Programmable editing of a target base in genomic DNA cleavage

Nature 533, 420-424

DOI: 10.1038/nature17946

Citation Report

#	Article	IF	CITATIONS
1	CRISPR-Cas9: from Genome Editing to Cancer Research. International Journal of Biological Sciences, 2016, 12, 1427-1436.	6.4	31
2	Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. ELife, 2016, 5, .	6.0	609
3	Survival and Evolution of CRISPR–Cas System in Prokaryotes and Its Applications. Frontiers in Immunology, 2016, 7, 375.	4.8	33
4	Beyond CRISPR: A guide to the many other ways to edit a genome. Nature, 2016, 536, 137-137.	27.8	10
5	Gene-editing hack yields pinpoint precision. Nature, 2016, , .	27.8	1
6	CRISPR/Cas9: a breakthrough in generating mouse models for endocrinologists. Journal of Molecular Endocrinology, 2016, 57, R81-R92.	2.5	11
7	Genome-editing technologies for gene correction of hemophilia. Human Genetics, 2016, 135, 977-981.	3.8	32
8	Genetically modified (GM) crops: milestones and new advances in crop improvement. Theoretical and Applied Genetics, 2016, 129, 1639-1655.	3.6	123
9	CRISPR-Cas9-AID base editor is a powerful gain-of-function screening tool. Nature Methods, 2016, 13, 983-984.	19.0	22
10	<i>In vivo</i> versus <i>ex vivo</i> CRISPR therapies for retinal dystrophy. Expert Review of Ophthalmology, 2016, 11, 397-400.	0.6	8
11	Modeling Cancer with Pluripotent Stem Cells. Trends in Cancer, 2016, 2, 485-494.	7.4	30
12	A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. Cell, 2016, 167, 1867-1882.e21.	28.9	819
13	CRISPR-Mediated Base Editing without DNA Double-Strand Breaks. Molecular Cell, 2016, 62, 477-478.	9.7	12
14	Cre-dependent DNA recombination activates a STING-dependent innate immune response. Nucleic Acids Research, 2016, 44, 5356-5364.	14.5	44
15	Genome engineering in ophthalmology: Application of CRISPR/Cas to the treatment of eye disease. Progress in Retinal and Eye Research, 2016, 53, 1-20.	15.5	42
16	Applications of CRISPR Genome Engineering in Cell Biology. Trends in Cell Biology, 2016, 26, 875-888.	7.9	68
17	Genome-Editing Technologies: Principles and Applications. Cold Spring Harbor Perspectives in Biology, 2016, 8, a023754.	5 . 5	209
18	Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nature Methods, 2016, 13, 1029-1035.	19.0	346

#	Article	IF	CITATIONS
19	Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 2016, 353, .	12.6	1,011
20	Genome editing comes of age. Nature Protocols, 2016, 11, 1573-1578.	12.0	85
21	Development of autologous blood cell therapies. Experimental Hematology, 2016, 44, 887-894.	0.4	6
22	Opportunities and challenges in modeling human brain disorders in transgenic primates. Nature Neuroscience, 2016, 19, 1123-1130.	14.8	115
23	CRISPR technologies for bacterial systems: Current achievements and future directions. Biotechnology Advances, 2016, 34, 1180-1209.	11.7	124
24	Continuous genetic recording with self-targeting CRISPR-Cas in human cells. Science, 2016, 353, .	12.6	186
25	Harnessing mutation: The best of two worlds. Science, 2016, 353, 1206-1207.	12.6	1
26	The present and future of genome editing in cancer research. Human Genetics, 2016, 135, 1083-1092.	3.8	13
27	Desktop Genetics. Personalized Medicine, 2016, 13, 517-521.	1.5	21
28	Diving into marine genomics with CRISPR/Cas9 systems. Marine Genomics, 2016, 30, 55-65.	1.1	29
29	Sendai virus, an RNA virus with no risk of genomic integration, delivers CRISPR/Cas9 for efficient gene editing. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16057.	4.1	40
30	The new editorâ€"targeted genome engineering in the absence of homology-directed repair. Cell Death Discovery, 2016, 2, 16042.	4.7	0
31	Emerging cellular and gene therapies for congenital anemias. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2016, 172, 332-348.	1.6	6
32	Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nature Methods, 2016, 13, 1036-1042.	19.0	378
33	Engineering and optimising deaminase fusions for genome editing. Nature Communications, 2016, 7, 13330.	12.8	60
34	Developing genetically engineered mouse models using engineered nucleases: Current status, challenges, and the way forward. Drug Discovery Today: Disease Models, 2016, 20, 13-20.	1.2	3
35	Meet the Editors. Cell, 2016, 165, 1295-1297.	28.9	0
36	The CRISPR/Cas9 Genome Editing Revolution. Journal of Genetics and Genomics, 2016, 43, 227-228.	3.9	10

#	ARTICLE	IF	CITATIONS
37	TALENs and CRISPR/Cas9 fuel genetically engineered clinically relevant <i>Xenopus tropicalis</i> tumor models. Genesis, 2017, 55, e23005.	1.6	25
38	Programmable Genome Editing Tools and their Regulation for Efficient Genome Engineering. Computational and Structural Biotechnology Journal, 2017, 15, 146-160.	4.1	86
39	Targeted integration of genes in <i>Xenopus tropicalis</i> . Genesis, 2017, 55, e23006.	1.6	5
40	Genome engineering of stem cell organoids for disease modeling. Protein and Cell, 2017, 8, 315-327.	11.0	30
41	Orthogonal Genetic Regulation in Human Cells Using Chemically Induced CRISPR/Cas9 Activators. ACS Synthetic Biology, 2017, 6, 686-693.	3.8	37
42	Cas9, Cpf1 and C2c1/2/3―What's next?. Bioengineered, 2017, 8, 265-273.	3.2	80
43	Future of rAAV Gene Therapy: Platform for RNAi, Gene Editing, and Beyond. Human Gene Therapy, 2017, 28, 361-372.	2.7	40
44	CRISPR/CAS9 Technologies. Journal of Bone and Mineral Research, 2017, 32, 883-888.	2.8	19
45	Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote. Scientific Reports, 2017, 7, 42661.	3.3	59
46	The Impact of DNA Topology and Guide Length on Target Selection by a Cytosine-Specific Cas9. ACS Synthetic Biology, 2017, 6, 1103-1113.	3.8	27
47	Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology, 2017, 35, 438-440.	17.5	690
48	Highly efficient RNA-guided base editing in mouse embryos. Nature Biotechnology, 2017, 35, 435-437.	17.5	330
49	A CRISPR view of gene regulation. Current Opinion in Systems Biology, 2017, 1, 1-8.	2.6	16
50	Endogenous DNA Damage as a Source of Genomic Instability in Cancer. Cell, 2017, 168, 644-656.	28.9	972
51	Genome editing for inborn errors of metabolism: advancing towards the clinic. BMC Medicine, 2017, 15, 43.	5.5	42
52	Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs. Nature Communications, 2017, 8, 14633.	12.8	75
53	Approaches to Reduce CRISPR Off-Target Effects for Safer Genome Editing. Applied Biosafety, 2017, 22, 7-13.	0.5	18
54	A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice. Science China Life Sciences, 2017, 60, 516-519.	4.9	77

#	ARTICLE	IF	CITATIONS
55	Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nature Biotechnology, 2017, 35, 371-376.	17.5	609
56	Therapeutic genome engineering via <scp>CRISPR</scp> â€Cas systems. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1380.	6.6	22
57	Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nature Biotechnology, 2017, 35, 475-480.	17.5	239
58	Genome-Edited T Cell Therapies. Current Stem Cell Reports, 2017, 3, 124-136.	1.6	13
59	Advances in CRISPR-Cas based genome engineering. Current Opinion in Biomedical Engineering, 2017, 1, 78-86.	3.4	6
60	DNA editing in DNA/RNA hybrids by adenosine deaminases that act on RNA. Nucleic Acids Research, 2017, 45, gkx050.	14.5	53
61	Plant genome editing with TALEN and CRISPR. Cell and Bioscience, 2017, 7, 21.	4.8	197
62	Use of CRISPR/Cas9 for Symbiotic Nitrogen Fixation Research in Legumes. Progress in Molecular Biology and Translational Science, 2017, 149, 187-213.	1.7	24
63	Base editing on the rise. Nature Biotechnology, 2017, 35, 428-429.	17.5	6
65	CRISPR Editing Technology in Biological and Biomedical Investigation. Journal of Cellular Biochemistry, 2017, 118, 3586-3594.	2.6	21
66	Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity. Nature Communications, 2017, 8, 15024.	12.8	130
67	CRISPR Editing in Biological and Biomedical Investigation. Journal of Cellular Biochemistry, 2017, 118, 4152-4162.	2.6	6
68	Future insights in fungal metabolic engineering. Bioresource Technology, 2017, 245, 1314-1326.	9.6	54
69	Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Current Opinion in Plant Biology, 2017, 36, 1-8.	7.1	264
70	Rapidly evolving homing CRISPR barcodes. Nature Methods, 2017, 14, 195-200.	19.0	179
71	Applications of CRISPR-Cas for synthetic biology and genetic recording. Current Opinion in Systems Biology, 2017, 5, 9-15.	2.6	18
72	Developmental history and application of CRISPR in human disease. Journal of Gene Medicine, 2017, 19, e2963.	2.8	9
73	CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nature Methods, 2017, 14, 710-712.	19.0	290

#	Article	IF	CITATIONS
74	Precise genome-wide base editing by the CRISPR Nickase system in yeast. Scientific Reports, 2017, 7, 2095.	3.3	56
76	Disruptive non-disruptive applications of CRISPR/Cas9. Current Opinion in Biotechnology, 2017, 48, 203-209.	6.6	7
77	Mammalian Synthetic Biology: Engineering Biological Systems. Annual Review of Biomedical Engineering, 2017, 19, 249-277.	12.3	47
78	Treatment of Dyslipidemia Using CRISPR/Cas9 Genome Editing. Current Atherosclerosis Reports, 2017, 19, 32.	4.8	13
79	Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nature Communications, 2017, 8, 15790.	12.8	343
80	Engineered CRISPR Systems for Next Generation Gene Therapies. ACS Synthetic Biology, 2017, 6, 1614-1626.	3.8	30
81	Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature, 2017, 546, 559-563.	27.8	170
82	The Hope and Hype of CRISPR-Cas9 Genome Editing. JAMA Cardiology, 2017, 2, 914.	6.1	43
83	The CRISPR-Cas9 system in Neisseria spp Pathogens and Disease, 2017, 75, .	2.0	13
84	New variants of CRISPR RNAâ€guided genome editing enzymes. Plant Biotechnology Journal, 2017, 15, 917-926.	8.3	79
85	Functional variomics and network perturbation: connecting genotype to phenotype in cancer. Nature Reviews Genetics, 2017, 18, 395-410.	16.3	84
86	Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature Biotechnology, 2017, 35, 441-443.	17.5	632
87	CRISPR applications in ophthalmologic genome surgery. Current Opinion in Ophthalmology, 2017, 28, 252-259.	2.9	27
88	Refining strategies to translate genome editing to the clinic. Nature Medicine, 2017, 23, 415-423.	30.7	213
89	CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Reports, 2017, 36, 745-757.	5.6	170
90	PSL Chemical Biology Symposia First 2016 Edition: When Chemistry and Biology Share the Language of Discovery. ChemBioChem, 2017, 18, 883-887.	2.6	1
91	Choosing CRISPR-based screens in cancer. Nature Methods, 2017, 14, 343-346.	19.0	4
92	Functional interrogation of non-coding DNA through CRISPR genome editing. Methods, 2017, 121-122, 118-129.	3.8	28

#	Article	IF	CITATIONS
93	To cleave or not to cleave: therapeutic gene editing with and without programmable nucleases. Nature Reviews Drug Discovery, 2017, 16, 296-296.	46.4	9
94	Editing the genome of hiPSC with CRISPR/Cas9: disease models. Mammalian Genome, 2017, 28, 348-364.	2.2	72
95	CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis. Science China Life Sciences, 2017, 60, 520-523.	4.9	128
96	CRISPR/Cas9-mediated genome editing in plants. Methods, 2017, 121-122, 94-102.	3.8	46
97	Precise Editing of a Target Base in the Rice Genome Using a Modified CRISPR/Cas9 System. Molecular Plant, 2017, 10, 523-525.	8.3	352
98	Cornerstones of CRISPR–Cas in drug discovery and therapy. Nature Reviews Drug Discovery, 2017, 16, 89-100.	46.4	370
99	Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: Case study in tomato. Plant Science, 2017, 256, 120-130.	3.6	121
100	From classical mutagenesis to nucleaseâ€based breeding – directing natural <scp>DNA</scp> repair for a natural endâ€product. Plant Journal, 2017, 90, 819-833.	5.7	115
101	Genome engineering in human pluripotent stem cells. Current Opinion in Chemical Engineering, 2017, 15, 56-67.	7.8	1
102	Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System. Molecular Plant, 2017, 10, 526-529.	8.3	272
103	Genome and Epigenome Editing in Mechanistic Studies of Human Aging and Aging-Related Disease. Gerontology, 2017, 63, 103-117.	2.8	11
104	Induced pluripotent stem cell technology: a decade of progress. Nature Reviews Drug Discovery, 2017, 16, 115-130.	46.4	1,076
105	Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 2017, 551, 464-471.	27.8	2,807
106	RNA editing with CRISPR-Cas13. Science, 2017, 358, 1019-1027.	12.6	1,301
107	On Improving CRISPR for Editing Plant Genes: Ribozyme-Mediated Guide RNA Production and Fluorescence-Based Technology for Isolating Transgene-Free Mutants Generated by CRISPR. Progress in Molecular Biology and Translational Science, 2017, 149, 151-166.	1.7	25
108	High-Throughput Approaches to Pinpoint Function within the Noncoding Genome. Molecular Cell, 2017, 68, 44-59.	9.7	54
109	Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes. Molecular Cell, 2017, 68, 26-43.	9.7	199
110	Growing beyond: Designing plants to serve human and environmental interests. Current Opinion in Systems Biology, 2017, 5, 82-85.	2.6	3

