Design of virus-based nanomaterials for medicine, biote

Chemical Society Reviews 45, 4074-4126 DOI: 10.1039/c5cs00287g

Citation Report

#	Article	IF	CITATIONS
2	Properties of Oil Palm Empty Fruit Bunch-Filled Recycled Acrylonitrile Butadiene Styrene Composites: Effect of Shapes and Filler Loadings with Random Orientation. BioResources, 2016, 12, .	0.5	10
3	Stimuli-Directed Helical Chirality Inversion and Bio-Applications. Polymers, 2016, 8, 310.	2.0	41
4	Stable Disk Assemblies of a Tobacco Mosaic Virus Mutant as Nanoscale Scaffolds for Applications in Drug Delivery. Bioconjugate Chemistry, 2016, 27, 2480-2485.	1.8	46
5	Design and Applications of Protein ageâ€Based Nanomaterials. Chemistry - an Asian Journal, 2016, 11, 2814-2828.	1.7	49
6	Unexpected Electrophoretic Behavior of Complexes between Rod-like Virions and Bivalent Antibodies. Analytical Chemistry, 2016, 88, 11908-11912.	3.2	0
7	Protein-templated synthesis of metal-based nanomaterials. Current Opinion in Biotechnology, 2017, 46, 14-19.	3.3	27
8	Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy. Nanoscale, 2017, 9, 2348-2357.	2.8	108
9	Synthetic plant virology for nanobiotechnology and nanomedicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1447.	3.3	75
10	DNAâ€modified artificial viral capsids selfâ€assembled from DNA onjugated <i>β</i> â€annulus peptide. Journal of Peptide Science, 2017, 23, 636-643.	0.8	27
11	Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends in Environmental Analytical Chemistry, 2017, 13, 10-23.	5.3	285
12	Quantum-dots-based photoelectrochemical bioanalysis highlighted with recent examples. Biosensors and Bioelectronics, 2017, 94, 207-218.	5.3	79
13	Silencing the roadblocks to effective triple-negative breast cancer treatments by siRNA nanoparticles. Endocrine-Related Cancer, 2017, 24, R81-R97.	1.6	21
14	Plant-Mediated Synthesis of Au Nanoparticles: Separation and Identification of Active Biomolecule in the Water Extract of <i>Cacumen Platycladi</i> . Industrial & Engineering Chemistry Research, 2017, 56, 5262-5270.	1.8	39
15	Expansion of the assembly of cowpea chlorotic mottle virus towards non-native and physiological conditions. Tetrahedron, 2017, 73, 4968-4971.	1.0	17
16	Immobilization of catalytic virus-like particles in a flow reactor. Chemical Communications, 2017, 53, 7632-7634.	2.2	20
17	Sortase-Mediated Ligation as a Modular Approach for the Covalent Attachment of Proteins to the Exterior of the Bacteriophage P22 Virus-like Particle. Bioconjugate Chemistry, 2017, 28, 2114-2124.	1.8	35
18	Cissus quadrangularis mediated ecofriendly synthesis of copper oxide nanoparticles and its antifungal studies against Aspergillus niger, Aspergillus flavus. Materials Science and Engineering C, 2017, 80, 38-44.	3.8	107
19	Elucidating Surface Ligand-Dependent Kinetic Enhancement of Proteolytic Activity at Surface-Modified Quantum Dots. ACS Nano, 2017, 11, 5884-5896.	7.3	39

#	Article	IF	CITATIONS
20	Natural and artificial protein cages: design, structure and therapeutic applications. Current Opinion in Structural Biology, 2017, 43, 148-155.	2.6	54
21	Delivery of Pesticides to Plant Parasitic Nematodes Using Tobacco Mild Green Mosaic Virus as a Nanocarrier. ACS Nano, 2017, 11, 4719-4730.	7.3	77
22	Length of encapsidated cargo impacts stability and structure of <i>in vitro</i> assembled alphavirus core-like particles. Journal of Physics Condensed Matter, 2017, 29, 484003.	0.7	19
23	Small molecules convey big messages: Boosting non-viral nucleic acid delivery with low molecular weight drugs. Nano Today, 2017, 16, 14-29.	6.2	15
24	Design of coiled-coil protein-origami cages that self-assemble in vitro and in vivo. Nature Biotechnology, 2017, 35, 1094-1101.	9.4	143
25	Photon Management through Virusâ€Programmed Supramolecular Arrays. Advanced Biology, 2017, 1, 1700088.	3.0	2
26	Elongated Plant Virus-Based Nanoparticles for Enhanced Delivery of Thrombolytic Therapies. Molecular Pharmaceutics, 2017, 14, 3815-3823.	2.3	41
27	Engineered Potato virus X nanoparticles support hydroxyapatite nucleation for improved bone tissue replacement. Acta Biomaterialia, 2017, 62, 317-327.	4.1	24
28	The synthesis of four–layer gold–silver–polymer–silver core–shell nanomushroom with inbuilt Raman molecule for surface–enhanced Raman scattering. Applied Surface Science, 2017, 426, 965-971.	3.1	13
29	Quantum dot encapsulation in virus-like particles with tuneable structural properties and low toxicity. RSC Advances, 2017, 7, 38110-38118.	1.7	21
30	Fluorescent Functionalization across Quaternary Structure in a Virus-like Particle. Bioconjugate Chemistry, 2017, 28, 2277-2283.	1.8	17
31	Supramolecular Protein Assemblies Based on DNA Templates. Journal of Physical Chemistry Letters, 2017, 8, 3970-3979.	2.1	15
32	Physalis Mottle Virus-Like Particles as Nanocarriers for Imaging Reagents and Drugs. Biomacromolecules, 2017, 18, 4141-4153.	2.6	63
33	TRAPped Structures: Making Artificial Cages with a Ring Protein. ACS Symposium Series, 2017, , 3-17.	0.5	0
34	Cucurbit[6]uril-Promoted Click Chemistry for Protein Modification. Journal of the American Chemical Society, 2017, 139, 9691-9697.	6.6	56
35	Graphene-based materials for capacitive deionization. Journal of Materials Chemistry A, 2017, 5, 13907-13943.	5.2	242
36	Controlling supramolecular polymerization through multicomponent selfâ€assembly. Journal of Polymer Science Part A, 2017, 55, 34-78.	2.5	117
37	Direct Electrochemistry and Catalytic Function on Oxygen Reduction Reaction of Electrodes Based on Two Kinds of Magnetic Nano-particles with Immobilized Laccase Molecules. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 201-214.	1.9	16

