Noncovalent Interactions in Organocatalysis and the Pr Design

Accounts of Chemical Research 49, 1061-1069 DOI: 10.1021/acs.accounts.6b00096

Citation Report

#	Article	IF	CITATIONS
3	Stacking and Electrostatic Interactions Drive the Stereoselectivity of Silyliumâ€lon Asymmetric Counteranionâ€Directed Catalysis. Angewandte Chemie, 2016, 128, 16121-16125.	1.6	11
4	Computational insight into the cooperative role of non-covalent interactions in the aza-Henry reaction catalyzed by quinine derivatives: mechanism and enantioselectivity. Organic and Biomolecular Chemistry, 2016, 14, 9588-9597.	1.5	11
5	4-Dialkylaminopyridine modified magnetic nanoparticles: as an efficient nano-organocatalyst for one-pot synthesis of 2-amino-4H-chromene-3-carbonitrile derivatives in water. RSC Advances, 2016, 6, 92316-92324.	1.7	30
6	Origin of Kinetic Resolution of Hydroxy Esters through Catalytic Enantioselective Lactonization by Chiral Phosphoric Acids. Organic Letters, 2016, 18, 3730-3733.	2.4	12
7	lsothiourea-catalysed enantioselective pyrrolizine synthesis: synthetic and computational studies. Organic and Biomolecular Chemistry, 2016, 14, 8957-8965.	1.5	23
8	Theoretical Design and Calculation of a Crown Ether Phase-Transfer-Catalyst Scaffold for Nucleophilic Fluorination Merging Two Catalytic Concepts. Journal of Organic Chemistry, 2016, 81, 8455-8463.	1.7	28
9	"π-Holeâ~π―Interaction Promoted Photocatalytic Hydrodefluorination via Inner-Sphere Electron Transfer. Journal of the American Chemical Society, 2016, 138, 15805-15808.	6.6	61
10	Competing Noncovalent Interactions Control the Stereoselectivity of Chiral Phosphoric Acid Catalyzed Ring Openings of 3-Substituted Oxetanes. ACS Catalysis, 2016, 6, 7222-7228.	5.5	41
11	Scope and Mechanism of Cooperativity at the Intersection of Organometallic and Supramolecular Catalysis. Journal of the American Chemical Society, 2016, 138, 9682-9693.	6.6	86
12	Design of Organocatalysts for Asymmetric Propargylations through Computational Screening. ACS Catalysis, 2016, 6, 7948-7955.	5.5	68
13	Stacking and Electrostatic Interactions Drive the Stereoselectivity of Silyliumâ€lon Asymmetric Counteranionâ€Directed Catalysis. Angewandte Chemie - International Edition, 2016, 55, 15889-15893.	7.2	55
14	Mechanism and Stereoselectivity in an Asymmetric N-Heterocyclic Carbene-Catalyzed Carbon–Carbon Bond Activation Reaction. Organic Letters, 2016, 18, 5932-5935.	2.4	27
15	Stereodivergent Aminocatalytic Synthesis of <i>Z</i> ―and <i>E</i> â€Trisubstituted Double Bonds from Alkynals. Chemistry - A European Journal, 2016, 22, 16467-16477.	1.7	4
16	NMR <i>J</i> -Coupling Constants of Tl–Pt Bonded Metal Complexes in Aqueous Solution: Ab Initio Molecular Dynamics and Localized Orbital Analysis. Inorganic Chemistry, 2016, 55, 12011-12023.	1.9	14
17	Cation-Ï€ Assisted Synthesis of Alkyl Aryl Ethers <i>via</i> C-CN Functionalization of 1,2-Dicyano Pyrazines. ChemistrySelect, 2017, 2, 1944-1949.	0.7	8
18	Catalytic Enantioselective [2,3]-Rearrangements of Allylic Ammonium Ylides: A Mechanistic and Computational Study. Journal of the American Chemical Society, 2017, 139, 4366-4375.	6.6	92
19	Intuitive Density Functional Theory-Based Energy Decomposition Analysis for Protein–Ligand Interactions. Journal of Chemical Theory and Computation, 2017, 13, 1837-1850.	2.3	19
20	Carboranes as Aryl Mimetics in Catalysis: A Highly Active Zwitterionic NHCâ€Precatalyst. Chemistry - A European Journal, 2017, 23, 7932-7937.	1.7	30

