Intrinsic Control of Axon Regeneration

Neuron 90, 437-451 DOI: 10.1016/j.neuron.2016.04.022

Citation Report

#	Article	IF	CITATIONS
1	Subcellular Localization of a 2-Arachidonoyl Glycerol Signaling Cassette in Retinal Ganglion Cell Axonal Growth In Vitro. , 2016, 57, 6885.		2
2	Rapamycin-Resistant mTOR Activity Is Required for Sensory Axon Regeneration Induced by a Conditioning Lesion. ENeuro, 2016, 3, ENEURO.0358-16.2016.	0.9	43
3	Extrinsic and Intrinsic Regulation of Axon Regeneration by MicroRNAs after Spinal Cord Injury. Neural Plasticity, 2016, 2016, 1-11.	1.0	25
4	The Mammalian-Specific Protein Armcx1 Regulates Mitochondrial Transport during Axon Regeneration. Neuron, 2016, 92, 1294-1307.	3.8	150
5	Mitochondria on the Road to Power Axonal Regeneration. Neuron, 2016, 92, 1152-1154.	3.8	19
6	Shaping Early Networks to Rule Mature Circuits: Little MiRs Go a Long Way. Neuron, 2016, 92, 1154-1157.	3.8	1
7	Synapse-Specific Reinnervation in the Injured Brain. Journal of Neuroscience, 2016, 36, 10239-10241.	1.7	1
8	The Genetics of Axon Guidance and Axon Regeneration in <i>Caenorhabditis elegans</i> . Genetics, 2016, 204, 849-882.	1.2	75
9	More than meets the eye. Nature Neuroscience, 2016, 19, 984-986.	7.1	0
10	Treatment synergy in axon regeneration. Nature Neuroscience, 2016, 19, 983-984.	7.1	2
11	Reconnecting Eye to Brain. Journal of Neuroscience, 2016, 36, 10707-10722.	1.7	73
12	Building bridges to regenerate axons. Science, 2016, 354, 544-545.	6.0	2
13	Nogo-p4 Suppresses TrkA Signaling Induced by Low Concentrations of Nerve Growth Factor Through NgR1 in Differentiated PC12 Cells. NeuroSignals, 2016, 24, 25-39.	0.5	1
14	Roles of palmitoylation in axon growth, degeneration and regeneration. Journal of Neuroscience Research, 2017, 95, 1528-1539.	1.3	26
15	RhoA knockdown by cationic amphiphilic copolymer/siRhoA polyplexes enhances axonal regeneration in rat spinal cord injury model. Biomaterials, 2017, 121, 155-166.	5.7	39
16	Sustained release of collagen <scp>VI</scp> potentiates sciatic nerve regeneration by modulating macrophage phenotype. European Journal of Neuroscience, 2017, 45, 1258-1267.	1.2	35
17	Special Commentary: Early Clinical Development of Cell Replacement Therapy: Considerations for the National Eye Institute Audacious Goals Initiative. Ophthalmology, 2017, 124, 926-934.	2.5	10
18	An Intrinsic Epigenetic Barrier for Functional Axon Regeneration. Neuron, 2017, 94, 337-346.e6.	3.8	130

	CHATION	REPORT	
#	Article	IF	CITATIONS
19	Neurodegeneration and regeneration. Journal of Neuroscience Research, 2017, 95, 1525-1527.	1.3	0
20	Microtubule stabilization promoted axonal regeneration and functional recovery after spinal root avulsion. European Journal of Neuroscience, 2017, 46, 1650-1662.	1.2	14
21	Cell transplantation therapy for spinal cord injury. Nature Neuroscience, 2017, 20, 637-647.	7.1	612
22	Sox11 Expression Promotes Regeneration of Some Retinal Ganglion Cell Types but Kills Others. Neuron, 2017, 94, 1112-1120.e4.	3.8	151
23	Live or Die? Depends on Who You Are. Neuron, 2017, 94, 1043-1046.	3.8	7
24	Identification of Intrinsic Axon Growth Modulators for Intact CNS Neurons after Injury. Cell Reports, 2017, 18, 2687-2701.	2.9	73
25	Urokinase-type Plasminogen Activator (uPA) Binding to the uPA Receptor (uPAR) Promotes Axonal Regeneration in the Central Nervous System. Journal of Biological Chemistry, 2017, 292, 2741-2753.	1.6	60
26	Spatial and temporal arrangement of neuronal intrinsic and extrinsic mechanisms controlling axon regeneration. Current Opinion in Neurobiology, 2017, 42, 118-127.	2.0	114
27	Can injured adult CNS axons regenerate by recapitulating development?. Development (Cambridge), 2017, 144, 3417-3429.	1.2	106
28	A compartmentalized culture device for studying the axons of CNS neurons. Analytical Biochemistry, 2017, 539, 11-21.	1.1	4
29	Neurons with Multiple Axons Have Functional Axon Initial Segments. Neuroscience Bulletin, 2017, 33, 641-652.	1.5	11
30	A Sensitized IGF1 Treatment Restores Corticospinal Axon-Dependent Functions. Neuron, 2017, 95, 817-833.e4.	3.8	155
31	Go and stop signals for glial regeneration. Current Opinion in Neurobiology, 2017, 47, 182-187.	2.0	12
32	Damage-induced neuronal endopeptidase (DINE) enhances axonal regeneration potential of retinal ganglion cells after optic nerve injury. Cell Death and Disease, 2017, 8, e2847-e2847.	2.7	25
33	A view from the ending: Axonal dieback and regeneration following SCI. Neuroscience Letters, 2017, 652, 11-24.	1.0	38
34	Retinal regeneration mechanisms linked to multiple cancer molecules: A therapeutic conundrum. Progress in Retinal and Eye Research, 2017, 56, 19-31.	7.3	10
35	Gene Manipulation Strategies to Identify Molecular Regulators of Axon Regeneration in the Central Nervous System. Frontiers in Cellular Neuroscience, 2017, 11, 231.	1.8	20
36	Spinal Cord Cells from Pre-metamorphic Stages Differentiate into Neurons and Promote Axon Growth and Regeneration after Transplantation into the Injured Spinal Cord of Non-regenerative Xenopus laevis Froglets. Frontiers in Cellular Neuroscience, 2017, 11, 398.	1.8	11

#	Article	IF	CITATIONS
37	A Select Subset of Electron Transport Chain Genes Associated with Optic Atrophy Link Mitochondria to Axon Regeneration in Caenorhabditis elegans. Frontiers in Neuroscience, 2017, 11, 263.	1.4	15
38	Cell biology of spinal cord injury and repair. Journal of Clinical Investigation, 2017, 127, 3259-3270.	3.9	381
39	Intrinsic mechanisms of neuronal axon regeneration. Nature Reviews Neuroscience, 2018, 19, 323-337.	4.9	383
40	Polycomb protein family member CBX7 regulates intrinsic axon growth and regeneration. Cell Death and Differentiation, 2018, 25, 1598-1611.	5.0	18
41	Differing Strategies Despite Shared Lineages of Motor Neurons and Glia to Achieve Robust Development of an Adult Neuropil in Drosophila. Neuron, 2018, 97, 538-554.e5.	3.8	30
42	Axonal Activation of the Unfolded Protein Response Promotes Axonal Regeneration Following Peripheral Nerve Injury. Neuroscience, 2018, 375, 34-48.	1.1	16
43	Wimpy Nerves: piRNA Pathway Curbs Axon Regrowth after Injury. Neuron, 2018, 97, 477-478.	3.8	5
44	Enhanced axonal transport: A novel form of "plasticity―after primate and rodent spinal cord injury. Experimental Neurology, 2018, 301, 59-69.	2.0	5
45	Intraneural Injection of ATP Stimulates Regeneration of Primary Sensory Axons in the Spinal Cord. Journal of Neuroscience, 2018, 38, 1351-1365.	1.7	27
46	Genipin-Cross-Linked Chitosan Nerve Conduits Containing TNF-α Inhibitors for Peripheral Nerve Repair. Annals of Biomedical Engineering, 2018, 46, 1013-1025.	1.3	10
47	miR-221-3p Inhibits Schwann Cell Myelination. Neuroscience, 2018, 379, 239-245.	1.1	26
48	Microtubules and axon regeneration in C. elegans. Molecular and Cellular Neurosciences, 2018, 91, 160-166.	1.0	4
49	Serotonin axons in the neocortex of the adult female mouse regrow after traumatic brain injury. Journal of Neuroscience Research, 2018, 96, 512-526.	1.3	28
50	Determinants of Axon Growth, Plasticity, and Regeneration in the Context of Spinal Cord Injury. American Journal of Pathology, 2018, 188, 53-62.	1.9	45
51	Lentivirus Mediating FGF13 Enhances Axon Regeneration after Spinal Cord Injury by Stabilizing Microtubule and Improving Mitochondrial Function. Journal of Neurotrauma, 2018, 35, 548-559.	1.7	41
52	An Image-Based miRNA Screen Identifies miRNA-135s As Regulators of CNS Axon Growth and Regeneration by Targeting Krüppel-like Factor 4. Journal of Neuroscience, 2018, 38, 613-630.	1.7	45
53	Vagus nerve stimulation to treat inflammatory bowel disease: a chronic, preclinical safety study in sheep. Bioelectronics in Medicine, 2018, 1, 235-250.	2.0	10
55	Retinal Ganglion Cell Replacement: A Bridge to the Brain. Fundamental Biomedical Technologies, 2018, , 193-206.	0.2	0

