Greening of the Earth and its drivers

Nature Climate Change 6, 791-795 DOI: 10.1038/nclimate3004

Citation Report

#	Article	IF	CITATIONS
1	Herbaceous Legume Encroachment Reduces Grass Productivity and Density in Arid Rangelands. PLoS ONE, 2016, 11, e0166743.	1.1	9
2	Drivers of U.S. toxicological footprints trajectory 1998–2013. Scientific Reports, 2016, 6, 39514.	1.6	29
3	Responses of land evapotranspiration to Earth's greening in CMIP5 Earth System Models. Environmental Research Letters, 2016, 11, 104006.	2.2	46
4	Precipitation and carbon-water coupling jointly control the interannual variability of global land gross primary production. Scientific Reports, 2016, 6, 39748.	1.6	57
5	Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environmental Research Letters, 2016, 11, 084001.	2.2	223
6	The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change, 2016, 6, 1023-1027.	8.1	734
7	Global estimation of effective plant rooting depth: Implications for hydrological modeling. Water Resources Research, 2016, 52, 8260-8276.	1.7	162
8	Ecosystem services from southern African woodlands and their future under global change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150312.	1.8	119
9	Developing ecospheres on transiently habitable planets: the genesis project. Astrophysics and Space Science, 2016, 361, 1.	0.5	8
10	The effect of atmospheric sulfate reductions on diffuse radiation and photosynthesis in the United States during 1995–2013. Geophysical Research Letters, 2016, 43, 9984-9993.	1.5	22
11	Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nature Communications, 2016, 7, 13428.	5.8	305
12	Increased lightâ€use efficiency in northern terrestrial ecosystems indicated by CO ₂ and greening observations. Geophysical Research Letters, 2016, 43, 11,339.	1.5	40
13	Increasing summer net CO ₂ uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI. Atmospheric Chemistry and Physics, 2016, 16, 9047-9066.	1.9	33
14	Effects of long-term rainfall decline on the structure and functioning of Hawaiian forests. Environmental Research Letters, 2016, 12, 094002.	2.2	9
15	Carbon losses in the Alps. Nature Geoscience, 2016, 9, 478-479.	5.4	1
16	Humans did it. Nature Climate Change, 2016, 6, 898-899.	8.1	3
17	Mycorrhizal association as a primary control of the CO ₂ fertilization effect. Science, 2016, 353, 72-74.	6.0	426
18	Trend shifts in satellite-derived vegetation growth in Central Eurasia, 1982–2013. Science of the Total Environment, 2017, 579, 1658-1674.	3.9	96

#	Article	IF	CITATIONS
19	Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening?. Remote Sensing of Environment, 2017, 191, 145-155.	4.6	258
20	Yield Response of Mediterranean Rangelands under a Changing Climate. Land Degradation and Development, 2017, 28, 1962-1972.	1.8	37
21	Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nature Ecology and Evolution, 2017, 1, 81.	3.4	156
22	Improved tree-ring archives will support earth-system science. Nature Ecology and Evolution, 2017, 1, 8.	3.4	68
23	The nonstationary impact of local temperature changes and ENSO on extreme precipitation at the global scale. Climate Dynamics, 2017, 49, 4281-4292.	1.7	37
24	ENSO elicits opposing responses of semi-arid vegetation between Hemispheres. Scientific Reports, 2017, 7, 42281.	1.6	15
25	Autumn NDVI contributes more and more to vegetation improvement in the growing season across the Tibetan Plateau. International Journal of Digital Earth, 2017, 10, 1098-1117.	1.6	8
26	Water availability drives gas exchange and growth of trees in northeastern US, not elevated CO2 and reduced acid deposition. Scientific Reports, 2017, 7, 46158.	1.6	44
27	Attribution of seasonal leaf area index trends in the northern latitudes with "optimally―integrated ecosystem models. Global Change Biology, 2017, 23, 4798-4813.	4.2	41
28	Was the extreme Northern Hemisphere greening in 2015 predictable?. Environmental Research Letters, 2017, 12, 044016.	2.2	25
29	Arctic permafrost landscapes in transition: towards an integrated Earth system approach. Arctic Science, 2017, 3, 39-64.	0.9	71
30	Inconsistencies of interannual variability and trends in longâ€ŧerm satellite leaf area index products. Global Change Biology, 2017, 23, 4133-4146.	4.2	149
31	Moistureâ€induced greening of the South Asia over the past three decades. Global Change Biology, 2017, 23, 4995-5005.	4.2	55
32	Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Global Change Biology, 2017, 23, 4854-4872.	4.2	158
33	A global geography of synchrony for terrestrial vegetation. Global Ecology and Biogeography, 2017, 26, 878-888.	2.7	39
34	Climate change impacts on EU agriculture: A regionalized perspective taking into account market-driven adjustments. Agricultural Systems, 2017, 156, 52-66.	3.2	40
35	Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nature Climate Change, 2017, 7, 432-436.	8.1	323
36	Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science, 2017, 356, 1180-1184.	6.0	266

#	Article	IF	CITATIONS
37	Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model. Journal of Hydrology, 2017, 551, 116-131.	2.3	63
38	Local temperature response to land cover and management change driven by non-radiativeÂprocesses. Nature Climate Change, 2017, 7, 296-302.	8.1	231
39	Large historical growth in global terrestrial gross primary production. Nature, 2017, 544, 84-87.	13.7	219
40	Fluxes all of the time? A primer on the temporal representativeness of FLUXNET. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 289-307.	1.3	114
41	Disentangling the signal of climatic fluctuations from land use: changes in ecosystem functioning in South American protected areas (1982â€⊋012). Remote Sensing in Ecology and Conservation, 2017, 3, 177-189.	2.2	9
42	The Role of Plant CO ₂ Physiological Forcing in Shaping Future Daily-Scale Precipitation. Journal of Climate, 2017, 30, 2319-2340.	1.2	46
43	Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophysical Research Letters, 2017, 44, 2792-2801.	1.5	308
44	Challenges and perspectives for largeâ€scale temperature reconstructions of the past two millennia. Reviews of Geophysics, 2017, 55, 40-96.	9.0	103
45	Does increasing intrinsic water use efficiency (iWUE) stimulate tree growth at natural alpine timberline on the southeastern Tibetan Plateau?. Global and Planetary Change, 2017, 148, 217-226.	1.6	57
46	Carbon balance under four double-season cropping systems in North China Plain. Plant and Soil, 2017, 421, 319-336.	1.8	8
47	A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Scientific Data, 2017, 4, 170165.	2.4	335
48	Velocity of change in vegetation productivity over northern high latitudes. Nature Ecology and Evolution, 2017, 1, 1649-1654.	3.4	79
49	Photosynthetic productivity and its efficiencies in ISIMIP2a biome models: benchmarking for impact assessment studies. Environmental Research Letters, 2017, 12, 085001.	2.2	41
50	Reducing the uncertainty of parameters controlling seasonal carbon and water fluxes in Chinese forests and its implication for simulated climate sensitivities. Global Biogeochemical Cycles, 2017, 31, 1344-1366.	1.9	11
51	Shifting from a fertilization-dominated to a warming-dominated period. Nature Ecology and Evolution, 2017, 1, 1438-1445.	3.4	167
52	Benchmarking carbon fluxes of the ISIMIP2a biome models. Environmental Research Letters, 2017, 12, 045002.	2.2	30
53	Separating Vegetation Greening and Climate Change Controls on Evapotranspiration trend over the Loess Plateau. Scientific Reports, 2017, 7, 8191.	1.6	72
54	Presentâ€day and future contribution of climate and fires to vegetation composition in the boreal forest of China. Ecosphere, 2017, 8, e01917.	1.0	26

#	Article	IF	CITATIONS
55	Vegetation anomalies caused by antecedent precipitation in most of the world. Environmental Research Letters, 2017, 12, 074016.	2.2	123
56	Water availability affects seasonal <scp>CO</scp> ₂ â€induced photosynthetic enhancement in herbaceous species in a periodically dry woodland. Global Change Biology, 2017, 23, 5164-5178.	4.2	39
57	Hydrologic response to future land use change in the Upper Mississippi River Basin by the end of 21st century. Hydrological Processes, 2017, 31, 3645-3661.	1.1	37
58	Quantifying influences of physiographic factors on temperate dryland vegetation, Northwest China. Scientific Reports, 2017, 7, 40092.	1.6	29
59	Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nature Communications, 2017, 8, 110.	5.8	186
60	Drivers and Environmental Responses to the Changing Annual Snow Cycle of Northern Alaska. Bulletin of the American Meteorological Society, 2017, 98, 2559-2577.	1.7	35
61	A range of possibilities: Assessing geographic variation in climate sensitivity of ponderosa pine using tree rings. Forest Ecology and Management, 2017, 402, 223-233.	1.4	34
62	Response of Water Use Efficiency to Global Environmental Change Based on Output From Terrestrial Biosphere Models. Global Biogeochemical Cycles, 2017, 31, 1639-1655.	1.9	63
63	Clipping has stronger effects on plant production than does warming in three alpine meadow sites on the Northern Tibetan Plateau. Scientific Reports, 2017, 7, 16330.	1.6	14
64	Enhanced Recent Local Moisture Recycling on the Northwestern Tibetan Plateau Deduced From Ice Core Deuterium Excess Records. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,541.	1.2	39
65	Wetter subtropics in a warmer world: Contrasting past and future hydrological cycles. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12888-12893.	3.3	76
66	Impact of deforestation and climate on the Amazon Basin's above-ground biomass during 1993–2012. Scientific Reports, 2017, 7, 15615.	1.6	20
67	Effect of climate warming on the annual terrestrial net ecosystem CO2 exchange globally in the boreal and temperate regions. Scientific Reports, 2017, 7, 3108.	1.6	18
68	Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. Nature Geoscience, 2017, 10, 572-576.	5.4	54
69	Evaluation of four long time-series global leaf area index products. Agricultural and Forest Meteorology, 2017, 246, 218-230.	1.9	90
70	Vegetation changes and land surface feedbacks drive shifts in local temperatures over Central Asia. Scientific Reports, 2017, 7, 3287.	1.6	55
71	Global variation of transpiration and soil evaporation and the role of their major climate drivers. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6868-6881.	1.2	77
72	Atmospheric change causes declines in woodland arthropods and impacts specific trophic groups. Agricultural and Forest Entomology, 2017, 19, 101-112.	0.7	11

#	Article	IF	CITATIONS
73	Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects. Nature Communications, 2017, 8, 1966.	5.8	116
75	Reconciliation of top-down and bottom-up CO ₂ fluxes in Siberian larch forest. Environmental Research Letters, 2017, 12, 125012.	2.2	13
76	Projected global ground-level ozone impacts on vegetation under different emission and climate scenarios. Atmospheric Chemistry and Physics, 2017, 17, 12177-12196.	1.9	164
77	Vegetation greenness and land carbon-flux anomalies associated with climate variations: a focus on the year 2015. Atmospheric Chemistry and Physics, 2017, 17, 13903-13919.	1.9	21
78	Essentials of Endorheic Basins and Lakes: A Review in the Context of Current and Future Water Resource Management and Mitigation Activities in Central Asia. Water (Switzerland), 2017, 9, 798.	1.2	66
79	Human Activity Influences on Vegetation Cover Changes in Beijing, China, from 2000 to 2015. Remote Sensing, 2017, 9, 271.	1.8	57
80	Observational Quantification of Climatic and Human Influences on Vegetation Greening in China. Remote Sensing, 2017, 9, 425.	1.8	81
81	Detecting Sustainability of Desertification Reversion: Vegetation Trend Analysis in Part of the Agro-Pastoral Transitional Zone in Inner Mongolia, China. Sustainability, 2017, 9, 211.	1.6	17
83	Evaluating Vegetation Growing Season Changes in Northeastern China by Using GIMMS LAI3g Data. Climate, 2017, 5, 37.	1.2	3
84	The decreasing range between dry- and wet- season precipitation over land and its effect on vegetation primary productivity. PLoS ONE, 2017, 12, e0190304.	1.1	27
85	Spatial analysis of growing season peak control over gross primary production in northern ecosystems using modis-GPP dataset. , 2017, , .		0
86	Heat Response of Global Vegetation Biomes to Ongoing Climate Warming Based on Remote Sensing. Geosciences (Switzerland), 2017, 7, 83.	1.0	2
88	Simulated changes in aridity from the last glacial maximum to 4xCO ₂ . Environmental Research Letters, 2017, 12, 114021.	2.2	44
90	Towards a more detailed representation of high-latitude vegetation in the global land surface model ORCHIDEE (ORC-HL-VEGv1.0). Geoscientific Model Development, 2017, 10, 4693-4722.	1.3	36
91	Comparative leaf growth strategies in response to low-water and low-light availability: variation in leaf physiology underlies variation in leaf mass per area in Populus tremuloides. Tree Physiology, 2017, 37, 1140-1150.	1.4	22
92	Response of seasonal soil freeze depth to climate change across China. Cryosphere, 2017, 11, 1059-1073.	1.5	94
93	Non-uniform time-lag effects of terrestrial vegetation responses to asymmetric warming. Agricultural and Forest Meteorology, 2018, 252, 130-143.	1.9	53
94	Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data. Global Change Biology, 2018, 24, 2284-2304.	4.2	81

#	Article	IF	CITATIONS
95	Reduction in global area burned and wildfire emissions since 1930s enhances carbon uptake by land. Nature Communications, 2018, 9, 1326.	5.8	83
96	Changes in the Response of the Northern Hemisphere Carbon Uptake to Temperature Over the Last Three Decades. Geophysical Research Letters, 2018, 45, 4371-4380.	1.5	21
97	Drought Indices, Drought Impacts, CO2, and Warming: a Historical and Geologic Perspective. Current Climate Change Reports, 2018, 4, 202-209.	2.8	28
98	Climate Change and Drought: the Soil Moisture Perspective. Current Climate Change Reports, 2018, 4, 180-191.	2.8	170

 $_{99}$ Checking vegetation changes with remote sensing: The case of the Trieste province (North-East of) Tj ETQq0 0 0 rg $_{0.8}^{BT}$ /Overlock 10 Tf 50

100	Snowmeltâ€Driven Tradeâ€Offs Between Early and Late Season Productivity Negatively Impact Forest Carbon Uptake During Drought. Geophysical Research Letters, 2018, 45, 3087-3096.	1.5	31
101	Elevated <scp>CO</scp> ₂ did not affect the hydrological balance of a mature native <i>Eucalyptus</i> woodland. Global Change Biology, 2018, 24, 3010-3024.	4.2	41
102	Whither the 100th Meridian? The Once and Future Physical and Human Geography of America's Arid–Humid Divide. Part II: The Meridian Moves East. Earth Interactions, 2018, 22, 1-24.	0.7	21
103	Climate changeâ€driven extinctions of tree species affect forest functioning more than random extinctions. Diversity and Distributions, 2018, 24, 906-918.	1.9	23
104	Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains. Journal of Biogeography, 2018, 45, 1334-1344.	1.4	115
105	Contribution of environmental forcings to US runoff changes for the period 1950–2010. Environmental Research Letters, 2018, 13, 054023.	2.2	9
106	Evaluating the Interplay Between Biophysical Processes and Leaf Area Changes in Land Surface Models. Journal of Advances in Modeling Earth Systems, 2018, 10, 1102-1126.	1.3	22
107	Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems. Ecohydrology, 2018, 11, e1974.	1.1	100
108	Reduced arctic tundra productivity linked with landform and climate change interactions. Scientific Reports, 2018, 8, 2345.	1.6	100
109	Future global productivity will be affected by plant trait response to climate. Scientific Reports, 2018, 8, 2870.	1.6	95
110	Decadal trends in photosynthetic capacity and leaf area index inferred from satellite remote sensing for global vegetation types. Agricultural and Forest Meteorology, 2018, 250-251, 361-375.	1.9	27
111	Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science, 2018, 359, .	6.0	397
112	Impact of Earth Greening on the Terrestrial Water Cycle. Journal of Climate, 2018, 31, 2633-2650.	1.2	142

#	Article	IF	CITATIONS
113	Recent Changes in Global Photosynthesis and Terrestrial Ecosystem Respiration Constrained From Multiple Observations. Geophysical Research Letters, 2018, 45, 1058-1068.	1.5	19
114	Increased vegetation growth and carbon stock in China karst via ecological engineering. Nature Sustainability, 2018, 1, 44-50.	11.5	460
115	Understorey productivity in temperate grassy woodland responds to soil water availability but not to elevated [CO ₂]. Global Change Biology, 2018, 24, 2366-2376.	4.2	21
116	Current challenges in distinguishing climatic and anthropogenic contributions to alpine grassland variation on the Tibetan Plateau. Ecology and Evolution, 2018, 8, 5949-5963.	0.8	62
117	MODIS detection of vegetation changes and investigation of causal factors in Poyang Lake basin, China for 2001–2015. Ecological Indicators, 2018, 91, 511-522.	2.6	22
118	Plant Regrowth as a Driver of Recent Enhancement of Terrestrial CO ₂ Uptake. Geophysical Research Letters, 2018, 45, 4820-4830.	1.5	32
119	Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4093-4098.	3.3	179
120	Weakening sensitivity of global vegetation to long-term droughts. Science China Earth Sciences, 2018, 61, 60-70.	2.3	12
121	Increased growth rate (1982-2013) in global grasslands biomes. Remote Sensing Letters, 2018, 9, 550-558.	0.6	0
122	What drives the vegetation restoration in Yangtze River basin, China: Climate change or anthropogenic factors?. Ecological Indicators, 2018, 90, 438-450.	2.6	210
123	Response of terrestrial evapotranspiration to Earth's greening. Current Opinion in Environmental Sustainability, 2018, 33, 9-25.	3.1	89
124	Population genetic analyses of the endangered alpine Sinadoxa corydalifolia (Adoxaceae) provide insights into future conservation. Biodiversity and Conservation, 2018, 27, 2275-2291.	1.2	17
125	Global patterns of vegetation carbon use efficiency and their climate drivers deduced from MODIS satellite data and process-based models. Agricultural and Forest Meteorology, 2018, 256-257, 150-158.	1.9	69
126	Amplification of heat extremes by plant CO2 physiological forcing. Nature Communications, 2018, 9, 1094.	5.8	58
127	Satellite view of seasonal greenness trends and controls in South Asia. Environmental Research Letters, 2018, 13, 034026.	2.2	34
128	How vulnerable are ecosystems in the Limpopo province to climateÂchange?. South African Journal of Botany, 2018, 116, 86-95.	1.2	20
129	The greening of Northwest Indian subcontinent and reduction of dust abundance resulting from Indian summer monsoon revival. Scientific Reports, 2018, 8, 4573.	1.6	32
130	An integrated method for validating long-term leaf area index products using global networks of site-based measurements. Remote Sensing of Environment, 2018, 209, 134-151.	4.6	70

щ		IF	CITATIONS
#	An historic account of the extinct high rainfall grasslands of the Soutpansherg. South Africa	IF	CHATIONS
131	Transactions of the Royal Society of South Africa, 2018, 73, 20-32.	0.8	10
132	The role of plant phenology in stomatal ozone flux modeling. Global Change Biology, 2018, 24, 235-248.	4.2	22
133	Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Global Change Biology, 2018, 24, 184-196.	4.2	177
134	MODIS EVI-based net primary production in the Sahel 2000–2014. International Journal of Applied Earth Observation and Geoinformation, 2018, 65, 35-45.	1.4	8
135	Climate change, carbon market instruments, and biodiversity: focusing on synergies and avoiding pitfalls. Wiley Interdisciplinary Reviews: Climate Change, 2018, 9, e486.	3.6	17
136	Substantial large-scale feedbacks between natural aerosols and climate. Nature Geoscience, 2018, 11, 44-48.	5.4	50
137	Increased spruce tree growth in Central Europe since 1960s. Science of the Total Environment, 2018, 619-620, 1637-1647.	3.9	29
138	Changes in global vegetation activity and its driving factors during 1982–2013. Agricultural and Forest Meteorology, 2018, 249, 198-209.	1.9	151
139	Forest transition in developed agricultural regions needs efficient regulatory policy. Forest Policy and Economics, 2018, 86, 67-75.	1.5	17
140	Litter decomposition in Mediterranean pine forests is enhanced by reduced canopy cover. Plant and Soil, 2018, 422, 317-329.	1.8	27
141	Ecosystem responses to elevated CO ₂ using airborne remote sensing at Mammoth Mountain, California. Biogeosciences, 2018, 15, 7403-7418.	1.3	7
142	Does Anthropogenic Land Use Change Play a Role in Changes of Precipitation Frequency and Intensity over the Loess Plateau of China?. Remote Sensing, 2018, 10, 1818.	1.8	22
143	Evaluation of ORCHIDEE-MICT-simulated soil moisture over China and impacts of different atmospheric forcing data. Hydrology and Earth System Sciences, 2018, 22, 5463-5484.	1.9	13
144	Enhanced peak growth of global vegetation and its key mechanisms. Nature Ecology and Evolution, 2018, 2, 1897-1905.	3.4	169
145	Global vegetation's CO2 uptake. Nature Ecology and Evolution, 2018, 2, 1840-1841.	3.4	12
146	Leaf area index identified as a major source of variabilityÂin modeled CO ₂ fertilization. Biogeosciences, 2018, 15, 6909-6925.	1.3	25
147	Contributions of Climate Change, CO2, Land-Use Change, and Human Activities to Changes in River Flow across 10 Chinese Basins. Journal of Hydrometeorology, 2018, 19, 1899-1914.	0.7	24
148	Retrieving LAI and LCC Simultaneously from Sentinel-2 Data Using Prosail and PSO-Coupled BI-Lut. , 2018, , .		0

#	Article	IF	CITATIONS
149	Assessing the dynamics of vegetation productivity in circumpolar regions with different satellite indicators of greenness and photosynthesis. Biogeosciences, 2018, 15, 6221-6256.	1.3	28
150	Evaluation of Vegetation Responses to Climatic Factors and Global Vegetation Trends using GLASS LAI from 1982 to 2010. Canadian Journal of Remote Sensing, 2018, 44, 357-372.	1.1	15
152	V2Karst V1.1: a parsimonious large-scale integrated vegetation–recharge model to simulate the impact of climate and land cover change in karst regions. Geoscientific Model Development, 2018, 11, 4933-4964.	1.3	34
153	The impact of the 2015/2016 El Niño on global photosynthesis using satellite remote sensing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170409.	1.8	28
154	Recent past (1979–2014) and future (2070–2099) isoprene fluxes over Europe simulated with the MEGAN–MOHYCAN model. Biogeosciences, 2018, 15, 3673-3690.	1.3	24
155	Ecological Responses to Climate Change at Biogeographical Boundaries. , 0, , .		3
156	Forest resources of nations in relation to human well-being. PLoS ONE, 2018, 13, e0196248.	1.1	49
157	Land surface greening suggests vigorous woody regrowth throughout European semiâ€natural vegetation. Global Change Biology, 2018, 24, 5789-5801.	4.2	48
158	Toward an integrated watershed zoning framework based on the spatio-temporal variability of land-cover and climate: Application in the Volta river basin. Environmental Development, 2018, 28, 55-66.	1.8	8
159	A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences, 2018, 15, 5779-5800.	1.3	217
160	Volume 5 Overview: Recent progress in Remote Sensing of Earth's Energy Budget. , 2018, , 1-31.		6
161	Prediction of drought-induced reduction of agricultural productivity in Chile from MODIS, rainfall estimates, and climate oscillation indices. Remote Sensing of Environment, 2018, 219, 15-30.	4.6	64
162	Global terrestrial stilling: does Earth's greening play a role?. Environmental Research Letters, 2018, 13, 124013.	2.2	33
163	Effects of large herbivores on tundra vegetation in a changing climate, and implications for rewilding. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170437.	1.8	58
164	Quantifying Climate Change and Ecological Responses within the Yangtze River Basin, China. Sustainability, 2018, 10, 3026.	1.6	6
165	Highâ€Resolution Land Surface Modeling of Hydrological Changes Over the Sanjiangyuan Region in the Eastern Tibetan Plateau: 2. Impact of Climate and Land Cover Change. Journal of Advances in Modeling Earth Systems, 2018, 10, 2829-2843.	1.3	31
166	A successful prediction of the record CO ₂ rise associated with the 2015/2016 El Niño. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170301.	1.8	22
167	Satellite Leaf Area Index: Global Scale Analysis of the Tendencies Per Vegetation Type Over the Last 17 Years. Remote Sensing, 2018, 10, 424.	1.8	29

#	Article	IF	CITATIONS
168	Greening and Browning of the Hexi Corridor in Northwest China: Spatial Patterns and Responses to Climatic Variability and Anthropogenic Drivers. Remote Sensing, 2018, 10, 1270.	1.8	61
169	Spatial Responses of Net Ecosystem Productivity of the Yellow River Basin under Diurnal Asymmetric Warming. Sustainability, 2018, 10, 3646.	1.6	9
170	Comparing optimal and empirical stomatal conductance models for application in Earth system models. Global Change Biology, 2018, 24, 5708-5723.	4.2	75
171	Precipitation thresholds regulate net carbon exchange at the continental scale. Nature Communications, 2018, 9, 3596.	5.8	39
172	Thinning Can Reduce Losses in Carbon Use Efficiency and Carbon Stocks in Managed Forests Under Warmer Climate. Journal of Advances in Modeling Earth Systems, 2018, 10, 2427-2452.	1.3	56
173	Changes in the aerosol direct radiative forcing from 2001 to 2015: observational constraints and regional mechanisms. Atmospheric Chemistry and Physics, 2018, 18, 13265-13281.	1.9	57
175	Termites confer resistance to changes in tree composition following reduced browsing in an African savanna. Journal of Vegetation Science, 2018, 29, 989-998.	1.1	1
176	A Wood Biology Agenda to Support Global Vegetation Modelling. Trends in Plant Science, 2018, 23, 1006-1015.	4.3	42
177	The impact of dataset selection on land degradation assessment. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146, 22-37.	4.9	36
178	Sustainability of Forest Cover under Climate Change on the Temperate-Continental Xeric Limits. Forests, 2018, 9, 489.	0.9	36
179	Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone. Atmospheric Chemistry and Physics, 2018, 18, 5747-5763.	1.9	39
180	Exploring the biogeophysical limits of global food production under different climate change scenarios. Earth System Dynamics, 2018, 9, 393-412.	2.7	23
181	Changing the retention properties of catchments and their influence on runoff under climate change. Environmental Research Letters, 2018, 13, 094019.	2.2	21
182	Mismatch in elevational shifts between satellite observed vegetation greenness and temperature isolines during 2000–2016 on the Tibetan Plateau. Global Change Biology, 2018, 24, 5411-5425.	4.2	60
184	A climatological assessment of drought impact on vegetation health index. Agricultural and Forest Meteorology, 2018, 259, 286-295.	1.9	118
185	Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sensing of Environment, 2018, 214, 59-72.	4.6	322
186	Human impacts in African savannas are mediated by plant functional traits. New Phytologist, 2018, 220, 10-24.	3.5	114
187	Evaluating changes of biomass in global vegetation models: the role of turnover fluctuations and ENSO events. Environmental Research Letters, 2018, 13, 075002.	2.2	3

