-promoted photocatalyst-free activation of persulfates: a promising strategy for C–H functionalization reactions. Organic and Biomolecular Chemistry, 2022, 20, 3249-3262.	1.5	19
1502	Solvent- and additive-free oxidative amidation of aldehydes using a recyclable oxoammonium salt. Organic and Biomolecular Chemistry, 2022, 20, 2249-2254.	1.5	11
1503	Deoxygenative C–S Bond Coupling with Sulfinates via Nickel/Photoredox Dual Catalysis. Organic Letters, 2022, 24, 1865-1870.	2.4	20
1504	Visible-light-induced, autopromoted nickel-catalyzed three-component arylsulfonation of 1,3-enynes and mechanistic insights. Science China Chemistry, 2022, 65, 753-761.	4.2	15
1505	Recent Advances in Photoinduced Perfluoroalkylation Using Perfluoroalkyl Halides as the Radical Precursors. Synthesis, 2022, 54, 1919-1938.	1.2	29
1506	Photo-induced catalytic Câ^'H heteroarylation of group 8 metallocenes. Cell Reports Physical Science, 2022, 3, 100768.	2.8	2
1507	Aerobic Photocatalysis: Oxidation of Sulfides to Sulfoxides. ChemPlusChem, 2022, 87, e202200008.	1.3	34
1508	åīè§å‰æ°§åŒ–èz˜åŽŸå,¬åŒ–å^¶å‡β-çj埲é®. Chinese Science Bulletin, 2022, , .	0.4	4
1509	Organometallic catalysis under visible light activation: benefits and preliminary rationales. Photochemical and Photobiological Sciences, 2022, , 1.	1.6	7
1510	Visible light-driven efficient palladium catalyst turnover in oxidative transformations within confined frameworks. Nature Communications, 2022, 13, 928.	5.8	23

#	Article	IF	CITATIONS
1511	Cooperative Stereoinduction in Asymmetric Photocatalysis. Journal of the American Chemical Society, 2022, 144, 4206-4213.	6.6	24
1512	Co–Mabiq Flies Solo: Light-Driven Markovnikov-Selective C- and N-Alkylation of Indoles and Indazoles without a Cocatalyst. Journal of the American Chemical Society, 2022, 144, 2994-3004.	6.6	15
1513	Investigation of the C–N Bond-Forming Step in a Photoinduced, Copper-Catalyzed Enantioconvergent N–Alkylation: Characterization and Application of a Stabilized Organic Radical as a Mechanistic Probe. Journal of the American Chemical Society, 2022, 144, 4114-4123.	6.6	27
1514	Regioâ€; Diastereoâ€; and Enantioselective Decarboxylative Hydroâ€aminoalkylation of Dienol Ethers Enabled by Dual Palladium/Phoâ€toredox Catalysis. Angewandte Chemie, 0, , .	1.6	1
1515	Aroyl Fluorides as Bifunctional Reagents for Dearomatizing Fluoroaroylation of Benzofurans. Journal of the American Chemical Society, 2022, 144, 7072-7079.	6.6	78
1516	The Conceptual Development of a Conjunctive Olefination. Synlett, 0, 33, .	1.0	1
1517	Energy Transfer Photocatalytic Radical Rearrangement in <i>N</i> -Indolyl Carbonates. Organic Letters, 2022, 24, 1774-1779.	2.4	12
1518	Visible-Light-Mediated Synthesis of Thio-Functionalized Pyrroles. Organic Letters, 2022, 24, 1918-1923.	2.4	29
1519	Iron-Catalyzed Photoredox Functionalization of Methane and Heavier Gaseous Alkanes: Scope, Kinetics, and Computational Studies. Organic Letters, 2022, 24, 1901-1906.	2.4	34
1520	Electrocatalytic Isomerization of Allylic Alcohols: Straightforward Preparation of β-Aryl-Ketones. Catalysts, 2022, 12, 333.	1.6	0
1521	Photoinduced Merging with Copperâ€or <scp>Nickelâ€Catalyzed</scp> 1, <scp>4â€Cyanoalkylarylation</scp> of 1, <scp>3â€Enynes</scp> to Access Multiple Functionalizatized Allenes in Batch and Continuous Flow. Chinese Journal of Chemistry, 2022, 40, 1537-1545.	2.6	17
1522	Nontraditional Fragment Couplings of Alcohols and Carboxylic Acids: C(<i>sp</i> ³)–C(<i>sp</i> ³) Cross-Coupling via Radical Sorting. Journal of the American Chemical Society, 2022, 144, 6185-6192.	6.6	80
1523	Nitrogen-Centered Radicals in Functionalization of sp ² Systems: Generation, Reactivity, and Applications in Synthesis. Chemical Reviews, 2022, 122, 8181-8260.	23.0	133
1524	Synthesis of Trifluoromethylated 4 <i>H</i> â€lâ€Benzopyran Derivatives via Photocatalytic Trifluoromethylation/Oxidation/Conjugate Addition, and Cyclization Sequences of Vinyl Phenols. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	6
1525	Photoredox catalysis powered by triplet fusion upconversion: arylation of heteroarenes. Photochemical and Photobiological Sciences, 2022, , 1.	1.6	6
1526	Radical Aza-Heck Cyclization of Imidates via Energy Transfer, Electron Transfer, and Cobalt Catalysis. ACS Catalysis, 2022, 12, 4327-4332.	5.5	15
1527	Regioâ€, Diastereoâ€, and Enantioselective Decarboxylative Hydroaminoalkylation of Dienol Ethers Enabled by Dual Palladium/Photoredox Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
1528	Mesoporous Graphitic Carbon Nitride as a Heterogeneous Organic Photocatalyst in the Dual Catalytic Arylation of Alkyl Bis(catecholato)silicates. Organic Letters, 2022, 24, 2483-2487.	2.4	11

#	Article	IF	CITATIONS
1529	Photoredox-Catalyzed Site-Selective Generation of Carbanions from C(sp ³)–H Bonds in Amines. ACS Catalysis, 2022, 12, 3974-3984.	5.5	20
1530	Using Restricted Bond Rotations to Enforce Excited-State Behavior of Organic Molecules. Synlett, 2022, 33, 1123-1134.	1.0	4
1531	Remote Giese Radical Addition by Photocatalytic Ring Opening of Activated Cycloalkanols. Advanced Synthesis and Catalysis, 2022, 364, 1689-1694.	2.1	6
1532	Near-infrared light photocatalysis enabled by a ruthenium complex-integrated metal–organic framework via two-photon absorption. IScience, 2022, 25, 104064.	1.9	7
1533	Advances in the photoredox catalysis of S(VI) compounds. Tetrahedron, 2022, 111, 132711.	1.0	10
1534	Metalâ€Free Photochemical Olefin Isomerization of Unsaturated Ketones via 1,5â€Hydrogen Atom Transfer. Chemistry - A European Journal, 2022, 28, .	1.7	2
1535	A Oneâ€Pot Approach for Bioâ€Based Arylamines via a Combined Photooxidative Dearomatizationâ€Rearomatization Strategy. Chemistry - A European Journal, 2022, 28, .	1.7	5
1536	Chalcogenative spirocyclization of <i>N</i> -aryl propiolamides with diselenides/disulfides promoted by Selectfluor. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2022, 77, 75-85.	0.3	3
1537	N-Heterocyclic Carbene-Photocatalyzed Tricomponent Regioselective 1,2-Diacylation of Alkenes Illuminates the Mechanistic Details of the Electron Donor–Acceptor Complex-Mediated Radical Relay Processes . ACS Catalysis, 2022, 12, 285-294.	5.5	41
1538	Synthesis of Acrylonitrile Derivatives via Visible Lightâ€induced Coupling Reaction of Moritaâ€Baylisâ€Hillman Adducts with Tertiary Amines and αâ€Trimethylsilyl Amines. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	1
1539	Self-Optimization of Continuous Flow Electrochemical Synthesis Using Fourier Transform Infrared Spectroscopy and Gas Chromatography. Applied Spectroscopy, 2022, 76, 38-50.	1.2	9
1540	Semiâ€Crystalline Poly(thioether) Prepared by Visible‣ightâ€Induced Organocatalyzed Thiolâ€ene Polymerization in Emulsion. Macromolecular Rapid Communications, 2022, 43, e2100740.	2.0	5
1541	DNA-Scaffolded Synergistic Catalysis. Journal of the American Chemical Society, 2021, 143, 21402-21409.	6.6	12
1542	Insights into the Mechanism of an Allylic Arylation Reaction via Photoredox-Coupled Hydrogen Atom Transfer. Journal of Organic Chemistry, 2022, 87, 223-230.	1.7	9
1543	Photocatalytic C(sp ³) radical generation <i>via</i> C–H, C–C, and C–X bond cleavage. Chemical Science, 2022, 13, 5465-5504.	3.7	45
1544	Selectfluor-mediated construction of 3-arylselenenyl and 3,4-bisarylselenenyl spiro[4.5]trienones <i>via</i> cascade annulation of <i>N</i> -phenylpropiolamides with diselenides. New Journal of Chemistry, 2022, 46, 9451-9460.	1.4	9
1545	Metal-free photocleavage of the C(non-acyl)–S bond of thioesters for regioselective pyridylthioesterification of styrenes. Organic Chemistry Frontiers, 2022, 9, 2977-2985.	2.3	4
1546	Recent progress in rare-earth metal-catalyzed sp ² and sp ³ C–H functionalization to construct C–C and C–heteroelement bonds. Organic Chemistry Frontiers, 2022, 9, 3102-3141.	2.3	20