#	Article	IF	CITATIONS
56	Discordant Responses to MAPK Pathway Stimulation Include Axonal Growths in Adult Drosophila Photoreceptors. Frontiers in Molecular Neuroscience, 2018, 11, 441.	1.4	0
57	Epigenetic regulator UHRF1 inactivates REST and growth suppressor gene expression via DNA methylation to promote axon regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12417-E12426.	3.3	54
58	Administration of CoCl ₂ Improves Functional Recovery in a Rat Model of Sciatic Nerve Transection Injury. International Journal of Medical Sciences, 2018, 15, 1423-1432.	1.1	9
59	Neuroinflammation Quantification for Spinal Cord Injury. Current Protocols in Immunology, 2018, 123, e57.	3.6	18
60	Promoting axonal regeneration through exosomes: An update of recent findings on exosomal PTEN and mTOR modifiers. Brain Research Bulletin, 2018, 143, 123-131.	1.4	15
61	Pivotal role of innate myeloid cells in cerebral post-ischemic sterile inflammation. Seminars in Immunopathology, 2018, 40, 523-538.	2.8	31
62	Activation of Intrinsic Growth State Enhances Host Axonal Regeneration into Neural Progenitor Cell Grafts. Stem Cell Reports, 2018, 11, 861-868.	2.3	21
63	Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature, 2018, 561, 396-400.	13.7	341
64	<scp>D</scp> evelopmental <scp>C</scp> hromatin <scp>R</scp> estriction of <scp>P</scp> roâ€ <scp>G</scp> rowth <scp>G</scp> ene <scp>N</scp> etworks <scp>A</scp> cts as an <scp>E</scp> pigenetic <scp>B</scp> arrier to <scp>A</scp> xon <scp>R</scp> egeneration in <scp>C</scp> ortical <scp>N</scp> eurons. Developmental Neurobiology, 2018, 78, 960-977.	1.5	29
65	Targeting the cytoskeleton with an FDA approved drug to promote recovery after spinal cord injury. Experimental Neurology, 2018, 306, 260-262.	2.0	1
66	Dissecting spinal cord regeneration. Nature, 2018, 557, 343-350.	13.7	224
67	Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury. Brain, 2018, 141, 1963-1980.	3.7	90
68	Optic Nerve Regeneration After Crush Remodels the Injury Site: Molecular Insights From Imaging Mass Spectrometry. , 2018, 59, 212.		19
69	The Virtuous Cycle of Axon Growth: Axonal Transport of Growthâ€Promoting Machinery as an Intrinsic Determinant of Axon Regeneration. Developmental Neurobiology, 2018, 78, 898-925.	1.5	28
70	Reactivation of Dormant Relay Pathways in Injured Spinal Cord by KCC2 Manipulations. Cell, 2018, 174, 521-535.e13.	13.5	165
71	A Drosophila In Vivo Injury Model for Studying Neuroregeneration in the Peripheral and Central Nervous System. Journal of Visualized Experiments, 2018, , .	0.2	9
72	RhoA activation in axotomy-induced neuronal death. Experimental Neurology, 2018, 306, 76-91.	2.0	11
73	Distinct homeostatic modulations stabilize reduced postsynaptic receptivity in response to presynaptic DLK signaling. Nature Communications, 2018, 9, 1856.	5.8	30

#	Article	IF	CITATIONS
74	Nanoparticle-Based Systems for Delivery of Protein Therapeutics to the Spinal Cord. Frontiers in Neuroscience, 2018, 12, 484.	1.4	3
75	KLF6 and STAT3 co-occupy regulatory DNA and functionally synergize to promote axon growth in CNS neurons. Scientific Reports, 2018, 8, 12565.	1.6	34
76	O-GlcNAc Signaling Orchestrates the Regenerative Response to Neuronal Injury in Caenorhabditis elegans. Cell Reports, 2018, 24, 1931-1938.e3.	2.9	20
77	Novel multi-drug delivery hydrogel using scar-homing liposomes improves spinal cord injury repair. Theranostics, 2018, 8, 4429-4446.	4.6	68
78	Comparative transcriptomic profiling of peripheral efferent and afferent nerve fibres at different developmental stages in mice. Scientific Reports, 2018, 8, 11990.	1.6	1
79	Phosphatidylserine exposure mediated by ABC transporter activates the integrin signaling pathway promoting axon regeneration. Nature Communications, 2018, 9, 3099.	5.8	31
80	Precise temporal regulation of alternative splicing during neural development. Nature Communications, 2018, 9, 2189.	5.8	155
81	Advances in exÂvivo models and lab-on-a-chip devices for neural tissue engineering. Biomaterials, 2019, 198, 146-166.	5.7	49
82	Inhibition of Axon Regeneration by Liquid-like TIAR-2 Granules. Neuron, 2019, 104, 290-304.e8.	3.8	51
83	ADF/Cofilin-Mediated Actin Turnover Promotes Axon Regeneration in the Adult CNS. Neuron, 2019, 103, 1073-1085.e6.	3.8	71
84	Role of Long Noncoding RNAs and Circular RNAs in Nerve Regeneration. Frontiers in Molecular Neuroscience, 2019, 12, 165.	1.4	27
85	Identification of Key Genes and Pathways Involved in the Heterogeneity of Intrinsic Growth Ability Between Neurons After Spinal Cord Injury in Adult Zebrafish. Neurochemical Research, 2019, 44, 2057-2067.	1.6	6
86	Evidence for cell ontact factor involvement in neurite outgrowth of dorsal root ganglion neurons stimulated by Schwann cells. Experimental Physiology, 2019, 104, 1447-1454.	0.9	15
87	Increased ER–mitochondria tethering promotes axon regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16074-16079.	3.3	63
88	Epigenetic Regulation Of Axon Regeneration and Glial Activation in Injury Responses. Frontiers in Genetics, 2019, 10, 640.	1.1	25
89	Understanding the axonal response to injury by imaging in the mouse spinal cord: A tale of two branches. Experimental Neurology, 2019, 318, 277-285.	2.0	15
90	Stabilization of Hypoxia Inducible Factor-1α by Dimethyloxalylglycine Promotes Recovery from Acute Spinal Cord Injury by Inhibiting Neural Apoptosis and Enhancing Axon Regeneration. Journal of Neurotrauma, 2019, 36, 3394-3409.	1.7	28
91	Circ-Spidr enhances axon regeneration after peripheral nerve injury. Cell Death and Disease, 2019, 10, 787.	2.7	24

