Degradation of phosphorene in air: understanding at at

2D Materials 3, 025011 DOI: 10.1088/2053-1583/3/2/025011

Citation Report

#	Article	IF	CITATIONS
1	Black Phosphorus: Critical Review and Potential for Water Splitting Photocatalyst. Nanomaterials, 2016, 6, 194.	1.9	79
2	Two-Dimensional Phosphorus Porous Polymorphs with Tunable Band Gaps. Journal of the American Chemical Society, 2016, 138, 7091-7098.	6.6	119
3	Stability and Electronic Properties of 2D Nanomaterials Conjugated with Pyrazinamide Chemotherapeutic: A First-Principles Cluster Study. Journal of Physical Chemistry C, 2016, 120, 20323-20332.	1.5	36
4	Lightâ€Induced Ambient Degradation of Fewâ€Layer Black Phosphorus: Mechanism and Protection. Angewandte Chemie - International Edition, 2016, 55, 11437-11441.	7.2	514
5	Lightâ€Induced Ambient Degradation of Fewâ€Layer Black Phosphorus: Mechanism and Protection. Angewandte Chemie, 2016, 128, 11609-11613.	1.6	78
6	Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nature Communications, 2016, 7, 13352.	5.8	798
7	Hydrogen separation by porous phosphorene: A periodical DFT study. International Journal of Hydrogen Energy, 2016, 41, 23067-23074.	3.8	23
8	Interaction of Black Phosphorus with Oxygen and Water. Chemistry of Materials, 2016, 28, 8330-8339.	3.2	436
9	Large Area Fabrication of Semiconducting Phosphorene by Langmuir-Blodgett Assembly. Scientific Reports, 2016, 6, 34095.	1.6	67
10	Two-Dimensional Group IV Monochalcogenides: Anode Materials for Li-Ion Batteries. Journal of Physical Chemistry C, 2016, 120, 14522-14530.	1.5	120
11	2D Materials for Optical Modulation: Challenges and Opportunities. Advanced Materials, 2017, 29, 1606128.	11.1	364
12	Control of Surface and Edge Oxidation on Phosphorene. ACS Applied Materials & Interfaces, 2017, 9, 9126-9135.	4.0	135
13	The effects of vacancy and oxidation on black phosphorus nanoresonators. Nanotechnology, 2017, 28, 135202.	1.3	15
14	Recent advances in synthesis, properties, and applications of phosphorene. Npj 2D Materials and Applications, 2017, 1, .	3.9	266
15	Black Phosphorus/TiO ₂ Composite Photoanode with Enhanced Photoelectrical Performance. ChemElectroChem, 2017, 4, 2373-2377.	1.7	24
16	Waterâ€Catalyzed Oxidation of Fewâ€Layer Black Phosphorous in a Dark Environment. Angewandte Chemie - International Edition, 2017, 56, 9131-9135.	7.2	141
17	Prediction of twoâ€dimensional BiSb with puckered structure. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700051.	1.2	11
18	Thermal stability and thermal conductivity of phosphorene in phosphorene/graphene van der Waals heterostructures. Physical Chemistry Chemical Physics, 2017, 19, 17180-17186.	1.3	37