#	Article	IF	Citations
188	Spatial patterns of longâ€ŧerm vegetation greening and browning are consistent across multiple scales: Implications for monitoring land degradation. Land Degradation and Development, 2018, 29, 2485-2495.	1.8	25
189	Vegetation dynamic trends and the main drivers detected using the ensemble empirical mode decomposition method in East Africa. Land Degradation and Development, 2018, 29, 2542-2553.	1.8	27
190	Should Ethiopia and least developed countries exit from the Paris climate accord? – Geopolitical, development, and energy policy perspectives. Energy Policy, 2018, 120, 402-417.	4.2	10
191	Changes in the Shadow: The Shifting Role of Shaded Leaves in Global Carbon and Water Cycles Under Climate Change. Geophysical Research Letters, 2018, 45, 5052-5061.	1.5	57
192	Dominant effect of increasing forest biomass on evapotranspiration: interpretations of movement in Budyko space. Hydrology and Earth System Sciences, 2018, 22, 567-580.	1.9	65
193	Triggers of tree mortality under drought. Nature, 2018, 558, 531-539.	13.7	957
194	How much CO2 at 1.5 °C and 2 °C?. Nature Climate Change, 2018, 8, 546-548.	8.1	6
195	Plants turn on the tap. Nature Climate Change, 2018, 8, 562-563.	8.1	18
196	Potential strong contribution of future anthropogenic land-use and land-cover change to the terrestrial carbon cycle. Environmental Research Letters, 2018, 13, 064023.	2.2	35
197	Acceleration of global vegetation greenup from combined effects of climate change and human land management. Global Change Biology, 2018, 24, 5484-5499.	4.2	72
198	Characterizing drought in terms of changes in the precipitation–runoff relationship: a case study of the Loess Plateau, China. Hydrology and Earth System Sciences, 2018, 22, 1749-1766.	1.9	20
199	Soil Moisture Stress as a Major Driver of Carbon Cycle Uncertainty. Geophysical Research Letters, 2018, 45, 6495-6503.	1.5	119
200	Terrestrial Environments and Surface Types of the Polar Regions. , 0, , 165-234.		0
201	Hyperactive soil microbes might weaken the terrestrial carbon sink. Nature, 2018, 560, 32-33.	13.7	19
202	Influence of winter precipitation on spring phenology in boreal forests. Global Change Biology, 2018, 24, 5176-5187.	4.2	58
203	Anthropogenic contributions dominate trends of vegetation cover change over the farming-pastoral ecotone of northern China. Ecological Indicators, 2018, 95, 370-378.	2.6	113
204	Climate Extremes and Their Impacts on Interannual Vegetation Variabilities: A Case Study in Hubei Province of Central China. Remote Sensing, 2018, 10, 477.	1.8	10
205	Increased Vegetation Greenness Aggravates Water Conflicts during Lasting and Intensifying Drought in the Poyang Lake Watershed, China. Forests, 2018, 9, 24.	0.9	18

#	Article	IF	CITATIONS
206	Analysis of Global LAI/FPAR Products from VIIRS and MODIS Sensors for Spatio-Temporal Consistency and Uncertainty from 2012–2016. Forests, 2018, 9, 73.	0.9	63
207	Effects of Climate Change and Ozone Concentration on the Net Primary Productivity of Forests in South Korea. Forests, 2018, 9, 112.	0.9	8
208	Spatiotemporal Dynamics in Vegetation GPP over the Great Khingan Mountains Using GLASS Products from 1982 to 2015. Remote Sensing, 2018, 10, 488.	1.8	32
209	A Critical Comparison of Remote Sensing Leaf Area Index Estimates over Rice-Cultivated Areas: From Sentinel-2 and Landsat-7/8 to MODIS, GEOV1 and EUMETSAT Polar System. Remote Sensing, 2018, 10, 763.	1.8	40
210	Accelerating rates of Arctic carbon cycling revealed by long-term atmospheric CO ₂ measurements. Science Advances, 2018, 4, eaao1167.	4.7	57
211	Relationship between environmental factors and the spatial distribution of Spermophilus dauricus during 2000–2015 in China. International Journal of Biometeorology, 2018, 62, 1781-1789.	1.3	7
212	Surrogates Underpin Ecological Understanding and Practice. BioScience, 2018, 68, 640-642.	2.2	8
213	Large scale spatially explicit modeling of blue and green water dynamics in a temperate mid-latitude basin. Journal of Hydrology, 2018, 562, 84-102.	2.3	39
214	Evaluation of CMIP5 Earth System Models for the Spatial Patterns of Biomass and Soil Carbon Turnover Times and Their Linkage with Climate. Journal of Climate, 2018, 31, 5947-5960.	1.2	36
215	Spatiotemporal pattern of terrestrial evapotranspiration in China during the past thirty years. Agricultural and Forest Meteorology, 2018, 259, 131-140.	1.9	75
216	Divergent hydrological response to large-scale afforestation and vegetation greening in China. Science Advances, 2018, 4, eaar4182.	4.7	287
217	Greening of the land surface in the world's cold regions consistent with recent warming. Nature Climate Change, 2018, 8, 825-828.	8.1	159
218	Response of ecosystem functions to climate change and implications for sustainable development on the Inner Mongolian Plateau. Rangeland Journal, 2018, 40, 191.	0.4	7
219	Untangling methodological and scale considerations in growth and productivity trend estimates of Canada's forests. Environmental Research Letters, 2018, 13, 093001.	2.2	24
220	The impact of drought on vegetation conditions within the Damqu River Basin, Yangtze River Source Region, China. PLoS ONE, 2018, 13, e0202966.	1.1	17
221	Review: Adaptation of ruminant livestock production systems to climate changes. Animal, 2018, 12, s445-s456.	1.3	73
222	Sensitivity of Leaf Area to Interannual Climate Variation as a Diagnostic of Ecosystem Function in CMIP5 Carbon Cycle Models. Journal of Climate, 2018, 31, 8607-8625.	1.2	8
224	When tree rings go global: Challenges and opportunities for retro- and prospective insight. Quaternary Science Reviews, 2018, 197, 1-20.	1.4	131

#	Article	IF	Citations
225	Global land change from 1982 to 2016. Nature, 2018, 560, 639-643.	13.7	1,213
226	Identifying Critical Climate Periods for Vegetation Growth in the Northern Hemisphere. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2541-2552.	1.3	49
227	Different Influences of Vegetation Greening on Regional Water-Energy Balance under Different Climatic Conditions. Forests, 2018, 9, 412.	0.9	21
228	Vegetation Greening Despite Weakening Coupling Between Vegetation Growth and Temperature Over the Boreal Region. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2376-2387.	1.3	20
229	The Effects of Carbon Dioxide Removal on the Carbon Cycle. Current Climate Change Reports, 2018, 4, 250-265.	2.8	58
230	Drivers of woody plant encroachment over Africa. Nature Communications, 2018, 9, 2272.	5.8	208
231	Comment on "Satellites reveal contrasting responses of regional climate to the widespread greening of Earth― Science, 2018, 360, .	6.0	19
232	Disconnection Between Trends of Atmospheric Drying and Continental Runoff. Water Resources Research, 2018, 54, 4700-4713.	1.7	58
233	Satelliteâ€Observed Major Greening and Biomass Increase in South China Karst During Recent Decade. Earth's Future, 2018, 6, 1017-1028.	2.4	143
234	Drought, Heat, and the Carbon Cycle: a Review. Current Climate Change Reports, 2018, 4, 266-286.	2.8	132
235	Potential roles of CO2 fertilization, nitrogen deposition, climate change, and land use and land cover change on the global terrestrial carbon uptake in the twenty-first century. Climate Dynamics, 2019, 52, 4393-4406.	1.7	29
236	No Proportional Increase of Terrestrial Gross Carbon Sequestration From the Greening Earth. Journal of Geophysical Research C: Biogeosciences, 2019, 124, 2540-2553.	1.3	51
237	Increase in Surface Friction Dominates the Observed Surface Wind Speed Decline during 1973–2014 in the Northern Hemisphere Lands. Journal of Climate, 2019, 32, 7421-7435.	1.2	42
238	An enhanced bloom index for quantifying floral phenology using multi-scale remote sensing observations. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 156, 108-120.	4.9	66
241	Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nature Climate Change, 2019, 9, 684-689.	8.1	269
242	Experiences from the South African land degradation neutrality target setting process. Environmental Science and Policy, 2019, 101, 54-62.	2.4	31
243	Satellite-observed pantropical carbon dynamics. Nature Plants, 2019, 5, 944-951.	4.7	141
244	Vegetation Pattern and Terrestrial Carbon Variation in Past Warm and Cold Climates. Geophysical Research Letters, 2019, 46, 8133-8143.	1.5	13

#	Article	IF	CITATIONS
245	Interannual and Seasonal Vegetation Changes and Influencing Factors in the Extra-High Mountainous Areas of Southern Tibet. Remote Sensing, 2019, 11, 1392.	1.8	14
246	Patterns of Arctic Tundra Greenness Based on Spatially Downscaled Solar-Induced Fluorescence. Remote Sensing, 2019, 11, 1460.	1.8	1
247	Detected global agricultural greening from satellite data. Agricultural and Forest Meteorology, 2019, 276-277, 107652.	1.9	23
248	Exploring the spatial relationship between airborne-derived red and far-red sun-induced fluorescence and process-based GPP estimates in a forest ecosystem. Remote Sensing of Environment, 2019, 231, 111272.	4.6	34
249	CO2 fertilization plays a minor role in long-term carbon accumulation patterns in temperate pine forests in the southwestern Pyrenees. Ecological Modelling, 2019, 407, 108737.	1.2	13
250	Divergent changes in the elevational gradient of vegetation activities over the last 30 years. Nature Communications, 2019, 10, 2970.	5.8	119
251	Unprecedented Atmospheric Ammonia Concentrations Detected in the High Arctic From the 2017 Canadian Wildfires. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8178-8202.	1.2	25
252	Response of vegetation cover to CO2 and climate changes between Last Glacial Maximum and pre-industrial period in a dynamic global vegetation model. Quaternary Science Reviews, 2019, 218, 293-305.	1.4	17
253	Long-Term Spatiotemporal Dynamics of Terrestrial Biophysical Variables in the Three-River Headwaters Region of China from Satellite and Meteorological Datasets. Remote Sensing, 2019, 11, 1633.	1.8	9
254	Exploring SMAP and OCO-2 observations to monitor soil moisture control on photosynthetic activity of global drylands and croplands. Remote Sensing of Environment, 2019, 232, 111314.	4.6	21
255	Aridity change and its correlation with greening over drylands. Agricultural and Forest Meteorology, 2019, 278, 107663.	1.9	48
256	Streamflow in the Columbia River Basin: Quantifying Changes Over the Period 1951â€2008 and Determining the Drivers of Those Changes. Water Resources Research, 2019, 55, 6640-6652.	1.7	15
257	Climate Change Trends and Impacts on Vegetation Greening Over the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7540-7552.	1.2	109
258	The aridity Index under global warming. Environmental Research Letters, 2019, 14, 124006.	2.2	124
259	Remote Sensing of Environmental Changes in Cold Regions: Methods, Achievements and Challenges. Remote Sensing, 2019, 11, 1952.	1.8	34
260	Insight in the properties of WO3 Y: A first-principle study. Results in Physics, 2019, 15, 102670.	2.0	3
261	Investigating the applicability of emergent constraints. Earth System Dynamics, 2019, 10, 501-523.	2.7	14
262	Response to Comments on "The global tree restoration potential― Science, 2019, 366, .	6.0	20

#	ARTICLE	IF	CITATIONS
263	Assessment of an Evapotranspiration Deficit Drought Index in Relation to Impacts on Ecosystems. Advances in Atmospheric Sciences, 2019, 36, 1273-1287.	1.9	31
264	The impact of climate change on wind power abundance and variability in China. Energy, 2019, 189, 116215.	4.5	43
265	Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities. Remote Sensing of Environment, 2019, 233, 111401.	4.6	193
266	Vegetation Degradation and Its Driving Factors in the Farming–Pastoral Ecotone over the Countries along Belt and Road Initiative. Sustainability, 2019, 11, 1590.	1.6	14
267	Global vegetation variability and its response to elevated CO ₂ , global warming, and climate variability – a study using the offline SSiB4/TRIFFID model and satellite data. Earth System Dynamics, 2019, 10, 9-29.	2.7	28
268	Greening Implication Inferred from Vegetation Dynamics Interacted with Climate Change and Human Activities over the Southeast Qinghai–Tibet Plateau. Remote Sensing, 2019, 11, 2421.	1.8	23
269	Higher CO 2 Concentrations and Lower Acidic Deposition Have Not Changed Drought Response in Tree Growth But Do Influence iWUE in Hardwood Trees in the Midwestern United States. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3798-3813.	1.3	22
270	Increasing interannual variability of global vegetation greenness. Environmental Research Letters, 2019, 14, 124005.	2.2	47
271	Vegetation dynamics and ecosystem service values changes at national and provincial scales in Nepal from 2000 to 2017. Environmental Development, 2019, 32, 100464.	1.8	29
272	Changes in NDVI and human population in protected areas on the Tibetan Plateau. Arctic, Antarctic, and Alpine Research, 2019, 51, 428-439.	0.4	19
273	Contrasting effects of CO ₂ fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO ₂ exchange. Atmospheric Chemistry and Physics, 2019, 19, 12361-12375.	1.9	30
274	Climate change threatens the most biodiverse regions of Mexico. Biological Conservation, 2019, 240, 108215.	1.9	15
275	Intercomparison of the Surface Energy Partitioning in CMIP5 Simulations. Atmosphere, 2019, 10, 602.	1.0	7
276	Shifts of the Mean Centers of Potential Vegetation Ecosystems under future climate change in Eurasia. Forests, 2019, 10, 873.	0.9	12
277	Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP). Atmospheric Chemistry and Physics, 2019, 19, 12545-12567.	1.9	64
278	Remote Sensing Greenness and Urbanization in Ecohydrological Model Analysis: Asia and Australasia (1982–2015). Sensors, 2019, 19, 4693.	2.1	1
279	Recent asymmetric warming trends of daytime versus nighttime and their linkages with vegetation greenness in temperate China. Environmental Science and Pollution Research, 2019, 26, 35717-35727.	2.7	12
280	Modeling the Vegetation Dynamics of Northern Shrubs and Mosses in the ORCHIDEE Land Surface Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 2020-2035.	1.3	18

#	Article	IF	Citations
281	Asymmetric Behavior of Vegetation Seasonal Growth and the Climatic Cause: Evidence from Long-Term NDVI Dataset in Northeast China. Remote Sensing, 2019, 11, 2107.	1.8	10
282	An increasing trend in the ratio of transpiration to total terrestrial evapotranspiration in China from 1982 to 2015 caused by greening and warming. Agricultural and Forest Meteorology, 2019, 279, 107701.	1.9	67
283	Domestic Livestock and Its Alleged Role in Climate Change. , 2019, , .		0
284	Time Series of Landsat Imagery Shows Vegetation Recovery in Two Fragile Karst Watersheds in Southwest China from 1988 to 2016. Remote Sensing, 2019, 11, 2044.	1.8	26
285	Global 500â€`m clumping index product derived from MODIS BRDF data (2001–2017). Remote Sensing of Environment, 2019, 232, 111296.	4.6	49
286	Multimodel Analysis of Future Land Use and Climate Change Impacts on Ecosystem Functioning. Earth's Future, 2019, 7, 833-851.	2.4	22
287	A review of the major drivers of the terrestrial carbon uptake: model-based assessments, consensus, and uncertainties. Environmental Research Letters, 2019, 14, 093005.	2.2	42
288	Assimilation of Remotely Sensed Leaf Area Index into the Noah-MP Land Surface Model: Impacts on Water and Carbon Fluxes and States over the Continental United States. Journal of Hydrometeorology, 2019, 20, 1359-1377.	0.7	70
289	Research questions to facilitate the future development of European long-term ecosystem research infrastructures: A horizon scanning exercise. Journal of Environmental Management, 2019, 250, 109479.	3.8	13
290	Global vegetative drought trend and variability analysis from long-term remotely sensed data. , 2019, ,		5
291	Increase of Energy Potential of Russian Forest resources due to Climate Change and CO2 Fertilization. E3S Web of Conferences, 2019, 103, 02005.	0.2	2
292	A global â€~greening' of coastal dunes: An integrated consequence of climate change?. Global and Planetary Change, 2019, 182, 103026.	1.6	73
293	Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nature Communications, 2019, 10, 4259.	5.8	170
294	Terrestrial ecosystem scenarios and their response to climate change in Eurasia. Science China Earth Sciences, 2019, 62, 1607-1618.	2.3	20
295	An Improved Conceptual Model Quantifying the Effect of Climate Change and Anthropogenic Activities on Vegetation Change in Arid Regions. Remote Sensing, 2019, 11, 2110.	1.8	4
296	A framework to quantify impacts of elevated CO2 concentration, global warming and leaf area changes on seasonal variations of water resources on a river basin scale. Journal of Hydrology, 2019, 570, 508-522.	2.3	23
297	Have Synergies Between Nitrogen Deposition and Atmospheric CO ₂ Driven the Recent Enhancement of the Terrestrial Carbon Sink?. Global Biogeochemical Cycles, 2019, 33, 163-180.	1.9	37
298	Consistency and Discrepancy of Global Surface Soil Moisture Changes From Multiple Modelâ€Based Data Sets Against Satellite Observations. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1474-1495.	1.2	25

#	Article	IF	CITATIONS
299	Determinants of the ratio of actual to potential evapotranspiration. Global Change Biology, 2019, 25, 1326-1343.	4.2	39
300	Greening in Rural Areas Increases the Surface Urban Heat Island Intensity. Geophysical Research Letters, 2019, 46, 2204-2212.	1.5	162
301	Plant Molecular Farming – Integration and Exploitation of Side Streams to Achieve Sustainable Biomanufacturing. Frontiers in Plant Science, 2018, 9, 1893.	1.7	94
302	Increased spatial heterogeneity in vegetation greenness due to vegetation greening in mainland China. Ecological Indicators, 2019, 99, 240-250.	2.6	36
303	Negative extreme events in gross primary productivity and their drivers in China during the past three decades. Agricultural and Forest Meteorology, 2019, 275, 47-58.	1.9	40
304	Alternative tree over states of the boreal ecosystem: A conceptual model. Global Ecology and Biogeography, 2019, 28, 612-627.	2.7	9
305	Multiâ€model analysis of climate impacts on plant photosynthesis in China during 2000–2015. International Journal of Climatology, 2019, 39, 5539-5555.	1.5	6
306	Greenness trends and carbon stocks of mangroves across Mexico. Environmental Research Letters, 2019, 14, 075010.	2.2	23
307	Sensitivity of a tropical montane cloud forest to climate change, present, past and future: Mt. Marsabit, N. Kenya. Quaternary Science Reviews, 2019, 218, 34-48.	1.4	26
308	Recent global and regional trends in burned area and their compensating environmental controls. Environmental Research Communications, 2019, 1, 051005.	0.9	55
309	Evaluation of terrestrial pan-Arctic carbon cycling using a data-assimilation system. Earth System Dynamics, 2019, 10, 233-255.	2.7	21
310	Modeling the carbon dynamics of alpine grassland in the Qinghai-Tibetan Plateau under scenarios of 1.5 and 2°C global warming. Advances in Climate Change Research, 2019, 10, 80-91.	2.1	16
311	Mapping precipitation-corrected NDVI trends across Namibia. Science of the Total Environment, 2019, 684, 96-112.	3.9	28
312	The Vegetation Dynamics and Climate Change Responses by Leaf Area Index in the Mu Us Desert. Sustainability, 2019, 11, 3151.	1.6	3
313	Coupling between the terrestrial carbon and water cycles—a review. Environmental Research Letters, 2019, 14, 083003.	2.2	118
314	Ecological engineering projects increased vegetation cover, production, and biomass in semiarid and subhumid Northern China. Land Degradation and Development, 2019, 30, 1620-1631.	1.8	71
315	Effects of 21st entury climate, land use, and disturbances on ecosystem carbon balance in California. Global Change Biology, 2019, 25, 3334-3353.	4.2	34
316	Monitoring Spatial and Temporal Variabilities of Gross Primary Production Using MAIAC MODIS Data. Remote Sensing, 2019, 11, 874.	1.8	8

#	ARTICLE	IF	CITATIONS
317	Traceability Analysis in the East Asian Monsoon Region. Global Biogeochemical Cycles, 2019, 33, 668-689.	1.9	38
318	Robust Response of Terrestrial Plants to Rising CO2. Trends in Plant Science, 2019, 24, 578-586.	4.3	57
319	Climate and plant trait strategies determine tree carbon allocation to leaves and mediate future forest productivity. Global Change Biology, 2019, 25, 3395-3405.	4.2	53
320	Spatiotemporal Variability of Asymmetric Daytime and Night-Time Warming and Its Effects on Vegetation in the Yellow River Basin from 1982 to 2015. Sensors, 2019, 19, 1832.	2.1	12
321	Changes in Vegetation Greenness in the Upper and Middle Reaches of the Yellow River Basin over 2000–2015. Sustainability, 2019, 11, 2176.	1.6	16
322	Factors Affecting Long-Term Trends in Global NDVI. Forests, 2019, 10, 372.	0.9	67
323	Projected social costs of CO2 emissions from forest losses far exceed the sequestration benefits of forest gains under global change. Ecosystem Services, 2019, 37, 100935.	2.3	13
324	From Symmetry Breaking via Charge Migration to Symmetry Restoration in Electronic Ground and Excited States: Quantum Control on the Attosecond Time Scale. Applied Sciences (Switzerland), 2019, 9, 953.	1.3	9
325	Climate Change and the Anthropocene. , 2019, , 200-241.		0
326	An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications. Reviews of Geophysics, 2019, 57, 739-799.	9.0	396
327	History and Development of the Anthropocene as a Stratigraphic Concept. , 2019, , 1-40.		0
328	Stratigraphic Signatures of the Anthropocene. , 2019, , 41-108.		0
329	The Biostratigraphic Signature of the Anthropocene. , 2019, , 109-136.		1
330	The Stratigraphic Boundary of the Anthropocene. , 2019, , 242-286.		Ο
331	Ecological and hydroclimate responses to strengthening of the Hadley circulation in South America during the Late Miocene cooling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9747-9752.	3.3	30
332	Taxonomy, together with ontogeny and growing conditions, drives needleleaf species' sensitivity to climate in boreal North America. Global Change Biology, 2019, 25, 2793-2809.	4.2	46
333	The Technosphere and Its Physical Stratigraphic Record. , 2019, , 137-155.		1
334	Changes in rainfall distribution promote woody foliage production in the Sahel. Communications Biology, 2019, 2, 133.	2.0	49

#	Article	IF	CITATIONS
335	The Addition of Temperature to the TSS-RESTREND Methodology Significantly Improves the Detection of Dryland Degradation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 2342-2348.	2.3	9
336	Application of remote sensing to water environmental processes under a changing climate. Journal of Hydrology, 2019, 574, 892-902.	2.3	43
337	Evapotranspiration Partitioning in CMIP5 Models: Uncertainties and Future Projections. Journal of Climate, 2019, 32, 2653-2671.	1.2	38
338	Effect of Organic Carbon and Nitrogen on the Interactions of Morchella spp. and Bacteria Dispersing on Their Mycelium. Frontiers in Microbiology, 2019, 10, 124.	1.5	14
339	Past and Projected Freezing/Thawing Indices in the Northern Hemisphere. Journal of Applied Meteorology and Climatology, 2019, 58, 495-510.	0.6	14
340	Exploring the Potential of Satellite Solar-Induced Fluorescence to Constrain Global Transpiration Estimates. Remote Sensing, 2019, 11, 413.	1.8	34
341	Modulation of Midâ€Holocene African Rainfall by Dust Aerosol Direct and Indirect Effects. Geophysical Research Letters, 2019, 46, 3917-3926.	1.5	35
342	Plant phenology and global climate change: Current progresses and challenges. Global Change Biology, 2019, 25, 1922-1940.	4.2	944
343	Controlled infrared heating of an artic meadow: challenge in the vegetation establishment stage. Plant Methods, 2019, 15, 3.	1.9	2
344	Contrasting Changes in Vegetation Growth due to Different Climate Forcings over the Last Three Decades in the Selenga-Baikal Basin. Remote Sensing, 2019, 11, 426.	1.8	10
345	Assessing soil organic carbon stock of Wisconsin, USA and its fate under future land use and climate change. Science of the Total Environment, 2019, 667, 833-845.	3.9	97
346	Air temperature optima of vegetation productivity across global biomes. Nature Ecology and Evolution, 2019, 3, 772-779.	3.4	316
347	Are Changes in Plants due to Enhanced CO2 Contributing to Insect Population Declines?. Environmental Entomology, 2019, 48, 274-275.	0.7	5
348	The variation of vegetation productivity and its relationship to temperature and precipitation based on the GLASS-LAI of different African ecosystems from 1982 to 2013. International Journal of Biometeorology, 2019, 63, 847-860.	1.3	14
349	Cumulative Effects of Climatic Factors on Terrestrial Vegetation Growth. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 789-806.	1.3	90
350	Seasonal Divergent Tree Growth Trends and Growth Variability along Drought Gradient over Northeastern China. Forests, 2019, 10, 39.	0.9	5
351	Remote sensing of earth's energy budget: synthesis and review. International Journal of Digital Earth, 2019, 12, 737-780.	1.6	105
352	Constraints to Vegetation Growth Reduced by Region-Specific Changes in Seasonal Climate. Climate, 2019, 7, 27.	1.2	12

#	ARTICLE	IF	CITATIONS
353	Determining the impacts of climate change and urban expansion on terrestrial net primary production in China. Journal of Environmental Management, 2019, 240, 75-83.	3.8	48
354	Growing season extension affects ozone uptake by European forests. Science of the Total Environment, 2019, 669, 1043-1052.	3.9	27
355	Spatial, temporal, and spectral variations in albedo due to vegetation changes in China's grasslands. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152, 1-12.	4.9	37
356	More severe hydrological drought events emerge at different warming levels over the Wudinghe watershed in northern China. Hydrology and Earth System Sciences, 2019, 23, 621-635.	1.9	23
357	Negative emissions technologies: A complementary solution for climate change mitigation. Science of the Total Environment, 2019, 672, 502-514.	3.9	73
358	Understanding the Land Carbon Cycle with Space Data: Current Status and Prospects. Surveys in Geophysics, 2019, 40, 735-755.	2.1	22
359	Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests. PLoS ONE, 2019, 14, e0211510.	1.1	58
360	Modeling the consequences of land plant evolution on silicate weathering. Numerische Mathematik, 2019, 319, 1-43.	0.7	51
361	Natural Resource and Environmental Dimensions of Agrifood Systems. , 2019, , 349-377.		0
362	China and India lead in greening of the world through land-use management. Nature Sustainability, 2019, 2, 122-129.	11.5	1,636
363	Projection of 21st century irrigation water requirement across the Lower Mississippi Alluvial Valley. Agricultural Water Management, 2019, 217, 60-72.	2.4	11
364	Anthropocene Chemostratigraphy. , 2019, , 156-199.		0
365	Effects of nitrogen deposition on water use efficiency of global terrestrial ecosystems simulated using the IBIS model. Ecological Indicators, 2019, 101, 954-962.	2.6	15
366	Forest age improves understanding of the global carbon sink. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3962-3964.	3.3	36
367	A comprehensive analysis of phenological changes in forest vegetation of the Funiu Mountains, China. Journal of Chinese Geography, 2019, 29, 131-145.	1.5	16
368	Earth system models underestimate carbon fixation by plants in the high latitudes. Nature Communications, 2019, 10, 885.	5.8	53
369	Ecosystem structural changes controlled by altered rainfall climatology in tropical savannas. Nature Communications, 2019, 10, 671.	5.8	39
370	Impacts of Extreme Climatic Events on the Agricultural and Forestry Systems—Project Impecaf. Proceedings (mdpi), 2019, 38, 11.	0.2	Ο