ARTICLE IF CITATIONS # Improving health-care delivery in low-resource settings with nanotechnology. Nanobiomedicine, 2017, 38 4.4 6 4, 184954351770115. Encapsulation of Inorganic Nanomaterials inside Virus-Based Nanoparticles for Bioimaging. 2.7 24 Nanotheranostics, 2017, 1, 358-368. 40 Protein cage assembly across multiple length scales. Chemical Society Reviews, 2018, 47, 3433-3469. 18.7 138 Slowâ€Release Formulation of Cowpea Mosaic Virus for In Situ Vaccine Delivery to Treat Ovarian 54 Cancer. Advanced Science, 2018, 5, 1700991. Programmable <i>In Vitro</i> Coencapsidation of Guest Proteins for Intracellular Delivery by 42 7.3 44 Virus-like Particles. ACS Nano, 2018, 12, 4615-4623. A highly efficient dual-diazonium reagent for protein crosslinking and construction of a virus-based gel. Organic and Biomolecular Chemistry, 2018, 16, 3353-3357. 1.5 Supramolecular approach towards light-harvesting materials based on porphyrins and chlorophylls. 44 5.2 156 Journal of Materials Chemistry A, 2018, 6, 6710-6753. Compartmentalized supramolecular hydrogels based on viral nanocages towards sophisticated cargo 2.8 14 administration. Nanoscale, 2018, 10, 4123-4129. Templated Formation of Luminescent Virus-like Particles by Tailor-Made Pt(II) Amphiphiles. Journal of 46 42 6.6 the American Chemical Society, 2018, 140, 2355-2362. Bioinspired Silicification Reveals Structural Detail in Self-Assembled Peptide Cages. ACS Nano, 2018, 12, 1420-1432. Reprogramming the Activatable Peptide Display Function of Adeno-Associated Virus Nanoparticles. ACS 48 7.38 Nano, 2018, 12, 1445-1454. Virus-Based Nanoparticles of Simian Virus 40 in the Field of Nanobiotechnology. Biotechnology 1.8 Journal, 2018, 13, 1700619. Viruses as Nanoparticles., 2018, , 161-193. 50 1 A DNA-Based Nanocarrier for Efficient Gene Delivery and Combined Cancer Therapy. Nano Letters, 2018, 4.5 18, 3328-3334. Development of temozolomide coated nano zinc oxide for reversing the resistance of malignant 52 3.8 14 glioma stem cells. Materials Science and Engineering C, 2018, 83, 44-50. Tobacco Mosaic Virus-Delivered Cisplatin Restores Efficacy in Platinum-Resistant Ovarian Cancer Cells. Molecular Pharmaceutics, 2018, 15, 2922-2931. Stability of plant virus-based nanocarriers in gastrointestinal fluids. Nanoscale, 2018, 10, 1667-1679. 54 2.8 40 Artificial bio-nanomachines based on protein needles derived from bacteriophage T4. Biophysical 1.5 Reviews, 2018, 10, 641-658.

#	Article	IF	CITATIONS
56	Peptide-directed encapsulation of inorganic nanoparticles into protein containers. Nanoscale, 2018, 10, 22917-22926.	2.8	38
57	Enrichment and Identification of Metallothionein by Functionalized Nano-Magnetic Particles and Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. Chinese Journal of Analytical Chemistry, 2018, 46, 1069-1076.	0.9	4
58	Biosilica as a source for inspiration in biological materials science. American Mineralogist, 2018, 103, 665-691.	0.9	62
59	Evaluation of Three Morphologically Distinct Virus-Like Particles as Nanocarriers for Convection-Enhanced Drug Delivery to Glioblastoma. Nanomaterials, 2018, 8, 1007.	1.9	64
60	Polymicrobial antibiofilm activity of the membranotropic peptide gH625 and its analogue. Microbial Pathogenesis, 2018, 125, 189-195.	1.3	33
61	Liquid crystalline filamentous biological colloids: Analogies and differences. Current Opinion in Colloid and Interface Science, 2018, 38, 30-44.	3.4	23
62	Particle-Stabilized Fluid-Fluid Interfaces: The Impact of Core Composition on Interfacial Structure. Frontiers in Chemistry, 2018, 6, 383.	1.8	3
63	Biotransporting Biocatalytic Reactors toward Therapeutic Nanofactories. Advanced Science, 2018, 5, 1800801.	5.6	43
64	Delivery of mitoxantrone using a plant virus-based nanoparticle for the treatment of glioblastomas. Journal of Materials Chemistry B, 2018, 6, 5888-5895.	2.9	36
65	Regulating the Uptake of Viral Nanoparticles in Macrophage and Cancer Cells via a pH Switch. Molecular Pharmaceutics, 2018, 15, 2984-2990.	2.3	11
66	Synthetic approaches to construct viral capsid-like spherical nanomaterials. Chemical Communications, 2018, 54, 8944-8959.	2.2	80
67	Nanomaterialâ€Based Organelles Protect Normal Cells against Chemotherapyâ€Induced Cytotoxicity. Advanced Materials, 2018, 30, e1801304.	11.1	49
68	Synthesis of transparent dispersions of aluminium hydroxide nanoparticles. Nanotechnology, 2018, 29, 305605.	1.3	4
69	Systemic Infection of <i> Nicotiana benthamiana</i> with <i> Potato virus X</i> Nanoparticles Presenting a Fluorescent iLOV Polypeptide Fused Directly to the Coat Protein. BioMed Research International, 2018, 2018, 1-12.	0.9	16
70	Compartmentalized Thin Films with Customized Functionality via Interfacial Crossâ€ l inking of Protein Cages. Advanced Functional Materials, 2018, 28, 1801574.	7.8	13
71	Pore-Forming Monopeptides as Exceptionally Active Anion Channels. Journal of the American Chemical Society, 2018, 140, 8817-8826.	6.6	57
72	Bottom-Up Assembly of TMV-Based Nucleoprotein Architectures on Solid Supports. Methods in Molecular Biology, 2018, 1776, 169-186.	0.4	1
73	Beyond the Matrix: The Many Non-ECM Ligands for Integrins. International Journal of Molecular Sciences, 2018, 19, 449.	1.8	63