\sim			<u> </u>	
(T	ΤΔΤ	$1 \cap N$	REE	DUBL
\sim	17.11		I CLI	

#	Article	IF	CITATIONS
92	An injectable heparin-Laponite hydrogel bridge FGF4 for spinal cord injury by stabilizing microtubule and improving mitochondrial function. Theranostics, 2019, 9, 7016-7032.	4.6	49
93	Post Stroke Seizures and Epilepsy: From Proteases to Maladaptive Plasticity. Frontiers in Cellular Neuroscience, 2019, 13, 397.	1.8	23
94	Bundled Three-Dimensional Human Axon Tracts Derived from Brain Organoids. IScience, 2019, 21, 57-67.	1.9	37
95	Roles of mTOR Signaling in Tissue Regeneration. Cells, 2019, 8, 1075.	1.8	81
96	Promoting the Outgrowth of Neurites on Electrospun Microfibers by Functionalization with Electrosprayed Microparticles of Fatty Acids. Angewandte Chemie, 2019, 131, 3988-3991.	1.6	5
97	Exosomes — beyond stem cells for restorative therapy in stroke and neurological injury. Nature Reviews Neurology, 2019, 15, 193-203.	4.9	353
98	Promoting the Outgrowth of Neurites on Electrospun Microfibers by Functionalization with Electrosprayed Microparticles of Fatty Acids. Angewandte Chemie - International Edition, 2019, 58, 3948-3951.	7.2	32
99	Functional Cortical Axon Tracts Generated from Human Stem Cell-Derived Neurons. Tissue Engineering - Part A, 2019, 25, 736-745.	1.6	10
100	The Plasminogen Activation System Promotes Neurorepair in the Ischemic Brain. Current Drug Targets, 2019, 20, 953-959.	1.0	11
101	Spinal cord repair: advances in biology and technology. Nature Medicine, 2019, 25, 898-908.	15.2	323
102	Elevating Growth Factor Responsiveness and Axon Regeneration by Modulating Presynaptic Inputs. Neuron, 2019, 103, 39-51.e5.	3.8	89
103	Safe and Sustained Expression of Human Iduronidase After Intrathecal Administration of Adeno-Associated Virus Serotype 9 in Infant Rhesus Monkeys. Human Gene Therapy, 2019, 30, 957-966.	1.4	60
104	Effect of lesion proximity on the regenerative response of long descending propriospinal neurons after spinal transection injury. BMC Neuroscience, 2019, 20, 10.	0.8	14
105	High-resolution 3D imaging and analysis of axon regeneration in unsectioned spinal cord with or without tissue clearing. Nature Protocols, 2019, 14, 1235-1260.	5.5	25
106	lmaging in vivo dynamics of sensory axon responses to CNS injury. Experimental Neurology, 2019, 317, 110-118.	2.0	6
107	Why is NMNAT Protective against Neuronal Cell Death and Axon Degeneration, but Inhibitory of Axon Regeneration?. Cells, 2019, 8, 267.	1.8	8
108	Cbp-dependent histone acetylation mediates axon regeneration induced by environmental enrichment in rodent spinal cord injury models. Science Translational Medicine, 2019, 11, .	5.8	79
109	Spinal Cord Regeneration in Amphibians: A Historical Perspective. Developmental Neurobiology, 2019, 79, 437-452.	1.5	23

#	Article	IF	CITATIONS
110	<i>N</i> -Glycosylation of the Discoidin Domain Receptor Is Required for Axon Regeneration in <i>Caenorhabditis elegans</i> . Genetics, 2019, 213, 491-500.	1.2	6
111	Pericytes: Problems and Promises for CNS Repair. Frontiers in Cellular Neuroscience, 2019, 13, 546.	1.8	34
112	Mitochondrial behavior during axon regeneration/degeneration in vivo. Neuroscience Research, 2019, 139, 42-47.	1.0	36
113	Induced NB-3 Limits Regenerative Potential of Serotonergic Axons after Complete Spinal Transection. Journal of Neurotrauma, 2019, 36, 436-447.	1.7	3
114	New Insights of a Neuronal Peptidase DINE/ECEL1: Nerve Development, Nerve Regeneration and Neurogenic Pathogenesis. Neurochemical Research, 2019, 44, 1279-1288.	1.6	14
115	Translating regeneration: Local protein synthesis in the neuronal injury response. Neuroscience Research, 2019, 139, 26-36.	1.0	29
116	Loureirin B Promotes Axon Regeneration by Inhibiting Endoplasmic Reticulum Stress: Induced Mitochondrial Dysfunction and Regulating the Akt/GSK-3β Pathway after Spinal Cord Injury. Journal of Neurotrauma, 2019, 36, 1949-1964.	1.7	23
117	The Effect of Electrospun Fiber Diameter on Astrocyte-Mediated Neurite Guidance and Protection. ACS Applied Bio Materials, 2019, 2, 104-117.	2.3	21
118	A single dose of thermal-sensitive biodegradable hybrid hydrogel promotes functional recovery after spinal cord injury. Applied Materials Today, 2019, 14, 66-75.	2.3	22
119	Conductive Scaffolds for Cardiac and Neuronal Tissue Engineering: Governing Factors and Mechanisms. Advanced Functional Materials, 2020, 30, 1901369.	7.8	93
120	Construction and reconstruction of brain circuits: normal and pathological axon guidance. Journal of Neurochemistry, 2020, 153, 10-32.	2.1	18
121	AAVshRNA-mediated PTEN knockdown in adult neurons attenuates activity-dependent immediate early gene induction. Experimental Neurology, 2020, 326, 113098.	2.0	8
122	Functional Regeneration of the Sensory Root via Axonal Invasion. Cell Reports, 2020, 30, 9-17.e3.	2.9	12
123	Age-dependent autophagy induction after injury promotes axon regeneration by limiting NOTCH. Autophagy, 2020, 16, 2052-2068.	4.3	39
124	Recovery after spinal cord injury is enhanced by anti-Nogo-A antibody therapy — from animal models to clinical trials. Current Opinion in Physiology, 2020, 14, 1-6.	0.9	14
125	Catecholaminergic axons in the neocortex of adult mice regrow following brain injury. Experimental Neurology, 2020, 323, 113089.	2.0	13
126	Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration. Neuron, 2020, 105, 276-292.e5.	3.8	88
127	The role of the immune system during regeneration of the central nervous system. Journal of Immunology and Regenerative Medicine, 2020, 7, 100023.	0.2	4

ARTICLE IF CITATIONS # Satellite glial cells promote regenerative growth in sensory neurons. Nature Communications, 2020, 128 5.8 129 11, 4891. Transcriptional Reprogramming of Distinct Peripheral Sensory Neuron Subtypes after Axonal Injury. 129 3.8 254 Neuron, 2020, 108, 128-144.e9. 130 Microglia-organized scar-free spinal cord repair in neonatal mice. Nature, 2020, 587, 613-618. 13.7 197 Neurons survive simultaneous injury to axons and dendrites and regrow both types of processes in 0.9 vivo. Developmental Biology, 2020, 465, 108-118. Axon Injury-Induced Autophagy Activation Is Impaired in a C. elegans Model of Tauopathy. International 133 1.8 4 Journal of Molecular Sciences, 2020, 21, 8559. Adult Mouse Retina Explants: From ex vivo to in vivo Model of Central Nervous System Injuries. Frontiers in Molecular Neuroscience, 2020, 13, 599948. 1.4 Application of fibrin-based hydrogels for nerve protection and regeneration after spinal cord injury. 135 2.0 49 Journal of Biological Engineering, 2020, 14, 22. Signals Orchestrating Peripheral Nerve Repair. Cells, 2020, 9, 1768. 136 1.8 PDCD4 regulates axonal growth by translational repression of neurite growth-related genes and is 137 1.6 14 modulated during nerve injury responses. Rna, 2020, 26, 1637-1653. Beading of injured axons driven by tension- and adhesion-regulated membrane shape instability. 1.5 Journal of the Royal Society Interface, 2020, 17, 20200331 Robust Myelination of Regenerated Axons Induced by Combined Manipulations of GPR17 and Microglia. 139 3.8 76 Neuron, 2020, 108, 876-886.e4. Using mouse genetics to investigate supraspinal pathways of the brain important to locomotion., 2020, , 269-313. Axon growth and synaptic function: A balancing act for axonal regeneration and neuronal circuit 141 1.5 16 formation in CNS trauma and disease. Developmental Neurobiology, 2020, 80, 277-301. Schwann cell energy to die for. Nature Neuroscience, 2020, 23, 1179-1181. 142 7.1 Enriched conditioning expands the regenerative ability of sensory neurons after spinal cord injury via 143 5.837 neuronal intrinsic redox signaling. Nature Communications, 2020, 11, 6425. Molecular Mechanisms of Central Nervous System Axonal Regeneration and Remyelination: A Review. 144 1.8 International Journal of Molecular Sciences, 2020, 21, 8116. Protrudin functions from the endoplasmic reticulum to support axon regeneration in the adult CNS. 145 5.841 Nature Communications, 2020, 11, 5614. Potential of Chitosan and Its Derivatives for Biomedical Applications in the Central Nervous System. 146 Frontiers in Bioengineering and Biotechnology, 2020, 8, 389.