#	Article	IF	CITATIONS
371	[Wetlands in the Continental biogeographical region of Northern Italy: from scenarios of change to conservation perspectives]. Natural History Sciences, 2019, 6, .	0.5	1
372	Improved Mapping of Mountain Shrublands Using the Sentinel-2 Red-Edge Band. Remote Sensing, 2019, 11, 2807.	1.8	25
373	Importance of dry deposition parameterization choice in global simulations of surface ozone. Atmospheric Chemistry and Physics, 2019, 19, 14365-14385.	1.9	25
374	High predictability of terrestrial carbon fluxes from an initialized decadal prediction system. Environmental Research Letters, 2019, 14, 124074.	2.2	19
375	A reversal in global terrestrial stilling and its implications for wind energy production. Nature Climate Change, 2019, 9, 979-985.	8.1	246
376	Sensitivity of Global Pasturelands to Climate Variation. Earth's Future, 2019, 7, 1353-1366.	2.4	23
377	Chemical and microbial diversity covary in fresh water to influence ecosystem functioning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24689-24695.	3.3	98
378	Impacts of past abrupt land change on local biodiversity globally. Nature Communications, 2019, 10, 5474.	5.8	46
379	Can We Use the QA4ECV Black-sky Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) using AVHRR Surface Reflectance to Assess Terrestrial Global Change?. Remote Sensing, 2019, 11, 3055.	1.8	3
380	Global biosphere–climate interaction: a causal appraisal of observations and models over multiple temporal scales. Biogeosciences, 2019, 16, 4851-4874.	1.3	12
381	The Impacts of the Dust Radiative Effect on Vegetation Growth in the Sahel. Global Biogeochemical Cycles, 2019, 33, 1582-1593.	1.9	16
382	Migration of Rural Residents to Urban Areas Drives Grassland Vegetation Increase in China's Loess Plateau. Sustainability, 2019, 11, 6764.	1.6	16
383	Climatic Drivers of Greening Trends in the Alps. Remote Sensing, 2019, 11, 2527.	1.8	41
384	Hypotheses from Recent Assessments of Climate Impacts to Biodiversity and Ecosystems in the United States. Climate Change Management, 2019, , 355-375.	0.6	3
385	Local species assemblages are influenced more by past than current dissimilarities in photosynthetic activity. Ecography, 2019, 42, 670-682.	2.1	6
386	Global trends in carbon sinks and their relationships with CO2 and temperature. Nature Climate Change, 2019, 9, 73-79.	8.1	163
387	Tree rings provide no evidence of a CO ₂ fertilization effect in oldâ€growth subalpine forests of western Canada. Global Change Biology, 2019, 25, 1222-1234.	4.2	25
388	Elevated CO ₂ does not stimulate carbon sink in a semi-arid grassland. Ecology Letters, 2019, 22, 458-468.	3.0	34

~		<u> </u>	
(``		REDC	D T
\sim	$\Pi \cap \Pi$	ILLI U	

#	Article	IF	CITATIONS
389	A greening world enhances the surface-air temperature difference. Science of the Total Environment, 2019, 658, 385-394.	3.9	41
390	Responses of macroalgae to CO ₂ enrichment cannot be inferred solely from their inorganic carbon uptake strategy. Ecology and Evolution, 2019, 9, 125-140.	0.8	53
391	Disentangling Climate and Disturbance Effects on Regional Vegetation Greening Trends. Ecosystems, 2019, 22, 873-891.	1.6	25
392	Compositional response of Amazon forests to climate change. Global Change Biology, 2019, 25, 39-56.	4.2	265
393	Investigating the Causes of Increased Twentieth-Century Fall Precipitation over the Southeastern United States. Journal of Climate, 2019, 32, 575-590.	1.2	41
394	Moralising Global Markets. , 2019, , .		1
395	Twentieth century redistribution in climatic drivers of global tree growth. Science Advances, 2019, 5, eaat4313.	4.7	282
396	Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sensing of Environment, 2019, 222, 183-194.	4.6	393
397	Moisture Source Changes Contributed to Different Precipitation Changes over the Northern and Southern Tibetan Plateau. Journal of Hydrometeorology, 2019, 20, 217-229.	0.7	86
398	Late glacial and Holocene vegetation and climate variations at Lake Tangra Yumco, central Tibetan Plateau. Clobal and Planetary Change, 2019, 174, 16-25.	1.6	43
399	Assessing human and environmental pressures of global land-use change 2000–2010. Global Sustainability, 2019, 2, .	1.6	60
400	Satellite-based large-scale vegetation dynamics in ecological restoration programmes of Northern China. International Journal of Remote Sensing, 2019, 40, 2296-2312.	1.3	19
401	Modelling carbon sources and sinks in terrestrial vegetation. New Phytologist, 2019, 221, 652-668.	3.5	163
402	Urbanization effects on vegetation cover in major African cities during 2001-2017. International Journal of Applied Earth Observation and Geoinformation, 2019, 75, 44-53.	1.4	72
403	Geographical adaptation prevails over speciesâ€specific determinism in trees' vulnerability to climate change at Mediterranean rearâ€edge forests. Global Change Biology, 2019, 25, 1296-1314.	4.2	55
404	Fossil leaf traits as archives for the past — and lessons for the future?. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 254, 59-70.	0.6	11
405	Recent Third Pole's Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bulletin of the American Meteorological Society, 2019, 100, 423-444.	1.7	590
406	Human-induced climate change: the impact of land-use change. Theoretical and Applied Climatology, 2019, 135, 1031-1044.	1.3	10

#	Article	IF	CITATIONS
407	Situating the social sustainability of print media in a world of digital alternatives. Telematics and Informatics, 2019, 37, 137-145.	3.5	17
408	The response of vegetation to rising CO2 concentrations plays an important role in future changes in the hydrological cycle. Theoretical and Applied Climatology, 2019, 136, 135-144.	1.3	8
409	Gas exchange and waterâ€use efficiency in plant canopies. Plant Biology, 2020, 22, 52-67.	1.8	53
410	The grey-green divide: multi-temporal analysis of greenness across 10,000 urban centres derived from the Global Human Settlement Layer (GHSL). International Journal of Digital Earth, 2020, 13, 101-118.	1.6	46
411	The influence of rising tropospheric carbon dioxide and ozone on plant productivity. Plant Biology, 2020, 22, 5-11.	1.8	86
412	Thermal energy storage radiatively coupled to a supercritical Rankine cycle for electric grid support. Renewable Energy, 2020, 145, 604-621.	4.3	22
413	Impact of human activities and climate change on the grassland dynamics under different regime policies in the Mongolian Plateau. Science of the Total Environment, 2020, 698, 134304.	3.9	89
414	Local and teleconnected temperature effects of afforestation and vegetation greening in China. National Science Review, 2020, 7, 897-912.	4.6	60
415	Effects of increasing aerosol optical depth on the gross primary productivity in China during 2000–2014. Ecological Indicators, 2020, 108, 105761.	2.6	22
416	Distinguishing the impacts of climate change and anthropogenic factors on vegetation dynamics in the Yangtze River Basin, China. Ecological Indicators, 2020, 108, 105724.	2.6	162
417	Characteristics of free air carbon dioxide enrichment of a northern temperate mature forest. Global Change Biology, 2020, 26, 1023-1037.	4.2	21
418	Constraining estimates of terrestrial carbon uptake: new opportunities using longâ€ŧerm satellite observations and data assimilation. New Phytologist, 2020, 225, 105-112.	3.5	44
419	Attribution of growing season vegetation activity to climate change and human activities in the Three-River Headwaters Region, China. Journal of Hydroinformatics, 2020, 22, 186-204.	1.1	16
420	Changes in global terrestrial ecosystem water use efficiency are closely related to soil moisture. Science of the Total Environment, 2020, 698, 134165.	3.9	71
421	Global change biology: A primer. Global Change Biology, 2020, 26, 3-30.	4.2	172
422	Influences of leaf area index and albedo on estimating energy fluxes with HOLAPS framework. Journal of Hydrology, 2020, 580, 124245.	2.3	4
423	Spatiotemporal dynamics of the vegetation in Ningxia, China using MODIS imagery. Frontiers of Earth Science, 2020, 14, 221-235.	0.9	14
424	Tree water-use efficiency and growth dynamics in response to climatic and environmental changes in a temperate forest in Beijing, China. Environment International, 2020, 134, 105209.	4.8	25

#	Article	IF	CITATIONS
425	Assessing non-linearity in European temperature-sensitive tree-ring data. Dendrochronologia, 2020, 59, 125652.	1.0	26
426	Unraveling the sensitivity and nonlinear response of water use efficiency to the water–energy balance and underlying surface condition in a semiarid basin. Science of the Total Environment, 2020, 699, 134405.	3.9	14
427	Spaceâ€Based Observations for Understanding Changes in the Arcticâ€Boreal Zone. Reviews of Geophysics, 2020, 58, e2019RG000652.	9.0	39
428	Understanding forest dynamics by integrating age and environmental change. New Phytologist, 2020, 228, 1728-1733.	3.5	6
429	Forest management in southern China generates short term extensive carbon sequestration. Nature Communications, 2020, 11, 129.	5.8	259
430	Photosynthesis as a thermodynamic cycle. Heat and Mass Transfer, 2020, 56, 1649-1658.	1.2	7
431	Estimation of Global Grassland Net Ecosystem Carbon Exchange Using a Model Tree Ensemble Approach. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005034.	1.3	16
432	Elevation-dependent effects of growing season length on carbon sequestration in Xizang Plateau grassland. Ecological Indicators, 2020, 110, 105880.	2.6	12
433	Deforestation and land farming as regulators of population size and climate. Acta Ecologica Sinica, 2020, 40, 443-450.	0.9	5
434	Diverse responses of radial growth to climate across the southern part of the Asian boreal forests in northeast China. Forest Ecology and Management, 2020, 458, 117759.	1.4	13
435	Investigation of wildfire impacts on land surface phenology from MODIS time series in the western US forests. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159, 281-295.	4.9	28
436	Spatiotemporal changes in vegetation coverage and its causes in China since the Chinese economic reform. Environmental Science and Pollution Research, 2020, 27, 1144-1159.	2.7	46
437	A reporting framework for Sustainable Development Goal 15: Multi-scale monitoring of forest degradation using MODIS, Landsat and Sentinel data. Remote Sensing of Environment, 2020, 237, 111592.	4.6	45
438	Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 2020, 1, 14-27.	12.2	889
439	A systematic view of remote sensing. , 2020, , 1-57.		6
440	Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018. Energies, 2020, 13, 4839.	1.6	38
441	Solar Cycles in Salvage Logging: National Data from the Czech Republic Confirm Significant Correlation. Forests, 2020, 11, 973.	0.9	22
442	Atmospheric Temperature and CO2: Hen-or-Egg Causality?. Sci, 2020, 2, 72.	1.8	4

#	Article	lF	CITATIONS
443	Using Remotely Sensed Information to Improve Vegetation Parameterization in a Semi-Distributed Hydrological Model (SMART) for Upland Catchments in Australia. Remote Sensing, 2020, 12, 3051.	1.8	1
444	Quantifying the impact of vegetation changes on global terrestrial runoff using the Budyko framework. Journal of Hydrology, 2020, 590, 125389.	2.3	51
445	Net carbon ecosystem exchange during 24 years in the SorÃ, Beech Forest – relations to phenology and climate. Tellus, Series B: Chemical and Physical Meteorology, 2022, 72, 1822063.	0.8	9
446	Evaluation of the MODIS LAI/FPAR Algorithm Based on 3D-RTM Simulations: A Case Study of Grassland. Remote Sensing, 2020, 12, 3391.	1.8	27
447	Evaluation of the version 5.0 global land surface satellite (GLASS) leaf area index product derived from MODIS data. International Journal of Remote Sensing, 2020, 41, 9140-9160.	1.3	14
448	The carrying pressure of livestock is higher than that of large wild herbivores in Yellow River source area, China. Ecological Modelling, 2020, 431, 109163.	1.2	6
449	Resilience of Spanish forests to recent droughts and climate change. Global Change Biology, 2020, 26, 7079-7098.	4.2	27
450	Warmer spring alleviated the impacts of 2018 European summer heatwave and drought on vegetation photosynthesis. Agricultural and Forest Meteorology, 2020, 295, 108195.	1.9	48
451	Vegetation forcing modulates global land monsoon and water resources in a CO2-enriched climate. Nature Communications, 2020, 11, 5184.	5.8	37
452	Impact of recent vegetation greening on temperature and precipitation over China. Agricultural and Forest Meteorology, 2020, 295, 108197.	1.9	87
453	Enhanced spring temperature sensitivity of carbon emission links to earlier phenology. Science of the Total Environment, 2020, 745, 140999.	3.9	9
454	Reconstructing the Seasonality and Trend in Global Leaf Area Index During 2001–2017 for Prognostic Modeling. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005698.	1.3	6
455	Satellite-observed decrease in the sensitivity of spring phenology to climate change under high nitrogen deposition. Environmental Research Letters, 2020, 15, 094055.	2.2	13
456	The Reliability of Global Remote Sensing Evapotranspiration Products over Amazon. Remote Sensing, 2020, 12, 2211.	1.8	23
457	Land Surface Temperature Trend and Its Drivers in East Africa. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033446.	1.2	8
458	Biophysical impacts of Earth greening largely controlled by aerodynamic resistance. Science Advances, 2020, 6, .	4.7	67
459	Limited Contribution of Glacier Mass Loss to the Recent Increase in Tibetan Plateau Lake Volume. Frontiers in Earth Science, 2020, 8, .	0.8	23
460	Rapid Urbanization and Agricultural Intensification Increase Regional Evaporative Water Consumption of the Loess Plateau. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033380.	1.2	16

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
461	Automatic Stomatal Segmentation Based on Delaunay-Rayleigh Frequency Distance. Plants, 2020, 9, 1613.	1.6	3
462	Synergistic effects of four climate change drivers on terrestrial carbon cycling. Nature Geoscience, 2020, 13, 787-793.	5.4	45
463	Climateâ€Ðriven Variability and Trends in Plant Productivity Over Recent Decades Based on Three Global Products. Global Biogeochemical Cycles, 2020, 34, e2020GB006613.	1.9	36
464	The relative contribution of vegetation greening to the hydrological cycle in the Three-North region of China: A modelling analysis. Journal of Hydrology, 2020, 591, 125689.	2.3	43
465	Changes of Light Components and Impacts on Interannual Variations of Photosynthesis in China Over 2000–2017 by Using a Two‣eaf Light Use Efficiency Model. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005735.	1.3	8
466	Observational Constraints on the Response of Highâ€Latitude Northern Forests to Warming. AGU Advances, 2020, 1, e2020AV000228.	2.3	24
467	An Assessment of the Hydrological Trends Using Synergistic Approaches of Remote Sensing and Model Evaluations over Global Arid and Semi-Arid Regions. Remote Sensing, 2020, 12, 3973.	1.8	10
468	Global Carbon Cycle and Climate Feedbacks in the NASA GISS ModelE2.1. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002030.	1.3	15
469	Globally partitioning the simultaneous impacts of climate-induced and human-induced changes on catchment streamflow: A review and meta-analysis. Journal of Hydrology, 2020, 590, 125387.	2.3	34
470	Assessing the Temporal Response of Tropical Dry Forests to Meteorological Drought. Remote Sensing, 2020, 12, 2341.	1.8	5
471	Persistent Vegetation Greening and Browning Trends Related to Natural and Human Activities in the Mount Elgon Ecosystem. Remote Sensing, 2020, 12, 2113.	1.8	17
472	Greening Hiatus in Eurasian Boreal Forests Since 1997 Caused by a Wetting and Cooling Summer Climate. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005662.	1.3	5
473	Future greening of the Earth may not be as large as previously predicted. Agricultural and Forest Meteorology, 2020, 292-293, 108111.	1.9	24
474	Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nature Communications, 2020, 11, 3853.	5.8	215
475	Vegetation greening intensified soil drying in some semi-arid and arid areas of the world. Agricultural and Forest Meteorology, 2020, 292-293, 108103.	1.9	38
476	Tracking Seasonal and Interannual Variability in Photosynthetic Downregulation in Response to Water Stress at a Temperate Deciduous Forest. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2018JG005002.	1.3	17
477	Understanding the impacts of â€~Grain for Green' land management practice on land greening dynamics over the Loess Plateau of China. Land Use Policy, 2020, 99, 105084.	2.5	52
478	A Trend Analysis of Leaf Area Index and Land Surface Temperature and Their Relationship from Global to Local Scale. Land, 2020, 9, 388.	1.2	11

#	Article	IF	CITATIONS
479	Why Is the Terrestrial Water Storage in Dryland Regions Declining? A Perspective Based on Gravity Recovery and Climate Experiment Satellite Observations and Noah Land Surface Model With Multiparameterization Schemes Model Simulations. Water Resources Research, 2020, 56, e2020WR027102.	1.7	18
480	Controls of Climate and Land-Use Change on Terrestrial Net Primary Productivity Variation in a Subtropical Humid Basin. Remote Sensing, 2020, 12, 3525.	1.8	15
481	The DOE E3SM v1.1 Biogeochemistry Configuration: Description and Simulated Ecosystemâ€Climate Responses to Historical Changes in Forcing. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001766.	1.3	65
482	Greening and Browning Trends of Vegetation in India and Their Responses to Climatic and Non-Climatic Drivers. Climate, 2020, 8, 92.	1.2	52
483	Accelerated rate of vegetation greenâ€up related to warming at northern high latitudes. Global Change Biology, 2020, 26, 6190-6202.	4.2	40
484	Observed Vegetation Greening and Its Relationships with Cropland Changes and Climate in China. Land, 2020, 9, 274.	1.2	7
485	Landscape-wide changes in land use and land cover correlate with, but rarely explain local biodiversity change. Landscape Ecology, 2020, 35, 2255-2273.	1.9	11
486	Evaluation of atmospheric and terrestrial effects in the carbon cycle for forest and grassland ecosystems using a remote sensing and modeling approach. Agricultural and Forest Meteorology, 2020, 295, 108187.	1.9	9
487	Elevation dependence of drought legacy effects on vegetation greenness over the Tibetan Plateau. Agricultural and Forest Meteorology, 2020, 295, 108190.	1.9	39
488	A Semi-Parametric Geographically Weighted Regression Approach to Exploring Driving Factors of Fractional Vegetation Cover: A Case Study of Guangdong. Sustainability, 2020, 12, 7512.	1.6	8
489	Climate change winners and losers: The effects of climate change on five palm species in the Southeastern United States. Ecology and Evolution, 2020, 10, 10408-10425.	0.8	9
490	The Greening and Wetting of the Sahel Have Leveled off since about 1999 in Relation to SST. Remote Sensing, 2020, 12, 2723.	1.8	8
491	Greening and Browning Trends across Peru's Diverse Environments. Remote Sensing, 2020, 12, 2418.	1.8	7
492	Evaluation of Evapotranspiration Models Using Different LAI and Meteorological Forcing Data from 1982 to 2017. Remote Sensing, 2020, 12, 2473.	1.8	14
493	Contrasting Effects of Temperature and Precipitation on Vegetation Greenness along Elevation Gradients of the Tibetan Plateau. Remote Sensing, 2020, 12, 2751.	1.8	29
494	Carbon dioxide emissions from periglacial patterned ground under changing permafrost conditions and shrub encroachment in an alpine landscape, Jotunheimen, Norway. Permafrost and Periglacial Processes, 2020, 31, 524-537.	1.5	2
495	Research challenges and opportunities for using big data in global change biology. Global Change Biology, 2020, 26, 6040-6061.	4.2	33
496	Comparison of Ten Potential Evapotranspiration Models and Their Attribution Analyses for Ten Chinese Drainage Basins. Advances in Atmospheric Sciences, 2020, 37, 959-974.	1.9	13

#	Article	IF	CITATIONS
497	Siberian and temperate ecosystems shape Northern Hemisphere atmospheric CO ₂ seasonal amplification. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21079-21087.	3.3	27
498	Projecting the future vegetation–climate system over East Asia and its RCP-dependence. Climate Dynamics, 2020, 55, 2725-2742.	1.7	8
499	Identification of Optimum Temperatures for Photosynthetic Production in Subtropical Coastal Ecosystems: Implications for CO ₂ Sequestration in a Warming World. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005678.	1.3	5
500	Vegetation Response to Elevated CO 2 Slows Down the Eastward Movement of the 100th Meridian. Geophysical Research Letters, 2020, 47, e2020GL089681.	1.5	5
501	Alaskan carbon-climate feedbacks will be weaker than inferred from short-term experiments. Nature Communications, 2020, 11, 5798.	5.8	18
502	Recent Amplified Global Gross Primary Productivity Due to Temperature Increase Is Offset by Reduced Productivity Due to Water Constraints. AGU Advances, 2020, 1, e2020AV000180.	2.3	50
503	Parametric Models to Characterize the Phenology of the Lowveld Savanna at Skukuza, South Africa. Remote Sensing, 2020, 12, 3927.	1.8	4
504	Spatio-Temporal Characteristics of Drought Events and Their Effects on Vegetation: A Case Study in Southern Tibet, China. Remote Sensing, 2020, 12, 4174.	1.8	8
505	Structural Determinants and Their Role in Cyanobacterial Morphogenesis. Life, 2020, 10, 355.	1.1	15
506	Tamm review: Leaf Area Index (LAI) is both a determinant and a consequence of important processes in vegetation canopies. Forest Ecology and Management, 2020, 477, 118496.	1.4	64
507	Post-2020 biodiversity targets need to embrace climate change. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30882-30891.	3.3	160
508	Recent global decline of CO ₂ fertilization effects on vegetation photosynthesis. Science, 2020, 370, 1295-1300.	6.0	317
509	Atmospheric Temperature and CO2: Hen-Or-Egg Causality?. Sci, 2020, 2, 83.	1.8	16
510	Nearly Half of Global Vegetated Area Experienced Inconsistent Vegetation Growth in Terms of Greenness, Cover, and Productivity. Earth's Future, 2020, 8, e2020EF001618.	2.4	60
511	Asymmetry of Daytime and Nighttime Warming in Typical Climatic Zones along the Eastern Coast of China and Its Influence on Vegetation Activities. Remote Sensing, 2020, 12, 3604.	1.8	5
512	Spatial Heterogeneity of Vegetation Response to Mining Activities in Resource Regions of Northwestern China. Remote Sensing, 2020, 12, 3247.	1.8	28
513	Atmospheric Temperature and CO2: Hen-or-Egg Causality?. Sci, 2020, 2, 77.	1.8	3
514	Large Uncertainty on Forest Area Change in the Early 21st Century among Widely Used Global Land Cover Datasets. Remote Sensing, 2020, 12, 3502.	1.8	24

#	Article	IF	Citations
515	Atmospheric Temperature and CO2: Hen-or-Egg Causality?. Sci, 2020, 2, 81.	1.8	1
516	Assessing the Impacts of Vegetation Greenness Change on Evapotranspiration and Water Yield in China. Water Resources Research, 2020, 56, e2019WR027019.	1.7	84
517	Large scale reforestation of farmlands on sloping hills in South China karst. Landscape Ecology, 2020, 35, 1445-1458.	1.9	47
518	Climate change shapes the future evolution of plant metabolism. Genetics & Genomics Next, 2020, 1, e10022.	0.8	5
519	An Evaluation of Vegetation Health in and around Southern African National Parks during the 21st Century (2000–2016). Applied Sciences (Switzerland), 2020, 10, 2366.	1.3	10
520	The intensification of Arctic warming as a result of CO2 physiological forcing. Nature Communications, 2020, 11, 2098.	5.8	26
521	Applying Geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI variations in the middle reaches of the Heihe River Basin. Ecological Indicators, 2020, 117, 106545.	2.6	180
522	Abrupt changes in Great Britain vegetation carbon projected under climate change. Global Change Biology, 2020, 26, 4436-4448.	4.2	4
523	35 Years of Vegetation and Lake Dynamics in the Pechora Catchment, Russian European Arctic. Remote Sensing, 2020, 12, 1863.	1.8	6
524	Influence of sun zenith angle on canopy clumping and the resulting impacts on photosynthesis. Agricultural and Forest Meteorology, 2020, 291, 108065.	1.9	24
525	Accelerated terrestrial ecosystem carbon turnover and its drivers. Global Change Biology, 2020, 26, 5052-5062.	4.2	42
526	On the carbon cycle impact of combustion of harvested plant biomass vs. fossil carbon resources. Computers and Chemical Engineering, 2020, 140, 106942.	2.0	13
527	Remote sensing spatiotemporal patterns of frozen soil and the environmental controls over the Tibetan Plateau during 2002–2016. Remote Sensing of Environment, 2020, 247, 111927.	4.6	49
528	Global analysis of time-lag and -accumulation effects of climate on vegetation growth. International Journal of Applied Earth Observation and Geoinformation, 2020, 92, 102179.	1.4	75
529	Comparing Palmer Drought Severity Index drought assessments using the traditional offline approach with direct climate model outputs. Hydrology and Earth System Sciences, 2020, 24, 2921-2930.	1.9	46
530	Can lightâ€saturated photosynthesis in lowland tropical forests be estimated by one light level?. Biotropica, 2020, 52, 1183-1193.	0.8	2
531	Optimization of Multi-Ecosystem Model Ensembles to Simulate Vegetation Growth at the Global Scale. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 962-978.	2.7	3
532	Patterns and trends of the dominant environmental controls of net biome productivity. Biogeosciences, 2020, 17, 2365-2379.	1.3	12