#	Article	IF	CITATIONS
19	Exotic Physics and Chemistry of Two-Dimensional Phosphorus: Phosphorene. Journal of Physical Chemistry Letters, 2017, 8, 2909-2916.	2.1	71
20	Oxidation Resistance of Monolayer Group-IV Monochalcogenides. ACS Applied Materials & Interfaces, 2017, 9, 12013-12020.	4.0	118
21	Stability and electronic properties of two-dimensional indium iodide. Physical Review B, 2017, 95, .	1.1	10
22	Transparent, Flexible Cellulose Nanofibril–Phosphorene Hybrid Paper as Triboelectric Nanogenerator. Advanced Materials Interfaces, 2017, 4, 1700651.	1.9	97
23	Highly Efficient Photocatalytic Water Splitting over Edge-Modified Phosphorene Nanoribbons. Journal of the American Chemical Society, 2017, 139, 15429-15436.	6.6	244
24	Band-edge engineering via molecule intercalation: a new strategy to improve stability of few-layer black phosphorus. Physical Chemistry Chemical Physics, 2017, 19, 29232-29236.	1.3	10
25	Waterâ€Catalyzed Oxidation of Few‣ayer Black Phosphorous in a Dark Environment. Angewandte Chemie, 2017, 129, 9259-9263.	1.6	16
26	Electric field tunable band-gap crossover in black(blue) phosphorus/g-ZnO van der Waals heterostructures. RSC Advances, 2017, 7, 34584-34590.	1.7	34
27	Stable and Multifunctional Dye-Modified Black Phosphorus Nanosheets for Near-Infrared Imaging-Guided Photothermal Therapy. Chemistry of Materials, 2017, 29, 7131-7139.	3.2	158
28	Adsorption of Gas Molecules on Grapheneâ€Like ZnO Nanosheets: The Roles of Gas Concentration, Layer Number, and Heterolayer. Advanced Materials Interfaces, 2017, 4, 1700647.	1.9	33
29	Electronic and Magnetic Properties of Black Phosphorus. Physica Status Solidi (B): Basic Research, 2017, 254, 1700232.	0.7	17
30	Degradation of black phosphorus is contingent on UV–blue light exposure. Npj 2D Materials and Applications, 2017, 1, .	3.9	95
31	Ultrathin Layers of PdPX (X=S, Se): Two Dimensional Semiconductors for Photocatalytic Water Splitting. Chemistry - A European Journal, 2017, 23, 13612-13616.	1.7	66
32	van der Waals Layered Materials: Opportunities and Challenges. ACS Nano, 2017, 11, 11803-11830.	7.3	394
33	Arsenene-Based Heterostructures: Highly Efficient Bifunctional Materials for Photovoltaics and Photocatalytics. ACS Applied Materials & amp; Interfaces, 2017, 9, 42856-42861.	4.0	44
34	Physics and chemistry of oxidation of twoâ€dimensional nanomaterials by molecular oxygen. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1280.	6.2	47
35	Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective. Catalysis Science and Technology, 2017, 7, 545-559.	2.1	345
36	The Effects of Heteroatom Adsorption on the Electronic Properties of Phosphorene. Journal of Nanomaterials, 2017, 2017, 1-13.	1.5	0

#	Article	IF	CITATIONS
37	"Stepwise Extraction―strategy-based injectable bioresponsive composite implant for cancer theranostics. Biomaterials, 2018, 166, 38-51.	5.7	26
38	2D Black Phosphorus: from Preparation to Applications for Electrochemical Energy Storage. Advanced Science, 2018, 5, 1700491.	5.6	174
39	A New Effective Approach to Prevent the Degradation of Black Phosphorus: The Scandium Transition Metal Doping. Journal of Physical Chemistry C, 2018, 122, 9654-9662.	1.5	20
40	Recent Advances in Blackâ€Phosphorusâ€Based Photonics and Optoelectronics Devices. Small Methods, 2018, 2, 1700315.	4.6	36
41	Enhancing the ambient stability of few-layer black phosphorus by surface modification. RSC Advances, 2018, 8, 14676-14683.	1.7	21
42	Interaction of the O atom with the InSe monolayer: A first-principles study. Vacuum, 2018, 153, 53-61.	1.6	6
43	Interlayer coupling effects on electronic properties of the phosphorene/h-BN van der Walls heterostructure: A first principles investigation. Physica B: Condensed Matter, 2018, 534, 51-55.	1.3	9
44	Optimal water adsorption on phosphorene. Journal of Alloys and Compounds, 2018, 737, 365-371.	2.8	13
45	Intriguing electronic insensitivity and high carrier mobility in monolayer hexagonal YN. Journal of Materials Chemistry C, 2018, 6, 4943-4951.	2.7	28
46	Blue Phosphorus/Mg(OH) ₂ van der Waals Heterostructures as Promising Visible-Light Photocatalysts for Water Splitting. Journal of Physical Chemistry C, 2018, 122, 7075-7080.	1.5	115
47	The role of the intrinsic Se and In vacancies in the interaction of O2 and H2O molecules with the InSe monolayer. Applied Surface Science, 2018, 434, 215-227.	3.1	27
48	Role of surface adsorption in tuning the properties of black phosphorus. Physical Chemistry Chemical Physics, 2018, 20, 112-117.	1.3	17
49	Two-dimensional beta-lead oxide quantum dots. Nanoscale, 2018, 10, 20540-20547.	2.8	49
50	Structure and properties of intrinsic and extrinsic defects in black phosphorus. Nanoscale, 2018, 10, 19536-19546.	2.8	38
51	Two-dimensional Pd ₃ P ₂ S ₈ semiconductors as photocatalysts for the solar-driven oxygen evolution reaction: a theoretical investigation. Journal of Materials Chemistry A, 2018, 6, 23495-23501.	5.2	51
52	Quantitative Tracking of the Oxidation of Black Phosphorus in the Few-Layer Regime. ACS Omega, 2018, 3, 12482-12488.	1.6	31
53	Physically Transient Field-Effect Transistors Based on Black Phosphorus. ACS Applied Materials & Interfaces, 2018, 10, 42630-42636.	4.0	22
54	Predicting a two-dimensional P2S3 monolayer: A global minimum structure. Computational Materials Science, 2018, 155, 288-292.	1.4	8

