Using Choquet integral as preference model in interaction

European Journal of Operational Research 250, 884-901 DOI: 10.1016/j.ejor.2015.10.027

Citation Report

#	Article	IF	CITATIONS
1	City sustainability evaluation using multi-criteria decision making with objective weights of interdependent criteria. Journal of Cleaner Production, 2016, 131, 491-499.	4.6	94
2	A novel multi-objective optimization method for the pressurized reservoir in hydraulic robotics. Journal of Zhejiang University: Science A, 2016, 17, 454-467.	1.3	3
3	Robust ordinal regression for decision under risk and uncertainty. Journal of Business Economics, 2016, 86, 55-83.	1.3	12
4	Evolutionary robust optimization in production planning – interactions between number of objectives, sample size and choice of robustness measure. Computers and Operations Research, 2017, 79, 266-278.	2.4	16
5	A group decision-making model based on distance-based VIKOR with incomplete heterogeneous information and its application to emergency supplier selection. Kybernetes, 2017, 46, 501-529.	1.2	27
6	Building and Using an Ontology of Preference-Based Multiobjective Evolutionary Algorithms. Lecture Notes in Computer Science, 2017, , 406-421.	1.0	11
7	Expressiveness and robustness measures for the evaluation of an additive value function in multiple criteria preference disaggregation methods: An experimental analysis. Computers and Operations Research, 2017, 87, 146-164.	2.4	36
8	Multiobjective sizing optimization of a steel girder bridge with a simple Target-driven approach. , 2017, , .		1
9	Interactive Evolutionary Multiple Objective Optimization for Group Decision Incorporating Value-based Preference Disaggregation Methods. Group Decision and Negotiation, 2017, 26, 693-728.	2.0	18
10	Navigation in multiobjective optimization methods. Journal of Multi-Criteria Decision Analysis, 2017, 24, 57-70.	1.0	15
11	Determining the fuzzy measures in multiple criteria decision aiding from the tolerance perspective. European Journal of Operational Research, 2018, 264, 428-439.	3.5	40
12	Optimization of multiple satisfaction levels in portfolio decision analysis. Omega, 2018, 78, 192-204.	3.6	36
13	Interactive algorithms for a broad underlying family of preference functions. European Journal of Operational Research, 2018, 265, 248-262.	3.5	9
14	An interval-valued 2-tuple linguistic group decision-making model based on the Choquet integral operator. International Journal of Systems Science, 2018, 49, 407-424.	3.7	13
15	Towards an enhanced user's preferences integration into ranking process using dominance approach. Vietnam Journal of Computer Science, 2018, 5, 15-25.	1.0	1
16	Frank Choquet Bonferroni Mean Operators of Bipolar Neutrosophic Sets and Their Application to Multi-criteria Decision-Making Problems. International Journal of Fuzzy Systems, 2018, 20, 13-28.	2.3	63
17	Aggregation Functions Considering Criteria Interrelationships in Fuzzy Multi-Criteria Decision Making: State-of-the-Art. IEEE Access, 2018, 6, 68104-68136.	2.6	21
18	An approach to manipulate interactive attribute weights strategically with its application in university rankings. Journal of Intelligent and Fuzzy Systems, 2018, 35, 3697-3708.	0.8	2