#	Article	IF	CITATIONS
111	Correction of \hat{l}^2 -thalassemia mutant by base editor in human embryos. Protein and Cell, 2017, 8, 811-822.	11.0	182
113	Global analysis of AGO2-bound RNAs reveals that miRNAs induce cleavage of target RNAs with limited complementarity. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 1148-1158.	1.9	10
114	The Power of Zebrafish in Personalised Medicine. Advances in Experimental Medicine and Biology, 2017, 1007, 179-197.	1.6	36
115	Emerging Gene Therapies for Genetic Hearing Loss. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 649-670.	1.8	86
116	Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein and Cell, 2017, 8, 776-779.	11.0	68
117	Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Research, 2017, 27, 1289-1292.	12.0	99
118	Beyond editing to writing large genomes. Nature Reviews Genetics, 2017, 18, 749-760.	16.3	40
119	Single nucleotide editing without DNA cleavage using CRISPR/Cas9â€deaminase in the sea urchin embryo. Developmental Dynamics, 2017, 246, 1036-1046.	1.8	25
120	Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Science Advances, 2017, 3, eaao4774.	10.3	582
121	Edited course of biomedical research: leaping forward with CRISPR. Pharmacological Research, 2017, 125, 258-265.	7.1	5
122	CRISPR/Cas9-induced Targeted Mutagenesis and Gene Replacement to Generate Long-shelf Life Tomato Lines. Scientific Reports, 2017, 7, 11874.	3.3	168
123	APOBEC: From mutator to editor. Journal of Genetics and Genomics, 2017, 44, 423-437.	3.9	54
124	Curative approaches for sickle cell disease: A review of allogeneic and autologous strategies. Blood Cells, Molecules, and Diseases, 2017, 67, 155-168.	1.4	11
125	Gene Modified T Cell Therapies for Hematological Malignancies. Hematology/Oncology Clinics of North America, 2017, 31, 913-926.	2.2	4
126	Historical Perspective on the Current Renaissance for Hematopoietic Stem Cell Gene Therapy. Hematology/Oncology Clinics of North America, 2017, 31, 721-735.	2.2	23
127	In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting. Nature Communications, 2017, 8, 657.	12.8	74
128	Highly efficient base editing in human tripronuclear zygotes. Protein and Cell, 2017, 8, 772-775.	11.0	52
129	CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons. Molecular Cell, 2017, 67, 1068-1079.e4.	9.7	283

#	Article	IF	Citations
130	Gene Editing With TALEN and CRISPR/Cas in Rice. Progress in Molecular Biology and Translational Science, 2017, 149, 81-98.	1.7	27
131	Targeted mutagenesis: A sniper-like diversity generator in microbial engineering. Synthetic and Systems Biotechnology, 2017, 2, 75-86.	3.7	15
132	In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1741-1747.	2.4	181
133	Implications of human genetic variation in CRISPR-based therapeutic genome editing. Nature Medicine, 2017, 23, 1095-1101.	30.7	105
134	Progress and prospects in plant genome editing. Nature Plants, 2017, 3, 17107.	9.3	349
135	Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nature Communications, 2017, 8, 118.	12.8	154
136	Towards <scp>CRISPR</scp> /Cas crops – bringing together genomics and genome editing. New Phytologist, 2017, 216, 682-698.	7.3	235
137	Genome editing in crop improvement: Present scenario and future prospects. Journal of Crop Improvement, 2017, 31, 453-559.	1.7	57
138	Optimised metrics for CRISPR-KO screens with second-generation gRNA libraries. Scientific Reports, 2017, 7, 7384.	3.3	37
139	Basics of genome editing technology and its application in livestock species. Reproduction in Domestic Animals, 2017, 52, 4-13.	1.4	68
140	Mapping a diversity of genetic interactions in yeast. Current Opinion in Systems Biology, 2017, 6, 14-21.	2.6	20
141	Genome Editingâ€"Principles and Applications for Functional Genomics Research and Crop Improvement. Critical Reviews in Plant Sciences, 2017, 36, 291-309.	5.7	111
142	Enhancing the RNA engineering toolkit. Science, 2017, 358, 996-997.	12.6	21
143	Genome Editing. Journal of the American College of Cardiology, 2017, 70, 2808-2821.	2.8	27
144	Precise Editing at DNA Replication Forks Enables Multiplex Genome Engineering in Eukaryotes. Cell, 2017, 171, 1453-1467.e13.	28.9	93
145	Targeted Gene Editing in Human Pluripotent Stem Cells Using Site-Specific Nucleases. Advances in Biochemical Engineering/Biotechnology, 2017, 163, 169-186.	1.1	4
146	Precision Medicine, CRISPR, and Genome Engineering. Advances in Experimental Medicine and Biology, 2017, , .	1.6	2
147	Target Discovery for Precision Medicine Using High-Throughput Genome Engineering. Advances in Experimental Medicine and Biology, 2017, 1016, 123-145.	1.6	6

#	Article	IF	CITATIONS
148	Scaling computation and memory in living cells. Current Opinion in Biomedical Engineering, 2017, 4, 143-151.	3.4	16
149	The pigmented epithelium, a bright partner against photoreceptor degeneration. Journal of Neurogenetics, 2017, 31, 203-215.	1.4	16
150	NEMO Links Nuclear Factor-κB to Human Diseases. Trends in Molecular Medicine, 2017, 23, 1138-1155.	6.7	59
151	An enhanced hTERT promoter-driven CRISPR/Cas9 system selectively inhibits the progression of bladder cancer cells. Molecular BioSystems, 2017, 13, 1713-1721.	2.9	10
152	Effective gene editing by high-fidelity base editor 2 in mouse zygotes. Protein and Cell, 2017, 8, 601-611.	11.0	72
153	Editing base in mouse model. Protein and Cell, 2017, 8, 558-559.	11.0	0
154	Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nature Communications, 2017, 8, 15939.	12.8	169
155	Technology Turbocharges Functional Genomics. Plant Cell, 2017, 29, 1179-1180.	6.6	4
156	Opportunities to apply manufacturing systems analysis techniques in genetic manufacturing systems. Manufacturing Letters, 2017, 13, 34-38.	2.2	1
157	Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nature Reviews Genetics, 2017, 18, 24-40.	16.3	159
158	CRISPR/Cas9 in zebrafish: an efficient combination for human genetic diseases modeling. Human Genetics, 2017, 136, 1-12.	3.8	83
160	Genome Editing Techniques and Their Therapeutic Applications. Clinical Pharmacology and Therapeutics, 2017, 101, 42-51.	4.7	18
161	CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell, 2017, 168, 20-36.	28.9	783
162	Epigenetic Treatment of Persistent Viral Infections. Drug Development Research, 2017, 78, 24-36.	2.9	17
163	CRISPR/Cas9 in allergic and immunologic diseases. Expert Review of Clinical Immunology, 2017, 13, 5-9.	3.0	8
164	Precision genome editing in the CRISPR era. Biochemistry and Cell Biology, 2017, 95, 187-201.	2.0	120
165	InÂvivo genome editing as a potential treatment strategy for inherited retinal dystrophies. Progress in Retinal and Eye Research, 2017, 56, 1-18.	15.5	62
166	CRISPR/Cas9 mediated mutation of mouse IL- \hat{l} ± nuclear localisation sequence abolishes expression. Scientific Reports, 2017, 7, 17077.	3.3	2

#	Article	IF	CITATIONS
167	Therapeutic genome editing with engineered nucleases. Hamostaseologie, 2017, 37, 45-52.	1.9	13
168	Progress in Genome Editing Technology and Its Application in Plants. Frontiers in Plant Science, 2017, 8, 177.	3.6	78
169	Correction of Monogenic and Common Retinal Disorders with Gene Therapy. Genes, 2017, 8, 53.	2.4	37
170	Applications of Alternative Nucleases in the Age of CRISPR/Cas9. International Journal of Molecular Sciences, 2017, 18, 2565.	4.1	22
171	Recent advances in DNA-free editing and precise base editing in plants. Emerging Topics in Life Sciences, 2017, 1, 161-168.	2.6	8
172	Gene editing in tomatoes. Emerging Topics in Life Sciences, 2017, 1, 183-191.	2.6	2
173	CRISPR–Cas9., 2017, , .		0
174	Drug discovery. , 2017, , 281-420.		1
175	Opportunities for CRISPR/Cas9 Gene Editing in Retinal Regeneration Research. Frontiers in Cell and Developmental Biology, 2017, 5, 99.	3.7	13
176	May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells. Cells, 2017, 6, 5.	4.1	38
177	Cellular Reprogramming, Genome Editing, and Alternative CRISPR Cas9 Technologies for Precise Gene Therapy of Duchenne Muscular Dystrophy. Stem Cells International, 2017, 2017, 1-11.	2.5	30
178	Chinese scientists fix genetic disorder in cloned human embryos. Nature, 2017, 550, 15-16.	27.8	12
179	Genome Modification Technologies and Their Applications in Avian Species. International Journal of Molecular Sciences, 2017, 18, 2245.	4.1	10
180	Rapid generation of drug-resistance alleles at endogenous loci using CRISPR-Cas9 indel mutagenesis. PLoS ONE, 2017, 12, e0172177.	2.5	25
181	Efficient generation of P53 biallelic knockout Diannan miniature pigs via TALENs and somatic cell nuclear transfer. Journal of Translational Medicine, 2017, 15, 224.	4.4	21
182	CRISPR-Cas Genome Surgery in Ophthalmology. Translational Vision Science and Technology, 2017, 6, 13.	2.2	15
183	In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease. F1000Research, 2017, 6, 2153.	1.6	127
184	Recent developments in genome editing for potential use in plants. Bioscience Horizons, 2017, 10, .	0.6	6

#	Article	IF	CITATIONS
185	Precise A·T to G·C Base Editing in the Rice Genome. Molecular Plant, 2018, 11, 627-630.	8.3	195
186	Highly Efficient A·T to G·C Base Editing by Cas9n-Guided tRNA Adenosine Deaminase in Rice. Molecular Plant, 2018, 11, 631-634.	8.3	177
187	Application and development of genome editing technologies to the Solanaceae plants. Plant Physiology and Biochemistry, 2018, 131, 37-46.	5.8	25
188	Highly efficient base editing in <i>Staphylococcus aureus</i> using an engineered CRISPR RNA-guided cytidine deaminase. Chemical Science, 2018, 9, 3248-3253.	7.4	64
189	Genome Writing: Current Progress and Related Applications. Genomics, Proteomics and Bioinformatics, 2018, 16, 10-16.	6.9	8
190	A New Chapter in Genetic Medicine: RNA Editing and its Role in Disease Pathogenesis. Trends in Molecular Medicine, 2018, 24, 294-303.	6.7	35
191	Precision genome engineering through adenine and cytosine base editing. Nature Plants, 2018, 4, 148-151.	9.3	69
192	Reduced Blood Lipid Levels With In Vivo CRISPR-Cas9 Base Editing of ANGPTL3. Circulation, 2018, 137, 975-977.	1.6	122
193	Highly Effective and Low-Cost MicroRNA Detection with CRISPR-Cas9. ACS Synthetic Biology, 2018, 7, 807-813.	3.8	124
194	TILLING: The Next Generation. Advances in Biochemical Engineering/Biotechnology, 2018, 164, 139-160.	1.1	10
195	Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018, 556, 57-63.	27.8	1,195
196	Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR–mediated direct in vivo screening. Science Advances, 2018, 4, eaao5508.	10.3	64
197	Engineering and Application of Pluripotent Stem Cells. Advances in Biochemical Engineering/Biotechnology, 2018, , .	1.1	0
198	Advanced editing of the nuclear and plastid genomes in plants. Plant Science, 2018, 273, 42-49.	3.6	26
199	Engineering Introns to Express RNA Guides for Cas9- and Cpf1-Mediated Multiplex Genome Editing. Molecular Plant, 2018, 11, 542-552.	8.3	81
200	Strategies for In Vivo Genome Editing in Nondividing Cells. Trends in Biotechnology, 2018, 36, 770-786.	9.3	58
201	Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair. Nucleic Acids Research, 2018, 46, 4677-4688.	14.5	65
202	CRISPR/Cas9 genome editing technology significantly accelerated herpes simplex virus research. Cancer Gene Therapy, 2018, 25, 93-105.	4.6	41