#	Article	IF	CITATIONS
21	Mechanisms of Carbonyl Activation by BINOL <i>N</i> -Triflylphosphoramides: Enantioselective Nazarov Cyclizations. ACS Catalysis, 2017, 7, 3466-3476.	5.5	25
22	Mechanism of the Piperidine-Catalyzed Knoevenagel Condensation Reaction in Methanol: The Role of Iminium and Enolate Ions. Journal of Physical Chemistry B, 2017, 121, 5300-5307.	1.2	76
23	A computational approach to study functional monomer-protein molecular interactions to optimize protein molecular imprinting. Journal of Molecular Recognition, 2017, 30, e2635.	1.1	41
24	Ir-Catalyzed ortho-Borylation of Phenols Directed by Substrate–Ligand Electrostatic Interactions: A Combined Experimental/in Silico Strategy for Optimizing Weak Interactions. Journal of the American Chemical Society, 2017, 139, 7864-7871.	6.6	131
25	Chalcogen bonding in synthesis, catalysis and design of materials. Dalton Transactions, 2017, 46, 10121-10138.	1.6	343
26	Automated Quantum Mechanical Predictions of Enantioselectivity in a Rhodiumâ€Catalyzed Asymmetric Hydrogenation. Angewandte Chemie, 2017, 129, 9229-9233.	1.6	5
27	Automated Quantum Mechanical Predictions of Enantioselectivity in a Rhodiumâ€Catalyzed Asymmetric Hydrogenation. Angewandte Chemie - International Edition, 2017, 56, 9101-9105.	7.2	43
28	Noncovalent Interactions in Ir-Catalyzed C–H Activation: L-Shaped Ligand for Para-Selective Borylation of Aromatic Esters. Journal of the American Chemical Society, 2017, 139, 7745-7748.	6.6	218
29	Reaction Progress Kinetics Analysis of 1,3-Disiloxanediols as Hydrogen-Bonding Catalysts. Journal of Organic Chemistry, 2017, 82, 6738-6747.	1.7	40
	organic Chemistry, 2017, 02, 0750 0747.		
30	Exploiting non-covalent π interactions for catalyst design. Nature, 2017, 543, 637-646.	13.7	583
30 31		13.7 5.5	583 80
	Exploiting non-covalent π interactions for catalyst design. Nature, 2017, 543, 637-646. Origin of Stereoselectivity in Cooperative Asymmetric Catalysis Involving N-Heterocyclic Carbenes		
31	 Exploiting non-covalent ï€ interactions for catalyst design. Nature, 2017, 543, 637-646. Origin of Stereoselectivity in Cooperative Asymmetric Catalysis Involving N-Heterocyclic Carbenes and Lewis Acids toward the Synthesis of Spirooxindole Lactone. ACS Catalysis, 2017, 7, 530-537. Understanding a Hydroformylation Catalyst that Produces Branched Aldehydes from Alkyl Alkenes. 	5.5	80
31 32	 Exploiting non-covalent π interactions for catalyst design. Nature, 2017, 543, 637-646. Origin of Stereoselectivity in Cooperative Asymmetric Catalysis Involving N-Heterocyclic Carbenes and Lewis Acids toward the Synthesis of Spirooxindole Lactone. ACS Catalysis, 2017, 7, 530-537. Understanding a Hydroformylation Catalyst that Produces Branched Aldehydes from Alkyl Alkenes. Journal of the American Chemical Society, 2017, 139, 15921-15932. Multidimensional Correlations in Asymmetric Catalysis through Parameterization of Uncatalyzed Transition States. Angewandte Chemie, 2017, 129, 14268-14272. Mechanism and Origins of Stereoinduction in Natural Cinchona Alkaloid Catalyzed Asymmetric Electrophilic Trifluoromethylthiolation of β-Keto Esters with Source. ACS Catalysis, 	5.5 6.6	80 63
31 32 33	 Exploiting non-covalent π interactions for catalyst design. Nature, 2017, 543, 637-646. Origin of Stereoselectivity in Cooperative Asymmetric Catalysis Involving N-Heterocyclic Carbenes and Lewis Acids toward the Synthesis of Spirooxindole Lactone. ACS Catalysis, 2017, 7, 530-537. Understanding a Hydroformylation Catalyst that Produces Branched Aldehydes from Alkyl Alkenes. Journal of the American Chemical Society, 2017, 139, 15921-15932. Multidimensional Correlations in Asymmetric Catalysis through Parameterization of Uncatalyzed Transition States. Angewandte Chemie, 2017, 129, 14268-14272. Mechanism and Origins of Stereoinduction in Natural Cinchona Alkaloid Catalyzed Asymmetric Electrophilic Trifluoromethylthiolation of β-Keto Esters with 	5.5 6.6 1.6	80 63 7
31 32 33 34	 Exploiting non-covalent ÏE interactions for catalyst design. Nature, 2017, 543, 637-646. Origin of Stereoselectivity in Cooperative Asymmetric Catalysis Involving N-Heterocyclic Carbenes and Lewis Acids toward the Synthesis of Spirooxindole Lactone. ACS Catalysis, 2017, 7, 530-537. Understanding a Hydroformylation Catalyst that Produces Branched Aldehydes from Alkyl Alkenes. Journal of the American Chemical Society, 2017, 139, 15921-15932. Multidimensional Correlations in Asymmetric Catalysis through Parameterization of Uncatalyzed Transition States. Angewandte Chemie, 2017, 129, 14268-14272. Mechanism and Origins of Stereoinduction in Natural Cinchona Alkaloid Catalyzed Asymmetric Electrophilic Trifluoromethylthiolation of I²-Keto Esters with <i>NX/I>-Trifluoromethylthiophthalimide as Electrophilic SCF₃ Source. ACS Catalysis, 2017, 7, 7977-7986.</i> Activation Mode and Origin of Selectivity in Chiral Phosphoric Acid-Catalyzed Oxacycle Formation by 	5.5 6.6 1.6 5.5	80 63 7 35
31 32 33 34 35	 Exploiting non-covalent Ĭ€ interactions for catalyst design. Nature, 2017, 543, 637-646. Origin of Stereoselectivity in Cooperative Asymmetric Catalysis Involving N-Heterocyclic Carbenes and Lewis Acids toward the Synthesis of Spirooxindole Lactone. ACS Catalysis, 2017, 7, 530-537. Understanding a Hydroformylation Catalyst that Produces Branched Aldehydes from Alkyl Alkenes. Journal of the American Chemical Society, 2017, 139, 15921-15932. Multidimensional Correlations in Asymmetric Catalysis through Parameterization of Uncatalyzed Transition States. Angewandte Chemie, 2017, 129, 14268-14272. Mechanism and Origins of Stereoinduction in Natural Cinchona Alkaloid Catalyzed Asymmetric Electrophilic Trifluoromethylthiolation of 1²-Keto Esters with <i>N</i> N Activation Mode and Origin of Selectivity in Chiral Phosphoric Acid-Catalyzed Oxacycle Formation by Intramolecular Oxetane Desymmetrizations. ACS Catalysis, 2017, 7, 7332-7339. Asymmetric Dual Chiral Catalysis using Iridium Phosphoramidites and Diarylprolinol Silyl Ethers: 	5.5 6.6 1.6 5.5 5.5	80 63 7 35 45

#	Article	IF	CITATIONS
39	Intricacies of van der Waals Interactions in Systems with Elongated Bonds Revealed by Electron-Groups Embedding and High-Level Coupled-Cluster Approaches. Journal of Chemical Theory and Computation, 2017, 13, 5404-5419.	2.3	16
40	Multidimensional Correlations in Asymmetric Catalysis through Parameterization of Uncatalyzed Transition States. Angewandte Chemie - International Edition, 2017, 56, 14080-14084.	7.2	28
41	The potential of pnicogen bonding for catalysis – a computational study. Organic and Biomolecular Chemistry, 2017, 15, 8037-8045.	1.5	40
42	Intriguing Electrophilic Reactivity of Donor–Acceptor Cyclopropanes: Experimental and Theoretical Studies. European Journal of Organic Chemistry, 2017, 2017, 5238-5245.	1.2	14
43	Optimizing the Accuracy and Computational Cost in Theoretical Squaramide Catalysis: The Henry Reaction. Chemistry - A European Journal, 2017, 23, 15336-15347.	1.7	18
44	Co-crystallization of 1,3,5-trifluoro-2,4,6-triiodobenzene (1,3,5-TFTIB) with a variety of Lewis bases through halogen-bonding interactions. CrystEngComm, 2017, 19, 5504-5521.	1.3	21
45	Mechanistic Investigations of the Pd(0)-Catalyzed Enantioselective 1,1-Diarylation of Benzyl Acrylates. Journal of the American Chemical Society, 2017, 139, 12688-12695.	6.6	85
46	Systematic Coupled Cluster Study of Noncovalent Interactions Involving Halogens, Chalcogens, and Pnicogens. Journal of Physical Chemistry A, 2017, 121, 9544-9556.	1.1	72
47	Computational Study on γ-C–H Functionalization of α,β-Unsaturated Ester Catalyzed by N-Heterocyclic Carbene: Mechanisms, Origin of Stereoselectivity, and Role of Catalyst. Journal of Organic Chemistry, 2017, 82, 13043-13050.	1.7	55
48	Cycloadditionen: Warum ist der Übergang von sechs zu zehn Elektronen so schwer?. Angewandte Chemie, 2017, 129, 10165-10171.	1.6	19
49	Cycloaddition Reactions: Why Is It So Challenging To Move from Six to Ten Electrons?. Angewandte Chemie - International Edition, 2017, 56, 10033-10038.	7.2	59
50	Computational study on NHC-catalyzed enantioselective and chemoselective fluorination of aliphatic aldehydes. Organic Chemistry Frontiers, 2017, 4, 1987-1998.	2.3	47
51	Molecular Recognition in Asymmetric Counteranion Catalysis: Understanding Chiral Phosphate-Mediated Desymmetrization. Journal of the American Chemical Society, 2017, 139, 8886-8896.	6.6	47
52	Non-covalent interactions in the synthesis of coordination compounds: Recent advances. Coordination Chemistry Reviews, 2017, 345, 54-72.	9.5	250
53	Virtually going green: The role of quantum computational chemistry in reducing pollution and toxicity in chemistry. ChemistrySelect, 2017, 2, .	0.7	6
54	Noncovalent Interactions in the Catechol Dimer. Biomimetics, 2017, 2, 18.	1.5	17
55	π–π Interactions. , 2017, , 121-148.		12
56	Concept of Ir-catalyzed C H bond activation/borylation by noncovalent interaction. Tetrahedron Letters, 2018, 59, 1269-1277.	0.7	88

