Reward and choice encoding in terminals of midbrain d striatal target

Nature Neuroscience 19, 845-854 DOI: 10.1038/nn.4287

Citation Report

#	Article	IF	CITATIONS
1	Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature, 2016, 535, 505-510.	27.8	462
2	Pallidal spiking activity reflects learning dynamics and predicts performance. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6281-E6289.	7.1	21
3	Amygdala and Ventral Striatum Make Distinct Contributions to Reinforcement Learning. Neuron, 2016, 92, 505-517.	8.1	112
4	Reassessing wanting and liking in the study of mesolimbic influence on food intake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R811-R840.	1.8	38
5	Dynamic Nigrostriatal Dopamine Biases Action Selection. Neuron, 2017, 93, 1436-1450.e8.	8.1	102
6	The phasic dopamine signal maturing: from reward via behavioural activation to formal economic utility. Current Opinion in Neurobiology, 2017, 43, 139-148.	4.2	130
7	Neural Circuitry of Reward Prediction Error. Annual Review of Neuroscience, 2017, 40, 373-394.	10.7	273
8	Effects of Ventral Striatum Lesions on Stimulus-Based versus Action-Based Reinforcement Learning. Journal of Neuroscience, 2017, 37, 6902-6914.	3.6	43
9	The missing, the short, and the long: Levodopa responses and dopamine actions. Annals of Neurology, 2017, 82, 4-19.	5.3	32
10	Dopamine transients are sufficient and necessary for acquisition of model-based associations. Nature Neuroscience, 2017, 20, 735-742.	14.8	222
11	Central GLP-1 receptor activation modulates cocaine-evoked phasic dopamine signaling in the nucleus accumbens core. Physiology and Behavior, 2017, 176, 17-25.	2.1	54
12	Motivational neural circuits underlying reinforcement learning. Nature Neuroscience, 2017, 20, 505-512.	14.8	144
13	The many worlds hypothesis of dopamine prediction error: implications of a parallel circuit architecture in the basal ganglia. Current Opinion in Neurobiology, 2017, 46, 241-247.	4.2	36
14	Striatal GPR88 Modulates Foraging Efficiency. Journal of Neuroscience, 2017, 37, 7939-7947.	3.6	14
15	Aldehyde dehydrogenase 1–positive nigrostriatal dopaminergic fibers exhibit distinct projection pattern and dopamine release dynamics at mouse dorsal striatum. Scientific Reports, 2017, 7, 5283.	3.3	34
16	Separate mesocortical and mesolimbic pathways encode effort and reward learning signals. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7395-E7404.	7.1	107
17	Combined Social and Spatial Coding in a Descending Projection from the Prefrontal Cortex. Cell, 2017, 171, 1663-1677.e16.	28.9	228
18	History-based action selection bias in posterior parietal cortex. Nature Communications, 2017, 8, 1242.	12.8	117