#	Article	IF	CITATIONS
74	Nanoparticles for Signaling in Biodiagnosis and Treatment of Infectious Diseases. International Journal of Molecular Sciences, 2018, 19, 1627.	1.8	44
75	Bioinspired Silica Mineralization on Viral Templates. Methods in Molecular Biology, 2018, 1776, 337-362.	0.4	8
76	Nanoplasmonic optical antennas forÂlife sciences and medicine. Nature Reviews Materials, 2018, 3, 228-243.	23.3	106
77	Exploiting Chromophore–Protein Interactions through Linker Engineering To Tune Photoinduced Dynamics in a Biomimetic Light-Harvesting Platform. Journal of the American Chemical Society, 2018, 140, 6278-6287.	6.6	35
78	Nature's nanoparticles: using viruses as nanomedicines and for bioimaging. , 2018, , 29-50.		8
79	TMV Particles: The Journey From Fundamental Studies to Bionanotechnology Applications. Advances in Virus Research, 2018, 102, 149-176.	0.9	52
80	Therapeutic Potential of Biomineralizationâ€Based Engineering. Advanced Therapeutics, 2018, 1, 1800079.	1.6	18
81	Upregulation of osteogenesis of mesenchymal stem cells with virus-based thin films. Nanotheranostics, 2018, 2, 42-58.	2.7	10
82	Tobacco mosaic virus delivery of mitoxantrone for cancer therapy. Nanoscale, 2018, 10, 16307-16313.	2.8	47
83	Dual Functionalization of Rod-Shaped Viruses on Single Coat Protein Subunits. Methods in Molecular Biology, 2018, 1776, 405-424.	0.4	5
84	Polyvalent Hybrid Virus-Like Nanoparticles with Displayed Heparin Antagonist Peptides. Molecular Pharmaceutics, 2018, 15, 2997-3004.	2.3	7
85	Selfâ€Assembly of Functional Discrete Threeâ€Dimensional Architectures in Water. Angewandte Chemie - International Edition, 2019, 58, 1280-1307.	7.2	48
86	Concentric FRET: a review of the emerging concept, theory, and applications. Methods and Applications in Fluorescence, 2019, 7, 042001.	1.1	19
87	A single-molecule atomic force microscopy study reveals the antiviral mechanism of tannin and its derivatives. Nanoscale, 2019, 11, 16368-16376.	2.8	13
88	Intracellular trafficking and endocytic uptake pathway of Pepper vein banding virus-like particles in epithelial cells. Nanomedicine, 2019, 14, 1247-1265.	1.7	7
89	Radiation Brightening from Virus-like Particles. ACS Nano, 2019, 13, 11401-11408.	7.3	4
90	Adaptive Polymeric Assemblies for Applications in Biomimicry and Nanomedicine. Biomacromolecules, 2019, 20, 4053-4064.	2.6	21
91	A Self-Assembled Platform Based on Branched DNA for sgRNA/Cas9/Antisense Delivery. Journal of the American Chemical Society, 2019, 141, 19032-19037.	6.6	93

#	Article	IF	CITATIONS
92	Functionalized Tobacco Mosaic Virus Coat Protein Monomers and Oligomers as Nanocarriers for Anti-Cancer Peptides. Cancers, 2019, 11, 1609.	1.7	19
93	Three-dimensional assembly of silver nanoparticles spatially confined by cellular structure of Spirulina, from nanospheres to nanosheets. Nanotechnology, 2019, 30, 495704.	1.3	7
94	Layered double hydroxide nanostructures and nanocomposites for biomedical applications. Journal of Materials Chemistry B, 2019, 7, 5583-5601.	2.9	108
95	Structural puzzles in virology solved with an overarching icosahedral design principle. Nature Communications, 2019, 10, 4414.	5.8	66
96	Organic Templates for Inorganic Nanocrystal Growth. Energy and Environmental Materials, 2019, 2, 38-54.	7.3	21
97	Harnessed viruses in the age of metagenomics and synthetic biology: an update on infectious clone assembly and biotechnologies of plant viruses. Plant Biotechnology Journal, 2019, 17, 1010-1026.	4.1	44
98	Biocatalytically induced surface modification of the tobacco mosaic virus and the bacteriophage M13. Chemical Communications, 2019, 55, 51-54.	2.2	3
99	Antimicrobial Gold Nanoclusters: Recent Developments and Future Perspectives. International Journal of Molecular Sciences, 2019, 20, 2924.	1.8	110
100	Cowpea Mosaic Virus Immunotherapy Combined with Cyclophosphamide Reduces Breast Cancer Tumor Burden and Inhibits Lung Metastasis. Advanced Science, 2019, 6, 1802281.	5.6	50
101	Three-Dimensional Protein Cage Array Capable of Active Enzyme Capture and Artificial Chaperone Activity. Nano Letters, 2019, 19, 3918-3924.	4.5	69
102	M13 phage as network frame for the quantification of Pb2+ based on the Pb2+-induced in-situ growth of gold nanoparticles. Analytica Chimica Acta, 2019, 1073, 72-78.	2.6	6
103	A Pore-Forming Tripeptide as an Extraordinarily Active Anion Channel. Organic Letters, 2019, 21, 4826-4830.	2.4	24
104	Bioprocess-inspired fabrication of materials with new structures and functions. Progress in Materials Science, 2019, 105, 100571.	16.0	76
105	Physalis Mottle Virus-like Nanoparticles for Targeted Cancer Imaging. ACS Applied Materials & Interfaces, 2019, 11, 18213-18223.	4.0	42
106	Photocatalytic Degradation of Azo Dye Using Biogenic SnO2 Nanoparticles with Antifungal Property: RSM Optimization and Kinetic Study. Journal of Cluster Science, 2019, 30, 1335-1345.	1.7	12
107	Plant/Bacterial Virus-Based Drug Discovery, Drug Delivery, and Therapeutics. Pharmaceutics, 2019, 11, 211.	2.0	34
108	Multi omponent Selfâ€Assembly of Proteins and Inorganic Particles: From Discrete Structures to Biomimetic Materials. Israel Journal of Chemistry, 2019, 59, 906-912.	1.0	4
109	Heterologous Prime-Boost Enhances the Antitumor Immune Response Elicited by Plant-Virus-Based Cancer Vaccine. Journal of the American Chemical Society, 2019, 141, 6509-6518.	6.6	55