#	Article	IF	CITATIONS
1547	Visible light-driven carbamoyloxylation of the α-C(sp ³)–H bond of arylacetones <i>via</i> radical-initiated hydrogen atom transfer. Chemical Communications, 2022, 58, 5845-5848.	2.2	3
1548	Photochemical Nozaki–Hiyama–Kishi Coupling Enabled by Excited Hantzsch Ester. Organic Letters, 2022, , .	2.4	7
1549	Visible Light Driven CO ₂ Insertion from Phenylacetylene to Phenylpropiolic Acid Using Soft-Oxometalates. Journal of Molecular and Engineering Materials, 0, , .	0.9	0
1550	Optimizing the Local Chemical Environment on a Bifunctional Helical Peptide Scaffold Enables Enhanced Enantioselectivity and Cooperative Catalysis. Organic Letters, 2022, 24, 2983-2988.	2.4	2
1551	Total Synthesis of (+) ochlearolâ€B by an Approach Based on a Catellani Reaction and Visibleâ€Lightâ€Enabled [2+2] Cycloaddition**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
1552	Total Synthesis of (+)â€Cochlearolâ€B by an Approach Based on a Catellani Reaction and Visibleâ€Lightâ€Enabled [2+2] Cycloaddition**. Angewandte Chemie, 2022, 134, .	1.6	4
1553	Flowerâ€Like Au@CeO ₂ Coreâ€Shell Nanospheres as Efficient Photocatalyst for Multicomponent Reaction of Alcohols and Amidines. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	2
1555	Mediated Electron Transfer in Electrosynthesis: Concepts, Applications, and Recent Influences from Photoredox Catalysis. RSC Green Chemistry, 2022, , 119-153.	0.0	1
1556	Visible light-driven [3 + 3] annulation reaction of 2 <i>H</i> -azirines with Huisgen zwitterions and synthesis of 1,2,4-triazines. Organic Chemistry Frontiers, 2022, 9, 3342-3347.	2.3	11
1557	Photochemical aerobic oxidation of sulfides to sulfoxides: the crucial role of wavelength irradiation. Green Chemistry, 2022, 24, 4108-4118.	4.6	32
1558	Visible-light-mediated defluorinative cyclization of α-fluoro-β-enamino esters catalyzed by 4-CzIPN. Organic Chemistry Frontiers, 2022, 9, 3499-3505.	2.3	4
1559	A critical review on emerging photocatalysts for syngas generation <i>via</i> CO ₂ reduction under aqueous media: a sustainable paradigm. Materials Advances, 2022, 3, 5274-5298.	2.6	9
1560	Bioinspired Catalyst Learned from B12-dependent Enzymes. RSC Green Chemistry, 2022, , 207-226.	0.0	0
1561	Diastereoselective and enantioselective photoredox pinacol coupling promoted by titanium complexes with a red-absorbing organic dye. Chemical Science, 2022, 13, 5973-5981.	3.7	26
1562	Synergistic Approach for Decarboxylative <i>Ortho</i> Câ^'H Aroylation of 2â€Arylâ€pyrido[1,2â€a]pyrimidinâ€4â€ones and Thiazolopyrimidinones by Merging Palladium Catalysis with Photocatalysis. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	2
1563	Reductive quenching-initiated catalyst-controlled divergent alkylation of α-CF3-olefins. Chem Catalysis, 2022, 2, 1380-1393.	2.9	37
1564	Advanced Synthesis Using Photocatalysis Involved Dual Catalytic System. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
1565	Synthesis of Homoallylic Amines by Radical Allylation of Imines with Butadiene under Photoredox Catalysis. Angewandte Chemie, 0, , .	1.6	2

#	Article	IF	Citations
1566	Dual Photoredox and Cobalt Catalysis Enabled Transformations. European Journal of Organic Chemistry, 2022, 2022, .	1.2	26
1567	Decarboxylative tandem C-N coupling with nitroarenes via SH2 mechanism. Nature Communications, 2022, 13, 2432.	5.8	32
1568	Metal/Metal Dual Catalysis in Câ^'H Activation. European Journal of Organic Chemistry, 2022, 2022, .	1.2	9
1569	Photoâ€Induced Rutheniumâ€Catalyzed Double Remote C(sp2)â^'H/ C(sp3)â^'H Functionalizations by Radical Relay. Angewandte Chemie, 0, , .	1.6	2
1570	<scp>Visibleâ€Light Photoredoxâ€Catalyzed</scp> Hydrodecarboxylation and Deuterodecarboxylation of Fatty Acids. Chinese Journal of Chemistry, 2022, 40, 1903-1908.	2.6	12
1571	Photoâ€Induced Ruthenium atalyzed Double Remote C(sp ²)â^'H / C(sp ³)â^'H Functionalizations by Radical Relay. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
1572	Synthesis of Homoallylic Amines by Radical Allylation of Imines with Butadiene under Photoredox Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
1573	Evidence and Governing Factors of the Radical-Ion Photoredox Catalysis. ACS Catalysis, 2022, 12, 6047-6059.	5.5	27
1574	Visible Lightâ€Mediated Manipulation of 1, <i>n</i> â€Enynes in Organic Synthesis. ChemCatChem, 2022, 14, .	1.8	13
1575	Accelerated Direct Hydroxylation of Aryl Chlorides with Water to Phenols <i>via</i> the Proximity Effect in a Heterogeneous Metallaphotocatalyst. ACS Catalysis, 2022, 12, 6068-6080.	5.5	25
1576	Development of Visible Light-Driven Hybrid Catalysts Composed of Earth Abundant Metal Ion Modified TiO2 and B12 Complex. Bulletin of the Chemical Society of Japan, 2022, 95, 1016-1024.	2.0	4
1577	Direct Perfluoroalkylation of Câ^'H Bonds in (Hetero)arenes. Chemistry - A European Journal, 2022, 28, .	1.7	18
1578	Strategies for accessing photosensitizers with extreme redox potentials. Chemical Physics Reviews, 2022, 3, .	2.6	21
1579	Engineering of catalytically active sites in photoactive metal–organic frameworks. Coordination Chemistry Reviews, 2022, 465, 214561.	9.5	22
1580	Recent advances in metal–organic frameworks and their composites for the phototherapy of skin wounds. Journal of Materials Chemistry B, 2022, 10, 4695-4713.	2.9	10
1581	Borylated Cymantrenes and Tromancenium Salts with Unusual Reactivity. Organometallics, 2022, 41, 1464-1473.	1.1	2
1582	Radical C(sp3)–H functionalization and cross-coupling reactions. Nature Reviews Chemistry, 2022, 6, 405-427.	13.8	73
1583	Recent Progress in Fragmentation of Katritzky Salts Enabling Formation of C–C, C–B, and C–S Bonds. Topics in Current Chemistry, 2022, 380, 25.	3.0	24