#	Article	IF	CITATIONS
147	Conductive conduit small gap tubulization for peripheral nerve repair. RSC Advances, 2020, 10, 16769-16775.	1.7	16
148	CNTF-STAT3-IL-6 Axis Mediates Neuroinflammatory Cascade across Schwann Cell-Neuron-Microglia. Cell Reports, 2020, 31, 107657.	2.9	77
149	Construction of injectable silk fibroin/polydopamine hydrogel for treatment of spinal cord injury. Chemical Engineering Journal, 2020, 399, 125795.	6.6	86
150	Engulfment Genes Promote Neuronal Regeneration in Caenorhabditis Elegans : Two Divergent But Complementary Views. BioEssays, 2020, 42, 1900185.	1.2	1
151	The stem cell marker <i>Prom1</i> promotes axon regeneration by down-regulating cholesterol synthesis via Smad signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15955-15966.	3.3	34
152	Loss of Arid1a Promotes Neuronal Survival Following Optic Nerve Injury. Frontiers in Cellular Neuroscience, 2020, 14, 131.	1.8	4
153	Regenerative Potential of Carbon Monoxide in Adult Neural Circuits of the Central Nervous System. International Journal of Molecular Sciences, 2020, 21, 2273.	1.8	16
154	The receptor tyrosine kinase Ror is required for dendrite regeneration in Drosophila neurons. PLoS Biology, 2020, 18, e3000657.	2.6	24
155	Restoring Cellular Energetics Promotes Axonal Regeneration and Functional Recovery after Spinal Cord Injury. Cell Metabolism, 2020, 31, 623-641.e8.	7.2	102
	5 / · · · ·		
156	Axon regeneration. , 2020, , 201-215.		Ο
156 157	Axon regeneration., 2020, , 201-215. Biomaterial-based systems as biomimetic agents in the repair of the central nervous system., 2020, , 259-289.		0
156 157 158	Axon regeneration., 2020, , 201-215. Biomaterial-based systems as biomimetic agents in the repair of the central nervous system., 2020, , 259-289. Knocking Out Non-muscle Myosin II in Retinal Ganglion Cells Promotes Long-Distance Optic Nerve Regeneration. Cell Reports, 2020, 31, 107537.	2.9	0 0 33
156 157 158 159	Axon regeneration., 2020, , 201-215. Biomaterial-based systems as biomimetic agents in the repair of the central nervous system., 2020, , 259-289. Knocking Out Non-muscle Myosin II in Retinal Ganglion Cells Promotes Long-Distance Optic Nerve Regeneration. Cell Reports, 2020, 31, 107537. Effects of NAD+ in Caenorhabditis elegans Models of Neuronal Damage. Biomolecules, 2020, 10, 993.	2.9	0 0 33 4
156 157 158 159	Axon regeneration., 2020, , 201-215. Biomaterial-based systems as biomimetic agents in the repair of the central nervous system., 2020, , 259-289. Knocking Out Non-muscle Myosin II in Retinal Ganglion Cells Promotes Long-Distance Optic Nerve Regeneration. Cell Reports, 2020, 31, 107537. Effects of NAD+ in Caenorhabditis elegans Models of Neuronal Damage. Biomolecules, 2020, 10, 993. Botulinum Toxin and Neuronal Regeneration after Traumatic Injury of Central and Peripheral Nervous System. Toxins, 2020, 12, 434.	2.9 1.8 1.5	0 0 33 4
156 157 158 159 160 161	Axon regeneration. , 2020, , 201-215. Biomaterial-based systems as biomimetic agents in the repair of the central nervous system. , 2020, , 259-289. Knocking Out Non-muscle Myosin II in Retinal Ganglion Cells Promotes Long-Distance Optic Nerve Regeneration. Cell Reports, 2020, 31, 107537. Effects of NAD+ in Caenorhabditis elegans Models of Neuronal Damage. Biomolecules, 2020, 10, 993. Botulinum Toxin and Neuronal Regeneration after Traumatic Injury of Central and Peripheral Nervous System. Toxins, 2020, 12, 434. Artemisinin protects motoneurons against axotomy-induced apoptosis through activation of the PKA-Akt signaling pathway and promotes neural stem/progenitor cells differentiation into NeuN+ neurons. Pharmacological Research, 2020, 159, 105049.	2.9 1.8 1.5 3.1	0 0 33 4 10 8
156 157 158 159 160 161	Axon regeneration., 2020, , 201-215. Biomaterial-based systems as biomimetic agents in the repair of the central nervous system., 2020, , 259-289. Knocking Out Non-muscle Myosin II in Retinal Ganglion Cells Promotes Long-Distance Optic Nerve Regeneration. Cell Reports, 2020, 31, 107537. Effects of NAD+ in Caenorhabditis elegans Models of Neuronal Damage. Biomolecules, 2020, 10, 993. Botulinum Toxin and Neuronal Regeneration after Traumatic Injury of Central and Peripheral Nervous System. Toxins, 2020, 12, 434. Artemisinin protects motoneurons against axotomy-induced apoptosis through activation of the PKA-Akt signaling pathway and promotes neural stem/progenitor cells differentiation into NeuN+ neurons. Pharmacological Research, 2020, 159, 105049. Axoâ€glial interaction in the injured PNS. Developmental Neurobiology, 2021, 81, 490-506.	2.9 1.8 1.5 3.1	0 0 33 4 10 8
156 157 158 159 160 161 162	Axon regeneration., 2020, , 201-215. Biomaterial-based systems as biomimetic agents in the repair of the central nervous system., 2020, , 259-289. Knocking Out Non-muscle Myosin II in Retinal Ganglion Cells Promotes Long-Distance Optic Nerve Regeneration. Cell Reports, 2020, 31, 107537. Effects of NAD+ in Caenorhabditis elegans Models of Neuronal Damage. Biomolecules, 2020, 10, 993. Botulinum Toxin and Neuronal Regeneration after Traumatic Injury of Central and Peripheral Nervous System. Toxins, 2020, 12, 434. Artemisinin protects motoneurons against axotomy-induced apoptosis through activation of the PKA-Akt signaling pathway and promotes neural stem/progenitor cells differentiation into NeuN+ neurons. Pharmacological Research, 2020, 159, 105049. Axoa&Eglial interaction in the injured PNS. Developmental Neurobiology, 2021, 81, 490-506. Activating Transcription Factor 3 (ATF3) Protects Retinal Ganglion Cells and Promotes Functional Preservation After Optic Nerve Crush., 2020, 61, 31.	2.9 1.8 1.5 3.1 1.5	0 0 33 4 10 8 19