#	Article	IF	CITATIONS
57	Thermoswitchable catalysis controlled by reversible dispersion/aggregation change of nanoreactors in the presence of <i> α</i> -CD polymers. Nanotechnology, 2018, 29, 225501.	1.3	2
58	Soft–Hard Acid–Baseâ€Controlled Câ"H Trifluoroethoxylation and Trideuteriomethoxylation of Anilides. Asian Journal of Organic Chemistry, 2018, 7, 715-719.	1.3	21
59	Computational prediction of chemical reactions: current status and outlook. Drug Discovery Today, 2018, 23, 1203-1218.	3.2	126
60	Mechanism of nucleophilic fluorination promoted by bisâ€ <i>tert</i> â€alcoholâ€functionalized crownâ€6â€calix[4]arene. International Journal of Quantum Chemistry, 2018, 118, e25648.	1.0	10
61	Steric Hindrance in Sulfur Vacancy of Monolayer MoS ₂ Boosts Electrochemical Reduction of Carbon Monoxide to Methane. ChemSusChem, 2018, 11, 1455-1459.	3.6	29
62	Enantioselective Synthesis of <i>N</i> , <i>S</i> â€Acetals by an Oxidative Pummererâ€Type Transformation using Phaseâ€Transfer Catalysis. Angewandte Chemie, 2018, 130, 598-602.	1.6	9
63	Breslow Intermediates from Aromatic Nâ€Heterocyclic Carbenes (Benzimidazolinâ€2â€ylidenes,) Tj ETQq0 0 0 rg	BT/Overlo 7.2	ck 10 Tf 50
64	Stacking Interactions of Heterocyclic Drug Fragments with Protein Amide Backbones. ChemMedChem, 2018, 13, 835-841.	1.6	26
65	Rhodium Catalyzed Asymmetric Hydroamination of Internal Alkynes with Indoline: Mechanism, Origin of Enantioselectivity, and Role of Additives. Journal of Organic Chemistry, 2018, 83, 2627-2639.	1.7	12
66	Large-Scale Functional Group Symmetry-Adapted Perturbation Theory on Graphical Processing Units. Journal of Chemical Theory and Computation, 2018, 14, 1737-1753.	2.3	19
67	Enantioselectivity in CPA-catalyzed Friedel–Crafts reaction of indole and <i>N</i> -tosylimines: a challenge for guiding models. Organic and Biomolecular Chemistry, 2018, 16, 2225-2238.	1.5	11
68	Tetrel, halogen and hydrogen bonds in bis (4-((E) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 307 Td ()-(2,2-di 377-381.	chloro-1-(4 2.0	1-substitute 47
69	Stereocontrol through Synergistic Catalysis in the Enantioselective α-Alkenylation of Aldehyde: A Computational Study. Journal of Organic Chemistry, 2018, 83, 1304-1311.	1.7	1
70	Soft–Hard Acid/Base-Controlled, Oxidative, <i>N</i> -Selective Arylation of Sulfonanilides via a Nitrenium Ion. Journal of Organic Chemistry, 2018, 83, 1340-1347.	1.7	24
71	Expanding the repertoire of cyclopropenium ion phase transfer catalysis: Benzylic fluorination. Tetrahedron, 2018, 74, 3507-3511.	1.0	14
72	Protic Quaternary Ammonium Ionic Liquids for Catalytic Conversion of CO ₂ into Cyclic Carbonates: A Combined Ab Initio and MD Study. Industrial & Engineering Chemistry Research, 2018, 57, 7121-7129.	1.8	14
73	Benchmarking the Effective Fragment Potential Dispersion Correction on the S22 Test Set. Journal of Physical Chemistry A, 2018, 122, 4076-4084.	1.1	3
74	A series of cocrystals formed by 2,3-dimethylpyrazine bridging various aromatic acids through hydrogen bonds: Synthesis, structural characterization and synthon discussion. Journal of Molecular Structure, 2018, 1165, 106-119.	1.8	8

		EPORT	
#	Article	IF	Citations
75	Modeling Organic Reactions $\hat{a} \in$ " General Approaches, Caveats, and Concerns. , 2018, , 1-29.		3
76	Recent Advances on Computational Investigations of <i>N</i> â€Heterocyclic Carbene Catalyzed Cycloaddition/Annulation Reactions: Mechanism and Origin of Selectivities. ChemCatChem, 2018, 10, 338-360.	1.8	106
77	Enantioselective Synthesis of <i>N</i> , <i>S</i> â€Acetals by an Oxidative Pummererâ€Type Transformation using Phaseâ€Transfer Catalysis. Angewandte Chemie - International Edition, 2018, 57, 589-593.	7.2	41
78	Computationally‣ed Ligand Modification using Interplay between Theory and Experiments: Highly Active Chiral Rhodium Catalyst Controlled by Electronic Effects and CH‑'Í€ Interactions. Advanced Synthesis and Catalysis, 2018, 360, 322-333.	2.1	23
79	Computerchemie: das Schicksal aktueller Methoden und zukünftige Herausforderungen. Angewandte Chemie, 2018, 130, 4241-4248.	1.6	16
80	Computational Chemistry: The Fate of Current Methods and Future Challenges. Angewandte Chemie - International Edition, 2018, 57, 4170-4176.	7.2	138
81	Molecular interactions in electron-groups embedding generalized valence bond picture. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	7
82	Theoretical Density Functional Theory insights into the nature of chalcogen bonding between CX ₂ (X = S, Se, Te) and diazine from monomer to supramolecular complexes. International Journal of Quantum Chemistry, 2019, 119, e25837.	1.0	10
83	Comparing quantitative prediction methods for the discovery of small-molecule chiral catalysts. Nature Reviews Chemistry, 2018, 2, 290-305.	13.8	100
84	Design of the Chiral Environment for Asymmetric Acid-Base Catalysis. , 2018, , 91-121.		Ο
85	Theory Meets Experiment for Noncovalent Complexes: The Puzzling Case of Pnicogen Interactions. Angewandte Chemie, 2018, 130, 14049-14053.	1.6	7
86	Mechanism and Origins of Chemo- and Stereoselectivities of Aryl Iodide-Catalyzed Asymmetric Difluorinations of Î ² -Substituted Styrenes. Journal of the American Chemical Society, 2018, 140, 15206-15218.	6.6	89
87	Stereospecific 1,3-H Transfer of Indenols Proceeds via Persistent Ion-Pairs Anchored by NH···π Interactions. Journal of the American Chemical Society, 2018, 140, 16740-16748.	6.6	29
88	Mixed Explicit–Implicit Solvation Approach for Modeling of Alkane Complexation in Water-Soluble Self-Assembled Capsules. Journal of the American Chemical Society, 2018, 140, 12527-12537.	6.6	15
89	Molecular Dynamics Simulations of a Conformationally Mobile Peptide-Based Catalyst for Atroposelective Bromination. ACS Catalysis, 2018, 8, 9968-9979.	5.5	30
90	Asymmetric phosphoric acid–catalyzed four-component Ugi reaction. Science, 2018, 361, .	6.0	150
91	Breslowâ€Intermediate aromatischer Nâ€heterocyclischer Carbene (Benzimidazolinâ€2â€ylidene,) Tj ETQq0 0 0) rgBT /Ove 1.6	rlock 10 Tf 50