#	Article	IF	CITATIONS
533	Increased control of vegetation on global terrestrial energy fluxes. Nature Climate Change, 2020, 10, 356-362.	8.1	152
534	Effects of Climate and Land Use changes on Vegetation Dynamics in the Yangtze River Delta, China Based on Abrupt Change Analysis. Sustainability, 2020, 12, 1955.	1.6	11
535	Towards a global understanding of vegetation–climate dynamics at multiple timescales. Biogeosciences, 2020, 17, 945-962.	1.3	35
536	Asymmetric patterns and temporal changes in phenologyâ€based seasonal gross carbon uptake of global terrestrial ecosystems. Global Ecology and Biogeography, 2020, 29, 1020-1033.	2.7	11
537	A Healthy Park Needs Healthy Vegetation: The Story of Gorongosa National Park in the 21st Century. Remote Sensing, 2020, 12, 476.	1.8	15
538	Bare Earth's Surface Spectra as a Proxy for Soil Resource Monitoring. Scientific Reports, 2020, 10, 4461.	1.6	66
539	Hysteretic relationship between plant productivity and methane uptake in an alpine meadow. Agricultural and Forest Meteorology, 2020, 288-289, 107982.	1.9	4
540	Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of the Total Environment, 2020, 733, 137782.	3.9	368
541	Responses of Seasonal Indicators to Extreme Droughts in Southwest China. Remote Sensing, 2020, 12, 818.	1.8	22
542	The forest mitigation-adaptation nexus: Economic benefits of novel planting regimes. Forest Policy and Economics, 2020, 113, 102124.	1.5	7
543	Enhanced regional terrestrial carbon uptake over Korea revealed by atmospheric CO 2 measurements from 1999 to 2017. Global Change Biology, 2020, 26, 3368-3383.	4.2	7
544	The age distribution of global soil carbon inferred from radiocarbon measurements. Nature Geoscience, 2020, 13, 555-559.	5.4	123
545	Identifying Ecosystem Function Shifts in Africa Using Breakpoint Analysis of Long-Term NDVI and RUE Data. Remote Sensing, 2020, 12, 1894.	1.8	18
546	Forest responses to simulated elevated CO ₂ under alternate hypotheses of size―and ageâ€dependent mortality. Global Change Biology, 2020, 26, 5734-5753.	4.2	18
547	Do anthropogenic factors affect the improvement of vegetation cover in resource-based region?. Journal of Cleaner Production, 2020, 271, 122705.	4.6	28
548	Accuracy assessment and error analysis for diameter at breast height measurement of trees obtained using a novel backpack LiDAR system. Forest Ecosystems, 2020, 7, .	1.3	20
549	The impacts of urbanization and climate change on urban vegetation dynamics in China. Urban Forestry and Urban Greening, 2020, 54, 126764.	2.3	65
550	Trees in a Warming World. , 2020, , 160-199.		0

		CITATION REPORT		
#	Article		IF	CITATIONS
551	Envisioning a global forest transition: Status, role, and implications. Land Use Policy, 20)20, 99, 104808.	2.5	9
552	Human-induced land degradation dominance in the Nigerian Guinea Savannah betweer Remote Sensing Applications: Society and Environment, 2020, 19, 100360.	n 2003 – 2018.	0.8	6
553	Light limitation regulates the response of autumn terrestrial carbon uptake to warming Climate Change, 2020, 10, 739-743.	;. Nature	8.1	94
554	Improving leaf area index retrieval over heterogeneous surface mixed with water. Remo Environment, 2020, 240, 111700.	te Sensing of	4.6	19
555	Evidence of Carbon Uptake Associated with Vegetation Greening Trends in Eastern Chi Sensing, 2020, 12, 718.	na. Remote	1.8	10
556	Global karst vegetation regime and its response to climate change and human activitie Indicators, 2020, 113, 106208.	s. Ecological	2.6	35
557	Agricultural productivity in relation to climate and cropland management in West Afric Reports, 2020, 10, 3393.	a. Scientific	1.6	41
558	The global response of temperature to high-latitude vegetation greening in a two-dime balance model. Atmospheric and Oceanic Science Letters, 2020, 13, 80-87.	nsional energy	0.5	1
559	Effects of Anthropogenic Activity on Global Terrestrial Gross Primary Production. Journa Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005403.	al of	1.3	8
560	Plant Growth Nullifies the Effect of Increased Waterâ€Use Efficiency on Streamflow Ur 2 in the Southeastern United States. Geophysical Research Letters, 2020, 47, e2019GL	der Elevated CO .086940.	1.5	13
561	Assessing Terrestrial Ecosystem Resilience using Satellite Leaf Area Index. Remote Sens	ing, 2020, 12, 595.	1.8	23
562	Application of Landsat-derived vegetation trends over South Africa: Potential for monit degradation and restoration. Ecological Indicators, 2020, 113, 106206.	oring land	2.6	40
563	Global high-resolution mountain green cover index mapping based on Landsat images a Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162, 63-76	and Google	4.9	37
564	Reduction of structural impacts and distinction of photosynthetic pathways in a global GPP from space-borne solar-induced chlorophyll fluorescence. Remote Sensing of Envir 240, 111722.	estimation of onment, 2020,	4.6	83
565	Spatial and Temporal Characteristics of Vegetation NDVI Changes and the Driving Forc during 1982–2015. Remote Sensing, 2020, 12, 603.	es in Mongolia	1.8	110
566	Trends in Global Vegetative Drought From Long-Term Satellite Remote Sensing Data. IE Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 815-826	EE Journal of	2.3	18
567	Carbon Balance of Grasslands on the Qinghai-Tibet Plateau under Future Climate Chan Sustainability, 2020, 12, 533.	ge: A Review.	1.6	10
568	Vegetation Restoration in Response to Climatic and Anthropogenic Changes in the Loe China. Chinese Geographical Science, 2020, 30, 89-100.	ss Plateau,	1.2	25

#	Article	IF	Citations
569	Buildings as a global carbon sink. Nature Sustainability, 2020, 3, 269-276.	11.5	419
570	Monitoring maize growth on the North China Plain using a hybrid genetic algorithm-based back-propagation neural network model. Computers and Electronics in Agriculture, 2020, 170, 105238.	3.7	24
571	Quantitatively Assessing and Attributing Land Use and Land Cover Changes on China's Loess Plateau. Remote Sensing, 2020, 12, 353.	1.8	29
572	Applying dendrochronology and remote sensing to explore climate-drive in montane forests over space and time. Quaternary Science Reviews, 2020, 237, 106292.	1.4	11
573	Estimating Frost during Growing Season and Its Impact on the Velocity of Vegetation Greenup and Withering in Northeast China. Remote Sensing, 2020, 12, 1355.	1.8	13
574	Preface: Climate Change Impact on Plant Ecology. Climate, 2020, 8, 59.	1.2	1
575	Climate sensitivity, agricultural productivity and the social cost of carbon in FUND. Environmental Economics and Policy Studies, 2020, 22, 433-448.	0.8	7
576	Monitoring tropical forest degradation and restoration with satellite remote sensing: A test using Sabah Biodiversity Experiment. Advances in Ecological Research, 2020, 62, 117-146.	1.4	15
577	Large and projected strengthening moisture limitation on end-of-season photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9216-9222.	3.3	69
578	Concurrent and lagged effects of spring greening on seasonal carbon gain and water loss across the Northern Hemisphere. International Journal of Biometeorology, 2020, 64, 1343-1354.	1.3	6
579	Low sensitivity of gross primary production to elevated CO ₂ in a mature eucalypt woodland. Biogeosciences, 2020, 17, 265-279.	1.3	17
580	Impacts of global environmental change drivers on nonâ€structural carbohydrates in terrestrial plants. Functional Ecology, 2020, 34, 1525-1536.	1.7	44
581	Climate sensitivity of conifer growth doesn't reveal distinct low–high dipole along the elevation gradient in the Wolong National Natural Reserve, SW China. Dendrochronologia, 2020, 61, 125702.	1.0	7
582	Multimodel Future Projections of the Regional Vegetationâ€Climate System Over East Asia: Comparison Between Two Ensemble Approaches. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031967.	1.2	7
583	Forest browning trends in response to drought in a highly threatened mediterranean landscape of South America. Ecological Indicators, 2020, 115, 106401.	2.6	39
584	Competing effects of soil fertility and toxicity on tropical greening. Scientific Reports, 2020, 10, 6725.	1.6	6
585	The greening of the Northern Great Plains and its biogeochemical precursors. Global Change Biology, 2020, 26, 5404-5413.	4.2	25
586	Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrology and Earth System Sciences, 2020, 24, 1485-1509	1.9	130

#	Article	IF	CITATIONS
587	Future changes in Aridity Index at two and four degrees of global warming above preindustrial levels. International Journal of Climatology, 2021, 41, 278-294.	1.5	30
588	The sensitivity of global surface air temperature to vegetation greenness. International Journal of Climatology, 2021, 41, 483-496.	1.5	20
589	Medical biotechnology as a paradigm for forest restoration and introduction of the transgenic American chestnut. Conservation Biology, 2021, 35, 190-196.	2.4	4
590	From land productivity trends to land degradation assessment in Mozambique: Effects of climate, human activities and stakeholder definitions. Land Degradation and Development, 2021, 32, 49-65.	1.8	18
591	Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO ₂ . New Phytologist, 2021, 229, 2413-2445.	3.5	286
592	Spatiotemporal tradeoffs and synergies in vegetation vitality and poverty transition in rocky desertification area. Science of the Total Environment, 2021, 752, 141770.	3.9	36
593	Time-scale dependent mechanism of atmospheric CO2 concentration drivers of watershed water-energy balance. Science of the Total Environment, 2021, 754, 142132.	3.9	1
594	Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Science of the Total Environment, 2021, 755, 142419.	3.9	149
595	Moisture availability mediates the relationship between terrestrial gross primary production and solarâ€induced chlorophyll fluorescence: Insights from globalâ€scale variations. Global Change Biology, 2021, 27, 1144-1156.	4.2	57
596	Understanding interactions among climate, water, and vegetation with the Budyko framework. Earth-Science Reviews, 2021, 212, 103451.	4.0	81
597	Divergent negative spring vegetation and summer runoff patterns and their driving mechanisms in natural ecosystems of northern latitudes. Journal of Hydrology, 2021, 592, 125848.	2.3	6
598	Detecting land degradation in Southern Africa using Time Series Segment and Residual Trend (TSS-RESTREND). Journal of Arid Environments, 2021, 184, 104314.	1.2	14
599	Hydrological effects of change in vegetation components across global catchments. Journal of Hydrology, 2021, 595, 125775.	2.3	20
600	Identifying contributions of climatic and atmospheric changes to autumn phenology over mid-high latitudes of Northern Hemisphere. Global and Planetary Change, 2021, 197, 103396.	1.6	20
601	Nonlinear relationship of greening and shifts from greening to browning in vegetation with nature and human factors along the Silk Road Economic Belt. Science of the Total Environment, 2021, 766, 142553.	3.9	24
602	Contribution of karst ecological restoration engineering to vegetation greening in southwest China during recent decade. Ecological Indicators, 2021, 121, 107081.	2.6	79
603	Toward operational validation systems for global satellite-based terrestrial essential climate variables. International Journal of Applied Earth Observation and Geoinformation, 2021, 95, 102240.	1.4	15
604	Introducing the Time Series Change Visualization and Interpretation (TSCVI) method for the interpretation of global NDVI changes. International Journal of Applied Earth Observation and Geoinformation, 2021, 96, 102268.	1.4	8

#	Article	IF	CITATIONS
605	The effects of urbanization on vegetation conditions in coastal zone of China. Progress in Physical Geography, 2021, 45, 564-579.	1.4	13
606	Evolution of NDVI secular trends and responses to climate change: A perspective from nonlinearity and nonstationarity characteristics. Remote Sensing of Environment, 2021, 254, 112247.	4.6	59
607	Vegetation structural change and CO2 fertilization more than offset gross primary production decline caused by reduced solar radiation in China. Agricultural and Forest Meteorology, 2021, 296, 108207.	1.9	44
608	Reduction in global habitat loss from fossilâ€fuelâ€dependent increases in cropland productivity. Conservation Biology, 2021, 35, 766-774.	2.4	1
609	Grassland greening on the Mongolian Plateau despite higher grazing intensity. Land Degradation and Development, 2021, 32, 792-802.	1.8	44
610	The human–environment nexus and vegetation–rainfall sensitivity in tropical drylands. Nature Sustainability, 2021, 4, 25-32.	11.5	60
611	Above- and belowground trait linkages of dominant species shape responses of alpine steppe composition to precipitation changes in the Tibetan Plateau. Journal of Plant Ecology, 2021, 14, 569-579.	1.2	5
612	Adapting a dynamic vegetation model for regional biomass, plant biogeography, and fire modeling in the Greater Yellowstone Ecosystem: Evaluating LPJ-GUESS-LMfireCF. Ecological Modelling, 2021, 440, 109417.	1.2	7
613	The Dynamic Factors of Desertification and Their Impact on Ecosystems. International Journal of Scientific Advances, 2021, 2, .	0.0	0
614	Post-fire Recruitment Failure as a Driver of Forest to Non-forest Ecosystem Shifts in Boreal Regions. Ecological Studies, 2021, , 69-100.	0.4	8
615	Effects of Vegetation Restoration on Regional Soil Moisture Content in the Humid Karst Areas—A Case Study of Southwest China. Water (Switzerland), 2021, 13, 321.	1.2	12
616	The development of global CO2 emissions. SSRN Electronic Journal, 0, , .	0.4	0
617	An Overview on Dendrochronology and Quantitative Wood Anatomy Studies of Conifers in Southern Siberia (Russia). Progress in Botany Fortschritte Der Botanik, 2021, , 161-181.	0.1	5
618	A simple framework for estimating the annual runoff frequency distribution under a non-stationarity condition. Journal of Hydrology, 2021, 592, 125550.	2.3	9
619	Progress and prospects of applied research on physical geography and the living environment in China over the past 70 years (1949–2019). Journal of Chinese Geography, 2021, 31, 3-45.	1.5	6
620	Vegetation Cover Change and Its Attribution in China from 2001 to 2018. Remote Sensing, 2021, 13, 496.	1.8	23
621	Editorial for Special Issue: "Global Vegetation and Land Surface Dynamics in a Changing Climate― Land, 2021, 10, 45.	1.2	0
622	Implementation of nitrogen cycle in the CLASSIC land model. Biogeosciences, 2021, 18, 669-706.	1.3	11

#	Article	IF	CITATIONS
623	Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nature Communications, 2021, 12, 118.	5.8	106
625	Buying a Blind Eye: Campaign Donations, Forbearance, and Deforestation in Colombia. SSRN Electronic Journal, 0, , .	0.4	0
626	Dataâ€driven estimates of global litter production imply slower vegetation carbon turnover. Global Change Biology, 2021, 27, 1678-1688.	4.2	8
627	Mechanistic insights of <scp>CRISPR</scp> /Casâ€mediated genome editing towards enhancing abiotic stress tolerance in plants. Physiologia Plantarum, 2021, 172, 1255-1268.	2.6	25
628	The impact of indicator selection on assessment of global greening. GIScience and Remote Sensing, 2021, 58, 372-385.	2.4	7
629	The Shrinking Resource Base of Pastoralism: Saami Reindeer Husbandry in a Climate of Change. Frontiers in Sustainable Food Systems, 2021, 4, .	1.8	12
630	The Global Land Surface Satellite (GLASS) Product Suite. Bulletin of the American Meteorological Society, 2021, 102, E323-E337.	1.7	203
631	Simplified Priestley–Taylor Model to Estimate Land-Surface Latent Heat of Evapotranspiration from Incident Shortwave Radiation, Satellite Vegetation Index, and Air Relative Humidity. Remote Sensing, 2021, 13, 902.	1.8	5
632	Greening of the earth does not compensate for rising soil heterotrophic respiration under climate change. Global Change Biology, 2021, 27, 2029-2038.	4.2	20
633	Mapping Impacts of Human Activities from Nighttime Light on Vegetation Cover Changes in Southeast Asia. Land, 2021, 10, 185.	1.2	3
634	Low forest productivity associated with increasing droughtâ€ŧolerant species is compensated by an increase in droughtâ€ŧolerance richness. Global Change Biology, 2021, 27, 2113-2127.	4.2	24
635	Leaf Trait Plasticity Alters Competitive Ability and Functioning of Simulated Tropical Trees in Response to Elevated Carbon Dioxide. Global Biogeochemical Cycles, 2021, 35, e2020GB006807.	1.9	6
636	CO ₂ -plant effects do not account for the gap between dryness indices and projected dryness impacts in CMIP6 or CMIP5. Environmental Research Letters, 2021, 16, 034018.	2.2	20
637	Seasonal biological carryover dominates northern vegetation growth. Nature Communications, 2021, 12, 983.	5.8	45
638	Soil carbon persistence governed by plant input and mineral protection at regional and global scales. Ecology Letters, 2021, 24, 1018-1028.	3.0	96
639	Understanding the combined impacts of weeds and climate change on crops. Environmental Research Letters, 2021, 16, 034043.	2.2	22
640	Regression Analysis of Normalized Difference Vegetation Index (NDVI) to Compare Seasonal Patterns and 15 Year Trend of Vegetation from East to West of Nepal. Nature Environment and Pollution Technology, 2021, 20, 267-273.	0.2	1
641	Sampling protocols of specific leaf area for improving accuracy of the estimation of forest leaf area index. Agricultural and Forest Meteorology, 2021, 298-299, 108286.	1.9	5
#	Article	IF	CITATIONS
-----	--	------	-----------
642	Spatiotemporal Variation of Vegetation Productivity and Its Feedback to Climate Change in Northeast China over the Last 30 Years. Remote Sensing, 2021, 13, 951.	1.8	7
643	Local Climatic Factors Mediated Impacts of Large-Scale Climate Oscillations on the Growth of Vegetation Across the Tibetan Plateau. Frontiers in Environmental Science, 2021, 9, .	1.5	6
644	How Large-Scale Anthropogenic Activities Influence Vegetation Cover Change in China? A Review. Forests, 2021, 12, 320.	0.9	29
645	Precipitation Drives the NDVI Distribution on the Tibetan Plateau While High Warming Rates May Intensify Its Ecological Droughts. Remote Sensing, 2021, 13, 1305.	1.8	32
646	Climate Variability Rather Than Livestock Grazing Dominates Changes in Alpine Grassland Productivity Across Tibet. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	28
647	Multifaceted characteristics of dryland aridity changes in a warming world. Nature Reviews Earth & Environment, 2021, 2, 232-250.	12.2	281
648	A Spatial and Temporal Assessment of Vegetation Greening and Precipitation Changes for Monitoring Vegetation Dynamics in Climate Zones over Africa. ISPRS International Journal of Geo-Information, 2021, 10, 129.	1.4	10
649	No projected global drylands expansion under greenhouse warming. Nature Climate Change, 2021, 11, 331-337.	8.1	104
650	Disentangling the Regional Climate Impacts of Competing Vegetation Responses to Elevated Atmospheric CO 2. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034108.	1.2	6
651	Elevated CO ₂ shifts soil microbial communities from <i>K</i> ―to <i>r</i> â€strategists. Global Ecology and Biogeography, 2021, 30, 961-972.	2.7	32
652	Where Are Global Vegetation Greening and Browning Trends Significant?. Geophysical Research Letters, 2021, 48, e2020GL091496.	1.5	58
653	Modulation of Compound Extremes of Low Soil Moisture and High Vapor Pressure Deficit by Irrigation in India. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034529.	1.2	13
654	Changes in spring vegetation greenness over Siberia associated with weather disturbances during 1982–2015. International Journal of Climatology, 2021, 41, 4698.	1.5	2
655	Accumulated Heating and Chilling Are Important Drivers of Forest Phenology and Productivity in the Algonquin-to-Adirondacks Conservation Corridor of Eastern North America. Forests, 2021, 12, 282.	0.9	0
656	Short photoperiod attenuates CO2 fertilization effect on shoot biomass in Arabidopsis thaliana. Physiology and Molecular Biology of Plants, 2021, 27, 825-834.	1.4	2
657	Interactions between Air Pollution and Terrestrial Ecosystems: Perspectives on Challenges and Future Directions. Bulletin of the American Meteorological Society, 2021, 102, E525-E538.	1.7	10
658	Forest Greening Increases Land Surface Albedo During the Main Growing Period Between 2002 and 2019 in China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033582.	1.2	11
659	A Bibliometric Visualization Review of the MODIS LAI/FPAR Products from 1995 to 2020. Journal of Remote Sensing, 2021, 2021, .	3.2	14

#	Article	IF	CITATIONS
660	A Satelliteâ€Based Assessment of the Relative Contribution of Hydroclimatic Variables on Vegetation Growth in Global Agricultural and Nonagricultural Regions. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033228.	1.2	6
661	Spatiotemporal assessment of land use/land cover change and associated carbon emissions and uptake in the Mekong River Basin. Remote Sensing of Environment, 2021, 256, 112336.	4.6	45
662	Relationship between multi-scale climate factors and performance of ecological engineering on the Loess Plateau, China. Journal of Forestry Research, 2022, 33, 789-800.	1.7	6
663	Spatio-temporal changes of ecological vulnerability across the Qinghai-Tibetan Plateau. Ecological Indicators, 2021, 123, 107274.	2.6	112
664	Different Causal Factors Occur between Land Use/Cover and Vegetation Classification Systems but Not between Vegetation Classification Levels in the Highly Disturbed Jing-Jin-Ji Region of China. Sustainability, 2021, 13, 4201.	1.6	0
665	Scale consistency for investigating urbanization level, vegetation coverage, and their correlation. Urban Forestry and Urban Greening, 2021, 59, 126998.	2.3	10
666	Change in drought conditions and its impacts on vegetation growth over the Tibetan Plateau. Advances in Climate Change Research, 2021, , .	2.1	34
667	Landâ€use legacies influence tree waterâ€use efficiency and nitrogen availability in recently established European forests. Functional Ecology, 2021, 35, 1325-1340.	1.7	7
668	Climate Change Impacts on the Future of Forests in Great Britain. Frontiers in Environmental Science, 2021, 9, .	1.5	10
669	Plant phenology evaluation of CRESCENDO land surface models – Part 1: Start and end of the growing season. Biogeosciences, 2021, 18, 2405-2428.	1.3	19
670	Widespread decline in winds delayed autumn foliar senescence over high latitudes. Proceedings of the United States of America, 2021, 118, .	3.3	41
671	Dynamic characteristics and driving factors of vegetation greenness under changing environments in Xinjiang, China. Environmental Science and Pollution Research, 2021, 28, 42516-42532.	2.7	28
672	Terrestrial sources of summer arctic moisture and the implication for arctic temperature patterns. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	4
674	Disturbance suppresses the aboveground carbon sink in North American boreal forests. Nature Climate Change, 2021, 11, 435-441.	8.1	51
676	The frequency and severity of past droughts shape the drought sensitivity of juniper trees on the Tibetan plateau. Forest Ecology and Management, 2021, 486, 118968.	1.4	19
677	Net primary production increases in the Yangtze River Basin within the latest two decades. Global Ecology and Conservation, 2021, 26, e01497.	1.0	18
678	Divergent responses of ecosystem water use efficiency to drought timing over Northern Eurasia. Environmental Research Letters, 2021, 16, 045016.	2.2	19
679	Climate Change in China Affects Runoff and Terrestrial Ecosystem Water Retention More Than Changes in Leaf Area Index and Land Use/Cover Over the Period 1982–2015. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG0059 <u>02.</u>	1.3	12

#	Article	IF	CITATIONS
680	Improving the global MODIS GPP model by optimizing parameters with FLUXNET data. Agricultural and Forest Meteorology, 2021, 300, 108314.	1.9	32
681	Is the annual maximum leaf area index an important driver of water fluxes simulated by a land surface model in temperate forests?. Canadian Journal of Forest Research, 2021, 51, 595-603.	0.8	3
682	Historical and future global burned area with changing climate and human demography. One Earth, 2021, 4, 517-530.	3.6	43
683	Climate response and drought resilience of Nothofagus obliqua secondary forests across a latitudinal gradient in south-central Chile. Forest Ecology and Management, 2021, 485, 118962.	1.4	27
684	Long-term changes in evapotranspiration over China and attribution to climatic drivers during 1980–2010. Journal of Hydrology, 2021, 595, 126037.	2.3	40
685	Modeling vegetation greenness and its climate sensitivity with deepâ€learning technology. Ecology and Evolution, 2021, 11, 7335-7345.	0.8	22
686	Revealing climatic impacts on the temporal and spatial variation in vegetation activity across China: Sensitivity and contribution. Advances in Climate Change Research, 2021, , .	2.1	20
687	Role of the warming trend in global land surface air temperature variations. Science China Earth Sciences, 2021, 64, 866-871.	2.3	4
688	Vegetation dynamics and its linkage with climatic and anthropogenic factors in the Dawen River Watershed of China from 1999 through 2018. Environmental Science and Pollution Research, 2021, 28, 52887-52900.	2.7	7
689	Greening drylands despite warming consistent with carbon dioxide fertilization effect. Global Change Biology, 2021, 27, 3336-3349.	4.2	50
690	Greening trends and their relationship with agricultural land abandonment across Poland. Remote Sensing of Environment, 2021, 257, 112340.	4.6	29
691	Increased association between climate change and vegetation index variation promotes the coupling of dominant factors and vegetation growth. Science of the Total Environment, 2021, 767, 144669.	3.9	24
692	Eco-engineering controls vegetation trends in southwest China karst. Science of the Total Environment, 2021, 770, 145160.	3.9	64
693	Human activity vs. climate change: Distinguishing dominant drivers on LAI dynamics in karst region of southwest China. Science of the Total Environment, 2021, 769, 144297.	3.9	45
694	How do government policies promote greening? Evidence from China. Land Use Policy, 2021, 104, 105389.	2.5	29
695	Nutritional quality of crops in a high CO ₂ world: an agenda for research and technology development. Environmental Research Letters, 2021, 16, 064045.	2.2	27
696	The sensitivity of vegetation cover to climate change in multiple climatic zones using machine learning algorithms. Ecological Indicators, 2021, 124, 107443.	2.6	26
697	Biogeography of global drylands. New Phytologist, 2021, 231, 540-558.	3.5	145

