Long-lived connection between southern Siberia and no Proterozoic

Nature Geoscience 9, 464-469 DOI: 10.1038/ngeo2700

Citation Report

#	Article	IF	CITATIONS
1	New data on geology of the Southern Urals: a concise summary of research after the period of EUROPROBE activity. Solid Earth, 2016, 7, 1269-1280.	2.8	2
2	Paleogeography of the Congo/SÃŁo Francisco craton at 1.5Ga: Expanding the core of Nuna supercontinent. Precambrian Research, 2016, 286, 195-212.	2.7	30
3	Proterozoic Dyke Swarms of the Siberian Craton and Their Geodynamic Implications. Acta Geologica Sinica, 2016, 90, 6-7.	1.4	4
4	A late Paleoproterozoic key pole for the Fennoscandian Shield: A paleomagnetic study of the Keuruu diabase dykes, Central Finland. Precambrian Research, 2016, 286, 379-397.	2.7	16
5	Age and Geochemical Characteristics of Major Mafic Dyke Swarms in the Southern Part of the Siberian Craton. Acta Geologica Sinica, 2016, 90, 125-126.	1.4	0
6	Advancing beyond May 1971: How Do We Deal with the Possibility of Complicated Dyke Geometries, Longâ€Lived Lips, and Contrasting Basement Geological Provinces?. Acta Geologica Sinica, 2016, 90, 31-33.	1.4	0
7	Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles. Earth and Planetary Science Letters, 2016, 449, 118-126.	4.4	316
8	Relationship between platinum-bearing ultramafic–mafic intrusions and large igneous provinces (<i>exemplified by the Siberian Craton</i>). Russian Geology and Geophysics, 2016, 57, 822-833.	0.7	27
9	The 1501 Ma Kuonamka Large Igneous Province of northern Siberia: U–Pb geochronology, geochemistry, and links with coeval magmatism on other crustal blocks. Russian Geology and Geophysics, 2016, 57, 653-671.	0.7	41
10	The 1.33–1.30 Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton. Earth and Planetary Science Letters, 2017, 465, 112-125.	4.4	125
11	Initiation of Snowball Earth with volcanic sulfur aerosol emissions. Geophysical Research Letters, 2017, 44, 1938-1946.	4.0	71
12	The Proterozoic evolution of northern Siberian Craton margin: a comparison of U–Pb–Hf signatures from sedimentary units of the Taimyr orogenic belt and the Siberian platform. International Geology Review, 2017, 59, 1632-1656.	2.1	40
13	The Columbia supercontinent revisited. Gondwana Research, 2017, 50, 67-83.	6.0	212
14	Investigating the Paleozoic–Mesozoic low-temperature thermal history of the southwestern Canadian Arctic: insights from (U–Th)/He thermochronology. Canadian Journal of Earth Sciences, 2017, 54, 430-444.	1.3	3
15	Petrochronology of Zircon and Baddeleyite in Igneous Rocks: Reconstructing Magmatic Processes at High Temporal Resolution. Reviews in Mineralogy and Geochemistry, 2017, 83, 297-328.	4.8	72
16	Turmoil before the boring billion: Paleomagnetism of the 1880–1860 Ma Uatumã event in the Amazonian craton. Gondwana Research, 2017, 49, 106-129.	6.0	41
17	Magnetic fabrics and rock magnetism of the Xiong'er volcanic rocks and their implications for tectonic correlation of the North China Craton with other crustal blocks in the Nuna/Columbia supercontinent. Tectonophysics, 2017, 712-713, 415-425.	2.2	24
18	A full-plate global reconstruction of the Neoproterozoic. Gondwana Research, 2017, 50, 84-134.	6.0	474

	CITATION RE	PORT	
Article		IF	Citations
How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, natural markers in the geological record. Palaeogeography, Palaeoclimatology, Palaeoe 478, 30-52.	, and represent cology, 2017,	2.3	301
Mechanical models for dikes: A third school of thought. Tectonophysics, 2017, 703-70	4, 98-118.	2.2	75
Age and origin of uranium mineralization in the Camie River deposit (Otish Basin, QuÃ Geology Reviews, 2017, 91, 196-215.	©bec, Canada). Ore	2.7	7
Neoproterozoic intraplate magmatism along the western margin of the Siberian Crator for breakup of the Rodinia supercontinent. Precambrian Research, 2017, 300, 315-331	h: Implications	2.7	41
Age, provenance and Precambrian evolution of the Anabar shield from U-Pb and Lu-Hf i detrital zircons, and the history of the northern and central Siberian craton. Precambria 2017, 301, 134-144.		2.7	25
Kinematic constraints on the Rodinia to Gondwana transition. Precambrian Research, 2	2017, 299, 132-150.	2.7	59
Snowball Earth climate dynamics and Cryogenian geology-geobiology. Science Advance e1600983.	es, 2017, 3,	10.3	424
Neoproterozoic paleogeography of the Tarim Block: An extended or alternative "mi for Rodinia?. Earth and Planetary Science Letters, 2017, 458, 92-106.	ssing-link―model	4.4	88

27 Mineralogy, age and genesis of apatite-dolomite ores at the Seligdar apatite deposit (Central Aldan,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