#	Article	IF	CITATIONS
1584	Visible-light-driven regioselective carbocarboxylation of 1,3-dienes with organic halides and CO ₂ . Green Chemistry, 2022, 24, 6100-6107.	4.6	16
1585	ART─An Amino Radical Transfer Strategy for C(sp ²)–C(sp ³) Coupling Reactions, Enabled by Dual Photo/Nickel Catalysis. Journal of the American Chemical Society, 2022, 144, 9997-10005.	6.6	14
1586	Three-component carboacylation of alkenes <i>via</i> cooperative nickelaphotoredox catalysis. Chemical Science, 2022, 13, 7256-7263.	3.7	29
1587	Lightâ€Mediated Aminocatalysis: The Dualâ€Catalytic Ability Enabling New Enantioselective Route. European Journal of Organic Chemistry, 2022, 2022, .	1.2	6
1588	Solution-processable microporous polymer platform for heterogenization of diverse photoredox catalysts. Nature Communications, 2022, 13, .	5.8	11
1589	Recent Advances in Lightâ€Induced Carboxylation of Organic (Pseudo)Halides with CO ₂ . Asian Journal of Organic Chemistry, 2022, 11, .	1.3	3
1590	Chromophoreâ€inspired Design of Pyridiniumâ€based Metalâ€Organic Polymers for Dual Photoredox Catalysis. Angewandte Chemie, 0, , .	1.6	0
1591	Chromophoreâ€Inspired Design of Pyridiniumâ€Based Metal–Organic Polymers for Dual Photoredox Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
1592	Formal β â~'H Arylation of Aldehydes and Ketones by Cooperative Nickel and Photoredox Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
1593	Synthesis of selenated γâ€lactones via photoredoxâ€catalyzed selenylation and ring closure of alkenoic acids with diselenides. Bulletin of the Korean Chemical Society, 2022, 43, 941-945.	1.0	7
1594	Formal βâ€Câ€H Arylation of Aldehydes and Ketones by Cooperative Nickel and Photoredox Catalysis. Angewandte Chemie, 0, , .	1.6	0
1596	Visible Light-Induced Regio- and Enantiodifferentiating [2 + 2] Photocycloaddition of 1,4-Naphthoquinones Mediated by Oppositely Coordinating 1,3,2-Oxazaborolidine Chiral Lewis Acid. Journal of Organic Chemistry, 2022, 87, 8071-8083.	1.7	3
1597	Recent advances in visible-light-mediated functionalization of olefins and alkynes using copper catalysts. Chemical Communications, 2022, 58, 7850-7873.	2.2	14
1598	Oxidative Coupling of Aryl Boronic Acids with Aryl- and Alkylamines Via Cooperative Photoredox and Copper Catalysis. SSRN Electronic Journal, 0, , .	0.4	0
1600	Copper-photocatalyzed ATRA reactions: concepts, applications, and opportunities. Chemical Society Reviews, 2022, 51, 5287-5299.	18.7	55
1601	Catalytic defluorinative ketyl–olefin coupling by halogen-atom transfer. Chemical Science, 2022, 13, 7855-7862.	3.7	12
1602	Sustainable and Bench‣table Photoactive Aqueous Nanoaggregates of Cu(II) for ppm Level Cu(I) Catalysis in Water. Advanced Functional Materials, 2022, 32, .	7.8	6
1603	Photoexcited Chiral Copper Complex-Mediated Alkene <i>E</i> → <i>Z</i> Isomerization Enables Kinetic Resolution. Journal of the American Chemical Society, 2022, 144, 10958-10967.	6.6	23

#	Article	IF	CITATIONS
1604	Red Light-Based Dual Photoredox Strategy Resembling the Z-Scheme of Natural Photosynthesis. Jacs Au, 2022, 2, 1488-1503.	3.6	44
1605	Efficient synthesis of β-substituted amines via combining deoxygenation of amides with photochemical organocatalysis. Cell Reports Physical Science, 2022, 3, 100955.	2.8	10
1606	Alcohols as Alkylating Agents: Photoredoxâ€Catalyzed Conjugate Alkylation via In Situ Deoxygenation. Angewandte Chemie, 0, , .	1.6	4
1607	Radical Brook Rearrangements: Concept and Recent Developments. Angewandte Chemie, 2022, 134, .	1.6	1
1608	Radical Brook Rearrangements: Concept and Recent Developments. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
1609	Alcohols as Alkylating Agents: Photoredoxâ€Catalyzed Conjugate Alkylation via In Situ Deoxygenation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
1610	A novel type of radical-addition-induced β-fragmentation and ensuing remote functionalization. CheM, 2022, 8, 2245-2259.	5.8	14
1611	Visible-Light-Catalyzed Radical–Radical Cross-Coupling Reaction of Benzyl Trifluoroborates and Carbonyl Compounds to Sterically Hindered Alcohols. Organic Letters, 2022, 24, 4258-4263.	2.4	13
1612	Merging Halogen-Atom transfer with transition metal catalysis. Tetrahedron Letters, 2022, 102, 153945.	0.7	12
1613	Catalytic diastereoselective construction of multiple contiguous quaternary carbon stereocenters via [2†+†2] cycloaddition and mechanistic insight. Chinese Chemical Letters, 2023, 34, 107624.	4.8	6
1614	Redox-neutral access to 3,3′-disubstituted oxindoles <i>via</i> radical coupling reactions. Organic Chemistry Frontiers, 2022, 9, 4164-4170.	2.3	3
1615	A sustainable photochemical aerobic sulfide oxidation: access to sulforaphane and modafinil. Organic and Biomolecular Chemistry, 2022, 20, 5836-5844.	1.5	12
1616	[4+2]-Cycloadditions (Inverse-Electron-Demand Hetero-Diels–Alder Reaction). , 2022, , .		0
1617	Urushiol derivatives as biomass-based photocatalysts for the transition-metal-free synthesis of 1,2-amino alcohols. Green Chemistry, 2022, 24, 5764-5769.	4.6	11
1618	Radical umpolung chemistry enabled by dual catalysis: concept and recent advances. Catalysis Science and Technology, 2022, 12, 5241-5251.	2.1	2
1619	Redox-neutral ketyl radical coupling/cyclization of carbonyls with <i>N</i> -aryl acrylamides through consecutive photoinduced electron transfer. Green Chemistry, 2022, 24, 7403-7409.	4.6	38
1620	Visible Light-Induced Metal-Free Benzylation of Quinones via Cross Dehydrogenation Coupling Reaction. Chinese Journal of Organic Chemistry, 2022, 42, 1443.	0.6	3
1621	Two-in-one metallaphotoredox cross-couplings enabled by a photoactive ligand. CheM, 2022, 8, 2419-2431.	5.8	17

#	Article	IF	CITATIONS
1622	Visible Lightâ€ i nduced Decarboxylative Alkylations Enabled by Electron Donorâ€Acceptor Complex. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	7
1623	Visible Light Promoted Metalâ€Free Sustainable Reduction of αâ€Alkylidene Oxindoles/Succinimides. Asian Journal of Organic Chemistry, 0, , .	1.3	4
1624	Recent Applications on Dual-Catalysis for C–C and C–X Cross-Coupling Reactions. SynOpen, 2022, 06, 179-194.	0.8	4
1625	Mechanochemical Divergent Syntheses of Oxindoles and αâ€Arylacylamides via Controllable Construction of Câ^'C and Câ^'N Bonds by Copper and Piezoelectric Materials. Angewandte Chemie, 0, , .	1.6	2
1626	Mechanochemical Divergent Syntheses of Oxindoles and αâ€Arylacylamides via Controllable Construction of Câ^'C and Câ^'N Bonds by Copper and Piezoelectric Materials. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
1627	Cooperative triple catalysis enables regioirregular formal Mizoroki–Heck reactions. , 2022, 1, 565-575.		19
1628	Palladiumâ€Catalyzed Dual Catalytic Synthesis of Heterocycles. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
1629	The Nickel Age in Synthetic Dual Photocatalysis: A Bright Trip Toward Materials Science. ChemSusChem, 2022, 15, .	3.6	19
1630	Tricomponent Decarboxysulfonylative Cross-coupling Facilitates Direct Construction of Aryl Sulfones and Reveals a Mechanistic Dualism in the Acridine/Copper Photocatalytic System. ACS Catalysis, 2022, 12, 8729-8739.	5.5	16
1631	Evolution of BODIPY/aza-BODIPY dyes for organic photoredox/energy transfer catalysis. Coordination Chemistry Reviews, 2022, 470, 214698.	9.5	35
1632	Visible-Light-Promoted Fe(III)-Catalyzed N–H Alkylation of Amides and <i>N</i> -Heterocycles. Journal of Organic Chemistry, 2022, 87, 9797-9805.	1.7	9
1633	Oxidative lactonization of C(sp3)-H bond in methyl aromatic alcohols enabled by proton-coupled electron transfer. Science China Chemistry, 2022, 65, 1526-1531.	4.2	6
1634	Deoxygenative alkylation of tertiary amides using alkyl iodides under visible light. Science China Chemistry, 2022, 65, 2231-2237.	4.2	10
1635	Radical Termination via β-Scission Enables Photoenzymatic Allylic Alkylation Using "Ene―Reductases. ACS Catalysis, 2022, 12, 9801-9805.	5.5	15
1636	Light-promoted oxidation of aldehydes to carboxylic acids under aerobic and photocatalyst-free conditions. Green Chemistry, 2022, 24, 6224-6231.	4.6	25
1637	Electro-/photocatalytic alkene-derived radical cation chemistry: recent advances in synthetic applications. Chemical Society Reviews, 2022, 51, 7206-7237.	18.7	78
1638	Synthesis of Cageâ€Shaped Borates Bearing Pyrenylmethyl Groups: Efficient Lewis Acid Catalyst for Photoactivated Glycosylations Driven by Intramolecular Excimer Formation. Chemistry - A European Journal, 2022, 28, .	1.7	1
1639	Synthesis of β-Thiolated-α-arylated Ketones Enabled by Photoredox and <i>N</i> -Heterocyclic Carbene-Catalyzed Radical Relay of Alkenes with Disulfides and Aldehydes. Organic Letters, 2022, 24, 5519-5524.	2.4	23