#	Article	IF	CITATIONS
19	Reinforcement Learning and Episodic Memory in Humans and Animals: An Integrative Framework. Annual Review of Psychology, 2017, 68, 101-128.	17.7	280
20	The Dopamine Prediction Error: Contributions to Associative Models of Reward Learning. Frontiers in Psychology, 2017, 8, 244.	2.1	66
21	Risk of punishment influences discrete and coordinated encoding of reward-guided actions by prefrontal cortex and VTA neurons. ELife, 2017, 6, .	6.0	41
22	Parsing Heterogeneous Striatal Activity. Frontiers in Neuroanatomy, 2017, 11, 43.	1.7	3
23	Monitoring the Right Collection: The Central Cholinergic Neurons as an Instructive Example. Frontiers in Neural Circuits, 2017, 11, 31.	2.8	14
24	Refinement of a neuronal differentiation protocol predominantly yields human iPS cell-derived dopaminergic neurons for the investigation of neurodegenerative pathomechanisms in vitro. Journal of Cellular Biotechnology, 2017, 3, 61-80.	0.5	0
25	The biological and behavioral computations that influence dopamine responses. Current Opinion in Neurobiology, 2018, 49, 123-131.	4.2	4
26	Cell-Type-Specific Contributions of Medial Prefrontal Neurons to Flexible Behaviors. Journal of Neuroscience, 2018, 38, 4490-4504.	3.6	66
27	Dopamine neuron activity before action initiation gates and invigorates future movements. Nature, 2018, 554, 244-248.	27.8	416
28	Inhibiting Mesolimbic Dopamine Neurons Reduces the Initiation and Maintenance of Instrumental Responding. Neuroscience, 2018, 372, 306-315.	2.3	37
29	Viral vector strategies for investigating midbrain dopamine circuits underlying motivated behaviors. Pharmacology Biochemistry and Behavior, 2018, 174, 23-32.	2.9	8
30	Model-based predictions for dopamine. Current Opinion in Neurobiology, 2018, 49, 1-7.	4.2	119
31	Chronic Exposure to Methamphetamine Disrupts Reinforcement-Based Decision Making in Rats. Neuropsychopharmacology, 2018, 43, 770-780.	5.4	43
32	Multiple Dopamine Systems: Weal and Woe of Dopamine. Cold Spring Harbor Symposia on Quantitative Biology, 2018, 83, 83-95.	1.1	49
33	Rethinking dopamine as generalized prediction error. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181645.	2.6	111
34	Parallel Excitatory and Inhibitory Neural Circuit Pathways Underlie Reward-Based Phasic Neural Responses. Complexity, 2018, 2018, 1-20.	1.6	2
35	Dynamics and Functional Role of Dopaminergic Neurons in the Ventral Tegmental Area during Itch Processing. Journal of Neuroscience, 2018, 38, 9856-9869.	3.6	40
36	Double threat in striatal dopamine signaling. Nature Neuroscience, 2018, 21, 1296-1297.	14.8	0

#	Article	IF	CITATIONS
37	Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. Nature Neuroscience, 2018, 21, 1421-1430.	14.8	258
38	Belief state representation in the dopamine system. Nature Communications, 2018, 9, 1891.	12.8	75
39	What does dopamine mean?. Nature Neuroscience, 2018, 21, 787-793.	14.8	597
40	A dopaminergic switch for fear to safety transitions. Nature Communications, 2018, 9, 2483.	12.8	128
41	Vagal Interoceptive Modulation of Motivated Behavior. Physiology, 2018, 33, 151-167.	3.1	65
42	Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties. Nature Neuroscience, 2018, 21, 1072-1083.	14.8	286
43	Ambroxol modulates 6-Hydroxydopamine-induced temporal reduction in Glucocerebrosidase (GCase) enzymatic activity and Parkinson's disease symptoms. Biochemical Pharmacology, 2018, 155, 479-493.	4.4	17
44	Region-Specific Regulation of Presynaptic Dopamine Homeostasis by D ₂ Autoreceptors Shapes the <i>In Vivo</i> Impact of the Neuropsychiatric Disease-Associated DAT Variant Val559. Journal of Neuroscience, 2018, 38, 5302-5312.	3.6	34
45	Coordinated Reductions in Excitatory Input to the Nucleus Accumbens Underlie Food Consumption. Neuron, 2018, 99, 1260-1273.e4.	8.1	67
46	Leveraging calcium imaging to illuminate circuit dysfunction in addiction. Alcohol, 2019, 74, 47-63.	1.7	43
47	A Paranigral VTA Nociceptin Circuit that Constrains Motivation for Reward. Cell, 2019, 178, 653-671.e19.	28.9	76
48	Orbitofrontal Circuits Control Multiple Reinforcement-Learning Processes. Neuron, 2019, 103, 734-746.e3.	8.1	106
49	Stable Representations of Decision Variables for Flexible Behavior. Neuron, 2019, 103, 922-933.e7.	8.1	123
50	Learning from Action: Reconsidering Movement Signaling in Midbrain Dopamine Neuron Activity. Neuron, 2019, 104, 63-77.	8.1	97
51	The Meaning of Behavior: Discriminating Reflex and Volition in the Brain. Neuron, 2019, 104, 47-62.	8.1	121
52	Brain reward network effects underlie septo-hippocampal control of flexible decision making. Neuropsychopharmacology, 2019, 44, 2153-2154.	5.4	1
53	Dopamine and Cognitive Control in Prefrontal Cortex. Trends in Cognitive Sciences, 2019, 23, 213-234.	7.8	309
54	Synchronicity: The Role of Midbrain Dopamine in Whole-Brain Coordination. ENeuro, 2019, 6, ENEURO.0345-18.2019.	1.9	22

