Variation in Microbiome LPS Immunogenicity Contribu

Cell 165, 842-853

DOI: 10.1016/j.cell.2016.04.007

Citation Report

#	Article	IF	CITATIONS
1	Do It Well or Not at All? Malaria Control and Child Development in Zambia. SSRN Electronic Journal, 2015, , .	0.4	0
2	A Dormant Microbial Component in the Development of Preeclampsia. Frontiers in Medicine, 2016, 3, 60.	1.2	64
3	The Skin Microbiome: Is It Affected by UV-induced Immune Suppression?. Frontiers in Microbiology, 2016, 7, 1235.	1.5	88
4	Distinct Patterns in Human Milk Microbiota and Fatty Acid Profiles Across Specific Geographic Locations. Frontiers in Microbiology, 2016, 7, 1619.	1.5	224
5	Mucosal Prevalence and Interactions with the Epithelium Indicate Commensalism of Sutterella spp Frontiers in Microbiology, 2016, 7, 1706.	1.5	214
6	The microbiome in early life: implications for health outcomes. Nature Medicine, 2016, 22, 713-722.	15.2	838
7	Childhood allergies and asthma: New insights on environmental exposures and local immunity at the lung barrier. Current Opinion in Immunology, 2016, 42, 41-47.	2.4	25
8	Is LPS the key to the hygiene hypothesis?. Nature Reviews Microbiology, 2016, 14, 334-334.	13.6	2
9	What's LPS Got to Do with It? A Role for Gut LPS Variants in Driving Autoimmune and Allergic Disease. Cell Host and Microbe, 2016, 19, 572-574.	5.1	12
10	The effect of host genetics on the gut microbiome. Nature Genetics, 2016, 48, 1407-1412.	9.4	672
11	Autoimmune Diseases in Children and Adults With Type 1 Diabetes From the T1D Exchange Clinic Registry. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4931-4937.	1.8	75
12	Shaping Variation in the Human Immune System. Trends in Immunology, 2016, 37, 637-646.	2.9	91
13	Signals from the gut microbiota to distant organs in physiology and disease. Nature Medicine, 2016, 22, 1079-1089.	15.2	952
14	The CF gastrointestinal microbiome: Structure and clinical impact. Pediatric Pulmonology, 2016, 51, S35-S44.	1.0	27
15	Microbiomic and Posttranslational Modifications as Preludes to Autoimmune Diseases. Trends in Molecular Medicine, 2016, 22, 746-757.	3.5	52
16	Modulation of type 1 and type 2 diabetes risk by the intestinal microbiome. Pediatric Diabetes, 2016, 17, 469-477.	1.2	58
17	Antibiotic perturbation of the preterm infant gut microbiome and resistome. Gut Microbes, 2016, 7, 443-449.	4.3	102
18	Extending colonic mucosal microbiome analysisâ€"assessment of colonic lavage as a proxy for endoscopic colonic biopsies. Microbiome, 2016, 4, 61.	4.9	43

#	ARTICLE	IF	CITATIONS
19	The helminth product, ES-62 modulates dendritic cell responses by inducing the selective autophagolysosomal degradation of TLR-transducers, as exemplified by PKCl´. Scientific Reports, 2016, 6, 37276.	1.6	22
20	Endotoxemia—menace, marker, or mistake?. Journal of Leukocyte Biology, 2016, 100, 687-698.	1.5	166
21	What Lies Within: The Human Body Might Well Be One of the Best Sources for New Antibiotics. IEEE Pulse, 2016, 7, 16-19.	0.1	3
22	Gut microbiota-host interactions and juvenile idiopathic arthritis. Pediatric Rheumatology, 2016, 14, 44.	0.9	38
23	Corium molecular biomarkers reveal a beneficial effect on hoof transcriptomics in peripartal dairy cows supplemented with zinc, manganese, and copper from amino acid complexes and cobalt from cobalt glucoheptonate. Journal of Dairy Science, 2016, 99, 9974-9982.	1.4	10
24	Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell, 2016, 167, 1125-1136.e8.	13.5	806
25	The Human Functional Genomics Project: Understanding Generation of Diversity. Cell, 2016, 167, 894-896.	13.5	16
26	Association of environmental markers with childhood type 1 diabetes mellitus revealed by a long questionnaire on early life exposures and lifestyle in a case–control study. BMC Public Health, 2016, 16, 1021.	1.2	9
27	Maintenance of peripheral tolerance to islet antigens. Journal of Autoimmunity, 2016, 72, 118-125.	3.0	7
28	Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nature Medicine, 2017, 23, 314-326.	15.2	751
29	Performing Skin Microbiome Research: A Method to the Madness. Journal of Investigative Dermatology, 2017, 137, 561-568.	0.3	164
30	The Influence of the Microbiome on Allergic Sensitization to Food. Journal of Immunology, 2017, 198, 581-589.	0.4	92
31	The Influence of the Microbiome on Type 1 Diabetes. Journal of Immunology, 2017, 198, 590-595.	0.4	112
32	The Neonatal Window of Opportunity: Setting the Stage for Life-Long Host-Microbial Interaction and Immune Homeostasis. Journal of Immunology, 2017, 198, 557-563.	0.4	146
33	Understanding Human Autoimmunity and Autoinflammation Through Transcriptomics. Annual Review of Immunology, 2017, 35, 337-370.	9.5	69
34	Growth and Morbidity of Gambian Infants are Influenced by Maternal Milk Oligosaccharides and Infant Gut Microbiota. Scientific Reports, 2017, 7, 40466.	1.6	152
35	The gut microbiome and microbial translocation in multiple sclerosis. Clinical Immunology, 2017, 183, 213-224.	1.4	64
36	Homeostasis of the gut barrier and potential biomarkers. American Journal of Physiology - Renal Physiology, 2017, 312, G171-G193.	1.6	408

#	Article	IF	CITATIONS
37	Antibiotics, gut microbiota, environment in early life and type 1 diabetes. Pharmacological Research, 2017, 119, 219-226.	3.1	44
38	Dysbiosis and the immune system. Nature Reviews Immunology, 2017, 17, 219-232.	10.6	1,102
39	Cleaning up the hygiene hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1433-1436.	3.3	78
40	Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes. Cell Reports, 2017, 18, 1739-1750.	2.9	143
41	Salivary microbiome of an urban Indian cohort and patterns linked to subclinical inflammation. Oral Diseases, 2017, 23, 926-940.	1.5	26
42	Dietary short-chain fatty acids protect against type 1 diabetes. Nature Immunology, 2017, 18, 484-486.	7.0	45
43	Regionalized Development and Maintenance of the Intestinal Adaptive Immune Landscape. Immunity, 2017, 46, 532-548.	6.6	147
44	Early life factors that affect allergy development. Nature Reviews Immunology, 2017, 17, 518-528.	10.6	113
45	An insider's perspective: Bacteroides as a window into the microbiome. Nature Microbiology, 2017, 2, 17026.	5.9	416
46	Changes of cecal microflora in chickens following Eimeria tenella challenge and regulating effect of coated sodium butyrate. Experimental Parasitology, 2017, 177, 73-81.	0.5	42
47	Luminal contents from the gut of colicky infants induce visceral hypersensitivity in mice. Neurogastroenterology and Motility, 2017, 29, e12994.	1.6	17
48	Human immune system variation. Nature Reviews Immunology, 2017, 17, 21-29.	10.6	466
49	Safety and tolerability of Bifidobacterium longum subspecies infantis EVC001 supplementation in healthy term breastfed infants: a phase I clinical trial. BMC Pediatrics, 2017, 17, 133.	0.7	43
50	The multiple pathways to autoimmunity. Nature Immunology, 2017, 18, 716-724.	7.0	429
51	Digestion of Human Milk Oligosaccharides by <i>Bifidobacterium breve</i> in the Premature Infant. Journal of Pediatric Gastroenterology and Nutrition, 2017, 65, 449-455.	0.9	45
52	Gut Microbiota Mediates the Protective Effects of Dietary Capsaicin against Chronic Low-Grade Inflammation and Associated Obesity Induced by High-Fat Diet. MBio, 2017, 8, .	1.8	164
53	Host defenses against metabolic endotoxaemia and their impact on lipopolysaccharide detection. International Reviews of Immunology, 2017, 36, 125-144.	1.5	22
54	The Microbiota of the Extremely Preterm Infant. Clinics in Perinatology, 2017, 44, 407-427.	0.8	84

#	Article	IF	Citations
55	Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nature Immunology, 2017, 18, 552-562.	7.0	551
56	Differential Establishment of Bifidobacteria in the Breastfed Infant Gut. Nestle Nutrition Institute Workshop Series, 2017, 88, 149-160.	1.5	37
57	The Host Microbiome Regulates and Maintains Human Health: A Primer and Perspective for Non-Microbiologists. Cancer Research, 2017, 77, 1783-1812.	0.4	270
58	The progress and potential of proteomic biomarkers for type 1 diabetes in children. Expert Review of Proteomics, 2017, 14, 31-41.	1.3	7
59	Enteroendocrine Cells: Metabolic Relays between Microbes and Their Host. Endocrine Development, 2017, 32, 139-164.	1.3	30
60	Natural protective immunity against grass pollen allergy is maintained byÂa diverse spectrum of response types. Journal of Allergy and Clinical Immunology, 2017, 140, 1746-1749.e11.	1.5	3
62	Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nature Biotechnology, 2017, 35, 1077-1086.	9.4	400
63	Functional Classification of the Gut Microbiota: The Key to Cracking the Microbiota Composition Code. BioEssays, 2017, 39, 1700032.	1.2	31
64	Can intestinal microbiota be associated with non-intestinal cancers?. Scientific Reports, 2017, 7, 12722.	1.6	19
65	Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes. Nature Immunology, 2017, 18, 1321-1331.	7.0	217
66	The microbiome beyond the horizon of ecological and evolutionary theory. Nature Ecology and Evolution, 2017, 1, 1606-1615.	3.4	216
67	Metabolic pressure and the breach of immunological self-tolerance. Nature Immunology, 2017, 18, 1190-1196.	7.0	45
68	The maternal microbiome during pregnancy and allergic disease in the offspring. Seminars in Immunopathology, 2017, 39, 669-675.	2.8	80
69	Food contact materials and gut health: Implications for toxicity assessment and relevance of high molecular weight migrants. Food and Chemical Toxicology, 2017, 109, 1-18.	1.8	46
70	Development of the gut microbiota in infancy and its impact on health in later life. Allergology International, 2017, 66, 515-522.	1.4	413
71	Dietary pomegranate extract and inulin affect gut microbiome differentially in mice fed an obesogenic diet. Anaerobe, 2017, 48, 184-193.	1.0	39
72	The Landscape of Type VI Secretion across Human Gut Microbiomes Reveals Its Role in Community Composition. Cell Host and Microbe, 2017, 22, 411-419.e4.	5.1	137
7 3	Modulation of Type 1 Diabetes Risk by the Intestinal Microbiome. Current Diabetes Reports, 2017, 17, 105.	1.7	84

#	Article	IF	Citations
74	The potential of the microbiota to influence vaccine responses. Journal of Leukocyte Biology, 2018, 103, 225-231.	1.5	72
75	Randomized controlled trial on the impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome. American Journal of Clinical Nutrition, 2017, 106, 1274-1286.	2.2	124
76	Regulation of inflammation by microbiota interactions with the host. Nature Immunology, 2017, 18, 851-860.	7.0	467
77	Prenatal and postnatal administration of prebiotics and probiotics. Seminars in Fetal and Neonatal Medicine, 2017, 22, 284-289.	1.1	54
78	Gut microbiota is critical for the induction of chemotherapy-induced pain. Nature Neuroscience, 2017, 20, 1213-1216.	7.1	194
79	The human microbiome. Advances in Medical Sciences, 2017, 62, 414-420.	0.9	140
80	Maternal modifiers of the infant gut microbiota: metabolic consequences. Journal of Endocrinology, 2017, 235, R1-R12.	1.2	85
81	Fluoride Depletes Acidogenic Taxa in Oral but Not Gut Microbial Communities in Mice. MSystems, 2017, 2, .	1.7	18
82	Intrapartum antibiotics for GBS prophylaxis alter colonization patterns in the early infant gut microbiome of low risk infants. Scientific Reports, 2017, 7, 16527.	1.6	99
83	Microbial Insights into Asthmatic Immunopathology. A Forward-Looking Synthesis and Commentary. Annals of the American Thoracic Society, 2017, 14, S316-S325.	1.5	5
84	Persistence of Supplemented Bifidobacterium longum subsp. <i>infantis</i> EVC001 in Breastfed Infants. MSphere, 2017, 2, .	1.3	158
85	Total Lipopolysaccharide from the Human Gut Microbiome Silences Toll-Like Receptor Signaling. MSystems, 2017, 2, .	1.7	202
86	The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiology and Molecular Biology Reviews, 2017, 81, .	2.9	1,118
87	Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6166-E6175.	3.3	227
88	Indoleacrylic Acid Produced by Commensal Peptostreptococcus Species Suppresses Inflammation. Cell Host and Microbe, 2017, 22, 25-37.e6.	5.1	523
89	The microbiome and transfusion in cancer patients. Transfusion and Apheresis Science, 2017, 56, 330-335.	0.5	10
90	Host Genetics and Gut Microbiome: Challenges and Perspectives. Trends in Immunology, 2017, 38, 633-647.	2.9	219
91	The nutritionâ€gut microbiomeâ€physiology axis and allergic diseases. Immunological Reviews, 2017, 278, 277-295.	2.8	223

#	Article	IF	CITATIONS
92	An exposome perspective: Early-life events and immune development in a changing world. Journal of Allergy and Clinical Immunology, 2017, 140, 24-40.	1.5	149
93	The Gut Microbiome as Possible Key to Understanding and Improving Rotavirus Vaccine Performance in High–Disease Burden Settings. Journal of Infectious Diseases, 2017, 215, 8-10.	1.9	12
94	Significant Correlation Between the Infant Gut Microbiome and Rotavirus Vaccine Response in Rural Ghana. Journal of Infectious Diseases, 2017, 215, 34-41.	1.9	227
95	Type 1 diabetes: a disease of developmental origins. Pediatric Diabetes, 2017, 18, 417-421.	1.2	12
96	High-resolution characterization of the human microbiome. Translational Research, 2017, 179, 7-23.	2.2	55
97	Is there a role for gut microbiota in type 1 diabetes pathogenesis?. Annals of Medicine, 2017 , 49 , 11 - 22 .	1.5	73
98	Emerging pathogenic links between microbiota and the gut–lung axis. Nature Reviews Microbiology, 2017, 15, 55-63.	13.6	950
99	Good and Bad Farming: The Right Microbiome Protects from Allergy. Birkhauser Advances in Infectious Diseases, 2017, , 51-68.	0.3	1
100	Strain profiling and epidemiology of bacterial species from metagenomic sequencing. Nature Communications, 2017, 8, 2260.	5.8	98
101	Early life origin of type 1 diabetes. Seminars in Immunopathology, 2017, 39, 653-667.	2.8	23
102	HIV-associated changes in the enteric microbial community: potential role in loss of homeostasis and development of systemic inflammation. Current Opinion in Infectious Diseases, 2017, 30, 31-43.	1.3	78
103	Type 1 Diabetes: Disease Stratification. Biomedicine Hub, 2017, 2, 1-16.	0.4	10
104	The Genetic Architecture of Type 1 Diabetes. Genes, 2017, 8, 209.	1.0	49
105	Obesity and Asthma: A Missing Link. International Journal of Molecular Sciences, 2017, 18, 1490.	1.8	47
106	Towards an Integrative Understanding of Diet–Host–Gut Microbiome Interactions. Frontiers in Immunology, 2017, 8, 538.	2.2	45
107	Patterns of Early-Life Gut Microbial Colonization during Human Immune Development: An Ecological Perspective. Frontiers in Immunology, 2017, 8, 788.	2.2	144
108	Is It Time to Reconsider the Lipopolysaccharide Paradigm in Acute Graft-Versus-Host Disease?. Frontiers in Immunology, 2017, 8, 952.	2.2	9
109	The Value of a Comparative Approach to Understand the Complex Interplay between Microbiota and Host Immunity. Frontiers in Immunology, 2017, 8, 1114.	2.2	8