28	Paleomagnetic evidence for a large rotation of the Yukon block relative to Laurentia: Implications for a low-latitude Sturtian glaciation and the breakup of Rodinia. Bulletin of the Geological Society of America, 2017, 129, 38-58.	3.3	13
29	Mesoproterozoic geomagnetic reversal asymmetry in light of new paleomagnetic and geochronological data for the H¤ne dyke swarm, Finland: Implications for the Nuna supercontinent. Precambrian Research, 2017, 288, 1-22.	2.7	22
30	10. Petrochronology of Zircon and Baddeleyite in Igneous Rocks: Reconstructing Magmatic Processes at High Temporal Resolution. , 2017, , .		9
31	Balkatach hypothesis: A new model for the evolution of the Pacific, Tethyan, and Paleo-Asian oceanic domains. , 2017, 13, 1664-1712.		79
32	In situ U-Pb geochronology and geochemistry of a 1.13†Ga mafic dyke suite at Bunger Hills, East Antarctica: The end of the Albany-Fraser Orogeny. Precambrian Research, 2018, 310, 76-92.	2.7	11
33	Granulite accretion to Rio de la Plata Craton, based on zircon U-Pb-Hf isotopes: Tectonic implications for Columbia Supercontinent reconstruction. Gondwana Research, 2018, 56, 105-118.	6.0	39
34	A 1.88â€ ⁻ Ga giant radiating mafic dyke swarm across southern India and Western Australia. Precambrian Research, 2018, 308, 58-74.	2.7	45
35	Isotopic and trace element geochemistry of the Seligdar magnesiocarbonatites (South Yakutia, Russia): Insights regarding the mantle evolution beneath the Aldan-Stanovoy shield. Journal of Asian Earth Sciences, 2018, 154, 354-368.	2.3	17
36	The Dovyren Intrusive Complex (Southern Siberia, Russia): Insights into dynamics of an open magma chamber with implications for parental magma origin, composition, and Cu-Ni-PGE fertility. Lithos, 2018, 302-303, 242-262.	1.4	28

#

#	Article	IF	CITATIONS
37	Rift–Related Sediments of the Passive Continental Margin of the Paleo-Asian Ocean (Baikal Segment). Doklady Earth Sciences, 2018, 478, 171-174.	0.7	3
38	Blueschist facies fault tectonites from the western margin of the Siberian Craton: Implications for subduction and exhumation associated with early stages of the Paleo-Asian Ocean. Lithos, 2018, 304-307, 468-488.	1.4	25
39	Magnetite-apatite-dolomitic rocks of Ust-Chulman (Aldan shield, Russia): Seligdar-type carbonatites?. Mineralogy and Petrology, 2018, 112, 257-266.	1.1	6
40	Cryogenian magmatism along the north-western margin of Laurentia: Plume or rift?. Precambrian Research, 2018, 319, 144-157.	2.7	15
41	Dominant Lid Tectonics behaviour of continental lithosphere inÂPrecambrian times: Palaeomagnetism confirms prolonged quasi-integrity and absence of supercontinent cycles. Geoscience Frontiers, 2018, 9, 61-89.	8.4	20
42	The Neoproterozoic evolution of the western Siberian Craton margin: U-Pb-Hf isotopic records of detrital zircons from the Yenisey Ridge and the Prisayan Uplift. Precambrian Research, 2018, 305, 197-217.	2.7	36
44	Geodynamic Significance of the Mesoproterozoic Magmatism of the Udzha Paleo-Rift (Northern) Tj ETQq0 0 0 r 2018, 8, 555.	gBT /Overl 2.0	ock 10 Tf 50 12
45	Gabbro-peridotite sills of the Late Riphean Dovyren plutonic complex (northern Baikal area, Russia). Russian Geology and Geophysics, 2018, 59, 472-485.	0.7	12
46	The oldest (~1.9 Ga) metadolerites of the southern Siberian craton: age, petrogenesis, and tectonic setting. Russian Geology and Geophysics, 2018, 59, 1548-1559.	0.7	6
47	Geochemistry and Petrogenesis of Mesoproterozoic Dykes of the Irkutsk Promontory, Southern Part of the Siberian Craton. Minerals (Basel, Switzerland), 2018, 8, 545.	2.0	13
49	Where and when did the Paleo-Asian ocean form?. Precambrian Research, 2018, 317, 241-252.	2.7	52
50	Rifting of western Laurentia at 1.38 Ga: The Hart River sills of Yukon, Canada. Lithos, 2018, 316-317, 243-260.	1.4	16
51	True Polar Wander: A Key Indicator for Plate Configuration and Mantle Convection During the Late Neoproterozoic. Geochemistry, Geophysics, Geosystems, 2018, 19, 3478-3495.	2.5	25
52	Neoproterozoic magmatic Ni–Cu–(PGE) sulfide deposits related to the assembly and breakup of the Rodinia supercontinent in China: An overview. Ore Geology Reviews, 2018, 99, 282-302.	2.7	7
53	Palaeomagnetism of the 1.89â€ [–] Ga Boonadgin dykes of the Yilgarn Craton: Possible connection with India. Precambrian Research, 2019, 329, 211-223.	2.7	21
54	The First U–Pb (SHRIMP II) Evidence of the Franklin Tectonic Event at the Western Margin of the Siberian Craton. Doklady Earth Sciences, 2019, 486, 605-608.	0.7	2
55	An advanced stepwise leaching technique for derivation of initial lead isotope ratios in ancient mafic rocks: A case study of Mesoproterozoic intrusions from the Udzha paleo-rift, Siberian Craton. Chemical Geology, 2019, 528, 119253.	3.3	1
56	New Isotope Constraints on the Time of Formation of the Nersa Dolerite Complex from the Biryusa–Sayan Area. Doklady Earth Sciences, 2019, 485, 363-367.	0.7	3