#	Article	IF	CITATIONS
55	Topography of Reward and Aversion Encoding in the Mesolimbic Dopaminergic System. Journal of Neuroscience, 2019, 39, 6472-6481.	3.6	74
56	Striatal circuits for reward learning and decision-making. Nature Reviews Neuroscience, 2019, 20, 482-494.	10.2	337
57	Subcortical Substrates of Explore-Exploit Decisions in Primates. Neuron, 2019, 103, 533-545.e5.	8.1	87
58	Specialized coding of sensory, motor and cognitive variables in VTA dopamine neurons. Nature, 2019, 570, 509-513.	27.8	361
59	Dissociable dopamine dynamics for learning and motivation. Nature, 2019, 570, 65-70.	27.8	487
60	A Retinal Circuit Generating a Dynamic Predictive Code for Oriented Features. Neuron, 2019, 102, 1211-1222.e3.	8.1	30
61	Decreases in Cued Reward Seeking After Reward-Paired Inhibition of Mesolimbic Dopamine. Neuroscience, 2019, 412, 259-269.	2.3	17
62	What, If, and When to Move: Basal Ganglia Circuits and Self-Paced Action Initiation. Annual Review of Neuroscience, 2019, 42, 459-483.	10.7	184
63	Behavioral Paradigms to Probe Individual Mouse Differences in Value-Based Decision Making. Frontiers in Neuroscience, 2019, 13, 50.	2.8	8
64	Activation of the Rostral Intralaminar Thalamus Drives Reinforcement through Striatal Dopamine Release. Cell Reports, 2019, 26, 1389-1398.e3.	6.4	42
65	Mechanisms and regulation of dopamine release. Current Opinion in Neurobiology, 2019, 57, 46-53.	4.2	98
66	State-specific gating of salient cues by midbrain dopaminergic input to basal amygdala. Nature Neuroscience, 2019, 22, 1820-1833.	14.8	103
67	Contributions of nucleus accumbens dopamine to cognitive flexibility. European Journal of Neuroscience, 2019, 50, 2023-2035.	2.6	32
68	Dopaminergic regulation of vocal-motor plasticity and performance. Current Opinion in Neurobiology, 2019, 54, 127-133.	4.2	14
69	Rebamipide Mitigates Impairments in Mitochondrial Function and Bioenergetics with α-Synuclein Pathology in 6-OHDA-Induced Hemiparkinson's Model in Rats. Neurotoxicity Research, 2019, 35, 542-562.	2.7	13
70	Model-Free and Model-Based Influences in Addiction-Related Behaviors. Biological Psychiatry, 2019, 85, 936-945.	1.3	52
71	What Is the Relationship between Dopamine and Effort?. Trends in Neurosciences, 2019, 42, 79-91.	8.6	90
72	Medium spiny neurons of the anterior dorsomedial striatum mediate reversal learning in a cell-type-dependent mapper. Brain Structure and Function, 2019, 224, 419-434	2.3	17