92	Nonbonded Interaction:	: The Chalcogen Bond. , 2018, , 157-1	.83.
----	------------------------	---------------------------------------	------

#	Article	IF	CITATIONS
93	Advances in Development of C–H Activation/Functionalization Using a Catalytic Directing Group. ChemistrySelect, 2018, 3, 5689-5708.	0.7	44
94	Solvent effects on the coupling reaction of CO2 with PO catalyzed by hydroxyl imidazolium ionic liquid: Comparison of different models. Journal of CO2 Utilization, 2018, 27, 99-106.	3.3	17
95	Insights on the Origin of Regiodivergence in the Parallel Kinetic Resolution of <i>rac</i> -Aziridines Using a Chiral Lanthanum–Yttrium Bimetallic Catalyst. ACS Catalysis, 2018, 8, 7633-7644.	5.5	9
96	A quantification scheme for non-covalent interactions in the enantio-controlling transition states in asymmetric catalysis. Organic and Biomolecular Chemistry, 2018, 16, 5643-5652.	1.5	8
97	Chiral Unsymmetrically Substituted Bipyridine <i>N</i> , <i>N′</i> â€Dioxides as Catalysts for the Allylation of Aldehydes. European Journal of Organic Chemistry, 2018, 2018, 5109-5116.	1.2	10
98	Cobalt-catalyzed C–H cyanations: Insights into the reaction mechanism and the role of London dispersion. Beilstein Journal of Organic Chemistry, 2018, 14, 1537-1545.	1.3	17
99	Toward a Predictive Understanding of Phosphine-Catalyzed [3 + 2] Annulation of Allenoates with Acrylate or Imine. Journal of Organic Chemistry, 2018, 83, 9729-9740.	1.7	22
100	Theory Meets Experiment for Noncovalent Complexes: The Puzzling Case of Pnicogen Interactions. Angewandte Chemie - International Edition, 2018, 57, 13853-13857.	7.2	60
101	An Intramolecular C(sp ²)–H Amidation Using <i>N</i> â€ŀodosuccinimide. European Journal of Organic Chemistry, 2018, 2018, 4178-4186.	1.2	8
102	Free energy profile and microkinetic modeling of base-catalyzed conjugate addition reaction of nitroalkanes to α,β-unsaturated ketones in polar and apolar solvents. Journal of Molecular Modeling, 2018, 24, 152.	0.8	4
103	Catalytic, metal-free alkylheteroarylation of alkenes <i>via</i> distal heteroaryl <i>ipso</i> -migration. Chemical Communications, 2018, 54, 7499-7502.	2.2	21
104	Analysis of transition state stabilization by non-covalent interactions in organocatalysis: application of atomic and functional-group partitioned symmetry-adapted perturbation theory to the addition of organoboron reagents to fluoroketones. Physical Chemistry Chemical Physics, 2018, 20, 18241-18251.	1.3	15
105	Catalysis by Pure Graphene—From Supporting Actor to Protagonist through Shape Complementarity. Journal of Organic Chemistry, 2019, 84, 11343-11347.	1.7	17
106	Three new cocrystals derived from liquid pyrazine spices: X-ray structures and Hirshfeld surface analyses. Research on Chemical Intermediates, 2019, 45, 5745-5760.	1.3	6
107	ls the iminium ion mechanism viable in the piperidine-catalyzed 1,4-conjugate addition reaction of nitroalkanes to α,β-unsaturated ketones?. Computational and Theoretical Chemistry, 2019, 1164, 112541.	1.1	2
108	Converting SMILES to Stacking Interaction Energies. Journal of Chemical Information and Modeling, 2019, 59, 3413-3421.	2.5	11
109	Understanding the Origin of 2D Self-Assembly of Tricarbazole Macrocycles: An Integrated Quantum Mechanical/Molecular Dynamics Study. Journal of Physical Chemistry C, 2019, 123, 17616-17623.	1.5	6
110	Automatic Conformational Search of Transition States for Catalytic Reactions Using Genetic Algorithm. Journal of Physical Chemistry A, 2019, 123, 10303-10314.	1.1	11

#	Article	IF	CITATIONS
111	Chalcogen bonding of two ligands to hypervalent YF ₄ (Y = S, Se, Te, Po). Physical Chemistry Chemical Physics, 2019, 21, 20829-20839.	1.3	27
112	Internal acidity scale and reactivity evaluation of chiral phosphoric acids with different 3,3′-substituents in BrÃ,nsted acid catalysis. Chemical Science, 2019, 10, 10025-10034.	3.7	26
113	Disulfonimides versus Phosphoric Acids in BrÃ,nsted Acid Catalysis: The Effect of Weak Hydrogen Bonds and Multiple Acceptors on Complex Structures and Reactivity. Journal of Organic Chemistry, 2019, 84, 13221-13231.	1.7	14
114	Steric and Electronic Effect on C 2 â€H Arylation of Sulfonamides. ChemistrySelect, 2019, 4, 7010-7014.	0.7	1
115	Predicting the Strength of Stacking Interactions between Heterocycles and Aromatic Amino Acid Side Chains. Journal of the American Chemical Society, 2019, 141, 11027-11035.	6.6	70
116	C(<i>sp</i> ²)â^'H Hydrogenâ€Bond Donor Groups in Chiral Smallâ€Molecule Organocatalysts. Asian Journal of Organic Chemistry, 2019, 8, 1306-1316.	1.3	8
117	Design and Optimization of Catalysts Based on Mechanistic Insights Derived from Quantum Chemical Reaction Modeling. Chemical Reviews, 2019, 119, 6509-6560.	23.0	130
118	Some Recent Advances in the Design and Use of Molecular Balances for the Experimental Quantification of Intramolecular Noncovalent Interactions of π Systems. Chemistry - A European Journal, 2019, 25, 10516-10530.	1.7	26
119	An Efficient Method for Longâ€Term Configurational Stabilization of Chiral Tricyclic Dipeptide via Heterocomplexation Approach. ChemistrySelect, 2019, 4, 3210-3213.	0.7	0
120	Theoretical Investigation of the Enantioselective [4 + 2] Cycloaddition Reaction of <i>o</i> -Hydroxystyrene and Azlactone. Journal of Organic Chemistry, 2019, 84, 4025-4032.	1.7	6
121	Insights into the role of noncovalent interactions in distal functionalization of the aryl C(sp ²)–H bond. Chemical Science, 2019, 10, 3826-3835.	3.7	34
122	Noncovalent interactions in metal complex catalysis. Coordination Chemistry Reviews, 2019, 387, 32-46.	9.5	207
123	Thiosquaramide-catalysed asymmetric double Michael addition of 2-(3 <i>H</i>)-furanones to nitroolefines. Organic and Biomolecular Chemistry, 2019, 17, 2883-2886.	1.5	15
124	The control effects of different scaffolds in chiral phosphoric acids: a case study of enantioselective asymmetric arylation. Catalysis Science and Technology, 2019, 9, 6482-6491.	2.1	7
125	Synergistic and antagonistic interplay between tetrel bond and pnicogen bond in complexes involving ring compounds. Journal of Molecular Modeling, 2019, 25, 351.	0.8	11
126	Harnessing Noncovalent Interactions in Dual-Catalytic Enantioselective Heck–Matsuda Arylation. Journal of the American Chemical Society, 2019, 141, 998-1009.	6.6	59
127	Exploration of Reaction Pathways and Chemical Transformation Networks. Journal of Physical Chemistry A, 2019, 123, 385-399.	1.1	141
128	Understanding the Reactivity and Selectivity of Fluxional Chiral DMAPâ€Catalyzed Kinetic Resolutions of Axially Chiral Biaryls. Chemistry - A European Journal, 2019, 25, 4452-4459.	1.7	11