#	Article	IF	CITATIONS
1640	Desulfonylative Coupling of Alkylsulfones with <i>gem-</i> Difluoroalkenes by Visible-Light Photoredox Catalysis. ACS Catalysis, 2022, 12, 9526-9532.	5.5	13
1641	Thermally Activated Delayed Fluorescence Sensitizers As Organic and Green Alternatives in Energy-Transfer Photocatalysis. ACS Sustainable Chemistry and Engineering, 2022, 10, 9665-9678.	3.2	16
1642	Assembly of versatile fluorine-containing structures via N-heterocyclic carbene organocatalysis. Science China Chemistry, 2022, 65, 1691-1703.	4.2	17
1643	Kinetics of a Ni/Ir-Photocatalyzed Coupling of ArBr with RBr: Intermediacy of ArNi ^{II} (L)Br and Rate/Selectivity Factors. Journal of the American Chemical Society, 2022, 144, 15372-15382.	6.6	15
1644	Heterobimetallic Gold/Ruthenium Complexes Synthesized via Postâ€functionalization and Applied in Dual Photoredox Gold Catalysis. Chemistry - A European Journal, 2022, 28, .	1.7	4
1645	Synthesis and applications of thiosulfonates and selenosulfonates as free-radical reagents. Chinese Chemical Letters, 2023, 34, 107736.	4.8	33
1646	Terpyridine Diphosphine Ruthenium Complexes as Efficient Photocatalysts for the Transfer Hydrogenation of Carbonyl Compounds. Chemistry - A European Journal, 2022, 28, .	1.7	6
1647	Photochemical single-step synthesis of β-amino acid derivatives from alkenes and (hetero)arenes. Nature Chemistry, 2022, 14, 1174-1184.	6.6	65
1648	Modular Synthesis of Multifunctionalized CF ₃ -Allenes through Selective Activation of Saturated Hydrocarbons. ACS Catalysis, 2022, 12, 10207-10221.	5.5	23
1649	Photoredox Catalytic Phosphine-Mediated Deoxygenation of Hydroxylamines Enables the Construction of <i>N</i> -Acyliminophosphoranes. Organic Letters, 2022, 24, 6247-6251.	2.4	9
1650	Electrochemical Dearomative Spirocyclization of <i>N</i> -Acyl Thiophene-2-sulfonamides. Organic Letters, 2022, 24, 6321-6325.	2.4	11
1651	Dicarbofunctionalizations of an Unactivated Alkene via Photoredox/Nickel Dual Catalysis. Organic Letters, 2022, 24, 6261-6265.	2.4	8
1652	Valence-Inverted States of Nickel(II) Complexes Perform Facile C–H Bond Activation. Journal of the American Chemical Society, 2022, 144, 14607-14613.	6.6	12
1653	Discovery of a Covalent Triazine Framework Photocatalyst for Visible-Light-Driven Chemical Synthesis using High-Throughput Screening. ACS Catalysis, 2022, 12, 10057-10064.	5.5	11
1654	Mechanism of a Luminescent Dicopper System That Facilitates Electrophotochemical Coupling of Benzyl Chlorides via a Strongly Reducing Excited State. ACS Catalysis, 2022, 12, 10781-10786.	5.5	9
1655	Silverâ€Free Câ^'H Activation: Strategic Approaches towards Realizing the Full Potential of Câ^'H Activation in Sustainable Organic Synthesis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
1656	Graphene/inorganic nanocomposites: Evolving photocatalysts for solar energy conversion for environmental remediation. Journal of Saudi Chemical Society, 2022, 26, 101544.	2.4	27
1657	Use of Carbon Nitrides as Photoactive Supports in Singleâ€Atom Heterogeneous Catalysis for Synthetic Purposes. European Journal of Organic Chemistry, 2022, 2022, .	1.2	11

#	Article	IF	CITATIONS
1658	Umpolung Reactivity of Imine Ester: Visible‣ight Mediated Transfer Hydrogenation of αâ€Aryl Imino Esters by Phenylsilane and Water. Chemistry - A European Journal, 2022, 28, .	1.7	4
1659	Photocatalytic Desulfonylative Homocoupling of Benzylic Sulfone Derivatives. Synlett, 0, , .	1.0	1
1660	Visible-light enabled synthesis of cyclopropane-fused indolines <i>via</i> dearomatization of indoles. Organic Chemistry Frontiers, 2022, 9, 5463-5468.	2.3	5
1661	Visible-light-induced transition-metal-free defluorosilylation of α-trifluoromethylalkenes <i>via</i> hydrogen atom transfer of silanes. Organic Chemistry Frontiers, 2022, 9, 4949-4954.	2.3	10
1662	Advancements in DEL-Compatible Chemical Reactions. Topics in Medicinal Chemistry, 2022, , 65-121.	0.4	3
1663	Taming photocatalysis in flow: easy and speedy preparation of α-aminoamide derivatives. Green Chemistry, 2022, 24, 6613-6618.	4.6	7
1664	Research Progress on Light-Promoted Transition Metal-Catalyzed C-Heteroatom Bond Coupling Reactions. Chinese Journal of Organic Chemistry, 2022, 42, 2275.	0.6	3
1665	Photoredox-catalyzed intermolecular dearomative trifluoromethylcarboxylation of indoles and heteroanalogues with CO ₂ and fluorinated radical precursors. Green Chemistry, 2022, 24, 7894-7899.	4.6	8
1666	Mechanistic dichotomy in the solvent dependent access to <i>E vs. Z</i> -allylic amines <i>via</i> decarboxylative vinylation of amino acids. Chemical Science, 2022, 13, 9678-9684.	3.7	12
1667	Development of heterogeneous photocatalysts <i>via</i> the covalent grafting of metal complexes on various solid supports. Chemical Communications, 2022, 58, 11354-11377.	2.2	12
1668	Investigations into mechanism and origin of regioselectivity in the metallaphotoredox-catalyzed α-arylation of <i>N</i> -alkylbenzamides. Chemical Science, 2022, 13, 10566-10573.	3.7	8
1669	Functional CO2 based heterocycles as precursors in organic synthesis. Advances in Catalysis, 2022, , 1-28.	0.1	1
1670	Heterogeneous metallaphotoredox catalysis in a continuous-flow packed-bed reactor. Beilstein Journal of Organic Chemistry, 0, 18, 1123-1130.	1.3	4
1671	Emerging Activation Modes and Techniques in Visible-Light-Photocatalyzed Organic Synthesis. Synthesis, 2023, 55, 193-231.	1.2	14
1673	Chromium/Photoredox Dualâ€Catalyzed Synthesis of αâ€Benzylic Alcohols, Isochromanones, 1,2â€Oxy Alcohols and 1,2â€Thio Alcohols. Angewandte Chemie - International Edition, 0, , .	7.2	6
1674	Stereoretentive cross-coupling of chiral amino acid chlorides and hydrocarbons through mechanistically controlled Ni/Ir photoredox catalysis. Nature Communications, 2022, 13, .	5.8	10
1675	Selective Reductive Coupling of Vinyl Azaarenes and Alkynes via Photoredox Cobalt Dual Catalysis. Angewandte Chemie, 2023, 135, .	1.6	1
1676	Sustainable Wackerâ€Type Oxidations. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11