#	Article	IF	CITATIONS
73	Dopamine signals related to appetitive and aversive events in paradigms that manipulate reward and avoidability. Brain Research, 2019, 1713, 80-90.	2.2	23
74	An Integrated Model of Action Selection: Distinct Modes of Cortical Control of Striatal Decision Making. Annual Review of Psychology, 2019, 70, 53-76.	17.7	76
75	Transient and sustained effects of dopamine and serotonin signaling in motivationâ€related behavior. Psychiatry and Clinical Neurosciences, 2020, 74, 91-98.	1.8	26
76	Dopaminergic and Prefrontal Basis of Learning from Sensory Confidence and Reward Value. Neuron, 2020, 105, 700-711.e6.	8.1	109
77	Dopamine D1 and muscarinic acetylcholine receptors in dorsal striatum are required for high speed running. Neuroscience Research, 2020, 156, 50-57.	1.9	6
78	Meta-analytic clustering dissociates brain activity and behavior profiles across reward processing paradigms. Cognitive, Affective and Behavioral Neuroscience, 2020, 20, 215-235.	2.0	18
79	Distinct Signaling by Ventral Tegmental Area Glutamate, GABA, and Combinatorial Glutamate-GABA Neurons in Motivated Behavior. Cell Reports, 2020, 32, 108094.	6.4	60
80	Dopamine: Don't Underestimate the Force. Current Biology, 2020, 30, R824-R826.	3.9	3
81	A Unified Framework for Dopamine Signals across Timescales. Cell, 2020, 183, 1600-1616.e25.	28.9	161
82	GPCR-Based Dopamine Sensors—A Detailed Guide to Inform Sensor Choice for In Vivo Imaging. International Journal of Molecular Sciences, 2020, 21, 8048.	4.1	32
83	Differential reinforcement encoding along the hippocampal long axis helps resolve the explore–exploit dilemma. Nature Communications, 2020, 11, 5407.	12.8	8
84	Candidate variants in TUB are associated with familial tremor. PLoS Genetics, 2020, 16, e1009010.	3.5	3
85	Context-Dependent Multiplexing by Individual VTA Dopamine Neurons. Journal of Neuroscience, 2020, 40, 7489-7509.	3.6	43
86	A Comparison of Dopaminergic and Cholinergic Populations Reveals Unique Contributions of VTA Dopamine Neurons to Short-Term Memory. Cell Reports, 2020, 33, 108492.	6.4	18
88	Clinical Computational Neuroscience. , 2020, , 168-190.		2
89	The neural and computational systems of social learning. Nature Reviews Neuroscience, 2020, 21, 197-212.	10.2	131
90	Heterogeneity in striatal dopamine circuits: Form and function in dynamic reward seeking. Journal of Neuroscience Research, 2020, 98, 1046-1069.	2.9	65
91	Temporally restricted dopaminergic control of reward-conditioned movements. Nature Neuroscience, 2020, 23, 209-216.	14.8	52

#	Article	IF	CITATIONS
92	Abnormal prefrontal cortex processing of reward prediction errors in recently diagnosed patients with bipolar disorder and their unaffected relatives. Bipolar Disorders, 2020, 22, 849-859.	1.9	4
94	Evolution of in vivo dopamine monitoring techniques. Pharmacology Biochemistry and Behavior, 2021, 200, 173078.	2.9	4
95	What is dopamine doing in model-based reinforcement learning?. Current Opinion in Behavioral Sciences, 2021, 38, 74-82.	3.9	11
96	Dopamine signals as temporal difference errors: recent advances. Current Opinion in Neurobiology, 2021, 67, 95-105.	4.2	26
97	Dopamine, Updated: Reward Prediction Error and Beyond. Current Opinion in Neurobiology, 2021, 67, 123-130.	4.2	52
98	Divergent Strategies for Learning in Males and Females. Current Biology, 2021, 31, 39-50.e4.	3.9	42
99	Effects of Amygdala Lesions on Object-Based Versus Action-Based Learning in Macaques. Cerebral Cortex, 2021, 31, 529-546.	2.9	14
100	Dynamic decision making and value computations in medial frontal cortex. International Review of Neurobiology, 2021, 158, 83-113.	2.0	5
101	Impulsivity and Response Inhibition Related Brain Networks in Adolescents With Internet Gaming Disorder: A Preliminary Study Utilizing Resting-State fMRI. Frontiers in Psychiatry, 2020, 11, 618319.	2.6	12
103	Protein Appetite Drives Macronutrient-Related Differences in Ventral Tegmental Area Neural Activity. Journal of Neuroscience, 2021, 41, 5080-5092.	3.6	13
105	Neural substrates of appetitive and aversive prediction error. Neuroscience and Biobehavioral Reviews, 2021, 123, 337-351.	6.1	32
108	New roles for dopamine in motor skill acquisition: lessons from primates, rodents, and songbirds. Journal of Neurophysiology, 2021, 125, 2361-2374.	1.8	17
109	Integrating the Roles of Midbrain Dopamine Circuits in Behavior and Neuropsychiatric Disease. Biomedicines, 2021, 9, 647.	3.2	23
111	Effects of caloric restriction on monoaminergic neurotransmission, peripheral hormones, and olfactory memory in aged rats. Behavioural Brain Research, 2021, 409, 113328.	2.2	4
112	Dopamine Axons in Dorsal Striatum Encode Contralateral Visual Stimuli and Choices. Journal of Neuroscience, 2021, 41, 7197-7205.	3.6	24
115	A mosaic of cost–benefit control over cortico-striatal circuitry. Trends in Cognitive Sciences, 2021, 25, 710-721.	7.8	39
117	Eavesdropping wires: Recording activity in axons using genetically encoded calcium indicators. Journal of Neuroscience Methods, 2021, 360, 109251.	2.5	17
118	Dopamine release in the nucleus accumbens core signals perceived saliency. Current Biology, 2021, 31, 4748-4761.e8.	3.9	94