#	Article	IF	CITATIONS
57	A New Ectasian Event of Basitic Magmatism in the Southern Siberian Craton. Doklady Earth Sciences, 2019, 486, 507-511.	0.7	6
58	An appraisal of geochemical signatures of komatiites from the greenstone belts of Dharwar Craton, India : Implications for temporal transition and Archean upper mantle hydration. Geological Journal, 2019, 54, 3088.	1.3	6
59	Failed rifting and fast drifting: Midcontinent Rift development, Laurentia's rapid motion and the driver of Grenvillian orogenesis. Bulletin of the Geological Society of America, 2019, 131, 913-940.	3.3	72
60	The Proterozoic Pogor'uy Formation of Yenisei Ridge: Age and Provenance Sources According to U/Pb Dating of Detrital Zircons. Doklady Earth Sciences, 2019, 484, 28-31.	0.7	4
61	Two billion years of mantle evolution in sync with global tectonic cycles. Earth and Planetary Science Letters, 2019, 528, 115820.	4.4	4
62	Shoshonitic magmatism in the Paleoproterozoic of the south-western Siberian Craton: An analogue of the modern post-collision setting. Lithos, 2019, 328-329, 88-100.	1.4	21
63	Early Ordovician to Early Devonian tectonic development of the northern margin of Laurentia, Canadian Arctic Islands. Bulletin of the Geological Society of America, 2019, 131, 1075-1094.	3.3	23
64	From Kenorland to Modern Continents: Tectonics and Metallogeny. Geotectonics, 2019, 53, 169-192.	0.9	11
65	Precambrian Terranes of the Central Asian Orogenic Belt: Comparative Characteristics, Types, and Peculiarities of Tectonic Evolution. Geotectonics, 2019, 53, 1-23.	0.9	28
66	1U-Pb SIMS and Ar-Ar geochronology, petrography, mineralogy and gold mineralization of the late Mesozoic Amga alkaline rocks (Aldan shield, Russia). Ore Geology Reviews, 2019, 109, 520-534.	2.7	10
67	The same and not the same: Ore geology, mineralogy and geochemistry of Rodinia assembly versus other supercontinents. Earth-Science Reviews, 2019, 196, 102860.	9.1	16
68	A-type granites in the western margin of the Siberian Craton: Implications for breakup of the Precambrian supercontinents Columbia/Nuna and Rodinia. Precambrian Research, 2019, 328, 128-145.	2.7	31
69	The global tectonic context of the ca. 2.27-1.96 Ga Birimian Orogen – Insights from comparative studies, with implications for supercontinent cycles. Earth-Science Reviews, 2019, 193, 260-298.	9.1	32
70	Paleoproterozoic (2.0–1.97â€Ga) subduction-related magmatism on the north–central margin of the Yeongnam Massif, Korean Peninsula, and its tectonic implications for reconstruction of the Columbia supercontinent. Gondwana Research, 2019, 72, 34-53.	6.0	33
71	Petrography, mineralogy and SIMS U-Pb geochronology of 1.9–1.8ÂGa carbonatites and associated alkaline rocks of the Central-Aldan magnesiocarbonatite province (South Yakutia, Russia). Mineralogy and Petrology, 2019, 113, 329-352.	1.1	8
72	World-Class Mineral Deposits of Northeastern Transbaikalia, Siberia, Russia. Modern Approaches in Solid Earth Sciences, 2019, , .	0.3	3
73	Metallogenic Province of Northeastern Transbaikalia: A Summary. Modern Approaches in Solid Earth Sciences, 2019, , 285-291.	0.3	0
74	Regional Geology of the Kodar-Udokan Mineral District. Modern Approaches in Solid Earth Sciences, 2019, , 11-33.	0.3	0

#	Article	IF	CITATIONS
75	U-Pb detrital zircon geochronology and provenance of Neoproterozoic sedimentary rocks in southern Siberia: New insights into breakup of Rodinia and opening of Paleo-Asian Ocean. Gondwana Research, 2019, 65, 1-16.	6.0	50
76	Petrogenesis of Paleo-Mesoproterozoic mafic rocks in the southwestern Yangtze Block of South China: Implications for tectonic evolution and paleogeographic reconstruction. Precambrian Research, 2019, 322, 66-84.	2.7	49
77	The Cerro Rajón Formation—a new lithostratigraphic unit proposed for a Cambrian (Terreneuvian) volcano-sedimentary succession from the Caborca region, northwest Mexico. Journal of South American Earth Sciences, 2019, 89, 197-210.	1.4	11
78	New U–Pb Baddeleyite Ages of Mafic Dyke Swarms of the West African and Amazonian Cratons: Implication for Their Configuration in Supercontinents Through Time. Springer Geology, 2019, , 263-314.	0.3	18
79	Detrital zircon U–Pb ages of Paleo- to Neoproterozoic black shales of the Baikal-Patom Highlands in Siberia with implications to timing of metamorphism and gold mineralization. Journal of Asian Earth Sciences, 2019, 174, 37-58.	2.3	9
80	Geochemistry, zircon U-Pb and Lu-Hf systematics of high-grade metasedimentary sequences from the South Muya block (northeastern Central Asian Orogenic Belt): Reconnaissance of polymetamorphism and accretion of Neoproterozoic exotic blocks in southern Siberia. Precambrian Research, 2019, 321, 34-53.	2.7	17
81	How did the peripheral subduction drive the Rodinia breakup: Constraints from the Neoproterozoic tectonic process in the northern Tarim Craton. Precambrian Research, 2020, 339, 105612.	2.7	41
82	Paleomagnetism of 1.79ÂGa Pará de Minas mafic dykes: Testing a São Francisco/Congo-North China-Rio de la Plata connection in Columbia. Precambrian Research, 2020, 338, 105584.	2.7	23
83	New geochronologic and paleomagnetic results from early Neoproterozoic mafic sills and late Mesoproterozoic to early Neoproterozoic successions in the eastern North China Craton, and implications for the reconstruction of Rodinia. Bulletin of the Geological Society of America, 2020, 132, 739-766.	3.3	69
84	Baddeleyite U-Pb geochronology and geochemistry of Late Paleoproterozoic mafic dykes from the Kongling complex of the northern Yangtze block, South China. Precambrian Research, 2020, 337, 105537.	2.7	14
85	Revised stratigraphic framework for the lower Anti-Atlas Supergroup based on U–Pb geochronology of magmatic and detrital zircons (Zenaga and Bou Azzer-El Graara inliers, Anti-Atlas Belt, Morocco). Journal of African Earth Sciences, 2020, 171, 103946.	2.0	23
86	Assembly of the Siberian Craton: Constraints from Paleoproterozoic granitoids. Precambrian Research, 2020, 348, 105869.	2.7	55
87	Compositional Variations of Cr-Spinel in High-Mg Intrusions of the Primorsky Ridge (Western Baikal) Tj ETQq0 0 () rgBT /Ov 2.0	erlock 10 Tf
88	Seismological evidence for the earliest global subduction network at 2 Ga ago. Science Advances, 2020, 6, eabc5491.	10.3	82
89	PLATINUM-BEARING PLACERS: MINERAL ASSOCIATIONS AND THEIR 190Pt-4He AND Re-Os AGES, AND POTENTIAL LINKS WITH LARGE IGNEOUS PROVINCES IN THE SIBERIAN CRATON. Economic Geology, 2020, 115, 1835-1853.	3.8	3
90	Mantle Evolution of Asia Inferred from Pb Isotopic Signatures of Sources for Late Phanerozoic Volcanic Rocks. Minerals (Basel, Switzerland), 2020, 10, 739.	2.0	2
91	Yoko–Dovyren Layered Massif: Composition, Mineralization, Overburden and Dump Rock Utilization. Minerals (Basel, Switzerland), 2020, 10, 682.	2.0	5
92	Geochemistry of the Mesoproterozoic Intrusions, Geochronology and Isotopic Constraints on the Xiaonanshan Cu-Ni Deposit along the Northern Margin of the North China Craton. Journal of Earth Science (Wuhan, China), 2020, 31, 653-667.	3.2	1