#	Article	IF	CITATIONS
129	Tuning the H-bond donicity boosts carboxylic acid efficiency in ring-opening polymerization. European Polymer Journal, 2019, 112, 799-808.	2.6	5
130	Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities. Chemical Reviews, 2019, 119, 2453-2523.	23.0	260
131	Tuning Stacking Interactions between Asp–Arg Salt Bridges and Heterocyclic Drug Fragments. Journal of Chemical Information and Modeling, 2019, 59, 149-158.	2.5	17
132	Discrete Supramolecular Stacks Based on Multinuclear Tweezerâ€Type Rhodium Complexes. Chemistry - A European Journal, 2020, 26, 558-563.	1.7	6
133	Aromatic interactions of allenyl-anthracene derivatives with pi-electron acceptor molecules: an experimental and computational study. Supramolecular Chemistry, 2020, 32, 39-48.	1.5	0
134	A unified machine-learning protocol for asymmetric catalysis as a proof of concept demonstration using asymmetric hydrogenation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1339-1345.	3.3	62
135	Solvent dependence of the stereoselectivity in bipyridine N,N′-dioxide catalyzed allylation of aromatic aldehydes: A computational perspective. Molecular Catalysis, 2020, 483, 110712.	1.0	2
136	Quantitative Structure–Selectivity Relationships in Enantioselective Catalysis: Past, Present, and Future. Chemical Reviews, 2020, 120, 1620-1689.	23.0	117
137	Coldâ€Catalyzed Atroposelective Synthesis of 1,1′â€Binaphthaleneâ€2,3′â€diols. Angewandte Chemie - International Edition, 2020, 59, 5647-5650.	7.2	59
138	Enantiospecific Synthesis of Nepetalactones by One-Step Oxidative NHC Catalysis. Organic Letters, 2020, 22, 386-390.	2.4	16
139	Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates. Nature Chemistry, 2020, 12, 990-1004.	6.6	113
140	A robust and tunable halogen bond organocatalyzed 2-deoxyglycosylation involving quantum tunneling. Nature Communications, 2020, 11, 4911.	5.8	37
141	The role of noncovalent interactions in olefin polymerization catalysis: a further look to the fluorinated ligand effect. Molecular Catalysis, 2020, 494, 111118.	1.0	6
142	Protobranching as repulsion-induced attraction: a prototype for geminal stabilization. Physical Chemistry Chemical Physics, 2020, 22, 16998-17006.	1.3	1
143	Modeling the Mechanism of CO2/Cyclohexene Oxide Copolymerization Catalyzed by Chiral Zinc β-Diiminates: Factors Affecting Reactivity and Isotacticity. ACS Catalysis, 2020, 10, 8870-8879.	5.5	17
144	Intermolecular Interactions Involving Heavy Alkenes H ₂ Siâ•TH ₂ (T = C, Si, Ge, Sn,) Tj ET	Qq1 1 0.7	84314 rgB
145	Applications of Quantum Chemistry in Pharmaceutical Process Development: Current State and Opportunities. Organic Process Research and Development, 2020, 24, 1496-1507.	1.3	25
146	Catalysis on Pristine 2D Materials via Dispersion and Electrostatic Interactions. Journal of Physical Chemistry A, 2020, 124, 6977-6985.	1.1	17

#	Article	IF	CITATIONS
147	Deconjugated butenolide: a versatile building block for asymmetric catalysis. Chemical Society Reviews, 2020, 49, 6755-6788.	18.7	42
148	Recent Developments in Enantioselective Transition Metal Catalysis Featuring Attractive Noncovalent Interactions between Ligand and Substrate. ACS Catalysis, 2020, 10, 10672-10714.	5.5	127
149	Origin and stabilization of axial chirality in the construction of naphthyl-C2-indoles: a DFT study. Organic Chemistry Frontiers, 2020, 7, 3166-3173.	2.3	8
150	Why Can Cationic Halogen Bond Donors Activate the Ritter-Type Solvolysis of Benzhydryl Bromide but Cationic Hydrogen Bond Donors Can Not?. ACS Omega, 2020, 5, 21862-21872.	1.6	10
151	The Effect of Solvent–Substrate Noncovalent Interactions on the Diastereoselectivity in the Intramolecular Carbonyl-Ene and the Staudinger [2 + 2] Cycloaddition Reactions. Journal of Physical Chemistry A, 2020, 124, 8019-8028.	1.1	5
152	Unraveling the Importance of Noncovalent Interactions in Asymmetric Hydroformylation Reactions. Journal of the American Chemical Society, 2020, 142, 17079-17092.	6.6	29
153	Modulating Stereoselectivity through Electrostatic Interactions in a SPINOL-Phosphoric Acid-Catalyzed Synthesis of 2,3-Dihydroquinazolinones. ACS Catalysis, 2020, 10, 12292-12299.	5.5	17
154	A theoretical review for novel Lewis base amine/imine-catalyzed reactions. Organic and Biomolecular Chemistry, 2020, 18, 6781-6800.	1.5	16
155	Iterative Supervised Principal Component Analysis Driven Ligand Design for Regioselective Ti-Catalyzed Pyrrole Synthesis. ACS Catalysis, 2020, 10, 13504-13517.	5.5	20
156	A ferrocene-templated Pd-bearing molecular reactor. Dalton Transactions, 2020, 49, 6974-6979.	1.6	9
157	Development of a Computer-Guided Workflow for Catalyst Optimization. Descriptor Validation, Subset Selection, and Training Set Analysis. Journal of the American Chemical Society, 2020, 142, 11578-11592.	6.6	48
158	Recent applications of thiourea-based organocatalysts in asymmetric multicomponent reactions (AMCRs). Organic and Biomolecular Chemistry, 2020, 18, 5513-5532.	1.5	93
159	A Simple and Efficient Protocol for Proline-Catalysed Asymmetric Aldol Reaction. Catalysts, 2020, 10, 649.	1.6	12
160	Energetics of Dynamic Kinetic Asymmetric Transformation in Suzuki–Miyaura Coupling. ACS Catalysis, 2020, 10, 4349-4360.	5.5	6
161	Size is Important: Artificial Catalyst Mimics Behavior of Natural Enzymes. IScience, 2020, 23, 100960.	1.9	13
162	Attracting Opposites: Promiscuous Ionâ~Ï€ Binding in the Nucleobases. Journal of Physical Chemistry A, 2020, 124, 4128-4140.	1.1	3
163	Enantioselective Desymmetrizations of Diesters to Synthesize Fully Substituted Chiral Centers of 3,4â€Ðihydrocoumarins and Related Compounds. ChemistrySelect, 2020, 5, 3018-3022.	0.7	7
164	Re-Engineering Organocatalysts for Asymmetric Friedel–Crafts Alkylation of Indoles through Computational Studies. Journal of Organic Chemistry, 2020, 85, 9969-9978.	1.7	15