		CITATION REPORT	
#	Article	IF	CITATIONS
110	Cargo-Compatible Encapsulation in Virus-Based Nanoparticles. Nano Letters, 2019, 19, 2700-2706.	4.5	24
111	Selbstorganisation von funktionellen diskreten dreidimensionalen Architekturen in Wasser. Angewandte Chemie, 2019, 131, 1292-1320.	1.6	12
112	Construction of Artificial Viral Capsids Encapsulating Short DNAs via Disulfide Bonds and Controlled Release of DNAs by Reduction. Chemistry Letters, 2019, 48, 544-546.	0.7	16
113	Small, Smaller, Nano: New Applications for Potato Virus X in Nanotechnology. Frontiers in Plant Science, 2019, 10, 158.	1.7	39
114	Let There Be Light: Targeted Photodynamic Therapy Using High Aspect Ratio Plant Viral Nanoparticl Macromolecular Bioscience, 2019, 19, e1800407.	es. 2.1	18
115	Biosynthesis of copper oxide nanoparticles using Enicostemma axillare (Lam.) leaf extract. Biochemistry and Biophysics Reports, 2019, 20, 100699.	0.7	51
116	Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25900-25908.	1 3.3	165
117	Development of improved dual-diazonium reagents for faster crosslinking of tobacco mosaic virus t form hydrogels. RSC Advances, 2019, 9, 29070-29077.	0 1.7	4
118	Plant virus-based materials for biomedical applications: Trends and prospects. Advanced Drug Delive Reviews, 2019, 145, 96-118.	ery 6.6	66
119	Redox Dual-Responsive and O ₂ â€Evolving Theranostic Nanosystem for Highly Selectiv Chemotherapy against Hypoxic Tumors. Theranostics, 2019, 9, 90-103.	e 4.6	31
120	Au _{<i>x</i>} Ag _{1–<i>x</i>} Nanocomposites with 40-Fold Emission Enhan Formed by the Electrostatic Assembly of Gold Nanoclusters and Silver Nanoclusters for Bioimaging and Bioanalysis. ACS Applied Nano Materials, 2019, 2, 408-417.	cement 2.4	25
121	Peptide Nanomaterials Designed from Natural Supramolecular Systems. Chemical Record, 2019, 19 843-858.	, 2.9	39
122	Emerging Trends in the Development of Plant Virus-Based Nanoparticles and Their Biomedical Applications. , 2019, , 61-82.		8
123	Biodistribution of Filamentous Plant Virus Nanoparticles: Pepino Mosaic Virus versus Potato Virus X Biomacromolecules, 2019, 20, 469-477.	2.6	18
124	From stars to stripes: RNAâ€directed shaping of plant viral protein templates—structural synthetic virology for smart biohybrid nanostructures. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1591.	3.3	24
125	Highly ordered protein cage assemblies: A toolkit for new materials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1578.	3.3	40
126	Plant Virus-Based Nanotechnologies. Women in Engineering and Science, 2020, , 57-69.	0.2	5
127	Women in Nanotechnology. Women in Engineering and Science, 2020, , .	0.2	1