#	Article	IF	CITATIONS
1677	Perspective: Mechanistic investigations of photocatalytic processes with time-resolved optical spectroscopy. Journal of Chemical Physics, 2022, 157, .	1.2	4
1678	Chrom/Photoredoxâ€dualkatalysierte Synthese von <i>α</i> â€benzylischen Alkoholen, Isochromanonen, 1,2â€Oxyalkoholen und 1,2â€Thioalkoholen. Angewandte Chemie, 2022, 134, .	1.6	0
1679	Photo-Initiated Nickel Catalysis (PiNiC): Unmasking Dimethylnickel with Light. ACS Catalysis, 2022, 12, 12511-12520.	5.5	4
1680	Enantioselective [2+2]-cycloadditions with triplet photoenzymes. Nature, 2022, 611, 715-720.	13.7	54
1681	Selective Reductive Coupling of Vinyl Azaarenes and Alkynes via Photoredox Cobalt Dual Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
1682	Sustainable Wackerâ€Type Oxidations. Angewandte Chemie, 2022, 134, .	1.6	0
1683	Photocatalytic Decarboxylative Coupling of Arylacetic Acids with Aromatic Aldehydes. Journal of Organic Chemistry, 2023, 88, 6322-6332.	1.7	4
1684	Silberfreie Câ^'Hâ€Aktivierung: Strategische AnsÃæe zur Erschließung des vollen Potenzials von Câ^'Hâ€Aktivierungen in der nachhaltigen organischen Synthese. Angewandte Chemie, 2022, 134, .	1.6	2
1685	Probing Electron Transfer Events in Radical Cation Cycloadditions: Intramolecular vs. Intermolecular. European Journal of Organic Chemistry, 0, , .	1.2	1
1686	CuX Dual Catalysis: Construction of Oxazolo[2,3- <i>b</i>][1,3]oxazines via a Tandem CuAAC/Ring Cleavage/[4+2+3] Annulation Reaction. Organic Letters, 2022, 24, 7300-7304.	2.4	7
1687	Dual Rh(II)/Pd(0) Relay Catalysis Involving Sigmatropic Rearrangement Using <i>N</i> -Sulfonyl Triazoles and 2-Hydroxymethylallyl Carbonates. Organic Letters, 2022, 24, 6951-6956.	2.4	4
1689	Silyl-mediated photoredox-catalyzed radical–radical cross-coupling reaction of alkyl bromides and ketoesters. Organic Chemistry Frontiers, 2022, 9, 6611-6616.	2.3	2
1690	C(sp ³)–C(sp ³) coupling of non-activated alkyl-iodides with electron-deficient alkenes <i>via</i> visible-light/silane-mediated alkyl-radical formation. Chemical Science, 2022, 13, 13241-13247.	3.7	15
1691	Chlorophyll: the ubiquitous photocatalyst of nature and its potential as an organo-photocatalyst in organic syntheses. Organic and Biomolecular Chemistry, 2022, 20, 8584-8598.	1.5	8
1692	Alkylboronic acids as alkylating agents: photoredox-catalyzed alkylation reactions assisted by K ₃ PO ₄ . Chemical Science, 2022, 13, 13466-13474.	3.7	11
1693	近红å¤åધå‰é"¬(III)éå•̂物的å^†å设计与性能. Scientia Sinica Chimica, 2022, , .	0.2	0
1694	Ion-Pairing Catalysis in Stereoselective, Light-Induced Transformations. Journal of the American Chemical Society, 2022, 144, 19207-19218.	6.6	19
1695	Asymmetric Photochemical [2 + 2]-Cycloaddition of Acyclic Vinylpyridines through Ternary Complex Formation and an Uncontrolled Sensitization Mechanism. Journal of the American Chemical Society, 2022, 144, 20109-20117.	6.6	8

#	Article	IF	CITATIONS
1696	Photoredox C _{sp} ³ â^'C _{sp} ² Reductive Cross ouplings of Cereblon Ligands for PROTAC Linker Exploration in Batch and Flow. ChemCatChem, 2022, 14, .	1.8	9
1697	Photochemical Radical Cation Cycloadditions of Aryl Vinyl Ethers. European Journal of Organic Chemistry, 2022, 2022, .	1.2	4
1698	Enantioselective Hydroalkylation of Alkenylpyridines Enabled by Merging Photoactive Electron Donor–Acceptor Complexes with Chiral Bifunctional Organocatalysis. ACS Catalysis, 2022, 12, 13065-13074.	5.5	9
1699	Parallel photoreactor development with enhanced photon efficiency and reproducibility based on laws of optics. Green Synthesis and Catalysis, 2023, 4, 169-172.	3.7	1
1700	The Role of Excited States of LNi ^{II/III} (Aryl)(Halide) Complexes in Ni–Halide Bond Homolysis in the Arylation of C _{sp3} –H Bonds. ACS Catalysis, 2022, 12, 13215-13224.	5.5	13
1701	Natural Sunlight Photocatalytic Synthesis of Benzoxazole-Bridged Covalent Organic Framework for Photocatalysis. Journal of the American Chemical Society, 2022, 144, 18750-18755.	6.6	63
1702	Metal-Free Generation of Acyl Radical via Photoinduced Single-Electron Transfer from Lewis Base to Acyl Chloride. Organic Letters, 2022, 24, 8223-8227.	2.4	14
1703	Excited-State Copper-Catalyzed [4 + 1] Annulation Reaction Enables Modular Synthesis of α,β-Unsaturated-γ-Lactams. Journal of the American Chemical Society, 2022, 144, 20884-20894.	6.6	11
1704	Integrated nickel/polymer dual catalytic system for visible-light-driven sulfonamidation between aryl halides and aryl sulfonamides. Chem Catalysis, 2022, 2, 3546-3558.	2.9	12
1705	Pyrene-tethered bismoviologens for visible light-induced C(sp3)–P and C(sp2)–P bonds formation. Chinese Chemical Letters, 2023, 34, 107958.	4.8	3
1706	Photoredox aerobic oxidative cycliation of <i>N</i> -arylacrylamides with benzylalcohols. Organic and Biomolecular Chemistry, 2022, 20, 9282-9286.	1.5	2
1707	Dual nickel/photoredox catalyzed carboxylation of C(sp ²)-halides with formate. Organic Chemistry Frontiers, 2022, 10, 35-41.	2.3	10
1708	Visible light metallaphotoredox catalysis in the late-stage functionalization of pharmaceutically potent compounds. Organic Chemistry Frontiers, 2022, 10, 216-236.	2.3	19
1709	Metal-free visible-light-induced hydroxy-perfluoroalkylation of conjugated olefins using enamine catalyst. RSC Advances, 2022, 12, 32790-32795.	1.7	9
1710	Merging dual photoredox/cobalt catalysis and boronic acid (derivatives) activation for the Minisci reaction. Organic Chemistry Frontiers, 2022, 9, 6958-6967.	2.3	6
1711	Recent Advances in Visible-Light Photocatalytic Asymmetric Synthesis Enabled by Chiral Lewis Acids. Chinese Journal of Organic Chemistry, 2022, 42, 3335.	0.6	8
1712	Redox-neutral synthesis of ï€-allylcobalt complexes from alkenes for aldehyde allylation <i>via</i> photoredox catalysis. Green Chemistry, 2022, 24, 9027-9032.	4.6	7
1713	Photoactive Copper Complexes: Properties and Applications. Chemical Reviews, 2022, 122, 16365-16609.	23.0	81