ARTICLE IF CITATIONS # Striatal low-threshold spiking interneurons locally gate dopamine. Current Biology, 2021, 31, 119 3.9 10 4139-4147.e6. Evaluation of an action's effectiveness by the motor system in a dynamic environment.. Journal of Experimental Psychology: General, 2020, 149, 935-948. 121 2.1 Interpreting in vivo calcium signals from neuronal cell bodies, axons, and dendrites: a review. 139 3.3 65 Neurophotonics, 2019, 7, 1. Recent advances in understanding the role of phasic dopamine activity. F1000Research, 2019, 8, 1680. 140 Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation. PLoS 141 3.2 41 Computational Biology, 2016, 12, e1005145. Predictive representations can link model-based reinforcement learning to model-free mechanisms. PLoS Computational Biology, 2017, 13, e1005768. 3.2 203 Selective Effects of the Loss of NMDA or mGluR5 Receptors in the Reward System on Adaptive 143 1.9 11 Decision-Making. ENeuro, 2018, 5, ENEURO.0331-18.2018. Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice. 144 6.0 192 ELife, 2017, 6, . Dopamine neurons drive fear extinction learning by signaling the omission of expected aversive 145 6.0 112 outcomes. ELife, 2018, 7, . Reward prediction error does not explain movement selectivity in DMS-projecting dopamine neurons. 146 6.0 ELife, 2019, 8, . Coordination of rapid cholinergic and dopaminergic signaling in striatum during spontaneous 147 6.0 64 movement. ELife, 2019, 8, . Classical conditioning drives learned reward prediction signals in climbing fibers across the lateral 148 6.0 101 cerebellum. ELife, 2019, 8, . In vivo functional diversity of midbrain dopamine neurons within identified axonal projections. ELife, 149 6.0 59 2019, 8, . Disruption of $Nrxn1\hat{l}$ within excitatory forebrain circuits drives value-based dysfunction. ELife, 2020, 9, 6.0 14 Distinct signals in medial and lateral VTA dopamine neurons modulate fear extinction at different 151 6.0 63 times. ELife, 2020, 9, . Striatal direct and indirect pathway neurons differentially control the encoding and updating of 29 goal-directed learning. ELife, 2020, 9, . Precisely timed dopamine signals establish distinct kinematic representations of skilled movements. 153 6.0 34 ELife, 2020, 9, . Distinct temporal difference error signals in dopamine axons in three regions of the striatum in a 154 58 decision-making task. ELife, 2020, 9, .