#	ARTICLE Catalyst- and Silane-Controlled Enantioselective Hydrofunctionalization of Alkenes by	IF	CITATIONS
165	Cobalt-Catalyzed Hydrogen Atom Transfer and Radical-Polar Crossover. Journal of thé American Chemical Society, 2020, 142, 13481-13490.	6.6	75
166	Automated in Silico Design of Homogeneous Catalysts. ACS Catalysis, 2020, 10, 2354-2377.	5.5	119
167	Gold atalyzed Atroposelective Synthesis of 1,1′â€Binaphthaleneâ€2,3′â€diols. Angewandte Chemie, 20 5696-5699.	20, 132, 1.6	22
168	Revealing a Decisive Role for Secondary Coordination Sphere Nucleophiles on Methane Activation. Journal of the American Chemical Society, 2020, 142, 3125-3131.	6.6	7
169	The Sizeâ€Accelerated Kinetic Resolution of Secondary Alcohols. Angewandte Chemie - International Edition, 2021, 60, 774-778.	7.2	17
170	Synthesis and characterization of metal phthalocyanine bearing carboxylic acid anchoring groups for nanoparticle dispersion and their application to color filters. Dyes and Pigments, 2021, 184, 108737.	2.0	19
171	Asymmetric Synthesis of Hydroquinolines with α,αâ€Disubstitution through Organocatalyzed Kinetic Resolution. Angewandte Chemie, 2021, 133, 5328-5332.	1.6	12
172	Asymmetric Synthesis of Hydroquinolines with α,αâ€Disubstitution through Organocatalyzed Kinetic Resolution. Angewandte Chemie - International Edition, 2021, 60, 5268-5272.	7.2	38
173	<scp>QChASM</scp> : Quantum chemistry automation and structure manipulation. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1510.	6.2	28
174	Origins of Lewis acid acceleration in nickel-catalysed C–H, C–C and C–O bond cleavage. Catalysis Science and Technology, 2021, 11, 4417-4428.	2.1	21
175	Computational methods for training set selection and error assessment applied to catalyst design: guidelines for deciding which reactions to run first and which to run next. Reaction Chemistry and Engineering, 2021, 6, 694-708.	1.9	12
176	In the search for ditriel Bâ< Al non-covalent bonding. New Journal of Chemistry, 2021, 45, 16740-16749.	1.4	0
177	Systematic Search for Transition States in Complex Molecules: Computational Analyses of Regio- and Stereoselective Interflavan Bond Formation in Flavan-3-ols. Heterocycles, 2021, 102, 1061.	0.4	2
178	Noncovalent interactions in Ir-catalyzed remote C–H borylation: a recent update. Organic Chemistry Frontiers, 2021, 8, 4349-4358.	2.3	20
179	<i>In silico</i> characterization and prediction of thiourea-like neutral bidentate halogen bond catalysts. Organic and Biomolecular Chemistry, 2021, 19, 7051-7060.	1.5	1
180	Bifunctional squaramides with benzyl-like fragments: analysis of CHâ<¯i€ interactions by a multivariate linear regression model and quantum chemical topology. Organic Chemistry Frontiers, 2021, 8, 3217-3227.	2.3	5
181	Selectivity in organocatalysis—From qualitative to quantitative predictive models. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1518.	6.2	23
182	Challenging the electrostatic <i>σ</i> â€hole picture of halogen bonding using minimal models and the interacting quantum atoms approach. Journal of Computational Chemistry, 2021, 42, 676-687.	1.5	22

#	Article	IF	CITATIONS
183	Mechanistic Studies on <i>N</i> -Heterocyclic Carbene-Catalyzed Umpolung of β,γ-Unsaturated α-Diketones. Journal of Organic Chemistry, 2021, 86, 4432-4439.	1.7	3
184	Intermolecular interactions between the heavy alkenes H2Si = TH2 (T = C, Si, Ge, Sn, Pb) and acetylene. Journal of Molecular Modeling, 2021, 27, 110.	0.8	5
185	A Conformerâ€Dependent, Quantitative Quadrant Model. European Journal of Organic Chemistry, 2021, 2021, 2021, 2343-2354.	1.2	7
186	Energy Decomposition Analysis Reveals the Nature of Lone Pairâ^ï€ Interactions with Cationic ï€ Systems in Catalytic Acyl Transfer Reactions. Organic Letters, 2021, 23, 4411-4414.	2.4	12
187	Plausible Pnicogen Bonding of epi-Cinchonidine as a Chiral Scaffold in Catalysis. Frontiers in Chemistry, 2021, 9, 669515.	1.8	7
188	Melding of Experiment and Theory Illuminates Mechanisms of Metal-Catalyzed Rearrangements: Computational Approaches and Caveats. Synthesis, 2021, 53, 3639-3652.	1.2	3
189	Could London Dispersion Force Control Regioselective (2 + 2) Cyclodimerizations of Benzynes? YES: Application to the Synthesis of Helical Biphenylenes. Journal of the American Chemical Society, 2021, 143, 10853-10859.	6.6	19
190	Nâ€Heterocyclic Carbene/Carboxylic Acid Co atalysis Enables Oxidative Esterification of Demanding Aldehydes/Enals, at Low Catalyst Loading. Angewandte Chemie, 2021, 133, 19783-19788.	1.6	11
191	Nâ€Heterocyclic Carbene/Carboxylic Acid Coâ€Catalysis Enables Oxidative Esterification of Demanding Aldehydes/Enals, at Low Catalyst Loading. Angewandte Chemie - International Edition, 2021, 60, 19631-19636.	7.2	25
192	Emergence of Highly Enantioselective Catalytic Activity in a Helical Polymer Mediated by Deracemization of Racemic Pendants. Journal of the American Chemical Society, 2021, 143, 12725-12735.	6.6	45
193	Electric Fields in Catalysis: From Enzymes to Molecular Catalysts. ACS Catalysis, 2021, 11, 10923-10932.	5.5	67
194	Predicting Solvent-Dependent Nucleophilicity Parameter with a Causal Structure Property Relationship. Journal of Chemical Information and Modeling, 2021, 61, 4890-4899.	2.5	16
195	π–π Noncovalent Interaction Involving 1,2,4- and 1,3,4-Oxadiazole Systems: The Combined Experimental, Theoretical, and Database Study. Molecules, 2021, 26, 5672.	1.7	32
196	Noncovalent CHâ€i€ and ï€â€i€ Interactions in Phosphoramidite Palladium(II) Complexes with Strong Conformational Preference. Angewandte Chemie, 2021, 133, 26036.	1.6	0
197	Visibleâ€Lightâ€Induced Selective Photolysis of Phosphonium Iodide Salts for Monofluoromethylations. Angewandte Chemie - International Edition, 2021, 60, 25477-25484.	7.2	69
198	Noncovalent CH–Ĩ€ and π–Ĩ€ Interactions in Phosphoramidite Palladium(II) Complexes with Strong Conformational Preference. Angewandte Chemie - International Edition, 2021, 60, 25832-25838.	7.2	9
199	Visibleâ€Lightâ€Induced Selective Photolysis of Phosphonium Iodide Salts for Monofluoromethylations. Angewandte Chemie, 2021, 133, 25681-25688.	1.6	8
200	Structural insights into coordination polymers based on 6s2 Pb(II) and Bi(III) centres connected via heteroaromatic carboxylate linkers and their potential applications. Coordination Chemistry Reviews, 2021, 443, 213935.	9.5	24