#	Article	IF	CITATIONS
165	Greasing the Wheels of Regeneration. Neuron, 2020, 105, 207-209.	3.8	4
166	Knock down of IncRNA H19 promotes axon sprouting and functional recovery after cerebral ischemic stroke. Brain Research, 2020, 1732, 146681.	1.1	26
167	The long noncoding RNA Arrl1 inhibits neurite outgrowth by functioning as a competing endogenous RNA during neuronal regeneration in rats. Journal of Biological Chemistry, 2020, 295, 8374-8386.	1.6	28
168	Nystatin Regulates Axonal Extension and Regeneration by Modifying the Levels of Nitric Oxide. Frontiers in Molecular Neuroscience, 2020, 13, 56.	1.4	4
169	Engineering magnetic nanoparticles for repairing nerve injuries. , 2020, , 167-200.		2
170	Injured adult neurons regress to an embryonic transcriptional growth state. Nature, 2020, 581, 77-82.	13.7	154
171	The Influence of Neuron-Extrinsic Factors and Aging on Injury Progression and Axonal Repair in the Central Nervous System. Frontiers in Cell and Developmental Biology, 2020, 8, 190.	1.8	30
172	DNA methylation and hydroxymethylation have distinct genome-wide profiles related to axonal regeneration. Epigenetics, 2021, 16, 64-78.	1.3	12
173	TC10, a Rho family GTPase, is required for efficient axon regeneration in a neuronâ€autonomous manner. Journal of Neurochemistry, 2021, 157, 1196-1206.	2.1	5
174	FGF21 impedes peripheral myelin development by stimulating p38 MAPK/câ€Jun axis. Journal of Cellular Physiology, 2021, 236, 1345-1361.	2.0	8
175	Heat shock protein is a key therapeutic target for nerve repair in autoimmune peripheral neuropathy and severe peripheral nerve injury. Brain, Behavior, and Immunity, 2021, 91, 48-64.	2.0	17
176	Sensory neuron cultures derived from adult db/db mice as a simplified model to study type-2 diabetes-associated axonal regeneration defects. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	2
177	Dying neurons conduct repair processes in the injured brain through osteopontin expression in cooperation with infiltrated blood monocytes. Glia, 2021, 69, 1037-1052.	2.5	9
178	Macrophagic and microglial complexity after neuronal injury. Progress in Neurobiology, 2021, 200, 101970.	2.8	52
179	Governor Vessel Electro-Acupuncture Promotes the Intrinsic Growth Ability of Spinal Neurons through Activating Calcitonin Gene-Related Peptide/α-Calcium/Calmodulin-Dependent Protein Kinase/Neurotrophin-3 Pathway after Spinal Cord Injury. Journal of Neurotrauma, 2021, 38, 734-745.	1.7	18
180	Potential roles of stem cell marker genes in axon regeneration. Experimental and Molecular Medicine, 2021, 53, 1-7.	3.2	9
181	Application of developmental principles for spinal cord repair after injury. International Journal of Developmental Biology, 2021, , .	0.3	0
182	Transcriptome analysis of molecular mechanisms underlying facial nerve injury repair in rats. Neural Regeneration Research, 2021, 16, 2316.	1.6	6

#	Article	IF	CITATIONS
183	Fluoxetine, a selective serotonin reuptake inhibitor used clinically, improves bladder function in a mouse model of moderate spinal cord injury. Neural Regeneration Research, 2021, 16, 2093.	1.6	9
185	Axonal Organelles as Molecular Platforms for Axon Growth and Regeneration after Injury. International Journal of Molecular Sciences, 2021, 22, 1798.	1.8	18
186	BRCA1–BARD1 Regulates Axon Regeneration in Concert with the Gqα–DAG Signaling Network. Journal of Neuroscience, 2021, 41, 2842-2853.	1.7	6
187	Biocompatibility of ferulic/succinic acid-grafted chitosan hydrogels for implantation after brain injury: A preliminary study. Materials Science and Engineering C, 2021, 121, 111806.	3.8	7
188	PDK1 is a negative regulator of axon regeneration. Molecular Brain, 2021, 14, 31.	1.3	4
189	AAV-mediated inhibition of ULK1 promotes axonal regeneration in the central nervous system in vitro and in vivo. Cell Death and Disease, 2021, 12, 213.	2.7	6
191	Mesenchymal stem cell-derived exosomes: therapeutic opportunities and challenges for spinal cord injury. Stem Cell Research and Therapy, 2021, 12, 102.	2.4	95
192	Turning lead into gold: reprogramming retinal cells to cure blindness. Journal of Clinical Investigation, 2021, 131, .	3.9	38
194	Molecular Basis of Neuronal Autophagy in Ageing: Insights from Caenorhabditis elegans. Cells, 2021, 10, 694.	1.8	10
195	Localized EMT reprograms glial progenitors to promote spinal cord repair. Developmental Cell, 2021, 56, 613-626.e7.	3.1	40
196	Satellite Glial Cells in Pain Research: A Targeted Viewpoint of Potential and Future Directions. Frontiers in Pain Research, 2021, 2, 646068.	0.9	24
197	miR-20a Promotes the Axon Regeneration of DRG Neurons by Targeting Nr4a3. Neuroscience Bulletin, 2021, 37, 569-574.	1.5	8
198	Ligand-Induced GPR110 Activation Facilitates Axon Growth after Injury. International Journal of Molecular Sciences, 2021, 22, 3386.	1.8	10
200	Plasma membrane integrity: implications for health and disease. BMC Biology, 2021, 19, 71.	1.7	95
201	Mechanism of White Matter Injury and Promising Therapeutic Strategies of MSCs After Intracerebral Hemorrhage. Frontiers in Aging Neuroscience, 2021, 13, 632054.	1.7	11
202	Advances in Regeneration of Retinal Ganglion Cells and Optic Nerves. International Journal of Molecular Sciences, 2021, 22, 4616.	1.8	12
203	Non-Cell-Autonomous Regulation of Optic Nerve Regeneration by Amacrine Cells. Frontiers in Cellular Neuroscience, 2021, 15, 666798.	1.8	10
205	Meeting Proceedings for SCI 2020: Launching a Decade of Disruption in Spinal Cord Injury Research. Journal of Neurotrauma, 2021, 38, 1251-1266.	1.7	14

#	Article	IF	CITATIONS
206	The Role of Lipids, Lipid Metabolism and Ectopic Lipid Accumulation in Axon Growth, Regeneration and Repair after CNS Injury and Disease. Cells, 2021, 10, 1078.	1.8	18
207	The Integrin Signaling Network Promotes Axon Regeneration via the Src–Ephexin–RhoA GTPase Signaling Axis. Journal of Neuroscience, 2021, 41, 4754-4767.	1.7	15
208	Co-occupancy identifies transcription factor co-operation for axon growth. Nature Communications, 2021, 12, 2555.	5.8	8
209	A 3D Fiberâ€Hydrogel Based Nonâ€Viral Gene Delivery Platform Reveals that microRNAs Promote Axon Regeneration and Enhance Functional Recovery Following Spinal Cord Injury. Advanced Science, 2021, 8, e2100805.	5.6	42
210	EFA6 in Axon Regeneration, as a Microtubule Regulator and as a Guanine Nucleotide Exchange Factor. Cells, 2021, 10, 1325.	1.8	4
211	Swimming Exercise Promotes Post-injury Axon Regeneration and Functional Restoration through AMPK. ENeuro, 2021, 8, ENEURO.0414-20.2021.	0.9	8
212	Regulation of UNC-40/DCC and UNC-6/Netrin by DAF-16 promotes functional rewiring of the injured axon. Development (Cambridge), 2021, 148, .	1.2	6
214	A Novel Rat Model with Long Range Optic Nerve Injury to Study Retinal Ganglion Cells Endogenous Regeneration. Neuroscience, 2021, 465, 71-84.	1.1	1
215	The Atr-Chek1 pathway inhibits axon regeneration in response to Piezo-dependent mechanosensation. Nature Communications, 2021, 12, 3845.	5.8	19
216	Revisiting the Role of Biologically Active Natural and Synthetic Compounds as an Intervention to Treat Injured Nerves. Molecular Neurobiology, 2021, 58, 4980-4998.	1.9	1
217	Translatomic analysis of regenerating and degenerating spinal motor neurons in injury and ALS. IScience, 2021, 24, 102700.	1.9	10
218	CXCL5/CXCR2 modulates inflammation-mediated neural repair after optic nerve injury. Experimental Neurology, 2021, 341, 113711.	2.0	28
219	A novel hydrogel-based combination therapy for effective neuroregeneration after spinal cord injury. Chemical Engineering Journal, 2021, 415, 128964.	6.6	14
220	Targeting Central Nervous System Regeneration with Cell Type Specificity. Neurosurgery Clinics of North America, 2021, 32, 397-405.	0.8	7
221	Preservation of vision after CaMKII-mediated protection of retinal ganglion cells. Cell, 2021, 184, 4299-4314.e12.	13.5	75
222	Comparing nerveâ€mediated FGF signalling in the early initiation phase of organ regeneration across mutliple amphibian species. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2021, 336, 529-539.	0.6	4
223	Increasing toll-like receptor 2 on astrocytes induced by Schwann cell-derived exosomes promotes recovery by inhibiting CSPGs deposition after spinal cord injury. Journal of Neuroinflammation, 2021, 18, 172.	3.1	27
224	Morin improves functional recovery after spinal cord injury in rats by enhancing axon regeneration via the Nrf2/ <scp>HO</scp> â€1 pathway. Phytotherapy Research, 2021, 35, 5754-5766.	2.8	8