#	Article	IF	CITATIONS
128	Biomimetic drug-delivery systems for the management of brain diseases. Biomaterials Science, 2020, 8, 1073-1088.	2.6	53
129	Virus-derived materials: bury the hatchet with old foes. Biomaterials Science, 2020, 8, 1058-1072.	2.6	10
130	Single-wavelength Excited Ratiometric Fluorescence pH Probe to Image Intracellular Trafficking of Tobacco Mosaic Virus. Chinese Journal of Polymer Science (English Edition), 2020, 38, 587-592.	2.0	5
131	Nanoassembly of Oligopeptides and DNA Mimics the Sequential Disassembly of a Spherical Virus. Angewandte Chemie - International Edition, 2020, 59, 3578-3584.	7.2	22
132	Plant Viruses and Bacteriophage-Based Reagents for Diagnosis and Therapy. Annual Review of Virology, 2020, 7, 559-587.	3.0	25
133	Switch from Polymorphic to Homogenous Selfâ€Assembly of Virusâ€Like Particles of Simian Virus 40 through Doubleâ€Cysteine Substitution. Small, 2020, 16, e2004484.	5.2	8
134	Antiviral nanoagents: More attention and effort needed?. Nano Today, 2020, 35, 100976.	6.2	23
135	Materials promoting viral gene delivery. Biomaterials Science, 2020, 8, 6113-6156.	2.6	35
136	Interfacially Bridging Covalent Network Yields Hyperstable and Ultralong Virusâ€Based Fibers for Engineering Functional Materials. Angewandte Chemie, 2020, 132, 18406-18412.	1.6	2
137	Field-Effect Sensors for Virus Detection: From Ebola to SARS-CoV-2 and Plant Viral Enhancers. Frontiers in Plant Science, 2020, 11, 598103.	1.7	55
138	Horseradish Peroxidase-Decorated Artificial Viral Capsid Constructed from β-Annulus Peptide via Interaction between His-Tag and Ni-NTA. Processes, 2020, 8, 1455.	1.3	7
139	Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnology Reports (Amsterdam, Netherlands), 2020, 27, e00518.	2.1	143
140	Efficient construction of a stable linear gene based on a TNA loop modified primer pair for gene delivery. Chemical Communications, 2020, 56, 9894-9897.	2.2	9
141	Engineering a Plant Viral Coat Protein for <i>In Vitro</i> Hybrid Self-Assembly of CO ₂ -Capturing Catalytic Nanofilaments. Biomacromolecules, 2020, 21, 3847-3856.	2.6	7
142	Two-tier supramolecular encapsulation of small molecules in a protein cage. Nature Communications, 2020, 11, 5410.	5.8	42
143	Orbigin and Fabrication of Dual Redox Responsive Nanoparticles with Diselenide Linkage Combined Photodynamically to Effectively Enhance Gene Expression. International Journal of Nanomedicine, 2020, Volume 15, 7297-7314.	3.3	7
144	Attachment of Ultralow Amount of Engineered Plant Viral Nanoparticles to Mesenchymal Stem Cells Enhances Osteogenesis and Mineralization. Advanced Healthcare Materials, 2020, 9, e2001245.	3.9	13
145	Analysis of the virome associated to grapevine downy mildew lesions reveals new mycovirus lineages. Virus Evolution, 2020, 6, veaa058.	2.2	104

#	Article	IF	CITATIONS
146	Doxorubicin‣oaded Physalis Mottle Virus Particles Function as a pHâ€Responsive Prodrug Enabling Cancer Therapy. Biotechnology Journal, 2020, 15, e2000077.	1.8	26
147	Synthesis, structure and properties of a 3D coordination polymer based on tetranuclear copper(I) and a tetra(triazole) ligand. Journal of Coordination Chemistry, 2020, 73, 2042-2054.	0.8	2
148	Chemical Strategies to Boost Cancer Vaccines. Chemical Reviews, 2020, 120, 11420-11478.	23.0	95
149	Prevention and treatment of autoimmune diseases with plant virus nanoparticles. Science Advances, 2020, 6, eaaz0295.	4.7	22
150	Affinity of plant viral nanoparticle potato virus X (PVX) towards malignant B cells enables cancer drug delivery. Biomaterials Science, 2020, 8, 3935-3943.	2.6	21
151	Biological Assembly of Modular Protein Building Blocks as Sensing, Delivery, and Therapeutic Agents. Annual Review of Chemical and Biomolecular Engineering, 2020, 11, 35-62.	3.3	14
152	Virus‣ike Particles as Theranostic Platforms. Advanced Therapeutics, 2020, 3, 1900194.	1.6	15
153	Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Advanced Drug Delivery Reviews, 2020, 156, 214-235.	6.6	231
154	Interfacially Bridging Covalent Network Yields Hyperstable and Ultralong Virusâ€Based Fibers for Engineering Functional Materials. Angewandte Chemie - International Edition, 2020, 59, 18249-18255.	7.2	4
155	Transglutaminase-mediated assembly of multi-enzyme pathway onto TMV brush surfaces for synthesis of bacterial autoinducer-2. Biofabrication, 2020, 12, 045017.	3.7	4
156	Tailoring two-dimensional surfaces with pillararenes based host–guest chemistry. Chinese Chemical Letters, 2020, 31, 3095-3101.	4.8	10
157	Supramolecular and biomacromolecular enhancement of metal-free magnetic resonance imaging contrast agents. Chemical Science, 2020, 11, 2045-2050.	3.7	34
158	Emergence by Design in Self-Assembling Protein Shells. ACS Nano, 2020, 14, 2565-2568.	7.3	5
159	Nanoassembly of Oligopeptides and DNA Mimics the Sequential Disassembly of a Spherical Virus. Angewandte Chemie, 2020, 132, 3606-3612.	1.6	4
160	Cryo-electron microscopy for the study of virus assembly. Nature Chemical Biology, 2020, 16, 231-239.	3.9	65
161	Nanomaterials/microorganism-integrated microbiotic nanomedicine. Nano Today, 2020, 32, 100854.	6.2	35
162	The Antitumor Efficacy of CpG Oligonucleotides is Improved by Encapsulation in Plant Virusâ€Like Particles. Advanced Functional Materials, 2020, 30, 1908743.	7.8	58
163	Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS Nano, 2020, 14, 2678-2701.	7.3	113

