Further Insight into the Definite Morphology and Form Silica KCC-1

Langmuir

32, 5802-5811

DOI: 10.1021/acs.langmuir.6b00675

Citation Report

#	Article	IF	CITATIONS
2	Oxygen vacancy-rich mesoporous silica KCC-1 for CO 2 methanation. Applied Catalysis A: General, 2017, 532, 86-94.	2.2	134
3	Tunable Synthesis of Mesoporous Silica Particles with Unique Radially Oriented Pore Structures from Tetramethyl Orthosilicate via Oil–Water Emulsion Process. Langmuir, 2017, 33, 783-790.	1.6	33
4	n-Heptane isomerization over molybdenum supported on bicontinuous concentric lamellar silica KCC-1: Influence of phosphorus and optimization using response surface methodology (RSM). Chemical Engineering Journal, 2017, 314, 650-659.	6.6	59
5	Dendritic Fibrous Nanosilica for Catalysis, Energy Harvesting, Carbon Dioxide Mitigation, Drug Delivery, and Sensing. ChemSusChem, 2017, 10, 3866-3913.	3.6	197
6	Unraveling the Formation Mechanism of Dendritic Fibrous Nanosilica. Langmuir, 2017, 33, 13774-13782.	1.6	59
7	A dual-signals response electrochemiluminescence immunosensor based on PTC-DEPA/KCC-1 NCs for detection of procalcitonin. Sensors and Actuators B: Chemical, 2018, 267, 525-532.	4.0	20
8	Core/shell structured sSiO2/mSiO2 composite particles: The effect of the core size on oxide chemical mechanical polishing. Advanced Powder Technology, 2018, 29, 18-26.	2.0	10
9	In Situ Approach to Dendritic Fibrous Nitrogen-Doped Carbon Nanospheres Functionalized by BrŸnsted Acidic Ionic Liquid and Their Excellent Esterification Catalytic Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 15114-15126.	3.2	17
10	Improving the size uniformity of dendritic fibrous nano-silica by a facile one-pot rotating hydrothermal approach. RSC Advances, 2019, 9, 24783-24790.	1.7	28
11	Determination of proline in human plasma samples using the encapsulation of proline dehydrogenase enzyme in dendritic silica: a new platform for the enzymatic biosensing of amino acids. Analytical Methods, 2019, 11, 4609-4619.	1.3	6
12	30.1: <i>Invited Paper:</i> Novel Emissive Projection Screen for Advanced Display Applications. Digest of Technical Papers SID International Symposium, 2019, 50, 322-325.	0.1	0
13	Densification Mechanism and Microstructure Evolution of Tiâ€48Alâ€2Crâ€8Nb Alloy by Spark Plasma Sintering. Crystal Research and Technology, 2019, 54, 1900107.	0.6	2
14	Dendritic fibrous nano-particles (DFNPs): rising stars of mesoporous materials. Journal of Materials Chemistry A, 2019, 7, 5111-5152.	5.2	103
15	Formation Mechanism of Silica Particles with Dendritic Structure. ChemistrySelect, 2019, 4, 6656-6661.	0.7	7
16	Fabrication of hollow cubic silica nanoframes with a fibrous morphology. Materials Letters, 2019, 252, 31-34.	1.3	2
17	Platinumâ€promoted fibrous silica Y zeolite with enhanced mass transfer as a highly selective catalyst for <i>n</i> â€dodecane hydroisomerization. International Journal of Energy Research, 2019, 43, 4201-4216.	2.2	14
18	Effective removal of Pb(II) by low-cost fibrous silica KCC-1 synthesized from silica-rich rice husk ash. Journal of Industrial and Engineering Chemistry, 2019, 75, 262-270.	2.9	39
19	TiO2 Nanoparticles Supported on Hierarchical Meso/Macroporous SiO2 Spheres for Photocatalytic Applications. , 2019, , .		4