#	Article	IF	CITATIONS
698	Time-lag effects of NDVI responses to climate change in the Yamzhog Yumco Basin, South Tibet. Ecological Indicators, 2021, 124, 107431.	2.6	47
700	Uneven Warming Likely Contributed to Declining Nearâ€5urface Wind Speeds in Northern China Between 1961 and 2016. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033637.	1.2	10
701	Matching Local Knowledge and Environmental Change with Policy Changes in Rangeland Tenure. Human Ecology, 2021, 49, 341-352.	0.7	2
702	A Processâ€Based Model Integrating Remote Sensing Data for Evaluating Ecosystem Services. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002451.	1.3	15
703	Canopy clumping index (CI): A review of methods, characteristics, and applications. Agricultural and Forest Meteorology, 2021, 303, 108374.	1.9	36
704	Climate-driven phenological changes in the Russian Arctic derived from MODIS LAI time series 2000–2019. Environmental Research Letters, 2021, 16, 084009.	2.2	9
705	The Impacts of Climate and Wildfire on Ecosystem Gross Primary Productivity in Alaska. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006078.	1.3	12
707	Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nature Reviews Earth & Environment, 2021, 2, 507-517.	12.2	85
708	Vegetation greening in more than 94% of the Yellow River Basin (YRB) region in China during the 21st century caused jointly by warming and anthropogenic activities. Ecological Indicators, 2021, 125, 107479.	2.6	59
709	Low and contrasting impacts of vegetation CO ₂ fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO ₂ effects. Hydrology and Earth System Sciences, 2021, 25, 3411-3427.	1.9	11
710	Trends in land surface phenology across the conterminous United States (1982â€2016) analyzed by NEON domains. Ecological Applications, 2021, 31, e02323.	1.8	8
711	Climate change-induced greening on the Tibetan Plateau modulated by mountainous characteristics. Environmental Research Letters, 2021, 16, 064064.	2.2	16
712	Linking tree growth and intra-annual density fluctuations to climate in suppressed and dominant Pinus sylvestris L. trees in the forest-steppe of Southern Siberia. Dendrochronologia, 2021, 67, 125842.	1.0	11
713	Continuously Vegetation Greening over Inner Mongolia for the Past Three Decades. Remote Sensing, 2021, 13, 2446.	1.8	4
714	Estimation of changes in bioclimatic potential values on the territory of Belarus using normalised difference vegetation index (NDVI). Journal of the Belarusian State University Geography and Geology, 2021, , 3-12.	0.3	0
715	The influence of hydroclimate and management on forest regrowth across the western U.S. Environmental Research Letters, 2021, 16, 064057.	2.2	1
716	Comprehensive estimation of lake volume changes on the Tibetan Plateau during 1976–2019 and basin-wide glacier contribution. Science of the Total Environment, 2021, 772, 145463.	3.9	70
717	Climate change impacts on water security in global drylands. One Earth, 2021, 4, 851-864.	3.6	64

#	Article	IF	CITATIONS
718	Recent global land cover dynamics and implications for soil erosion and carbon losses from deforestation. Anthropocene, 2021, 34, 100291.	1.6	42
719	Climate Variability May Delay Post-Fire Recovery of Boreal Forest in Southern Siberia, Russia. Remote Sensing, 2021, 13, 2247.	1.8	7
720	Climate More Important for Chinese Flood Changes Than Reservoirs and Land Use. Geophysical Research Letters, 2021, 48, e2021GL093061.	1.5	16
721	Observed increasing water constraint on vegetation growth over the last three decades. Nature Communications, 2021, 12, 3777.	5.8	246
722	Detection of signals linked to climate change, land-cover change and climate oscillators in Tropical Montane Cloud Forests. Remote Sensing of Environment, 2021, 260, 112431.	4.6	14
723	Is the grass always greener? Land surface phenology reveals differences in peak and seasonâ€long vegetation productivity responses to climate and management. Ecology and Evolution, 2021, 11, 11168-11199.	0.8	7
724	Performance stability of the MODIS and VIIRS LAI algorithms inferred from analysis of long time series of products. Remote Sensing of Environment, 2021, 260, 112438.	4.6	29
725	Water availability surpasses warmth in controlling global vegetation trends in recent decade: revealed by satellite time series. Environmental Research Letters, 2021, 16, 074028.	2.2	11
726	CM2Mc-LPJmL v1.0: biophysical coupling of a process-based dynamic vegetation model with managed land to a general circulation model. Geoscientific Model Development, 2021, 14, 4117-4141.	1.3	13
727	Forests buffer against variations in precipitation. Clobal Change Biology, 2021, 27, 4686-4696.	4.2	39
728	Estimating global aerodynamic parameters in 1982–2017 using remote-sensing data and a turbulent transfer model. Remote Sensing of Environment, 2021, 260, 112428.	4.6	18
729	Dataset of the mountain green cover index (SDG15.4.2) over the economic corridors of the Belt and Road Initiative for 2010-2019. Big Earth Data, 2022, 6, 77-89.	2.0	8
730	Estimating global maximum gross primary productivity of vegetation based on the combination of MODIS greenness and temperature data. Ecological Informatics, 2021, 63, 101307.	2.3	8
731	Recent leveling off of vegetation greenness and primary production reveals the increasing soil water limitations on the greening Earth. Science Bulletin, 2021, 66, 1462-1471.	4.3	46
732	Increasing importance of precipitation in spring phenology with decreasing latitudes in subtropical forest area in China. Agricultural and Forest Meteorology, 2021, 304-305, 108427.	1.9	18
733	A continuous decline of global seasonal wind speed range over land since 1980. Journal of Climate, 2021, , 1-54.	1.2	4
734	ls photosynthetic enhancement sustained through three years of elevated CO2 exposure in 175-year-old <i>Quercus robur</i> ?. Tree Physiology, 2022, 42, 130-144.	1.4	15
735	Vegetation Response to Rising CO ₂ Amplifies Contrasts in Water Resources Between Global Wet and Dry Land Areas. Geophysical Research Letters, 2021, 48, e2021GL094293.	1.5	16

#	Article	IF	CITATIONS
736	Seasonal changes in GPP/SIF ratios and their climatic determinants across the Northern Hemisphere. Global Change Biology, 2021, 27, 5186-5197.	4.2	34
737	Climatic and non-climatic vegetation cover changes in the rangelands of Africa. Global and Planetary Change, 2021, 202, 103516.	1.6	7
738	To what extent can rising [CO ₂] ameliorate plant drought stress?. New Phytologist, 2021, 231, 2118-2124.	3.5	39
739	Contributions of economic growth, terrestrial sinks, and atmospheric transport to the increasing atmospheric CO2 concentrations over the Korean Peninsula. Carbon Balance and Management, 2021, 16, 22.	1.4	4
740	The Ongoing Greening in Southwest China despite Severe Droughts and Drying Trends. Remote Sensing, 2021, 13, 3374.	1.8	7
741	Dynamic Cooling Effects of Permanent Urban Green Spaces in Beijing, China. Remote Sensing, 2021, 13, 3282.	1.8	3
742	The Roles of Catchment Characteristics in Precipitation Partitioning Within the Budyko Framework. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035168.	1.2	7
743	Role of cloud feedback in continental warming response to CO2 physiological forcing. Journal of Climate, 2021, , 1-49.	1.2	0
744	Response of vegetation to drought in the Tibetan Plateau: Elevation differentiation and the dominant factors. Agricultural and Forest Meteorology, 2021, 306, 108468.	1.9	47
745	The spatial distribution of sago palm landscape Sentani watershed in Jayapura District, Papua Province, Indonesia. Biodiversitas, 2021, 22, .	0.2	2
746	Greater increases in China's dryland ecosystem vulnerability in drier conditions than in wetter conditions. Journal of Environmental Management, 2021, 291, 112689.	3.8	31
747	Drivers of recent forest cover change in southern South America are linked to climate and CO2. Landscape Ecology, 2021, 36, 3591.	1.9	2
748	Spatial homogeneity from temporal stability: Exploiting the combined hyper-frequent revisit of Terra and Aqua to guide Earth System Science. Remote Sensing of Environment, 2021, 261, 112496.	4.6	2
749	A climate database with varying droughtâ€heat signatures for climate impact modelling. Geoscience Data Journal, 2022, 9, 154-166.	1.8	7
750	Climate-driven acceleration in forest evapotranspiration fuelling extreme rainfall events in the Himalaya. Environmental Research Letters, 2021, 16, 084042.	2.2	6
751	A Method for Quantifying Understory Leaf Area Index in a Temperate Forest through Combining Small Footprint Full-Waveform and Point Cloud LiDAR Data. Remote Sensing, 2021, 13, 3036.	1.8	8
752	Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Reports, 2022, 41, 1-31.	2.8	194
753	Nighttime warming alleviates the incidence of juniper forest growth decline on the Tibetan Plateau. Science of the Total Environment, 2021, 782, 146924.	3.9	8

#	Article	IF	CITATIONS
754	Projections of desertification trends in Central Asia under global warming scenarios. Science of the Total Environment, 2021, 781, 146777.	3.9	51
755	Toward an in-depth evaluation of the ecosystem component of CMIP6 Earth system models. Advances in Climate Change Research, 2021, 12, 581-583.	2.1	2
756	Large-Scale Patterns of Soil Nematodes across Grasslands on the Tibetan Plateau: Relationships with Climate, Soil and Plants. Diversity, 2021, 13, 369.	0.7	3
757	Climate change and ecological engineering jointly induced vegetation greening in global karst regions from 2001 to 2020. Plant and Soil, 2022, 475, 193-212.	1.8	13
758	Accelerated increase in vegetation carbon sequestration in China after 2010: A turning point resulting from climate and human interaction. Global Change Biology, 2021, 27, 5848-5864.	4.2	127
759	Accurate Simulation of Both Sensitivity and Variability for Amazonian Photosynthesis: Is It Too Much to Ask?. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002555.	1.3	3
760	The effect of global change on soil phosphatase activity. Global Change Biology, 2021, 27, 5989-6003.	4.2	59
761	Evaluating the performance of CMIP6 Earth system models in simulating global vegetation structure and distribution. Advances in Climate Change Research, 2021, 12, 584-595.	2.1	31
762	Inconsistency of Global Vegetation Dynamics Driven by Climate Change: Evidences from Spatial Regression. Remote Sensing, 2021, 13, 3442.	1.8	11
763	The Dynamic of Vegetation Growth with Regular Climate and Climatic Fluctuations in a Subtropical Mountainous Island, Taiwan. Remote Sensing, 2021, 13, 3298.	1.8	6
764	Restoring Degraded Lands. Annual Review of Environment and Resources, 2021, 46, 569-599.	5.6	26
765	Changes in different land cover areas and NDVI values in northern latitudes from 1982 to 2015. Advances in Climate Change Research, 2021, 12, 456-465.	2.1	16
766	Woody plant encroachment enhanced global vegetation greening and ecosystem waterâ€use efficiency. Global Ecology and Biogeography, 2021, 30, 2337-2353.	2.7	26
767	Divergent impacts of droughts on vegetation phenology and productivity in the Yungui Plateau, southwest China. Ecological Indicators, 2021, 127, 107743.	2.6	49
768	The greening effect characterized by the Normalized Difference Vegetation Index was not coupled with phenological trends and tree growth rates in eight protected mountains of central Mexico. Forest Ecology and Management, 2021, 496, 119402.	1.4	10
769	Linking vegetation spectral reflectance with ecosystem carbon phenology in a temperate salt marsh. Agricultural and Forest Meteorology, 2021, 307, 108481.	1.9	17
770	Time to adopt a context-specific and market-based compensation scheme for a new round of the Grain for Green Program. Land Use Policy, 2021, 108, 105675.	2.5	5
771	Disentangling Climatic Factors and Human Activities in Governing the Old and New Forest Productivity. Remote Sensing, 2021, 13, 3746.	1.8	4

#	Article	IF	CITATIONS
772	Monitoring Water and Energy Cycles at Climate Scale in the Third Pole Environment (CLIMATE-TPE). Remote Sensing, 2021, 13, 3661.	1.8	7
773	Calibrationâ€Free Complementary Relationship Estimates Terrestrial Evapotranspiration Globally. Water Resources Research, 2021, 57, e2021WR029691.	1.7	89
774	Continuous warming shift greening towards browning in the Southeast and Northwest High Mountain Asia. Scientific Reports, 2021, 11, 17920.	1.6	16
775	Disaggregating climatic and anthropogenic influences on vegetation changes in Beijing-Tianjin-Hebei region of China. Science of the Total Environment, 2021, 786, 147574.	3.9	30
776	Projecting Future Vegetation Change for Northeast China Using CMIP6 Model. Remote Sensing, 2021, 13, 3531.	1.8	11
777	Quantitative Contributions of Climate Change and Human Activities to Vegetation Changes in the Upper White Nile River. Remote Sensing, 2021, 13, 3648.	1.8	16
778	A carbon cycle optimization method for fossil and biomass energy utilization. Korean Journal of Chemical Engineering, 2021, 38, 2003-2008.	1.2	7
779	The tempo of greening in the European Alps: Spatial variations on a common theme. Global Change Biology, 2021, 27, 5614-5628.	4.2	44
781	Mycorrhizal Distributions Impact Global Patterns of Carbon and Nutrient Cycling. Geophysical Research Letters, 2021, 48, e2021GL094514.	1.5	14
782	A Framework to Assess the Potential Uncertainties of Three FPAR Products. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006320.	1.3	4
783	Phenological shifts compensate warming-induced drought stress in southern Siberian Scots pines. European Journal of Forest Research, 2021, 140, 1487-1498.	1.1	12
784	Moisture and temperature influences on nonlinear vegetation trends in Serengeti National Park. Environmental Research Letters, 2021, 16, 094049.	2.2	3
785	Effects of long-term and large-scale ecology projects on forest dynamics in Yangtze River Basin, China. Forest Ecology and Management, 2021, 496, 119463.	1.4	15
786	Revegetation projects significantly improved ecosystem service values in the agro-pastoral ecotone of northern China in recent 20 years. Science of the Total Environment, 2021, 788, 147756.	3.9	59
787	Limits to postâ€fire vegetation recovery under climate change. Plant, Cell and Environment, 2021, 44, 3471-3489.	2.8	90
788	Greening of the Qinghai–Tibet Plateau and Its Response to Climate Variations along Elevation Gradients. Remote Sensing, 2021, 13, 3712.	1.8	23
789	Warmingâ€induced shrubline advance stalled by moisture limitation on the Tibetan Plateau. Ecography, 2021, 44, 1631-1641.	2.1	32
790	An ecohydrological journey of 4500 years reveals a stable but threatened precipitation–groundwater recharge relation around Jerusalem. Science Advances, 2021, 7, eabe6303.	4.7	15

#	Article	IF	CITATIONS
791	Ecosystem restoration programs challenges under climate and land use change. Science of the Total Environment, 2022, 807, 150527.	3.9	24
792	Time-lag effects of climatic change and drought on vegetation dynamics in an alpine river basin of the Tibet Plateau, China. Journal of Hydrology, 2021, 600, 126532.	2.3	43
793	A bibliometric review of ecological research on the Qinghai–Tibet Plateau, 1990–2019. Ecological Informatics, 2021, 64, 101337.	2.3	13
794	Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO ₂ . Biogeosciences, 2021, 18, 4985-5010.	1.3	49
795	Strength of association between vegetation greenness and its drivers across China between 1982 and 2015: Regional differences and temporal variations. Ecological Indicators, 2021, 128, 107831.	2.6	32
796	Ecosystem carbon balance in the Hawaiian Islands under different scenarios of future climate and land use change. Environmental Research Letters, 2021, 16, 104020.	2.2	4
797	Overview of recent land cover changes, forest harvest areas, and soil erosion trends in Nordic countries. Geography and Sustainability, 2021, 2, 163-174.	1.9	13
798	The 20-y spatio-temporal trends of remotely sensed soil moisture and vegetation and their response to climate change over the Third Pole. Journal of Hydrometeorology, 2021, , .	0.7	2
799	Comment on "Recent global decline of CO ₂ fertilization effects on vegetation photosynthesis― Science, 2021, 373, eabg4420.	6.0	18
800	Trade-off between carbon sequestration and water loss for vegetation greening in China. Agriculture, Ecosystems and Environment, 2021, 319, 107522.	2.5	25
801	Modeling the impact of spatiotemporal vegetation dynamics on groundwater recharge. Journal of Hydrology, 2021, 601, 126584.	2.3	6
802	How will the progressive global increase of arid areas affect population and land-use in the 21st century?. Global and Planetary Change, 2021, 205, 103597.	1.6	37
803	Projections of changes in ecosystem productivity under 1.5°C and 2°C global warming. Global and Planetary Change, 2021, 205, 103588.	1.6	18
804	The trend of vegetation greening and its drivers in the Agro-pastoral ecotone of northern China, 2000–2020. Ecological Indicators, 2021, 129, 108004.	2.6	40
805	Recent vegetation browning and its drivers on Tianshan Mountain, Central Asia. Ecological Indicators, 2021, 129, 107912.	2.6	22
806	Regional-scale vegetation-climate interactions on the Qinghai-Tibet Plateau. Ecological Informatics, 2021, 65, 101413.	2.3	29
807	Oxygen footprint: An indicator of the anthropogenic ecosystem changes. Catena, 2021, 206, 105501.	2.2	8
808	Daytime temperature contributes more than nighttime temperature to the weakened relationship between climate warming and vegetation growth in the extratropical Northern Hemisphere.	2.6	5

#	Article	IF	CITATIONS
809	Scenarios of potential vegetation distribution in the different gradient zones of Qinghai-Tibet Plateau under future climate change. Science of the Total Environment, 2021, 796, 148918.	3.9	32
810	Inconsistent changes in NPP and LAI determined from the parabolic LAI versus NPP relationship. Ecological Indicators, 2021, 131, 108134.	2.6	24
811	Attribution of streamflow changes across the globe based on the Budyko framework. Science of the Total Environment, 2021, 794, 148662.	3.9	18
812	Vegetation greening partly offsets the water erosion risk in China from 1999 to 2018. Geoderma, 2021, 401, 115319.	2.3	22
813	Long-term variation of boundary layer height and possible contribution factors: A global analysis. Science of the Total Environment, 2021, 796, 148950.	3.9	17
814	Assessing the impact of land conversion and management measures on the net primary productivity in the Bailong River Basin, in China. Catena, 2021, 207, 105672.	2.2	13
815	New insights of global vegetation structural properties through an analysis of canopy clumping index, fractional vegetation cover, and leaf area index. Science of Remote Sensing, 2021, 4, 100027.	2.2	10
816	Statistical inference for trends in spatiotemporal data. Remote Sensing of Environment, 2021, 266, 112678.	4.6	23
817	Effects of global greening phenomenon on water sustainability. Catena, 2022, 208, 105732.	2.2	10
818	Forest carbon sink in the U.S. (1870–2012) driven by substitution of forest ecosystem service flows. Resources, Conservation and Recycling, 2022, 176, 105927.	5.3	16
819	Diffuse sunlight and cosmic rays: Missing pieces of the forest growth change attribution puzzle?. Science of the Total Environment, 2022, 806, 150469.	3.9	1
820	Climate Change Patterns. , 2021, , 175-221.		2
822	Interannual Spatiotemporal Variations of Land Surface Temperature in China From 2003 to 2018. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 1783-1795.	2.3	20
823	Trophic consequences of terrestrial eutrophication for a threatened ungulate. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202811.	1.2	29
824	Response of Solanaceous Vegetables to Increasing Temperature and Atmospheric CO2. Advances in Olericulture, 2021, , 91-111.	0.4	3
825	Experimental plant research and the discovery of carbon dioxide-mediated global greening: a tribute to Wilhelm Pfeffer (1845–1920). Journal of Plant Biochemistry and Biotechnology, 2021, 30, 407-420.	0.9	2
826	Attribution of Long-Term Evapotranspiration Trends in the Mekong River Basin with a Remote Sensing-Based Process Model. Remote Sensing, 2021, 13, 303.	1.8	11
827	Can a single index track the state of global biodiversity?. Biological Conservation, 2020, 246, 108524.	1.9	4

#	Article	IF	Citations
828	Climate change weakens the positive effect of human activities on karst vegetation productivity restoration in southern China. Ecological Indicators, 2020, 115, 106392.	2.6	65
829	Complex causes and consequences of rangeland greening in South America – multiple interacting natural and anthropogenic drivers and simultaneous ecosystem degradation and recovery trends. Geography and Sustainability, 2020, 1, 304-316.	1.9	8
830	Rising vegetation activity dominates growing water use efficiency in the Asian permafrost region from 1900 to 2100. Science of the Total Environment, 2020, 736, 139587.	3.9	28
832	Mature forest shows little increase in carbon uptake in a CO2-enriched atmosphere. Nature, 2020, 580, 191-192.	13.7	10
833	Complexity revealed in the greening of the Arctic. Nature Climate Change, 2020, 10, 106-117.	8.1	447
834	Spatiotemporal changes in vegetation greenness across continental Ecuador: a Pacific-Andean-Amazonian gradient, 1982–2010. Journal of Land Use Science, 2021, 16, 18-33.	1.0	4
835	Pronounced and unavoidable impacts of low-end global warming on northern high-latitude land ecosystems. Environmental Research Letters, 2020, 15, 044006.	2.2	25
836	Boreal permafrost thaw amplified by fire disturbance and precipitation increases. Environmental Research Letters, 2020, 15, 114050.	2.2	9
837	Drone data reveal heterogeneity in tundra greenness and phenology not captured by satellites. Environmental Research Letters, 2020, 15, 125002.	2.2	35
838	Higher than expected CO ₂ fertilization inferred from leaf to global observations. Global Change Biology, 2020, 26, 2390-2402.	4.2	98
839	Optimal temperature of vegetation productivity and its linkage with climate and elevation on the Tibetan Plateau. Global Change Biology, 2021, 27, 1942-1951.	4.2	60
840	Long-Term Land Surface Evaporation and Its Changes Estimated by the Generalized Complementary Principle in China. Journal of Water Resources Research, 2020, 09, 259-269.	0.1	5
841	Terrestrial Carbon Cycle Variability. F1000Research, 2016, 5, 2371.	0.8	45
842	On the carbon cycle and its interactions with the biosphere. Russian Journal of Earth Sciences, 2019, 19, 1-12.	0.2	3
843	Vegetation Change Analyses Considering Climate Variables and Anthropogenic Variables in the Three-River Headwaters Region. , 0, , .		1
844	Spatiotemporal Analysis of Vegetation Cover Change in a Large Ephemeral River: Multi-Sensor Fusion of Unmanned Aerial Vehicle (UAV) and Landsat Imagery. Remote Sensing, 2021, 13, 51.	1.8	21
845	L-Band InSAR Penetration Depth Experiment, North Slope Alaska. Journal of Geoscience and Environment Protection, 2017, 05, 14-30.	0.2	2
846	Summarizing the state of the terrestrial biosphere in few dimensions. Biogeosciences, 2020, 17, 2397-2424.	1.3	12

ARTICLE IF CITATIONS Elevated CO<sub&gt;2&lt;/sub&gt;, increased leaf-level productivity, and water-use 847 1.3 17 efficiency during the early Miocene. Climate of the Past, 2020, 16, 1509-1521. Spatial and temporal patterns of global soil heterotrophic respiration in terrestrial ecosystems. 848 Earth System Science Data, 2020, 12, 1037-1051. Annual dynamics of global land cover and its long-term changes from 1982 to 2015. Earth System 849 170 3.7 Science Data, 2020, 12, 1217-1243. The PROFOUND Database for evaluating vegetation models and simulating climate impacts on European 850 forests. Earth System Science Data, 2020, 12, 1295-1320. Improved estimate of global gross primary production for reproducing its long-term variation, 851 3.7 156 1982–2017. Earth System Science Data, 2020, 12, 2725-2746. An extended global Earth system data record on daily landscape freeze–thaw status determined from satellite passive microwave remote sensing. Earth System Science Data, 2017, 9, 133-147. 3.7 A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth 854 3.7 124 observations. Earth System Science Data, 2017, 9, 791-808. Revisiting the global hydrological cycle: is it intensifying?. Hydrology and Earth System Sciences, 2020, 24, 3899-3932. 1.9 87 Accelerated hydrological cycle over the Sanjiangyuan region induces more streamflow extremes at 856 1.9 25 different global warming levels. Hydrology and Earth System Sciences, 2020, 24, 5439-5451. Characterizing the Spatio-Temporal Dynamics and Variability in Climate Extremes Over the Tibetan 0.2 Plateau during 1960–2012. Journal of Resources and Ecology, 2019, 10, 397. Vegetation change in response to climate factors and human activities on the Mongolian Plateau. 858 0.9 37 Peerl, 2019, 7, e7735. Analysis and prediction of vegetation dynamics under the background of climate change in Xinjiang, China. PeerJ, 2020, 8, e8282 Adding Tree Rings to North America's National Forest Inventories: An Essential Tool to Guide 864 2.2 18 Drawdown of Atmospheric CO2. BioScience, 2022, 72, 233-246. Vegetation Greenness Variations and Response to Climate Change in the Arid and Semi-Arid Transition Zone of the Mongo-Lian Plateau during 1982–2015. Remote Sensing, 2021, 13, 4066. 1.8 14 Litter inputs and phosphatase activity affect the temporal variability of organic phosphorus in a 866 1.8 15 tropical forest soil in the Central Amazon. Plant and Soil, 2021, 469, 423-441. Drivers and Environmental Impacts of Vegetation Greening in a Semi-Arid Region of Northwest China 1.8 since 2000. Remote Sensing, 2021, 13, 4246. Global maps and factors driving forest foliar elemental composition: the importance of evolutionary 868 3.515 history. New Phytologist, 2022, 233, 169-181. Evaluation of non-stationarity in summer precipitation and the response of vegetation over the typical steppe in Inner Mongolia. Climate Dynamics, 2022, 58, 2227-2247.