#	Article	IF	CITATIONS
164	Studying viruses using solution X-ray scattering. Biophysical Reviews, 2020, 12, 41-48.	1.5	14
165	On virus growth and form. Physics Reports, 2020, 847, 1-102.	10.3	104
166	Protein cages and virus-like particles: from fundamental insight to biomimetic therapeutics. Biomaterials Science, 2020, 8, 2771-2777.	2.6	44
167	Plant viral nanoparticles for packaging and in vivo delivery of bioactive cargos. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1629.	3.3	21
168	Site-Specific Antibody Conjugation Strategy to Functionalize Virus-Based Nanoparticles. Bioconjugate Chemistry, 2020, 31, 1408-1416.	1.8	27
169	Improving Cancer Immunotherapy Outcomes Using Biomaterials. Angewandte Chemie, 2020, 132, 17484-17495.	1.6	12
170	Improving Cancer Immunotherapy Outcomes Using Biomaterials. Angewandte Chemie - International Edition, 2020, 59, 17332-17343.	7.2	48
171	Intracellular microtubules as nano-scaffolding template self-assembles with conductive carbon nanotubes for biomedical device. Materials Science and Engineering C, 2020, 113, 110971.	3.8	6
172	Biological and synthetic template-directed syntheses of mineralized hybrid and inorganic materials. Progress in Materials Science, 2021, 116, 100712.	16.0	35
173	From infection to healing: The use of plant viruses in bioactive hydrogels. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1662.	3.3	15
174	M13 phage-based nanoprobe for SERS detection and inactivation of Staphylococcus aureus. Talanta, 2021, 221, 121668.	2.9	42
175	Branched Antisense and siRNA Coâ€Assembled Nanoplatform for Combined Gene Silencing and Tumor Therapy. Angewandte Chemie - International Edition, 2021, 60, 1853-1860.	7.2	48
176	Branched Antisense and siRNA Coâ€Assembled Nanoplatform for Combined Gene Silencing and Tumor Therapy. Angewandte Chemie, 2021, 133, 1881-1888.	1.6	10
177	Biomimetic Virus-Like Particles as Severe Acute Respiratory Syndrome Coronavirus 2 Diagnostic Tools. ACS Nano, 2021, 15, 1259-1272.	7.3	39
178	Rhomboidal Pt(II) Metallacycle-Based Hybrid Viral Nanoparticles for Cell Imaging. Inorganic Chemistry, 2021, 60, 431-437.	1.9	17
179	Recent Advances in Bioâ€Templated Metallic Nanomaterial Synthesis and Electrocatalytic Applications. ChemSusChem, 2021, 14, 758-791.	3.6	24
180	Nano-targeting lessons from the SARS-CoV-2. Nano Today, 2021, 36, 101012.	6.2	6
181	Asymmetrizing an icosahedral virus capsid by hierarchical assembly of subunits with designed asymmetry. Nature Communications, 2021, 12, 589.	5.8	12

#	Article	IF	CITATIONS
182	Capacitive Field-Effect Biosensor Studying Adsorption of Tobacco Mosaic Virus Particles. Micromachines, 2021, 12, 57.	1.4	21
183	Smart materials-integrated sensor technologies for COVID-19 diagnosis. Emergent Materials, 2021, 4, 169-185.	3.2	37
184	De Novo Designed Peptide and Protein Hairpins Selfâ€Assemble into Sheets and Nanoparticles. Small, 2021, 17, e2100472.	5.2	18
185	Synthesis of New Naphthyl Aceto Hydrazone-Based Metal Complexes: Micellar Interactions, DNA Binding, Antimicrobial, and Cancer Inhibition Studies. Molecules, 2021, 26, 1044.	1.7	10
186	Virus-Like Particles Produced Using the Brome Mosaic Virus Recombinant Capsid Protein Expressed in a Bacterial System. International Journal of Molecular Sciences, 2021, 22, 3098.	1.8	3
187	Bioâ€derived nanomaterials for energy storage and conversion. Nano Select, 2021, 2, 1682-1706.	1.9	11
188	P22 virus-like particles as an effective antigen delivery nanoplatform for cancer immunotherapy. Biomaterials, 2021, 271, 120726.	5.7	38
189	A Photoresponsive Artificial Viral Capsid Self-Assembled from an Azobenzene-Containing β-Annulus Peptide. International Journal of Molecular Sciences, 2021, 22, 4028.	1.8	2
190	Synthesis and Photobehavior of a New Dehydrobenzoannulene-Based HOF with Fluorine Atoms: From Solution to Single Crystals Observation. International Journal of Molecular Sciences, 2021, 22, 4803.	1.8	4
191	Microparticles and Nanoparticles from Plants—The Benefits of Bioencapsulation. Vaccines, 2021, 9, 369.	2.1	7
192	Fluorescence Correlation Spectroscopy Analysis of Effect of Molecular Crowding on Self-Assembly of β-Annulus Peptide into Artificial Viral Capsid. International Journal of Molecular Sciences, 2021, 22, 4754.	1.8	3
193	The pharmacology of plant virus nanoparticles. Virology, 2021, 556, 39-61.	1.1	29
194	Emerging Trends in Immunomodulatory Nanomaterials Toward Cancer Therapy. Synthesis Lectures on Biomedical Engineering, 2021, 16, i-84.	0.1	0
195	Biosynthesis of Zinc Oxide Nanomaterials from Plant Extracts and Future Green Prospects: A Topical Review. Advanced Sustainable Systems, 2021, 5, 2000266.	2.7	28
196	Reprogramming Virus Coat Protein Carboxylate Interactions for the Patterned Assembly of Hierarchical Nanorods. Biomacromolecules, 2021, 22, 2515-2523.	2.6	2
197	Polymer Coatings on Virus-like Particle Nanoreactors at Low Ionic Strength—Charge Reversal and Substrate Access. Biomacromolecules, 2021, 22, 2107-2118.	2.6	14
198	Nanozymes to fight the COVID-19 and future pandemics. Environmental Chemistry Letters, 2021, 19, 3951-3957.	8.3	16
199	Nanomedicine: A Diagnostic and Therapeutic Approach to COVID-19. Frontiers in Medicine, 2021, 8, 648005.	1.2	25