#	ARTICLE	IF	CITATIONS
20	Catalytic dehydrogenation of formic acid over palladium nanoparticles immobilized on fibrous mesoporous silica KCC-1. Chinese Journal of Catalysis, 2019, 40, 1704-1712.	6.9	30
21	Tailored mesoporosity and acidity of shape-selective fibrous silica beta zeolite for enhanced toluene co-reaction with methanol. Chemical Engineering Science, 2019, 193, 217-229.	1.9	54
22	Dry reforming of methane to hydrogen-rich syngas over robust fibrous KCC-1 stabilized nickel catalyst with high activity and coke resistance. International Journal of Hydrogen Energy, 2020, 45, 18549-18561.	3.8	51
23	Enhanced n-hexane hydroisomerization over bicontinuous lamellar silica mordenite supported platinum (Pt/HM@KCC-1) catalyst. International Journal of Hydrogen Energy, 2020, 45, 18587-18599.	3.8	15
24	Fabrication of the pod-like KCC-1/TiO2 superhydrophobic surface on AZ31 Mg alloy with stability and photocatalytic property. Applied Surface Science, 2020, 499, 143933.	3.1	23
25	Dendritic Mesoporous Ni/KCC-1 for Partial Oxidation of Methane to Syngas. IOP Conference Series: Materials Science and Engineering, 2020, 808, 012006.	0.3	5
26	Biomedical applications of dendritic fibrous nanosilica (DFNS): recent progress and challenges. RSC Advances, 2020, 10, 37116-37133.	1.7	28
27	Tailoring conductive networks within hollow carbon nanospheres to host phosphorus for advanced sodium ion batteries. Nano Energy, 2020, 70, 104569.	8.2	29
28	Catalytic activity of Co(II) Salen@KCC-1 on the synthesis of 2,4,5-triphenyl-1H-imidazoles and benzimidazoles. Inorganic Chemistry Communication, 2020, 119, 108137.	1.8	5
29	Functional Mesoporous Silica Nanomaterials for Catalysis and Environmental Applications. Bulletin of the Chemical Society of Japan, 2020, 93, 1459-1496.	2.0	114
30	Enhanced carbon dioxide adsorption by amine-modified KCC-1. IOP Conference Series: Earth and Environmental Science, 2020, 476, 012084.	0.2	2
31	Design of Dendritic Large-Pore Mesoporous Silica Nanoparticles with Controlled Structure and Formation Mechanism in Dual-Templating Strategy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 18823-18832.	4.0	36
32	Nanofluidic behavior of diatomic molecules in bicontinuous concentric lamellar (bcl) silica formed by polysiloxane sol-gel phase segregation as a reference in the mass transport through the open channel system. Polymer-Plastics Technology and Materials, 2020, 59, 1359-1369.	0.6	2
33	Role of oxygen vacancies in dendritic fibrous M/KCC-1 (MÂ=ÂRu, Pd, Rh) catalysts for methane partial oxidation to H2-rich syngas production. Fuel, 2020, 278, 118360.	3.4	30
34	A highly competitive system for CO methanation over an active metal-free fibrous silica mordenite via in-situ ESR and FTIR studies. Energy Conversion and Management, 2020, 211, 112754.	4.4	21
35	Comprehensive understanding of the synthesis and formation mechanism of dendritic mesoporous silica nanospheres. Nanoscale Advances, 2020, 2, 1792-1810.	2.2	47
36	Development of nanosilica-based catalyst for syngas production via CO2 reforming of CH4: A review. International Journal of Hydrogen Energy, 2021, 46, 24687-24708.	3.8	29
37	Contemporary trends in composite Ni-based catalysts for CO2 reforming of methane. Chemical Engineering Science, 2021, 229, 116072.	1.9	99

#	ARTICLE	IF	CITATIONS
38	Tailoring Rh content on dendritic fibrous silica alumina catalyst for enhanced CO2 capture in catalytic CO2 methanation. Journal of Environmental Chemical Engineering, 2021, 9, 104616.	3.3	25
39	Constructing Ni-based confinement catalysts with advanced performances toward the CO ₂ reforming of CH ₄ : state-of-the-art review and perspectives. Catalysis Science and Technology, 2021, 11, 6344-6368.	2.1	9
40	Controlled release evaluation of paracetamol loaded amine functionalized mesoporous silica KCC1 compared to microcrystalline cellulose based tablets. Scientific Reports, 2021, 11, 535.	1.6	15
41	Synthesis of gold nanoparticles immobilized on fibrous nanoâ€silica for latent fingerprints detection. Journal of Porous Materials, 2021, 28, 751-762.	1.3	6
42	Biotemplated Hollow Mesoporous Silica Particles as Efficient Carriers for Drug Delivery. ACS Applied Bio Materials, 2021, 4, 4201-4214.	2.3	15
43	Origin of the Hierarchical Structure of Dendritic Fibrous Nanosilica: A Small-Angle X-ray Scattering Perspective. Langmuir, 2021, 37, 6423-6434.	1.6	17
44	Textural control of bicontinuous concentric lamellar nanostructured mesoporous silica via low-pressure solvothermal method. Materials Chemistry and Physics, 2021, 265, 124492.	2.0	11
45	Reverse micelle-mediated synthesis of plate-assembled hierarchical three-dimensional flower-like gamma-alumina particles. Microporous and Mesoporous Materials, 2021, 321, 111055.	2.2	16
46	Preparation and characterization of GO/KCCâ€1/Ni(II) as an efficient catalyst for the green synthesis of some 1,8â€dioxodecahydroacridine derivatives. Applied Organometallic Chemistry, 2021, 35, e6358.	1.7	4
47	Unravelling the structural hierarchy in microemulsion droplet templated dendritic fibrous nano silica. Microporous and Mesoporous Materials, 2021, 323, 111234.	2.2	4
48	A comprehensive review on improving the production of rich-hydrogen via combined steam and CO2 reforming of methane over Ni-based catalysts. International Journal of Hydrogen Energy, 2021, 46, 31024-31040.	3.8	65
49	Efficient transformation of 5-hydroxymethylfurfural to ethyl levulinate over the BrÃ,nsted acidic ionic liquid functionalized dendritic fibrous nanosilica spheres. Microporous and Mesoporous Materials, 2021, 326, 111354.	2.2	1
50	Abundant Lewis acidic sites of peculiar fibrous silica zeolite X enhanced toluene conversion in side chain toluene methylation. Fuel, 2021, 305, 121432.	3.4	9
51	Controlled growth of ultrafine metal nanoparticles mediated by solid supports. Nanoscale Advances, 2021, 3, 1865-1886.	2.2	18
52	CO2 Methanation over Mesoporous Silica Based Catalyst: A Comprehensive Study. Journal of Energy and Safety Technology (JEST), 2019, 2, .	0.1	0
53	Bifunctional metal-free KAUST Catalysis Center 1 (KCC-1) as highly active catalyst for syngas production via methane partial oxidation. Materials Today Chemistry, 2022, 23, 100684.	1.7	5
54	Thermodynamic Picture of Phase Segregation during the Formation of Bicontinuous Concentric Lamellar (<i>bcl</i>) Silica. Langmuir, 2022, 38, 1368-1379.	1.6	6
55	Substituted natural gas (SNG) production using an environment-friendly, metal-free modified beta zeolite (@BEA) catalyst with a dandelion flower-like structure. Molecular Catalysis, 2022, 523, 112140.	1.0	2