#	Article	IF	Citations
55	Photoluminescence Lifetime of Black Phosphorus Nanoparticles and Their Applications in Live Cell Imaging. ACS Applied Materials & Interfaces, 2018, 10, 31136-31145.	4.0	25
56	2D-Pnictogens: alloy-based anode battery materials with ultrahigh cycling stability. Chemical Society Reviews, 2018, 47, 6964-6989.	18.7	100
57	Enhanced doping effect on tuning structural phases of monolayer antimony. Applied Physics Letters, 2018, 112, 213104.	1.5	13
58	Encapsulation-Free Stabilization of Few-Layer Black Phosphorus. ACS Applied Materials & Interfaces, 2018, 10, 24327-24331.	4.0	16
59	Black Phosphorus: Degradation Favors Lubrication. Nano Letters, 2018, 18, 5618-5627.	4.5	107
60	Black-phosphorus-analogue tin monosulfide: an emerging optoelectronic two-dimensional material for high-performance photodetection with improved stability under ambient/harsh conditions. Journal of Materials Chemistry C, 2018, 6, 9582-9593.	2.7	153
61	Effects of substrate and environmental adsorbates on the electronic properties and structural stability of antimonene. Journal of Materials Science, 2018, 53, 15559-15568.	1.7	11
62	Monolayer GeS as a potential candidate for NO ₂ gas sensors and capturers. Journal of Materials Chemistry C, 2018, 6, 8082-8091.	2.7	86
63	Recent Progress on Stability and Passivation of Black Phosphorus. Advanced Materials, 2018, 30, e1704749.	11.1	248
64	Two-dimensional sheet of germanium selenide as an anode material for sodium and potassium ion batteries: First-principles simulation study. Computational Materials Science, 2018, 154, 204-211.	1.4	74
65	Interlayer coupling and external electric field tunable electronic properties of a 2D type-I α-tellurene/MoS ₂ heterostructure. Journal of Materials Chemistry C, 2018, 6, 10256-10262.	2.7	56
66	Photo-oxidative Degradation and Protection Mechanism of Black Phosphorus: Insights from Ultrafast Dynamics. Journal of Physical Chemistry Letters, 2018, 9, 5034-5039.	2.1	45
67	Recent advances in the preparation, characterization, and applications of two-dimensional heterostructures for energy storage and conversion. Journal of Materials Chemistry A, 2018, 6, 21747-21784.	5.2	85
68	Fe-doped phosphorene for the nitrogen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 13790-13796.	5.2	144
69	Electrochemical Stability of Few-Layered Phosphorene Flakes on Boron-Doped Diamond: A Wide Potential Range of Studies in Aqueous Solutions. Journal of Physical Chemistry C, 2019, 123, 20233-20240.	1.5	7
70	Recent Developments in Stability and Passivation Techniques of Phosphorene toward Nextâ€Generation Device Applications. Advanced Functional Materials, 2019, 29, 1903419.	7.8	113
71	Multifunctional Optoelectronics via Harnessing Defects in Layered Black Phosphorus. Advanced Functional Materials, 2019, 29, 1901991.	7.8	97
72	Reversible Oxidation of Blue Phosphorus Monolayer on Au(111). Nano Letters, 2019, 19, 5340-5346.	4.5	27