ARTICLE

93 Geodynamic Model of the Neoproterozoic Evolution of the Yenisei Paleosubduction Zone (Western) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

94	Magma flow pattern of the 1.78ÂGa dyke swarm of the North China Craton during the initial assembly of the Supercontinent Nuna/Columbia: Constraints from rock magnetic and anisotropy of magnetic susceptibility studies. Precambrian Research, 2020, 345, 105773.	2.7	8
95	Sturtian glaciation in Siberia: Evidence of glacial origin and U-Pb dating of the diamictites of the Chivida Formation in the north of the Yenisei Ridge. Precambrian Research, 2020, 345, 105778.	2.7	4
96	Late Paleoproterozoic to Early Mesoproterozoic Mafic Magmatism in the SW Yangtze Block: Mantle Plumes Associated With Nuna Breakup?. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019260.	3.4	17
97	Geochemical Composition of Dolerites as an Indicator of the Distance of a Dike Swarm from the Mantle Plume Center (Case Study of Proterozoic Dike Swarms, Siberian Craton). Doklady Earth Sciences, 2020, 491, 243-246.	0.7	0
98	Morphology, Mineralogy, and Composition of Sulfide Droplets in Picrodolerite from a Near-Bottom Apophysis of the Yoko-Dovyren Layered Intrusion. Petrology, 2020, 28, 246-262.	0.9	8
99	Deconstructing South China and consequences for reconstructing Nuna and Rodinia. Earth-Science Reviews, 2020, 204, 103169.	9.1	115
100	Geochronology, whole-rock geochemistry and Sr-Nd isotopes of the Bhanupratappur mafic dyke swarm: Evidence for a common Paleoproterozoic LIP event at 2.37–2.36ÅGa in the Bastar and Dharwar cratons. Precambrian Research, 2020, 347, 105853.	2.7	19
101	Ferrodoleritic dykes in the Tarim Craton signal Neoproterozoic breakup of Rodinia supercontinent. Journal of Asian Earth Sciences, 2020, 200, 104476.	2.3	7
102	A preliminary reassessment of the Siberian cratonic basement with new U-Pb-Hf detrital zircon data. Precambrian Research, 2020, 340, 105645.	2.7	23
103	Sedimentary sequence and evolutionary history of the Proterozoic basin at the southern margin of the North China Craton. Precambrian Research, 2020, 344, 105765.	2.7	7
104	Crustal evolution events in the Chinese continent: evidence from a zircon U-Pb database. International Journal of Digital Earth, 2020, 13, 1532-1552.	3.9	9
105	Tectonic Implications: Zircon age of Sedimentary Rocks from Khabarovsk, Samarka, and Zhuravlevka-Amur Terranes in the Northern Sikhote-Alin Orogenic Belt. Russian Journal of Pacific Geology, 2020, 14, 1-19.	0.7	8
106	Paleomagnetism of the Chuar Group and evaluation of the late Tonian Laurentian apparent polar wander path with implications for the makeup and breakup of Rodinia. Bulletin of the Geological Society of America, 2020, 132, 710-738.	3.3	23
107	A combined geochronological and paleomagnetic study on â^1⁄41220 Ma mafic dikes in the North China Craton and the implications for the breakup of Nuna and assembly of Rodinia. Numerische Mathematik, 2020, 320, 125-149.	1.4	25
108	Geology and Genesis of the Giant Gorevskoe Pb-Zn-Ag Deposit, Krasnoyarsk Territory, Russia. Economic Geology, 2021, 116, 719-746.	3.8	3
110	U-Pb baddeleyite age for the OttfjÄ k et Dyke Swarm, central Scandinavian Caledonides: new constraints on Ediacaran opening of the lapetus Ocean and glaciations on Baltica. Gff, 2021, 143, 40-54.	1.2	13
112	Oxygen Isotope Composition in Olivine and Melts from Cumulates of the Yoko-Dovyren Layered Massif, Northern Transbaikalia, Russia. Geochemistry International, 2021, 59, 156-170.	0.7	0