#	Article	IF	CITATIONS
203	Genome Editing and Induced Pluripotent Stem Cell Technologies for Personalized Study of Cardiovascular Diseases. Current Cardiology Reports, 2018, 20, 38.	2.9	1
204	The <scp>CRISPR</scp> /Cas revolution reaches the <scp>RNA</scp> world: Cas13, a new Swiss Army knife for plant biologists. Plant Journal, 2018, 94, 767-775.	5.7	83
205	Innovations in CRISPR technology. Current Opinion in Biotechnology, 2018, 52, 95-101.	6.6	17
206	Development of capability for genome-scale CRISPR-Cas9 knockout screens in New Zealand. Journal of the Royal Society of New Zealand, 2018, 48, 245-261.	1.9	1
207	Development and application of CRISPR/Cas9 technologies in genomic editing. Human Molecular Genetics, 2018, 27, R79-R88.	2.9	47
208	Applied RNA Bioscience., 2018,,.		1
209	High-throughput genetic screens using CRISPR–Cas9 system. Archives of Pharmacal Research, 2018, 41, 875-884.	6.3	23
210	Improved memory devices for synthetic cells. Science, 2018, 360, 150-151.	12.6	5
211	Incorporation of bridged nucleic acids into CRISPR RNAs improves Cas9 endonuclease specificity. Nature Communications, 2018, 9, 1448.	12.8	136
212	Harnessing natural DNA modifying activities for editing of the genome and epigenome. Current Opinion in Chemical Biology, 2018, 45, 10-17.	6.1	12
213	Multigene delivery in mammalian cells: Recent advances and applications. Biotechnology Advances, 2018, 36, 871-879.	11.7	10
214	Improved Base Editor for Efficiently Inducing Genetic Variations in Rice with CRISPR/Cas9-Guided Hyperactive hAID Mutant. Molecular Plant, 2018, 11, 623-626.	8.3	169
215	Phenotypic novelty by CRISPR in plants. Developmental Biology, 2018, 435, 170-175.	2.0	20
216	Deaminase-mediated multiplex genome editing in Escherichia coli. Nature Microbiology, 2018, 3, 423-429.	13.3	161
217	Personalised genome editing $\hat{a} \in \text{``}$ The future for corneal dystrophies. Progress in Retinal and Eye Research, 2018, 65, 147-165.	15.5	31
218	CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2040-E2047.	7.1	152
219	Rice Genome Editing. , 2018, , 523-539.		2
220	Rewritable multi-event analog recording in bacterial and mammalian cells. Science, 2018, 360, .	12.6	193

#	Article	IF	CITATIONS
221	Recent Advances in CRISPR Base Editing: From A to RNA. Biochemistry, 2018, 57, 886-887.	2.5	3
222	Genome editing technologies and their applications in crop improvement. Plant Biotechnology Reports, 2018, 12, 57-68.	1.5	41
223	Streamlined ex vivo and in vivo genome editing in mouse embryos using recombinant adeno-associated viruses. Nature Communications, 2018, 9, 412.	12.8	66
224	Programming gene and engineered-cell therapies with synthetic biology. Science, 2018, 359, .	12.6	180
225	Advancing Metabolic Engineering of <i>Saccharomyces cerevisiae</i> Using the CRISPR/Cas System. Biotechnology Journal, 2018, 13, e1700601.	3.5	41
226	Precise and efficient nucleotide substitution near genomic nick via noncanonical homology-directed repair. Genome Research, 2018, 28, 223-230.	5.5	41
227	Wheat genome editing expedited by efficient transformation techniques: Progress and perspectives. Crop Journal, 2018, 6, 22-31.	5. 2	29
228	Protein Inhibitors of CRISPR-Cas9. ACS Chemical Biology, 2018, 13, 417-423.	3.4	48
229	CRISPR Approaches to Small Molecule Target Identification. ACS Chemical Biology, 2018, 13, 366-375.	3.4	68
230	Gene therapy comes of age. Science, 2018, 359, .	12.6	936
231	Advances in Engineering the Fly Genome with the CRISPR-Cas System. Genetics, 2018, 208, 1-18.	2.9	154
232	Engineering the Delivery System for CRISPR-Based Genome Editing. Trends in Biotechnology, 2018, 36, 173-185.	9.3	260
233	Genotyping genomeâ€edited mutations in plants using <scp>CRISPR</scp> ribonucleoprotein complexes. Plant Biotechnology Journal, 2018, 16, 2053-2062.	8.3	62
234	Primordial germ cell-mediated transgenesis and genome editing in birds. Journal of Animal Science and Biotechnology, 2018, 9, 19.	5.3	27
235	Transforming plant biology and breeding with <scp>CRISPR</scp> /Cas9, Cas12 and Cas13. FEBS Letters, 2018, 592, 1954-1967.	2.8	74
236	Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice. Plant Physiology and Biochemistry, 2018, 131, 78-83.	5.8	31
237	Harnessing "A Billion Years of Experimentation― The Ongoing Exploration and Exploitation of CRISPR–Cas Immune Systems. CRISPR Journal, 2018, 1, 141-158.	2.9	44
238	Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nature Biotechnology, 2018, 36, 536-539.	17.5	345

#	Article	IF	CITATIONS
239	How to talk about genome editing. British Medical Bulletin, 2018, 126, 5-12.	6.9	0
240	CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms. Nature Reviews Microbiology, 2018, 16, 333-339.	28.6	88
241	Concerns regarding â€~off-target' activity of genome editing endonucleases. Plant Physiology and Biochemistry, 2018, 131, 22-30.	5.8	32
242	Cancer CRISPR Screens In Vivo. Trends in Cancer, 2018, 4, 349-358.	7.4	70
243	Optimized Target-AID system efficiently induces single base changes in zebrafish. Journal of Genetics and Genomics, 2018, 45, 215-217.	3.9	6
244	Long Terminal Repeat CRISPR-CAR-Coupled "Universal―T Cells Mediate Potent Anti-leukemic Effects. Molecular Therapy, 2018, 26, 1215-1227.	8.2	104
245	Programmable Single and Multiplex Base-Editing in <i>Bombyx mori</i> Using RNA-Guided Cytidine Deaminases. G3: Genes, Genomes, Genetics, 2018, 8, 1701-1709.	1.8	19
246	Rational Design of Mini-Cas9 for Transcriptional Activation. ACS Synthetic Biology, 2018, 7, 978-985.	3.8	47
247	MACBETH: Multiplex automated Corynebacterium glutamicum base editing method. Metabolic Engineering, 2018, 47, 200-210.	7.0	139
248	Transâ€species synthetic gene design allows resistance pyramiding and broadâ€spectrum engineering of virus resistance in plants. Plant Biotechnology Journal, 2018, 16, 1569-1581.	8.3	64
249	Base editing with a Cpf1–cytidine deaminase fusion. Nature Biotechnology, 2018, 36, 324-327.	17. 5	333
250	CtlP fusion to Cas9 enhances transgene integration by homology-dependent repair. Nature Communications, 2018, 9, 1133.	12.8	165
251	Exploration of genetic basis underlying individual differences in radiosensitivity within human populations using genome editing technology. Journal of Radiation Research, 2018, 59, ii75-ii82.	1.6	11
252	Genome Engineering and Modification Toward Synthetic Biology for the Production of Antibiotics. Medicinal Research Reviews, 2018, 38, 229-260.	10.5	16
253	Use of CRISPR/Cas9 to model brain diseases. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 81, 488-492.	4.8	18
254	CRISPR-engineered genome editing for the next generation neurological disease modeling. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 81, 459-467.	4.8	11
255	CRISPR Editing in Biological and Biomedical Investigation. Journal of Cellular Biochemistry, 2018, 119, 52-61.	2.6	17
256	Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1408.	6.6	96

#	Article	IF	Citations
257	Functional mutant GATA4 identification and potential application in preimplantation diagnosis of congenital heart diseases. Gene, 2018, 641, 349-354.	2.2	15
258	Lung Cancer Heterogeneity and New Strategies for Drug Therapy. Annual Review of Pharmacology and Toxicology, 2018, 58, 531-546.	9.4	55
259	CRISPR/Cas9-mediated noncoding RNA editing in human cancers. RNA Biology, 2018, 15, 35-43.	3.1	78
260	Updated summary of genome editing technology in human cultured cells linked to human genetics studies. Journal of Human Genetics, 2018, 63, 133-143.	2.3	6
261	CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine. ACS Chemical Biology, 2018, 13, 406-416.	3.4	248
262	Protein Science by DNA Sequencing: How Advances in Molecular Biology Are Accelerating Biochemistry. Biochemistry, 2018, 57, 38-46.	2.5	12
263	Genome Editing: Insights from Chemical Biology to Support Safe and Transformative Therapeutic Applications. ACS Chemical Biology, 2018, 13, 333-342.	3.4	7
264	Editing the Genome Without Double-Stranded DNA Breaks. ACS Chemical Biology, 2018, 13, 383-388.	3.4	89
265	CRISPR-Cas9 Genome Editing for Treatment of Atherogenic Dyslipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 12-18.	2.4	23
266	A CRISPR reimagining: New twists and turns of CRISPR beyond the genomeâ€engineering revolution. Journal of Cellular Biochemistry, 2018, 119, 1299-1308.	2.6	7
267	Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation. Biotechnology Advances, 2018, 36, 295-310.	11.7	87
268	APOBEC3 induces mutations during repair of CRISPR–Cas9-generated DNA breaks. Nature Structural and Molecular Biology, 2018, 25, 45-52.	8.2	42
269	The Future of Multiplexed Eukaryotic Genome Engineering. ACS Chemical Biology, 2018, 13, 313-325.	3.4	30
270	Translational Research: Exploring and Creating Genetic Diversity. Trends in Plant Science, 2018, 23, 42-52.	8.8	36
271	Modeling Cancer in the CRISPR Era. Annual Review of Cancer Biology, 2018, 2, 111-131.	4.5	15
272	Genome editing and plant transformation of solanaceous food crops. Current Opinion in Biotechnology, 2018, 49, 35-41.	6.6	70
273	CRISPR editing in biological and biomedical investigation. Journal of Cellular Physiology, 2018, 233, 3875-3891.	4.1	19
274	Editierung induzierter pluripotenter Stammzellen mittels CRISPR/Cas9. BioSpektrum, 2018, 24, 707-708.	0.0	0

#	Article	IF	CITATIONS
275	Understanding and repurposing CRISPR-mediated alternative splicing. Genome Biology, 2018, 19, 184.	8.8	7
276	Modifications in Organic Acid Profiles During Fruit Development and Ripening: Correlation or Causation?. Frontiers in Plant Science, 2018, 9, 1689.	3.6	152
277	Recurrent mutations at estrogen receptor binding sites alter chromatin topology and distal gene expression in breast cancer. Genome Biology, 2018, 19, 190.	8.8	28
278	Class 2 CRISPR/Cas: an expanding biotechnology toolbox for and beyond genome editing. Cell and Bioscience, 2018, 8, 59.	4.8	66
279	Targeting fidelity of adenine and cytosine base editors in mouse embryos. Nature Communications, 2018, 9, 4804.	12.8	72
280	Applications of CRISPR/Cas9 for the Treatment of Duchenne Muscular Dystrophy. Journal of Personalized Medicine, 2018, 8, 38.	2.5	48
281	Noncoding RNAs as therapeutic targets in early stage diabetic kidney disease. Kidney Research and Clinical Practice, 2018, 37, 197-209.	2.2	47
282	Precise A•T to G•C base editing in the zebrafish genome. BMC Biology, 2018, 16, 139.	3.8	34
283	New cytosine base editor for plant genome editing. Science China Life Sciences, 2018, 61, 1602-1603.	4.9	10
284	An Adaptable Platform for Directed Evolution in Human Cells. Journal of the American Chemical Society, 2018, 140, 18093-18103.	13.7	52
285	Delivery of CRISPR/Cas9 by Novel Strategies for Gene Therapy. ChemBioChem, 2019, 20, 634-643.	2.6	48
286	Predictable and precise template-free CRISPR editing of pathogenic variants. Nature, 2018, 563, 646-651.	27.8	414
287	Efficient RNA-guided base editing for disease modeling in pigs. Cell Discovery, 2018, 4, 64.	6.7	23
288	Meta synthetic biology: controlling the evolution of engineered living systems. Microbial Biotechnology, 2018, 12, 35-37.	4.2	5
289	Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics, 2018, 19, 542.	2.6	127
290	BE-FLARE: a fluorescent reporter of base editing activity reveals editing characteristics of APOBEC3A and APOBEC3B. BMC Biology, 2018, 16, 150.	3.8	43
291	Applications of CRISPR-Cas in Bioengineering, Biotechnology, and Translational Research. CRISPR Journal, 2018, 1, 379-404.	2.9	17
292	Engineering CRISPR-Cas9 RNA–Protein Complexes for Improved Function and Delivery. CRISPR Journal, 2018, 1, 367-378.	2.9	11