	CITATION	Report	
# 73	ARTICLE Synthesis, Characterization, and Properties of Graphene Analogs of 2D Material. , 2019, , 91-143.	IF	CITATIONS
74	Environmental stability of bismuthene: oxidation mechanism and structural stability of 2D	2.7	40
75	Tunable Schottky and Ohmic contacts in graphene and tellurene van der Waals heterostructures.	1.3	24
76	Spontaneous Decomposition of Fluorinated Phosphorene and Its Stable Structure. Journal of Physical Chemistry Letters, 2019, 10, 7086-7092.	2.1	5
77	Anisotropic interfacial properties between monolayered black phosphorus and water. Applied Surface Science, 2019, 475, 857-862.	3.1	16
78	SnP ₂ S ₆ monolayer: a promising 2D semiconductor for photocatalytic water splitting. Physical Chemistry Chemical Physics, 2019, 21, 21064-21069.	1.3	30
79	Recent advances in oxidation and degradation mechanisms of ultrathin 2D materials under ambient conditions and their passivation strategies. Journal of Materials Chemistry A, 2019, 7, 4291-4312.	5.2	158
80	Direct Growth of Black Phosphorus (p-Type) on a Flexible Substrate with Dual Role of Two-Dimensional ZnO (n-Type) as Effective Passivation and Enabling Highly Stable Broadband Photodetection. ACS Applied Electronic Materials. 2019. 1. 1076-1083.	2.0	14
81	Two-dimensional pnictogens: A review of recent progresses and future research directions. Applied Physics Reviews, 2019, 6, .	5.5	143
82	Ambient Stabilization of Few Layer Phosphorene via Noncovalent Functionalization with Surfactants: Systematic 2D NMR Characterization in Aqueous Dispersion. Chemistry of Materials, 2019, 31, 2786-2794.	3.2	54
83	Black Phosphorus-New Nanostructured Material for Humidity Sensors: Achievements and Limitations. Sensors, 2019, 19, 1010.	2.1	26
84	Mono-Elemental Properties of 2D Black Phosphorus Ensure Extended Charge Carrier Lifetimes under Oxidation: Time-Domain Ab Initio Analysis. Journal of Physical Chemistry Letters, 2019, 10, 1083-1091.	2.1	74
85	Electronic structures of air-exposed few-layer black phosphorus by optical spectroscopy. Physical Review B, 2019, 99, .	1.1	17
86	Strategies for computational design and discovery of two-dimensional transition-metal-free materials for electro-catalysis applications. Physical Chemistry Chemical Physics, 2019, 21, 25535-25547.	1.3	12
87	Degradation of Black Phosphorus upon Environmental Exposure and Encapsulation Strategies To Prevent It. ACS Symposium Series, 2019, , 47-59.	0.5	3
88	The doping and oxidation of 2D black and blue phosphorene: a new photocatalyst for nitrogen reduction driven by visible light. Physical Chemistry Chemical Physics, 2019, 21, 24449-24457.	1.3	18
89	Tailoring the structural and electronic properties of an SnSe ₂ /MoS ₂ van der Waals heterostructure with an electric field and the insertion of a graphene sheet. Physical Chemistry Chemical Physics, 2019, 21, 22140-22148.	1.3	48
90	Intrinsic Correlation between Electronic Structure and Degradation: From Few‣ayer to Bulk Black Phosphorus. Angewandte Chemie, 2019, 131, 3794-3798.	1.6	6

#	Article	IF	CITATIONS
91	A Firstâ€Principles Study on the Adsorption of Small Molecules on Arsenene: Comparison of Oxidation Kinetics in Arsenene, Antimonene, Phosphorene, and InSe. ChemPhysChem, 2019, 20, 575-580.	1.0	42
92	Evaluating the Surface Chemistry of Black Phosphorus during Ambient Degradation. Langmuir, 2019, 35, 2172-2178.	1.6	41
93	Oxidation effect on elastic behavior of phosphorene. Journal of Physics and Chemistry of Solids, 2019, 130, 13-18.	1.9	5
94	Intrinsic Correlation between Electronic Structure and Degradation: From Few‣ayer to Bulk Black Phosphorus. Angewandte Chemie - International Edition, 2019, 58, 3754-3758.	7.2	26
95	Phosphorene as a Catalyst for Highly Efficient Nonaqueous Li–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 499-510.	4.0	27
96	Tunable mechanical, electronic and magnetic properties of monolayer C3N nanoribbons by external fields. Carbon, 2019, 143, 14-20.	5.4	29
97	Novel BCN-phosphorene bilayer: Dependence of carbon doping on band offsets for potential photovoltaic applications. Applied Surface Science, 2020, 504, 144327.	3.1	13
98	Tracing the initial state of surface oxidation in black phosphorus. Applied Surface Science, 2020, 504, 144341.	3.1	10
99	Advances of 2D bismuth in energy sciences. Chemical Society Reviews, 2020, 49, 263-285.	18.7	138
100	Atomic scale study of black phosphorus degradation. RSC Advances, 2020, 10, 350-355.	1.7	25
101	Recent Advances in Chemical Functionalization of 2D Black Phosphorous Nanosheets. Advanced Science, 2020, 7, 1902359.	5.6	76
102	Stable puckered C ₂ N ₂ nanosheet with giant anisotropic hole carrier mobility: insights from first-principles. Journal of Materials Chemistry C, 2020, 8, 15655-15663.	2.7	4
103	Degradation of Black Phosphorus and Strategies to Enhance Its Ambient Lifetime. Advanced Materials Interfaces, 2020, 7, 2001102.	1.9	28
104	A Theoretical Analysis on the Oxidation and Water Dissociation Resistance on Groupâ€ŀV Phosphide Monolayers. ChemPhysChem, 2020, 21, 2539-2549.	1.0	19
105	Recent advances in long-term stable black phosphorus transistors. Nanoscale, 2020, 12, 20089-20099.	2.8	10
106	Small molecule gas adsorption onto blue phosphorene oxide layers. Applied Surface Science, 2020, 530, 147039.	3.1	6
107	Physical Insights into Phosphorene Transistor Degradation Under Exposure to Atmospheric Conditions and Electrical Stress. , 2020, , .		3
108	Wireless Hand-Held Device Based on Polylactic Acid-Protected, Highly Stable, CTAB-Functionalized Phosphorene for CO ₂ Gas Sensing. ACS Applied Materials & Interfaces, 2020, 12, 38365-38375.	4.0	18