CITATION REPORT

#	Article	IF	CITATIONS
19	Insights into tolerability constraints in multi-criteria decision making: Description and modeling. Knowledge-Based Systems, 2018, 162, 136-146.	4.0	5
20	Robustness Analysis of an Outranking Model Parameters' Elicitation Method in the Presence of Noisy Examples. Mathematical Problems in Engineering, 2018, 2018, 1-10.	0.6	7
21	A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Natural Computing, 2018, 17, 585-609.	1.8	387
22	Convolutional Neural Networks-Based Locating Relevant Buggy Code Files for Bug Reports Affected by Data Imbalance. IEEE Access, 2019, 7, 131304-131316.	2.6	9
23	Acquisition method of users' browsing behavior preference based on the fusion of social network link and theme model. Journal of Intelligent and Fuzzy Systems, 2019, 37, 493-508.	0.8	1
24	Preference-based evolutionary multi-objective optimization in ship weather routing. Applied Soft Computing Journal, 2019, 84, 105742.	4.1	40
25	Robust indicator-based algorithm for interactive evolutionary multiple objective optimization. , 2019, ,		5
26	EMOSOR: Evolutionary multiple objective optimization guided by interactive stochastic ordinal regression. Computers and Operations Research, 2019, 108, 134-154.	2.4	17
27	An Interval-Based Approach for Evolutionary Multi-Objective Optimization of Project Portfolios. International Journal of Information Technology and Decision Making, 2019, 18, 1317-1358.	2.3	26
28	A progressive sorting approach for multiple criteria decision aiding in the presence of non-monotonic preferences. Expert Systems With Applications, 2019, 123, 1-17.	4.4	25
29	Combining user preferences and expert opinions: a criteria synergy-based model for decision making on the Web. Soft Computing, 2019, 23, 1357-1373.	2.1	7
30	Decomposition-Based Interactive Evolutionary Algorithm for Multiple Objective Optimization. IEEE Transactions on Evolutionary Computation, 2020, 24, 320-334.	7.5	31
31	Preference-based cone contraction algorithms for interactive evolutionary multiple objective optimization. Swarm and Evolutionary Computation, 2020, 52, 100602.	4.5	22
32	A self-adaptive preference model based on dynamic feature analysis for interactive portfolio optimization. International Journal of Machine Learning and Cybernetics, 2020, 11, 1253-1266.	2.3	4
33	An analysis of the Hypervolume Sharpe-Ratio Indicator. European Journal of Operational Research, 2020, 283, 614-629.	3.5	15
34	A Human-centered Perspective on Interactive Optimization for Extreme Event Decision Making. , 2020, , .		1
35	How to support the application of multiple criteria decision analysis? Let us start with a comprehensive taxonomy. Omega, 2020, 96, 102261.	3.6	155
36	The Choquet Kernel on the use of Regression Problem. Information Sciences, 2021, 556, 256-272.	4.0	2

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
37	Explainable Interactive Evolutionary Multiobjective Optimization. SSRN Electronic Journal, 0, , .	0.4	7
38	Effect of the Profile of the Decision Maker in the Search for Solutions in the Decision-Making Process. Mathematical and Computational Applications, 2021, 26, 28.	0.7	1
39	Decomposition-based co-evolutionary algorithm for interactive multiple objective optimization. Information Sciences, 2021, 549, 178-199.	4.0	15
40	Realistic utility functions prove difficult for state-of-the-art interactive multiobjective optimization algorithms. , 2021, , .		3
41	Learning judgment benchmarks of customers from online reviews. OR Spectrum, 2021, 43, 1125-1157.	2.1	12
42	W-dominance: Tradeoff-inspired dominance relation for preference-based evolutionary multi-objective optimization. Swarm and Evolutionary Computation, 2021, 63, 100866.	4.5	12
43	Choquet-Integral Aggregation Method to Aggregate Social Indicators to Account for Interactions: An Application to the Human Development Index. Social Indicators Research, 2022, 159, 1-53.	1.4	5
44	A Simulated IMO-DRSA Approach for Cognitive Reduction in Multiobjective Financial Portfolio Interactive Optimization. , 2021, , .		2
45	On correlated information for learning predictive models under the Choquet integral. Expert Systems, 0, , e12777.	2.9	0
46	Heuristics-based learning approach for choquistic regression models. Pattern Recognition Letters, 2021, 149, 137-142.	2.6	1
47	Transaction and interaction behavior-based consensus model and its application to optimal carbon emission reduction. Omega, 2021, 104, 102491.	3.6	38
48	A New Interactive Algorithm for Continuous Multiple Criteria Problems: A Portfolio Optimization Example. International Journal of Information Technology and Decision Making, 2021, 20, 371-398.	2.3	1
49	Multiple Criteria Decision Support. , 2021, , 893-920.		4
50	Interactive Cone Contraction for Evolutionary Mutliple Objective Optimization. Studies in Computational Intelligence, 2018, , 293-309.	0.7	1
51	Preference Disaggregation: Towards an Integrated Framework. SSRN Electronic Journal, 0, , .	0.4	3
52	INFERRING PARAMETERS OF A RELATIONAL SYSTEM OF PREFERENCES FROM ASSIGNMENT EXAMPLES USING AN EVOLUTIONARY ALGORITHM. Technological and Economic Development of Economy, 2019, .	2.3	2
53	A Self-Learning Based Preference Model for Portfolio Optimization. Mathematics, 2021, 9, 2621.	1.1	2
54	Performance Evaluation Using the Discrete Choquet Integral: Higher Education Sector. International Journal of Assessment Tools in Education, 0, , 138-153.	0.4	1