#	Article	IF	CITATIONS
870	Dynamics of Vegetation Greenness and Its Response to Climate Change in Xinjiang over the Past Two Decades. Remote Sensing, 2021, 13, 4063.	1.8	19
871	Repeat photography of Lake Michigan coastal dunes: Expansion of vegetation since 1900 and possible drivers. Journal of Great Lakes Research, 2021, 47, 1518-1518.	0.8	4
872	Biogeochemical limitations of carbon stabilization in forest subsoils [#] . Journal of Plant Nutrition and Soil Science, 2022, 185, 35-43.	1.1	7
873	Altered growth conditions more than reforestation counteracted forest biomass carbon emissions 1990–2020. Nature Communications, 2021, 12, 6075.	5.8	23
874	Mapping global forest age from forest inventories, biomass and climate data. Earth System Science Data, 2021, 13, 4881-4896.	3.7	42
875	Determinizing the contributions of human activities and climate change on greening in the Beijing–Tianjin–Hebei Region, China. Scientific Reports, 2021, 11, 21201.	1.6	15
876	Land use intensification increasingly drives the spatiotemporal patterns of the global human appropriation of net primary production in the last century. Global Change Biology, 2022, 28, 307-322.	4.2	33
877	Effect of nitrogen deposition on centennial forest water-use efficiency. Environmental Research Letters, 2021, 16, 114036.	2.2	11
878	European Carbon Uptake has Not Benefited From Vegetation Greening. Geophysical Research Letters, 2021, 48, e2021GL094870.	1.5	12
879	Time Series Analysis of Land Cover Change in Dry Mountains: Insights from the Tajik Pamirs. Remote Sensing, 2021, 13, 3951.	1.8	2
880	A bibliometric analysis of mountain ecosystem services, 2000–2019. Environmental Science and Pollution Research, 2022, 29, 16633-16652.	2.7	9
881	Temporal Pattern Analysis of Cropland Phenology in Shandong Province of China Based on Two Long-Sequence Remote Sensing Data. Remote Sensing, 2021, 13, 4071.	1.8	2
882	Socio-economic and climatic changes lead to contrasting global urban vegetation trends. Global Environmental Change, 2021, 71, 102385.	3.6	35
883	Loess Plateau evapotranspiration intensified by land surface radiative forcing associated with ecological restoration. Agricultural and Forest Meteorology, 2021, 311, 108669.	1.9	23
884	Response of global land evapotranspiration to climate change, elevated CO2, and land use change. Agricultural and Forest Meteorology, 2021, 311, 108663.	1.9	39
885	Evaluation of forest carbon uptake in South Korea using the national flux tower network, remote sensing, and data-driven technology. Agricultural and Forest Meteorology, 2021, 311, 108653.	1.9	14
886	Earth's Climate System. Springer Climate, 2017, , 1-50.	0.3	1
887	GLOBAL WARMING IMPACT ON CHERRY BLOSSOM FLOWERING AND ITS PHENOLOGY. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2018, 74, I_31-I_36.	0.0	0

		CITATION REPORT		
#	Article		IF	CITATIONS
888	Features and Hotspots in Karst Groundwater. Journal of Water Resources Research, 20	18, 07, 28-36.	0.1	1
889	Do Sustainable Forest Managements Affect Forest Conservation?. SSRN Electronic Jou	rnal, 0, , .	0.4	О
890	ANALYZING THE VELOCITY OF VEGETATION PHENOLOGY OVER THE TIBETAN PLATEAL DATA. International Archives of the Photogrammetry, Remote Sensing and Spatial Info Sciences - ISPRS Archives, 0, XLII-3, 2575-2578.	I USING GIMMS NDVI3g rmation	0.2	0
891	Personal Accounts from Retail Buying Managers on the Moralisation of Global Markets 141-167.	.,2019,,		0
892	Variation of streamflow and its drivers in Xin'an River Basin. Journal of Natural Resourc 1771.	es, 2019, 34,	0.4	0
895	A Conceptual Framework for Ecosystem Stewardship Based on Landscape Dynamics: C Kazakhstan and Mongolia. Landscape Series, 2020, , 143-189.	Case Studies from	0.1	4
896	Vegetation Change. , 2020, , 367-432.			0
897	Vegetation greening weakened the capacity of water supply to China's South-to-North Diversion Project. Hydrology and Earth System Sciences, 2021, 25, 5623-5640.	Water	1.9	17
898	Greening-induced increase in evapotranspiration over Eurasia offset by CO _{2vegetational stomatal closure. Environmental Research Letters, 2021, 16, 124008.}	b>-induced	2.2	25
899	Varying snow and vegetation signatures of surface albedo feedback on the Northern H warming. Environmental Research Letters, 0, , .	lemisphere land	2.2	9
900	Climate-Forced Changes of Bioproductivity of Terrestrial Ecosystems in Belarus. Izvesti Atmospheric and Oceanic Physics, 2020, 56, 1080-1089.	ya -	0.2	2
901	Einfluss erhĶhter atmosphĤscher CO2-Konzentrationen auf die globale Vegetations sowie den Ertrag und die ProduktqualitĤim landwirtschaftlichen Pflanzenbau. Bodenl 71, 229-239.	entwicklung kultur, 2020,	0.1	0
903	Social-Ecological Archetypes of Land Degradation in the Nigerian Guinea Savannah: Ins Sustainable Land Management. Remote Sensing, 2021, 13, 32.	ights for	1.8	10
904	Detection of pre-industrial societies on exoplanets. International Journal of Astrobiolog 73-80.	y, 2021, 20,	0.9	2
905	Brazilian biomes distribution: Past and future. Palaeogeography, Palaeoclimatology, Pa 2022, 585, 110717.	laeoecology,	1.0	15
906	Global trends in vegetation fractional cover: Hotspots for change in bare soil and non-photosynthetic vegetation. Agriculture, Ecosystems and Environment, 2022, 324,	107719.	2.5	13
907	Particulate organic carbon exports from the terrestrial biosphere controlled by erosion 2022, 209, 105815.	. Catena,	2.2	19
908	Assessing Changes in Land Cover and Vegetation Productivity for Threatened Forest-S Ecosystems: A Case Study in Arkhangai Province, Mongolia. Mongolian Journal of Biolo 2020, 18, 65-74.	teppe gical Sciences, 	0.4	0

#	Article	IF	CITATIONS
909	The Population Threat. , 2020, , 131-168.		0
910	Processing and analysis of satellite data for the assessment of the ecological state of oil-producing territories. AIP Conference Proceedings, 2020, , .	0.3	0
911	Increasing numbers of wintering forest birds in Swedish Lapland 1986–2017 show stronger correlations with forest development than with local weather. Ornis Svecica, 0, 30, .	0.1	1
912	Drivers and impacts of changes in China's drylands. Nature Reviews Earth & Environment, 2021, 2, 858-873.	12.2	255
913	Revisiting a Twoâ€Parameter Budyko Equation With the Complementary Evaporation Principle for Proper Consideration of Surface Energy Balance. Water Resources Research, 2021, 57, e2021WR030838.	1.7	8
914	Enhanced surface urban heat islands due to divergent urban-rural greening trends. Environmental Research Letters, 2021, 16, 124071.	2.2	12
915	Nonlinear interactions of land carbon cycle feedbacks in Earth System Models. Global Change Biology, 2022, 28, 296-306.	4.2	5
916	Modeling Soil Responses to Nitrogen and Phosphorus Fertilization Along a Soil Phosphorus Stock Gradient. Frontiers in Forests and Global Change, 2020, 3, .	1.0	2
917	Impacts of Economic Growth, Transportation, and Tourism on the Contemporary Environment. Advances in Asian Human-Environmental Research, 2021, , 563-662.	0.7	2
918	Evaluation of consistency among three NDVI products applied to High Mountain Asia in 2000–2015. Remote Sensing of Environment, 2022, 269, 112821.	4.6	38
919	Enhanced drought resistance of vegetation growth in cities due to urban heat, CO ₂ domes and O ₃ troughs. Environmental Research Letters, 2021, 16, 124052.	2.2	4
920	Global quantification of the bidirectional dependency between soil moisture and vegetation productivity. Agricultural and Forest Meteorology, 2022, 313, 108735.	1.9	26
921	Highest primary production achieved at high nitrogen levels despite strong stoichiometric imbalances with phosphorus in hypereutrophic experimental systems. Limnology and Oceanography, 2021, 66, 4375-4390.	1.6	4
922	Regional differentiation in the ecological effects of land cover change in China. Land Degradation and Development, 2022, 33, 346-357.	1.8	10
923	Vegetation Resilience under Increasing Drought Conditions in Northern Tanzania. Remote Sensing, 2021, 13, 4592.	1.8	6
924	Strong direct and indirect influences of climate change on water yield confirmed by the Budyko framework. Geography and Sustainability, 2021, 2, 281-287.	1.9	3
925	Disentangling the roles of land-use-related drivers on vegetation greenness across China. Environmental Research Letters, 2021, 16, 124033.	2.2	7
926	Factors Driving Changes in Vegetation in Mt. Qomolangma (Everest): Implications for the Management of Protected Areas. Remote Sensing, 2021, 13, 4725.	1.8	3

#	Article	IF	Citations
927	Thermal and moisture response to land surface changes across different ecosystems over Heilong-Amur River Basin. Science of the Total Environment, 2022, 818, 151799.	3.9	9
928	Ecological restoration and rising CO ₂ enhance the carbon sink, counteracting climate change in northeastern China. Environmental Research Letters, 2022, 17, 014002.	2.2	9
929	Contributions of Anthropogenic Forcings to Evapotranspiration Changes Over 1980–2020 Using GLEAM and CMIP6 Simulations. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035367.	1.2	14
930	Parameter uncertainty dominates C-cycle forecast errors over most of Brazil for the 21st century. Earth System Dynamics, 2021, 12, 1191-1237.	2.7	8
931	Examining the competing effects of contemporary land management vs. land cover changes on global air quality. Atmospheric Chemistry and Physics, 2021, 21, 16479-16497.	1.9	1
932	Natural forests promote phosphorus retention in soil. Global Change Biology, 2022, 28, 1678-1689.	4.2	13
933	Temporal and Spatial Variation of NDVI and Its Driving Factors in Qinling Mountain. Water (Switzerland), 2021, 13, 3154.	1.2	5
934	Combined Effects of Warming and Grazing on Rangeland Vegetation on the Qinghai-Tibet Plateau. Frontiers in Environmental Science, 2021, 9, .	1.5	3
935	Contributions of climate change and human activities to vegetation dynamics in Qilian Mountain National Park, northwest China. Global Ecology and Conservation, 2021, 32, e01947.	1.0	22
936	Changes in the grasslands of the Caucasus based on Cumulative Endmember Fractions from the full 1987–2019 Landsat record. Science of Remote Sensing, 2021, 4, 100035.	2.2	5
937	Applying a projection pursuit model for evaluation of ecological quality in Jiangxi Province, China. Ecological Indicators, 2021, 133, 108414.	2.6	21
938	"Climate Impacts" of Fossil Fuels in Today's Energy Systems. SSRN Electronic Journal, 0, , .	0.4	1
939	Influences of Shifted Vegetation Phenology on Runoff Across a Hydroclimatic Gradient. Frontiers in Plant Science, 2021, 12, 802664.	1.7	8
940	A Framework for Multivariate Analysis of Land Surface Dynamics and Driving Variables—A Case Study for Indo-Gangetic River Basins. Remote Sensing, 2022, 14, 197.	1.8	4
941	Increased Water Use Efficiency in China and Its Drivers During 2000–2016. Ecosystems, 2022, 25, 1476-1492.	1.6	15
942	A Multi-Perspective Assessment Method with a Dynamic Benchmark for Human Activity Impacts on Alpine Ecosystem under Climate Change. Remote Sensing, 2022, 14, 208.	1.8	7
943	Ecology and extent of freshwater browning - What we know and what should be studied next in the context of global change. Science of the Total Environment, 2022, 812, 152420.	3.9	31
944	Evaluation of ecosystem resilience to drought based on drought intensity and recovery time. Agricultural and Forest Meteorology, 2022, 314, 108809.	1.9	34

#	Article	IF	CITATIONS
945	Satellite evidence for China's leading role in restoring vegetation productivity over global karst ecosystems. Forest Ecology and Management, 2022, 507, 120000.	1.4	44
946	The Influence of Climate Change on Three Dominant Alpine Species under Different Scenarios on the Qinghai–Tibetan Plateau. Diversity, 2021, 13, 682.	0.7	4
947	Changes in Global Vegetation Distribution and Carbon Fluxes in Response to Global Warming: Simulated Results from IAP-DGVM in CAS-ESM2. Advances in Atmospheric Sciences, 2022, 39, 1285-1298.	1.9	8
948	Distinct magnitude asymmetries of daily extreme anomalies in gross primary productivity between forests and non-forests. Climate Dynamics, 0, , 1.	1.7	0
949	Precipitation and Anthropogenic Activities Jointly Green the China–Mongolia–Russia Economic Corridor. Remote Sensing, 2022, 14, 187.	1.8	12
950	The impacts of climate variation and land use/cover change on net primary productivity in the Tumen River Basin. Landscape and Ecological Engineering, 2022, 18, 157-170.	0.7	0
951	Actions to halt biodiversity loss generally benefit the climate. Global Change Biology, 2022, 28, 2846-2874.	4.2	51
952	Estimation of fractional vegetation cover dynamics based on satellite remote sensing in pakistan: A comprehensive study on the FVC and its drivers. Journal of King Saud University - Science, 2022, 34, 101848.	1.6	17
953	Climate Variability Masked Greening Effects on Water Yield in the Yangtze River Basin During 2001–2018. Water Resources Research, 2022, 58, .	1.7	22
954	Contrasting 20-year trends in NDVI at two Siberian larch forests with and without multiyear waterlogging-induced disturbances. Environmental Research Letters, 2022, 17, 025003.	2.2	5
955	Temperature contributes more than precipitation to the greening of the Tibetan Plateau during 1982–2019. Theoretical and Applied Climatology, 2022, 147, 1471-1488.	1.3	8
956	Characteristic of Stomatal Conductance and Optimal Stomatal Behaviour in an Arid Oasis of Northwestern China. Sustainability, 2022, 14, 968.	1.6	3
957	Long-term monitoring of NDVI changes by remote sensing to assess the vulnerability of threatened plants. Biological Conservation, 2022, 265, 109428.	1.9	11
958	Multi-spatiotemporal heterogeneous legacy effects of climate on terrestrial vegetation dynamics in China. GIScience and Remote Sensing, 2022, 59, 164-183.	2.4	15
959	Detection of Multidecadal Changes in Vegetation Dynamics and Association with Intra-Annual Climate Variability in the Columbia River Basin. Remote Sensing, 2022, 14, 569.	1.8	3
960	Thirty-eight years of CO ₂ fertilization has outpaced growing aridity to drive greening of Australian woody ecosystems. Biogeosciences, 2022, 19, 491-515.	1.3	13
961	Effects of vegetation restoration on local microclimate on the Loess Plateau. Journal of Chinese Geography, 2022, 32, 291-316.	1.5	16
962	Integrating satellite-based passive microwave and optically sensed observations to evaluating the spatio-temporal dynamics of vegetation health in the red soil regions of southern China. GIScience and Remote Sensing, 2022, 59, 215-233.	2.4	4

ARTICLE IF CITATIONS # Forest Transitions in the United States, France and Austria: dynamics of forest change and their socio-963 1.0 5 metabolic drivers. Journal of Land Use Science, 2022, 17, 113-133. Remote-Sensing Evaluation and Temporal and Spatial Change Detection of Ecological Environment 964 1.8 Quality in Coal-Mining Areas. Remote Sensing, 2022, 14, 345. Climate, CO2, and Anthropogenic Drivers of Accelerated Vegetation Greening in the Haihe River Basin. 965 9 1.8 Remote Sensing, 2022, 14, 268. Photosynthesis in action: The global view., 2022, , 243-269. Vegetation-based climate mitigation in a warmer and greener World. Nature Communications, 2022, 13, 968 5.8 51 606. Responding time scales of vegetation production to extreme droughts over China. Ecological 2.6 Indicators, 2022, 136, 108630. Assessing the influence of urban greenness and green stormwater infrastructure on hydrology from 970 3.9 7 satellite remote sensing. Science of the Total Environment, 2022, 817, 152723. Recent trends in the agrometeorological climate variables over Scandinavia. Agricultural and Forest 971 1.9 Meteorology, 2022, 316, 108849. The role of climate change and vegetation greening on evapotranspiration variation in the Yellow 972 1.9 54 River Basin, China. Agricultural and Forest Meteorology, 2022, 316, 108842. Large discrepancies of global greening: Indication of multi-source remote sensing data. Global 1.0 Ecology and Conservation, 2022, 34, e02016. Inter-comparisons of mean, trend and interannual variability of global terrestrial gross primary production retrieved from remote sensing approach. Science of the Total Environment, 2022, 822, 974 3.9 12 153343. Quantitatively Assessing the Impact of Driving Factors on Vegetation Cover Change in Chinaâ∈™s 32 1.8 Major Cities. Remote Sensing, 2022, 14, 839. Widespread decline in winds promoted the growth of vegetation. Science of the Total Environment, 976 3.9 19 2022, 825, 153682. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. 2.3 163 Science China Life Sciences, 2022, 65, 861-895. Characteristic and Attribution of Runoff Variation in the Yanhe River Basin, Loess Plateau, Based on 978 1.2 4 the Budyko Hypothesis. Water (Switzerland), 2022, 14, 495. 979 A flux tower dataset tailored for land model evaluation. Earth System Science Data, 2022, 14, 449-461. Variability, Trend, and Extremes of the South American Vegetationâ€Climate System: Results From a 980 1.2 0 Coupled Regional Model. Journal of Geophysical Research D: Atmospheres, 2022, 127, . Decreased ultraviolet radiation and decomposer biodiversity inhibit litter decomposition under continuous nitrogen inputs. Functional Ecology, 0, , .

#	Article	IF	CITATIONS
982	NDVI-based ecological dynamics of forest vegetation and its relationship to climate change in Romania during 1987–2018. Ecological Indicators, 2022, 136, 108629.	2.6	41
983	Hydrologic connectivity drives extremes and high variability in vegetation productivity across Australian arid and semi-arid ecosystems. Remote Sensing of Environment, 2022, 272, 112937.	4.6	11
984	Quantifying Influences of Natural and Anthropogenic Factors on Vegetation Changes Based on Geodetector: A Case Study in the Poyang Lake Basin, China. Remote Sensing, 2021, 13, 5081.	1.8	32
985	Ubiquity of human-induced changes in climate variability. Earth System Dynamics, 2021, 12, 1393-1411.	2.7	131
986	Temporal Greenness Trends in Stable Natural Land Cover and Relationships with Climatic Variability across the Conterminous United States. Earth Interactions, 2022, 26, 66-83.	0.7	1
987	Hydrological feedback from projected Earth greening in the 21st century. , 2022, 1, 100007.		12
988	Warming, increase in precipitation, and irrigation enhance greening in High Mountain Asia. Communications Earth & Environment, 2022, 3, .	2.6	15
989	The Increasing Role of Vegetation Transpiration in Soil Moisture Loss across China under Global Warming. Journal of Hydrometeorology, 2022, 23, 253-274.	0.7	10
990	Where Anthropogenic Activity Occurs, Anthropogenic Activity Dominates Vegetation Net Primary Productivity Change. Remote Sensing, 2022, 14, 1092.	1.8	12
991	Blue-Sky Albedo Reduction and Associated Influencing Factors of Stable Land Cover Types in the Middle-High Latitudes of the Northern Hemisphere during 1982–2015. Remote Sensing, 2022, 14, 895.	1.8	1
992	Changes in soil faunal density and microbial community under altered litter input in forests and grasslands. Fundamental Research, 2022, 2, 954-963.	1.6	2
993	Ecology and Climate of the Earth—The Same Biogeophysical System. Climate, 2022, 10, 25.	1.2	1
994	Analysis of Effects of Recent Changes in Hydrothermal Conditions on Vegetation in Central Asia. Land, 2022, 11, 327.	1.2	6
995	Nitrogen cycle impacts on CO ₂ fertilisation and climate forcing of land carbon stores. Environmental Research Letters, 2022, 17, 044072.	2.2	6
996	Rising CO ₂ and warming reduce global canopy demand for nitrogen. New Phytologist, 2022, 235, 1692-1700.	3.5	23
997	Human activities modulate greening patterns: a case study for southern Xinjiang in China based on long time series analysis. Environmental Research Letters, 2022, 17, 044012.	2.2	8
998	Estimation of China's Contribution to Global Greening over the Past Three Decades. Land, 2022, 11, 393.	1.2	1
1000	Land Management Contributes significantly to observed Vegetation Browning in Syria during 2001–2018. Biogeosciences, 2022, 19, 1515-1525.	1.3	6

#	Article	IF	Citations
1001	Simulation of the Impact of Environmental Disturbances on Forest Biomass in Taiwan. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	0
1002	Photosynthetic trends in India derived from remote sensing measurements during 2000–2019: vegetation dynamics and key climate drivers. Geocarto International, 2022, 37, 11813-11829.	1.7	6
1003	Influence of plant ecophysiology on ozone dry deposition: comparing between multiplicative and photosynthesis-based dry deposition schemes and their responses to rising CO ₂ level. Biogeosciences, 2022, 19, 1753-1776.	1.3	4
1004	Climate change affects bird nesting phenology: Comparing contemporary field and historical museum nesting records. Journal of Animal Ecology, 2023, 92, 263-272.	1.3	14
1005	CO ₂ fertilization of terrestrial photosynthesis inferred from site to global scales. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115627119.	3.3	51
1006	Tripling of western US particulate pollution from wildfires in a warming climate. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2111372119.	3.3	29
1007	Satellite observed vegetation dynamics and drivers in the Namib sand sea over the recent 20 years. Ecohydrology, 2022, 15, .	1.1	2
1008	Reconciling historical changes in the hydrological cycle over land. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	7
1009	Vegetation-related dry deposition of global PM2.5 from satellite observations. Journal of Chinese Geography, 2022, 32, 589-604.	1.5	5
1010	Bicarbonate uptake experiment show potential karst carbon sinks transformation into carbon sequestration by terrestrial higher plants. Journal of Plant Interactions, 2022, 17, 419-426.	1.0	6
1011	Overestimated Terrestrial Carbon Uptake in the Future Owing to the Lack of Spatial Variations CO ₂ in an Earth System Model. Earth's Future, 2022, 10, .	2.4	3
1012	The trend shift caused by ecological restoration accelerates the vegetation greening of China's drylands since the 1980s. Environmental Research Letters, 2022, 17, 044062.	2.2	17
1013	Persistence of increasing vegetation gross primary production under the interactions of climate change and land use changes in Northwest China. Science of the Total Environment, 2022, 834, 155086.	3.9	16
1014	Spatial Variations in Vegetation Greening in 439 Chinese Cities From 2001 to 2020 Based on Moderate Resolution Imaging Spectroradiometer Enhanced Vegetation Index Data. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	5
1015	Growth enhancements of elevated atmospheric [CO ₂] are reduced under droughtâ€like conditions in temperate eucalypts. Functional Ecology, 0, , .	1.7	1
1016	Accounting for atmospheric carbon dioxide variations in pollen-based reconstruction of past hydroclimates. Global and Planetary Change, 2022, 211, 103790.	1.6	11
1017	Multi-year trend and interannual variability in soil respiration measurements collected in an urban forest ecosystem in Beijing, China. Agricultural and Forest Meteorology, 2022, 316, 108877.	1.9	4
1018	How Well Do We Understand the Landâ€Oceanâ€Atmosphere Carbon Cycle?. Reviews of Geophysics, 2022, 60, .	9.0	38

#	Article	IF	CITATIONS
1019	Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation. Agricultural and Forest Meteorology, 2022, 317, 108887.	1.9	88
1020	Effects of Vegetation Changes and Multiple Environmental Factors on Evapotranspiration Across China Over the Past 34ÂYears. Earth's Future, 2022, 10, .	2.4	22
1021	Deep learning projects future warming-induced vegetation growth changes under SSP scenarios. Advances in Climate Change Research, 2022, 13, 251-257.	2.1	9
1022	Dense canopies browning overshadowed by global greening dominant in sparse canopies. Science of the Total Environment, 2022, 826, 154222.	3.9	9
1023	Non-linear response of mid-latitude Asian dryland vegetation to Holocene climate fluctuations. Catena, 2022, 213, 106212.	2.2	9
1024	Analysis on Natural Runoff Effect of NDVI Change in the Yongding River Mountain Area From 1982 to 2015. , 2021, , .		0
1025	Climate change impacts plant carbon balance, increasing mean future carbon use efficiency but decreasing total forest extent at dry range edges. Ecology Letters, 2022, 25, 498-508.	3.0	13
1026	Land use change induced by the implementation of ecological restoration Programs increases future terrestrial ecosystem carbon sequestration in red soil hilly region of China. Ecological Indicators, 2021, 133, 108409.	2.6	20
1028	Emerging Trends in Arctic Solar Absorption. Geophysical Research Letters, 2021, 48, .	1.5	7
1029	Effects of Different Vegetation Restoration Modes on Soil Microbial Quantity and Biomass in a Degraded Karst Ecosystem in South China. Eurasian Soil Science, 2021, 54, 2009-2021.	0.5	2
1030	Quantifying Temperature and Precipitation Change Caused by Land Cover Change: A Case Study of India Using the WRF Model. Frontiers in Environmental Science, 2021, 9, .	1.5	23
1031	RETRACTED ARTICLE: A constraint on historic growth in global photosynthesis due to increasing CO2. Nature, 2021, 600, 253-258.	13.7	50
1032	Distinct Climate Effects on Dahurian Larch Growth at an Asian Temperate-Boreal Forest Ecotone and Nearby Boreal Sites. Forests, 2022, 13, 27.	0.9	7
1033	Cumulative and time-lag effects of the main climate factors on natural vegetation across Siberia. Ecological Indicators, 2021, 133, 108446.	2.6	14
1034	High CO ₂ Expands Where Plants Can Grow in CESM LM4 NDV. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	2
1035	Quantitative Assessment of the Contributions of Climate Change and Human Activities to Vegetation Variation in the Qinling Mountains. Frontiers in Earth Science, 2021, 9, .	0.8	11
1036	Gross primary productivity and water use efficiency are increasing in a high rainfall tropical savanna. Global Change Biology, 2022, 28, 2360-2380.	4.2	11
1037	Methodology to quantify the role of intense precipitation runoff in soil moisture scarcity: a case study in the U.S. South from 1980-2020. J Agricultural Meteorology, 2022, 78, 78-87.	0.8	0

#	Article	IF	CITATIONS
1038	Quantitative contribution of the Grain for Green Program to vegetation greening and its spatiotemporal variation across the Chinese Loess Plateau. Land Degradation and Development, 2022, 33, 1878-1891.	1.8	12
1039	Widespread greening suggests increased dry-season plant water availability in the Rio Santa valley, Peruvian Andes. Earth System Dynamics, 2022, 13, 595-611.	2.7	4
1040	Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science, 2022, 376, eabh3767.	6.0	100
1041	Impacts of environment and human activity on grid-scale land cropping suitability and optimization of planting structure, measured based on the MaxEnt model. Science of the Total Environment, 2022, 836, 155356.	3.9	22
1042	Spatiotemporal Dynamics of Land Surface Albedo and Its Influencing Factors in the Qilian Mountains, Northeastern Tibetan Plateau. Remote Sensing, 2022, 14, 1922.	1.8	6
1043	Greening and browning trends in a tropical forest hotspot: Accounting for fragment size and vegetation indices. Remote Sensing Applications: Society and Environment, 2022, 26, 100751.	0.8	2
1044	Responses of vegetation growth to climate change over the Tibetan Plateau from 1982 to 2018. Environmental Research Communications, 2022, 4, 045007.	0.9	4
1045	Separating the Impact of Climate Changes and Human Activities on Vegetation Growth Based on the NDVI in China. Advances in Meteorology, 2022, 2022, 1-11.	0.6	1
1046	Global and Regional Trends and Drivers of Fire Under Climate Change. Reviews of Geophysics, 2022, 60,	9.0	182
1047	Hydrological effects of the snow fraction and its ecohydrological explication within the Budyko framework. Journal of Hydrology, 2022, 610, 127813.	2.3	7
1052	Drought and water-use efficiency are dominant environmental factors affecting greenness in the Yellow River Basin, China. Science of the Total Environment, 2022, 834, 155479.	3.9	15
1053	Temporal effects of climatic factors on vegetation phenology on the Loess Plateau, China. Journal of Plant Ecology, 2023, 16, .	1.2	4
1054	Climate Change Impacts on Bioproductivity of Terrestrial Ecosystems in the Belarusian-Ukrainian Polesie Region. Russian Meteorology and Hydrology, 2022, 47, 41-49.	0.2	4
1055	Vegetation Dynamics and its Response to Climate Change in the Yellow River Basin, China. Frontiers in Environmental Science, 2022, 10, .	1.5	9
1056	Functional profiles of soil microbial communities in the alpine and temperate grasslands of China. , 2022, 1, 3-13.		1
1057	Water Uptake Pattern by Coniferous Forests in Two Habitats Linked to Precipitation Changes in Subtropical Monsoon Climate Region, China. Forests, 2022, 13, 708.	0.9	1
1058	Vegetation change enhanced the positive global surface radiation budget. Advances in Space Research, 2022, 70, 324-335.	1.2	2
1059	A stronger role for long-term moisture change than for CO ₂ in determining tropical woody vegetation change. Science, 2022, 376, 653-656.	6.0	25