#	ARTICLE	IF	CITATIONS
109	Two-Dimensional Black Phosphorus Nanomaterials: Emerging Advances in Electrochemical Energy Storage Science. Nano-Micro Letters, 2020, 12, 179.	14.4	82
110	First-principles study of two dimensional C ₃ N and its derivatives. RSC Advances, 2020, 10, 33469-33474.	1.7	15
111	Dangling-to-Interstitial Oxygen Transition and Its Modifications of the Electronic Structure in Few-Layer Phosphorene. Journal of Physical Chemistry C, 2020, 124, 24066-24072.	1.5	8
112	Electrochemical sensor for cancer cell detection using calix[8]arene/polydopamine/phosphorene nanocomposite based on hostâ"guest recognition. Sensors and Actuators B: Chemical, 2020, 317, 128193.	4.0	25
113	Transitionâ€Metal Phosphorus Trisulfides and its Vacancy Defects: Emergence of a New Class of Anode Material for Liâ€Ion Batteries. ChemSusChem, 2020, 13, 3855-3864.	3.6	30
114	Uptake of formaldehyde onto doped phosphorene nanosheets: A cluster DFT study of single and co-adsorption states. Journal of Alloys and Compounds, 2020, 831, 154885.	2.8	26
115	A super stable assembled P nanowire with variant structural and magnetic/electronic properties <i>via</i> transition metal adsorption. Nanoscale, 2020, 12, 12454-12461.	2.8	8
116	Stabilities of group-III phosphide (MP, M = B, Al, Ga and In) monolayers in oxygen and water environments. Physical Chemistry Chemical Physics, 2020, 22, 7633-7642.	1.3	46
117	Broadband nonlinear optical response in GeSe nanoplates and its applications in all-optical diode. Nanophotonics, 2020, 9, 2007-2015.	2.9	20
118	Visualizing Oxidation Mechanisms in Few-Layered Black Phosphorus via <i>In Situ</i> Transmission Electron Microscopy. ACS Applied Materials & Interfaces, 2020, 12, 15844-15854.	4.0	17
119	Surface Adsorption and Vacancy in Tuning the Properties of Tellurene. ACS Applied Materials & Interfaces, 2020, 12, 19110-19115.	4.0	20
120	2D PC ₃ as a promising thermoelectric material. Physical Chemistry Chemical Physics, 2020, 22, 8625-8632.	1.3	18
121	Black arsenene as a promising anisotropic sensor with high sensitivity and selectivity: insights from a first-principles investigation. Journal of Materials Chemistry C, 2020, 8, 4073-4080.	2.7	18
122	Superlubricity in phosphorene identified by means of ab initio calculations. 2D Materials, 2020, 7, 025033.	2.0	32
123	Modulation of heat transport in two-dimensional group-III chalcogenides. Journal Physics D: Applied Physics, 2020, 53, 185102.	1.3	6
124	A promising photocatalyst for water-splitting reactions with a stable sandwiched P4O2/black phosphorus heterostructure and high solar-to-hydrogen efficiency. Nanoscale, 2020, 12, 6617-6623.	2.8	17
125	Electrochemical transformation of black phosphorous to phosphorene quantum dots: effect of nitrogen doping. Materials Research Express, 2020, 7, 014005.	0.8	5
126	Tl2O/WTe2 van der Waals heterostructure with tunable multiple band alignments. Journal of Chemical Physics, 2020, 152, 074703.	1.2	6