#	Article	IF	CITATIONS
110	Environmental Pollutant Benzo[a]Pyrene Impacts the Volatile Metabolome and Transcriptome of the Human Gut Microbiota. Frontiers in Microbiology, 2017, 8, 1562.	1.5	48
111	Early-Life Host–Microbiome Interphase: The Key Frontier for Immune Development. Frontiers in Pediatrics, 2017, 5, 111.	0.9	64
112	Distinct fecal and oral microbiota composition in human type 1 diabetes, an observational study. PLoS ONE, 2017, 12, e0188475.	1.1	163
113	Experimental design and quantitative analysis of microbial community multiomics. Genome Biology, 2017, 18, 228.	3.8	143
114	Modulation of the main porcine enteric neuropeptides by a single low-dose of lipopolysaccharide (LPS) Salmonella Enteritidis. Gut Pathogens, 2017, 9, 73.	1.6	12
115	Recent urbanization in China is correlated with a Westernized microbiome encoding increased virulence and antibiotic resistance genes. Microbiome, 2017, 5, 121.	4.9	70
116	Targeting innate immunity to downmodulate adaptive immunity and reverse type 1 diabetes. ImmunoTargets and Therapy, 2017, Volume 6, 31-38.	2.7	28
117	Urbanization and the gut microbiota in health and inflammatory bowel disease. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 440-452.	8.2	187
118	Peripherally induced regulatory T cells contribute to the control of autoimmune diabetes in the NOD mouse model. European Journal of Immunology, 2018, 48, 1211-1216.	1.6	24
119	Current understanding of the human microbiome. Nature Medicine, 2018, 24, 392-400.	15.2	1,593
120	Oral insulin does not alter gut microbiota composition of NOD mice. Diabetes/Metabolism Research and Reviews, 2018, 34, e3010.	1.7	5
121	Endometriosis induces gut microbiota alterations in mice. Human Reproduction, 2018, 33, 607-616.	0.4	93
122	Tissue macrophages as mediators of a healthy relationship with gut commensal microbiota. Cellular Immunology, 2018, 330, 16-26.	1.4	35
123	Systems biology of the human microbiome. Current Opinion in Biotechnology, 2018, 51, 146-153.	3.3	28
124	Altered Microbiota and Their Metabolism in Host Metabolic Diseases. , 2018, , 129-165.		1
125	Integrative Personal Omics Profiles during Periods of Weight Gain and Loss. Cell Systems, 2018, 6, 157-170.e8.	2.9	183
126	Evaluating Causality of Gut Microbiota in Obesity and Diabetes in Humans. Endocrine Reviews, 2018, 39, 133-153.	8.9	207
127	Aether: leveraging linear programming for optimal cloud computing in genomics. Bioinformatics, 2018, 34, 1565-1567.	1.8	7

#	Article	IF	CITATIONS
129	Epigenetics, microbiota, and intraocular inflammation: New paradigms of immune regulation in the eye. Progress in Retinal and Eye Research, 2018, 64, 84-95.	7.3	46
130	Role of priority effects in the early-life assembly of the gut microbiota. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 197-205.	8.2	258
131	Effects of <scp>HLA</scp> –B27 on Gut Microbiota in Experimental Spondyloarthritis Implicate an Ecological Model of Dysbiosis. Arthritis and Rheumatology, 2018, 70, 555-565.	2.9	81
132	<i>Akkermansia muciniphila</i> induces gut microbiota remodelling and controls islet autoimmunity in NOD mice. Gut, 2018, 67, 1445-1453.	6.1	270
133	Functional analysis of arginine decarboxylase gene speA of Bacteroides dorei by markerless gene deletion. FEMS Microbiology Letters, 2018, 365, .	0.7	8
134	Amylase–Trypsin Inhibitors in Wheat and Other Cereals as Potential Activators of the Effects of Nonceliac Gluten Sensitivity. Journal of Medicinal Food, 2018, 21, 207-214.	0.8	26
135	Metatranscriptome of human faecal microbial communities in a cohort of adult men. Nature Microbiology, 2018, 3, 356-366.	5.9	168
136	Maturation of the gut microbiome and risk of asthma in childhood. Nature Communications, 2018, 9, 141.	5.8	380
137	Induction of human tolerogenic dendritic cells by $3\hat{a}\in^2$ -sialyllactose via TLR4 is explained by LPS contamination. Glycobiology, 2018, 28, 126-130.	1.3	22
138	Diet, Microbiota, and Metabolic Health: Trade-Off Between Saccharolytic and Proteolytic Fermentation. Annual Review of Food Science and Technology, 2018, 9, 65-84.	5.1	93
139	MetaLonDA: a flexible R package for identifying time intervals of differentially abundant features in metagenomic longitudinal studies. Microbiome, 2018, 6, 32.	4.9	45
140	The microbiome and autoimmunity: a paradigm from the gut–liver axis. Cellular and Molecular Immunology, 2018, 15, 595-609.	4.8	160
141	The classroom microbiome and asthma morbidity in children attending 3 inner-city schools. Journal of Allergy and Clinical Immunology, 2018, 141, 2311-2313.	1.5	24
142	Exploring Bacteroidetes: Metabolic key points and immunological tricks of our gut commensals. Digestive and Liver Disease, 2018, 50, 635-639.	0.4	137
143	The Biosynthesis of Lipooligosaccharide from <i>Bacteroides thetaiotaomicron</i> . MBio, 2018, 9, .	1.8	54
144	Elevated Fecal pH Indicates a Profound Change in the Breastfed Infant Gut Microbiome Due to Reduction of <i>Bifidobacterium</i>	1.3	106
145	$\label{lem:human scp} Human < scp > ALPI < /scp > \ deficiency \ causes \ inflammatory \ bowel \ disease \ and \ highlights \ a \ key \ mechanism \ of gut \ homeostasis. \ EMBO \ Molecular \ Medicine, 2018, 10, .$	3.3	47
146	Parturition and the perinatal period: can mode of delivery impact on the future health of the neonate?. Journal of Physiology, 2018, 596, 5709-5722.	1.3	62

#	Article	IF	CITATIONS
147	Gram-negative bacterial membrane vesicle release in response to the host-environment: different threats, same trick?. Critical Reviews in Microbiology, 2018, 44, 258-273.	2.7	50
148	The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nature Reviews Immunology, 2018, 18, 105-120.	10.6	322
149	Dietary copper-fructose interactions alter gut microbial activity in male rats. American Journal of Physiology - Renal Physiology, 2018, 314, G119-G130.	1.6	37
150	Host–microbiota interplay in mediating immune disorders. Annals of the New York Academy of Sciences, 2018, 1417, 57-70.	1.8	46
151	How the biliary tree maintains immune tolerance?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1367-1373.	1.8	13
152	Rotavirus vaccine response correlates with the infant gut microbiota composition in Pakistan. Gut Microbes, 2018, 9, 93-101.	4.3	142
153	Mycobacteria, Immunoregulation, and Autoimmunity., 2018, , 121-154.		1
154	<i>Bacteroides vulgatus</i> and <ibacteroides dorei<="" i=""> Reduce Gut Microbial Lipopolysaccharide Production and Inhibit Atherosclerosis. Circulation, 2018, 138, 2486-2498.</ibacteroides>	1.6	358
155	Rusty Microglia: Trainers of Innate Immunity in Alzheimer's Disease. Frontiers in Neurology, 2018, 9, 1062.	1.1	25
156	The Dynamic Origins of Type 1 Diabetes. Diabetes Care, 2018, 41, 2441-2443.	4.3	4
157	Vanillin Alleviates High Fat Diet-Induced Obesity and Improves the Gut Microbiota Composition. Frontiers in Microbiology, 2018, 9, 2733.	1.5	51
158	Fecal microbiota associated with phytohaemagglutininâ€induced immune response in nestlings of a passerine bird. Ecology and Evolution, 2018, 8, 9793-9802.	0.8	10
159	A Microbiota Assimilation. Cell Metabolism, 2018, 28, 675-677.	7.2	5
160	Schistosome Egg Migration: Mechanisms, Pathogenesis and Host Immune Responses. Frontiers in Immunology, 2018, 9, 3042.	2.2	134
161	Obesity and asthma: risk, control and treatment. Postepy Dermatologii I Alergologii, 2018, 35, 563-571.	0.4	16
162	Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives. Particle and Fibre Toxicology, 2018, 15, 46.	2.8	84
163	Birth mode is associated with earliest strain-conferred gut microbiome functions and immunostimulatory potential. Nature Communications, 2018, 9, 5091.	5.8	190
164	Microbial Biomarkers of Intestinal Barrier Maturation in Preterm Infants. Frontiers in Microbiology, 2018, 9, 2755.	1.5	40

#	ARTICLE	IF	CITATIONS
165	Transgenerational transmission of maternal stimulatory experience in domesticated birds. FASEB Journal, 2018, 32, 7002-7017.	0.2	10
166	Probiotic intervention in infancy is not associated with development of beta cell autoimmunity and type 1 diabetes. Diabetologia, 2018, 61, 2668-2670.	2.9	30
167	The Gut-Kidney Axis: Putative Interconnections Between Gastrointestinal and Renal Disorders. Frontiers in Endocrinology, 2018, 9, 553.	1.5	56
168	Lifestyle Factors Affecting the Gut Microbiota's Relationship with Type 1 Diabetes. Current Diabetes Reports, 2018, 18, 111.	1.7	19
169	The gut microbiota in infants of obese mothers increases inflammation and susceptibility to NAFLD. Nature Communications, 2018, 9, 4462.	5.8	205
170	Lipopolysaccharides in food, food supplements, and probiotics: should we be worried?. European Journal of Microbiology and Immunology, 2018, 8, 63-69.	1.5	83
171	The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature, 2018, 562, 589-594.	13.7	623
172	Developmental Programming of Obesity and Diabetes in Mouse, Monkey, and Man in 2018: Where Are We Headed?. Diabetes, 2018, 67, 2137-2151.	0.3	83
173	Experimental evaluation of the importance of colonization history in early-life gut microbiota assembly. ELife, 2018, 7, .	2.8	140
174	Modernized Tools for Streamlined Genetic Manipulation and Comparative Study of Wild and Diverse Proteobacterial Lineages. MBio, 2018, 9, .	1.8	65
175	Evaluation of different mucosal microbiota leads to gut microbiota-based prediction of type 1 diabetes in NOD mice. Scientific Reports, $2018,8,15451.$	1.6	59
176	Competitive lottery-based assembly of selected clades in the human gut microbiome. Microbiome, 2018, 6, 186.	4.9	44
177	Distribution and Neurochemistry of the Porcine Ileocaecal Valve Projecting Sensory Neurons in the Dorsal Root Ganglia and the Influence of Lipopolysaccharide from Different Serotypes of Salmonella spp. on the Chemical Coding of DRG Neurons in the Cell Cultures. International Journal of Molecular Sciences, 2018, 19, 2551.	1.8	9
178	Concurrent crossâ€reactivity of microbiotaâ€derived epitopes to both self and pathogens may underlie the "Hygiene hypothesis― Scandinavian Journal of Immunology, 2018, 88, e12708.	1.3	5
179	Immunological biomarkers for the development and progression of type 1 diabetes. Diabetologia, 2018, 61, 2252-2258.	2.9	51
180	Dysbiosis signatures of gut microbiota in coronary artery disease. Physiological Genomics, 2018, 50, 893-903.	1.0	129
181	Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Translational Psychiatry, 2018, 8, 187.	2.4	174
182	Modulation of the immune system by the gut microbiota in the development of type 1 diabetes. Human Vaccines and Immunotherapeutics, 2018, 14, 1-17.	1.4	11

#	Article	IF	CITATIONS
183	Childhood Microbial Experience, Immunoregulation, Inflammation, and Adult Susceptibility to Psychosocial Stressors and Depression. , 2018, , 17-44.		3
184	Infant colic: mechanisms and management. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 479-496.	8.2	81
185	Microbiome-Mediated Effects of the Mediterranean Diet on Inflammation. Advances in Nutrition, 2018, 9, 193-206.	2.9	126
186	TRIF deficiency protects non-obese diabetic mice from type 1 diabetes by modulating the gut microbiota and dendritic cells. Journal of Autoimmunity, 2018, 93, 57-65.	3.0	58
187	Mass Spectrometry-based Structural Analysis and Systems Immunoproteomics Strategies for Deciphering the Host Response to Endotoxin. Journal of Molecular Biology, 2018, 430, 2641-2660.	2.0	21
189	Potential Role of the Gut Microbiome in ALS: A Systematic Review. Biological Research for Nursing, 2018, 20, 513-521.	1.0	42
190	MiR-146a induction by cyanobacterial lipopolysaccharide antagonist (CyP) mediates endotoxin cross-tolerance. Scientific Reports, 2018, 8, 11367.	1.6	9
191	Diabetes-associated alterations in the cecal microbiome and metabolome are independent of diet or environment in the UC Davis Type 2 Diabetes Mellitus Rat model. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E961-E972.	1.8	18
192	Enhanced TLR2 responses in multiple sclerosis. Clinical and Experimental Immunology, 2018, 193, 313-326.	1,1	24
193	The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future. Frontiers in Endocrinology, 2018, 9, 51.	1.5	99
194	Infectious Agents and Inflammation: The Role of Microbiota in Autoimmune Arthritis. Frontiers in Microbiology, 2017, 8, 2696.	1.5	53
195	Preterm Gut Microbiome Depending on Feeding Type: Significance of Donor Human Milk. Frontiers in Microbiology, 2018, 9, 1376.	1.5	74
196	Functional Effects of the Buckwheat Iminosugar <scp>d</scp> â€Fagomine on Rats with Dietâ€Induced Prediabetes. Molecular Nutrition and Food Research, 2018, 62, e1800373.	1.5	18
197	The Role of Gut Microbiota in Obesity and Type 2 and Type 1 Diabetes Mellitus: New Insights into "Old― Diseases. Medical Sciences (Basel, Switzerland), 2018, 6, 32.	1.3	103
198	LPS inactivation by a host lipase allows lung epithelial cell sensitization for allergic asthma. Journal of Experimental Medicine, 2018, 215, 2397-2412.	4.2	44
199	Composition of gut microbiota and its influence on the immunogenicity of oral rotavirus vaccines. Vaccine, 2018, 36, 3427-3433.	1.7	26
200	Position of human blood group O(H) and phenotypeâ€determining enzymes in growth and infectious disease. Annals of the New York Academy of Sciences, 2018, 1425, 5-18.	1.8	12
201	Age and fecal microbial strain-specific differences in patients with spondyloarthritis. Arthritis Research and Therapy, 2018, 20, 14.	1.6	58