#	Article	IF	CITATIONS
1060	CO ₂ fertilization is spatially distinct from stomatal conductance reduction in controlling ecosystem water-use efficiency increase. Environmental Research Letters, 2022, 17, 054048.	2.2	10
1061	Divergent Hydrological Responses to Forest Expansion in Dry and Wet Basins of China: Implications for Future Afforestation Planning. Water Resources Research, 2022, 58, .	1.7	20
1062	Warm–Wet Climate Trend Enhances Net Primary Production of the Main Ecosystems in China during 2000–2021. Atmosphere, 2022, 13, 738.	1.0	3
1063	Global climate change and human health: Pathways and possible solutions. , 2022, 1, 53-62.		57
1064	Plant Proxy Evidence for High Rainfall and Productivity in the Eocene of Australia. Paleoceanography and Paleoclimatology, 2022, 37, .	1.3	7
1065	Interannual variability in summer climate change controls GPP long-term changes. Environmental Research, 2022, 212, 113409.	3.7	6
1066	The central role of forests in the 2021 European floods. Environmental Research Letters, 2022, 17, 064053.	2.2	3
1067	Ecological Engineering Projects Shifted the Dominance of Human Activity and Climate Variability on Vegetation Dynamics. Remote Sensing, 2022, 14, 2386.	1.8	7
1068	Climate change enhances the positive contribution of human activities to vegetation restoration in China. Geocarto International, 2022, 37, 13479-13499.	1.7	10
1069	Atmospheric jet stream variability reflects vegetation activity in Europe. Agricultural and Forest Meteorology, 2022, 322, 109008.	1.9	3
1070	Identification of priority areas for afforestation in the Loess Plateau region of China. Ecological Indicators, 2022, 140, 108998.	2.6	12
1071	Two distinct waves of greening in northeastern Canada: summer warming does not tell the whole story. Environmental Research Letters, 2022, 17, 064051.	2.2	4
1072	The effect of forest certification on conservation and sustainable forest management. Journal of Cleaner Production, 2022, 363, 132374.	4.6	10
1073	Characteristics of Greening along Altitudinal Gradients on the Qinghai–Tibet Plateau Based on Time-Series Landsat Images. Remote Sensing, 2022, 14, 2408.	1.8	11
1074	Climate controls on evolution of grassland ecosystems since late Cenozoic: A phytolith perspective. Earth-Science Reviews, 2022, 231, 104059.	4.0	7
1075	The Relative Roles of Climate Variation and Human Activities in Vegetation Dynamics in Coastal China from 2000 to 2019. Remote Sensing, 2022, 14, 2485.	1.8	6
1076	Impacts of Vegetation Changes on Land Evapotranspiration in China During 1982–2015. Frontiers in Environmental Science, 2022, 10, .	1.5	0
1077	Unraveling the Multiple Drivers of Greening-Browning and Leaf Area Variability in a Socioeconomically Sensitive Drought-Prone Region. Climate, 2022, 10, 70.	1.2	3

#	Article	IF	CITATIONS
1078	Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere. Nature Climate Change, 2022, 12, 581-586.	8.1	47
1079	Potential Variation of Evapotranspiration Induced by Typical Vegetation Changes in Northwest China. Land, 2022, 11, 808.	1.2	2
1080	Attribution of NDVI Dynamics over the Globe from 1982 to 2015. Remote Sensing, 2022, 14, 2706.	1.8	11
1081	Large contribution of woody plant expansion to recent vegetative greening of the Northern Great Plains. Journal of Biogeography, 2022, 49, 1443-1454.	1.4	3
1082	Improving Simulations of Vegetation Dynamics over the Tibetan Plateau: Role of Atmospheric Forcing Data and Spatial Resolution. Advances in Atmospheric Sciences, 2022, 39, 1115-1132.	1.9	6
1083	Land Management Explains the Contrasting Greening Pattern Across Chinaâ€Russia Border Based on Paired Land Use Experiment Approach. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	3
1084	Spatiotemporal changes and driving factors of vegetation in 14 different climatic regions in the global from 1981 to 2018. Environmental Science and Pollution Research, 2022, 29, 75322-75337.	2.7	4
1085	Ecological Restoration Programs Dominate Vegetation Greening in China. SSRN Electronic Journal, 0, ,	0.4	0
1087	Advances in the carbon sink potential of terrestrial ecosystems in China. Chinese Science Bulletin, 2022, 67, 3625-3632.	0.4	6
1088	Effects of global change and human disturbance on soil carbon cycling in boreal forest: A review. Pedosphere, 2023, 33, 194-211.	2.1	4
1089	Applying C:N ratio to assess the rationality of estimates of carbon sequestration in terrestrial ecosystems and nitrogen budgets. , 2022, 1, .		11
1090	Humanâ€Climate Coupled Changes in Vegetation Community Complexity of China Since 1980s. Earth's Future, 2022, 10, .	2.4	4
1091	Quantifying Carbon Cycle Extremes and Attributing Their Causes Under Climate and Land Use and Land Cover Change From 1850 to 2300. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	4
1092	Reduction in reversal of global stilling arising from correction to encoding of calm periods ^{* } . Environmental Research Communications, 2022, 4, 061003.	0.9	10
1093	Increased Global Vegetation Productivity Despite Rising Atmospheric Dryness Over the Last Two Decades. Earth's Future, 2022, 10, .	2.4	32
1094	Soil moisture determines the effects of climate warming on spring phenology in grasslands. Agricultural and Forest Meteorology, 2022, 323, 109039.	1.9	15
1095	Climate Drivers Contribute in Vegetation Greening Stalls of Arid Xinjiang, China: An Atmospheric Water Drying Effect. Water (Switzerland), 2022, 14, 2019.	1.2	2
1096	Assessing Protected Area Zoning Effectiveness With Remote Sensing Data: The Case of Nahuel Huapi National Park, Argentina. Frontiers in Remote Sensing, 0, 3, .	1.3	0

#	Article	IF	CITATIONS
1097	Control of Shortâ€6tature Vegetation Type on Shallow Ground Temperatures in Permafrost Across the Eastern Canadian Arctic. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	1
1098	Widespread shift from ecosystem energy to water limitation with climate change. Nature Climate Change, 2022, 12, 677-684.	8.1	64
1099	Divergent trends of ecosystemâ€scale photosynthetic efficiency between arid and humid lands across the globe. Global Ecology and Biogeography, 2022, 31, 1824-1837.	2.7	10
1100	Greenhouse Gas Emissions Drive Global Dryland Expansion but Not Spatial Patterns of Change in Aridification. Journal of Climate, 2022, 35, 2901-2917.	1.2	8
1101	Understanding the Long-Term Vegetation Dynamics of North Korea and Their Impact on the Thermal Environment. Forests, 2022, 13, 1053.	0.9	2
1102	Wildfires in the Arctic and tropical biomes: what is the relative role of climate?. Natural Hazards, 0, , .	1.6	1
1103	Direct and indirect impacts of urbanization on vegetation growth across the world's cities. Science Advances, 2022, 8, .	4.7	80
1104	Distinctive roles of two- and three-dimensional urban structures in surface urban heat islands over the conterminous United States. Urban Climate, 2022, 44, 101230.	2.4	7
1105	Pervasive alterations to snow-dominated ecosystem functions under climate change. Proceedings of the United States of America, 2022, 119, .	3.3	13
1106	Biophysical impacts of northern vegetation changes on seasonal warming patterns. Nature Communications, 2022, 13, .	5.8	26
1107	Estimation of climatic and anthropogenic contributions to streamflow change in southern Romania. Hydrological Sciences Journal, 2022, 67, 1598-1608.	1.2	3
1108	Evolution and Climate Drivers of NDVI of Natural Vegetation during the Growing Season in the Arid Region of Northwest China. Forests, 2022, 13, 1082.	0.9	5
1109	Emerging signals of declining forest resilience under climate change. Nature, 2022, 608, 534-539.	13.7	132
1110	Quantitative Analysis of Natural and Anthropogenic Factors Influencing Vegetation NDVI Changes in Temperate Drylands from a Spatial Stratified Heterogeneity Perspective: A Case Study of Inner Mongolia Grasslands, China. Remote Sensing, 2022, 14, 3320.	1.8	16
1111	Nutrient allocation strategies of four conifers from semiarid to extremely arid environments. Plant Physiology and Biochemistry, 2022, 186, 257-265.	2.8	1
1112	NDVI ĐºĐ°Đº Đ _y Đ¼ĐĐ _y ĐºĐ°Ñ,Đ¾Ñ€ ĐºĐ»Đ _y Đ¼Đ°Ñ,Đ¾Đ3ĐµĐ½Đ½Ñ‹Ñ Ñ€ĐµĐ°ĐºÑ†Đ _y Đ¹ Đ3ĐµĐ¾ÑĐ _y ÑÑ,	е£Ð¢⁄4 (Ð	/₂а Ð;Ñ€Ðļ
1113	Growth peak of vegetation and its response to drought on the Mongolian Plateau. Ecological Indicators, 2022, 141, 109150.	2.6	11
1114	Estimation of fractional vegetation cover dynamics and its drivers based on multi-sensor data in Dera Ismail Khan, Pakistan. Journal of King Saud University - Science, 2022, 34, 102217.	1.6	5

#	Article	IF	CITATIONS
1115	Population-environment dynamics across world's top 100 urban agglomerations: With implications for transitioning toward global urban sustainability. Journal of Environmental Management, 2022, 319, 115630.	3.8	11
1116	Vegetation cover changes in China induced by ecological restoration-protection projects and land-use changes from 2000 to 2020. Catena, 2022, 217, 106530.	2.2	45
1117	Quantifying Vegetation Stability under Drought in the Middle Reaches of Yellow River Basin, China. Forests, 2022, 13, 1138.	0.9	2
1118	The Spatiotemporal Response of Vegetation Changes to Precipitation and Soil Moisture in Drylands in the North Temperate Mid-Latitudes. Remote Sensing, 2022, 14, 3511.	1.8	5
1119	Increasing Impact of Precipitation on Alpine-Grassland Productivity over Last Two Decades on the Tibetan Plateau. Remote Sensing, 2022, 14, 3430.	1.8	7
1120	Evolution Modes, Types, and Social-Ecological Drivers of Ecologically Critical Areas in the Sichuan–Yunnan Ecological Barrier in the Last 15 Years. International Journal of Environmental Research and Public Health, 2022, 19, 9206.	1.2	3
1121	Contrasting Forest Loss and Gain Patterns in Subtropical China Detected Using an Integrated LandTrendr and Machine-Learning Method. Remote Sensing, 2022, 14, 3238.	1.8	7
1122	Warming-induced vegetation growth cancels out soil carbon-climate feedback in the northern Asian permafrost region in the 21st century. Environmental Research Letters, 2022, 17, 084009.	2.2	3
1123	Diffuse radiation forcing constraints on gross primary productivity and global terrestrial evapotranspiration. Earth's Future, 0, , .	2.4	6
1124	Impact of Snowpack on the Land Surface Phenology in the Tianshan Mountains, Central Asia. Remote Sensing, 2022, 14, 3462.	1.8	4
1125	Wildfires in the Siberian Arctic. Fire, 2022, 5, 106.	1.2	14
1126	Divergent dynamics between grassland greenness and gross primary productivity across China. Ecological Indicators, 2022, 142, 109100.	2.6	5
1127	Analyzing the Spatiotemporal Vegetation Dynamics and Their Responses to Climate Change along the Ya'an–Linzhi Section of the Sichuan–Tibet Railway. Remote Sensing, 2022, 14, 3584.	1.8	8
1128	A Global 250-m Downscaled NDVI Product from 1982 to 2018. Remote Sensing, 2022, 14, 3639.	1.8	12
1129	Mapping of cropland, cropping patterns and crop types by combining optical remote sensing images with decision tree classifier and random forest. Geo-Spatial Information Science, 2023, 26, 302-320.	2.4	46
1130	Estimation and Simulation of Forest Carbon Stock in Northeast China Forestry Based on Future Climate Change and LUCC. Remote Sensing, 2022, 14, 3653.	1.8	15
1131	Dynamic Changes of Plantations and Natural Forests in the Middle Reaches of the Yangtze River and Their Relationship with Climatic Factors. Forests, 2022, 13, 1224.	0.9	2
1132	Temporal Changes in Land Use, Vegetation, and Productivity in Southwest China. Land, 2022, 11, 1331.	1.2	2

#	Article	IF	CITATIONS
1133	Coupled Land‧ea Warming Dominates the Net Land Carbon Uptake Variability in the Greater Bay Area of South China. Earth's Future, 2022, 10, .	2.4	3
1134	The global decline in the sensitivity of vegetation productivity to precipitation from 2001 to 2018. Global Change Biology, 2022, 28, 6823-6833.	4.2	37
1135	Vegetation patterns governing the competitive relationship between runoff and evapotranspiration using a novel water balance model at a semi-arid watershed. Environmental Research, 2022, 214, 113976.	3.7	4
1136	Spatial-temporal dynamics of alpine grassland coverage and its response to climate warming in Mt. Qomolangma Nature Preserve during 2000–2019. Journal of Mountain Science, 2022, 19, 2297-2311.	0.8	3
1137	Increasing Atmospheric Aridity Moderates the Accelerated Rate of Vegetation Green-Up Induced by Rising CO2 and Warming. Remote Sensing, 2022, 14, 3946.	1.8	0
1138	Homogenization in Species Composition and No Change in Aboveground Biomass Across Tibetan Permafrost Regions Over Ten Years. Frontiers in Environmental Science, 0, 10, .	1.5	Ο
1139	Effect of Altitude and Topography on Vegetation Phenological Changes in the Niubeiliang Nature Reserve of Qinling Mountains, China. Forests, 2022, 13, 1229.	0.9	3
1140	A transiting temperate-subtropical mixed forest: carbon cycle projection and uncertainty. Environmental Research Letters, 2022, 17, 094010.	2.2	1
1141	Satellite Observed Land Surface Greening in Summer Controlled by the Precipitation Frequency Rather Than Its Total Over Tibetan Plateau. Earth's Future, 2022, 10, .	2.4	4
1142	Nonlinear Thermal Responses Outweigh Water Limitation in the Attenuated Effect of Climatic Warming on Photosynthesis in Northern Ecosystems. Geophysical Research Letters, 2022, 49, .	1.5	5
1143	Towards an atmosphere more favourable to firestorm development in Europe. Environmental Research Letters, 2022, 17, 094015.	2.2	1
1144	Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. Plant Cell, 2023, 35, 67-108.	3.1	48
1145	Fewer Basins Will Follow Their Budyko Curves Under Global Warming and Fossilâ€Fueled Development. Water Resources Research, 2022, 58, .	1.7	13
1146	Comprehensive evaluation of global CI, FVC, and LAI products and their relationships using high-resolution reference data. Science of Remote Sensing, 2022, , 100066.	2.2	2
1147	Impact of Climate Change on Ecosystem Productivity of the Belarusian Polesia According to Remote Data. Contemporary Problems of Ecology, 2022, 15, 345-352.	0.3	0
1148	Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2. Nature Communications, 2022, 13, .	5.8	70
1149	Trend in Satellite-Observed Vegetation Cover and Its Drivers in the Gannan Plateau, Upper Reaches of the Yellow River, from 2000 to 2020. Remote Sensing, 2022, 14, 3849.	1.8	7
1150	Causes for the increases in both evapotranspiration and water yield over vegetated mainland China during the last two decades. Agricultural and Forest Meteorology, 2022, 324, 109118.	1.9	20

		CITATION REPORT		
#	Article		IF	CITATIONS
1151	Hidden challenges behind ecosystem services improvement claims. IScience, 2022, 25	, 104928.	1.9	4
1152	Modeling plant phenology by MODIS derived photochemical reflectance index (PRI). A Forest Meteorology, 2022, 324, 109095.	gricultural and	1.9	4
1153	Fire return intervals explain different vegetation cover responses to wildfire restoratior Sierra Nevada basins. Forest Ecology and Management, 2022, 521, 120429.	ו in two	1.4	2
1154	Vegetation photosynthesis changes and response to water constraints in the Yangtze Yellow River Basin, China. Ecological Indicators, 2022, 143, 109331.	River and	2.6	10
1155	Asymmetric daytime and nighttime surface temperature feedback induced by crop gre Northeast China. Agricultural and Forest Meteorology, 2022, 325, 109136.	ening across	1.9	15
1156	Photosynthetic capacity dominates the interannual variation of annual gross primary p the Northern Hemisphere. Science of the Total Environment, 2022, 849, 157856.	roductivity in	3.9	6
1157	Evaluation and simulation of landscape evolution and its ecological effects under vege restoration in the northern sand prevention belt, China. Catena, 2022, 218, 106555.	tation	2.2	22
1158	Vegetation cover dynamics along two Himalayan rivers: Drivers and implications of cha the Total Environment, 2022, 849, 157826.	ange. Science of	3.9	6
1159	Climate change threatens the distribution of major woody species and ecosystem serv southern Africa. Science of the Total Environment, 2022, 850, 158006.	ices provision in	3.9	6
1160	Contrasting temperature effects on the velocity of early―versus lateâ€stage vegetat Northern Hemisphere. Global Change Biology, 2022, 28, 6961-6972.	on greenâ€up in the	4.2	9
1161	Temporal and spatial variation characteristics of vegetation coverage and quantitative potential driving forces in the Qilian Mountains, China, 2000–2020. Ecological Indic 109429.	analysis of its ators, 2022, 143,	2.6	30
1162	Sustained vegetation greening enhanced ecosystem water-use efficiency in the Loess in recent 20Ayears. Ecological Engineering, 2022, 184, 106768.	Plateau of China	1.6	13
1163	Evolution of vegetation dynamics and its response to climate in ecologically fragile reg 1982 to 2020: A case study of the Three Gorges Reservoir area. Catena, 2022, 219, 10	ions from 6601.	2.2	11
1164	Changes in summer biogenic volatile organic compound emission and secondary organ over the 2001–2018 period over China: Roles of leaf biomass, meteorology, and ant emission variability. Atmospheric Research, 2022, 280, 106450.	nic aerosols hropogenic	1.8	3
1165	Responses of vegetation to changes in terrestrial water storage and temperature in glo mountainous regions. Science of the Total Environment, 2022, 851, 158416.	obal	3.9	10
1166	Assessing the impact of drought-land cover change on global vegetation greenness an Science of the Total Environment, 2022, 852, 158499.	d productivity.	3.9	28
1167	Study on the influence of meteorological elements on growing season vegetation cove Xinjiang, China. Electronic Research Archive, 2022, 30, 3463-3480.	erage in	0.4	1
1168	Evapotranspiration. , 2022, , .			0

ARTICLE IF CITATIONS Assessment of climate change effects on vegetation and river hydrology in a semi-arid river basin. 1.1 6 1169 PLoS ONE, 2022, 17, e0271991. 干旱ä⁰‹ä»¶å⁻¹å…∵çƒå¹²æ—±åœ°ç"Ÿæ€ç³»ç»Ÿè∫è¿«ä¹⁄2œç"∵çš"ć•¿æœŸå⁵圗. SCIENTIA SINICA Terrae, 2022, , 0.1 1170 Underestimation of the impact of land cover change on the biophysical environment of the Arctic and 1171 2.2 1 boreal region of North America. Environmental Research Letters, 2023, 18, 014012. Land use change and carbon emissions of a transformation to timber cities. Nature Communications, 5.8 2022, 13, . Vegetation Growth Dynamic and Sensitivity to Changing Climate in a Watershed in Northern China. 1173 1.8 4 Remote Sensing, 2022, 14, 4198. Contributions of Climate Change, Vegetation Growth, and Elevated Atmospheric CO2 Concentration to Variation in Water Use Efficiency in Subtropical China. Remote Sensing, 2022, 14, 4296. 1174 1.8 Increasing evapotranspiration decouples the positive correlation between vegetation cover and 1175 1.7 2 warming in the Tibetan plateau. Frontiers in Plant Science, 0, 13, . Spatial $\hat{a} \in \hat{a}$ temporal variations of NDVI and its response to climate in China from 2001 to 2020. 1.6 International Journal of Digital Earth, 2022, 15, 1463-1484. Impacts of climate change and human activities on different degraded grassland based on NDVI. 1177 1.6 10 Scientific Reports, 2022, 12, . Net zero climate remediations and potential terminal depletion of global critical metal resources: A 1178 1.7 synoptic geological perspective. Geosystems and Geoenvironment, 2023, 2, 100136. Respiratory loss during late-growing season determines the net carbon dioxide sink in northern 1179 2 5.8 permafrost regions. Nature Communications, 2022, 13, . Links across ecological scales: Plant biomass responses to elevated <scp>CO₂</scp>. 4.2 Global Change Biology, 2022, 28, 6115-6134. Irrigation and warming drive the decreases in surface albedo over High Mountain Asia. Scientific 1181 1.6 3 Reports, 2022, 12, . Grassland changes and adaptive management on the Qinghai–Tibetan Plateau. Nature Reviews Earth & 12.2 Environment, 2022, 3, 668-683. Increasing Negative Impacts of Climatic Change and Anthropogenic Activities on Vegetation Variation on the Qinghai–Tibet Plateau during 1982–2019. Remote Sensing, 2022, 14, 4735. 1183 1.8 11 Surface warming in global cities is substantially more rapid than in rural background areas. 1184 38 Communications Earth & Environment, 2022, 3, . Tropical surface temperature response to vegetation cover changes and the role of drylands. Global 1185 4.2 5 Change Biology, 2023, 29, 110-125. Past, present, and future geo-biosphere interactions on the Tibetan Plateau and implications for permafrost. Earth-Science Reviews, 2022, 234, 104197.

#	Article	IF	CITATIONS
1187	Dynamics of the Response of Vegetation Activity to Air Temperature Change in Temperate China. Atmosphere, 2022, 13, 1574.	1.0	4
1188	Impact of changes in climate and CO ₂ on the carbon storage potential of vegetation under limited water availability using SEIB-DGVM version 3.02. Geoscientific Model Development, 2022, 15, 7075-7098.	1.3	1
1189	Assessing the Drought Variability in Northeast China over Multiple Temporal and Spatial Scales. Atmosphere, 2022, 13, 1506.	1.0	4
1190	Spatioâ€ŧemporal changes in the speed of canopy development and senescence in temperate China. Global Change Biology, 2022, 28, 7366-7375.	4.2	16
1191	Remote‣ensing Derived Trends in Gross Primary Production Explain Increases in the CO ₂ Seasonal Cycle Amplitude. Global Biogeochemical Cycles, 2022, 36, .	1.9	4
1192	Exploring the Individualized Effect of Climatic Drivers on MODIS Net Primary Productivity through an Explainable Machine Learning Framework. Remote Sensing, 2022, 14, 4401.	1.8	7
1193	Breaking the Ecosystem Balance Over the Tibetan Plateau. Earth's Future, 2022, 10, .	2.4	4
1194	Emergent Climate Change Impacts on the Soil C and N Cycles in the Mojave Desert. Global Biogeochemical Cycles, 2022, 36, .	1.9	3
1195	Optimality principles explaining divergent responses of alpine vegetation to environmental change. Global Change Biology, 2023, 29, 126-142.	4.2	11
1196	Satellite greenness and solarâ€induced chlorophyll fluorescence reveal reverse desertification in Gurbantunggut Desert. Ecological Applications, 0, , .	1.8	1
1197	Tradeoff in the supply and demand for CO ₂ dominates the divergence of net photosynthesis rates of functional plants in alpine ecosystems. Ecohydrology, 0, , .	1.1	1
1198	Vegetation dynamics and their responses to climate factors in the Qinghai-Tibet plateau: insights from the terrestrial ecosystems. Geocarto International, 2024, 37, 17465-17486.	1.7	0
1199	Land degradation neutrality: A review of progress and perspectives. Ecological Indicators, 2022, 144, 109530.	2.6	24
1200	Remote sensing of land change: A multifaceted perspective. Remote Sensing of Environment, 2022, 282, 113266.	4.6	36
1201	Revisit the Performance of MODIS and VIIRS Leaf Area Index Products from the Perspective of Time-Series Stability. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 8958-8973.	2.3	5
1202	Implementation of Dynamic Effective Rooting Depth in Evapotranspiration Model Deepens Understanding of Evapotranspiration Partitioning Under Soil Moisture Gradients in China. Water Resources Research, 2022, 58, .	1.7	5
1203	Effect of geomorphologic features and climate change on vegetation distribution in the arid hot valleys of Jinsha River, Southwest China. Journal of Mountain Science, 2022, 19, 2874-2885.	0.8	1
1204	Modelling Fagus sylvatica stem growth along a wide thermal gradient in Italy by incorporating dendroclimatic classification and land surface phenology metrics. International Journal of Biometeorology, 2022, 66, 2433-2448.	1.3	2

#	Article	IF	CITATIONS
1205	Effect of Vegetation Carryover and Climate Variability on the Seasonal Growth of Vegetation in the Upper and Middle Reaches of the Yellow River Basin. Remote Sensing, 2022, 14, 5011.	1.8	4
1206	Attributing trend in naturalized streamflow to temporally explicit vegetation change and climate variation in the Yellow River basin of China. Hydrology and Earth System Sciences, 2022, 26, 5291-5314.	1.9	1
1207	A System Thinking Normative Approach towards Integrating the Environment into Value-Added Accounting—Paving the Way from Carbon to Environmental Neutrality. Sustainability, 2022, 14, 13603.	1.6	6
1208	Global water availability boosted by vegetation-driven changes in atmospheric moisture transport. Nature Geoscience, 2022, 15, 982-988.	5.4	41
1209	Varying Responses of Vegetation Greenness to the Diurnal Warming across the Global. Plants, 2022, 11, 2648.	1.6	7
1210	Characterization and attribution of vegetation dynamics in the ecologically fragile South China Karst: Evidence from three decadal Landsat observations. Frontiers in Plant Science, 0, 13, .	1.7	4
1211	Vegetation Productivity and Precipitation Use Efficiency across the Yellow River Basin: Spatial Patterns and Controls. Remote Sensing, 2022, 14, 5074.	1.8	11
1212	Vegetation Changes Following Large-scale Fence Removal Across a Protected Area Network Within the Kruger to Canyons Biosphere Reserve, South Africa. Ecosystems, 0, , .	1.6	0
1213	Vegetation Changing Patterns and Its Sensitivity to Climate Variability across Seven Major Watersheds in China. International Journal of Environmental Research and Public Health, 2022, 19, 13916.	1.2	0
1214	Declining tree growth rates despite increasing water-use efficiency under elevated CO2 reveals a possible global overestimation of CO2 fertilization effect. Heliyon, 2022, 8, e11219.	1.4	4
1215	Greening or browning? The macro variation and drivers of different vegetation types on the Qinghai-Tibetan Plateau from 2000 to 2021. Frontiers in Plant Science, 0, 13, .	1.7	8
1216	Evaluation of the Landsat-8 Albedo Product across the Circumpolar Domain. Remote Sensing, 2022, 14, 5320.	1.8	2
1217	Ecological quality assessment and monitoring using a time-series remote sensing-based ecological index (ts-RSEI). GIScience and Remote Sensing, 2022, 59, 1793-1816.	2.4	16
1218	The decline of plant mineral nutrition under rising CO2: physiological and molecular aspects of a bad deal. Trends in Plant Science, 2023, 28, 185-198.	4.3	31
1219	Historical and future shifts of a sharp zonal aridity gradient: A case study of the Hu Line in China. Journal of Hydrology, 2022, 614, 128590.	2.3	3
1220	Vegetation phenology and its ecohydrological implications from individual to global scales. Geography and Sustainability, 2022, 3, 334-338.	1.9	2
1221	Soil temperature mitigation due to vegetation biophysical feedbacks. Global and Planetary Change, 2022, 218, 103971.	1.6	7
1222	Warming-driven erosion and sediment transport in cold regions. Nature Reviews Earth & Environment, 2022, 3, 832-851.	12.2	36