#	Article	IF	CITATIONS
127	Recent advances in doping engineering of black phosphorus. Journal of Materials Chemistry A, 2020, 8, 5421-5441.	5.2	93
128	Directional extraction and penetration of phosphorene nanosheets to cell membranes. Nanoscale, 2020, 12, 2810-2819.	2.8	27
129	Emerging black phosphorus analogue nanomaterials for high-performance device applications. Journal of Materials Chemistry C, 2020, 8, 1172-1197.	2.7	54
130	Property–Activity Relationship of Black Phosphorus at the Nano–Bio Interface: From Molecules to Organisms. Chemical Reviews, 2020, 120, 2288-2346.	23.0	158
131	Large-Scale Production of Nanocrystalline Black Phosphorus Ceramics. ACS Applied Materials & Interfaces, 2020, 12, 7381-7391.	4.0	23
132	Piezoelectric Materials as Sonodynamic Sensitizers to Safely Ablate Tumors: A Case Study Using Black Phosphorus. Journal of Physical Chemistry Letters, 2020, 11, 1228-1238.	2.1	105
133	Photoelectrochemical Synthesis of Ammonia with Black Phosphorus. Advanced Functional Materials, 2020, 30, 2002731.	7.8	69
134	Exploring the Nature of Interaction and Stability between Water-Soluble Arsenic Pollutants and Metal–Phosphorene Hybrids: A Density Functional Theory Study. Journal of Physical Chemistry A, 2020, 124, 3662-3671.	1.1	9
135	Unraveling the single-atom electrocatalytic activity of transition metal-doped phosphorene. Nanoscale Advances, 2020, 2, 2410-2421.	2.2	23
136	Strain engineering the electronic and photocatalytic properties of WS ₂ /blue phosphene van der Waals heterostructures. Catalysis Science and Technology, 2021, 11, 179-190.	2.1	12
137	A review on the 2D black phosphorus materials for energy applications. Inorganic Chemistry Communication, 2021, 124, 108242.	1.8	27
138	Long-term can-sealing protection: a stable black phosphorus nanoassembly achieved through heterogeneous hydrophobic functionalization. Nanoscale, 2021, 13, 763-775.	2.8	7
139	Low-power microwave-induced fabrication of functionalised few-layer black phosphorus electrodes: A novel route towards Haemophilus Influenzae pathogen biosensing devices. Applied Surface Science, 2021, 539, 148286.	3.1	16
140	Investigations of the stability and electronic properties of two-dimensional Ga2O3 nanosheet in air from first-principles calculations. Applied Surface Science, 2021, 537, 147883.	3.1	14
141	Heterobifunctional PEC-grafted black phosphorus quantum dots: "Three-in-One―nano-platforms for mitochondria-targeted photothermal cancer therapy. Asian Journal of Pharmaceutical Sciences, 2021, 16, 222-235.	4.3	22
142	Covalent functionalization of two-dimensional black phosphorus nanosheets with porphyrins and their photophysical characterization. Materials Chemistry Frontiers, 2021, 5, 2824-2831.	3.2	21
143	Penta-MS ₂ (M = Mn, Ni, Cu/Ag and Zn/Cd) monolayers with negative Poisson's ratios and tunable bandgaps as water-splitting photocatalysts. Journal of Materials Chemistry A, 2021, 9, 6993-7004.	5.2	42
144	A two-dimensional MoSe ₂ /MoSi ₂ N ₄ van der Waals heterostructure with high carrier mobility and diversified regulation of its electronic properties. Journal of Materials Chemistry C, 2021, 9, 10073-10083.	2.7	32

#	Article	IF	CITATIONS
145	Emerging elemental two-dimensional materials for energy applications. Journal of Materials Chemistry A, 2021, 9, 18793-18817.	5.2	30
146	Black phosphorus mediated photoporation: a broad absorption nanoplatform for intracellular delivery of macromolecules. Nanoscale, 2021, 13, 17049-17056.	2.8	5
147	First-principles explorations on P ₈ and N ₂ assembled nanowire and nanosheet. Nano Express, 2021, 2, 010004.	1.2	3
148	First-principles study of two-dimensional puckered and buckled honeycomb-like carbon sulfur systems. Journal of Computational Electronics, 2021, 20, 759-774.	1.3	3
149	First-Principles Prediction of Two-Dimensional B ₃ C ₂ P ₃ and B ₂ C ₄ P ₂ : Structural Stability, Fundamental Properties, and Renewable Energy Applications. Journal of Physical Chemistry Letters, 2021, 12, 3436-3442.	2.1	34
150	Partially oxidized black phosphorus nanosheets achieving label-free photoelectrochemical sensing. Sensors and Actuators B: Chemical, 2021, 331, 129468.	4.0	8
151	Structural Defects, Mechanical Behaviors, and Properties of Two-Dimensional Materials. Materials, 2021, 14, 1192.	1.3	48
152	ĐĐ°Đ·Ñ€Đ°Đ±Đ¾Ñ,ĐºĐ° Đ;Đ¾Ñ€Đ,ÑŇ,Ñ‹Ñ ÑŇ,Ñ€ÑƒĐºÑ,ур Đ½Đ° Đ¾ÑĐ½Đ¾Đ²Đµ Đ¾ĐºÑĐ,ĐƊ½Ñ‹	Ñ .oÐ ;о	ÐxупрÐ
153	Exploring the adsorption properties of doped phosphorene for the uptake of DNA nucleobases. Journal of Molecular Liquids, 2021, 325, 115183.	2.3	6
155	Bandgap Modulation in BP Field Effect Transistor and Its Applications. Advanced Electronic Materials, 2021, 7, 2100228.	2.6	2
156	Efficient isotropic water desalination in anisotropic lamellar nano-channels formed by layered black phosphorus membrane. Desalination, 2021, 504, 114962.	4.0	16
157	Two-dimensional black phosphorus: Properties, fabrication and application for flexible supercapacitors. Chemical Engineering Journal, 2021, 412, 128744.	6.6	37
158	Mechanism of All-Optical Spatial Light Modulation in Graphene Dispersion. Journal of Physical Chemistry C, 2021, 125, 16598-16604.	1.5	3
159	Phosphorene and phosphorene oxides as a toxic gas sensor materials: a theoretical study. Journal of Physics Condensed Matter, 2021, 33, 455501.	0.7	6
160	Recent progress in epitaxial growth of twoâ€dimensional phosphorus. SmartMat, 2021, 2, 286-298.	6.4	18
161	Flat epitaxial quasi-1D phosphorene chains. Nature Communications, 2021, 12, 5160.	5.8	22
162	Atomic-Scale Investigation of Oxidation at the Black Phosphorus Surface. ACS Applied Electronic Materials, 2021, 3, 4066-4072.	2.0	6
163	Fullerene–phosphorene–nanoflake nanostructures: Modulation of their interaction mechanisms and electronic properties through the size of carbon fullerenes. Carbon, 2021, 182, 354-365.	5.4	5