#	Article	IF	CITATIONS
202	Effects of gut-derived endotoxin on anxiety-like and repetitive behaviors in male and female mice. Biology of Sex Differences, 2018, 9, 7.	1.8	27
203	Mind the gut: genomic insights to population divergence and gut microbial composition of two marine keystone species. Microbiome, 2018, 6, 82.	4.9	28
204	Prospects for primary prevention of type 1 diabetes by restoring a disappearing microbe. Pediatric Diabetes, 2018, 19, 1400-1406.	1.2	39
205	Effect of Antibiotic-Mediated Microbiome Modulation on Rotavirus Vaccine Immunogenicity: A Human, Randomized-Control Proof-of-Concept Trial. Cell Host and Microbe, 2018, 24, 197-207.e4.	5.1	92
206	Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. Journal of Autoimmunity, 2018, 92, 12-34.	3.0	232
207	Efficacy of Probiotics in Prevention and Treatment of Infectious Diseases. Clinical Microbiology Newsletter, 2018, 40, 97-103.	0.4	10
208	The causes and consequences of variation in human cytokine production in health. Current Opinion in Immunology, 2018, 54, 50-58.	2.4	40
209	Prenatal iron exposure and childhood type 1 diabetes. Scientific Reports, 2018, 8, 9067.	1.6	25
210	Modulation of the diet and gastrointestinal microbiota normalizes systemic inflammation and \hat{l}^2 -cell chemokine expression associated with autoimmune diabetes susceptibility. PLoS ONE, 2018, 13, e0190351.	1.1	21
211	Common ground: shared risk factors for type 1 diabetes and celiac disease. Nature Immunology, 2018, 19, 685-695.	7.0	33
212	Artemisia pollen is the main vector for airborne endotoxin. Journal of Allergy and Clinical Immunology, 2019, 143, 369-377.e5.	1.5	50
213	Genetic risk for autoimmunity is associated with distinct changes in the human gut microbiome. Nature Communications, 2019, 10, 3621.	5.8	132
214	Weak Agonistic LPS Restores Intestinal Immune Homeostasis. Molecular Therapy, 2019, 27, 1974-1991.	3.7	70
215	Investigating intestinal permeability and gut microbiota roles in acute coronary syndrome patients. Human Microbiome Journal, 2019, 13, 100059.	3.8	20
217	Early-life gut microbiome modulation reduces the abundance of antibiotic-resistant bacteria. Antimicrobial Resistance and Infection Control, 2019, 8, 131.	1.5	63
219	Low-dose tetracycline exposure alters gut bacterial metabolism and host-immune response: "Personalized―effect?. Environment International, 2019, 131, 104989.	4.8	27
220	Dietary Toll-Like Receptor Stimulants Promote Hepatic Inflammation and Impair Reverse Cholesterol Transport in Mice via Macrophage-Dependent Interleukin-1 Production. Frontiers in Immunology, 2019, 10, 1404.	2.2	6
221	Polysaccharide A–Dependent Opposing Effects of Mucosal and Systemic Exposures to Human Gut Commensal <i>Bacteroides fragilis</i> in Type 1 Diabetes. Diabetes, 2019, 68, 1975-1989.	0.3	28

#	Article	IF	CITATIONS
222	Non-lethal growth inhibition by arresting the starch utilization system of clinically relevant human isolates of <i>Bacteroides dorei</i> i>MedChemComm, 2019, 10, 1875-1880.	3.5	4
223	Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nature Microbiology, 2019, 4, 1727-1736.	5.9	184
224	Type 1 Diabetes: an Association Between Autoimmunity, the Dynamics of Gut Amyloid-producing E. coli and Their Phages. Scientific Reports, 2019, 9, 9685.	1.6	53
225	Brain signalling systems: A target for treating type I diabetes mellitus. Brain Research Bulletin, 2019, 152, 191-201.	1.4	2
226	Dynamic signatures of gut microbiota and influences of delivery and feeding modes during the first 6 months of life. Physiological Genomics, 2019, 51, 368-378.	1.0	23
227	Microbiome and type 1 diabetes. EBioMedicine, 2019, 46, 512-521.	2.7	111
228	Gut microbiome analysis by post: Evaluation of the optimal method to collect stool samples from infants within a national cohort study. PLoS ONE, 2019, 14, e0216557.	1.1	11
229	Human Papillomavirus Epitope Mimicry and Autoimmunity: The Molecular Truth of Peptide Sharing. Pathobiology, 2019, 86, 285-295.	1.9	24
230	A Fermented Food Product Containing Lactic Acid Bacteria Protects ZDF Rats from the Development of Type 2 Diabetes. Nutrients, 2019, 11, 2530.	1.7	33
231	An Exploratory Association Analysis of the Insulin Gene Region With Diabetes Mellitus in Two Dog Breeds. Journal of Heredity, 2019, 110, 793-800.	1.0	4
232	Substrate structure-activity relationship reveals a limited lipopolysaccharide chemotype range for intestinal alkaline phosphatase. Journal of Biological Chemistry, 2019, 294, 19405-19423.	1.6	12
233	Gastrointestinal Microbiota and Type 1 Diabetes Mellitus: The State of Art. Journal of Clinical Medicine, 2019, 8, 1843.	1.0	54
234	Measuring the Antimicrobial Activity of Lauric Acid against Various Bacteria in Human Gut Microbiota Using a New Method. Cell Transplantation, 2019, 28, 1528-1541.	1.2	54
235	Next-Generation Probiotics Their Molecular Taxonomy and Health Benefits. , 2019, , 471-500.		0
236	Infant airway microbiota and topical immune perturbations in the origins of childhood asthma. Nature Communications, 2019, 10, 5001.	5.8	92
237	Microbiota-derived peptide mimics drive lethal inflammatory cardiomyopathy. Science, 2019, 366, 881-886.	6.0	179
238	The Effect of Maternal Postpartum Practices on Infant Gut Microbiota: A Chinese Cohort Study. Microorganisms, 2019, 7, 511.	1.6	18
239	Role of Dietary Lipids in Modulating Inflammation through the Gut Microbiota. Nutrients, 2019, 11, 117.	1.7	45

#	Article	IF	Citations
240	Circulating metabolites in progression to islet autoimmunity and type 1 diabetes. Diabetologia, 2019, 62, 2287-2297.	2.9	30
242	End-Stage Renal Disease-Associated Gut Bacterial Translocation: Evolution and Impact on Chronic Inflammation and Acute Rejection After Renal Transplantation. Frontiers in Immunology, 2019, 10, 1630.	2.2	24
243	The Microbiome and Prostate Cancer Risk. Current Urology Reports, 2019, 20, 66.	1.0	33
244	MITRE: inferring features from microbiota time-series data linked to host status. Genome Biology, 2019, 20, 186.	3.8	24
245	MHC Class II Antigen Presentation by the Intestinal Epithelium Initiates Graft-versus-Host Disease and Is Influenced by the Microbiota. Immunity, 2019, 51, 885-898.e7.	6.6	164
246	Transcription analysis of the response of the porcine adrenal cortex to a single subclinical dose of lipopolysaccharide from Salmonella Enteritidis. International Journal of Biological Macromolecules, 2019, 141, 1228-1245.	3.6	5
247	Changing Pattern of Childhood Celiac Disease Epidemiology: Contributing Factors. Frontiers in Pediatrics, 2019, 7, 357.	0.9	37
248	TNF-α–induced protein 3 is a key player in childhood asthma development and environment-mediated protection. Journal of Allergy and Clinical Immunology, 2019, 144, 1684-1696.e12.	1.5	40
249	Novel strains of Bacteroides fragilis and Bacteroides ovatus alleviate the LPS-induced inflammation in mice. Applied Microbiology and Biotechnology, 2019, 103, 2353-2365.	1.7	93
250	Association of HLA-dependent islet autoimmunity with systemic antibody responses to intestinal commensal bacteria in children. Science Immunology, 2019, 4, .	5.6	49
251	The Super-Donor Phenomenon in Fecal Microbiota Transplantation. Frontiers in Cellular and Infection Microbiology, 2019, 9, 2.	1.8	262
252	Complex dietary polysaccharide modulates gut immune function and microbiota, and promotes protection from autoimmune diabetes. Immunology, 2019, 157, 70-85.	2.0	40
253	Mixed Viral-Bacterial Infections and Their Effects on Gut Microbiota and Clinical Illnesses in Children. Scientific Reports, 2019, 9, 865.	1.6	49
254	Utilizing longitudinal microbiome taxonomic profiles to predict food allergy via Long Short-Term Memory networks. PLoS Computational Biology, 2019, 15, e1006693.	1.5	26
255	Novel Interâ€omic Analysis Reveals Relationships Between Diverse Gut Microbiota and Host Immune Dysregulation in HLA–B27–Induced Experimental Spondyloarthritis. Arthritis and Rheumatology, 2019, 71, 1849-1857.	2.9	33
256	Abundance of Plant-Associated Gammaproteobacteria Correlates with Immunostimulatory Activity of Angelica sinensis. Medicines (Basel, Switzerland), 2019, 6, 62.	0.7	3
257	Microbial genes and pathways inÂinflammatory bowel disease. Nature Reviews Microbiology, 2019, 17, 497-511.	13.6	447
258	The gut microbiota perspective for interventions in MS. Autoimmunity Reviews, 2019, 18, 814-824.	2.5	19

#	Article	IF	CITATIONS
259	Early childhood infections and the use of antibiotics and antipyreticâ€analgesics in Finland, Estonia and Russian Karelia. Acta Paediatrica, International Journal of Paediatrics, 2019, 108, 2075-2082.	0.7	7
260	Pushing the envelope: LPS modifications and their consequences. Nature Reviews Microbiology, 2019, 17, 403-416.	13.6	294
261	CRTAM Shapes the Gut Microbiota and Enhances the Severity of Infection. Journal of Immunology, 2019, 203, 532-543.	0.4	8
262	Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15140-15149.	3.3	134
263	Gut microbiota in ALS: possible role in pathogenesis?. Expert Review of Neurotherapeutics, 2019, 19, 785-805.	1.4	30
264	Dysbiosis Disrupts Gut Immune Homeostasis and Promotes Gastric Diseases. International Journal of Molecular Sciences, 2019, 20, 2432.	1.8	85
265	Paediatrician's perspective of infant gut microbiome research: current status and challenges. Archives of Disease in Childhood, 2019, 104, 701-705.	1.0	3
266	Bacteroides-Derived Sphingolipids Are Critical for Maintaining Intestinal Homeostasis and Symbiosis. Cell Host and Microbe, 2019, 25, 668-680.e7.	5.1	274
267	Reduced IL-2 response from peripheral blood mononuclear cells exposed to bacteria at 6†months of age is associated with elevated total-IgE and allergic rhinitis during the first 7†years of life. EBioMedicine, 2019, 43, 587-593.	2.7	11
268	Antibiotic-Induced Disruption of Gut Microbiota Alters Local Metabolomes and Immune Responses. Frontiers in Cellular and Infection Microbiology, 2019, 9, 99.	1.8	109
269	Gut microbiome dysbiosis and increased intestinal permeability in children with islet autoimmunity and type 1 diabetes: A prospective cohort study. Pediatric Diabetes, 2019, 20, 574-583.	1.2	86
270	An additive Gaussian process regression model for interpretable non-parametric analysis of longitudinal data. Nature Communications, 2019, 10, 1798.	5.8	68
271	Insights into rheumatic diseases from next-generation sequencing. Nature Reviews Rheumatology, 2019, 15, 327-339.	3.5	28
272	Genetic Factors and the Intestinal Microbiome Guide Development of Microbe-Based Therapies for Inflammatory Bowel Diseases. Gastroenterology, 2019, 156, 2174-2189.	0.6	132
273	The Microbiome and Food Allergy. Annual Review of Immunology, 2019, 37, 377-403.	9.5	102
274	Gut Microbiota Regulation of T Cells During Inflammation and Autoimmunity. Annual Review of Immunology, 2019, 37, 599-624.	9.5	214
275	Identification of Differentiating Metabolic Pathways between Infant Gut Microbiome Populations Reveals Depletion of Function-Level Adaptation to Human Milk in the Finnish Population. MSphere, 2019, 4, .	1.3	1
276	2017 NIH-wide workshop report on "The Human Microbiome: Emerging Themes at the Horizon of the 21st Century― Microbiome, 2019, 7, 32.	4.9	6

#	Article	IF	CITATIONS
277	Bacterial and viral respiratory tract microbiota and host characteristics in children with lower respiratory tract infections: a matched case-control study. Lancet Respiratory Medicine, the, 2019, 7, 417-426.	5.2	140
278	Multi-Omics Strategies Uncover Host–Pathogen Interactions. ACS Infectious Diseases, 2019, 5, 493-505.	1.8	39
279	Gut Microbial Associations to Plasma Metabolites Linked to Cardiovascular Phenotypes and Risk. Circulation Research, 2019, 124, 1808-1820.	2.0	137
280	New insights from uncultivated genomes of the global human gut microbiome. Nature, 2019, 568, 505-510.	13.7	505
281	Oral LPS Dosing Induces Local Immunological Changes in the Pancreatic Lymph Nodes in Mice. Journal of Diabetes Research, 2019, 2019, 1-9.	1.0	15
282	Increased mucosal neutrophil survival is associated with altered microbiota in HIV infection. PLoS Pathogens, 2019, 15, e1007672.	2.1	36
283	Altered Gut Microbiota Activate and Expand Insulin B15-23–Reactive CD8+ T Cells. Diabetes, 2019, 68, 1002-1013.	0.3	28
284	Shaping the Gut Microbiota by Breastfeeding: The Gateway to Allergy Prevention?. Frontiers in Pediatrics, 2019, 7, 47.	0.9	159
285	Subclinical Lipopolysaccharide from Salmonella Enteritidis Induces Dysregulation of Bioactive Substances from Selected Brain Sections and Glands of Neuroendocrine Axes. Toxins, 2019, 11, 91.	1.5	8
286	Man-made microbial resistances in built environments. Nature Communications, 2019, 10, 968.	5.8	128
287	Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nature Genetics, 2019, 51, 600-605.	9.4	854
288	P40â€Comparison of antibiotic consumption between pediatric hospitals. Archives of Disease in Childhood, 2019, 104, e33.2-e34.	1.0	0
289	Functional Multigenomic Screening of Human-Associated Bacteria for NF- $\hat{\mathbb{I}}^2\text{B-Inducing Bioactive}$ Effectors. MBio, 2019, 10, .	1.8	8
290	Methods in microbiome research: Past, present, and future. Best Practice and Research in Clinical Rheumatology, 2019, 33, 101498.	1.4	12
291	Dietary SCFAs, IL-22, and GFAP: The Three Musketeers in the Gut–Neuro–Immune Network in Type 1 Diabetes. Frontiers in Immunology, 2019, 10, 2429.	2.2	18
292	Toll-like receptor 4 inhibition prevents autoimmune diabetes in NOD mice. Scientific Reports, 2019, 9, 19350.	1.6	14
293	Fucoidan prevent murine autoimmune diabetes via suppression TLR4-signaling pathways, regulation DC/Treg induced immune tolerance and improving gut microecology. Nutrition and Metabolism, 2019, 16, 87.	1.3	26
294	Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration. Nutrients, 2019, 11, 2862.	1.7	449