CITATION REPORT

#	Article	IF	CITATIONS
55	A Fuzzy Neural Tree for the Evaluation of Shape in an Architectural Design. Advances in Intelligent Systems and Computing, 2020, , 238-246.	0.5	0
56	On the elicitation of indirect preferences in interactive evolutionary multiple objective optimization. , 2020, , .		4
58	Preference Incorporation into Moea/D Using an Outranking Approach with Imprecise Model Parameters. SSRN Electronic Journal, 0, , .	0.4	2
59	Preference incorporation into many-objective optimization: An Ant colony algorithm based on interval outranking. Swarm and Evolutionary Computation, 2022, 69, 101024.	4.5	14
60	Hybridisation of Swarm Intelligence Algorithms with Multi-Criteria Ordinal Classification: A Strategy to Address Many-Objective Optimisation. Mathematics, 2022, 10, 322.	1.1	6
61	A review of Pareto pruning methods for multi-objective optimization. Computers and Industrial Engineering, 2022, 167, 108022.	3.4	45
62	Preference incorporation in MOEA/D using an outranking approach with imprecise model parameters. Swarm and Evolutionary Computation, 2022, 72, 101097.	4.5	5
66	Robust Ordinal Regression for Multiple Criteria Decision Aiding. Multiple Criteria Decision Making, 2022, , 185-205.	0.6	1
68	Integrating external representations and internal patterns into dynamic multiple-criteria decision making. Annals of Operations Research, 0, , .	2.6	0
69	A Methodological Approach Based on the Choquet Integral for Sustainable Valuations. Lecture Notes in Computer Science, 2022, , 3-14.	1.0	0
70	Learning consumer preferences from online textual reviews and ratings based on the aggregation-disaggregation paradigm with attitudinal Choquet integral. Economic Research-Ekonomska Istrazivanja, 2023, 36, .	2.6	2
71	An ACO-based Hyper-heuristic for Sequencing Many-objective Evolutionary Algorithms that Consider Different Ways to Incorporate the DM's Preferences. Swarm and Evolutionary Computation, 2023, 76, 101211.	4.5	4
72	CUSTOMER PREFERENCE ANALYSIS FROM ONLINE REVIEWS BY A 2-ADDITIVE CHOQUET INTEGRAL-BASED PREFERENCE DISAGGREGATION MODEL. Technological and Economic Development of Economy, 2022, 29, 411-437.	2.3	2
73	Interactive Evolutionary Multiobjective Optimization via Learning to Rank. IEEE Transactions on Evolutionary Computation, 2023, 27, 749-763.	7.5	2
74	Visualization-aided multi-criteria decision-making using interpretable self-organizing maps. European Journal of Operational Research, 2023, 309, 1183-1200.	3.5	5
75	A Sensitivity Index to Perform the Territorial Sustainability in Uncertain Decision-Making Conditions. Land, 2023, 12, 432.	1.2	1
76	Consensus modeling with interactive utility and partial preorder of decision-makers, involving fairness and tolerant behavior. Information Sciences, 2023, 638, 118933.	4.0	4