#	Article	IF	CITATIONS
293	Repairing the Brain: Gene Therapy. Journal of Parkinson's Disease, 2018, 8, S123-S130.	2.8	4
294	Heterochromatin delays CRISPR-Cas9 mutagenesis but does not influence the outcome of mutagenic DNA repair. PLoS Biology, 2018, 16, e2005595.	5.6	75
295	Revolution in Gene Medicine Therapy and Genome Surgery. Genes, 2018, 9, 575.	2.4	25
296	Machine learning finds Cas9-edited genotypes. Nature Biomedical Engineering, 2018, 2, 892-893.	22.5	5
297	Applications and potential of genome editing in crop improvement. Genome Biology, 2018, 19, 210.	8.8	286
298	A Well-Controlled BioID Design for Endogenous Bait Proteins. Journal of Proteome Research, 2019, 18, 95-106.	3.7	13
299	In utero CRISPR-mediated therapeutic editing of metabolic genes. Nature Medicine, 2018, 24, 1513-1518.	30.7	169
300	Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nature Medicine, 2018, 24, 1519-1525.	30.7	301
301	Towards therapeutic base editing. Nature Medicine, 2018, 24, 1493-1495.	30.7	6
302	Retroelement-Based Genome Editing and Evolution. ACS Synthetic Biology, 2018, 7, 2600-2611.	3.8	44
303	Rare Genetic Blood Disease Modeling in Zebrafish. Frontiers in Genetics, 2018, 9, 348.	2.3	21
304	DNA, RNA, and Protein Tools for Editing the Genetic Information in Human Cells. IScience, 2018, 6, 247-263.	4.1	25
305	A New Zealand Perspective on the Application and Regulation of Gene Editing. Frontiers in Plant Science, 2018, 9, 1323.	3.6	56
306	Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nature Biotechnology, 2018, 36, 950-953.	17.5	310
307	CRISPR–Cas9-mediated base-editing screening in mice identifies DND1 amino acids that are critical for primordial germ cell development. Nature Cell Biology, 2018, 20, 1315-1325.	10.3	54
308	Simultaneous zygotic inactivation of multiple genes in mouse through CRISPR/Cas9-mediated base editing. Development (Cambridge), 2018, 145, .	2.5	42
309	Wake-up Sleepy Gene: Reactivating Fetal Globin for β-Hemoglobinopathies. Trends in Genetics, 2018, 34, 927-940.	6.7	89
310	CRISPR in personalized medicine: Industry perspectives in gene editing. Seminars in Perinatology, 2018, 42, 501-507.	2.5	13

#	Article	IF	CITATIONS
311	CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synthetic and Systems Biotechnology, 2018, 3, 135-149.	3.7	91
312	Towards quantitative and multiplexed in vivo functional cancer genomics. Nature Reviews Genetics, 2018, 19, 741-755.	16.3	45
313	Base editing a CRISPR way. Nature Methods, 2018, 15, 767-770.	19.0	28
314	CRISPR/Cas9 gene-editing: Research technologies, clinical applications and ethical considerations. Seminars in Perinatology, 2018, 42, 487-500.	2.5	50
315	Functional validation of the albinism-associated tyrosinase T373K SNP by CRISPR/Cas9-mediated homology-directed repair (HDR) in rabbits. EBioMedicine, 2018, 36, 517-525.	6.1	19
316	Genetic Modulation of RNA Splicing with a CRISPR-Guided Cytidine Deaminase. Molecular Cell, 2018, 72, 380-394.e7.	9.7	107
317	CRISPR mutagenesis screening of mice. Nature Cell Biology, 2018, 20, 1235-1237.	10.3	3
318	Current Progress and Future Prospects for the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Genome Editing Technology in Fruit Tree Breeding. Critical Reviews in Plant Sciences, 2018, 37, 233-258.	5.7	10
319	Intrinsic Nucleotide Preference of Diversifying Base Editors Guides Antibody ExÂVivo Affinity Maturation. Cell Reports, 2018, 25, 884-892.e3.	6.4	28
320	Single-Nucleotide Polymorphism of the <i>MLX</i> Gene Is Associated With Takayasu Arteritis. Circulation Genomic and Precision Medicine, 2018, 11, e002296.	3.6	15
321	The CRISPR/Cas revolution continues: From efficient gene editing for crop breeding to plant synthetic biology. Journal of Integrative Plant Biology, 2018, 60, 1127-1153.	8.5	109
322	Bottlenecks for genome-edited crops on the road from lab to farm. Genome Biology, 2018, 19, 178.	8.8	45
323	Differentiation keeps skin cancer at bay. Nature Cell Biology, 2018, 20, 1237-1239.	10.3	2
324	Large-scale reconstruction of cell lineages using single-cell readout of transcriptomes and CRISPR–Cas9 barcodes by scGESTALT. Nature Protocols, 2018, 13, 2685-2713.	12.0	55
325	Minimal PAM specificity of a highly similar SpCas9 ortholog. Science Advances, 2018, 4, eaau0766.	10.3	183
326	Blossom of CRISPR technologies and applications in disease treatment. Synthetic and Systems Biotechnology, 2018, 3, 217-228.	3.7	20
327	Base editing: precision chemistry on the genome and transcriptome ofÂliving cells. Nature Reviews Genetics, 2018, 19, 770-788.	16.3	1,072
328	CRISPR-induced exon skipping is dependent on premature termination codon mutations. Genome Biology, 2018, 19, 164.	8.8	39

#	Article	IF	CITATIONS
329	Cellular barcoding: lineage tracing, screening and beyond. Nature Methods, 2018, 15, 871-879.	19.0	136
330	Acceleration of cancer science with genome editing and related technologies. Cancer Science, 2018, 109, 3679-3685.	3.9	20
331	Genome Editing for Crop Improvement $\hat{a} \in ``Applications in Clonally Propagated Polyploids With a Focus on Potato (Solanum tuberosum L.). Frontiers in Plant Science, 2018, 9, 1607.$	3.6	65
332	CRISPRO: identification of functional protein coding sequences based on genome editing dense mutagenesis. Genome Biology, 2018, 19, 169.	8.8	34
333	Targeted Base Editing Systems Are Available for Plants. Trends in Plant Science, 2018, 23, 955-957.	8.8	11
334	The application of gene silencing in proteomics: from laboratory to clinic. Expert Review of Proteomics, 2018, 15, 717-732.	3.0	5
335	CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae. Applied and Environmental Microbiology, 2018, 84, .	3.1	113
336	The classification, genetic diagnosis and modelling of monogenic autoinflammatory disorders. Clinical Science, 2018, 132, 1901-1924.	4.3	22
337	Transgenesis and Genome Editing in Poultry. , 2018, , .		2
338	Indonesian scientists hamstrung by year-long funding delay. Nature, 2018, 554, 415-416.	27.8	1
339	Plant Genetics and Molecular Biology. Advances in Biochemical Engineering/Biotechnology, 2018, , .	1.1	6
340	Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing. Cell, 2018, 175, 544-557.e16.	28.9	166
341	DNA-based memory devices for recording cellular events. Nature Reviews Genetics, 2018, 19, 718-732.	16.3	107
342	CRISPR-Cas immunity, DNA repair and genome stability. Bioscience Reports, 2018, 38, .	2.4	27
343	Genome Editing in Rice: Recent Advances, Challenges, and Future Implications. Frontiers in Plant Science, 2018, 9, 1361.	3.6	127
344	Nucleosomes inhibit target cleavage by CRISPR-Cas9 in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9351-9358.	7.1	159
345	Genomic Editing—From Human Health to the "Perfect Child― , 2018, , 1-30.		0
346	Increasing the precision of gene editing inÂvitro, exÂvivo, and inÂvivo. Current Opinion in Biomedical Engineering, 2018, 7, 83-90.	3.4	8

#	Article	IF	CITATIONS
347	Debugging the genetic code: Non-viral inÂvivo delivery of therapeutic genome editing technologies. Current Opinion in Biomedical Engineering, 2018, 7, 24-32.	3.4	12
348	Shedding Light on the Dark Cancer Genomes: Long Noncoding RNAs as Novel Biomarkers and Potential Therapeutic Targets for Cancer. Molecular Cancer Therapeutics, 2018, 17, 1816-1823.	4.1	30
349	Adeno-associated virus-mediated delivery of CRISPR-Cas9 for genome editing in the central nervous system. Current Opinion in Biomedical Engineering, 2018, 7, 33-41.	3.4	13
350	Sharpening the Scissors: Mechanistic Details of CRISPR/Cas9 Improve Functional Understanding and Inspire Future Research. Journal of the American Chemical Society, 2018, 140, 11142-11152.	13.7	10
351	In vivo targeted single-nucleotide editing in zebrafish. Scientific Reports, 2018, 8, 11423.	3.3	22
352	Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science, 2018, 361, 1259-1262.	12.6	783
353	CRISPR-Cas guides the future of genetic engineering. Science, 2018, 361, 866-869.	12.6	1,024
354	Emerging applications for DNA writers and molecular recorders. Science, 2018, 361, 870-875.	12.6	80
355	CRISPR-Genome Editing. , 2018, , 651-657.		0
356	Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nature Biotechnology, 2018, 36, 843-846.	17.5	644
357	The new normal of structure/function studies in the era of CRISPR/Cas9. Biochemical Journal, 2018, 475, 1635-1642.	3.7	1
358	Generation of genetically-engineered animals using engineered endonucleases. Archives of Pharmacal Research, 2018, 41, 885-897.	6.3	24
359	Gene editing technologies and applications for insects. Current Opinion in Insect Science, 2018, 28, 66-72.	4.4	66
360	Use and application of 3D-organoid technology. Human Molecular Genetics, 2018, 27, R99-R107.	2.9	143
361	Cas9 versus Cas12a/Cpf1: Structure–function comparisons and implications for genome editing. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1481.	6.4	164
362	Heterozygous IDH1R132H/WT created by "single base editing―inhibits human astroglial cell growth by downregulating YAP. Oncogene, 2018, 37, 5160-5174.	5.9	27
363	Gene editing of stem cells for kidney disease modelling and therapeutic intervention. Nephrology, 2018, 23, 981-990.	1.6	7
364	Editing the Epigenome: Reshaping the Genomic Landscape. Annual Review of Genomics and Human Genetics, 2018, 19, 43-71.	6.2	109

#	Article	IF	CITATIONS
365	Chemical and CRISPR/Cas9 Tools for Functional Characterization of RNA Helicases. , 2018, , 221-245.		0
366	The CRISPR tool kit for genome editing and beyond. Nature Communications, 2018, 9, 1911.	12.8	1,159
367	Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Reports, 2018, 37, 1353-1356.	5.6	220
368	CRISPR/Cas9-mediated genome editing in human stem cell-derived cardiomyocytes: Applications for cardiovascular disease modelling and cardiotoxicity screening. Drug Discovery Today: Technologies, 2018, 28, 13-21.	4.0	18
369	Genome Editing Redefines Precision Medicine in the Cardiovascular Field. Stem Cells International, 2018, 2018, 1-11.	2.5	8
370	Crystal structure of the catalytic domain of HIV-1 restriction factor APOBEC3G in complex with ssDNA. Nature Communications, 2018, 9, 2460.	12.8	58
371	Optimized base editors enable efficient editing in cells, organoids and mice. Nature Biotechnology, 2018, 36, 888-893.	17.5	269
372	How to create state-of-the-art genetic model systems: strategies for optimal CRISPR-mediated genome editing. Nucleic Acids Research, 2018, 46, 6435-6454.	14.5	37
373	Guiding Lights in Genome Editing for Inherited Retinal Disorders: Implications for Gene and Cell Therapy. Neural Plasticity, 2018, 2018, 1-15.	2.2	29
375	Generation of Genomic Alteration from Cytidine Deamination. Advances in Experimental Medicine and Biology, 2018, 1044, 49-64.	1.6	11
376	An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nature Biotechnology, 2018, 36, 977-982.	17.5	328
377	Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein and Cell, 2018, 9, 814-819.	11.0	68
378	Emerging applications of genome-editing technology to examine functionality of GWAS-associated variants for complex traits. Physiological Genomics, 2018, 50, 510-522.	2.3	17
379	Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiological Reviews, 2018, 98, 1205-1240.	28.8	31
380	Targeted Genome Editing Techniques in C. elegans and Other Nematode Species., 0,, 3-21.		0
381	Unbiased Detection of Off-target Cleavage by CRISPR/Cas9 and TALENs Using Integration-defective Lentiviral Vectors., 0,, 22-36.		0
382	Use of zebrafish models to investigate rare human disease. Journal of Medical Genetics, 2018, 55, 641-649.	3.2	42
383	Development of Toolboxes for Precision Genome/Epigenome Editing and Imaging of Epigenetics. Chemical Record, 2018, 18, 1717-1726.	5.8	5

#	Article	IF	Citations
384	Programmable base editing in zebrafish using a modified CRISPR-Cas9 system. Methods, 2018, 150, 19-23.	3.8	10
385	Fishing for understanding: Unlocking the zebrafish gene editor's toolbox. Methods, 2018, 150, 3-10.	3.8	22
386	Adenine base editing to mimic or correct disease mutations in rodents. Protein and Cell, 2018, 9, 752-753.	11.0	0
387	Genome editing of upstream open reading frames enables translational control in plants. Nature Biotechnology, 2018, 36, 894-898.	17.5	244
388	Directed evolution of CRISPR-Cas9 to increase its specificity. Nature Communications, 2018, 9, 3048.	12.8	357
389	Design of synthetic materials for intracellular delivery of RNAs: From siRNA-mediated gene silencing to CRISPR/Cas gene editing. Nano Research, 2018, 11, 5310-5337.	10.4	31
390	Homology-Directed Repair of a Defective Glabrous Gene in Arabidopsis With Cas9-Based Gene Targeting. Frontiers in Plant Science, 2018, 9, 424.	3.6	59
391	Gene Editing of Stem Cells to Model and Treat Disease. Current Stem Cell Reports, 2018, 4, 253-263.	1.6	0
392	Genome-editing applications of CRISPR–Cas9 to promote in vitro studies of Alzheimer's disease. Clinical Interventions in Aging, 2018, Volume 13, 221-233.	2.9	37
393	Neuro-Immuno-Gene- and Genome-Editing-Therapy for Alzheimer's Disease: Are We There Yet?. Journal of Alzheimer's Disease, 2018, 65, 321-344.	2.6	17
394	Highly efficient and precise base editing by engineered dCas9-guide tRNA adenosine deaminase in rats. Cell Discovery, 2018, 4, 39.	6.7	35
395	Combining Zebrafish and CRISPR/Cas9: Toward a More Efficient Drug Discovery Pipeline. Frontiers in Pharmacology, 2018, 9, 703.	3.5	78
396	Application of CRISPR/Cas to Understand Cis- and Trans-Regulatory Elements in Plants. Methods in Molecular Biology, 2018, 1830, 23-40.	0.9	26
397	Introduction of pathogenic mutations into the mouse Psen1 gene by Base Editor and Target-AID. Nature Communications, 2018, 9, 2892.	12.8	52
399	Effective and precise adenine base editing in mouse zygotes. Protein and Cell, 2018, 9, 808-813.	11.0	24
400	Commentary: Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Frontiers in Genetics, 2018, 9, 21.	2.3	14
401	Commentary: RNA editing with CRISPR-Cas13. Frontiers in Genetics, 2018, 9, 134.	2.3	20
402	Zebrafish Models of Rare Hereditary Pediatric Diseases. Diseases (Basel, Switzerland), 2018, 6, 43.	2.5	17