#	Article	IF	CITATIONS
295	Human Islet Response to Selected Type 1 Diabetes-Associated Bacteria: A Transcriptome-Based Study. Frontiers in Immunology, 2019, 10, 2623.	2.2	12
296	Norovirus Changes Susceptibility to Type 1 Diabetes by Altering Intestinal Microbiota and Immune Cell Functions. Frontiers in Immunology, 2019, 10, 2654.	2.2	35
297	One, No One, and One Hundred Thousand: T Regulatory Cells' Multiple Identities in Neuroimmunity. Frontiers in Immunology, 2019, 10, 2947.	2.2	18
298	Preterm Birth Has Effects on Gut Colonization in Piglets Within the First 4 Weeks of Life. Journal of Pediatric Gastroenterology and Nutrition, 2019, 68, 727-733.	0.9	6
299	Impact of occupational exposure on human microbiota. Current Opinion in Allergy and Clinical Immunology, 2019, 19, 86-91.	1.1	13
300	Symbionts exploit complex signaling to educate the immune system. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26157-26166.	3.3	88
301	Microbial translocation revisited. Aids, 2019, 33, 645-653.	1.0	11
302	The Microbiome and Its Potential for Pharmacology. Handbook of Experimental Pharmacology, 2019, 260, 301-326.	0.9	14
303	Lipopolysaccharide-acylating capacity of the gut microbiota and its potential impact on the immunopathogenesis of HIV infection. Aids, 2019, 33, 753-755.	1.0	1
304	Incidence and trend of type 1 diabetes and the underlying environmental determinants. Diabetes/Metabolism Research and Reviews, 2019, 35, e3075.	1.7	77
305	The Gut Microbiota: A Clinically Impactful Factor in Patient Health and Disease. SN Comprehensive Clinical Medicine, 2019, 1, 188-199.	0.3	14
306	Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life. Nature Microbiology, 2019, 4, 470-479.	5.9	164
307	Probiotics and Human Milk Oligosaccharides in Premature Infants. NeoReviews, 2019, 20, e1-e11.	0.4	11
308	Zero tolerance! A perspective on monogenic disorders with defective regulatory T cells and <scp>IBD</scp> â€ike disease. Immunological Reviews, 2019, 287, 236-240.	2.8	16
309	An Open-Labeled Study on Fecal Microbiota Transfer in Irritable Bowel Syndrome Patients Reveals Improvement in Abdominal Pain Associated with the Relative Abundance of Akkermansia Muciniphila. Digestion, 2019, 100, 127-138.	1.2	44
310	Body Mass Index as a Determinant of Systemic Exposure to Gallotannin Metabolites during 6â€Week Consumption of Mango (<i>Mangifera indica</i> L.) and Modulation of Intestinal Microbiota in Lean and Obese Individuals. Molecular Nutrition and Food Research, 2019, 63, e1800512.	1.5	24
312	Oral Microbiota and Liver Disease. , 2019, , 105-120.		1
313	The Human Microbiota and Asthma. Clinical Reviews in Allergy and Immunology, 2019, 57, 350-363.	2.9	92

#	Article	IF	CITATIONS
314	The diabetes pandemic and associated infections: suggestions for clinical microbiology. Reviews in Medical Microbiology, 2019, 30, 1-17.	0.4	98
315	Lipopolysaccharide structures of Gram-negative populations in the gut microbiota and effects on host interactions. FEMS Microbiology Reviews, 2019, 43, 257-272.	3.9	102
316	New frontiers in precision medicine for sepsis-induced immunoparalysis. Expert Review of Clinical Immunology, 2019, 15, 251-263.	1.3	21
317	Probiotics, prebiotics and amelioration of diseases. Journal of Biomedical Science, 2019, 26, 3.	2.6	242
318	Lower perinatal exposure to Proteobacteria is an independent predictor of early childhood wheezing. Journal of Allergy and Clinical Immunology, 2019, 143, 419-421.e5.	1.5	6
319	The gut microbiome: Relationships with disease and opportunities for therapy. Journal of Experimental Medicine, 2019, 216, 20-40.	4.2	547
320	The developing gut–lung axis: postnatal growth restriction, intestinal dysbiosis, and pulmonary hypertension in a rodent model. Pediatric Research, 2020, 87, 472-479.	1.1	37
321	The Future of Microbiomeâ€Based Therapeutics in Clinical Applications. Clinical Pharmacology and Therapeutics, 2020, 107, 123-128.	2.3	33
322	Individuation and the Organization in Complex Living Ecosystem: Recursive Integration and Self-assertion by Holon-Lymphocytes. Acta Biotheoretica, 2020, 68, 171-199.	0.7	2
323	Diet, the Gut Microbiome, and Autoimmune Diseases. , 2020, , 331-342.		3
324	Prevention of Autoimmune Disease: The Type 1 Diabetes Paradigm. , 2020, , 1391-1413.		0
325	Outcomes of a low birth weight phenotype on piglet gut microbial composition and intestinal transcriptomic profile. Canadian Journal of Animal Science, 2020, 100, 47-58.	0.7	2
326	The intestinal microbiota fuelling metabolic inflammation. Nature Reviews Immunology, 2020, 20, 40-54.	10.6	573
327	The antibody/microbiota interface in health and disease. Mucosal Immunology, 2020, 13, 3-11.	2.7	48
328	Compositional analyses reveal correlations between taxon-level gut bacterial abundance and peripheral T cell marker expression in African infants. Gut Microbes, 2020, 11, 237-244.	4.3	4
329	Reconciling Hygiene and Cleanliness: A New Perspective from Human Microbiome. Indian Journal of Microbiology, 2020, 60, 37-44.	1.5	10
330	Lumican is upregulated in osteoarthritis and contributes to TLR4-induced pro-inflammatory activation of cartilage degradation and macrophage polarization. Osteoarthritis and Cartilage, 2020, 28, 92-101.	0.6	38
331	Geographical variation in the incidence of type 1 diabetes in the Nordic countries: A study within NordicDiabKids. Pediatric Diabetes, 2020, 21, 259-265.	1.2	9

#	Article	IF	Citations
332	Toll-like receptor 4 agonist and antagonist lipopolysaccharides modify innate immune response in rat brain circumventricular organs. Journal of Neuroinflammation, 2020, 17, 6.	3.1	27
333	Zebrafish as a Model for Investigating Animal–Microbe Interactions. , 2020, , 627-635.		2
334	Microbial orchestra in juvenile idiopathic arthritis: Sounds of disarray?. Immunological Reviews, 2020, 294, 9-26.	2.8	20
335	Metagenomic analysis reveals gestational diabetes mellitus-related microbial regulators of glucose tolerance. Acta Diabetologica, 2020, 57, 569-581.	1.2	37
336	â€~Layered immunity' and the â€~neonatal window of opportunity' – timed succession of nonâ€redunda phases to establish mucosal host–microbial homeostasis after birth. Immunology, 2020, 159, 15-25.	ant 2.0	72
337	Immunotherapy of food allergy: Are combinations the way forward?. Scandinavian Journal of Immunology, 2020, 91, e12859.	1.3	0
338	Microbiota and Diabetes Mellitus: Role of Lipid Mediators. Nutrients, 2020, 12, 3039.	1.7	52
339	Nutrition and the Gut Microbiota in 10- to 18-Month-Old Children Living in Urban Slums of Mumbai, India. MSphere, 2020, 5, .	1.3	20
340	Pediatric Non-Alcoholic Fatty Liver Disease: Nutritional Origins and Potential Molecular Mechanisms. Nutrients, 2020, 12, 3166.	1.7	30
341	Immunomodulatory effect of different extracts from Angiostrongylus cantonensis on airway inflammation in an allergic asthma model. Parasitology Research, 2020, 119, 3719-3728.	0.6	2
342	Impact of the intestinal environment on the immune responses to vaccination. Vaccine, 2020, 38, 6959-6965.	1.7	12
343	Exploiting the gut microbiota's fermentation capabilities towards disease prevention. Journal of Pharmaceutical and Biomedical Analysis, 2020, 189, 113469.	1.4	3
344	Commensal Microbiota Modulation of Natural Resistance to Virus Infection. Cell, 2020, 183, 1312-1324.e10.	13.5	157
345	Emerging computational tools and models for studying gut microbiota composition and function. Current Opinion in Biotechnology, 2020, 66, 301-311.	3.3	9
346	Gestational Diabetes Is Uniquely Associated With Altered Early Seeding of the Infant Gut Microbiota. Frontiers in Endocrinology, 2020, 11, 603021.	1.5	41
347	Reduced rotavirus vaccine efficacy in protein malnourished human-faecal-microbiota-transplanted gnotobiotic pig model is in part attributed to the gut microbiota. Beneficial Microbes, 2020, 11, 733-751.	1.0	9
348	Unique maternal immune and functional microbial profiles during prenatal stress. Scientific Reports, 2020, 10, 20288.	1.6	26
349	Delivery mode and gut microbial changes correlate with an increased risk of childhood asthma. Science Translational Medicine, 2020, 12, .	5.8	92

#	Article	IF	CITATIONS
350	Novel Odoribacter splanchnicus Strain and Its Outer Membrane Vesicles Exert Immunoregulatory Effects in vitro. Frontiers in Microbiology, 2020, 11, 575455.	1.5	110
351	Health Impact and Therapeutic Manipulation of the Gut Microbiome. High-Throughput, 2020, 9, 17.	4.4	14
352	Intestinal epithelial glycosylation in homeostasis and gut microbiota interactions in IBD. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 597-617.	8.2	138
353	Microbiome as a Target for Cancer Therapy. Integrative Cancer Therapies, 2020, 19, 153473542092072.	0.8	15
354	Alterations of Gut Microbiome in Tibetan Patients With Coronary Heart Disease. Frontiers in Cellular and Infection Microbiology, 2020, 10, 373.	1.8	32
355	Microbiota assembly, structure, and dynamics among Tsimane horticulturalists of the Bolivian Amazon. Nature Communications, 2020, 11, 3772.	5.8	29
356	Gut Microbiota and Cardiovascular Disease. Circulation Research, 2020, 127, 553-570.	2.0	424
357	Lactobacillus plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse models of Parkinson's disease. Brain, Behavior, and Immunity, 2020, 90, 26-46.	2.0	86
358	A possible beneficial effect of Bacteroides on faecal lipopolysaccharide activity and cardiovascular diseases. Scientific Reports, 2020, 10, 13009.	1.6	38
359	Pairing <i>Bacteroides vulgatus</i> LPS Structure with Its Immunomodulatory Effects on Human Cellular Models. ACS Central Science, 2020, 6, 1602-1616.	5.3	55
360	Chemically Synthesized Alcaligenes Lipid A Shows a Potent and Safe Nasal Vaccine Adjuvant Activity for the Induction of Streptococcus pneumoniae-Specific IgA and Th17 Mediated Protective Immunity. Microorganisms, 2020, 8, 1102.	1.6	16
361	Strain-level epidemiology of microbial communities and the human microbiome. Genome Medicine, 2020, 12, 71.	3.6	75
362	Genome sequence of segmented filamentous bacteria present in the human intestine. Communications Biology, 2020, 3, 485.	2.0	27
363	Gut Microbiota Profile in Patients with Type 1 Diabetes Based on 16S rRNA Gene Sequencing: A Systematic Review. Disease Markers, 2020, 2020, 1-11.	0.6	26
364	Interplay of intestinal microbiota and mucosal immunity in inflammatory bowel disease: a relationship of frenemies. Therapeutic Advances in Gastroenterology, 2020, 13, 175628482093518.	1.4	16
365	Neonatal intestinal dysbiosis. Journal of Perinatology, 2020, 40, 1597-1608.	0.9	43
366	Adjuvant Activity of Synthetic Lipid A of Alcaligenes, a Gut-Associated Lymphoid Tissue-Resident Commensal Bacterium, to Augment Antigen-Specific IgG and Th17 Responses in Systemic Vaccine. Vaccines, 2020, 8, 395.	2.1	18
367	Safety and efficacy of probiotic administration to preterm infants: ten common questions. Pediatric Research, 2020, 88, 48-55.	1.1	19

#	Article	IF	CITATIONS
368	Therapeutic Potential of the Intestinal Microbiota for Immunomodulation of Food Allergies. Frontiers in Immunology, 2020, 11, 1853.	2.2	22
369	Salvianolic acid B prevents body weight gain and regulates gut microbiota and LPS/TLR4 signaling pathway in high-fat diet-induced obese mice. Food and Function, 2020, 11, 8743-8756.	2.1	35
370	Obesity-associated microbiota contributes to mucus layer defects in genetically obese mice. Journal of Biological Chemistry, 2020, 295, 15712-15726.	1.6	28
371	A good start in life is importantâ€"perinatal factors dictate early microbiota development and longer term maturation. FEMS Microbiology Reviews, 2020, 44, 763-781.	3.9	39
372	Gut Microbiota Participates in Antithyroid Drug Induced Liver Injury Through the Lipopolysaccharide Related Signaling Pathway. Frontiers in Pharmacology, 2020, 11, 598170.	1.6	15
373	Indoor Microbial Exposures and Chronic Lung Disease. Clinics in Chest Medicine, 2020, 41, 777-796.	0.8	5
374	Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology, 2020, 159, 944-955.e8.	0.6	1,072
375	Gut Bacterial Families Are Associated with Body Composition and Metabolic Risk Markers in School-Aged Children in Rural Mexico. Childhood Obesity, 2020, 16, 358-366.	0.8	16
376	A systematic machine learning and data type comparison yields metagenomic predictors of infant age, sex, breastfeeding, antibiotic usage, country of origin, and delivery type. PLoS Computational Biology, 2020, 16, e1007895.	1.5	21
377	Seeking Windows of Opportunity to Shape Lifelong Immune Health: A Network-Based Strategy to Predict and Prioritize Markers of Early Life Immune Modulation. Frontiers in Immunology, 2020, 11, 644.	2.2	8
378	An individualized mosaic of maternal microbial strains is transmitted to the infant gut microbial community. Royal Society Open Science, 2020, 7, 192200.	1.1	24
379	Insulin- and Lipopolysaccharide-Mediated Signaling in Adipose Tissue Macrophages Regulates Postprandial Glycemia through Akt-mTOR Activation. Molecular Cell, 2020, 79, 43-53.e4.	4.5	29
380	Net release and uptake of xenometabolites across intestinal, hepatic, muscle, and renal tissue beds in healthy conscious pigs. American Journal of Physiology - Renal Physiology, 2020, 319, G133-G141.	1.6	4
381	A Humanized Diet Profile May Facilitate Colonization and Immune Stimulation in Human Microbiota-Colonized Mice. Frontiers in Microbiology, 2020, 11, 1336.	1.5	8
382	Gut Microbiota in Liver Disease: What Do We Know and What Do We Not Know?. Physiology, 2020, 35, 261-274.	1.6	28
383	Xenometabolite signatures in the UC Davis type 2 diabetes mellitus rat model revealed using a metabolomics platform enriched with microbe-derived metabolites. American Journal of Physiology - Renal Physiology, 2020, 319, G157-G169.	1.6	13
384	The Role of Gut Microbiota and Environmental Factors in Type 1 Diabetes Pathogenesis. Frontiers in Endocrinology, 2020, $11,78$.	1.5	96
385	Salmonella Virulence and Immune Escape. Microorganisms, 2020, 8, 407.	1.6	63

