Analysis of the Arabidopsis<i>superman</i>allelic serie genes demonstrate developmental robustness and joint boundary, flower meristem termination and carpel com

Annals of Botany 117, 905-923 DOI: 10.1093/aob/mcw023

Citation Report

#	Article	IF	CITATIONS
1	Robust views on plasticity and biodiversity. Annals of Botany, 2016, 117, 693-697.	1.4	10
2	Fine-tuning of auxin homeostasis governs the transition from floral stem cell maintenance to gynoecium formation. Nature Communications, 2017, 8, 1125.	5.8	91
3	Morphogenesis and Gene Mapping of deformed interior floral organ 1 (difo1), a Novel Mutant Associated with Floral Organ Development in Rice. Plant Molecular Biology Reporter, 2017, 35, 130-144.	1.0	5
4	Regulation of floral meristem activity through the interaction of AGAMOUS, SUPERMAN, and CLAVATA3 in Arabidopsis. Plant Reproduction, 2018, 31, 89-105.	1.3	33
5	Cys2/His2 Zinc-Finger Proteins in Transcriptional Regulation of Flower Development. International Journal of Molecular Sciences, 2018, 19, 2589.	1.8	44
6	<scp>SUPERMAN</scp> regulates floral whorl boundaries through control of auxin biosynthesis. EMBO Journal, 2018, 37, .	3.5	85
7	The Floral C-Lineage Genes Trigger Nectary Development in Petunia and Arabidopsis. Plant Cell, 2018, 30, 2020-2037.	3.1	42
8	CRABS CLAW and SUPERMAN Coordinate Hormone-, Stress-, and Metabolic-Related Gene Expression During Arabidopsis Stamen Development. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	5
9	Control of floral stem cell activity in Arabidopsis. Plant Signaling and Behavior, 2019, 14, 1659706.	1.2	17
10	Gynoecium development: networks in Arabidopsis and beyond. Journal of Experimental Botany, 2019, 70, 1447-1460.	2.4	42
11	The morphological relationship between carpels and ovules in angiosperms: pitfalls of morphological interpretation. Botanical Journal of the Linnean Society, 2019, 189, 201-227.	0.8	31
12	When to stop: an update on molecular mechanisms of floral meristem termination. Journal of Experimental Botany, 2019, 70, 1711-1718.	2.4	36
13	The VvSUPERMAN-like Gene Is Differentially Expressed between Bicarpellate and Tricarpellate Florets of Vitis vinifera L. Cv. â€~Xiangfei' and Its Heterologous Expression Reduces Carpel Number in Tomato. Plant and Cell Physiology, 2020, 61, 1760-1774.	1.5	4
14	Natural epialleles of Arabidopsis SUPERMAN display superwoman phenotypes. Communications Biology, 2020, 3, 772.	2.0	11
15	Flowering Plants in the Anthropocene: A Political Agenda. Trends in Plant Science, 2020, 25, 349-368.	4.3	28
16	MtSUPERMAN plays a key role in compound inflorescence and flower development in Medicago truncatula. Plant Journal, 2021, 105, 816-830.	2.8	17
17	ZbAGL11, a class D MADS-box transcription factor of Zanthoxylum bungeanum, is involved in sporophytic apomixis. Horticulture Research, 2021, 8, 23.	2.9	14
18	Identification and expression profiling of toxic boron-responsive microRNAs and their targets in sensitive and tolerant wheat cultivars. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2020, 45, 411-433.	0.8	6

ITATION REDO

#	Article	IF	CITATIONS
19	The Underlying Nature of Epigenetic Variation: Origin, Establishment, and Regulatory Function of Plant Epialleles. International Journal of Molecular Sciences, 2021, 22, 8618.	1.8	3
20	Epigenetic Footprints of CRISPR/Cas9-Mediated Genome Editing in Plants. Frontiers in Plant Science, 2019, 10, 1720.	1.7	20
21	Meristem Termination and Organ Number Control in Early Stage of Arabidopsis Flower Development. Journal of Cell Signaling, 2018, 03, .	0.3	0
22	SMALL REPRODUCTIVE ORGANS, a SUPERMANâ€like transcription factor, regulates stamen and pistil growth in rice. New Phytologist, 2022, 233, 1701-1718.	3.5	11
32	Evaluation of the Possible Contribution of Various Regulatory Genes to Determination of Carpel Number as a Potential Mechanism for Optimal Agricultural Yield. International Journal of Molecular Sciences, 2022, 23, 9723.	1.8	0
33	A genome-wide association study provides insights into fatty acid synthesis and metabolism in <i>Malus</i> fruits. Journal of Experimental Botany, 2022, 73, 7467-7476.	2.4	1
34	Cys2/His2-Type Zinc Finger Proteins Regulate Plant Growth and Development. Critical Reviews in Plant Sciences, 2022, 41, 351-363.	2.7	6
36	Progresses of CRISPR/Cas9 genome editing in forage crops. Journal of Plant Physiology, 2022, 279, 153860.	1.6	5
37	VvAGAMOUS Affect Development of Four Different Grape Species Ovary. Phyton, 2023, 92, 1125-1138.	0.4	0
38	SUPERMAN strikes again in legumes. Frontiers in Plant Science, 0, 14, .	1.7	1
40	The ABC of Flower Development in Monocots: The Model of Rice Spikelet. Methods in Molecular Biology, 2023, , 59-82.	0.4	2

CITATION REPORT