#	Article	IF	CITATIONS
225	UNC-16 alters DLK-1 localization and negatively regulates actin and microtubule dynamics in <i>Caenorhabditis elegans</i> regenerating neurons. Genetics, 2021, 219, .	1.2	3
226	MEC17â€induced αâ€tubulin acetylation restores mitochondrial transport function and alleviates axonal injury after intracerebral hemorrhage in mice. Journal of Neurochemistry, 2022, 160, 51-63.	2.1	14
227	Actin dynamics in the growth cone: a key player in axon regeneration. Current Opinion in Neurobiology, 2021, 69, 11-18.	2.0	16
228	Axon Regeneration: A Subcellular Extension in Multiple Dimensions. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040923.	2.3	9
229	Comparing axon regeneration in male and female mice after peripheral nerve injury. Journal of Neuroscience Research, 2021, 99, 2874-2887.	1.3	9
230	Profiling sensory neuron microenvironment after peripheral and central axon injury reveals key pathways for neural repair. ELife, 2021, 10, .	2.8	61
231	Klf2-Vav1-Rac1 axis promotes axon regeneration after peripheral nerve injury. Experimental Neurology, 2021, 343, 113788.	2.0	10
232	RhoA drives actin compaction to restrict axon regeneration and astrocyte reactivity after CNS injury. Neuron, 2021, 109, 3436-3455.e9.	3.8	54
233	Hybrid material mimics a hypoxic environment to promote regeneration of peripheral nerves. Biomaterials, 2021, 277, 121068.	5.7	14
234	MiR-212-3p improves rat functional recovery and inhibits neurocyte apoptosis in spinal cord injury models via PTEN downregulation-mediated activation of AKT/mTOR pathway. Brain Research, 2021, 1768, 147576.	1.1	14
235	Visual system repair: what's next?. Neural Regeneration Research, 2022, 17, 800.	1.6	0
236	TC10 as an essential molecule in axon regeneration through membrane supply and microtubule stabilization. Neural Regeneration Research, 2022, 17, 87.	1.6	1
237	Adipose stem cells for peripheral nerve engineering. , 2022, , 427-457.		0
238	Identification of key genes involved in axon regeneration and Wallerian degeneration by weighted gene co-expression network analysis. Neural Regeneration Research, 2022, 17, 911.	1.6	8
239	MicroRNA-based therapeutics for optic neuropathy: opportunities and challenges. Neural Regeneration Research, 2021, 16, 1996.	1.6	3
240	Inhibition of GCK-IV kinases dissociates cell death and axon regeneration in CNS neurons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33597-33607.	3.3	19
251	The Application of Omics Technologies to Study Axon Regeneration and CNS Repair. F1000Research, 2019, 8, 311.	0.8	11
252	Active Nerve Regeneration with Failed Target Reinnervation Drives Persistent Neuropathic Pain. ENeuro, 2017, 4, ENEURO.0008-17.2017.	0.9	49

#	Article	IF	CITATIONS
253	Inhibition of Poly-ADP-Ribosylation Fails to Increase Axonal Regeneration or Improve Functional Recovery after Adult Mammalian CNS Injury. ENeuro, 2016, 3, ENEURO.0270-16.2016.	0.9	22
254	Functional Reorganization of Local Circuit Connectivity in Superficial Spinal Dorsal Horn with Neuropathic Pain States. ENeuro, 2019, 6, ENEURO.0272-19.2019.	0.9	10
255	<scp>PI</scp> 3â€kinase delta enhances axonal <scp>PIP</scp> ₃ to support axon regeneration in the adult <scp>CNS</scp> . EMBO Molecular Medicine, 2020, 12, e11674.	3.3	31
256	Development of Neuroregenerative Gene Therapy to Reverse Glial Scar Tissue Back to Neuron-Enriched Tissue. Frontiers in Cellular Neuroscience, 2020, 14, 594170.	1.8	40
257	Expression Profile of Long Non-Coding RNAs during Early Postnatal Development of Mouse Spinal Cord. Non-coding RNA, 2020, 6, 18.	1.3	1
258	Optogenetics and its application in neural degeneration and regeneration. Neural Regeneration Research, 2017, 12, 1197.	1.6	42
259	Emerging roles of the neural adaptor FE65 in neurite outgrowth. Neural Regeneration Research, 2018, 13, 2085.	1.6	4
260	Bioinformatics analyses of differentially expressed genes associated with spinal cord injury: A microarray-based analysis in a mouse model. Neural Regeneration Research, 2019, 14, 1262.	1.6	12
261	Axon regeneration induced by environmental enrichment- epigenetic mechanisms. Neural Regeneration Research, 2020, 15, 10.	1.6	13
262	Expression of long non-coding RNAs in complete transection spinal cord injury: a transcriptomic analysis. Neural Regeneration Research, 2020, 15, 1560.	1.6	17
263	Cdk5 Phosphorylation of STAT3 in Dorsal Root Ganglion Neurons Is Involved in Promoting Axonal Regeneration After Peripheral Nerve Injury. International Neurourology Journal, 2020, 24, S19-27.	0.5	9
264	Neural Stem Cells and Ischemic Brain. Journal of Stroke, 2016, 18, 267-272.	1.4	29
265	Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for NAD+ in axon regeneration. ELife, 2018, 7, .	2.8	34
266	Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in Drosophila. ELife, 2020, 9, .	2.8	23
267	An active vesicle priming machinery suppresses axon regeneration upon adult CNS injury. Neuron, 2022, 110, 51-69.e7.	3.8	40
268	Analysis of the early response to spinal cord injury identified a key role for mTORC1 signaling in the activation of neural stem progenitor cells. Npj Regenerative Medicine, 2021, 6, 68.	2.5	4
269	Genes and miRNAs as Hurdles and Promoters of Corticospinal Tract Regeneration in Spinal Cord Injury. Frontiers in Cell and Developmental Biology, 2021, 9, 748911.	1.8	1
270	Heterogeneity and Molecular Markers for CNS Glial Cells Revealed by Single-Cell Transcriptomics. Cellular and Molecular Neurobiology, 2022, 42, 2629-2642.	1.7	18