#	Article	IF	CITATIONS
113	Evidence of the latest Paleoproterozoic (~1615ÂMa) mafic magmatism the southern Siberia: Extensional environments in Nuna supercontinent. Precambrian Research, 2021, 354, 106049.	2.7	6
114	Crustal evolution of the Paleoproterozoic Ubendian Belt (SW Tanzania) western margin: A Central African Shield amalgamation tale. Gondwana Research, 2021, 91, 286-306.	6.0	20
115	Plumbing systems of large igneous provinces (LIPs) on Earth and Venus: Investigating the role of giant circumferential and radiating dyke swarms, coronae and novae, and mid-crustal intrusive complexes. Gondwana Research, 2021, 100, 25-43.	6.0	33
116	Deep lithosphere of the North China Craton archives the fate of the Paleo-Asian Ocean. Earth-Science Reviews, 2021, 215, 103554.	9.1	10
117	Baddeleyite Pb Pb geochronology and paleomagnetic poles for ~1.89–1.86ÂGa mafic intrusions from the Dharwar craton, India, and their paleogeographic implications. Tectonophysics, 2021, 805, 228789.	2.2	14
118	Petrogenesis of Zr–Nb (REE) carbonatites from the Arbarastakh complex (Aldan Shield, Russia): Mineralogy and inclusion data. Ore Geology Reviews, 2021, 131, 104042.	2.7	17
119	The supercontinent cycle. Nature Reviews Earth & Environment, 2021, 2, 358-374.	29.7	102
120	Concretes Made of Magnesium–Silicate Rocks. Minerals (Basel, Switzerland), 2021, 11, 441.	2.0	2
121	Melting Dynamics of Late Cretaceous Lamprophyres in Central Asia Suggest a Mechanism to Explain Many Continental Intraplate Basaltic Suite Magmatic Provinces. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021663.	3.4	7
122	U–Pb Dating of Apatite, Titanite and Zircon of the Kingash Mafic–Ultramafic Massif, Kan Terrane, Siberia: from Rodinia Break-up to the Reunion with the Siberian Craton. Journal of Petrology, 2021, 62,	2.8	4
123	The early Statherian (ca. 1800–1750ÂMa) Prutivka-Novogol large igneous province of Sarmatia: Geochronology and implication for the Nuna/Columbia supercontinent reconstruction. Precambrian Research, 2021, 358, 106185.	2.7	11
124	Pre-Mississippian Stratigraphic Architecture of the Porcupine Shear Zone, Yukon and Alaska, and Significance in the Evolution of Northern Laurentia. Lithosphere, 2021, 2021, .	1.4	2
125	A Consistently Highâ€Latitude South China From 820 to 780ÂMa: Implications for Exclusion From Rodinia and the Feasibility of Largeâ€Scale True Polar Wander. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021541.	3.4	16
126	West Africa in Rodinia: High quality paleomagnetic pole from theÂ~Â860ÂMa Manso dyke swarm (Ghana). Gondwana Research, 2021, 94, 28-43.	6.0	13
127	Reorienting the West African craton in Paleoproterozoic–Mesoproterozoic supercontinent Nuna. Geology, 2021, 49, 1171-1176.	4.4	10
128	Large igneous provinces of the Amazonian Craton and their metallogenic potential in Proterozoic times. Geological Society Special Publication, 2022, 518, 493-529.	1.3	8
129	The cause for Nuna breakup in the Early to Middle Mesoproterozoic. Precambrian Research, 2021, 362, 106287.	2.7	6
130	Enigmatic Midâ€Proterozoic Orogens: Hot, Thin, and Low. Geophysical Research Letters, 2021, 48, e2021GL093312.	4.0	35

#	Article	IF	Citations
131	The importance and difficulties of identifying mantle plumes in orogenic belts: An example based on the fragmented large igneous province (LIP) record in the Ural fold belt. Precambrian Research, 2021, 361, 106186.	2.7	9
132	The Tethyan Himalaya Igneous Province: Early Melting Products of the Kerguelen Mantle Plume. Journal of Petrology, 2021, 62, .	2.8	9
133	TIME CONSTRAINTS ON THE FORMATION OF THE KANDALAKSHA AND KERETSK GRABENS OF THE WHITE SEA PALEO-RIFT SYSTEM FROM NEW ISOTOPIC GEOCHRONOLOGICAL DATA. Geodinamika I Tektonofizika, 2021, 12, 570-607.	0.7	3
134	The geotectonic setting, age and mineral deposit inventory of global layered intrusions. Earth-Science Reviews, 2021, 220, 103736.	9.1	23
135	Timing of Proterozoic magmatism in the Sunsas belt, Bolivian Precambrian Shield, SW Amazonian Craton. Geoscience Frontiers, 2021, 12, 101247.	8.4	8
138	Influence of Large Igneous Provinces. , 2020, , 345-356.		4
139	A Fragment of Columbia Supercontinent: Insight for Cathaysia Block Basement From Tectonoâ€Magmatic Evolution and Mantle Heterogeneity. Geophysical Research Letters, 2019, 46, 2012-2024.	4.0	21
140	Episodic tectonics in the Phanerozoic succession of the Canadian High Arctic and the "10-million-year flood― , 2019, , 213-230.		12
141	Pre-Mississippian stratigraphy and provenance of the North Slope subterrane of Arctic Alaska I: Platformal carbonate rocks of the northeastern Brooks Range and their signifi cance in circum-Arctic evolution. , 2019, , 493-524.		9
142	The Central lapetus magmatic province: An updated review and link with the ca. 580 Ma Gaskiers glaciation. , 2020, , 35-66.		17
143	The Oortsog Peridotite–Troctolite–Gabbro Intrusion, Western Mongolia:New Petrological and Geochronological Constraints. Russian Geology and Geophysics, 2019, 60, 845-861.	0.7	3
144	Petrology, Geochemistry, and the Origin of Sulfide-Bearing and PGe-mineralized Troctolites from the Konnikov Zone in the Yoko-Dovyren Layered Intrusion. Russian Geology and Geophysics, 2020, 61, 611-633.	0.7	8
145	The Paleo-Mesoproterozoic boundary: 1.8Ga. Acta Petrologica Sinica, 2019, 35, 2281-2298.	0.8	15
146	On the Paleo-Mesoproterozoic boundary from the breakup event of the Columbia supercontinent. Acta Petrologica Sinica, 2019, 35, 2299-2324.	0.8	21
147	PALEOTECTONIC AND PALEOGEOGRAPHIC CONDITIONS FOR THE ACCUMULATION OF THE LOWER RIPHEAN AI FORMATION IN THE BASHKIR UPLIFT (SOUTHERN URALS): THE TERRANECHRONE® DETRITAL ZIRCON STUDY. Geodinamika I Tektonofizika, 2018, 9, 1-37.	0.7	27
148	Enlargement of the area of the Timpton Large Igneous Province (ca. 1.75 ga) of the Siberian craton. Geodinamika I Tektonofizika, 2019, 10, 829-839.	0.7	5
149	GRANITES OF THE NORTHERN TIMAN – PROBABLE INDICATORS OF NEOPROTEROZOIC STAGES OF RODINIA BREAKUP. Geodinamika I Tektonofizika, 2020, 11, 201-218.	0.7	5
150	Meso-Neoproterozoic Rodinia supercycle. , 2021, , 549-576.		10