#	Article	IF	CITATIONS
1223	Inhibitive Effects of Recent Exceeding Air Temperature Optima of Vegetation Productivity and Increasing Water Limitation on Photosynthesis Reversed Global Greening. Earth's Future, 2022, 10, .	2.4	5
1224	Biophysical impacts of vegetation dynamics largely contribute to climate mitigation in High Mountain Asia. Agricultural and Forest Meteorology, 2022, 327, 109233.	1.9	9
1225	Long-term nitrogen enrichment accelerates soil respiration by boosting microbial biomass in coastal wetlands. Soil Biology and Biochemistry, 2022, 175, 108864.	4.2	6
1226	Impacts of climate change on vegetation pattern: Mathematical modeling and data analysis. Physics of Life Reviews, 2022, 43, 239-270.	1.5	31
1227	Shift in precipitation-streamflow relationship induced by multi-year drought across global catchments. Science of the Total Environment, 2023, 857, 159560.	3.9	4
1228	Quantifying the direct effects of long-term dynamic land use intensity on vegetation change and its interacted effects with economic development and climate change in jiangsu, China. Journal of Environmental Management, 2023, 325, 116562.	3.8	15
1229	Terrestrial carbon sequestration under future climate, nutrient and land use change and management scenarios: a national-scale UK case study. Environmental Research Letters, 2022, 17, 114054.	2.2	3
1230	Saturation response of enhanced vegetation productivity attributes to intricate interactions. Global Change Biology, 2023, 29, 1080-1095.	4.2	6
1231	The direct drivers of recent global anthropogenic biodiversity loss. Science Advances, 2022, 8, .	4.7	138
1232	Critical Climate Periods Explain a Large Fraction of the Observed Variability in Vegetation State. Remote Sensing, 2022, 14, 5621.	1.8	2
1233	Regional Patterns of Vegetation Dynamics and Their Sensitivity to Climate Variability in the Yangtze River Basin. Remote Sensing, 2022, 14, 5623.	1.8	5
1234	Dryland productivity under a changing climate. Nature Climate Change, 2022, 12, 981-994.	8.1	49
1235	Recent Seasonal Variations in Ecosystem Water Use Efficiency in China's Key Tropical ubtropical Transitional Zones in Response to Climate Change. Global Biogeochemical Cycles, 2022, 36, .	1.9	2
1236	Future climate imposes pressure on vulnerable ecological regions in China. Science of the Total Environment, 2023, 858, 159995.	3.9	7
1237	Analysing the spatio-temporal patterns of vegetation dynamics and their responses to climatic parameters in Meghalaya from 2001 to 2020. Environmental Monitoring and Assessment, 2023, 195, .	1.3	3
1238	Using the Geodetector Method to Characterize the Spatiotemporal Dynamics of Vegetation and Its Interaction with Environmental Factors in the Qinba Mountains, China. Remote Sensing, 2022, 14, 5794.	1.8	13
1239	Interplay of greening and ENSO on biosphere–atmosphere processes in Australia. Geoscience Letters, 2022, 9, .	1.3	1
1240	Spatially Varying in CO ₂ Concentrations Regulates Carbon Uptake in the Northern Hemisphere, Journal of Geophysical Research D: Atmospheres, 2022, 127	1.2	3

#	Article	IF	CITATIONS
1241	A global-drive analysis of ecosystem respiration in the Arctic and Third Pole. Ecological Indicators, 2022, 145, 109668.	2.6	2
1242	More portion of precipitation into soil water storage to maintain higher evapotranspiration induced by revegetation on China's Loess Plateau. Journal of Hydrology, 2022, 615, 128707.	2.3	5
1243	A decline in atmospheric CO2 levels under negative emissions may enhance carbon retention in the terrestrial biosphere. Communications Earth & Environment, 2022, 3, .	2.6	4
1244	Drivers of recent decline in dust activity over East Asia. Nature Communications, 2022, 13, .	5.8	28
1245	Informing the SWAT model with remote sensing detected vegetation phenology for improved modeling of ecohydrological processes. Journal of Hydrology, 2023, 616, 128817.	2.3	11
1246	Turning points in the impact of earlier green-up on evapotranspiration and gross primary productivity in a semi-arid grassland watershed. Journal of Hydrology, 2023, 616, 128755.	2.3	2
1247	Multiple effects of climate changes and human activities on NPP increase in the Three-north Shelter Forest Program area. Forest Ecology and Management, 2023, 529, 120732.	1.4	11
1248	Quantitative tree cover reconstruction during the past 2000 years in the central–northern parts of the Daxing'an Mountains, northeast China. Quaternary Science Reviews, 2023, 301, 107917.	1.4	1
1249	Detection and attribution of vegetation dynamics in the National Barrier Zone of China by considering climate temporal effects. International Journal of Applied Earth Observation and Geoinformation, 2023, 116, 103140.	0.9	1
1250	Intensity and number of thinning operations affect the response of Eucalyptus grandis to water availability and extreme drought events. Forest Ecology and Management, 2023, 529, 120635.	1.4	0
1251	Water-use efficiency in a humid karstic forest in southwestern China: Interactive responses to the environmental drivers. Journal of Hydrology, 2023, 617, 128973.	2.3	6
1252	Ecological engineering induced carbon sinks shifting from decreasing to increasing during 1981–2019 in China. Science of the Total Environment, 2023, 864, 161037.	3.9	12
1253	Land cover change in global drylands: A review. Science of the Total Environment, 2023, 863, 160943.	3.9	14
1254	Evaluation of Spatiotemporal Resilience and Resistance of Global Vegetation Responses to Climate Change. Remote Sensing, 2022, 14, 4332.	1.8	2
1255	Chemistry-driven changes strongly influence climate forcing from vegetation emissions. Nature Communications, 2022, 13, .	5.8	7
1256	Processes and mechanisms of vegetation ecosystem responding to climate and ecological restoration in China. Frontiers in Plant Science, 0, 13, .	1.7	6
1257	A Near Four-Decade Time Series Shows the Hawaiian Islands Have Been Browning Since the 1980s. Environmental Management, 2023, 71, 965-980.	1.2	2
1258	Understanding spatial patterns in the drivers of greenness trends in the Sahel-Sudano-Guinean region. Big Earth Data, 2023, 7, 298-317.	2.0	5

#	Article	IF	CITATIONS
1259	Contrasting ecosystem constraints on seasonal terrestrial CO ₂ and mean surface air temperature causality projections by the end of the 21st century. Environmental Research Letters, 2022, 17, 124019.	2.2	3
1261	Elevation Gradients Limit the Antiphase Trend in Vegetation and Its Climate Response in Arid Central Asia. Remote Sensing, 2022, 14, 5922.	1.8	5
1262	Long-term changes in the effect of drought stress on ecosystems across global drylands. Science China Earth Sciences, 2023, 66, 146-160.	2.3	4
1263	Ecological Response to Climate Change Across China From Combined Soil Temperature and Moisture Changes. Earth and Space Science, 2022, 9, .	1.1	5
1264	Interrelations of vegetation growth and water scarcity in Iran revealed by satellite time series. Scientific Reports, 2022, 12, .	1.6	3
1265	Estimating Vegetation Greening Influences on Runoff Signatures Using a Logâ€Based Weighted Ensemble Method. Water Resources Research, 2022, 58, .	1.7	2
1266	Does plant ecosystem thermoregulation occur? An extratropical assessment at different spatial and temporal scales. New Phytologist, 2023, 238, 1004-1018.	3.5	5
1267	Climateâ€ d riven vegetation greening further reduces water availability in drylands. Global Change Biology, 2023, 29, 1628-1647.	4.2	12
1268	Natural decadal variability of global vegetation growth in relation to major decadal climate modes. Environmental Research Letters, 0, , .	2.2	0
1269	Warming diminishes the stability of primary productivity in global grass- and forb-dominated ecosystems. Environmental Research Communications, 2022, 4, 121006.	0.9	1
1270	Increasing aridity causes larger and more severe forest fires across Europe. Global Change Biology, 2023, 29, 1648-1659.	4.2	29
1271	Plants water the planet. Nature Geoscience, 2022, 15, 958-959.	5.4	2
1272	Enhanced nighttime heatwaves over African urban clusters. Environmental Research Letters, 2023, 18, 014001.	2.2	2
1273	Quantitative analysis of the impact of climate change and human activities on vegetation NPP in the Qilian Mountain. Human and Ecological Risk Assessment (HERA), 2023, 29, 202-221.	1.7	6
1274	Prominent vegetation greening in spring and autumn across China during the 1981–2018 period. Environmental Research Letters, 2022, 17, 124043.	2.2	3
1275	Larch response to warming in northern Siberia. Regional Environmental Change, 2023, 23, .	1.4	2
1276	Controlling Factors of the Spatialâ€Temporal Fluctuations in Evapotranspiration Along an Elevation Gradient Across Humid Montane Ecosystems. Water Resources Research, 2023, 59, .	1.7	7
1277	Significant regime shifts in historical water yield in the Upper Brahmaputra River basin. Hydrology and Earth System Sciences, 2022, 26, 6399-6412.	1.9	4

#	Article	IF	CITATIONS
1278	Exploring the Best-Matching Plant Traits and Environmental Factors for Vegetation Indices in Estimates of Clobal Gross Primary Productivity. Remote Sensing, 2022, 14, 6316.	1.8	4
1279	China's Greening Modulated the Reallocation of the Evapotranspiration Components during 2001–2020. Remote Sensing, 2022, 14, 6327.	1.8	1
1280	Vegetation disturbances characterization in the Tibetan Plateau from 1986 to 2018 using Landsat time series and field observations. Environmental Research Letters, 0, , .	2.2	0
1281	Future hydrological drought changes over the upper Yellow River basin: The role of climate change, land cover change and reservoir operation. Journal of Hydrology, 2023, 617, 129128.	2.3	5
1282	Analysis of factors influencing spatiotemporal differentiation of the NDVI in the upper and middle reaches of the Yellow River from 2000 to 2020. Frontiers in Environmental Science, 0, 10, .	1.5	3
1283	Tipping point in North American Arctic-Boreal carbon sink persists in new generation Earth system models despite reduced uncertainty. Environmental Research Letters, 2023, 18, 025008.	2.2	6
1284	Response of Photosynthetic Efficiency to Extreme Drought and Its Influencing Factors in Southwest China. Sustainability, 2023, 15, 1095.	1.6	1
1285	Assessing the contribution of vegetation variation to streamflow variation in the Lancang River Basin, China. Frontiers in Ecology and Evolution, 0, 10, .	1.1	8
1286	Pollution and Climatic Influence on Trees in the Siberian Arctic Wetlands. Water (Switzerland), 2023, 15, 215.	1.2	2
1287	Global and northern-high-latitude net ecosystem production in the 21st century from CMIP6 experiments. Earth System Dynamics, 2023, 14, 1-16.	2.7	3
1288	Latitudes and land use: Global biome shifts in vegetation persistence across three decades. Frontiers in Remote Sensing, 0, 4, .	1.3	1
1289	Assessing the Spatiotemporal Dynamics of Vegetation Coverage in Urban Built-Up Areas. Land, 2023, 12, 235.	1.2	3
1290	Drylands contribute disproportionately to observed global productivity increases. Science Bulletin, 2023, 68, 224-232.	4.3	13
1291	Drought Monitoring in Terms of Evapotranspiration Based on Satellite Data from Meteosat in Areas of Strong Land–Atmosphere Coupling. Land, 2023, 12, 240.	1.2	2
1292	Vegetation Dynamics and Food Security against the Background of Ecological Restoration in Hubei Province, China. International Journal of Environmental Research and Public Health, 2023, 20, 1225.	1.2	2
1293	Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming. Nature Communications, 2023, 14, .	5.8	36
1294	The detection and attribution of extreme reductions in vegetation growth across the global land surface. Global Change Biology, 2023, 29, 2351-2362.	4.2	16
1295	Warming-induced tree growth may help offset increasing disturbance across the Canadian boreal forest. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	18

#	Article	IF	CITATIONS
1296	Vegetation Change and Eco-Environmental Quality Evaluation in the Loess Plateau of China from 2000 to 2020. Remote Sensing, 2023, 15, 424.	1.8	14
1297	Forest disturbance decreased in China from 1986 to 2020 despite regional variations. Communications Earth & Environment, 2023, 4, .	2.6	11
1298	Weakening summer westerly circulation actuates greening of the Tibetan Plateau. Global and Planetary Change, 2023, 221, 104027.	1.6	5
1299	Changes in multiple ecosystem services and their influencing factors in Nordic countries. Ecological Indicators, 2023, 146, 109847.	2.6	15
1300	Reversal of soil moisture constraint on vegetation growth in North China. Science of the Total Environment, 2023, 865, 161246.	3.9	9
1301	Spatiotemporal evolution of global long-term patterns of soil moisture. Science of the Total Environment, 2023, 867, 161470.	3.9	27
1302	Reponses of Land Surface Albedo to Global Vegetation Greening: An Analysis Using GLASS Data. Atmosphere, 2023, 14, 31.	1.0	1
1303	Enhanced Impact of Vegetation on Evapotranspiration in the Northern Drought-Prone Belt of China. Remote Sensing, 2023, 15, 221.	1.8	2
1304	Changes in soil moisture and vegetation over the Tibetan Plateau during 2000â \in "2019. , 2021, , .		0
1305	Increased precipitation weakenes the positive effect of vegetation greening on erosion. Geocarto International, 2023, 38, .	1.7	0
1306	Identifying the Driving Impact Factors on Water Yield Service in Mountainous Areas of the Beijing-Tianjin-Hebei Region in China. Remote Sensing, 2023, 15, 727.	1.8	3
1307	The Nonlinear Impact of Mobile Human Activities on Vegetation Change in the Guangdong–Hong Kong–Macao Greater Bay Area. International Journal of Environmental Research and Public Health, 2023, 20, 1874.	1.2	0
1308	Global Self‣imilar Scaling of Terrestrial Carbon With Aridity. Geophysical Research Letters, 2023, 50, .	1.5	2
1309	Impacts of Climate Change on Rice Grain: A Literature Review on What Is Happening, and How Should We Proceed?. Foods, 2023, 12, 536.	1.9	0
1310	Competition between biogeochemical drivers and land-cover changes determines urban greening or browning. Remote Sensing of Environment, 2023, 287, 113481.	4.6	15
1311	Improving Leaf Area Index Estimation With Chlorophyll Insensitive Multispectral Red-Edge Vegetation Indices. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 3568-3582.	2.3	2
1312	Impacts of Extreme Climates on Vegetation at Middle-to-High Latitudes in Asia. Remote Sensing, 2023, 15, 1251.	1.8	5
1313	Vegetation growth due to CO2 fertilization is threatened by increasing vapor pressure deficit. Journal of Hydrology, 2023, 619, 129292.	2.3	3
CITATION REPORT

#	Article	IF	CITATIONS
1314	Can Plot-Level Photographs Accurately Estimate Tundra Vegetation Cover in Northern Alaska?. Remote Sensing, 2023, 15, 1972.	1.8	1
1315	Machine learning-based prediction and assessment of recent dynamics of forest net primary productivity in Romania. Journal of Environmental Management, 2023, 334, 117513.	3.8	7
1316	Low frequency changes in CO2 concentration in East Asia related to Pacific decadal oscillation and Atlantic multi-decadal oscillation for mid-summer and early fall. Science of the Total Environment, 2023, 876, 162377.	3.9	2
1317	Convergence and divergence emerging in climatic controls of polynomial trends for northern ecosystem productivity over 2000–2018. Science of the Total Environment, 2023, 874, 162425.	3.9	Ο
1318	Impact of climate change and land use change on ecosystem net primary productivity in the Yangtze River and Yellow River Source Region, China. Watershed Ecology and the Environment, 2023, 5, 125-133.	0.6	2
1319	Projected increase in global runoff dominated by land surface changes. Nature Climate Change, 2023, 13, 442-449.	8.1	16
1320	Future changes and driving factors of global peak vegetation growth based on CMIP6 simulations. Ecological Informatics, 2023, 75, 102031.	2.3	7
1321	Dynamics of global dryland vegetation were more sensitive to soil moisture: Evidence from multiple vegetation indices. Agricultural and Forest Meteorology, 2023, 331, 109327.	1.9	9
1322	Impacts of vegetation restoration on water resources and carbon sequestration in the mountainous area of Haihe River basin, China. Science of the Total Environment, 2023, 869, 161724.	3.9	8
1323	Contrasting responses of peak vegetation growth to asymmetric warming: Evidences from FLUXNET and satellite observations. Global Change Biology, 2023, 29, 2363-2379.	4.2	4
1324	Attributing Past Carbon Fluxes to CO ₂ and Climate Change: Respiration Response to CO ₂ Fertilization Shifts Regional Distribution of the Carbon Sink. Global Biogeochemical Cycles, 2023, 37, .	1.9	1
1325	Ecological restoration exacerbates the agriculture-induced water crisis in North China Region. Agricultural and Forest Meteorology, 2023, 331, 109341.	1.9	15
1326	Future global streamflow declines are probably more severe than previously estimated. , 2023, 1, 261-271.		18
1327	No Signs of Long-term Greening Trend in Western Mongolian Grasslands. Ecosystems, 2023, 26, 1125-1143.	1.6	4
1329	Nitrogen Deposition Enhances the Positive Contribution of CO2 Fertilization to China's Carbon and Water Use Efficiencies. Land, 2023, 12, 413.	1.2	0
1330	Shifts in vegetation activity of terrestrial ecosystems attributable to climate trends. Nature Geoscience, 2023, 16, 147-153.	5.4	34
1331	The Multiple Perspective Response of Vegetation to Drought on the Qinghai-Tibetan Plateau. Remote Sensing, 2023, 15, 902.	1.8	4
1332	Improving the MODIS LAI compositing using prior time-series information. Remote Sensing of Environment, 2023, 287, 113493.	4.6	5

CITATION REPORT

#	Article	IF	CITATIONS
1333	Global Leaf Area Index Research over the Past 75 Years: A Comprehensive Review and Bibliometric Analysis. Sustainability, 2023, 15, 3072.	1.6	1
1334	Soil and vegetation water content identify the main terrestrial ecosystem changes. National Science Review, 2023, 10, .	4.6	4
1335	Environmental changes promoted vegetation growth and reduced water yield over the temperate semi-arid grassland of China during 1901–2016. Journal of Hydrology, 2023, 618, 129235.	2.3	4
1336	Widespread mismatch between satellite observed vegetation greenness and temperature isolines during 2000–2020 in China. Ecological Indicators, 2023, 147, 110018.	2.6	1
1337	Impact of ecological restoration on ecosystem service tradeâ€offs: Insight from karst desertification control. Land Degradation and Development, 2023, 34, 2693-2706.	1.8	8
1338	Response of Vegetation Coverage to Climate Changes in the Qinling-Daba Mountains of China. Forests, 2023, 14, 425.	0.9	3
1339	Light use efficiency models incorporating diffuse radiation impacts for simulating terrestrial ecosystem gross primary productivity: A global comparison. Agricultural and Forest Meteorology, 2023, 332, 109376.	1.9	3
1340	Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation. Nature Communications, 2023, 14, .	5.8	2
1341	碳达峰碳ä¸å'Œç›®æ‡ä¸‹éẻ̀ਦ—é́«~原土地å^©ç""å•北趋åŠį. SCIENTIA SINICA Terrae, 2023, , .	0.1	0
1342	Forest water-use efficiency: Effects of climate change and management on the coupling of carbon and water processes. Forest Ecology and Management, 2023, 534, 120853.	1.4	14
1343	Diagnosing destabilization risk in global land carbon sinks. Nature, 2023, 615, 848-853.	13.7	28
1344	Climate Change and CO2 Fertilization Have Played Important Roles in the Recent Decadal Vegetation Greening Trend on the Chinese Loess Plateau. Remote Sensing, 2023, 15, 1233.	1.8	1
1345	Global variations in critical drought thresholds that impact vegetation. National Science Review, 2023, 10, .	4.6	20
1346	Observations of Satellite Land Surface Phenology Indicate That Maximum Leaf Greenness Is More Associated With Global Vegetation Productivity Than Growing Season Length. Global Biogeochemical Cycles, 2023, 37, .	1.9	2
1347	Uncertainty propagation in a global biogeochemical model driven by leaf area data. Frontiers in Ecology and Evolution, 0, 11, .	1.1	0
1348	Soil Moisture and Atmospheric Aridity Impact Spatioâ€Temporal Changes in Evapotranspiration at a Global Scale. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	1
1349	Fitness for Purpose of Several Fractional Vegetation Cover Products on Monitoring Vegetation Cover Dynamic Change—A Case Study of an Alpine Grassland Ecosystem. Remote Sensing, 2023, 15, 1312.	1.8	2
1351	A Circumpolar Perspective on the Contribution of Trees to the Boreal Forest Carbon Balance. Advances in Global Change Research, 2023, , 271-294.	1.6	1

#	Article	IF	CITATIONS
1352	Land Surface Greening and CO2 Fertilization More than Offset the Gross Carbon Sequestration Decline Caused by Land Cover Change and the Enhanced Vapour Pressure Deficit in Europe. Remote Sensing, 2023, 15, 1372.	1.8	1
1353	Compound droughts slow down the greening of the Earth. Global Change Biology, 2023, 29, 3072-3084.	4.2	13
1354	Decoupling and partitioning the effect of climate and afforestation on longâ€ŧerm vegetation greening in China since the 1990s. Land Degradation and Development, 2023, 34, 3179-3195.	1.8	1
1355	Unintended consequences of combating desertification in China. Nature Communications, 2023, 14, .	5.8	37
1356	Modelling forest biomass dynamics in relation to climate change in Romania using complex data and machine learning algorithms. Stochastic Environmental Research and Risk Assessment, 2023, 37, 1669-1695.	1.9	5
1357	Uncertainty of multi-source vegetation products on regional climate simulation in China. Climate Dynamics, 2023, 61, 2991-3008.	1.7	0
1358	The rising impact of urbanization-caused CO2 emissions on terrestrial vegetation. Ecological Indicators, 2023, 148, 110079.	2.6	11
1359	Satelliteâ€based evidence highlights a considerable increase of urban tree cooling benefits from 2000 to 2015. Global Change Biology, 2023, 29, 3085-3097.	4.2	9
1360	Regulation factors driving vegetation changes in China during the past 20 years. Journal of Chinese Geography, 2023, 33, 508-528.	1.5	5
1362	How does desertification combating affect vegetation cover and incomes of farmers and herdsmen in the arid and semi-arid China?. Chinese Science Bulletin, 2023, 68, 2013-2015.	0.4	1
1363	Estimating suitable hydrothermal conditions for vegetation growth for land use cover across China based on maximum-probability-density monthly NDVI. Remote Sensing Applications: Society and Environment, 2023, 30, 100958.	0.8	0
1364	Irrigationâ€Induced Crop Growth Enhances Irrigation Cooling Effect Over the North China Plain by Increasing Transpiration. Water Resources Research, 2023, 59, .	1.7	3
1365	Leveraging Uncertainty in Terrestrial Ecosystem Carbon Stocks and Fluxes. Earth's Future, 2023, 11, .	2.4	0
1366	Climate change increases carbon allocation to leaves in early leaf greenâ€up. Ecology Letters, 2023, 26, 816-826.	3.0	8
1367	Atmospheric CO2 forcing on Mediterranean biomes during the past 500 kyrs. Nature Communications, 2023, 14, .	5.8	5
1368	El Chaltén, Argentine Patagonia: A Successful Combination of Conservation and Tourism?. The Latin American Studies Book Series, 2023, , 191-216.	0.1	0
1369	Improving the Quality of MODIS LAI Products by Exploiting Spatiotemporal Correlation Information. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-19.	2.7	1
1370	NDVI-Based Vegetation Dynamics and Response to Climate Changes and Human Activities in Guizhou Province, China. Forests, 2023, 14, 753.	0.9	5

#	Article	IF	CITATIONS
1371	Vegetation Greening Enhanced the Regional Terrestrial Carbon Uptake in the Dongting Lake Basin of China. Forests, 2023, 14, 768.	0.9	0
1372	High economic costs of reduced carbon sinks and declining biome stability in Central American forests. Nature Communications, 2023, 14, .	5.8	2
1373	Global leaf $\hat{a} {\in} {f t}$ rait mapping based on optimality theory. Global Ecology and Biogeography, 0, , .	2.7	0
1374	Study on fractional vegetation cover dynamic in the Yellow River Basin, China from 1901 to 2100. Frontiers in Forests and Global Change, 0, 6, .	1.0	2
1375	Can economic growth and urban greenness achieve positive synergies during rapid urbanization in China?. Ecological Indicators, 2023, 150, 110250.	2.6	7
1376	Evaluation and Implication of the Policies towards China's Carbon Neutrality. Sustainability, 2023, 15, 6762.	1.6	5
1377	Vegetation browning: global drivers, impacts, and feedbacks. Trends in Plant Science, 2023, 28, 1014-1032.	4.3	5
1466	Evidence and attribution of the enhanced land carbon sink. Nature Reviews Earth & Environment, 2023, 4, 518-534.	12.2	18
1489	Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change. Functional and Integrative Genomics, 2023, 23, .	1.4	0
1505	200 Years of Fossil Fuels and Climate Change (1900–2100). Journal of the Geological Society of India, 2023, 99, 1043-1062.	0.5	2
1507	Using tree rings to detect a CO2 fertilization effect: a global review. Trees - Structure and Function, 2023, 37, 1299-1314.	0.9	2
1512	Climate Change and Threats to Water Security: A Review. Water Resources, 2023, 50, 645-663.	0.3	1
1608	Biome Change in Southern Africa. Ecological Studies, 2024, , 369-405.	0.4	0
1609	Dynamics and Drivers of Net Primary Production (NPP) in Southern Africa Based on Estimates from Earth Observation and Process-Based Dynamic Vegetation Modelling. Ecological Studies, 2024, , 759-786.	0.4	0
1642	Socioeconomic and Environmental Changes in Global Drylands. , 2024, , 161-201.		0
1643	Structure and Functioning of Chinaâ \in ^M s Dryland Ecosystems in a Changing Environment. , 2024, , 391-424.		0

CITATION REPORT