#	Article	IF	CITATIONS
1714	Theoretical Exploration of Energy Transfer and Single Electron Transfer Mechanisms to Understand the Generation of Triplet Nitrene and the C(sp ³)–H Amidation with Photocatalysts. Jacs Au, 2022, 2, 2596-2606.	3.6	4
1715	Light-empowered contra-thermodynamic stereochemical editing. Nature Reviews Chemistry, 2023, 7, 35-50.	13.8	33
1716	Synthesis of α-Aminoacetals via Decarboxylative Coupling of Imine and 2,2,-Diethoxyacetic Acid. Journal of Organic Chemistry, 0, , .	1.7	1
1717	Visible-light-induced Organocatalytic Perfluoroalkylation of Electron-rich Olefins. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 1028-1035.	0.0	2
1718	Synthesis of Isoxazolidines from Substituted Vinylnitrones and Conjugated Carbonyls via Visible‣ight Photocatalysis. ChemPhotoChem, 2023, 7, .	1.5	3
1719	Light-Induced Access to Carbazole-1,3-dicarbonitrile: A Thermally Activated Delayed Fluorescent (TADF) Photocatalyst for Cobalt-Mediated Allylations. Journal of Organic Chemistry, 2023, 88, 6390-6400.	1.7	10
1720	Divergent and Synergistic Photocatalysis: Hydro- and Oxoalkylation of Vinyl Arenes for the Stereoselective Synthesis of Cyclopentanols via a Formal [4+1]-Annulation of 1,3-Dicarbonyls. ACS Catalysis, 2022, 12, 14398-14407.	5.5	10
1721	Asymmetric transformations enabled by synergistic dual transition-metal catalysis. Chem Catalysis, 2023, 3, 100455.	2.9	30
1722	Reassembling of Unsaturated C‒C Bonds via a Cutting/Insertion Cascade. Synlett, 0, , .	1.0	1
1723	Transient absorption spectroscopy in visible-light photocatalysis. Photochemistry, 2022, , 428-457.	0.2	0
1724	Friedel–Crafts arylation of aldehydes with indoles utilizing arylazo sulfones as the photoacid generator. Organic and Biomolecular Chemistry, 2023, 21, 365-369.	1.5	10
1725	Visible-light-induced selective defluoroalkylations of polyfluoroarenes with alcohols. Chemical Science, 2023, 14, 916-922.	3.7	11
1726	Organophotocatalytic silyl transfer of silylboranes enabled by methanol association: a versatile strategy for C–Si bond construction. Green Chemistry, 2023, 25, 256-263.	4.6	14
1727	Recent approaches in asymmetric non-covalent organo-photocatalysis. Photochemistry, 2022, , 283-302.	0.2	0
1728	Diastereoselectivity in Photoredox Catalysis. , 2022, , .		0
1729	Visible-light-induced intramolecular C–S bond formation for practical synthesis of 2,5-disubstituted 1,3,4-thiadiazoles. Synthetic Communications, 2023, 53, 40-48.	1.1	1
1730	Deprotection of benzyl-derived groups via photochemically mesolytic cleavage of C–N and C–O bonds. CheM, 2023, 9, 511-522.	5.8	9
1732	Mild construction of N-fused polycyclic compounds via Rh(III)/EosinY co-catalyze Câ^'H activation. Green Synthesis and Catalysis, 2022, , .	3.7	2

#	Article	IF	CITATIONS
1733	Visible Light Organoâ€Photocatalytic Synthesis of 3â€Imidazolines. European Journal of Organic Chemistry, 2022, 2022, .	1.2	3
1735	Diastereoselective Radical Aminoacylation of Olefins through N-Heterocyclic Carbene Catalysis. Journal of the American Chemical Society, 2022, 144, 22767-22777.	6.6	33
1736	Synthesis of 10-Phenanthrenols <i>via</i> Photosensitized Triplet Energy Transfer, Photoinduced Electron Transfer, and Cobalt Catalysis. Journal of Organic Chemistry, 2022, 87, 16458-16472.	1.7	3
1737	Metallaphotoredox Decarboxylative Arylation of Natural Amino Acids via an Elusive Mechanistic Pathway. ACS Catalysis, 2023, 13, 647-658.	5.5	9
1738	Metal–Organic Frameworks as Photocatalysts for Solar-Driven Overall Water Splitting. Chemical Reviews, 2023, 123, 445-490.	23.0	84
1739	Pyreneâ€Based Dâ€A Molecules as Efficient Heterogeneous Catalysts for Visibleâ€Lightâ€Induced Aerobic Organic Transformations. ChemSusChem, 2023, 16, .	3.6	1
1740	Copper- and Photoredox-Catalyzed Cascade to Trifluoromethylated Divinyl Sulfones. Journal of Organic Chemistry, 2023, 88, 6538-6547.	1.7	2
1741	Energy transfer-enabled unsymmetrical diamination using bifunctional nitrogen-radical precursors. Nature Catalysis, 2022, 5, 1120-1130.	16.1	40
1742	Dual Catalysis in Organic Synthesis: Current Challenges and New Trends. European Journal of Organic Chemistry, 2023, 26, .	1.2	19
1743	Merging Photocatalytic C–O Cross-Coupling for α-Oxycarbonyl-β-ketones: Esterification of Carboxylic Acids via a Decarboxylative Pathway. Organic Letters, 2023, 25, 184-189.	2.4	6
1744	Stereospecific/stereoselective nickel catalyzed reductive cross-coupling: An efficient tool for the synthesis of biological active targeted molecules. Journal of Saudi Chemical Society, 2023, 27, 101589.	2.4	1
1745	Photochemical [2 + 2] Cycloaddition of Alkenes with Maleimides: Highlighting the Differences between <i>N</i> -Alkyl vs <i>N</i> -Aryl Maleimides. ACS Organic & Inorganic Au, 2023, 3, 96-103.	1.9	9
1746	Anthrazoline Photocatalyst for Promoting Esterification and Etherification Reactions via Photoredox/Nickel Dual Catalysis. Chinese Journal of Chemistry, 2023, 41, 411-416.	2.6	1
1747	Regio- and Stereoselective Reductive Coupling of Alkynes and Crotononitrile. Journal of the American Chemical Society, 2022, 144, 23001-23009.	6.6	19
1748	Light-accelerated "on-water―hydroacylation of dialkyl azodicarboxylates. Organic and Biomolecular Chemistry, 2023, 21, 1284-1293.	1.5	9
1749	Recent Advances in Photocatalytic Reactions with Isocyanides. Chinese Journal of Organic Chemistry, 2022, 42, 4220.	0.6	4
1750	Merging Photoinduced Iron-Catalyzed Decarboxylation with Copper Catalysis for C–N and C–C Couplings. ACS Catalysis, 2023, 13, 1678-1685.	5.5	28
1751	Electrochemical synthesis of trans-olefins from 1,3-butadiene with alkyl halides. Synthesis, 0, , .	1.2	1

#	Article	IF	CITATIONS
1752	Visibleâ€Lightâ€Induced Nâ€Heterocyclic Carbeneâ€Catalyzed Single Electron Reduction of Monoâ€Fluoroarenes. Angewandte Chemie, 0, , .	1.6	0
1753	Theoretical Insight on the High Reactivity of Reductive Elimination of Ni ^{III} Based on Energy- and Electron-Transfer Mechanisms. Inorganic Chemistry, 2023, 62, 1156-1164.	1.9	3
1754	Modern Photocatalytic Strategies in Natural Product Synthesis. Progress in the Chemistry of Organic Natural Products, 2023, , 1-104.	0.8	0
1755	The role of oxygen vacancies in TT-Nb2O5 nanoparticles for the photoconversion of glycerol into solketal. Ceramics International, 2023, 49, 14719-14732.	2.3	6
1756	Visibleâ€Lightâ€Induced Nâ€Heterocyclic Carbeneâ€Catalyzed Single Electron Reduction of Monoâ€Fluoroarenes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
1757	Photoinduced Acylations Via Azolium-Promoted Intermolecular Hydrogen Atom Transfer. Journal of the American Chemical Society, 2023, 145, 1535-1541.	6.6	29
1758	Piezoelectric Metalâ€Organic Frameworks Mediated Mechanoredox Borylation and Arylation Reactions by Ball Milling. Chemistry - A European Journal, 2023, 29, .	1.7	6
1759	Electrophotochemical Metal atalyzed Enantioselective Decarboxylative Cyanation. Chemistry - A European Journal, 2023, 29, .	1.7	9
1760	Enantioselective reductive allylic alkylation enabled by dual photoredox/palladium catalysis. Chemical Communications, 2023, 59, 1153-1156.	2.2	2
1761	Visibleâ€light Induced Ceriumâ€catalyzed <i>N</i> â€Demethylation of <i>N</i> â€Methyl Amides under Air Conditions. Advanced Synthesis and Catalysis, 2023, 365, 307-311.	2.1	3
1762	Three-component reductive conjugate addition/aldol tandem reaction enabled by nickel/photoredox dual catalysis. Chemical Science, 2023, 14, 1485-1490.	3.7	9
1763	The game between molecular photoredox catalysis and hydrogen: The golden age of hydrogen budge. Molecular Catalysis, 2023, 537, 112921.	1.0	0
1764	Controlling the reactions of free radicals with metal-radical interaction. Chinese Journal of Catalysis, 2023, 45, 120-131.	6.9	7
1765	Transition-metal free C–N bond formation from alkyl iodides and diazonium salts via halogen-atom transfer. Nature Communications, 2022, 13, .	5.8	15
1766	Sustainability of Visible Light-Driven Organic Transformations - A Review. Current Organic Chemistry, 2022, 27, .	0.9	0
1767	A Visible Light Driven Nickel Carbonylation Catalyst: The Synthesis of Acid Chlorides from Alkyl Halides. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
1768	A Visible Light Driven Nickel Carbonylation Catalyst: The Synthesis of Acid Chlorides from Alkyl Halides. Angewandte Chemie, 2023, 135, .	1.6	1
1769	Visible-light-promoted synthesis of <i>gem</i> -dihaloenones. Green Chemistry, 2023, 25, 1191-1200.	4.6	6