#	Article	IF	CITATIONS
151	Paleo-Mesoproterozoic Nuna supercycle. , 2021, , 499-548.		12
152	The Precambrian paleogeography of Laurentia. , 2021, , 109-153.		15
153	The Precambrian drift history and paleogeography of the Chinese cratons. , 2021, , 333-376.		10
154	Precambrian paleogeography of Siberia. , 2021, , 263-275.		6
155	The Precambrian drift history and paleogeography of Baltica. , 2021, , 155-205.		7
156	Constraints on the Precambrian paleogeography of West African Craton. , 2021, , 423-443.		0
157	Global implication of mesoproterozoic (~ 1.4ÂGa) magmatism within theÂSette-Daban Range (Southeast) Tj l	ETQq0 0 () rgBT /Overl
158	Granitoid Anorogenic Magmatism of the Yenisei Range: Evidence of Lithospheric Extension in the Western Part of the Siberian Craton. Geochemistry International, 2020, 58, 500-519.	0.7	1
159	Age of Detrital Zircons and Sources of Terrigenous Deposits of the Olokit Zone (Northern Baikal) Tj ETQq0 0 0 rgB	T/Overlo	ck 10 Tf 50 4
160	Chapter 25: The Sukhoi Log Gold Deposit, Russia. , 2020, , 523-543.		1
161	Chapter 10: Olympiada Gold Deposit, Yenisei Ridge, Russia. , 2020, , 203-226.		3
162	Paleomagnetism and Age Correlation of the Mesoproterozoic Rocks of the Udzha and Olenek Uplifts, Northeastern Siberian Platform. Izvestiya, Physics of the Solid Earth, 2020, 56, 864-887.	0.9	1
163	Early Proterozoic Basic Magmatism in the South Siberian Postcollisional Magmatic Belt (by the) Tj ETQq0 0 0 rgBT 951-963.	/Overloci 0.7	10 Tf 50 26
164	Inter-cratonic geochronological and geochemical correlations of the Derim Derim–Galiwinku/Yanliao reconstructed Large Igneous Province across the North Australian and North China cratons. Gondwana Research, 2022, 103, 473-486.	6.0	8
165	Sulfur Isotope Composition of Olivine Gabbronorites from a Mineralized Apophysis of the Yoko-Dovyren Intrusion, Northern Transbaikalia, Russia. Petrology, 2021, 29, 597-613.	0.9	3
166	Post-collisional magmatism of 1.88–1.84ÂGa in the southern Siberian Craton: An overview. Precambrian Research, 2021, 367, 106447.	2.7	11
167	åŽåŒ—勿‹‰é€šèƒ¶åŒ—地体蓬莱ç¾◙¾åå¤₄组碎屑锆石U-Pb定å¹′åŠå¶åœ°è^æ"빉. Diqi∟ Geosciences, 2021, 46, 3074.	ı Kexue - Z 0.5	Zhongguo Di
168	Comparisons of the Paleo-Mesoproterozoic large igneous provinces and black shales in the North China and North Australian cratons. Fundamental Research, 2022, 2, 84-100	3.3	15