#	Article	IF	Citations
201	Comprehensive Stereochemical Models for Selectivity Prediction in Diverse Chiral Phosphate-Catalyzed Reaction Space. ACS Catalysis, 2021, 11, 11897-11905.	5.5	12
202	Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts. Chemical Science, 2021, 12, 6879-6889.	3.7	54
203	Emerging computational approaches for the study of regio- and stereoselectivity in organic synthesis. Organic Chemistry Frontiers, 2021, 8, 5165-5181.	2.3	11
204	On the question of steric repulsion <i>versus</i> noncovalent attractive interactions in chiral phosphoric acid catalyzed asymmetric reactions. Physical Chemistry Chemical Physics, 2021, 23, 18936-18950.	1.3	10
205	Long-Distance Chirality Transfer from P-Ligand to Prochiral Dihydrosilanes via Pd(II) Aryl lodide Complex in Pd-Catalyzed Silylation of Aryl lodide: A DFT Study. Journal of Organic Chemistry, 2020, 85, 14360-14368.	1.7	19
206	Importance of C–H Hydrogen Bonding in Asymmetric Catalysis. RSC Catalysis Series, 2019, , 26-65.	0.1	1
207	Soft Forces in Organic Synthesis by C–N Coupling Reactions. RSC Catalysis Series, 2019, , 188-208.	0.1	4
208	The challenge of non-covalent interactions: theory meets experiment for reconciling accuracy and interpretation. Journal of Physics Condensed Matter, 2020, 32, 343002.	0.7	19
210	Insight into Carbocation Induced Nonâ€covalent Interactions in Methanolâ€toâ€olefins Reaction over ZSMâ€5 Zeolite from Solidâ€State NMR Spectroscopy. Angewandte Chemie, 0, , .	1.6	2
211	Insights into Organoamine-Catalyzed Asymmetric Synthesis of Axially Chiral Allenoates Using Morita–Baylis–Hillman Carbonates and Trisubstituted Allenoates: Mechanism and Origin of Stereoselectivity. Journal of Organic Chemistry, 2021, 86, 15276-15283.	1.7	10
212	Insight into Carbocationâ€Induced Noncovalent Interactions in the Methanolâ€toâ€Olefins Reaction over ZSMâ€5 Zeolite by Solidâ€State NMR Spectroscopy. Angewandte Chemie - International Edition, 2021, 60, 26847-26854.	7.2	9
213	Noncovalent Interactions in C–H Bond Functionalization. RSC Catalysis Series, 2019, , 1-25.	0.1	2
214	Noncovalent Interactions in Ionic Liquids. RSC Catalysis Series, 2019, , 350-376.	0.1	0
215	Noncovalent Interactions in Biocatalysis – A Theoretical Perspective. RSC Catalysis Series, 2019, , 608-627.	0.1	0
216	CHAPTER 12. Noncovalent Interactions in Asymmetric Reactions Catalysed by Chiral Phosphoric Acids. RSC Catalysis Series, 2019, , 253-282.	0.1	0
217	Noncovalent Interactions in Olefin Polymerization Catalysis Promoted by Transition Metals. RSC Catalysis Series, 2019, , 393-414.	0.1	0
219	Peptide Self-assembly Applied to Catalytic Asymmetric Aldol Reactions. RSC Soft Matter, 2020, , 126-173.	0.2	1
220	Die größenbeschleunigte kinetische Racematspaltung sekundäer Alkohole. Angewandte Chemie, 2021, 133, 786-791.	1.6	4

#	Article	IF	CITATIONS
221	Coming of Age of Computational Chemistry from a Resilient Past to a Promising Future. Israel Journal of Chemistry, 0, , .	1.0	2
222	Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Topics in Catalysis, 2022, 65, 6-39.	1.3	27
223	The mechanism and origin of selectivities for NHC-catalyzed synthesis of axially chiral benzothiophene/benzofuran-fused biaryls. Organic and Biomolecular Chemistry, 2022, 20, 1662-1670.	1.5	11
224	Intramolecular Amino-thiolysis Cyclization of Graphene Oxide Modified with Sulfur Dioxide: XPS and Solid-State NMR Studies. Journal of Physical Chemistry C, 2022, 126, 1729-1741.	1.5	3
225	Effect of Solvents on Proline Modified at the Secondary Sphere: A Multivariate Exploration. Journal of Organic Chemistry, 2022, 87, 1850-1857.	1.7	4
226	Computational chemistry and the study and design of catalysts. , 2022, , 299-332.		1
227	Molecular insights into chirality transfer from double axially chiral phosphoric acid in a synergistic enantioselective intramolecular amination. Chemical Science, 2022, 13, 1323-1334.	3.7	6
228	Cooperative Effect of Noncovalent Interactions on Tetrel Bonding in Halogenated Silanes. ChemPhysChem, 2022, , .	1.0	3
229	The mechanism and impact of mono/bis(iodoimidazolium) halogen bond donor catalysts on Michael addition of indole with <i>trans</i> -crotonophenone: DFT calculations. Physical Chemistry Chemical Physics, 2022, 24, 6690-6698.	1.3	5
230	Integrated Experimental and Computational Studies on the Organocatalytic Kinetic Resolution of β-Unfunctionalized Primary Alcohols Using a Chiral 1,2-Diamine: The Importance of Noncovalent Interactions. Journal of Organic Chemistry, 2022, 87, 4468-4475.	1.7	2
231	Understanding the catalysis by bis-selenonium cations as bidentate chalcogen bond donors. , 2022, 1, 100008.		7
232	Computational Evaluation and Design of Polyethylene Zirconocene Catalysts with Noncovalent Dispersion Interactions. Organometallics, 2022, 41, 581-593.	1.1	4
233	Molecular descriptors and QSSR models in asymmetric catalysis. Mini-Reviews in Organic Chemistry, 2022, 19, .	0.6	0
234	Catalyst design within asymmetric organocatalysis. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	6.2	5
235	How the Chalcogen Atom Size Dictates the Hydrogenâ€Bond Donor Capability of Carboxamides, Thioamides, and Selenoamides. Chemistry - A European Journal, 2022, 28, .	1.7	16
236	Support Vector Machineâ€Based Prediction of Enantioselectivity in Fluorination of Allylic Alcohols. ChemistrySelect, 2022, 7, .	0.7	3
237	Palladium Catalysis Featuring Attractive Noncovalent Interactions Enabled Highly Enantioselective Access to β-Quaternary Β-Lactams. ACS Catalysis, 2022, 12, 5559-5564.	5.5	6
238	Dynamic hydrogen bonds promote C–H functionalization driven by Clâ^' anion. , 2022, 2, 100016.		0