#	Article	IF	CITATIONS
164	Photoluminescence as a probe of phosphorene properties. Npj 2D Materials and Applications, 2021, 5, .	3.9	11
165	Controllable graphene/black phosphorus van der Waals heterostructure tunneling device. Materials Letters, 2021, 300, 130189.	1.3	1
166	Effects of oxygen atoms and oxygen molecules on the electronic properties of modified black phosphorus. Chemical Physics, 2021, 550, 111285.	0.9	5
167	Removal of water-soluble inorganic arsenicals with phosphorene oxide nanoadsorbents: A first-principles study. Chemical Engineering Journal, 2021, 426, 131471.	6.6	4
168	Enhanced nonlinear optical response of graphene-based nanoflake van der Waals heterostructures. RSC Advances, 2021, 11, 5590-5600.	1.7	7
169	New materials for water-splitting. Interface Science and Technology, 2021, 32, 791-870.	1.6	5
170	Future Prospects and Challenges of Black Phosphorous Materials. Engineering Materials, 2020, , 157-169.	0.3	10
171	Strain-engineered black arsenene as a promising gas sensor for detecting SO ₂ among SF ₆ decompositions. Nanotechnology, 2021, 32, 065501.	1.3	9
172	Prediction of a two-dimensional S3N2 solid for optoelectronic applications. Physical Review Materials, 2018, 2, .	0.9	10
173	Facile sonochemical-assisted synthesis of orthorhombic phase black phosphorus/rGO hybrids for effective photothermal therapy. Nanophotonics, 2020, 9, 3023-3034.	2.9	7
174	Surface Functionalization of Black Phosphorus via Amine Compounds and Its Impacts on the Flame Retardancy and Thermal Decomposition Behaviors of Epoxy Resin. Polymers, 2021, 13, 3635.	2.0	8
175	Rational design of porous GeP2S6 monolayer for photocatalytic water splitting under the irradiation of visible light. FlatChem, 2021, 30, 100296.	2.8	3
177	Enhanced voltammetric performance of sensors based on oxidized 2D layered black phosphorus. Talanta, 2022, 238, 123036.	2.9	3
178	Mixed Ionicâ€Electronic Charge Transport in Layered Blackâ€Phosphorus for Lowâ€Power Memory. Advanced Functional Materials, 2022, 32, 2107068.	7.8	16
179	Improving Humidity Sensing of Black Phosphorus Nanosheets by Co-Doping Benzyl Viologen and Au Nanoparticles. Journal of the Electrochemical Society, 2022, 169, 017513.	1.3	8
180	Phosphorene quantum dots: synthesis, properties and catalytic applications. Nanoscale, 2022, 14, 1037-1053.	2.8	9
181	Directly Evaluating the Optical Anisotropy of Few‣ayered Black Phosphorus during Ambient Oxidization. Advanced Optical Materials, 2022, 10, .	3.6	9
182	First-Principles Molecular Dynamics Insight into the Atomic Level Degradation Pathway of Phosphorene. ACS Omega, 2022, 7, 696-704.	1.6	5