#	Article	IF	CITATIONS
1770	Metal-free acceptorless dehydrogenative cross-coupling of aldehydes/alcohols with alcohols. Green Chemistry, 2023, 25, 1672-1678.	4.6	7
1771	Visible light mediated organocatalytic dehydrogenative aza-coupling of 1,3-diones using aryldiazonium salts. RSC Advances, 2023, 13, 3147-3154.	1.7	1
1772	Visible/solar-light-driven thiyl-radical-triggered synthesis of multi-substituted pyridines. Organic and Biomolecular Chemistry, 2023, 21, 1680-1691.	1.5	4
1773	Photocatalytic dehydrations for the Ritter reaction. Organic Chemistry Frontiers, 2023, 10, 1375-1379.	2.3	4
1774	Emerging Strategies for Asymmetric Synthesis: Combining Enzyme Promiscuity and Photoâ€∤Electroâ€redox Catalysis. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	3
1775	Visible-Light-Promoted C(sp3)–H Bond Functionalization toward Aminothiazole Skeletons from Active Methylene Ketones and Thioureas. Synthesis, 2023, 55, 2091-2098.	1.2	1
1776	Role of hypercoordinated silicon(IV) complexes in activation of carbon–silicon bonds: An overview on utility in synthetic chemistry. Coordination Chemistry Reviews, 2023, 485, 215140.	9.5	2
1777	Development of Electrophilic Radical Perfluoroalkylation of Electronâ€Deficient Olefins. Chemical Record, 2023, 23, .	2.9	2
1779	Visibleâ€Lightâ€Induced Photoredox Dehydrative Coupling/Cyclization of Nâ€Arylacrylamides with Hydroxyketones. Advanced Synthesis and Catalysis, 2023, 365, 612-617.	2.1	2
1780	Metal-free photosensitized radical relay 1,4-carboimination across two distinct olefins. Chemical Science, 2023, 14, 2447-2454.	3.7	17
1781	Molecular Engineering of Metal–Organic Layers for Sustainable Tandem and Synergistic Photocatalysis. Journal of the American Chemical Society, 2023, 145, 4158-4165.	6.6	8
1782	Complexity-Building Photoinduced Cascade Involving C _{sp²} a€"C _{sp³} Coupling of Aromatic Amides via [2 + 2] Reactivity of ESIPT-Generated <i>o-</i> Azaxylylenes. Organic Letters, 2023, 25, 1131-1135.	2.4	2
1783	Kinetic Resolution of 2-Cinnamylpyrrolines Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene <i>E</i> → <i>Z</i> Isomerization. ACS Catalysis, 2023, 13, 2857-2866.	5.5	6
1784	Construction of gel networks <i>via</i> [2+2] photocycloaddition. Journal of Materials Chemistry C, 2023, 11, 2826-2830.	2.7	1
1785	Directed Photochemically Mediated Nickel-Catalyzed (Hetero)arylation of Aliphatic C–H Bonds. Journal of the American Chemical Society, 2023, 145, 3882-3890.	6.6	4
1786	Taming Challenging Radical-Based Convergent Paired Electrolysis with Dual-Transition-Metal Catalysis. Synlett, 2023, 34, 1549-1553.	1.0	3
1787	Electrochemical Cycloaddition Reactions of Alkene Radical Cations: A Route toward Cyclopropanes and Cyclobutanes. Organic Letters, 2023, 25, 1142-1146.	2.4	2
1788	Sunlight―or UVAâ€Lightâ€Mediated Synthesis of Hydroxamic Acids from Carboxylic Acids. European Journal of Organic Chemistry, 2023, 26, .	1.2	7

#	Article	IF	CITATIONS
1789	Radical Cation [2+2] Cycloadditions Enabled by Surface-Assisted Pseudo-Intramolecular Electron Transfers. Synthesis, 0, , .	1.2	1
1790	Synthesis of New Amino-Functionalized Porphyrins:Preliminary Study of Their Organophotocatalytic Activity. Molecules, 2023, 28, 1997.	1.7	2
1791	Facile access to <i>gem</i> -difluorocyclopropanes <i>via</i> an <i>N</i> -heterocyclic carbene-catalyzed radical relay/cyclization strategy. Organic Chemistry Frontiers, 2023, 10, 1669-1674.	2.3	9
1792	Enantioselective C(sp ³)–H Functionalization of Oxacycles via Photo-HAT/Nickel Dual Catalysis. Journal of the American Chemical Society, 2023, 145, 5231-5241.	6.6	18
1793	Bismuth vanadate: A versatile heterogeneous catalyst for photocatalytic functionalization of C(sp2)–H bonds. Chinese Journal of Catalysis, 2023, 46, 157-166.	6.9	5
1794	Applications of red light photoredox catalysis in organic synthesis. Organic and Biomolecular Chemistry, 2023, 21, 2472-2485.	1.5	7
1795	Photoredoxâ€Catalyzed Thiocyanative Cyclization of Biaryl Ynones to Thiocyanated Spiro[5.5]trienones: An Externalâ€Oxidant―and Transitionâ€Metalâ€Free Approach. ChemPhotoChem, 2023, 7, .	1.5	2
1796	Carbazolic Conjugated Microporous Polymers for Photocatalytic Organic Transformations. Macromolecular Rapid Communications, 2023, 44, .	2.0	3
1797	Modular synthesis of 1,4-diketones through regioselective bis-acylation of olefins by merging NHC and photoredox catalysis. Chinese Chemical Letters, 2023, 34, 108271.	4.8	6
1798	<i>S</i> -Trifluoromethyl thioesters as bifunctional reagents for acyl-trifluoromethylthiolation of alkenes and 1,3-enynes <i>via</i> photoredox/copper dual catalysis. Green Chemistry, 2023, 25, 2723-2729.	4.6	1
1799	Recent Advancements on Metalâ€Free Vicinal Diamination of Alkenes: Synthetic Strategies and Mechanistic Insights. Chemistry - an Asian Journal, 2023, 18, .	1.7	5
1800	Visible‣ightâ€Promoted Reaction of <i>N</i> â€Hydroxyphthalimide Esters with Vinyl Boronic Pinacol Ester. European Journal of Organic Chemistry, 2023, 26, .	1.2	4
1801	Recent Advances in Electron Donorâ€Acceptor (EDA)â€Complex Reactions involving Quaternary Pyridinium Derivatives. Advanced Synthesis and Catalysis, 2023, 365, 1538-1564.	2.1	15
1802	Photon-Controlled Pyroptosis Activation (PhotoPyro): An Emerging Trigger for Antitumor Immune Response. Journal of the American Chemical Society, 2023, 145, 6007-6023.	6.6	35
1803	Visibleâ€Lightâ€Induced Photocatalytic C3â€Trifluoroethylation of Quinoxalinâ€2â€(1 <i>H</i>)â€ones. Europea Journal of Organic Chemistry, 2023, 26, .	n 1.2	1
1804	Synthesis of pyrido[1,2- <i>a</i>]indol-6(7 <i>H</i>)-ones <i>via</i> a visible light-photocatalyzed formal (4 + 2) cycloaddition of indole-derived bromides and alkenes or alkynes. Green Chemistry, 2023, 25, 2453-2457.	4.6	2
1805	Metalâ€Organic Framework Supported Copper Photoredox Catalysts for Iminyl Radicalâ€Mediated Reactions. Angewandte Chemie, 2023, 135, .	1.6	0
1806	Metalâ€Organic Framework Supported Copper Photoredox Catalysts for Iminyl Radicalâ€Mediated Reactions. Angewandte Chemie - International Edition, 2023, 62, .	7.2	7