# 271	ARTICLE Regrowing axons with alternative splicing. ELife, 2016, 5, .	IF 2.8	Citations 0
272	Targeting transcriptional regulators to regenerate midbrain dopaminergic axons in Parkinson's disease. Neural Regeneration Research, 2017, 12, 1814.	1.6	0
285	tec-1 kinase negatively regulates regenerative neurogenesis in planarians. ELife, 2020, 9, .	2.8	9
286	To grow and to stay, both controlled by RhoA: Opposing cellular effects on axon regeneration. Neuron, 2021, 109, 3395-3397.	3.8	2
287	Extracellular histones, a new class of inhibitory molecules of CNS axonal regeneration. Brain Communications, 2021, 3, fcab271.	1.5	8
288	Neural Stem Cells: Promoting Axonal Regeneration and Spinal Cord Connectivity. Cells, 2021, 10, 3296.	1.8	28
289	Modulation of Both Intrinsic and Extrinsic Factors Additively Promotes Rewiring of Corticospinal Circuits after Spinal Cord Injury. Journal of Neuroscience, 2021, 41, 10247-10260.	1.7	11
290	The relation between neurite growth inhibitor factor and spinal cord injury. , 2017, 3, 25-31.		0
291	Critical Examination of Ptbp1-Mediated Glia-to-Neuron Conversion in the Mouse Retina. SSRN Electronic Journal, 0, , .	0.4	0
292	Central nervous system regeneration. Cell, 2022, 185, 77-94.	13.5	85
293	A closed-loop multi-scale model for intrinsic frequency-dependent regulation of axonal growth. Mathematical Biosciences, 2022, 344, 108768.	0.9	1
294	Rehabilitative training paired with peripheral stimulation promotes motor recovery after ischemic cerebral stroke. Experimental Neurology, 2022, 349, 113960.	2.0	9
298	Transplanting Neural Progenitor Cells into a Chronic Dorsal Column Lesion Model. Biomedicines, 2022, 10, 350.	1.4	4
299	Regenerating the Injured Spinal Cord at the Chronic Phase by Engineered iPSCsâ€Derived 3D Neuronal Networks. Advanced Science, 2022, 9, e2105694.	5.6	23
301	Brain delivering RNA-based therapeutic strategies by targeting mTOR pathway for axon regeneration after central nervous system injury. Neural Regeneration Research, 2022, 17, 2157.	1.6	15
302	Graphene and graphene-based materials in axonal repair of spinal cord injury. Neural Regeneration Research, 2022, 17, 2117.	1.6	10
303	Dendrite regeneration in C. elegans is controlled by the RAC GTPase CED-10 and the RhoGEF TIAM-1. PLoS Genetics, 2022, 18, e1010127.	1.5	11
304	A Critical Role for DLK and LZK in Axonal Repair in the Mammalian Spinal Cord. Journal of Neuroscience, 2022, 42, 3716-3732.	1.7	14

#	Article	IF	Citations
306	Neuroinflammation, Microglia and Implications for Retinal Ganglion Cell Survival and Axon Regeneration in Traumatic Optic Neuropathy. Frontiers in Immunology, 2022, 13, 860070.	2.2	26
307	JNK1-Dependent Phosphorylation of GAP-43 Serine 142 is a Novel Molecular Marker for Axonal Growth. Neurochemical Research, 2022, 47, 2668-2682.	1.6	2
308	New insights into peripheral nerve regeneration: The role of secretomes. Experimental Neurology, 2022, 354, 114069.	2.0	21
309	Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Research, 2022, 10, 35.	5.4	64
310	The metabolomic profiling identifies N, Nâ€dimethylglycine as a facilitator of dorsal root ganglia neuron axon regeneration after injury. FASEB Journal, 2022, 36, e22305.	0.2	5
311	Unfolded protein response-induced expression of long noncoding RNA Ngrl1 supports peripheral axon regeneration by activating the PI3K-Akt pathway. Experimental Neurology, 2022, 352, 114025.	2.0	5
312	Exploration of the strategies to enhance the regeneration of the optic nerve. Experimental Eye Research, 2022, 219, 109068.	1.2	0
313	Exosomal microRNAs have great potential in the neurorestorative therapy for traumatic brain injury. Experimental Neurology, 2022, 352, 114026.	2.0	11
314	Sexual Dimorphism of Early Transcriptional Reprogramming in Dorsal Root Ganglia After Peripheral Nerve Injury. Frontiers in Molecular Neuroscience, 2021, 14, 779024.	1.4	10
318	Programming axonal mitochondrial maintenance and bioenergetics in neurodegeneration and regeneration. Neuron, 2022, 110, 1899-1923.	3.8	62
336	Co-targeting B-RAF and PTEN Enables Sensory Axons to Regenerate Across and Beyond the Spinal Cord Injury. Frontiers in Molecular Neuroscience, 2022, 15, 891463.	1.4	2
337	Establishing Neuronal Polarity: Microtubule Regulation during Neurite Initiation. , 0, , .		0
338	Self-delivering RNAi compounds as therapeutic agents in the central nervous system to enhance axonal regeneration after injury. IScience, 2022, 25, 104379.	1.9	0
339	The Immunological Roles of Olfactory Ensheathing Cells in the Treatment of Spinal Cord Injury. Frontiers in Immunology, 2022, 13, .	2.2	8
340	Remodeling mitochondrial transport and cellular energetics in axonal regeneration and spinal cord injury. , 2022, , 199-213.		0
341	Self-Renewing Macrophages in Dorsal Root Ganglia Contribute to Promote Nerve Regeneration. SSRN Electronic Journal, 0, , .	0.4	0
342	RSK1 promotes mammalian axon regeneration by inducing the synthesis of regeneration-related proteins. PLoS Biology, 2022, 20, e3001653.	2.6	9
344	The regenerative capacity of neonatal tissues. Development (Cambridge), 2022, 149, .	1.2	4

#	Article	IF	CITATIONS
345	Critical examination of Ptbp1-mediated glia-to-neuron conversion in the mouse retina. Cell Reports, 2022, 39, 110960.	2.9	26
346	Development of a polyacrylamide/chitosan composite hydrogel conduit containing synergistic cues of elasticity and topographies for promoting peripheral nerve regeneration. Biomaterials Science, 2022, 10, 4915-4932.	2.6	8
347	Overlapping transcriptional programs promote survival and axonal regeneration of injured retinal ganglion cells. Neuron, 2022, 110, 2625-2645.e7.	3.8	48
348	Optic nerve repair and regeneration in vertebrates. Scientia Sinica Vitae, 2022, 52, 988-1005.	0.1	0
349	Core transcription programs controlling injury-induced neurodegeneration of retinal ganglion cells. Neuron, 2022, 110, 2607-2624.e8.	3.8	45
350	Gas5 inhibition promotes the axon regeneration in the adult mammalian nervous system. Experimental Neurology, 2022, 356, 114157.	2.0	8
351	Reduced graphene oxide-embedded nerve conduits loaded with bone marrow mesenchymal stem cell-derived extracellular vesicles promote peripheral nerve regeneration. Neural Regeneration Research, 2023, 18, 200.	1.6	15
353	Genetic control of neuronal activity enhances axonal growth only on permissive substrates. Molecular Medicine, 2022, 28, .	1.9	1
355	Intrinsic regulation of axon regeneration after spinal cord injury: Recent advances and remaining challenges. Experimental Neurology, 2022, 357, 114198.	2.0	5
356	Treating peripheral nerve injury-induced spinal cord degeneration and neuropathic pain with peripherally administrated stem cells. Neural Regeneration Research, 2023, 18, 537.	1.6	1
357	Cyclophilin D-induced mitochondrial impairment confers axonal injury after intracerebral hemorrhage in mice. Neural Regeneration Research, 2023, 18, 849.	1.6	3
358	Transplantation of PSA-NCAM-Positive Neural Precursors from Human Embryonic Stem Cells Promotes Functional Recovery in an Animal Model of Spinal Cord Injury. Tissue Engineering and Regenerative Medicine, 2022, 19, 1349-1358.	1.6	7
359	A Scientific Approach to Conscious Experience, Introspection, and Unconscious Processing: Vision and Blindsight. Brain Sciences, 2022, 12, 1305.	1.1	0
361	Liver Kinase B1 Functions as a Regulator for Neural Development and a Therapeutic Target for Neural Repair. Cells, 2022, 11, 2861.	1.8	3
364	ARNO is recruited by the neuronal adaptor FE65 to potentiate ARF6-mediated neurite outgrowth. Open Biology, 2022, 12, .	1.5	4
365	Overexpressing eukaryotic elongation factor 1 alpha (eEF1A) proteins to promote corticospinal axon repair after injury. Cell Death Discovery, 2022, 8, .	2.0	14
366	miR-328a-3p modulates the proliferative and migratory abilities of Schwann cells in peripheral nerves. Neuroscience Letters, 2022, 791, 136893.	1.0	2
367	Microfluidic devices as model platforms of CNS injury-ischemia to study axonal regeneration by regulating mitochondrial transport and bioenergetic metabolism. Cell Regeneration, 2022, 11, .	1.1	4