CITATION REPORT ARTICLE IF CITATIONS Defects investigation of bipolar exfoliated phosphorene nanosheets. Surface Science, 2022, 720, 0.8 7 122052. Unveiling the Degradation Chemistry of Fibrous Red Phosphorus under Ambient Conditions. ACS Applied Materials & amp; Interfaces, 2022, 14, 9925-9932. Nanostructured Materials and Architectures for Advanced Optoelectronic Synaptic Devices. 7.8 45 Advanced Functional Materials, 2022, 32, . Stability and passivation of 2D group VA elemental materials: black phosphorus and beyond. Journal of Physics Condensed Matter, 2022, 34, 224004. Charged Particle Induced Etching and Functionalization of Two-Dimensional Materials. ECS Journal of 0.9 1 Solid State Science and Technology, 2022, 11, 035011. Semi-metallic PC5 monolayer as a superior anode material for potassium ion batteries: A first principles study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643, 128756. 2.3 Role of Channel Inversion in Ambient Degradation of Phosphorene FETs. IEEE Transactions on Electron 1.6 0 Devices, 2022, 69, 3353-3358. Atomic-scale friction of black phosphorus from first-principles calculations: Insensitivity of friction 14 under the high-load. Tribology International, 2022, 172, 107590. Cold-catalytic antitumor immunity with pyroelectric black phosphorus nanosheets. Chemical Science, 3.7 14 2022, 13, 6842-6851. Integrated optoelectronics with two-dimensional materials., 2022, 1, 20220022. Chemical degradation kinetics for two-dimensional materials in natural and biological environments 3 2.2 – a data-driven review. Environmental Science: Nano, 0, , . Unfolding essence of nanoscience for improved water splitting hydrogen generation in the light of 3.8 newly emergent nanocatalysts. International Journal of Hydrogen Energy, 2022, 47, 26915-26955. Investigation of Electronic Properties and Dielectric Response of Two-Dimensional Germanium 1.0 3 Selenide with Puckered and Buckled Structures. Journal of Electronic Materials, 2022, 51, 6275-6285. Black Phosphorus: Fundamental Properties and Influence of Impurities Induced by Its Synthesis. ACS Applied Materials & amp; Interfaces, 2022, 14, 34867-34874. 4.0 An Investigation of Monolayer As_{1â[~]}<i>_x</i>P<i>_x</i>Solid 0 1.9 Solutions: From a Theoretical Perspective. Advanced Materials Interfaces, 2022, 9, . First principles study of biaxially deformed hexagonal buckled XS (X=Ge and Si) monolayers with light 0.8 absorption in the visible region. Thin Solid Films, 2022, 759, 139457.

200	Liquefaction of water on the hydrophobic surface of black phosphorene: A reactive molecular dynamics simulation. Journal of Molecular Liquids, 2022, 364, 119947.	2.3	2	
201	Defect Engineering in Layered Black Phosphorus for Multi-Functional Optoelectronics. RSC	0.2	0	

12

Nanoscience and Nanotechnology, 2022, , 33-52.

183

184

185

186

187

188

189

191

194

196

198

199

#	Article	IF	CITATIONS
202	Blue phosphorene/MoSi ₂ N ₄ van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics. Chinese Physics B, 2023, 32, 027104.	0.7	0
203	Ultraâ€Narrow Phosphorene Nanoribbons Produced by Facile Electrochemical Process. Advanced Science, 2022, 9, .	5.6	9
204	High-yield aqueous synthesis of partial-oxidized black phosphorus as layered nanodot photocatalysts for efficient visible-light driven degradation of emerging organic contaminants. Journal of Cleaner Production, 2022, 377, 134228.	4.6	36
205	A BC ₂ N/blue phosphorene heterostructure as an anode material for high-performance sodium-ion batteries: first principles insights. Physical Chemistry Chemical Physics, 2023, 25, 3160-3174.	1.3	5
206	Revealing the biotoxicity of phosphorene oxide nanosheets based on the villin headpiece. Physical Chemistry Chemical Physics, 2023, 25, 3100-3109.	1.3	1
207	DFT study on the chemical stability of monolayer BeN4 and the electronic properties of graphene/BeN4 heterostructure. Vacuum, 2023, 209, 111802.	1.6	3
208	Exploring the oxidation mechanisms of black phosphorus: a review. Journal of Materials Science, 2023, 58, 2068-2086.	1.7	6
209	Transforming the electronic properties of phosphorene through charge transfer superatomic doping. Surface Science, 2023, 732, 122269.	0.8	2
210	Interfacial electronic properties and tunable band offset in graphyne/MoSe ₂ heterostructure with high carrier mobility. New Journal of Chemistry, 2023, 47, 7084-7092.	1.4	0
211	Investigation of the Fewâ€Layer Black Phosphorus Degradation by the Photonic Measurements. Advanced Materials Interfaces, 2023, 10, .	1.9	0
212	Interaction of Water and Oxygen Molecules with Phosphorene: An Ab Initio Study. Molecules, 2023, 28, 3570.	1.7	0
215	Unveiling Additional Ambient Degradation Issues of Phosphorene FETs Under Laser Exposure and Positive Gate Bias. , 2022, , .		0