#	Article	IF	CITATIONS
155	Context-dependent representations of movement in Drosophila dopaminergic reinforcement pathways. Nature Neuroscience, 2021, 24, 1555-1566.	14.8	54
156	Nigrostriatal dopamine signals sequence-specific action-outcome prediction errors. Current Biology, 2021, 31, 5350-5363.e5.	3.9	20
172	Two-Photon Microscopy for Studying Reward Circuits of the Brain. Neuromethods, 2021, , 339-363.	0.3	0
175	Impact of Early Life Stress on Reward Circuit Function and Regulation. Frontiers in Psychiatry, 2021, 12, 744690.	2.6	44
176	Striatal indirect pathway mediates exploration via collicular competition. Nature, 2021, 599, 645-649.	27.8	35
181	Optogenetic stimulation of ventral tegmental area dopaminergic neurons in a female rodent model of depression: The effect of different stimulation patterns. Journal of Neuroscience Research, 2022, 100, 897-911.	2.9	4
182	Reinforcement learning detuned in addiction: integrative and translational approaches. Trends in Neurosciences, 2022, 45, 96-105.	8.6	18
185	Slowly evolving dopaminergic activity modulates the moment-to-moment probability of reward-related self-timed movements. ELife, 2021, 10, .	6.0	28
187	Distinct role of nucleus accumbens D2-MSN projections to ventral pallidum in different phases of motivated behavior. Cell Reports, 2022, 38, 110380.	6.4	24
188	Reward signals in the cerebellum: Origins, targets, and functional implications. Neuron, 2022, 110, 1290-1303.	8.1	42
190	Multiplexed action-outcome representation by striatal striosome-matrix compartments detected with a mouse cost-benefit foraging task. Nature Communications, 2022, 13, 1541.	12.8	11
191	An action potential initiation mechanism in distal axons for the control of dopamine release. Science, 2022, 375, 1378-1385.	12.6	107
193	Mice exhibit stochastic and efficient action switching during probabilistic decision making. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113961119.	7.1	15
194	Seeking motivation and reward: Roles of dopamine, hippocampus, and supramammillo-septal pathway. Progress in Neurobiology, 2022, 212, 102252.	5.7	11
196	Angiotensin-Converting Enzyme 2 Activation Mitigates Behavioral Deficits and Neuroinflammatory Burden in 6-OHDA Induced Experimental Models of Parkinson's Disease. ACS Chemical Neuroscience, 2022, 13, 1491-1504.	3.5	5
197	Choice-selective sequences dominate in cortical relative to thalamic inputs to NAc to support reinforcement learning. Cell Reports, 2022, 39, 110756.	6.4	20
198	A unidirectional but not uniform striatal landscape of dopamine signaling for motivational stimuli. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	17
200	Cholinergic interneurons mediate cocaine extinction in male mice through plasticity across medium spiny neuron subtypes. Cell Reports, 2022, 39, 110874.	6.4	9

#	Article	IF	CITATIONS
202	Etiopathogenic Models of Psychosis Spectrum Illnesses Must Resolve Four Key Features. Biological Psychiatry, 2022, 92, 514-522.	1.3	6
204	Trajectory of aberrant reward processing in patients with bipolar disorder – A longitudinal fMRI study. Journal of Affective Disorders, 2022, 312, 235-244.	4.1	4
206	The dopamine circuit as a reward-taxis navigation system. PLoS Computational Biology, 2022, 18, e1010340.	3.2	4
207	Reinforcement learning: A brief guide for philosophers of mind. Philosophy Compass, 2022, 17, .	1.3	1
208	Adapting toÂEnvironment Changes Through Neuromodulation ofÂReinforcement Learning. Lecture Notes in Computer Science, 2022, , 115-126.	1.3	0
209	Striatal dopamine explains novelty-induced behavioral dynamics and individual variability in threat prediction. Neuron, 2022, 110, 3789-3804.e9.	8.1	33
211	Midbrain dopamine neurons signal phasic and ramping reward prediction error during goal-directed navigation. Cell Reports, 2022, 41, 111470.	6.4	7
212	Nigrostriatal dopamine pathway regulates auditory discrimination behavior. Nature Communications, 2022, 13, .	12.8	9
213	Behavioural and dopaminergic signatures of resilience. Nature, 2022, 611, 124-132.	27.8	38
216	Reinforcement learning deficits exhibited by postnatal PCP-treated rats enable deep neural network classification. Neuropsychopharmacology, 2023, 48, 1377-1385.	5.4	2
217	Modulation of ventromedial orbitofrontal cortical glutamatergic activity affects the explore-exploit balance and influences value-based decision-making. Cerebral Cortex, 2023, 33, 5783-5796.	2.9	4
219	Mesolimbic dopamine release conveys causal associations. Science, 2022, 378, .	12.6	53
221	Spontaneous behaviour is structured by reinforcement without explicit reward. Nature, 2023, 614, 108-117.	27.8	56
222	A neural substrate of sex-dependent modulation of motivation. Nature Neuroscience, 2023, 26, 274-284.	14.8	11
223	Behavioral encoding across timescales by region-specific dopamine dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	8
224	The Role of the Striatum in Motor Learning. Neuroscience and Behavioral Physiology, 2022, 52, 1218-1236.	0.4	0
226	Moving, fast and slow: behavioural insights into bradykinesia in Parkinson's disease. Brain, 2023, 146, 3576-3586.	7.6	6
227	The dopamine neuron synaptic map in the striatum. Cell Reports, 2023, 42, 112204.	6.4	10