#	Article	IF	CITATIONS
386	The gut microbiome and thromboembolism. Thrombosis Research, 2020, 189, 77-87.	0.8	41
387	Fungal Dysbiosis and Intestinal Inflammation in Children With Beta-Cell Autoimmunity. Frontiers in Immunology, 2020, 11, 468.	2.2	33
388	Gut bacteria affect the tumoral immune milieu: distorting the efficacy of immunotherapy or not $\rlap/4\rlap/4$. Gut Microbes, 2020, 11, 691-705.	4. 3	2
389	Time-restricted feeding is associated with changes in human gut microbiota related to nutrient intake. Nutrition, 2020, 78, 110797.	1.1	41
390	Receptors Mediating Host-Microbiota Communication in the Metaorganism: The Invertebrate Perspective. Frontiers in Immunology, 2020, 11, 1251.	2.2	27
392	History of breastfeeding but not mode of delivery shapes the gut microbiome in childhood. PLoS ONE, 2020, 15, e0235223.	1.1	17
393	Functional modulation of gut microbiota in diabetic rats following dietary intervention with pistachio nuts (Pistacia vera L.). Metabolism Open, 2020, 7, 100040.	1.4	26
394	Uncovering a Shared Epitope–Activated Protein Citrullination Pathway. Journal of Immunology, 2020, 205, 579-586.	0.4	14
395	The perinatal period, the developing intestinal microbiome and inflammatory bowel diseases: What links early life events with later life disease?. Journal of the Royal Society of New Zealand, 2020, 50, 371-383.	1.0	2
396	Microbiota as Predictor of Mortality in Allogeneic Hematopoietic-Cell Transplantation. New England Journal of Medicine, 2020, 382, 822-834.	13.9	435
397	The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. EBioMedicine, 2020, 52, 102649.	2.7	209
398	Contrasting microbiotas between Finnish and Estonian infants: Exposure to <i>Acinetobacter</i> may contribute to the allergy gap. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2342-2351.	2.7	16
400	Early life neuroimmune challenge protects the brain after sepsis in adult rats. Neurochemistry International, 2020, 135, 104712.	1.9	8
401	Metabolic alterations in immune cells associate with progression to type 1 diabetes. Diabetologia, 2020, 63, 1017-1031.	2.9	42
402	Bacterial Immunogenicity Is Critical for the Induction of Regulatory B Cells in Suppressing Inflammatory Immune Responses. Frontiers in Immunology, 2019, 10, 3093.	2.2	29
403	Putting the microbiota to work: Epigenetic effects of early life antibiotic treatment are associated with immune-related pathways and reduced epithelial necrosis following Salmonella Typhimurium challenge in vitro. PLoS ONE, 2020, 15, e0231942.	1.1	5
404	Integrating the Ecosystem Services Framework to Define Dysbiosis of the Breastfed Infant Gut: The Role of B. infantis and Human Milk Oligosaccharides. Frontiers in Nutrition, 2020, 7, 33.	1.6	39
405	Like Cures Like: Pharmacological Activity of Anti-Inflammatory Lipopolysaccharides From Gut Microbiome. Frontiers in Pharmacology, 2020, 11, 554.	1.6	75

#	Article	IF	CITATIONS
406	Colonization Resistance in the Infant Gut: The Role of B. infantis in Reducing pH and Preventing Pathogen Growth. High-Throughput, 2020, 9, 7.	4.4	35
407	Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. Brain, Behavior, and Immunity, 2020, 88, 308-324.	2.0	115
408	Structure of the Mucosal and Stool Microbiome in Lynch Syndrome. Cell Host and Microbe, 2020, 27, 585-600.e4.	5.1	40
409	Endotoxin Producers Overgrowing in Human Gut Microbiota as the Causative Agents for Nonalcoholic Fatty Liver Disease. MBio, 2020, 11 , .	1.8	96
410	Linking Human Milk Oligosaccharides, Infant Fecal Community Types, and Later Risk To Require Antibiotics. MBio, 2020, 11 , .	1.8	98
411	Microbiome in Multiple Sclerosis: Where Are We, What We Know and Do Not Know. Brain Sciences, 2020, 10, 234.	1.1	59
412	Microbiome-Metabolome Signature of Acute Kidney Injury. Metabolites, 2020, 10, 142.	1.3	29
413	Isolation of Anti-Inflammatory and Epithelium Reinforcing Bacteroides and Parabacteroides Spp. from A Healthy Fecal Donor. Nutrients, 2020, 12, 935.	1.7	97
414	WEIRD bodies: mismatch, medicine and missing diversity. Evolution and Human Behavior, 2020, 41, 330-340.	1.4	54
415	Mode of Delivery Does Not Affect the Risk of Inflammatory Bowel Disease. Digestive Diseases and Sciences, 2021, 66, 398-407.	1.1	8
416	Intermittent Fasting Improves Cardiometabolic Risk Factors and Alters Gut Microbiota in Metabolic Syndrome Patients. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 64-79.	1.8	85
417	Aging, Frailty, and the Microbiome—How Dysbiosis Influences Human Aging and Disease. Gastroenterology, 2021, 160, 507-523.	0.6	67
418	A review of the impact of xenobiotics from dietary sources on infant health: Early life exposures and the role of the microbiota. Environmental Pollution, 2021, 269, 115994.	3.7	19
419	B cells and the microbiota: a missing connection in food allergy. Mucosal Immunology, 2021, 14, 4-13.	2.7	13
420	Darwinian Medicine: We Evolved to Require Continuing Contact with the Microbiota of the Natural Environment. Evolution Turns the Inevitable into a Necessity. Advances in Environmental Microbiology, 2021, , 327-364.	0.1	3
421	The early gut microbiome and the risk of chronic disease. , 2021, , 239-254.		0
422	Impact of type 1 diabetes on the composition and functional potential of gut microbiome in children and adolescents: possible mechanisms, current knowledge, and challenges. Gut Microbes, 2021, 13, 1-18.	4.3	35
423	Compensatory intestinal immunoglobulin response after vancomycin treatment in humans. Gut Microbes, 2021, 13, 1-14.	4.3	6

#	Article	IF	CITATIONS
424	Next-generation prebiotic promotes selective growth of bifidobacteria, suppressing <i>Clostridioides difficile</i> . Gut Microbes, 2021, 13, 1973835.	4.3	18
426	The importance of genetic research on the dominant species of human intestinal indigenous microbiota. Bioscience of Microbiota, Food and Health, 2021, 40, 19-26.	0.8	2
427	Properties of multifunctional bionanomaterials of lipid A-phosphate in liquid phases and quasi-crystalline structures., 2021,, 41-64.		0
428	The Role of Omic Technologies in the Study of the Human Gut Microbiome. , 2021, , 469-481.		0
429	Human Milk Oligosaccharides and Microbiome Homeostasis., 2021,, 372-388.		0
430	<i> ci> lgpr:</i> an interpretable non-parametric method for inferring covariate effects from longitudinal data. Bioinformatics, 2021, 37, 1860-1867.	1.8	6
431	Large-scale association analyses identify host factors influencing human gut microbiome composition. Nature Genetics, 2021, 53, 156-165.	9.4	676
432	Allergische Erkrankungen bei Erwachsenen – PrÃvalenz, Bedeutung und Implikationen fýr die PrÃvention und Gesundheitsförderung. The Springer Reference Pflegerapie, Gesundheit, 2021, , 967-972.	0.2	0
433	Bacterial Endotoxins and Neurological Disorders: From Exposure to Therapeutic Interventions. Emerging Contaminants and Associated Treatment Technologies, 2021, , 49-67.	0.4	0
434	Enabling rational gut microbiome manipulations by understanding gut ecology through experimentally-evidenced in silico models. Gut Microbes, 2021, 13, 1965698.	4.3	2
435	Role of IgA in the early-life establishment of the gut microbiota and immunity: Implications for constructing a healthy start. Gut Microbes, 2021, 13, 1-21.	4.3	17
436	\hat{l}^2 -cell self-destruction and extremely complicated and still unknown etiopathogenesis of type 1 diabetes. Pediatric Endocrinology, Diabetes and Metabolism, 2021, 27, 47-50.	0.3	4
437	Gut Microbiome-Based Analysis of Lipid A Biosynthesis in Individuals with Autism Spectrum Disorder: An In Silico Evaluation. Nutrients, 2021, 13, 688.	1.7	16
439	Fecal Microbiota Nutrient Utilization Potential Suggests Mucins as Drivers for Initial Gut Colonization of Mother-Child-Shared Bacteria. Applied and Environmental Microbiology, 2021, 87, .	1.4	5
440	Alterations of Gut Microbiota by Overnutrition Impact Gluconeogenic Gene Expression and Insulin Signaling. International Journal of Molecular Sciences, 2021, 22, 2121.	1.8	16
441	A Comparison of the In Vitro Effects of 2'Fucosyllactose and Lactose on the Composition and Activity of Gut Microbiota from Infants and Toddlers. Nutrients, 2021, 13, 726.	1.7	34
442	Monogenic Immune Diseases Provide Insights Into the Mechanisms and Treatment of Chronic Graft-Versus-Host Disease. Frontiers in Immunology, 2020, 11, 574569.	2.2	7
443	Gut dysbiosis in severe mental illness and chronic fatigue: a novel trans-diagnostic construct? A systematic review and meta-analysis. Molecular Psychiatry, 2022, 27, 141-153.	4.1	50

#	Article	IF	CITATIONS
446	The Nerves to Conduct a Multiple Sclerosis Crime Investigation. International Journal of Molecular Sciences, 2021, 22, 2498.	1.8	1
447	Lipopolysaccharide from Gutâ€Associated Lymphoidâ€Tissueâ€Resident <i>Alcaligenes faecalis ⟨<i>i</i>⟩: Complete Structure Determination and Chemical Synthesis of Its Lipidâ€A. Angewandte Chemie - International Edition, 2021, 60, 10023-10031.</i>	7.2	26
449	Gut–Liver Axis in Nonalcoholic Fatty Liver Disease: the Impact of the Metagenome, End Products, and the Epithelial and Vascular Barriers. Seminars in Liver Disease, 2021, 41, 191-205.	1.8	10
450	Gut microbiota modulates COPD pathogenesis: role of anti-inflammatory <i>Parabacteroides goldsteinii</i> lipopolysaccharide. Gut, 2022, 71, 309-321.	6.1	126
451	Analyses of Lipid A Diversity in Gram-Negative Intestinal Bacteria Using Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry. Metabolites, 2021, 11, 197.	1.3	7
452	Impaired Intestinal Barrier and Tissue Bacteria: Pathomechanisms for Metabolic Diseases. Frontiers in Endocrinology, 2021, 12, 616506.	1.5	56
453	Persistence of birth mode-dependent effects on gut microbiome composition, immune system stimulation and antimicrobial resistance during the first year of life. ISME Communications, 2021, 1 , .	1.7	25
454	Accurate and sensitive detection of microbial eukaryotes from whole metagenome shotgun sequencing. Microbiome, 2021, 9, 58.	4.9	60
455	Non-responder phenotype reveals apparent microbiome-wide antibiotic tolerance in the murine gut. Communications Biology, 2021, 4, 316.	2.0	2
456	Early probiotic supplementation with B. infantis in breastfed infants leads to persistent colonization at 1 year. Pediatric Research, 2022, 91, 627-636.	1.1	31
457	Lipopolysaccharide from Gutâ€Associated Lymphoidâ€Tissueâ€Resident <i>Alcaligenes faecalis</i> Structure Determination and Chemical Synthesis of Its Lipidâ€A. Angewandte Chemie, 2021, 133, 10111-10119	.1.6	1
458	Drinking Hydrogen-Rich Water Alleviates Chemotherapy-Induced Neuropathic Pain Through the Regulation of Gut Microbiota. Journal of Pain Research, 2021, Volume 14, 681-691.	0.8	19
459	SARS-CoV-2-Indigenous Microbiota Nexus: Does Gut Microbiota Contribute to Inflammation and Disease Severity in COVID-19?. Frontiers in Cellular and Infection Microbiology, 2021, 11, 590874.	1.8	35
460	Dysbiosis in the Development of Type I Diabetes and Associated Complications: From Mechanisms to Targeted Gut Microbes Manipulation Therapies. International Journal of Molecular Sciences, 2021, 22, 2763.	1.8	10
461	Gut dysbiosis during early life: causes, health outcomes, and amelioration via dietary intervention. Critical Reviews in Food Science and Nutrition, 2022, 62, 7199-7221.	5.4	8
462	Reframing Nutritional Microbiota Studies To Reflect an Inherent Metabolic Flexibility of the Human Gut: a Narrative Review Focusing on High-Fat Diets. MBio, 2021, 12, .	1.8	11
463	Two Gut Microbiota-Derived Toxins Are Closely Associated with Cardiovascular Diseases: A Review. Toxins, 2021, 13, 297.	1.5	12
464	The Complex Link between the Female Genital Microbiota, Genital Infections, and Inflammation. Infection and Immunity, 2021, 89, .	1.0	24

#	Article	IF	CITATIONS
465	Type 1 diabetes mellitus: much progress, many opportunities. Journal of Clinical Investigation, 2021, 131,	3.9	57
466	Strain inheritance and neonatal gut microbiota development: A meta-analysis. International Journal of Medical Microbiology, 2021, 311, 151483.	1.5	31
467	CRISPR-based functional genomics in human dendritic cells. ELife, 2021, 10, .	2.8	10
468	Infant gut microbiome is enriched with <i>Bifidobacterium longumssp. infantis</i> in Old Order Mennonites with traditional farming lifestyle. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3489-3503.	2.7	30
469	Effect of Food Endotoxin on Infant Health. Toxins, 2021, 13, 298.	1.5	7
470	Dynamic modulation of spleen germinal center reactions by gut bacteria during Plasmodium infection. Cell Reports, 2021, 35, 109094.	2.9	16
471	Gut microbiota profiles of young South Indian children: Child sex-specific relations with growth. PLoS ONE, 2021, 16, e0251803.	1.1	6
472	Perinatal development of innate immune topology. ELife, 2021, 10, .	2.8	19
473	Auto-immunity and the gut microbiome in type 1 diabetes: Lessons from rodent and human studies. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101544.	2.2	12
474	The Relationship Between Lower Respiratory Tract Microbiome and Allergic Respiratory Tract Diseases in Children. Frontiers in Microbiology, 2021, 12, 630345.	1.5	6
475	Gut microbiota dysbiosis in Chinese children with type 1 diabetes mellitus: An observational study. World Journal of Gastroenterology, 2021, 27, 2394-2414.	1.4	20
476	Coaggregation of Asthma and Type 1 Diabetes in Children: A Narrative Review. International Journal of Molecular Sciences, 2021, 22, 5757.	1.8	7
477	Translating the human microbiome: a path to improving health. Genome Medicine, 2021, 13, 78.	3.6	2
478	Protective effect of Bacteroides fragilis LPS on Escherichia coli LPS-induced inflammatory changes in human monocytic cells and in a rheumatoid arthritis mouse model. Immunology Letters, 2021, 233, 48-56.	1.1	9
479	Interplay Between Microbiota, Toll-Like Receptors and Cytokines for the Maintenance of Epithelial Barrier Integrity. Frontiers in Medicine, 2021, 8, 644333.	1.2	17
480	Modulation of immune responses to vaccination by the microbiota: implications and potential mechanisms. Nature Reviews Immunology, 2022, 22, 33-46.	10.6	124
481	New Insights on End-Stage Renal Disease and Healthy Individual Gut Bacterial Translocation: Different Carbon Composition of Lipopolysaccharides and Different Impact on Monocyte Inflammatory Response. Frontiers in Immunology, 2021, 12, 658404.	2.2	5
482	Spatial and temporal key steps in earlyâ€life intestinal immune system development and education. FEBS Journal, 2022, 289, 4731-4757.	2.2	7