#	Article	IF	CITATIONS
200	Genetic Control of Aerogel and Nanofoam Properties, Applied to Ni–MnO <i>_x</i> Cathode Design. Advanced Functional Materials, 2021, 31, 2010867.	7.8	3
201	Designing S100A9-Targeted Plant Virus Nanoparticles to Target Deep Vein Thrombosis. Biomacromolecules, 2021, 22, 2582-2594.	2.6	8
202	Load and Display: Engineering Encapsulin as a Modular Nanoplatform for Protein-Cargo Encapsulation and Protein-Ligand Decoration Using Split Intein and SpyTag/SpyCatcher. Biomacromolecules, 2021, 22, 3028-3039.	2.6	25
203	Fusogenic Viral Protein-Based Near-Infrared Active Nanocarriers for Biomedical Imaging. ACS Biomaterials Science and Engineering, 2021, 7, 3351-3360.	2.6	3
204	New generation of viral nanoparticles for targeted drug delivery in cancer therapy. Journal of Drug Targeting, 2022, 30, 151-165.	2.1	13
205	An Ultrastable Virusâ€Like Particle with a Carbon Dot Core and Expanded Sequence Plasticity. Small, 2021, 17, 2101717.	5.2	2
206	Combining nanomedicine and immune checkpoint therapy for cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1739.	3.3	19
207	Cargo encapsulated hepatitis E virus-like particles for anti-HEV antibody detection. Biosensors and Bioelectronics, 2021, 185, 113261.	5.3	8
208	Analysis of Engineered Tobacco Mosaic Virus and Potato Virus X Nanoparticles as Carriers for Biocatalysts. Frontiers in Plant Science, 2021, 12, 710869.	1.7	7
209	Protein interface redesign facilitates the transformation of nanocage building blocks to 1D and 2D nanomaterials. Nature Communications, 2021, 12, 4849.	5.8	13
210	Photothermal ablation of pathogenic bacteria by chensinin-1b modified gold nanoparticles. Journal of Drug Delivery Science and Technology, 2021, 66, 102846.	1.4	1
211	Thermal-triggered packing of lipophilic NIR dye IR780 in hepatitis B core at critical ionic strength and cargo-host ratio for improved stability and enhanced cancer phototherapy. Biomaterials, 2021, 276, 121035.	5.7	25
212	Tumor Microenvironment Responsive Pepper Mild Mottle Virus-Based Nanotubes for Targeted Delivery and Controlled Release of Paclitaxel. Frontiers in Bioengineering and Biotechnology, 2021, 9, 763661.	2.0	5
213	Advances in Phage Inspired Nanoscience Based Therapy. , 2020, , 237-257.		2
215	Biomechanical Features of Graphene-Augmented Inorganic Nanofibrous Scaffolds and Their Physical Interaction with Viruses. Materials, 2021, 14, 164.	1.3	3
216	Shape selection and mis-assembly in viral capsid formation by elastic frustration. ELife, 2020, 9, .	2.8	17
217	Customized materials-assisted microorganisms in tumor therapeutics. Chemical Society Reviews, 2021, 50, 12576-12615.	18.7	43
218	Use of lentiviral vectors in vaccination. Expert Review of Vaccines, 2021, 20, 1571-1586.	2.0	16

#	Article	IF	Citations
219	Applications of Charge Detection Mass Spectrometry in Molecular Biology and Biotechnology. Chemical Reviews, 2022, 122, 7415-7441.	23.0	45
222	Two Cu(II) and Zn(II) complexes derived from 5-(Pyrazol-1-yl)nicotinic acid: Crystal structure, DNA binding and anticancer studies. Journal of Solid State Chemistry, 2022, 305, 122707.	1.4	10
223	Biomedical Applications of Viral Nanoparticles in Vaccine Therapy. , 2020, , 213-236.		1
226	Recombinant Retroviral Particles: Technology of Poduction and Application as Positive Controls for PCR Diagnostics of Dangerous Viral Infections. Problemy Osobo Opasnykh Infektsii, 2020, , 115-121.	0.2	0
228	Registration approach of viruses by using the electromagnetic echo effect. , 2021, , .		0
230	Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Advanced Drug Delivery Reviews, 2022, 181, 114041.	6.6	26
231	Harnessing physicochemical properties of virus capsids for designing enzyme confined nanocompartments. Current Opinion in Virology, 2022, 52, 250-257.	2.6	6
232	<i>In situ</i> silver nanoparticle coating of virions for quantification at single virus level. Nanoscale, 2022, 14, 2296-2303.	2.8	8
233	Bionanomaterials: definitions, sources, types, properties, toxicity, and regulations. , 2022, , 1-29.		5
234	Mechanisms of cellular and humoral immunity through the lens of VLP-based vaccines. Expert Review of Vaccines, 2022, 21, 453-469.	2.0	5
235	A prototype protein nanocage minimized from carboxysomes with gated oxygen permeability. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
236	Immunogenicity of Multi-Target Chimeric RHDV Virus-Like Particles Delivering Foreign B-Cell Epitopes. Vaccines, 2022, 10, 229.	2.1	4
237	Tetrahedral DNA nanostructures for effective treatment of cancer: advances and prospects. Journal of Nanobiotechnology, 2021, 19, 412.	4.2	43
238	Functionalizing silica sol–gel with entrapped plant virus-based immunosorbent nanoparticles. Journal of Nanobiotechnology, 2022, 20, 105.	4.2	2
239	Protein Cages: From Fundamentals to Advanced Applications. Chemical Reviews, 2022, 122, 9145-9197.	23.0	54
240	Alcohol-perturbed self-assembly of the tobacco mosaic virus coat protein. Beilstein Journal of Nanotechnology, 2022, 13, 355-362.	1.5	1
241	Bioconjugation of Active Ingredients to Plant Viral Nanoparticles Is Enhanced by Preincubation with a Pluronic F127 Polymer Scaffold. ACS Applied Materials & Interfaces, 2021, 13, 59618-59632.	4.0	10
243	Affinity Sedimentation and Magnetic Separation With Plant-Made Immunosorbent Nanoparticles for Therapeutic Protein Purification. Frontiers in Bioengineering and Biotechnology, 2022, 10, 865481.	2.0	1