#	Article	IF	CITATIONS
169	1.79–1.75ÂGa mafic magmatism of the Siberian craton and late Paleoproterozoic paleogeography. Precambrian Research, 2022, 370, 106557.	2.7	11
170	Mineral Paragenesis, formation stages and trace elements in sulfides of the Olympiada gold deposit (Yenisei Ridge, Russia). Ore Geology Reviews, 2022, 143, 104750.	2.7	4
171	å…fåø®™å§ç«æ^岩çœä,Žè¶…å§é™†é‡å»ºåŠåęŽ¯å¢ƒ. Chinese Science Bulletin, 2022, , .	0.7	1
172	Isotopic Age of the Xiong'er Group Volcanic Rocks and Its Geological Significance in Western Henan, China. Geofluids, 2022, 2022, 1-12.	0.7	2
173	Subduction initiation of the western Paleo-Asian Ocean linked to global tectonic reorganization: Insights from Cambrian island-arc magmatism within the West Junggar, NW China. Bulletin of the Geological Society of America, 2022, 134, 3099-3112.	3.3	5
174	Casting a vote for shifting the Statherian: Petrogenesis of 1.70 and 1.62ÂGa mafic dykes in the North China Craton. Lithos, 2022, 414-415, 106631.	1.4	1
175	Characteristics of Cambrian tectonic-lithofacies paleogeography in China and the controls on hydrocarbons. Journal of Petroleum Science and Engineering, 2022, 214, 110473.	4.2	4
176	Mineralogical Criteria for Genetic Relationship of Igneous and Carbonatite Rocks of the Tomtor Massif (Siberian Platform). IOP Conference Series: Earth and Environmental Science, 2021, 906, 012104.	0.3	1
177	Revisiting mafic dykes of Bornholm – Implications for Baltica in supercontinent Nuna at 1.3ÂGa. Precambrian Research, 2021, 367, 106444.	2.7	2
178	Ediacaran magmatism and rifting along the northern margin of the Tarim craton: Implications for the late Neoproterozoic Rodinia configuration and breakup. Bulletin of the Geological Society of America, 2023, 135, 367-388.	3.3	8
179	Geological history and supercontinent cycles of the Arctic. Bulletin of the Geological Society of America, 0, , .	3.3	1
180	A new ca. 1.73ÂGa mafic magmatic event in the Indian Shield: Evidence from an in-situ SIMS U-Pb baddeleyite date and geochemistry of the mafic intrusions within the Gwalior basin, Bundelkhand craton. Precambrian Research, 2022, 377, 106696.	2.7	6
181	New Maps of Global Geological Provinces and Tectonic Plates. Earth-Science Reviews, 2022, 231, 104069.	9.1	36
182	The Columbia supercontinent: Retrospective, status, and a statistical assessment of paleomagnetic poles used in reconstructions. Gondwana Research, 2022, 110, 143-164.	6.0	17
183	Widespread magmatic provinces at the onset of the Sturtian snowball Earth. Earth and Planetary Science Letters, 2022, 594, 117736.	4.4	15
184	Paleozoic tectonic evolution of the rifted margins of Laurentia. , 2023, , 487-503.		4
185	New paleomagnetic results from the ca. 1.0ÂGa Jiayuan Formation of the Huaibei Group in the North China craton, and their paleogeographic implications. Precambrian Research, 2022, 379, 106807.	2.7	7
186	Composition and Isotope Parameters of Metabasalts and Gabbroids of the Onot Granite–Greenstone Block, Southwestern Siberian Platform, as Indicators of Lithospheric Mantle Evolution from the Archean to Paleoproterozoic. Petrology, 2022, 30, 499-522.	0.9	3

#	Article	IF	CITATIONS
187	Spatial distribution of 1.4-1.3 Ga LIPs and carbonatite-related REE deposits: Evidence for large-scale continental rifting in the Columbia (Nuna) supercontinent. Earth and Planetary Science Letters, 2022, 597, 117815.	4.4	14
188	Late Precambrian "Pre-Glacial―Sedimentation Stage in the Southern Siberian Platform. Russian Geology and Geophysics, 2023, 64, 28-44.	0.7	0
189	Neoproterozoic of Laurentia. , 2023, , 331-380.		12
191	LYSAN ALKALINE-ULTRABASIC COMPLEX (EASTERN SAYAN): AGE AND GEODYNAMIC CONSEQUENCES. Geodinamika I Tektonofizika, 2022, 13, .	0.7	1
192	Provenance, Age, and Tectonic Settings of Rock Complexes (Transangarian Yenisey Ridge, East Siberia): Geochemical and Geochronological Evidence. Geosciences (Switzerland), 2022, 12, 402.	2.2	2
193	Neoproterozoic evolution of the northwestern margin of the Siberian Platform. Precambrian Research, 2022, 382, 106877.	2.7	4
194	Hemispheric Geochemical Dichotomy of the Mantle Is a Legacy of Austral Supercontinent Assembly and Onset of Deep Continental Crust Subduction. AGU Advances, 2022, 3, .	5.4	9
195	The newly recognized ca. 1.23–1.21ÂGa dolerite sills and flood basalts from Fanhe Basin in the northeastern North China Craton: Petrogenesis and tectonic implications. Precambrian Research, 2022, 383, 106904.	2.7	2
196	Timing the break-up of the Baltica and Laurentia connection in Nuna – Rapid plate motion oscillation and plate tectonics in the Mesoproterozoic. Precambrian Research, 2023, 384, 106923.	2.7	2
197	Emplacement of the Franklin large igneous province and initiation of the Sturtian Snowball Earth. Science Advances, 2022, 8, .	10.3	18
198	A compilation of the silt and clay mineralogy from coastal and shelf regions of the Arctic Ocean. Marine Geology, 2022, 454, 106948.	2.1	2
199	Diversity of the Piscicola Species (Hirudinea, Piscicolidae) in the Eastern Palaearctic with a Description of Three New Species and Notes on Their Biogeography. Diversity, 2023, 15, 98.	1.7	3
200	New Early Neoproterozoic Paleomagnetic Constraints of the Northwestern China Blocks on the Periphery of Rodinia. Journal of Geophysical Research: Solid Earth, 2023, 128, .	3.4	2
201	Paleoproterozoic Shoshonite Mafic Associations of the Irkut Block (Sharyzhalgai Uplift, Southwest) Tj ETQq1 0, , .	1 0.784314 r 0.7	gBT /Overloo 1
202	Discovery of a >1,000Âkm Cambrian Eclogiteâ€Bearing Highâ€Pressure Metamorphic Belt in the Central Asian Orogenic Belt: Implications for the Final Closure of the Panâ€Rodinian Ocean. Journal of Geophysical Research: Solid Earth, 2023, 128, .	3.4	3
203	An appraisal of the ages of Phanerozoic large igneous provinces. Earth-Science Reviews, 2023, 237, 104314.	9.1	9
204	Granitic record of the assembly of the Asian continent. Earth-Science Reviews, 2023, 237, 104298.	9.1	9
205	Mineralogical and Geochemical Evidence of Paragenetic Unity of Igneous Silicate and Carbonatite Rocks of the Tomtor Massif in the North-East of the Siberian Platform. Minerals (Basel, Switzerland),	2.0	0