ARTICLE IF CITATIONS Machine Learning Prediction of <scp>Structureâ€Performance</scp> Relationship in Organic Synthesis. 239 2.6 6 Chinese Journal of Chemistry, 2022, 40, 2106-2117. Harvesting the fragment-based nature of bifunctional organocatalysts to enhance their activity. 240 2.3 Organic Chemistry Frontiers, 2022, 9, 4041-4051. Computational Catalyst Design with Data–Driven Tools – General Approaches and Applications. , 2024, 241 0 , 519-539. Engineered non-covalent π interactions as key elements for chiral recognition. Nature 242 5.8 34 Communications, 2022, 13, . Theoretical Perspectives in Organocatalysis. Chemistry - A European Journal, 2022, 28, . 243 1.7 11 Synthesis of Functionalized Five-Membered Heterocycles from Epoxides: A Hydrogen-Bond Donor 1.7 Catalytic Approach. Journal of Organic Chemistry, 2023, 88, 12872-12883. Visible-light mediated catalytic asymmetric radical deuteration at non-benzylic positions. Nature 245 5.8 30 Communications, 2022, 13, . The roles of charge transfer and polarization in non-covalent interactions: a perspective from ab 246 0.8 initio valence bond methods. Journal of Molecular Modeling, 2022, 28, . Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of 247 23.0 77 Enantiomers. Chemical Reviews, 2022, 122, 13235-13400. An overview of the applications of chiral phosphoric acid organocatalysts in enantioselective 248 2.3 additions to Cî€O and Cî€N bonds. Organic Chemistry Frontiers, 2022, 9, 6331-6399. Interrogating the thionium hydrogen bond as a noncovalent stereocontrolling interaction in chiral 249 3.7 5 phosphate catalysis. Chemical Science, 2022, 13, 11065-11073. Photochemical Dearomative Cycloadditions of Quinolines and Alkenes: Scope and Mechanism Studies. 6.6 Journal of the American Chemical Society, 2022, 144, 17680-17691. Asymmetric Three-Component Reaction to Assemble the Acyclic All-Carbon Quaternary Stereocenter 251 5.5 13 via Visible Light and Phosphoric Acid Catalysis. ACS Catalysis, 2022, 12, 13282-13291. Interheteromolecular Hyperconjugation Boosts (De)hydrogenation for Reversible 3.6 H₂Storage. ChemSusChem, 2023, 16, . Noncovalent wedging effect catalyzed the <i>cis</i> to <i>syn</i> transformation of a 253 surface-adsorbed polymer backbone toward an unusual thermodynamically stable supramolecular 1.3 1 product. Physical Chémistry Chemical Physics, 2022, 24, 30010-30016. Asymmetric Dihydroxylation-Based Kinetic Resolution of Allylic Amides Enabled by Noncovalent 254 2.4 Ï€-Ínteractions. Órganic Letters, 2022, 24, 8774<u>-8779.</u> Reactivity and Enantioselectivity in NHC Organocatalysis Provide Evidence for the Complex Role of 255 6.6 7 Modifications at the Secondary Sphere. Journal of the American Chemical Society, 2023, 145, 89-98. Weak and strong l̃€ interactions between two monomers—assessed with local vibrational mode theory. Canadian Journal of Chemistry, 2023, 101, 615-632.

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
257	Chalcogen bonding in copper(<scp>ii</scp>)-mediated synthesis. Faraday Discussions, 0, 244, 77-95.	1.6	3
258	Hydrogen-bonding interactions involving the Imidazol-2‑ylidene and its Heavy-atom analogues. Computational and Theoretical Chemistry, 2023, 1220, 114020.	1.1	4
259	Intermolecular interactions between the heavy-atom analogues of acetylene T2H2 (T = Si, Ge, Sn, Pb) and HCN. Journal of Molecular Modeling, 2023, 29, .	0.8	3
260	Role of Noncovalent Interactions in Inducing High Enantioselectivity in an Alcohol Reductive Deoxygenation Reaction Involving a Planar Carbocationic Intermediate. Journal of the American Chemical Society, 2023, 145, 2884-2900.	6.6	10
261	Enantioselective Synthesis of Spiro Heterocyclic Compounds Using a Combination of Organocatalysis and Transitionâ€Metal Catalysis. Chemical Record, 2023, 23, .	2.9	6
262	Catalytic asymmetric deuterosilylation of exocyclic olefins with mannose-derived thiols and deuterium oxide. Organic Chemistry Frontiers, 2023, 10, 1182-1190.	2.3	3
263	Graphene Catalysis Made Easy. , 2024, , 580-593.		0
264	Torsional Rotation in Ditopic Receptor Host and its Complex Formation with Resorcinol Guest: A Computational Study. ChemPhysChem, 0, , .	1.0	1
265	Control of Selectivity in Homogeneous Catalysis through Noncovalent Interactions. Chemistry - A European Journal, 2023, 29, .	1.7	13
266	The Role of Weak C–H···X (X = O, π) Interactions in Three 1-Hydroxy-2-naphthoic Acid Cocrystals with N-Containing Heteroaromatics: Structural Characterization and Synthon Cooperation. Crystals, 2023, 13, 402.	1.0	0
268	Tetrel-Bond Interactions Involving Metallylenes TH2 (T = Si, Ge, Sn, Pb): Dual Binding Behavior. Molecules, 2023, 28, 2577.	1.7	2
269	Catalyst-Substrate Helical Character Matching Determines the Enantioselectivity in the Ishihara-Type Iodoarenes Catalyzed Asymmetric Kita-Dearomative Spirolactonization. Journal of the American Chemical Society, 2023, 145, 7301-7312.	6.6	8
270	The Importance of Organocatalysis (Asymmetric and Nonâ€Asymmetric) in Agrochemicals. ChemistrySelect, 2023, 8, .	0.7	0
273	Transition metal–catalyzed remote C─H borylation: An emerging synthetic tool. Science Advances, 2023, 9, .	4.7	16
296	Development and application of decatungstate catalyzed C–H ¹⁸ F- and ¹⁹ F-fluorination, fluoroalkylation and beyond. Chemical Science, 2023, 14, 12883-12897.	3.7	1