#	Article	IF	CITATIONS
56	Immobilization of CdCl ₂ on filamentous silica nanoparticles as an efficient catalyst for the solvent free synthesis of some amidoalkyl derivatives. Polycyclic Aromatic Compounds, 2023, 43, 1957-1973.	1.4	4
57	Role of urea on the structural, textural, and optical properties of macroemulsion-assisted synthesized holey ZnO nanosheets for photocatalytic applications. New Journal of Chemistry, 2022, 46, 9897-9908.	1.4	4
58	Preparation of surface-decorated mesoporous dendritic fibrous nanosilica/TiO2 for use in phenol degradation. Applied Surface Science, 2022, 603, 154414.	3.1	9
59	Tuning of surface structure of porous glass-supported titania with fibrous silica for efficient coupling adsorptionâ€'catalysisâ€'resorption desulfurization scheme. Surfaces and Interfaces, 2022, 33, 102264.	1.5	1
60	Ultrasonic-assisted d- $\hat{A}\mu$ -SPE based on amine-functionalized KCC-1 for trace detection of lead and cadmium ion by GFAAS. Microchemical Journal, 2022, 183, 107951.	2.3	11
61	Leak-free and shape-stabilized phase change composites with radial spherical SiO ₂ scaffolds for thermal management. New Journal of Chemistry, 2022, 46, 19178-19187.	1.4	6
62	Dendritic Mesoporous Silica Nanoparticle Supported PtSn Catalysts for Propane Dehydrogenation. International Journal of Molecular Sciences, 2022, 23, 12724.	1.8	5
63	Syngas Production via Bi-Reforming of Methane Over Fibrous KCC-1 Stabilized Ni Catalyst. Topics in Catalysis, 2023, 66, 235-246.	1.3	3
64	Rice husk waste into various template-engineered mesoporous silica materials for different applications: A comprehensive review on recent developments. Chemosphere, 2023, 310, 136843.	4.2	17
65	Macroemulsion-mediated synthesis of fibrous ZnO microrods and their surface morphology contribution to the high photocatalytic degradation rate. New Journal of Chemistry, 2022, 47, 428-442.	1.4	4
66	Process Intensification of Dendritic Fibrous Nanospheres of Silica (KCC-1) via continuous flow: A Scalable, and Sustainable Route to a Conventional Batch Synthesis. Reaction Chemistry and Engineering, $0,$	1.9	0
67	Thermocatalytic CO ₂ conversion by siliceous matter: a review. Journal of Materials Chemistry A, 2023, 11, 1593-1633.	5.2	7
68	Contribution of the lamellar morphology to the photocatalytic activity of alkaline-hydrothermally treated titania in rhodamine B photodegradation. Physical Chemistry Chemical Physics, 2023, 25, 5183-5195.	1.3	3
69	Highly coke resistant Ni–Co/KCC-1 catalysts for dry reforming of methane. International Journal of Hydrogen Energy, 2023, 48, 11727-11745.	3.8	12
70	Low-Dimensional Hollow Nanostructures: From Morphology Control to the Release of an Active Pharmaceutical Ingredient. Chemistry of Materials, 2023, 35, 1877-1890.	3.2	2
71	Tetraalkoxysilane-Assisted Self-Emulsification Templating for Controlled Mesostructured Silica Nanoparticles. Langmuir, 2023, 39, 3610-3618.	1.6	O