#	Article	IF	CITATIONS
233	Ventral Pallidal GABAergic Neuron Calcium Activity Encodes Cue-Driven Reward Seeking and Persists in the Absence of Reward Delivery. Journal of Neuroscience, 2023, 43, 5191-5203.	3.6	2
234	FreiBox: A Versatile Open-Source Behavioral Setup for Investigating the Neuronal Correlates of Behavioral Flexibility via 1-Photon Imaging in Freely Moving Mice. ENeuro, 2023, 10, ENEURO.0469-22.2023.	1.9	0
237	Prediction error in dopamine neurons during associative learning. Neuroscience Research, 2024, 199, 12-20.	1.9	0
242	Overlapping representations of food and social stimuli in mouse VTA dopamine neurons. Neuron, 2023, 111, 3541-3553.e8.	8.1	7
243	Feasibility of dopamine as a vector-valued feedback signal in the basal ganglia. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	2
244	Functional architecture of dopamine neurons driving fear extinction learning. Neuron, 2023, 111, 3854-3870.e5.	8.1	4
245	Reward expectation enhances action-related activity of nigral dopaminergic and two striatal output pathways. Communications Biology, 2023, 6, .	4.4	1
246	An expanded GCaMP reporter toolkit for functional imaging in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2023, 13, .	1.8	1
249	Dual credit assignment processes underlie dopamine signals in a complex spatial environment. Neuron, 2023, 111, 3465-3478.e7.	8.1	5
251	Orbitofrontal cortex conveys stimulus and task information to the auditory cortex. Current Biology, 2023, 33, 4160-4173.e4.	3.9	4
252	Stress relief as a natural resilience mechanism against depression-like behaviors. Neuron, 2023, 111, 3789-3801.e6.	8.1	3
253	Striatal Dopamine Signals and Reward Learning. Function, 2023, 4, .	2.3	0
255	Lights, fiber, action! A primer on inÂvivo fiber photometry. Neuron, 2024, 112, 718-739.	8.1	1
257	Trajectory of reward-related abnormalities in unaffected relatives of patients with bipolar disorder – A longitudinal fMRI study. Journal of Psychiatric Research, 2024, 170, 217-224.	3.1	0
259	Ventral pallidum neurons projecting to the ventral tegmental area reinforce but do not invigorate reward-seeking behavior. Cell Reports, 2024, 43, 113669.	6.4	2
260	Dopamine across timescales and cell types: Relevance for phenotypes in Parkinson's disease progression. Experimental Neurology, 2024, 374, 114693.	4.1	0
261	Dopamine-independent effect of rewards on choices through hidden-state inference. Nature Neuroscience, 2024, 27, 286-297.	14.8	2
262	Striatal dopamine signals reflect perceived cue–action–outcome associations in mice. Nature Neuroscience, 2024, 27, 747-757.	14.8	3

#	Article	IF	CITATIONS
263	Dopamine transients follow a striatal gradient of reward time horizons. Nature Neuroscience, 2024, 27, 737-746.	14.8	2
264	Nucleus accumbens neurons dynamically respond to appetitive and aversive associative learning. Journal of Neurochemistry, 2024, 168, 312-327.	3.9	1
266	Different Effects of Peer Sex on Operant Responding for Social Interaction and Striatal Dopamine Activity. Journal of Neuroscience, 2024, 44, e1887232024.	3.6	0
267	Dopamine neuron activity encodes the length of upcoming contralateral movement sequences. Current Biology, 2024, 34, 1034-1047.e4.	3.9	0
268	Striatal dopamine release tracks the relationship between actions and their consequences. Cell Reports, 2024, 43, 113828.	6.4	0
271	The dynamic state of a prefrontal–hypothalamic–midbrain circuit commands behavioral transitions. Nature Neuroscience, 0, , .	14.8	0
272	Memory-specific encoding activities of the ventral tegmental area dopamine and GABA neurons. ELife, 0, 12, .	6.0	0
273	What Role Does Striatal Dopamine Play in Goal-directed Action?. Neuroscience, 2024, 546, 20-32.	2.3	0