#	Article	IF	CITATIONS
483	The geometry of clinical labs and wellness states from deeply phenotyped humans. Nature Communications, 2021, 12, 3578.	5.8	19
484	Alteration of Intestinal Microbiota Composition in Oral Sensitized C3H/HeJ Mice Is Associated With Changes in Dendritic Cells and T Cells in Mesenteric Lymph Nodes. Frontiers in Immunology, 2021, 12, 631494.	2.2	9
485	Gut Microbiota and Inflammatory Disorders. Current Drug Targets, 2022, 23, 156-169.	1.0	2
486	Human host status inference from temporal microbiome changes via recurrent neural networks. Briefings in Bioinformatics, 2021, 22, .	3.2	11
487	A synbiotic intervention modulates meta-omics signatures of gut redox potential and acidity in elective caesarean born infants. BMC Microbiology, 2021, 21, 191.	1.3	13
488	Intestinal Microbiota in Common Chronic Inflammatory Disorders Affecting Children. Frontiers in Immunology, 2021, 12, 642166.	2.2	15
489	Neonatal Immune System Ontogeny: The Role of Maternal Microbiota and Associated Factors. How Might the Non-Human Primate Model Enlighten the Path?. Vaccines, 2021, 9, 584.	2.1	16
490	Interaction between Lipopolysaccharide and Gut Microbiota in Inflammatory Bowel Diseases. International Journal of Molecular Sciences, 2021, 22, 6242.	1.8	98
491	Inflammasomes and Type 1 Diabetes. Frontiers in Immunology, 2021, 12, 686956.	2.2	7
492	Insights from Bacteroides Species in Children with Type 1 Diabetes. Microorganisms, 2021, 9, 1436.	1.6	9
493	A Journey from Structure to Function of Bacterial Lipopolysaccharides. Chemical Reviews, 2022, 122, 15767-15821.	23.0	82
494	Links between fecal microbiota and the response to vaccination against influenza A virus in pigs. Npj Vaccines, 2021, 6, 92.	2.9	13
495	Microbiome signatures of progression toward celiac disease onset in at-risk children in a longitudinal prospective cohort study. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	70
496	phyLoSTM: a novel deep learning model on disease prediction from longitudinal microbiome data. Bioinformatics, 2021, 37, 3707-3714.	1.8	22
497	Acetate differentially regulates IgA reactivity to commensal bacteria. Nature, 2021, 595, 560-564.	13.7	104
498	Dispersal strategies shape persistence and evolution of human gut bacteria. Cell Host and Microbe, 2021, 29, 1167-1176.e9.	5.1	66
499	Bifidobacteria-mediated immune system imprinting early in life. Cell, 2021, 184, 3884-3898.e11.	13.5	312
501	Gut Microbiota and Development of Vibrio cholerae-Specific Long-Term Memory B Cells in Adults after Whole-Cell Killed Oral Cholera Vaccine. Infection and Immunity, 2021, 89, e0021721.	1.0	15

#	Article	IF	CITATIONS
503	Autoimmunity and COVID-19 – The microbiotal connection. Autoimmunity Reviews, 2021, 20, 102865.	2.5	25
504	Gut microbiome-mediated metabolism effects on immunity in rural and urban African populations. Nature Communications, 2021, 12, 4845.	5.8	35
505	Gut Microbial Diversity in Female Patients With Invasive Mole and Choriocarcinoma and Its Differences Versus Healthy Controls. Frontiers in Cellular and Infection Microbiology, 2021, 11 , 704100.	1.8	4
506	Circadian Rhythm Modulation of Microbes During Health and Infection. Frontiers in Microbiology, 2021, 12, 721004.	1.5	10
508	Milk and bugs educate infant immune systems. Immunity, 2021, 54, 1633-1635.	6.6	5
509	Highâ€fat diet prevents the development of autoimmune diabetes in <scp>NOD</scp> mice. Diabetes, Obesity and Metabolism, 2021, 23, 2455-2465.	2.2	6
510	Gut Microbiota Development: Influence of Diet from Infancy to Toddlerhood. Annals of Nutrition and Metabolism, 2021, 77, 21-34.	1.0	37
511	Metagenomic analysis revealed the potential role of gut microbiome in gout. Npj Biofilms and Microbiomes, 2021, 7, 66.	2.9	91
512	Oral MucoRice-CTB vaccine for safety and microbiota-dependent immunogenicity in humans: a phase 1 randomised trial. Lancet Microbe, The, 2021, 2, e429-e440.	3.4	27
513	Leveraging diet to engineer the gut microbiome. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 885-902.	8.2	86
514	Effects induced by polyethylene microplastics oral exposure on colon mucin release, inflammation, gut microflora composition and metabolism in mice. Ecotoxicology and Environmental Safety, 2021, 220, 112340.	2.9	85
515	Gut Microbiome Alterations in COVID-19. Genomics, Proteomics and Bioinformatics, 2021, 19, 679-688.	3.0	62
516	Gut microbiome linked to pancreatitis. Current Opinion in Physiology, 2021, 23, 100470.	0.9	0
517	Early life adversity, biological adaptation, and human capital: evidence from an interrupted malaria control program in Zambia. Journal of Health Economics, 2021, 80, 102532.	1.3	7
518	Perturbations associated with hungry gut microbiome and postbiotic perspectives to strengthen the microbiome health. Future Foods, 2021, 4, 100043.	2.4	12
519	No interplay between gut microbiota composition and the lipopolysaccharideâ€induced innate immune response in humans in vivo. Clinical and Translational Immunology, 2021, 10, e1278.	1.7	3
520	Impact of delivery mode in early life microbiome and risk of disease., 2021,, 109-133.		0
521	Host–microbiota interactions in immune-mediated diseases. Nature Reviews Microbiology, 2020, 18, 521-538.	13.6	254

#	Article	IF	Citations
534	Laser speckle contrast imaging system using nanosecond pulse laser source. Journal of Biomedical Optics, 2020, $25,1.$	1.4	4
535	Gut microbial metabolites alter IgA immunity in type 1 diabetes. JCI Insight, 2020, 5, .	2.3	53
536	Microbiota control immune regulation in humanized mice. JCI Insight, 2017, 2, .	2.3	23
537	Influences on allergic mechanisms through gut, lung, and skin microbiome exposures. Journal of Clinical Investigation, 2019, 129, 1483-1492.	3.9	50
538	FODMAP diet modulates visceral nociception by lipopolysaccharide-mediated intestinal inflammation and barrier dysfunction. Journal of Clinical Investigation, 2017, 128, 267-280.	3.9	139
539	Bayesian mixed effects models for zero-inflated compositions in microbiome data analysis. Annals of Applied Statistics, 2020, 14 , .	0.5	7
540	Soil is a key factor influencing gut microbiota and its effect is comparable to that exerted by diet for mice. F1000Research, 0, 7, 1588.	0.8	20
541	Recent advances in understanding the neonatal microbiome. F1000Research, 2020, 9, 422.	0.8	22
542	Impact of environmental microbiota on human microbiota of workers in academic mouse research facilities: An observational study. PLoS ONE, 2017, 12, e0180969.	1.1	31
543	The Hygiene Hypothesis in the Age of the Microbiome. Annals of the American Thoracic Society, 2017, 14, S348-S353.	1.5	88
544	Factors Influencing Atopic Dermatitis Incidence in Offspring. Iranian Journal of Allergy, Asthma and Immunology, 2019, 18, 347-357.	0.3	2
545	Symbionts Exploit Complex Signaling to Educate the Immune System. SSRN Electronic Journal, 0, , .	0.4	3
546	Should we treat every infant with a probiotic?. Minerva Pediatrica, 2019, 71, 253-262.	2.6	6
547	The Human Microbiome: An Emerging Key Player in Health and Disease. Archives of Clinical and Biomedical Research, 2017, 01, 85-95.	0.1	2
548	Exploring the Triple Interaction between the Host Genome, the Epigenome, and the Gut Microbiome in Type 1 Diabetes. International Journal of Molecular Sciences, 2021, 22, 125.	1.8	11
549	Gut microbiota and diabetes: From correlation to causality and mechanism. World Journal of Diabetes, 2020, 11, 293-308.	1.3	86
550	The interaction between gut microbiome and nutrients on development of human disease through epigenetic mechanisms. Genomics and Informatics, 2019, 17, e24.	0.4	17
551	The microbiota protects from viral-induced neurologic damage through microglia-intrinsic TLR signaling. ELife, 2019, 8, .	2.8	41

#	Article	IF	Citations
552	Patterned progression of gut microbiota associated with necrotizing enterocolitis and late onset sepsis in preterm infants: a prospective study in a Chinese neonatal intensive care unit. Peerl, 2019, 7, e7310.	0.9	18
553	Comparative Analysis of 16S rRNA Gene and Metagenome Sequencing in Pediatric Gut Microbiomes. Frontiers in Microbiology, 2021, 12, 670336.	1.5	63
554	Gut microbiota changes in preeclampsia, abnormal placental growth and healthy pregnant women. BMC Microbiology, 2021, 21, 265.	1.3	24
555	Cultivating Healthy Connections: Exploring and Engineering the Microbial Flow That Shapes Microbiomes. MSystems, 2021, 6, e0086321.	1.7	0
556	NEIL3-deficiency increases gut permeability and contributes to a pro-atherogenic metabolic phenotype. Scientific Reports, 2021, 11, 19749.	1.6	4
557	COVID-19 Infection Alters the Microbiome: Elite Athletes and Sedentary Patients Have Similar Bacterial Flora. Genes, 2021, 12, 1577.	1.0	7
558	Nurturing the Early Life Gut Microbiome and Immune Maturation for Long Term Health. Microorganisms, 2021, 9, 2110.	1.6	34
560	Lipid A-Mediated Bacterial–Host Chemical Ecology: Synthetic Research of Bacterial Lipid As and Their Development as Adjuvants. Molecules, 2021, 26, 6294.	1.7	8
563	The Role of the Gut in Type 2 Immunity. Birkhauser Advances in Infectious Diseases, 2017, , 145-165.	0.3	0
564	Contrasting Efforts: The Microbiome and Type 1 Diabetes. Diabetes Case Reports, 2017, 02, .	0.3	1
567	Dynamism and diversity of human gut microbial community . Japanese Journal of Lactic Acid Bacteria, 2017, 28, 74-83.	0.1	0
570	Diabète et environnement. , 2018, , 11-19.		0
577	The Gut Microbiome in Inflammatory Bowel Disease. , 2019, , 347-377.		0
578	Applying ecological theories in lung microbiome research: lessons learned from microbial ecology and evolution?., 2019,, 50-66.		1
579	Aşılar ve Mikrobiyota. Turkish Journal of Pediatric Disease, 0, , 1-14.	0.0	0
587	Differential nasopharyngeal microbiota composition in children according to respiratory health status. Microbial Genomics, 2021, 7, .	1.0	9
588	Let Them Flourish for the First Weeks and Suffer Less. Molecules and Cells, 2021, 44, 706-709.	1.0	0
589	Water Kefir and Derived Pasteurized Beverages Modulate Gut Microbiota, Intestinal Permeability and Cytokine Production In Vitro. Nutrients, 2021, 13, 3897.	1.7	9

#	Article	IF	CITATIONS
590	Allergische Erkrankungen bei Erwachsenen $\hat{a}\in Pr\tilde{A}$ valenz, Bedeutung und Implikationen $f\tilde{A}\frac{1}{4}$ r die Pr \tilde{A} vention und Gesundheitsf \tilde{A} \P rderung. The Springer Reference Pflegerapie, Gesundheit, 2020, , 1-6.	0.2	0
591	Maternal Diet Alters Trained Immunity in the Pathogenesis of Pediatric NAFLD. , 2020, 2, 315-325.		3
593	Nutritional Recommendations for People with Type 1 Diabetes Mellitus. Experimental and Clinical Endocrinology and Diabetes, 2021, 129, S27-S43.	0.6	1
594	<i>Bifidobacterium</i> catabolism of human milk oligosaccharides overrides endogenous competitive exclusion driving colonization and protection. Gut Microbes, 2021, 13, 1986666.	4.3	18
595	Immune System Under Fire: The Rise of Food Immune Reaction and Autoimmunity., 2020,, 843-862.		0
596	A Comprehensive Analysis of the Global Human Gut Archaeome from a Thousand Genome Catalogue. SSRN Electronic Journal, 0, , .	0.4	0
597	The Microbiome in Food Allergy and Eosinophilic Esophagitis. , 2020, , 147-160.		0
598	The Microbiome in Liver Diseases. , 2020, , 205-210.		0
603	GTS-21 attenuates LPS-induced renal injury via the cholinergic anti-inflammatory pathway in mice. American Journal of Translational Research (discontinued), 2017, 9, 4673-4681.	0.0	6
604	Antigens., 2021, , .		0
605	Allergic diseases in infancy Il–oral tolerance and its failure. World Allergy Organization Journal, 2021, 14, 100586.	1.6	3
606	Free Feeding of CpG-Oligodeoxynucleotide Particles Prophylactically Attenuates Allergic Airway Inflammation and Hyperresponsiveness in Mice. Frontiers in Immunology, 2021, 12, 738041.	2.2	2
607	100 years post-insulin: immunotherapy as the next frontier in type 1 diabetes. Immunotherapy Advances, $2021, 1, ltab024$.	1.2	2
608	Host immunomodulatory lipids created by symbionts from dietary amino acids. Nature, 2021, 600, 302-307.	13.7	56
609	Supplementation with <i>Bifidobacterium longum</i> subspecies <i>infantis</i> EVC001 for mitigation of type 1 diabetes autoimmunity: the GPPAD-SINT1A randomised controlled trial protocol. BMJ Open, 2021, 11, e052449.	0.8	15
610	Overview of the microbiota in the gut-liver axis in viral B and C hepatitis. World Journal of Gastroenterology, 2021, 27, 7446-7461.	1.4	10
611	Revealing the composition of the eukaryotic microbiome of oyster spat by CRISPR-Cas Selective Amplicon Sequencing (CCSAS). Microbiome, 2021, 9, 230.	4.9	6
613	Gut permeability and osteoarthritis, towards a mechanistic understanding of the pathogenesis: a systematic review. Annals of Medicine, 2021, 53, 2380-2390.	1.5	11