#	Article	IF	CITATIONS
403	CRISPR Crops: Plant Genome Editing Toward Disease Resistance. Annual Review of Phytopathology, 2018, 56, 479-512.	7.8	197
404	Generation of isogenic single and multiplex gene knockout mice by base editing-induced STOP. Science Bulletin, 2018, 63, 1101-1107.	9.0	9
405	65 YEARS OF THE DOUBLE HELIX: The advancements of gene editing and potential application to hereditary cancer. Endocrine-Related Cancer, 2018, 25, T141-T158.	3.1	3
406	Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nature Biotechnology, 2018, 36, 765-771.	17.5	1,251
407	A CRISPR edit for heart disease. Nature, 2018, 555, S23-S25.	27.8	14
408	Angiopoietin-Like 3 (ANGPTL3) and Atherosclerosis: Lipid and Non-Lipid Related Effects. Journal of Cardiovascular Development and Disease, 2018, 5, 39.	1.6	36
409	CRISPR: Stressed about p53?. Trends in Molecular Medicine, 2018, 24, 731-733.	6.7	8
410	CRISPRâ€Cas9: A cornerstone for the evolution of precision medicine. Annals of Human Genetics, 2018, 82, 331-357.	0.8	13
411	Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biology, 2018, 19, 59.	8.8	392
412	p53 Throws CRISPR a Curve. Trends in Pharmacological Sciences, 2018, 39, 783-784.	8.7	6
413	A Processive Protein Chimera Introduces Mutations across Defined DNA Regions $\langle i \rangle$ In Vivo $\langle i \rangle$. Journal of the American Chemical Society, 2018, 140, 11560-11564.	13.7	75
414	Rescued from the fate of neurological disorder. Nature Biomedical Engineering, 2018, 2, 469-470.	22.5	4
415	Highly efficient RNA-guided base editing in rabbit. Nature Communications, 2018, 9, 2717.	12.8	119
416	CRISPR/Cascade 9-Mediated Genome Editing-Challenges and Opportunities. Frontiers in Genetics, 2018, 9, 240.	2.3	45
417	Novel Features and Considerations for ERA and Regulation of Crops Produced by Genome Editing. Frontiers in Bioengineering and Biotechnology, 2018, 6, 79.	4.1	80
418	In Vivo Applications of CRISPR-Based Genome Editing in the Retina. Frontiers in Cell and Developmental Biology, 2018, 6, 53.	3.7	26
419	Genetic therapies for sickle cell disease. Seminars in Hematology, 2018, 55, 76-86.	3.4	32
420	CRISPR GENOME SURGERY IN THE RETINA IN LIGHT OF OFF-TARGETING. Retina, 2018, 38, 1443-1455.	1.7	11

#	Article	IF	CITATIONS
421	Rapid Control of Genome Editing in Human Cells by Chemical-Inducible CRISPR-Cas Systems. Methods in Molecular Biology, 2018, 1772, 267-288.	0.9	2
422	Highly efficient base editing in bacteria using a Cas9-cytidine deaminase fusion. Communications Biology, 2018, 1, 32.	4.4	68
423	The best Cas scenario. Nature Medicine, 2018, 24, 528-530.	30.7	0
424	A fluorescent reporter for quantification and enrichment of DNA editing by APOBEC–Cas9 or cleavage by Cas9 in living cells. Nucleic Acids Research, 2018, 46, e84-e84.	14.5	56
425	Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nature Biotechnology, 2018, 36, 946-949.	17.5	190
426	Continuous directed evolution of proteins with improved soluble expression. Nature Chemical Biology, 2018, 14, 972-980.	8.0	71
427	Protein Engineering Strategies to Expand CRISPR-Cas9 Applications. International Journal of Genomics, 2018, 2018, 1-12.	1.6	19
428	Genome Editing for Crop Improvement: Status and Prospects. , 2018, , 75-104.		3
429	Lafora disease â€" from pathogenesis to treatment strategies. Nature Reviews Neurology, 2018, 14, 606-617.	10.1	110
430	The Implications of CRISPR-Cas9 Genome Editing for IR. Journal of Vascular and Interventional Radiology, 2018, 29, 1264-1267.e1.	0.5	0
431	Correction of the Marfan Syndrome Pathogenic FBN1 Mutation by Base Editing in Human Cells and Heterozygous Embryos. Molecular Therapy, 2018, 26, 2631-2637.	8.2	120
432	CRISPR-Cas9-Mediated Mutagenesis: Mind the Gap?. CRISPR Journal, 2018, 1, 263-264.	2.9	3
433	Mouse models in the era of large human tumour sequencing studies. Open Biology, 2018, 8, .	3.6	7
434	CRISPR/Cas9-based Genome Editing in Pseudomonas aeruginosa and Cytidine Deaminase-Mediated Base Editing in Pseudomonas Species. IScience, 2018, 6, 222-231.	4.1	142
435	CRISPR-SKIP: programmable gene splicing with single base editors. Genome Biology, 2018, 19, 107.	8.8	137
436	Transgenic Mouse Models in Cancer Research. Frontiers in Oncology, 2018, 8, 268.	2.8	130
437	DNA Nucleases and their Use in Livestock Production. , 2018, , 123-148.		1
438	Precision gene editing technology andÂapplications in nephrology. Nature Reviews Nephrology, 2018, 14, 663-677.	9.6	38

#	Article	IF	CITATIONS
439	Gene therapy for neurological disorders: progress and prospects. Nature Reviews Drug Discovery, 2018, 17, 641-659.	46.4	222
440	Developmental barcoding of whole mouse via homing CRISPR. Science, 2018, 361, .	12.6	263
441	Gene editing in the context of an increasingly complex genome. BMC Genomics, 2018, 19, 595.	2.8	8
442	CRISPR hack transforms cells into data recorders. Nature, 2018, 554, 414-415.	27.8	2
443	CRISPR Technology for Breast Cancer: Diagnostics, Modeling, and Therapy. Advanced Biology, 2018, 2, 1800132.	3.0	11
444	CRISPR/Cas9-Mediated In Situ Correction of LAMB3 Gene in Keratinocytes Derived from a Junctional Epidermolysis Bullosa Patient. Molecular Therapy, 2018, 26, 2592-2603.	8.2	46
445	Ribonucleases as Drug Targets. Trends in Pharmacological Sciences, 2018, 39, 855-866.	8.7	11
446	Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering. Biotechnology Journal, 2018, 13, e1700596.	3.5	39
447	Recent Progress in Genome Editing Approaches for Inherited Cardiovascular Diseases. Current Cardiology Reports, 2018, 20, 58.	2.9	3
448	Editing plant genes one base at a time. Nature Plants, 2018, 4, 412-413.	9.3	12
449	Precision genome engineering through adenine base editing in plants. Nature Plants, 2018, 4, 427-431.	9.3	227
450	Implementation of the CRISPR-Cas13a system in fission yeast and its repurposing for precise RNA editing. Nucleic Acids Research, 2018, 46, e90-e90.	14.5	52
451	In vivo base editing of post-mitotic sensory cells. Nature Communications, 2018, 9, 2184.	12.8	166
452	Mammoth, Arbor and Beam launch new wave of CRISPR startups. Nature Biotechnology, 2018, 36, 479-480.	17.5	2
453	BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity. Cell Research, 2018, 28, 855-861.	12.0	99
454	Scarless genome editing: progress towards understanding genotype–phenotype relationships. Current Genetics, 2018, 64, 1229-1238.	1.7	6
455	Applications of CRISPR-Cas Enzymes in Cancer Therapeutics and Detection. Trends in Cancer, 2018, 4, 499-512.	7.4	89
456	Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nature Communications, 2018, 9, 2338.	12.8	120

#	Article	IF	Citations
457	Editing the human genome: where ART and science intersect. Journal of Assisted Reproduction and Genetics, 2018, 35, 1367-1370.	2.5	2
458	CRISPR base editors: genome editing without double-stranded breaks. Biochemical Journal, 2018, 475, 1955-1964.	3.7	177
459	Generation of gene-edited sheep with a defined Booroola fecundity gene (FecBB) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9. Reproduction, Fertility and Development, 2018, 30, 1616.	0.4	33
460	Gene Editing on Center Stage. Trends in Genetics, 2018, 34, 600-611.	6.7	117
461	CRISPR therapeutic tools for complex genetic disorders and cancer (Review). International Journal of Oncology, 2018, 53, 443-468.	3.3	28
462	CRISPR/Cas9 Gene Editing: From Basic Mechanisms to Improved Strategies for Enhanced Genome Engineering In Vivo. Current Gene Therapy, 2018, 17, 263-274.	2.0	14
463	Genome editing by natural and engineered CRISPR-associated nucleases. Nature Chemical Biology, 2018, 14, 642-651.	8.0	91
464	EditR: A Method to Quantify Base Editing from Sanger Sequencing. CRISPR Journal, 2018, 1, 239-250.	2.9	304
465	Inhibitors of protein–protein interactions (PPIs): an analysis of scaffold choices and buried surface area. Current Opinion in Chemical Biology, 2018, 44, 75-86.	6.1	189
466	CRISPRâ€Enabled Tools for Engineering Microbial Genomes and Phenotypes. Biotechnology Journal, 2018, 13, e1700586.	3.5	30
467	CRISPR Ethics: Moral Considerations for Applications of a Powerful Tool. Journal of Molecular Biology, 2019, 431, 88-101.	4.2	113
468	Genome editing in the mammalian brain using the CRISPR–Cas system. Neuroscience Research, 2019, 141, 4-12.	1.9	21
469	Gene editing for inflammatory disorders. Annals of the Rheumatic Diseases, 2019, 78, 6-15.	0.9	14
470	Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnology Journal, 2019, 17, 499-504.	8.3	168
471	Future of human mitochondrial DNA editing technologies. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2019, 30, 214-221.	0.7	20
472	Functional Genomics via CRISPR–Cas. Journal of Molecular Biology, 2019, 431, 48-65.	4.2	62
473	The implication of CRISPR/Cas9 genome editing technology in combating human oncoviruses. Journal of Medical Virology, 2019, 91, 1-13.	5.0	11
474	Strategies for the Enrichment and Selection of Genetically Modified Cells. Trends in Biotechnology, 2019, 37, 56-71.	9.3	28

#	Article	IF	Citations
475	CRISPR for Neuromuscular Disorders: Gene Editing and Beyond. Physiology, 2019, 34, 341-353.	3.1	14
476	Expanding C–T base editing toolkit with diversified cytidine deaminases. Nature Communications, 2019, 10, 3612.	12.8	49
477	Application of Cas12a and nCas9-activation-induced cytidine deaminase for genome editing and as a non-sexual strategy to generate homozygous/multiplex edited plants in the allotetraploid genome of tobacco. Plant Molecular Biology, 2019, 101, 355-371.	3.9	27
478	Improving Editing Efficiency for the Sequences with NGH PAM Using xCas9-Derived Base Editors. Molecular Therapy - Nucleic Acids, 2019, 17, 626-635.	5.1	11
479	Prospects for the Use of Genome-Editing Technology to Correct Neurodegenerative Diseases. Advances in Gerontology, 2019, 9, 154-163.	0.4	1
480	Exploration of Plant-Microbe Interactions for Sustainable Agriculture in CRISPR Era. Microorganisms, 2019, 7, 269.	3.6	87
481	DNA Base Excision Repair in Plants: An Unfolding Story With Familiar and Novel Characters. Frontiers in Plant Science, 2019, 10, 1055.	3.6	54
482	Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox. International Journal of Molecular Sciences, 2019, 20, 4045.	4.1	133
483	Single-Nucleotide-Resolution Computing and Memory in Living Cells. Molecular Cell, 2019, 75, 769-780.e4.	9.7	72
484	Off-Target Editing by CRISPR-Guided DNA Base Editors. Biochemistry, 2019, 58, 3727-3734.	2.5	40
485	Strategies to Increase On-Target and Reduce Off-Target Effects of the CRISPR/Cas9 System in Plants. International Journal of Molecular Sciences, 2019, 20, 3719.	4.1	61
486	State-of-the-Art 2019 on Gene Therapy for Phenylketonuria. Human Gene Therapy, 2019, 30, 1274-1283.	2.7	29
487	Genetic-Based Approaches to Inherited Metabolic Liver Diseases. Human Gene Therapy, 2019, 30, 1190-1203.	2.7	25
488	CRISPR Tools for Systematic Studies of RNA Regulation. Cold Spring Harbor Perspectives in Biology, 2019, 11, a035386.	5.5	22
489	The Expanding Class 2 CRISPR Toolbox: Diversity, Applicability, and Targeting Drawbacks. BioDrugs, 2019, 33, 503-513.	4.6	11
490	Unlimited Genetic Switches for Cell-Type-Specific Manipulation. Neuron, 2019, 104, 227-238.e7.	8.1	29
491	Programmable RNA N6-methyladenosine editing by CRISPR-Cas9 conjugates. Nature Chemical Biology, 2019, 15, 865-871.	8.0	140
492	BEAT: A Python Program to Quantify Base Editing from Sanger Sequencing. CRISPR Journal, 2019, 2, 223-229.	2.9	19