# 206	ARTICLE A complex history of extension, subduction and collision in west Gondwana: Clues from the Riacho do Pontal orogen, Borborema Province (NE Brazil). Journal of South American Earth Sciences, 2023,	IF 1.4	Citations
207	125, 104297.Distinct tectono-magmatism on the margins of Rodinia and Gondwana. Earth and Planetary Science Letters, 2023, 609, 118099.	4.4	5
208	Mesoproterozoic (ca. 1.26ÂGa) Srednecheremshansk mafic–ultramafic intrusion in the southern Siberia: Signature of the Mackenzie event in Siberia. Precambrian Research, 2023, 390, 107038.	2.7	2
209	A dynamic 2000—540†Ma Earth history: From cratonic amalgamation to the age of supercontinent cycle. Earth-Science Reviews, 2023, 238, 104336.	9.1	26
210	Mesoproterozoic basins (Yukon, Canada) in the evolution of supercontinent Columbia. Canadian Journal of Earth Sciences, 2023, 60, 912-973.	1.3	3
211	The Mutare–Fingeren dyke swarm: the enigma of the Kalahari Craton's exit from supercontinent Rodinia. Geological Society Special Publication, 2024, 537, 359-380.	1.3	0
212	BITUMEN RESOURCES OF THE EAST SIBERIAN BASIN. Journal of Petroleum Geology, 2023, 46, 127-156.	1.5	0
213	Mid-Proterozoic geomagnetic field was more consistent with a dipole than a quadrupole. Geology, 0, ,	4.4	0
214	POSITION OF THE ANAI FORMATION IN THE PROTEROZOIC SECTION OF THE BAIKAL SALIENT OF THE SIBERIAN PLATFORM BASEMENT. Geodinamika I Tektonofizika, 2023, 14, .	0.7	0
215	Evolutionary stasis during the Mesoproterozoic Columbia-Rodinia supercontinent transition. Precambrian Research, 2023, 391, 107057.	2.7	2
216	Rodinia Palaeogeography: Laurentia as the geological â€~Key'. Geological Society Special Publication, 2024, 542, .	1.3	0
217	Identification of the ca. 720ÂMa Irkutsk LIP and its plume centre in southern Siberia: The initiation of Laurentia-Siberia separation. Precambrian Research, 2023, 394, 107111.	2.7	2
218	Positioning the Yangtze Block within Nuna: Constraints from Paleoproterozoic granitoids in North Vietnam. Precambrian Research, 2023, 391, 107059.	2.7	4
219	Heterogeneous Subcontinental Lithospheric Mantle below the South Margin of the Siberian Craton: Evidence from Composition of Paleoproterozoic Mafic Associations. Russian Geology and Geophysics, 0, , .	0.7	1
220	New palaeoproterozoic palaeomagnetic data from Central and Northern Finland indicate a long-lived stable position for Fennoscandia. Geophysical Journal International, 0, , .	2.4	0
222	Geochemical Criteria for the Classification of Dolerite Dikes in the Central Part of the Baikal Basement Inlier of the Siberian Craton. Geochemistry International, 2023, 61, 499-516.	0.7	1
223	Phanerozoic Tectonic and Sedimentation History of the Arctic: Constraints From Deepâ€Time Lowâ€Temperature Thermochronology Data of Ellesmere Island and Northwest Greenland. Tectonics, 2023, 42, .	2.8	0
224	Age of provenance for the Palaeoproterozoic Kemen Group, Udokan Complex: Newly recognised Palaeoproterozoic crust-forming event in the western Aldan Shield, Siberian Craton. Precambrian Research, 2023, 396, 107158.	2.7	0

#	Article	IF	CITATIONS
225	KENGEDE MAFIC DYKE SWARM AND EXPANSION OF THE 1.50 Ga KUONAMKA LARGE IGNEOUS PROVINCE OF NORTHERN SIBERIA. Geodinamika I Tektonofizika, 2023, 14, .	0.7	1
226	Paleomagnetism and geochronology of the Gwalior Sills, Bundelkhand craton, Northern India Block: New constraints on Greater India assembly. Gondwana Research, 2024, 125, 29-48.	6.0	0
227	Within-plate magmatism in the southern Borborema Province (NE Brazil): Mantle plumes associated with the Nuna-Columbia and Rodinia breakup?. Journal of South American Earth Sciences, 2023, 130, 104579.	1.4	1
228	Locating the Yangtze Block in Nuna: Constraints from age and isotopic data from Paleoproterozoic sedimentary rocks in the Phan Si Pan Zone, northwest Vietnam. Precambrian Research, 2023, 397, 107193.	2.7	0
229	Late Ediacaran–early Cambrian rifting along the northern margin of Laurentia: constraints from the Yelverton Formation of Ellesmere Island, Canada. Canadian Journal of Earth Sciences, 2023, 60, 1597-1626.	1.3	1
230	Mongolian microâ€continental blocks in Columbia/Nuna: Zircon U–Pb–Hf isotopic evidence for longâ€lasting Mongolia–Western Siberia connection. Terra Nova, 0, , .	2.1	0
231	A review of the Intraplate Mafic Magmatic Record of the Greater Congo craton. Earth-Science Reviews, 2024, 249, 104649.	9.1	0
232	FINAL CONSOLIDATION AGE OF THE SOUTHERN PART OF THE SIBERIAN CRATON. Geodinamika I Tektonofizika, 2023, 14, 0727.	0.7	0
233	Neoproterozoic granitoids of northwest Vietnam and their tectonic implications. International Geology Review, 0, , 1-22.	2.1	0
234	Some lithogeochemical and isotope-geochemical features of clay rocks and hiatuses in the Riphean stratotype. Lithosphere (Russian Federation), 2024, 24, 29-48.	0.3	0
235	Neoproterozoic Lysan Alkaline–Ultramafic Complex in the Eastern Sayan, Southern Siberia, Russia: Mineralogical Constraints of Carbonate Rocks and Albitite for Petrogenesis. Minerals (Basel,) Tj ETQq0 0 0 rgBT /	Ovændock	10đf 50 337

The Muskox intrusion: Overview of a major open-system layered intrusion and its role as a sub-volcanic magma reservoir in the Mackenzie large igneous province. Lithos, 2024, 474-475, 107560.