#	Article	IF	CITATIONS
1807	Cu(I)-Catalyzed Chemo- and Enantioselective Desymmetrizing C–O Bond Coupling of Acyl Radicals. Journal of the American Chemical Society, 2023, 145, 6535-6545.	6.6	10
1808	Multimetallic-Catalyzed C–C Bond-Forming Reactions: From Serendipity to Strategy. Journal of the American Chemical Society, 2023, 145, 6596-6614.	6.6	18
1809	Stereoselective [2 + 2] photodimerization: a viable strategy for the synthesis of enantiopure cyclobutane derivatives. Organic and Biomolecular Chemistry, 2023, 21, 2899-2904.	1.5	3
1810	Photoinduced Cobalt-Catalyzed Desymmetrization of Dialdehydes to Access Axial Chirality. Journal of the American Chemical Society, 2023, 145, 6944-6952.	6.6	24
1811	Construction of 3-Oxazolin-5-one via Visible Light-Induced Nondecarboxylative Coupling and Sequential Reactions. Organic Letters, 2023, 25, 2098-2102.	2.4	2
1812	Visible-Light-Induced Radical Cascade Cross-Coupling via C(sp ³)–H Activation and C–N/N–O Cleavage: Feasible Access to Methylenebisamide Derivatives. Organic Letters, 2023, 25, 2300-2305.	2.4	4
1813	Metal Stereogenicity in Asymmetric Transition Metal Catalysis. Chemical Reviews, 2023, 123, 4764-4794.	23.0	29
1814	Visible light induced eco sustainable synthesis of quinolines catalyzed by eosin Y. Journal of Heterocyclic Chemistry, 0, , .	1.4	1
1815	Recent Advances in Carbonâ€Nitrogen/Carbonâ€Oxygen Bond Formation Under Transitionâ€Metalâ€Free Conditions. Chemical Record, 2023, 23, .	2.9	4
1816	Iridium(<scp>iii</scp>) polypyridine artificial metalloenzymes with tunable photophysical properties: a new platform for visible light photocatalysis in aqueous solution. Dalton Transactions, 0, , .	1.6	1
1817	An Efficient Lightâ€Mediated Protocol for the Direct Amide Bond Formation via a Novel Carboxylic Acid Photoactivation Mode by Pyridine Br ₄ . Chemistry - A European Journal, 2023, 29, .	1.7	6
1818	Thianthrene Radical Cation as a Transient <scp>SET</scp> Mediator: Photoinduced Thiocyanation and Selenocyanation of Arylthianthrenium Salts ^{â€} . Chinese Journal of Chemistry, 2023, 41, 1979-1986.	2.6	4
1819	Graphitic carbon nitride materials in dual metallo-photocatalysis: a promising concept in organic synthesis. Green Chemistry, 2023, 25, 3374-3397.	4.6	13
1820	Visible-light acridinium-based organophotoredox catalysis in late-stage synthetic applications. RSC Advances, 2023, 13, 10958-10986.	1.7	18
1821	Free Carboxylic Acids: The Trend of Radical Decarboxylative Functionalization. European Journal of Organic Chemistry, 2023, 26, .	1.2	11
1822	Cobalt(III)-salen Decorated Stereoregular Optically Active Helical Polyisocyanides Enable Highly Effective Cooperative Asymmetric Catalysis toward Kinetic Resolution of Epoxides. Inorganic Chemistry Frontiers, 0, , .	3.0	0
1823	NHC-Catalyzed Synthesis of α-Sulfonyl Ketones via Radical-Mediated Sulfonyl Methylation of Aldehydes. Organic Letters, 2023, 25, 2657-2662.	2.4	11
1824	Photocatalytic Metal Hydride Hydrogen Atom Transfer Mediated Allene Functionalization by Cobalt and Titanium Dual Catalysis. Angewandte Chemie, 2023, 135, .	1.6	1

#	Article	IF	Citations
1825	Dual Photoredox/Copper Catalyzed Fluoroalkylative Alkene Difunctionalization. Journal of Organic Chemistry, 2023, 88, 6252-6262.	1.7	3
1826	Photocatalytic Metal Hydride Hydrogen Atom Transfer Mediated Allene Functionalization by Cobalt and Titanium Dual Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
1827	Photocatalytic direct oxygen-isotopic labelings of carbonyls in ketones and aldehydes with oxygen-isotopic waters. Chinese Chemical Letters, 2023, 34, 108454.	4.8	0
1828	Deoxygenative Radical Boration of Inert Amides via a Combination of Relay and Cooperative Catalysis. Chemistry - A European Journal, 2023, 29, .	1.7	4
1829	Synthesis of II-VI Semiconductor Nanocrystals. , 2023, , 277-323.		2
1830	Rapid Synthesis of β-Chiral Sulfones by Ni-Organophotocatalyzed Enantioselective Sulfonylalkenylation of Alkenes. Jacs Au, 2023, 3, 1321-1327.	3.6	10
1834	Dual Photoredox and Copper Catalysis: Enantioselective 1,2-Amidocyanation of 1,3-Dienes. ACS Catalysis, 2023, 13, 7523-7528.	5.5	7
1849	Visible-light driven electron–donor–acceptor (EDA) complex-initiated synthesis of thio-functionalized pyridines. Chemical Communications, 2023, 59, 7990-7993.	2.2	5
1862	Multi-functional photocatalytic systems for solar fuel production. Journal of Materials Chemistry A, 2023, 11, 14614-14629.	5.2	1
1864	Übergangsmetallkatalysierte Kupplungsreaktionen. , 2023, , 615-751.		0
1865	Moderne Radikal- und Redoxchemie. , 2023, , 859-879.		0
1877	Photoinduced Base-Metal Catalyzed sp ³ -C-Si Bond Activation of Organosilanols to Generate sp ³ -Carbon-Centered Radicals. ACS Catalysis, 2023, 13, 6879-6886.	5.5	1
1881	Visible light-assisted chemistry of vinyl azides and its applications in organic synthesis. Organic and Biomolecular Chemistry, 2023, 21, 4723-4743.	1.5	3
1884	Difunctionalization of 1,3-Butadiene via Sequential Radical Thiol-ene Reaction and Allylation by Dual Photoredox and Titanium Catalysis. Organic Letters, 2023, 25, 5094-5099.	2.4	0
1888	General Anti-Markovnikov Hydrophosphinylation of Olefins Using Disulfide as the Photocatalyst and a Hydrogen Atom Shuttle. Organic Letters, 2023, 25, 5356-5360.	2.4	1
1892	The mechanism of visible light-induced C–C cross-coupling by C _{sp³} –H bond activation. Chemical Society Reviews, 2023, 52, 5373-5387.	18.7	7
1897	Combining Computational Fluid Dynamics, Photon Fate Simulation and Machine Learning to Optimize Continuous-Flow Photocatalytic Systems. Reaction Chemistry and Engineering, 0, , .	1.9	1
1922	Diastereoselectivity in Photochemistry. , 2023, , .		0

#	Article	IF	CITATIONS
1926	Photoinduced copper-catalyzed selective three-component 1,2-amino oxygenation of 1,3-dienes. Chemical Communications, 2023, 59, 10388-10391.	2.2	1
1935	Metal-free 2-isocyanobiaryl-based cyclization reactions: phenanthridine framework synthesis. Molecular Diversity, 2024, 28, 419-435.	2.1	0
1944	Photoenzymatic Catalysis for Organic Synthesis. , 2023, , .		0
1960	Recent advances in combining photo- and N-heterocyclic carbene catalysis. Chemical Science, 2023, 14, 13367-13383.	3.7	4
1988	Visible-light mediated strategies for the synthesis of nitrogen-based heterocycles. , 2023, , 410-435.		0
1995	Guiding excited state reactivity – the journey from the Paternò–Büchi reaction to transposed and aza PaternA²â€"Büchi reactions. , 2023, , 562-579.		0
2002	Asymmetric Photochemical Transformations Using a Chiral Lewis Acid or/and Chiral Photocatalyst. , 2024, , .		0
2003	Asymmetric Photochemical Transformations Using a Chiral Hydrogen Bond Donor. , 2024, , .		0
2032	Photocatalytic Reactors for the Production of Syngas Through Natural Gas Methane. , 2024, , .		0
2042	Stereoselective Photocatalytic Transformations in Continuous Flow. , 2024, , .		0