#	Article	IF	Citations
493	A transient reporter for editing enrichment (TREE) in human cells. Nucleic Acids Research, 2019, 47, e120-e120.	14.5	33
494	Recent advances in plasmid-based tools for establishing novel microbial chassis. Biotechnology Advances, 2019, 37, 107433.	11.7	23
495	What is the available evidence for the range of applications of genome-editing as a new tool for plant trait modification and the potential occurrence of associated off-target effects: a systematic map. Environmental Evidence, 2019, 8, .	2.7	86
496	Sheep and Goat Genome Engineering: From Random Transgenesis to the CRISPR Era. Frontiers in Genetics, 2019, 10, 750.	2.3	60
497	Expanding targeting scope, editing window, and base transition capability of base editing in <i>Corynebacterium glutamicum</i> . Biotechnology and Bioengineering, 2019, 116, 3016-3029.	3.3	42
498	Perspectives on the Application of Genome-Editing Technologies in Crop Breeding. Molecular Plant, 2019, 12, 1047-1059.	8.3	118
499	Cell and Gene Therapies for Mucopolysaccharidoses: Base Editing and Therapeutic Delivery to the CNS. Diseases (Basel, Switzerland), 2019, 7, 47.	2.5	11
500	Meeting report of the OECD conference on "Genome Editing: Applications in Agriculture—Implications for Health, Environment and Regulation― Transgenic Research, 2019, 28, 419-463.	2.4	49
501	The emerging and uncultivated potential of CRISPR technology in plant science. Nature Plants, 2019, 5, 778-794.	9.3	294
502	Combinatorial mutagenesis en masse optimizes the genome editing activities of SpCas9. Nature Methods, 2019, 16, 722-730.	19.0	44
503	A cytosine deaminase for programmable single-base RNA editing. Science, 2019, 365, 382-386.	12.6	322
504	Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nature Biotechnology, 2019, 37, 1059-1069.	17.5	168
505	Gene therapy of hematological disorders: current challenges. Gene Therapy, 2019, 26, 296-307.	4.5	8
506	Synthetic N-terminal coding sequences for fine-tuning gene expression and metabolic engineering in Bacillus subtilis. Metabolic Engineering, 2019, 55, 131-141.	7.0	48
507	CRISPR Craze to Transform Cardiac Biology. Trends in Molecular Medicine, 2019, 25, 791-802.	6.7	21
508	Continuous evolution of base editors with expanded target compatibility and improved activity. Nature Biotechnology, 2019, 37, 1070-1079.	17.5	215
509	Potential of Genome Editing to Improve Aquaculture Breeding and Production. Trends in Genetics, 2019, 35, 672-684.	6.7	125
510	Mitochondrially-targeted APOBEC1 is a potent mtDNA mutator affecting mitochondrial function and organismal fitness in Drosophila. Nature Communications, 2019, 10, 3280.	12.8	23

#	Article	IF	Citations
511	Mammalian synthetic biology by CRISPRs engineering and applications. Current Opinion in Chemical Biology, 2019, 52, 79-84.	6.1	7
512	CRISPR Base Editing in Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 2045, 337-346.	0.9	11
513	Efficient base editing for multiple genes and loci in pigs using base editors. Nature Communications, 2019, 10, 2852.	12.8	82
514	Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature, 2019, 571, 275-278.	27.8	330
515	Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nature Medicine, 2019, 25, 1123-1130.	30.7	149
516	An anionic human protein mediates cationic liposome delivery of genome editing proteins into mammalian cells. Nature Communications, 2019, 10, 2905.	12.8	20
517	Base pair editing in goat: nonsense codon introgression into <i><scp>FGF</scp>5</i> results in longer hair. FEBS Journal, 2019, 286, 4675-4692.	4.7	25
518	The repurposing of type I-E CRISPR-Cascade for gene activation in plants. Communications Biology, 2019, 2, 383.	4.4	50
519	Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576, 149-157.	27.8	2,662
520	CRISPR-Cas12a Nucleases Bind Flexible DNA Duplexes without RNA/DNA Complementarity. ACS Omega, 2019, 4, 17140-17147.	3.5	14
521	Application of CRISPR/Cas9-mediated gene editing for the development of herbicide-resistant plants. Plant Biotechnology Reports, 2019, 13, 447-457.	1.5	32
522	Generation of deletions and precise point mutations in Dictyostelium discoideum using the CRISPR nickase. PLoS ONE, 2019, 14, e0224128.	2.5	11
523	Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20366-20375.	7.1	119
524	Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease. PLoS Biology, 2019, 17, e3000496.	5.6	17
525	Methods and applications of CRISPR/Cas system for genome editing in stem cells. Cell Regeneration, 2019, 8, 33-41.	2.6	24
526	Directed Evolution of CRISPR-Cas9 Base Editors. Trends in Biotechnology, 2019, 37, 1151-1153.	9.3	0
527	Genome editing for horticultural crop improvement. Horticulture Research, 2019, 6, 113.	6.3	79
528	Hierarchically Structured Selfâ€Healing Actuators with Superfast Light―and Magneticâ€Response. Advanced Functional Materials, 2019, 29, 1906198.	14.9	129

#	Article	IF	CITATIONS
529	Construction and optimization of a base editor based on the MS2 system. Animal Models and Experimental Medicine, 2019, 2, 185-190.	3.3	6
530	Numerical simulation of NC spinning manufacturing on tantalum tungsten alloy cylinder part. Journal of Physics: Conference Series, 2019, 1303, 012143.	0.4	0
531	Fracture-cave carbonate reservoir permeability modelling based on conventional log and well deliverability predication: A case study of the Amu Darya Gas field in Turkmenistan. IOP Conference Series: Earth and Environmental Science, 2019, 349, 012041.	0.3	0
532	Using CRISPR/Cas9 to model human liver disease. JHEP Reports, 2019, 1, 392-402.	4.9	20
533	Adenovirus vectors in hematopoietic stem cell genome editing. FEBS Letters, 2019, 593, 3623-3648.	2.8	35
534	Angiopoietin-Like 3. JACC Basic To Translational Science, 2019, 4, 755-762.	4.1	31
535	Recent advances in the CRISPR genome editing tool set. Experimental and Molecular Medicine, 2019, 51, 1-11.	7.7	120
536	CRISPR tool modifies genes precisely by copying RNA into the genome. Nature, 2019, 576, 48-49.	27.8	11
537	Genome Editing in Plants: Exploration of Technological Advancements and Challenges. Cells, 2019, 8, 1386.	4.1	115
538	Gene Editing in Human Pluripotent Stem Cells: Recent Advances for Clinical Therapies. Advances in Experimental Medicine and Biology, 2019, 1237, 17-28.	1.6	3
539	Comparative genomics can provide new insights into the evolutionary mechanisms and gene function in CAM plants. Journal of Experimental Botany, 2019, 70, 6539-6547.	4.8	21
540	Block Polymer Micelles Enable CRISPR/Cas9 Ribonucleoprotein Delivery: Physicochemical Properties Affect Packaging Mechanisms and Gene Editing Efficiency. Macromolecules, 2019, 52, 8197-8206.	4.8	48
541	More precise, more universal and more specific – the next generation of RNAâ€guided endonucleases for genome editing. FEBS Journal, 2019, 286, 4657-4660.	4.7	9
542	Comparison of cytosine base editors and development of the BEable-GPS database for targeting pathogenic SNVs. Genome Biology, 2019, 20, 218.	8.8	23
543	Targeted exon skipping with AAV-mediated split adenine base editors. Cell Discovery, 2019, 5, 41.	6.7	35
544	RNA-Guided Recombinase-Cas9 Fusion Targets Genomic DNA Deletion and Integration. CRISPR Journal, 2019, 2, 209-222.	2.9	14
545	Mitochondria in Health and in Sickness. Advances in Experimental Medicine and Biology, 2019, , .	1.6	6
546	Functional Genomics and CRISPR Applied to Cardiovascular Research and Medicine. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e188-e194.	2.4	7

#	Article	IF	Citations
547	Stem Cells and Aging. Methods in Molecular Biology, 2019, , .	0.9	2
548	Development of genetically modified nonhuman primates toward models for translational research. Translational and Regulatory Sciences, 2019, 1, 15-23.	0.2	2
549	Lentiviral and genome-editing strategies for the treatment of \hat{l}^2 -hemoglobinopathies. Blood, 2019, 134, 1203-1213.	1.4	74
550	CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nature Biotechnology, 2019, 37, 1041-1048.	17.5	236
551	The Role of Noncoding RNAs in Double-Strand Break Repair. Frontiers in Plant Science, 2019, 10, 1155.	3.6	17
552	Identification of Glyceraldehyde-3-Phosphate Dehydrogenase Gene as an Alternative Safe Harbor Locus in Pig Genome. Genes, 2019, 10, 660.	2.4	7
553	A role for alternative end-joining factors in homologous recombination and genome editing in Chinese hamster ovary cells. DNA Repair, 2019, 82, 102691.	2.8	16
554	Efficient generation of Knock-in/Knock-out marmoset embryo via CRISPR/Cas9 gene editing. Scientific Reports, 2019, 9, 12719.	3.3	42
555	Human Induced Pluripotent Stem-Cell-Derived Cardiomyocytes as Models for Genetic Cardiomyopathies. International Journal of Molecular Sciences, 2019, 20, 4381.	4.1	43
556	CRISPR babies: when will the world be ready?. Nature, 2019, 570, 293-296.	27.8	19
557	Use of Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes in Preclinical Cancer Drug Cardiotoxicity Testing: A Scientific Statement From the American Heart Association. Circulation Research, 2019, 125, e75-e92.	4. 5	103
558	A Highly Efficient CRISPR-Cas9-Based Genome Engineering Platform in Acinetobacter baumannii to Understand the H2O2-Sensing Mechanism of OxyR. Cell Chemical Biology, 2019, 26, 1732-1742.e5.	5.2	55
559	Evolution of plant mutagenesis tools: a shifting paradigm from random to targeted genome editing. Plant Biotechnology Reports, 2019, 13, 423-445.	1.5	43
560	CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnology Advances, 2019, 37, 107447.	11.7	59
561	BE-PIGS: a base-editing tool with deaminases inlaid into Cas9 PI domain significantly expanded the editing scope. Signal Transduction and Targeted Therapy, 2019, 4, 36.	17.1	27
562	CRISPR/Cas9-Based Mutagenesis of Starch Biosynthetic Genes in Sweet Potato (Ipomoea Batatas) for the Improvement of Starch Quality. International Journal of Molecular Sciences, 2019, 20, 4702.	4.1	77
563	Engineered materials for in vivo delivery of genome-editing machinery. Nature Reviews Materials, 2019, 4, 726-737.	48.7	139
564	Genetic Therapies for Hearing Loss: Accomplishments and Remaining Challenges. Neuroscience Letters, 2019, 713, 134527.	2.1	17

#	ARTICLE	IF	CITATIONS
565	Recent advancements in exon-skipping therapies using antisense oligonucleotides and genome editing for the treatment of various muscular dystrophies. Expert Reviews in Molecular Medicine, 2019, 21, e5.	3.9	20
566	Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays. Nature Biotechnology, 2019, 37, 1294-1301.	17.5	107
567	Adenine base editors catalyze cytosine conversions in human cells. Nature Biotechnology, 2019, 37, 1145-1148.	17.5	95
568	DART-seq: an antibody-free method for global m6A detection. Nature Methods, 2019, 16, 1275-1280.	19.0	283
569	Homologous Recombination-Based Genome Editing by Clade F AAVs Is Inefficient in the Absence of a Targeted DNA Break. Molecular Therapy, 2019, 27, 1726-1736.	8.2	20
570	Structural insights into a high fidelity variant of SpCas9. Cell Research, 2019, 29, 183-192.	12.0	39
571	CRISPR–Cas: a tool for cancer research and therapeutics. Nature Reviews Clinical Oncology, 2019, 16, 281-295.	27.6	127
572	Gene editing in plants: progress and challenges. National Science Review, 2019, 6, 421-437.	9.5	215
573	Engineering of high-precision base editors for site-specific single nucleotide replacement. Nature Communications, 2019, 10, 439.	12.8	119
574	A Personal Perspective on Chemical Biology: Before the Beginning. Israel Journal of Chemistry, 2019, 59, 71-83.	2.3	4
575	Genome editing in large animals: current status and future prospects. National Science Review, 2019, 6, 402-420.	9.5	63
576	CRISPR-Based Tools in Immunity. Annual Review of Immunology, 2019, 37, 571-597.	21.8	38
577	Association mapping in plants in the post-GWAS genomics era. Advances in Genetics, 2019, 104, 75-154.	1.8	100
578	Brain Organoids—A Bottom-Up Approach for Studying Human Neurodevelopment. Bioengineering, 2019, 6, 9.	3.5	45
579	CRISPR to the Rescue: Advances in Gene Editing for the FMR1 Gene. Brain Sciences, 2019, 9, 17.	2.3	10
580	A panel of eGFP reporters for single base editing by APOBEC-Cas9 editosome complexes. Scientific Reports, 2019, 9, 497.	3.3	38
581	Development of an <i>Agrobacterium</i> â€delivered <scp>CRISPR</scp> /Cas9 system for wheat genome editing. Plant Biotechnology Journal, 2019, 17, 1623-1635.	8.3	155
582	Generation of marker-free transgenic rice using CRISPR/Cas9 system controlled by floral specific promoters. Journal of Genetics and Genomics, 2019, 46, 61-64.	3.9	10