#	ARTICLE	IF	CITATIONS
614	Role of Biological Sex in the Cardiovascular-Gut Microbiome Axis. Frontiers in Cardiovascular Medicine, 2021, 8, 759735.	1.1	14
615	Structures and functions of the gut microbial lipidome. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159110.	1.2	4
616	The Role of Host Glycobiology and Gut Microbiota in Rotavirus and Norovirus Infection, an Update. International Journal of Molecular Sciences, 2021, 22, 13473.	1.8	13
617	The P4 Study: Postpartum Maternal and Infant Faecal Microbiome 6 Months After Hypertensive Versus Normotensive Pregnancy. Frontiers in Cellular and Infection Microbiology, 2022, 12, 646165.	1.8	3
618	Inflammatory Burden and Immunomodulative Therapeutics of Cardiovascular Diseases. International Journal of Molecular Sciences, 2022, 23, 804.	1.8	7
619	Transcription shifts in gut bacteria shared between mothers and their infants. Scientific Reports, 2022, 12, 1276.	1.6	7
620	Neutrophil Extracellular Traps Caused by Gut Leakage Trigger the Autoimmune Response in Nonobese Diabetic Mice. Frontiers in Immunology, 2021, 12, 711423.	2.2	11
621	Lentinan Supplementation Protects the Gut–Liver Axis and Prevents Steatohepatitis: The Role of Gut Microbiota Involved. Frontiers in Nutrition, 2021, 8, 803691.	1.6	23
623	The Role of the Gut Microbiota in the Pathogenesis of Diabetes. International Journal of Molecular Sciences, 2022, 23, 480.	1.8	55
624	Maternal and early life exposures and their potential to influence development of the microbiome. Genome Medicine, 2022, 14, 4.	3.6	31
625	<i>N</i> -Acetylcysteine alleviates high fat diet-induced hepatic steatosis and liver injury <i>via</i> regulating the intestinal microecology in mice. Food and Function, 2022, 13, 3368-3380.	2.1	16
626	Deep Functional Profiling of Wild Animal Microbiomes Reveals Probiotic Bacillus pumilus Strains with a Common Biosynthetic Fingerprint. International Journal of Molecular Sciences, 2022, 23, 1168.	1.8	5
627	Protective effects of polysaccharides from Atractylodes macrocephalae Koidz. against dextran sulfate sodium induced intestinal mucosal injury on mice. International Journal of Biological Macromolecules, 2022, 195, 142-151.	3.6	18
628	Modeling Sparse Data Using MLE with Applications to Microbiome Data. Journal of Statistical Theory and Practice, 2022, 16, 1.	0.3	6
629	Low-Dose Exposure to Ganglioside-Mimicking Bacteria Tolerizes Human Macrophages to Guillain-Barré Syndrome-Associated Antigens. MBio, 2022, 13, e0385221.	1.8	1
630	Microbiota regulation of viral infections through interferon signaling. Trends in Microbiology, 2022, 30, 778-792.	3.5	41
631	Microbiote, immunité et diabà te de type 1. Medecine Des Maladies Metaboliques, 2022, 16, 134-140.	0.1	1
632	Peptides, Exopolysaccharides, and Short-Chain Fatty Acids from Fermented Milk and Perspectives on Inflammatory Bowel Diseases. Digestive Diseases and Sciences, 2022, 67, 4654-4665.	1.1	9

#	Article	IF	CITATIONS
633	The gut barrier and chronic diseases. Current Opinion in Clinical Nutrition and Metabolic Care, 2022, 25, 178-185.	1.3	5
634	Nutrition et microbiote dans le diabÃ"te de type 2. De la symbiose à la dysfonction métabolique. Medecine Des Maladies Metaboliques, 2022, 16, 114-114.	0.1	3
635	Compensatory intestinal antibody response against pro-inflammatory microbiota after bariatric surgery. Gut Microbes, 2022, 14, 2031696.	4.3	13
636	Signature changes in gut microbiome are associated with increased susceptibility to HIV-1 infection in MSM. Microbiome, 2021, 9, 237.	4.9	33
637	Towards the biogeography of prokaryotic genes. Nature, 2022, 601, 252-256.	13.7	85
639	From Observing Children in Traditional Upbringing to Concepts of Health. , 2022, , 1-26.		1
640	Blurring the line between opportunistic pathogens and commensals. , 2022, , 133-155.		0
641	A microbiome record for life. , 2022, , 189-213.		0
642	Gut Microbiome and the Role of Metabolites in the Study of Graves' Disease. Frontiers in Molecular Biosciences, 2022, 9, 841223.	1.6	8
643	Oral and Intestinal Bacterial Substances Associated with Disease Activities in Patients with Rheumatoid Arthritis: A Cross-Sectional Clinical Study. Journal of Immunology Research, 2022, 2022, 1-13.	0.9	12
644	Gut Dysbiosis in Pancreatic Diseases: A Causative Factor and a Novel Therapeutic Target. Frontiers in Nutrition, 2022, 9, 814269.	1.6	14
645	Lung microbes mediate spinal-cord autoimmunity. Nature, 2022, 603, 38-40.	13.7	4
647	Synthetic glycans control gut microbiome structure and mitigate colitis in mice. Nature Communications, 2022, 13, 1244.	5.8	25
648	Bacterial infection disrupts established germinal center reactions through monocyte recruitment and impaired metabolic adaptation. Immunity, 2022, 55, 442-458.e8.	6.6	12
650	Comparative Analysis of Gut Microbiota in Centenarians and Young People: Impact of Eating Habits and Childhood Living Environment. Frontiers in Cellular and Infection Microbiology, 2022, 12, 851404.	1.8	14
651	Lipopolysaccharide and the gut microbiota: considering structural variation. FEBS Letters, 2022, 596, 849-875.	1.3	38
653	Retrorsine Cooperates with Gut Microbiota to Promote Hepatic Sinusoidal Obstruction Syndrome by Disrupting the Gut Barrier. Journal of Clinical and Translational Hepatology, 2022, 000, 000-000.	0.7	2
654	Alterations in the oral microbiome of individuals with a healthy oral environment following COVID-19 vaccination. BMC Oral Health, 2022, 22, 50.	0.8	17

#	Article	IF	CITATIONS
655	Gut Microbiota and Metabolome Description of Antibiotic-Treated Neonates From Parturients With Intrauterine Infection. Frontiers in Cellular and Infection Microbiology, 2022, 12, 817832.	1.8	2
656	Identification of antimicrobial peptides from the human gut microbiome using deep learning. Nature Biotechnology, 2022, 40, 921-931.	9.4	142
657	Multiple Sclerosis and Microbiome. Biomolecules, 2022, 12, 433.	1.8	14
659	Intestinal †Infant-Type' Bifidobacteria Mediate Immune System Development in the First 1000 Days of Life. Nutrients, 2022, 14, 1498.	1.7	28
661	Dietary Nutrition and Gut Microbiota Composition in Patients With Hypertensive Disorders of Pregnancy. Frontiers in Nutrition, 2022, 9, 862892.	1.6	3
662	Soil causes gut microbiota to flourish and total serum <scp>lgE</scp> levels to decrease in mice. Environmental Microbiology, 2022, 24, 3898-3911.	1.8	2
663	Effects of Maternal Factors and Postpartum Environment on Early Colonization of Intestinal Microbiota in Piglets. Frontiers in Veterinary Science, 2022, 9, 815944.	0.9	0
664	Genetic Modifiers of Thymic Selection and Central Tolerance in Type 1 Diabetes. Frontiers in Immunology, 2022, 13, 889856.	2.2	4
665	Methamphetamine induces intestinal injury by altering gut microbiota and promoting inflammation in mice. Toxicology and Applied Pharmacology, 2022, 443, 116011.	1.3	14
666	Microbiome assembly in The Gambia. Nature Microbiology, 2022, 7, 18-19.	5.9	1
668	The human symbiont Bacteroides thetaiotaomicron promotes diet-induced obesity by regulating host lipid metabolism. Journal of Microbiology, 2022, 60, 118-127.	1.3	13
669	Population study of the gut microbiome: associations with diet, lifestyle, and cardiometabolic disease. Genome Medicine, 2021, 13, 188.	3.6	27
670	The human microbiome: A coming of age story. Cell Host and Microbe, 2022, 30, 449-453.	5.1	0
671	Impact of HLA-B27 and Disease Status on the Gut Microbiome of the Offspring of Ankylosing Spondylitis Patients. Children, 2022, 9, 569.	0.6	8
672	The Impact of Intestinal Microorganisms and Their Metabolites on Type 1 Diabetes Mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2022, Volume 15, 1123-1139.	1.1	5
673	Adaptive Weighted Neighbors Method for Sensitivity Analysis. Interdisciplinary Sciences, Computational Life Sciences, 2022, 14, 652-668.	2.2	2
674	Core Gut Microbiota of Shrimp Function as a Regulator to Maintain Immune Homeostasis in Response to WSSV Infection. Microbiology Spectrum, 2022, 10, e0246521.	1,2	10
675	Effect of gluten-free diet and antibiotics on murine gut microbiota and immune response to tetanus vaccination. PLoS ONE, 2022, 17, e0266719.	1.1	3

#	ARTICLE	IF	CITATIONS
726	Changes in early intestinal flora and Type 1 diabetes. Journal of Central South University (Medical) Tj ETQq0 0 0 0	rgBT./Ovei	rlock 10 Tf 50
727	A Simultaneous Feature Selection and Compositional Association Test for Detecting Sparse Associations in High-Dimensional Metagenomic Data. Frontiers in Microbiology, 2022, 13, 837396.	1.5	4
730	Potential Small Molecules for Therapy of Lupus Nephritis Based on Genetic Effect and Immune Infiltration. BioMed Research International, 2022, 2022, 1-16.	0.9	12
731	MegaD: Deep Learning for Rapid and Accurate Disease Status Prediction of Metagenomic Samples. Life, 2022, 12, 669.	1.1	3
732	SCFAs in T1D: A microbiota-targeted approach for immune tolerance. Current Opinion in Endocrine and Metabolic Research, 2022, , 100355.	0.6	0
733	Should we modulate the neonatal microbiome and what should be the goal?. Microbiome, 2022, 10, 74.	4.9	6
734	Host gene effects on gut microbiota in type 1 diabetes. Biochemical Society Transactions, 2022, , .	1.6	0
735	The developing infant gut microbiome: A strain-level view. Cell Host and Microbe, 2022, 30, 627-638.	5.1	29
736	Maternal heme-enriched diet promotes a gut pro-oxidative status associated with microbiota alteration, gut leakiness and glucose intolerance in mice offspring. Redox Biology, 2022, 53, 102333.	3.9	5
737	Variation in blood microbial lipopolysaccharide (LPS) contributes to immune reconstitution in response to suppressive antiretroviral therapy in HIV. EBioMedicine, 2022, 80, 104037.	2.7	13
738	Effect of antibiotics in the first week of life on faecal microbiota development. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2022, 107, 603-610.	1.4	9
739	Immune-microbe interactions early in life: A determinant of health and disease long term. Science, 2022, 376, 945-950.	6.0	59
740	Discovery of bioactive microbial gene products in inflammatory bowel disease. Nature, 2022, 606, 754-760.	13.7	38
742	Effects of fucoidans and alginates from <i>Sargassum graminifolium</i> on allergic symptoms and intestinal microbiota in mice with OVA-induced food allergy. Food and Function, 2022, 13, 6702-6715.	2.1	10
743	Characteristics of the Intestinal Flora of TPOAb-Positive Women With Subclinical Hypothyroidism in the Second Trimester of Pregnancy: A Single-Center Prospective Cohort Study. Frontiers in Cellular and Infection Microbiology, $0,12,.$	1.8	5
745	Translating Microbiome Research From and To the Clinic. Annual Review of Microbiology, 2022, 76, 435-460.	2.9	12
746	Unraveling function and diversity of bacterial lectins in the human microbiome. Nature Communications, 2022, 13, .	5.8	3
749	Islet autoantibody seroconversion in type-1 diabetes is associated with metagenome-assembled genomes in infant gut microbiomes. Nature Communications, 2022, 13 , .	5.8	8

#	Article	IF	CITATIONS
750	Explainable Machine Learning for Longitudinal Multi-Omic Microbiome. Mathematics, 2022, 10, 1994.	1.1	3
751	Lipid A heterogeneity and its role in the host interactions with pathogenic and commensal bacteria. MicroLife, 2022, 3, .	1.0	2
752	Robust variation in infant gut microbiome assembly across a spectrum of lifestyles. Science, 2022, 376, 1220-1223.	6.0	63
7 53	The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	65
754	First 1000 Days and Beyond After Birth: Gut Microbiota and Necrotizing Enterocolitis in Preterm Infants. Frontiers in Microbiology, $0,13,13$	1.5	5
755	Silencing the Tlr4 Gene Alleviates Methamphetamine-Induced Hepatotoxicity by Inhibiting Lipopolysaccharide-Mediated Inflammation in Mice. International Journal of Molecular Sciences, 2022, 23, 6810.	1.8	6
756	The Environmental Microbiome, Allergic Disease, and Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 2206-2217.e1.	2.0	13
757	Gut Microbiota Characteristics Are Associated With Severity of Acute Radiation-Induced Esophagitis. Frontiers in Microbiology, $0,13,.$	1.5	3
758	Fecal microbiota in congenital chloride diarrhea and inflammatory bowel disease. PLoS ONE, 2022, 17, e0269561.	1.1	5
7 59	Priority effects shape the structure of infant-type <i>Bifidobacterium</i> communities on human milk oligosaccharides. ISME Journal, 2022, 16, 2265-2279.	4.4	34
760	Aging and Microbiome in the Modulation of Vaccine Efficacy. Biomedicines, 2022, 10, 1545.	1.4	3
762	From Disease and Patient Heterogeneity to Precision Medicine in Type 1 Diabetes. Frontiers in Medicine, 0, 9, .	1.2	13
763	Effect of Tanshinone IIA on Gut Microbiome in Diabetes-Induced Cognitive Impairment. Frontiers in Pharmacology, $0,13,.$	1.6	3
764	Statistical challenges in longitudinal microbiome data analysis. Briefings in Bioinformatics, 2022, 23, .	3.2	16
765	A gut microbial peptide and molecular mimicry in the pathogenesis of type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	35
767	Microbiota succession throughout life from the cradle to the grave. Nature Reviews Microbiology, 2022, 20, 707-720.	13.6	66
768	Crohn's disease recurrence updates: first surgery vs. surgical relapse patients display different profiles of ileal microbiota and systemic microbial-associated inflammatory factors. Frontiers in Immunology, 0, 13, .	2.2	9
769	Prophylactic Treatment of Undernourished Mice with Cotrimoxazole Induces a Different Profile of Dysbiosis with Functional Metabolic Alterations. Cells, 2022, 11, 2278.	1.8	2