#	Article	IF	CITATIONS
368	Molecular and Regenerative Characterization of Repair and Non-repair Schwann Cells. Cellular and Molecular Neurobiology, 0, , .	1.7	3
369	Transcriptional Control of Peripheral Nerve Regeneration. Molecular Neurobiology, 2023, 60, 329-341.	1.9	12
371	Therapeutic Effect of Biomimetic Scaffold Loaded with Human Amniotic Epithelial Cell-Derived Neural-like Cells for Spinal Cord Injury. Bioengineering, 2022, 9, 535.	1.6	4
372	Guidance landscapes unveiled by quantitative proteomics to control reinnervation in adult visual system. Nature Communications, 2022, 13, .	5.8	11
373	De novo establishment of circuit modules restores locomotion after spinal cord injury in adult zebrafish. Cell Reports, 2022, 41, 111535.	2.9	6
374	Targeting PTEN but not SOCS3 resists an age-dependent decline in promoting axon sprouting. IScience, 2022, 25, 105383.	1.9	3
375	Integrated analyses reveal evolutionarily conserved and specific injury response genes in dorsal root ganglion. Scientific Data, 2022, 9, .	2.4	1
376	A bionic multichannel nanofiber conduit carrying Tubastatin A for repairing injured spinal cord. Materials Today Bio, 2022, 17, 100454.	2.6	0
377	Driving axon regeneration by orchestrating neuronal and non-neuronal innate immune responses via the IFNÎ ³ -cGAS-STING axis. Neuron, 2023, 111, 236-255.e7.	3.8	15
378	Maf1 is an intrinsic suppressor against spontaneous neural repair and functional recovery after ischemic stroke. Journal of Advanced Research, 2023, 51, 73-90.	4.4	3
379	Axonal Regeneration Mediated by a Novel Axonal Guidance Pair, Galectin-1 and Secernin-1. Molecular Neurobiology, 2023, 60, 1250-1266.	1.9	2
380	Downregulation of UBE4B promotes CNS axon regrowth and functional recovery after stroke. IScience, 2023, 26, 105885.	1.9	0
381	Research hotspots and trends for axon regeneration (2000–2021): a bibliometric study and systematic review. Inflammation and Regeneration, 2022, 42, .	1.5	2
382	Axonal Regeneration: Underlying Molecular Mechanisms and Potential Therapeutic Targets. Biomedicines, 2022, 10, 3186.	1.4	12
383	Brainâ€derived neurotrophic factor (<scp>BDNF</scp>) induces antagonistic action to Nogo signaling by the upregulation of lateral olfactory tract usher substance (<scp>LOTUS</scp>) expression. Journal of Neurochemistry, 2023, 164, 29-43.	2.1	2
384	Characterization of circular RNAs in dorsal root ganglia after central and peripheral axon injuries. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	1
385	Impact of Copper Nanoparticles and Copper lons on Transcripts Involved in Neural Repair Mechanisms in Rainbow Trout Olfactory Mucosa. Archives of Environmental Contamination and Toxicology, 2023, 84, 18-31.	2.1	3
386	Activation of MAP2K signaling by genetic engineering or HF-rTMS promotes corticospinal axon sprouting and functional regeneration. Science Translational Medicine, 2023, 15, .	5.8	4

#	Article	IF	CITATIONS
387	Mechanistic study of Coriandrum sativum on neuritogenesis and synaptogenesis based on computationally guided in vitro analyses. Journal of Ethnopharmacology, 2023, 306, 116165.	2.0	3
388	Fidgetin impacts axonal growth and branching in a local mTOR signal dependent manner. Experimental Neurology, 2023, 361, 114315.	2.0	2
389	Gliotransmission and adenosine signaling promote axon regeneration. Developmental Cell, 2023, 58, 660-676.e7.	3.1	3
390	Dendrite regeneration mediates functional recovery after complete dendrite removal. Developmental Biology, 2023, 497, 18-25.	0.9	3
391	Rapamycin suppresses neuroinflammation and protects retinal ganglion cell loss after optic nerve crush. International Immunopharmacology, 2023, 119, 110171.	1.7	4
392	Fibroblast exosomal TFAP2C induced by chitosan oligosaccharides promotes peripheral axon regeneration via the miR-132-5p/CAMKK1 axis. Bioactive Materials, 2023, 26, 249-263.	8.6	3
394	Effects of task-based rehabilitative training combined with PTEN/SOCS3 coinhibition promotes axon regeneration and upper extremity skilled motor function recovery after cervical spinal cord injury in adult mice. Neuroscience Letters, 2023, 800, 137121.	1.0	1
395	Effects of constitutively active K-Ras on axon regeneration after optic nerve injury. Neuroscience Letters, 2023, 799, 137124.	1.0	1
396	Mitochondrial dysfunction as a target in spinal cord injury: intimate correlation between pathological processes and therapeutic approaches. Neural Regeneration Research, 2023, 18, 2161.	1.6	2
397	A new peptide, VD11, promotes structural and functional recovery after spinal cord injury. Neural Regeneration Research, 2023, 18, 2260.	1.6	0
398	Increased level of exosomal miR-20b-5p derived from hypothermia-treated microglia promotes neurite outgrowth and synapse recovery after traumatic brain injury. Neurobiology of Disease, 2023, 179, 106042.	2.1	3
399	TIR-1/SARM1 inhibits axon regeneration and promotes axon degeneration. ELife, 0, 12, .	2.8	5
400	Defining Selective Neuronal Resilience and Identifying Targets for Neuroprotection and Axon Regeneration Using Single-Cell RNA Sequencing: Experimental Approaches. Methods in Molecular Biology, 2023, , 1-18.	0.4	1
401	Deep cortical microinfarction induced by femtosecond laser in mice: Long-term secondary pathological changes in corresponding superficial cortex. Neuroscience Letters, 2023, 802, 137170.	1.0	1
403	Ligand-Induced Activation of GPR110 (ADGRF1) to Improve Visual Function Impaired by Optic Nerve Injury. International Journal of Molecular Sciences, 2023, 24, 5340.	1.8	1
404	Cellular complexity of the peripheral nervous system: Insights from single-cell resolution. Frontiers in Neuroscience, 0, 17, .	1.4	2
405	The RSK2-RPS6 axis promotes axonal regeneration in the peripheral and central nervous systems. PLoS Biology, 2023, 21, e3002044.	2.6	5
406	Neuronal regeneration after injury: a new perspective on gene therapy. Frontiers in Neuroscience, 0, 17, .	1.4	3

IF CITATIONS ARTICLE # Ribosomal S6 kinases determine intrinsic axonal regeneration capacity. PLoS Biology, 2023, 21, 407 2.6 1 e3002094. Diosgenin restores memory function via SPARC-driven axonal growth from the hippocampus to the PFC in Alzheimerâ \in ^{Ms} disease model mice. Molecular Psychiatry, 0, , . 408 4.1 Role of cannabinoids in glaucoma: Lowering intraocular pressure or neuroprotection., 2023,, 418 0 523-539. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 2023, 8, . Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal 437 7.1 15 Transduction and Targeted Therapy, 2023, 8, . Axonale Regeneration im peripheren Nervensystem., 2023, , 1-101. Fluorescence imaging of peripheral nerve function and structure. Journal of Materials Chemistry B, O, 448 2.9 0 ,. Nerve Regeneration., 2023,, 535-577.

CITATION REPORT