#	Article	IF	Citations
583	Ultrasensitive multi-species detection of CRISPR-Cas9 by a portable centrifugal microfluidic platform. Analytical Methods, 2019, 11, 559-565.	2.7	24
584	Nucleic Acid Databases and Molecular-Scale Computing. ACS Nano, 2019, 13, 6256-6268.	14.6	56
585	Gene and Base Editing as a Therapeutic Option for Cystic Fibrosis—Learning from Other Diseases. Genes, 2019, 10, 387.	2.4	24
586	CRISPR/Cas-based devices for mammalian synthetic biology. Current Opinion in Chemical Biology, 2019, 52, 23-30.	6.1	10
587	Singleâ€nucleotide editing: From principle, optimization to application. Human Mutation, 2019, 40, 2171-2183.	2.5	7
588	Nature Biotechnology's academic spinouts of 2018. Nature Biotechnology, 2019, 37, 601-612.	17.5	6
589	CRISPR/Cas9 applications in gene therapy for primary immunodeficiency diseases. Emerging Topics in Life Sciences, 2019, 3, 277-287.	2.6	8
590	The amphipod crustacean <i>Parhyale hawaiensis</i> : An emerging comparative model of arthropod development, evolution, and regeneration. Wiley Interdisciplinary Reviews: Developmental Biology, 2019, 8, e355.	5.9	22
591	Towards precise, safe genome editing. Cell Research, 2019, 29, 687-689.	12.0	0
592	Synthetic evolution. Nature Biotechnology, 2019, 37, 730-743.	17.5	63
593	Genome Editing in Agriculture: Technical and Practical Considerations. International Journal of Molecular Sciences, 2019, 20, 2888.	4.1	51
594	CRISPR as system: Toward a more efficient technology for genome editing and beyond. Journal of Cellular Biochemistry, 2019, 120, 16379-16392.	2.6	9
595	Development of CRISPR-Cas systems for genome editing and beyond. Quarterly Reviews of Biophysics, 2019, 52, .	5.7	108
596	CRISPR-Pass: Gene Rescue of Nonsense Mutations Using Adenine Base Editors. Molecular Therapy, 2019, 27, 1364-1371.	8.2	34
597	RNA-guided DNA insertion with CRISPR-associated transposases. Science, 2019, 365, 48-53.	12.6	448
598	Increasing Cytosine Base Editing Scope and Efficiency With Engineered Cas9-PmCDA1 Fusions and the Modified sgRNA in Rice. Frontiers in Genetics, 2019, 10, 379.	2.3	37
599	Genome Editing as a Treatment for the Most Prevalent Causative Genes of Autosomal Dominant Retinitis Pigmentosa. International Journal of Molecular Sciences, 2019, 20, 2542.	4.1	40
600	Microhomologies are prevalent at Cas9-induced larger deletions. Nucleic Acids Research, 2019, 47, 7402-7417.	14.5	100

#	Article	IF	CITATIONS
601	The next generation of CRISPR–Cas technologies and applications. Nature Reviews Molecular Cell Biology, 2019, 20, 490-507.	37.0	957
602	Mutations of GADD45G in rabbits cause cleft lip by the disorder of proliferation, apoptosis and epithelial-mesenchymal transition (EMT). Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2356-2367.	3.8	11
603	CRISPR/Cas: An intriguing genomic editing tool with prospects in treating neurodegenerative diseases. Seminars in Cell and Developmental Biology, 2019, 96, 22-31.	5.0	14
604	Cas Endonuclease Technology—A Quantum Leap in the Advancement of Barley and Wheat Genetic Engineering. International Journal of Molecular Sciences, 2019, 20, 2647.	4.1	26
605	Principles of and strategies for germline gene therapy. Nature Medicine, 2019, 25, 890-897.	30.7	49
606	Barriers to genome editing with CRISPR in bacteria. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1327-1341.	3.0	78
607	Data Mining by Pluralistic Approach on CRISPR Gene Editing in Plants. Frontiers in Plant Science, 2019, 10, 801.	3.6	12
608	DNA event recorders send past information of cells to the time of observation. Current Opinion in Chemical Biology, 2019, 52, 54-62.	6.1	12
609	Efficient and precise base editing in rabbits using human APOBEC3A-nCas9 fusions. Cell Discovery, 2019, 5, 31.	6.7	22
610	Gene editing based hearing impairment research and therapeutics. Neuroscience Letters, 2019, 709, 134326.	2.1	3
611	Therapeutic application of the CRISPR system: current issues and new prospects. Human Genetics, 2019, 138, 563-590.	3.8	16
612	Recent trends in CRISPR-Cas system: genome, epigenome, and transcriptome editing and CRISPR delivery systems. Genes and Genomics, 2019, 41, 871-877.	1.4	15
613	New molecular therapies for the treatment of hearing loss. , 2019, 200, 190-209.		49
614	Analysis and minimization of cellular RNA editing by DNA adenine base editors. Science Advances, 2019, 5, eaax5717.	10.3	206
615	Genetic Insights Into Smooth Muscle Cell Contributions to Coronary Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1006-1017.	2.4	26
616	Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature, 2019, 569, 433-437.	27.8	434
617	Improved base editor for efficient editing in GC contexts in rabbits with an optimized AID as9 fusion. FASEB Journal, 2019, 33, 9210-9219.	0.5	26
618	CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity. Methods, 2019, 164-165, 109-119.	3.8	42

#	Article	IF	Citations
619	Development of hRad51–Cas9 nickase fusions that mediate HDR without double-stranded breaks. Nature Communications, 2019, 10, 2212.	12.8	76
620	Expansion of the mutant monkey through cloning. Science China Life Sciences, 2019, 62, 865-867.	4.9	0
621	Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nature Biotechnology, 2019, 37, 626-631.	17.5	207
623	Current Challenges of iPSC-Based Disease Modeling and Therapeutic Implications. Cells, 2019, 8, 403.	4.1	282
624	Development of CRISPR-Mediated Systems in the Study of Duchenne Muscular Dystrophy. Human Gene Therapy Methods, 2019, 30, 71-80.	2.1	8
625	â€~Artificial spermatid'-mediated genome editingâ€. Biology of Reproduction, 2019, 101, 538-548.	2.7	8
626	Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG. Molecular Plant, 2019, 12, 1027-1036.	8.3	159
627	Molecular recording of mammalian embryogenesis. Nature, 2019, 570, 77-82.	27.8	257
628	In vivo continuous evolution of metabolic pathways for chemical production. Microbial Cell Factories, 2019, 18, 82.	4.0	24
629	CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell and Bioscience, 2019, 9, 36.	4.8	124
630	Correction of IVS I-110(G>A) \hat{I}^2 -thalassemia by CRISPR/Cas-and TALEN-mediated disruption of aberrant regulatory elements in human hematopoietic stem and progenitor cells. Haematologica, 2019, 104, e497-e501.	3.5	32
631	Next Generation Precision Medicine: CRISPR-mediated Genome Editing for the Treatment of Neurodegenerative Disorders. Journal of Neurolmmune Pharmacology, 2019, 14, 608-641.	4.1	22
632	Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice. Molecular Plant, 2019, 12, 1015-1026.	8.3	109
633	Humanising the mouse genome piece by piece. Nature Communications, 2019, 10, 1845.	12.8	78
634	Harnessing Genome Editing Techniques to Engineer Disease Resistance in Plants. Frontiers in Plant Science, 2019, 10, 550.	3.6	62
635	The <scp>CRIPSR</scp> /Cas geneâ€editing systemâ€"an immature but useful toolkit for experimental and clinical medicine. Animal Models and Experimental Medicine, 2019, 2, 5-8.	3.3	7
636	In vivo ways to unveil off-targets. Cell Research, 2019, 29, 339-340.	12.0	3
637	Precise editing of plant genomes – Prospects and challenges. Seminars in Cell and Developmental Biology, 2019, 96, 115-123.	5.0	15

#	Article	IF	CITATIONS
638	Development and Application of Base Editors. CRISPR Journal, 2019, 2, 91-104.	2.9	46
639	Chipping in on Diagnostics. CRISPR Journal, 2019, 2, 69-71.	2.9	4
640	Base Editors and Off-Targeting: The Deaminase Matters. CRISPR Journal, 2019, 2, 71-73.	2.9	1
641	Guidelines for optimized gene knockout using CRISPR/Cas9. BioTechniques, 2019, 66, 295-302.	1.8	34
642	Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences. Molecular Plant, 2019, 12, 1003-1014.	8.3	116
643	Plant breeding at the speed of light: the power of CRISPR/Cas to generate directed genetic diversity at multiple sites. BMC Plant Biology, 2019, 19, 176.	3.6	128
644	Expanded targeting scope and enhanced base editing efficiency in rabbit using optimized xCas9(3.7). Cellular and Molecular Life Sciences, 2019, 76, 4155-4164.	5.4	7
645	Functional analysis tools for postâ€translational modification: a postâ€translational modification database for analysis of proteins and metabolic pathways. Plant Journal, 2019, 99, 1003-1013.	5.7	55
646	CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors. Genome Biology, 2019, 20, 73.	8.8	99
647	Genome Editing for Duchenne Muscular Dystrophy. , 2019, , 383-403.		2
648	Off-target challenge for base editor-mediated genome editing. Cell Biology and Toxicology, 2019, 35, 185-187.	5.3	11
649	A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9. Cell, 2019, 177, 1067-1079.e19.	28.9	133
650	Cell-specific CRISPR–Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins. Nucleic Acids Research, 2019, 47, e75-e75.	14.5	79
651	Rationally Designed Anti-CRISPR Nucleic Acid Inhibitors of CRISPR-Cas9. Nucleic Acid Therapeutics, 2019, 29, 136-147.	3.6	26
652	Versatile and multifaceted CRISPR/Cas gene editing tool for plant research. Seminars in Cell and Developmental Biology, 2019, 96, 107-114.	5.0	9
653	Pick a Tag and Explore the Functions of Your Pet Protein. Trends in Biotechnology, 2019, 37, 1078-1090.	9.3	50
654	Development of drug-inducible CRISPR-Cas9 systems for large-scale functional screening. BMC Genomics, 2019, 20, 225.	2.8	23
655	ApoE4: an emerging therapeutic target for Alzheimer's disease. BMC Medicine, 2019, 17, 64.	5.5	282

#	Article	IF	CITATIONS
656	Cell-Selective Regulation of CFTR Gene Expression: Relevance to Gene Editing Therapeutics. Genes, 2019, 10, 235.	2.4	21
657	Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion. Microbiological Research, 2019, 223-225, 44-50.	5.3	30
658	Genome Editing with mRNA Encoding ZFN, TALEN, and Cas9. Molecular Therapy, 2019, 27, 735-746.	8.2	148
659	Applications of CRISPR systems in respiratory health: Entering a new  red pen' era in genome editing. Respirology, 2019, 24, 628-637.	2.3	13
660	Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (Review). International Journal of Molecular Medicine, 2019, 43, 1559-1574.	4.0	67
661	Precise gene replacement in rice by RNA transcript-templated homologous recombination. Nature Biotechnology, 2019, 37, 445-450.	17.5	110
662	Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases. Annual Review of Biochemistry, 2019, 88, 191-220.	11.1	120
663	Expanding the CRISPR Toolbox in Zebrafish for Studying Development and Disease. Frontiers in Cell and Developmental Biology, 2019, 7, 13.	3.7	102
664	Zebrafish Models of Neurodevelopmental Disorders: Limitations and Benefits of Current Tools and Techniques. International Journal of Molecular Sciences, 2019, 20, 1296.	4.1	72
665	Generation of hyperlipidemic rabbit models using multiple sgRNAs targeted CRISPR/Cas9 gene editing system. Lipids in Health and Disease, 2019, 18, 69.	3.0	24
666	CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment. Drug Discovery Today, 2019, 24, 955-970.	6.4	52
667	CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annual Review of Plant Biology, 2019, 70, 667-697.	18.7	959
668	Base editing the mammalian genome. Methods, 2019, 164-165, 100-108.	3.8	14
669	A New Class of Medicines through DNA Editing. New England Journal of Medicine, 2019, 380, 947-959.	27.0	184
670	Zebrafish as a Model for the Study of Live in vivo Processive Transport in Neurons. Frontiers in Cell and Developmental Biology, 2019, 7, 17.	3.7	11
671	Modeling human point mutation diseases in <i>Xenopus tropicalis</i> with a modified CRISPR/Cas9 system. FASEB Journal, 2019, 33, 6962-6968.	0.5	15
672	Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science, 2019, 364, 289-292.	12.6	573
673	Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science, 2019, 364, 292-295.	12.6	491