#	Article	IF	Citations
770	Special Diets in Infants and Children and Impact on Gut Microbioma. Nutrients, 2022, 14, 3198.	1.7	16
771	Human gut microbiota after bariatric surgery alters intestinal morphology and glucose absorption in mice independently of obesity. Gut, 2023, 72, 460-471.	6.1	15
772	Effects of Spermidine on Gut Microbiota Modulation in Experimental Abdominal Aortic Aneurysm Mice. Nutrients, 2022, 14, 3349.	1.7	6
773	Composition and diversity of gut microbiota in diabetic retinopathy. Frontiers in Microbiology, 0, 13, .	1.5	21
774	Host-microbiota interactions shaping T-cell response and tolerance in type 1 diabetes. Frontiers in Immunology, $0,13,1$	2.2	4
776	Clinical and experimental treatment of type 1 diabetes. Clinical and Experimental Immunology, 2022, 210, 105-113.	1.1	4
777	Low-dose IL-2 shapes a tolerogenic gut microbiota that improves autoimmunity and gut inflammation. JCI Insight, 2022, 7, .	2.3	8
778	Acyloxyacyl hydrolase deficiency induces chronic inflammation and bone loss in male mice. Journal of Molecular Medicine, 2022, 100, 1599-1616.	1.7	1
779	Comprehensive Analysis of the Structure and Allergenicity Changes of Seafood Allergens Induced by Non-Thermal Processing: A Review. Molecules, 2022, 27, 5857.	1.7	5
780	Correlation between gut bacteria Phascolarctobacterium and exogenous metabolite α-linolenic acid in T2DM: a case-control study. Annals of Translational Medicine, 2022, 10, 1056-1056.	0.7	10
781	Microbiome influences on neuro-immune interactions in neurodegenerative disease. International Review of Neurobiology, 2022, , 25-57.	0.9	6
782	Microbiome the Power House of Health and Disease., 0,,.		O
783	Structural and functional dysbiosis of gut microbiota in Tibetan subjects with coronary heart disease. Genomics, 2022, , 110483.	1.3	0
784	Human gut microbiota stimulate defined innate immune responses that vary from phylum to strain. Cell Host and Microbe, 2022, 30, 1481-1498.e5.	5.1	22
785	Gut microbiome and breast-feeding: Implications for early immune development. Journal of Allergy and Clinical Immunology, 2022, 150, 523-534.	1.5	26
786	A robust and transformation-free joint model with matching and regularization for metagenomic trajectory and disease onset. BMC Genomics, 2022, 23, .	1.2	0
787	A compendium of 32,277 metagenome-assembled genomes and over 80 million genes from the early-life human gut microbiome. Nature Communications, 2022, 13, .	5.8	23
789	Maternal gut microbiota during pregnancy and the composition of immune cells in infancy. Frontiers in Immunology, 0, 13 , .	2.2	5

#	Article	IF	CITATIONS
790	Transplantation of maternal intestinal flora to the newborn after elective cesarean section (SECFLOR): study protocol for a double blinded randomized controlled trial. BMC Pediatrics, 2022, 22, .	0.7	1
792	Dietary Isoflavones Alter Gut Microbiota and Lipopolysaccharide Biosynthesis to Reduce Inflammation. Gut Microbes, 2022, 14, .	4.3	13
793	MDITRE: Scalable and Interpretable Machine Learning for Predicting Host Status from Temporal Microbiome Dynamics. MSystems, 2022, 7, .	1.7	1
794	Bacteroides abundance drives birth mode dependent infant gut microbiota developmental trajectories. Frontiers in Microbiology, 0, 13 , .	1.5	8
796	Dysregulation of secondary bile acid metabolism precedes islet autoimmunity and type 1 diabetes. Cell Reports Medicine, 2022, 3, 100762.	3.3	9
797	Clinical outcomes following pre-, pro- and synbiotic supplementation after caesarean birth or antibiotic exposure in the first week of life in term born infants: A systematic review of the literature. Frontiers in Pediatrics, 0, 10, .	0.9	1
798	Gut microbiota in COVID-19: key microbial changes, potential mechanisms and clinical applications. Nature Reviews Gastroenterology and Hepatology, 2023, 20, 323-337.	8.2	61
799	Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes. Nature Communications, 2022, 13 , .	5.8	28
801	Enterotoxin tilimycin from gut-resident Klebsiella promotes mutational evolution and antibiotic resistance in mice. Nature Microbiology, 2022, 7, 1834-1848.	5.9	11
802	Interaction between gut microbiota and immune checkpoint inhibitor-related colitis. Frontiers in lmmunology, $0,13,1$	2.2	6
803	Hematopoietic stem and progenitor cells integrate microbial signals to promote postâ€inflammation gut tissue repair. EMBO Journal, 2022, 41, .	3.5	8
804	A distinct clade of Bifidobacterium longum in the gut of Bangladeshi children thrives during weaning. Cell, 2022, 185, 4280-4297.e12.	13.5	26
805	Microbial regulation of offspring diseases mediated by maternal-associated microbial metabolites. Frontiers in Microbiology, $0,13,.$	1.5	2
806	New understanding of gut microbiota and colorectal anastomosis leak: A collaborative review of the current concepts. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	5
807	Isletâ€specific <scp>CD8</scp> ⁺ T cells gain effector function in the gut lymphoid tissues <i>via</i>) bystander activation not molecular mimicry. Immunology and Cell Biology, 2023, 101, 36-48.	1.0	7
808	The impact of Traditional Chinese Medicine on mouse gut microbiota abundances and interactions based on Granger causality and pathway analysis. Frontiers in Microbiology, 0, 13, .	1.5	0
809	Proof of principle study replicating microbial clusters in connection to birth mode and diet in the early life intestine. PLoS ONE, 2022, 17, e0277502.	1.1	1
810	Determining the association between gut microbiota and its metabolites with higher intestinal Immunoglobulin A response. Veterinary and Animal Science, 2023, 19, 100279.	0.6	9

#	Article	IF	CITATIONS
811	Development of Adjuvants Based on Parasitic and Symbiotic Bacterial Lipid A. Trends in Glycoscience and Glycotechnology, 2022, 34, E101-E105.	0.0	0
812	Development of Adjuvants Based on Parasitic and Symbiotic Bacterial Lipid A. Trends in Glycoscience and Glycotechnology, 2022, 34, J101-J105.	0.0	0
813	Sex, puberty, and the gut microbiome. Reproduction, 2023, 165, R61-R74.	1.1	15
814	Parkinson's Disease and the Gut Microbiome in Rural California. Journal of Parkinson's Disease, 2022, 12, 2441-2452.	1.5	5
815	Developmental Programming and the Microbiome. , 2022, , 66-74.		0
816	Mobile genetic elements from the maternal microbiome shape infant gut microbial assembly and metabolism. Cell, 2022, 185, 4921-4936.e15.	13.5	33
817	Intracellular galectin-3 is a lipopolysaccharide sensor that promotes glycolysis through mTORC1 activation. Nature Communications, 2022, 13, .	5.8	8
818	Infectious diseases, autoantibodies, and autoimmunity. Journal of Autoimmunity, 2023, 137, 102962.	3.0	14
819	Modulation of adipose tissue metabolism by microbial-derived metabolites. Frontiers in Microbiology, 0, 13, .	1.5	4
820	A Spore-Based Probiotic Containing Five Strains of Bacillus Had No Notable Effect on the Recovery of the Activity and Composition of the Baby Gut Microbiota Following Antibiotic Treatment in an In Vitro Model. Applied Sciences (Switzerland), 2022, 12, 12302.	1.3	0
821	Persistent Inflammation Initiated by TORCH Infections and Dysbiotic Microbiome in Autism Spectrum Disorders: A Prospect for Future Interventions. Research Ideas and Outcomes, 0, 8, .	1.0	1
822	Fecal microbiota transplantation treatment of autoimmune-mediated type 1 diabetes: A systematic review. Frontiers in Cellular and Infection Microbiology, $0,12,.$	1.8	7
823	Multi-omic interactions in the gut of children at the onset of islet autoimmunity. Microbiome, 2022, 10, .	4.9	5
824	The role of the microbiota–gut–brain axis in longâ€ŧerm neurodegenerative processes following traumatic brain injury. European Journal of Neuroscience, 2023, 57, 400-418.	1.2	8
825	Diabetes Mellitus and Microbiota: Knowledge and Perspectives. Healthy Ageing and Longevity, 2023, , $131-151$.	0.2	0
826	Cystic Fibrosis-Related Gut Dysbiosis: A Systematic Review. Digestive Diseases and Sciences, 2023, 68, 1797-1814.	1.1	13
827	Microbiome influencers of checkpoint blockade–associated toxicity. Journal of Experimental Medicine, 2023, 220, .	4.2	13
828	A diet enriched in omega-3 PUFA and inulin prevents type 1 diabetes by restoring gut barrier integrity and immune homeostasis in NOD mice. Frontiers in Immunology, 0 , 13 , .	2.2	9

#	ARTICLE	IF	Citations
829	Nutritional Recommendations for People with Type 1 Diabetes Mellitus. Experimental and Clinical Endocrinology and Diabetes, 2023, 131, 33-50.	0.6	0
830	In vitro and ex vivo modeling of enteric bacterial infections. Gut Microbes, 2023, 15, .	4.3	5
831	Bystander activation of <i>Bordetella pertussis</i> â€induced nasal tissueâ€resident memory CD4 T cells confers heterologous immunity to <i>Klebsiella pneumoniae</i> . European Journal of Immunology, 2023, 53, .	1.6	7
832	Virus induced dysbiosis promotes type 1 diabetes onset. Frontiers in Immunology, 0, 14, .	2.2	2
833	Microbiome Alterations in Alcohol Use Disorder and Alcoholic Liver Disease. International Journal of Molecular Sciences, 2023, 24, 2461.	1.8	8
835	Autoimmune diseases., 2023,, 123-244.		2
836	Impact of the gut microbiota and associated metabolites on cardiometabolic traits, chronic diseases and human longevity: a Mendelian randomization study. Journal of Translational Medicine, 2023, 21, .	1.8	16
837	Rheumatic diseases: The microbiota-immunity axis in development and treatment. , 2023, , 83-111.		0
838	Altered Faecal Microbiota Composition and Structure of Ghanaian Children with Acute Gastroenteritis. International Journal of Molecular Sciences, 2023, 24, 3607.	1.8	4
839	Bacterial lipopolysaccharide with different administration routes affects intestinal mucosal morphological, immunological, and microbial barrier functions in goslings. Poultry Science, 2023, 102, 102599.	1.5	2
840	The Influence of the Microbiome and Genetic Associations on Immune Functions and on Autoimmune and Autoinflammatory Diseases., 2022,, 443-468.		0
841	Metabolite interactions between host and microbiota during health and disease: Which feeds the other?. Biomedicine and Pharmacotherapy, 2023, 160, 114295.	2.5	19
842	Gut microbiome lipid metabolism and its impact on host physiology. Cell Host and Microbe, 2023, 31, 173-186.	5.1	39
843	Gut microbiota and carcinogenesis in various human organs. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2023, 100, 110-125.	0.3	1
845	Targeting the gut-lung axis by synbiotic feeding to infants in a randomized controlled trial. BMC Biology, 2023, 21, .	1.7	5
846	The Gut Commensal Escherichia coli Aggravates High-Fat-Diet-Induced Obesity and Insulin Resistance in Mice. Applied and Environmental Microbiology, 2023, 89, .	1.4	6
848	Investigating the association between the symptoms of women with Fibromyalgia, Digestive function, and markers of the microbiota of the Gastrointestinal Tract (The FIDGIT Study): study protocol. BMC Musculoskeletal Disorders, 2023, 24, .	0.8	1
849	Microbiotaâ€related metabolites fueling the understanding of ischemic heart disease. , 2023, 2, .		3

#	Article	IF	CITATIONS
850	Complex regulatoryÂeffects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. , 2023, 20, 341-350.		20
851	Milk glycan metabolism by intestinal bifidobacteria: insights from comparative genomics. Critical Reviews in Biochemistry and Molecular Biology, 2022, 57, 562-584.	2.3	1
852	Bacterial flagellin is a dominant, stable innate immune activator in the gastrointestinal contents of mice and rats. Gut Microbes, 2023, 15, .	4.3	4
854	Oral route lipopolysaccharide as a potential dementia preventive agent inducing neuroprotective microglia. Frontiers in Immunology, 0, 14 , .	2.2	1
855	Emerging trends and focus on the link between gut microbiota and type 1 diabetes: A bibliometric and visualization analysis. Frontiers in Microbiology, 0 , 14 , .	1.5	7
856	Programmed and environmental determinants driving neonatal mucosal immune development. Immunity, 2023, 56, 485-499.	6.6	10
857	Maternal provisions in type 1 diabetes: Evidence for both protective & amp; pathogenic potential. Frontiers in Immunology, $0,14,.$	2.2	0
860	Gut dysbiosis in autoimmune diseases: Association with mortality. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	5
861	Comprehensive Functional Annotation of Metagenomes and Microbial Genomes Using a Deep Learning-Based Method. MSystems, 2023, 8, .	1.7	3
862	Translating neonatal microbiome science into commercial innovation: metabolism of human milk oligosaccharides as a basis for probiotic efficacy in breast-fed infants. Gut Microbes, 2023, 15, .	4.3	8
863	Inulin alleviates offspring asthma by altering maternal intestinal microbiome composition to increase short-chain fatty acids. PLoS ONE, 2023, 18, e0283105.	1.1	2
864	Quantifying Shared and Unique Gene Content across 17 Microbial Ecosystems. MSystems, 0, , .	1.7	0
865	Improved eukaryotic detection compatible with large-scale automated analysis of metagenomes. Microbiome, 2023, 11 , .	4.9	0
866	Influence of Microbiota on Vaccine Effectiveness: "ls the Microbiota the Key to Vaccine-induced Responses?â€. Journal of Microbiology, 2023, 61, 483-494.	1.3	5
867	Reconstructing the landscape of gut microbial species across 29,000 diverse individuals. Nucleic Acids Research, 0, , .	6.5	0
868	Bacterial Toxins. , 2023, , 629-678.		0
872	Research on Predicting Food Allergy Based on Recurrent Neural Network. , 2022, , .		0
882	Gut microbiome immaturity and childhood acute lymphoblastic leukaemia. Nature Reviews Cancer, 2023, 23, 565-576.	12.8	5

#	ARTICLE	IF	CITATIONS
888	What is microbial dysbiosis and how does it impact human health?., 2023, , 109-123.		О
907	Human milk oligosaccharides modify the strength of priority effects in the <i>Bifidobacterium</i> community assembly during infancy. ISME Journal, 2023, 17, 2452-2457.	4.4	3
935	Gut microbiota in relationship to diabetes mellitus and its late complications with a focus on diabetic foot syndrome: A review. Folia Microbiologica, 0 , , .	1.1	1
948	Imputing time-series microbiome abundance profiles with diffusion model. , 2023, , .		0
955	The immunology of type 1 diabetes. Nature Reviews Immunology, 0, , .	10.6	0
961	Molecular omics: a promising systems biology approach to unravel host-pathogen interactions. , 2024, , 81-102.		0