#	Article	IF	CITATIONS
244	Multilayered Ordered Protein Arrays Self-Assembled from a Mixed Population of Virus-like Particles. ACS Nano, 2022, 16, 7662-7673.	7.3	8
245	Chemical labeling and crosslinking of tobacco mosaic virus <i>via</i> multi-diazonium reagents: examples, applications, and prospects. Materials Advances, 2022, 3, 5248-5259.	2.6	4
247	Nanostructured Materials from Biobased Precursors for Renewable Energy Storage Applications. ACS Symposium Series, 0, , 307-366.	0.5	1
249	Nano-Biomaterials for Immunotherapy Applications. , 2022, , 30-48.		0
251	Unique advantages of nanomaterials in drug delivery and therapy against viruses. , 2022, , 41-55.		0
252	Antimicrobial properties of metal nanoclusters. , 2022, , 537-568.		0
253	Antimicrobial Properties of Silver-Modified Denture Base Resins. Nanomaterials, 2022, 12, 2453.	1.9	11
254	Toxicologic Concerns with Current Medical Nanoparticles. International Journal of Molecular Sciences, 2022, 23, 7597.	1.8	15
255	Intrinsically Disordered Protein Micelles as Vehicles for Convection-Enhanced Drug Delivery to Glioblastoma Multiforme. ACS Applied Bio Materials, 2022, 5, 3695-3702.	2.3	2
256	A recent advancement on the applications of nanomaterials in electrochemical sensors and biosensors. Chemosphere, 2022, 308, 136416.	4.2	35
257	Microbiological Nanotechnology. Micro/Nano Technologies, 2022, , 1-29.	0.1	0
258	Multifunctional Plant Virus Nanoparticles for Targeting Breast Cancer Tumors. Vaccines, 2022, 10, 1431.	2.1	8
259	Charge detection mass spectrometry for the analysis of viruses and virus-like particles. Essays in Biochemistry, 2023, 67, 315-323.	2.1	6
260	Stabilization of Artificial Viral Capsid Using Surface Modification with BODIPY. Chemistry Letters, 2022, 51, 1087-1090.	0.7	0
261	Plug-and-Display Photo-Switchable Systems on Plant Virus Nanoparticles. BioTech, 2022, 11, 49.	1.3	1
262	New benzoyl acetohyrazone based metal complexes with Viral DNA binding and cleavage and antimicrobial treatments: Synthesis and biological activities. Journal of Molecular Structure, 2023, 1274, 134457.	1.8	1
263	Biomaterials Based on DNA Conjugates and Assemblies. , 2022, , 1-32.		0
264	Fitness Landscape-Guided Engineering of Locally Supercharged Virus-like Particles with Enhanced Cell Uptake Properties. ACS Chemical Biology, 2022, 17, 3367-3378.	1.6	3

#	Article	IF	Citations
265	Protein cargo encapsulation by <scp>virusâ€like</scp> particles: Strategies and applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	9
266	Application of Peptides in Construction of Nonviral Vectors for Gene Delivery. Nanomaterials, 2022, 12, 4076.	1.9	2
267	Multifunctional plant virus nanoparticles: An emerging strategy for therapy of cancer. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	6
268	Mechanistic modeling of viral particle production. Biotechnology and Bioengineering, 2023, 120, 629-641.	1.7	2
269	Nanoparticleâ€Mediated Radiotherapy Remodels the Tumor Microenvironment to Enhance Antitumor Efficacy. Advanced Materials, 2023, 35, .	11.1	29
270	Self-Adaptive Antibacterial Scaffold with Programmed Delivery of Osteogenic Peptide and Lysozyme for Infected Bone Defect Treatment. ACS Applied Materials & Interfaces, 2023, 15, 626-637.	4.0	3
271	Application of Nanotechnology in Thrombus Therapy. Advanced Healthcare Materials, 2023, 12, .	3.9	11
272	Microbiological Nanotechnology. Micro/Nano Technologies, 2023, , 525-553.	0.1	0
273	Clusters of polymersomes and Janus nanoparticles hierarchically self-organized and controlled by DNA hybridization. Nano Today, 2023, 48, 101741.	6.2	3
274	Nucleic acid nanostructure for delivery of CRISPR/Cas9â€based gene editing system. , 2023, 1, .		7
275	Viruses as biomaterials. Materials Science and Engineering Reports, 2023, 153, 100715.	14.8	4
277	An Insight Into the Consequences of Emerging Contaminants in Soil and Water and Plant Responses. Emerging Contaminants and Associated Treatment Technologies, 2023, , 1-27.	0.4	1
278	Electrostatic Theory of the Acidity of the Solution in the Lumina of Viruses and Virus-Like Particles. Journal of Physical Chemistry B, 2023, 127, 2160-2168.	1.2	4
279	Proteinâ€based Nanoparticles: From Drug Delivery to Imaging, Nanocatalysis and Protein Therapy. Angewandte Chemie, 0, , .	1.6	1
280	Proteinâ€based Nanoparticles: From Drug Delivery to Imaging, Nanocatalysis and Protein Therapy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
281	Emerging role of vaccines in glioblastoma treatment. , 0, 36, 1544-1556.		0
282	Immunization against Zika by entrapping live virus in a subcutaneous self-adjuvanting hydrogel. Nature Biomedical Engineering, 2023, 7, 928-942.	11.6	13
295	Recent trends of viral nanotechnology. , 2024, , 31-45.		0

#	Article	IF	CITATIONS
296	Plant Virus Nanoparticles and Their Applications. , 2023, , 182-191.		0
298	Biomaterials Based on DNA Conjugates and Assemblies. , 2023, , 2537-2568.		0
301	Construction of Higher-Order VLP-Based Materials and Their Effect on Diffusion and Partitioning. Springer Series in Biophysics, 2023, , 119-139.	0.4	0
303	Creating Artificial Viruses Using Self-assembled Proteins and Polypeptides. Springer Series in Biophysics, 2023, , 95-118.	0.4	0