#	Article	IF	CITATIONS
674	Plant Genome Engineering for Targeted Improvement of Crop Traits. Frontiers in Plant Science, 2019, 10, 114.	3.6	149
675	Delivering on the promise of gene editing for cystic fibrosis. Genes and Diseases, 2019, 6, 97-108.	3.4	40
676	Therapeutic gene editing, making a point. Cardiovascular Research, 2019, 115, e39-e40.	3.8	2
677	Programmable Base Editing of the Sheep Genome Revealed No Genome-Wide Off-Target Mutations. Frontiers in Genetics, 2019, 10, 215.	2.3	28
678	CRISPR-Cas: Converting A Bacterial Defence Mechanism into A State-of-the-Art Genetic Manipulation Tool. Antibiotics, 2019, 8, 18.	3.7	48
679	Improving CRISPR Genome Editing by Engineering Guide RNAs. Trends in Biotechnology, 2019, 37, 870-881.	9.3	73
680	Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nature Biotechnology, 2019, 37, 430-435.	17.5	151
681	Optimizing genome editing strategy by primer-extension-mediated sequencing. Cell Discovery, 2019, 5, 18.	6.7	61
682	Editing the microbiome the CRISPR way. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180103.	4.0	70
683	Genome Editing-Based Engineering of CESA3 Dual Cellulose-Inhibitor-Resistant Plants. Plant Physiology, 2019, 180, 827-836.	4.8	26
684	Unbiased Forward Genetic Screening with Chemical Mutagenesis to Uncover Drug–Target Interactions. Methods in Molecular Biology, 2019, 1953, 23-31.	0.9	0
685	Opportunities and Challenges for Molecular Understanding of Ciliopathies–The 100,000 Genomes Project. Frontiers in Genetics, 2019, 10, 127.	2.3	71
686	Accurate analysis of genuine CRISPR editing events with ampliCan. Genome Research, 2019, 29, 843-847.	5.5	59
687	Therapeutic Genome Editing in Cardiovascular Diseases. JACC Basic To Translational Science, 2019, 4, 122-131.	4.1	32
688	CRISPR-Cas in <i>Streptococcus pyogenes</i> . RNA Biology, 2019, 16, 380-389.	3.1	86
689	Collateral damage and CRISPR genome editing. PLoS Genetics, 2019, 15, e1007994.	3.5	34
690	A Practical Guide to Genome Editing Using Targeted Nuclease Technologies., 2019, 9, 665-714.		7
691	Lineage tracing using a Cas9-deaminase barcoding system targeting endogenous L1 elements. Nature Communications, 2019, 10, 1234.	12.8	36

#	Article	IF	CITATIONS
692	Application of the CRISPR/Cas system for genome editing in microalgae. Applied Microbiology and Biotechnology, 2019, 103, 3239-3248.	3.6	37
693	Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Advances in Immunology, 2019, 141, 51-103.	2.2	26
694	Next-generation human genetics for organism-level systems biology. Current Opinion in Biotechnology, 2019, 58, 137-145.	6.6	5
695	An artificial triazole backbone linkage provides a split-and-click strategy to bioactive chemically modified CRISPR sgRNA. Nature Communications, 2019, 10, 1610.	12.8	48
696	Off-target effects and the solution. Nature Plants, 2019, 5, 341-342.	9.3	14
697	Precision Genome Editing in Human-Induced Pluripotent Stem Cells. Current Human Cell Research and Applications, 2019, , 113-130.	0.1	0
698	CRISPR/Cas9 gene editing for genodermatoses: progress and perspectives. Emerging Topics in Life Sciences, 2019, 3, 313-326.	2.6	6
699	CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications. Trends in Biotechnology, 2019, 37, 1121-1142.	9.3	259
700	Off-Targeting of Base Editors: BE3 but not ABE induces substantial off-target single nucleotide variants. Signal Transduction and Targeted Therapy, 2019, 4, 9.	17.1	20
701	Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nature Plants, 2019, 5, 480-485.	9.3	210
702	CRISPR-mediated gene editing for the surgeon scientist. Surgery, 2019, 166, 129-137.	1.9	5
703	Development of a CRISPR/Cas9 System for Methylococcus capsulatus <i>In Vivo</i> Gene Editing. Applied and Environmental Microbiology, 2019, 85, .	3.1	40
704	MicroRNAs tame CRISPR–Cas9. Nature Cell Biology, 2019, 21, 416-417.	10.3	3
705	Endothelial cells revealed as chondroclasts. Nature Cell Biology, 2019, 21, 417-419.	10.3	2
706	Medical Applications of iPS Cells. Current Human Cell Research and Applications, 2019, , .	0.1	0
707	RNA-Guided Adenosine Deaminases: Advances and Challenges for Therapeutic RNA Editing. Biochemistry, 2019, 58, 1947-1957.	2.5	19
708	<i>beditor</i> : A Computational Workflow for Designing Libraries of Guide RNAs for CRISPR-Mediated Base Editing. Genetics, 2019, 212, 377-385.	2.9	32
709	CRISPR-based genome editing in wheat: a comprehensive review and future prospects. Molecular Biology Reports, 2019, 46, 3557-3569.	2.3	48

#	Article	IF	Citations
710	New Possibilities on the Horizon: Genome Editing Makes the Whole Genome Accessible for Changes. Frontiers in Plant Science, 2019, 10, 525.	3.6	32
711	Plant genome editing using xCas9 with expanded PAM compatibility. Journal of Genetics and Genomics, 2019, 46, 277-280.	3.9	24
712	Functional-genetic approaches to understanding drug response and resistance. Current Opinion in Genetics and Development, 2019, 54, 41-47.	3.3	3
713	Emerging CRISPR/Cas9 applications for T-cell gene editing. Emerging Topics in Life Sciences, 2019, 3, 261-275.	2.6	2
714	Development and Application of CRISPR/Cas System in Rice. Rice Science, 2019, 26, 69-76.	3.9	12
716	Multiple sgRNAs facilitate base editing-mediated i-stop to induce complete and precise gene disruption. Protein and Cell, 2019, 10, 832-839.	11.0	5
717	Site-Directed Genome Modification in Triticeae Cereals Mediated by Cas Endonucleases. , 2019, , 121-133.		0
719	CRISPR–Cas9 ^{D10A} nickaseâ€assisted base editing in the solvent producer <i>Clostridium beijerinckii</i> . Biotechnology and Bioengineering, 2019, 116, 1475-1483.	3.3	57
720	Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nature Biotechnology, 2019, 37, 276-282.	17.5	439
721	Manipulating Cellular Factors to Combat Viruses: A Case Study From the Plant Eukaryotic Translation Initiation Factors eIF4. Frontiers in Microbiology, 2019, 10, 17.	3.5	37
722	A microRNA-inducible CRISPR–Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nature Cell Biology, 2019, 21, 522-530.	10.3	117
723	CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nature Biotechnology, 2019, 37, 224-226.	17.5	891
724	Constructing Synthetic Pathways in Plants. , 2019, , 77-113.		1
725	CRISPR/Cas9-Mediated Adenine Base Editing in Rice Genome. Rice Science, 2019, 26, 125-128.	3.9	54
726	Improvements of TKC Technology Accelerate Isolation of Transgene-Free CRISPR/Cas9-Edited Rice Plants. Rice Science, 2019, 26, 109-117.	3.9	30
727	An EU Perspective on Biosafety Considerations for Plants Developed by Genome Editing and Other New Genetic Modification Techniques (nGMs). Frontiers in Bioengineering and Biotechnology, 2019, 7, 31.	4.1	65
728	Unlocking HDR-mediated nucleotide editing by identifying high-efficiency target sites using machine learning. Scientific Reports, 2019, 9, 2788.	3.3	31
729	A CRISPR Interference Platform for Efficient Genetic Repression in <i>Candida albicans</i> . MSphere, 2019, 4, .	2.9	49

#	ARTICLE	IF	CITATIONS
730	Protocols for CRISPR-Cas9 Screening in Lymphoma Cell Lines. Methods in Molecular Biology, 2019, 1956, 337-350.	0.9	11
731	A CRISPR Technology and Biomolecule Production by Synthetic Biology Approach. , 2019, , 143-161.		6
732	Improving CRISPR-Cas9 Genome Editing Efficiency by Fusion with Chromatin-Modulating Peptides. CRISPR Journal, 2019, 2, 51-63.	2.9	60
733	Mimicking natural polymorphism in <i><scp>elF</scp>4E</i> by <scp>CRISPR</scp> as9 base editing is associated with resistance to potyviruses. Plant Biotechnology Journal, 2019, 17, 1736-1750.	8.3	129
734	From fiction to science: clinical potentials and regulatory considerations of gene editing. Clinical and Translational Medicine, 2019, 8, 27.	4.0	26
735	Liver targeted gene therapy: Insights into emerging therapies. Drug Discovery Today: Technologies, 2019, 34, 9-19.	4.0	3
736	Evolution of CRISPR towards accurate and efficient mammal genome engineering. BMB Reports, 2019, 52, 475-481.	2.4	21
738	Prospects for Cell-Directed Curative Therapy of Phenylketonuria (PKU). Molecular Frontiers Journal, 2019, 03, 110-121.	1.1	0
739	Including Vulnerable Populations in the Assessment of Data From Vulnerable Populations. Frontiers in Big Data, 2019, 2, 19.	2.9	26
740	Genome Editing with CRISPRâ€Cas: An Overview. Current Protocols in Essential Laboratory Techniques, 2019, 19, e36.	2.6	12
741	Got mutation? â€~Base editors' fix genomes one nucleotide at a time. Nature, 2019, 575, 553-555.	27.8	11
742	Off-target effects of cytidine base editor and adenine base editor: What can we do?. Journal of Genetics and Genomics, 2019, 46, 509-512.	3.9	2
743	The CC′ loop of IgV domains of the immune checkpoint receptors, plays a key role in receptor:ligand affinity modulation. Scientific Reports, 2019, 9, 19191.	3.3	15
744	Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors. Nature Communications, 2019, 10, 5222.	12.8	135
745	An Engineered Cas-Transposon System for Programmable and Site-Directed DNA Transpositions. CRISPR Journal, 2019, 2, 376-394.	2.9	37
747	Advances in detecting and reducing off-target effects generated by CRISPR-mediated genome editing. Journal of Genetics and Genomics, 2019, 46, 513-521.	3.9	45
748	Double-Check Base Editing for Efficient A to G Conversions. ACS Synthetic Biology, 2019, 8, 2629-2634.	3.8	14
749	Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing. Nature Communications, 2019, 10, 5353.	12.8	52

#	Article	IF	CITATIONS
750	Molecular Pharmacognosy., 2019,,.		1
752	Advancing CRISPR-Based Programmable Platforms beyond Genome Editing in Mammalian Cells. ACS Synthetic Biology, 2019, 8, 2607-2619.	3.8	5
753	Modeling Niemann–Pick disease type C in a human haploid cell line allows for patient variant characterization and clinical interpretation. Genome Research, 2019, 29, 2010-2019.	5 . 5	14
754	Multiplex nucleotide editing by high-fidelity Cas9 variants with improved efficiency in rice. BMC Plant Biology, 2019, 19, 511.	3.6	28
755	Human germline genome editing. Nature Cell Biology, 2019, 21, 1479-1489.	10.3	45
756	Advances in genome editing through control of DNA repair pathways. Nature Cell Biology, 2019, 21, 1468-1478.	10.3	271
757	Nuclear localization of Desmoplakin and its involvement in telomere maintenance. International Journal of Biological Sciences, 2019, 15, 2350-2362.	6.4	11
758	Challenges and Perspectives in Homology-Directed Gene Targeting in Monocot Plants. Rice, 2019, 12, 95.	4.0	53
759	AlleleProfileR: A versatile tool to identify and profile sequence variants in edited genomes. PLoS ONE, 2019, 14, e0226694.	2.5	5
760	Prime Editing: A Novel Cas9-Reverse Transcriptase Fusion May Revolutionize Genome Editing. Human Gene Therapy, 2019, 30, 1445-1446.	2.7	6
761	Dead Cas Systems: Types, Principles, and Applications. International Journal of Molecular Sciences, 2019, 20, 6041.	4.1	74
762	Super-precise new CRISPR tool could tackle a plethora of genetic diseases. Nature, 2019, 574, 464-465.	27.8	21
763	CRISPR. Current Opinion in Lipidology, 2019, 30, 172-176.	2.7	7
764	Efficient base editing with expanded targeting scope using an engineered Spy-mac Cas9 variant. Cell Discovery, 2019, 5, 58.	6.7	14
765	Genome Editing: Current State of Research and Application to Animal Husbandry. Applied Biochemistry and Microbiology, 2019, 55, 711-721.	0.9	1
766	Understanding CRISPR/Cas9: A Magnificent Tool for Plant Genome Editing. , 2019, , .		1
767	Review of Cell and Molecular Biology. , 2019, , 1-39.		0
768	Non-viral delivery of CRISPR/Cas9 complex using CRISPR-GPS nanocomplexes. Nanoscale, 2019, 11, 21317-21323.	5.6	34

#	Article	IF	CITATIONS
769	Progress in the application of CRISPR: From gene to base editing. Medicinal Research Reviews, 2019, 39, 665-683.	10.5	21
770	Gene therapy for visual loss: Opportunities and concerns. Progress in Retinal and Eye Research, 2019, 68, 31-53.	15.5	78
771	RNAi/CRISPR Screens: from a Pool to a Valid Hit. Trends in Biotechnology, 2019, 37, 38-55.	9.3	90
772	Molecular tools enabling pennycress (<i>Thlaspi arvense</i>) as a model plant and oilseed cash cover crop. Plant Biotechnology Journal, 2019, 17, 776-788.	8.3	75
773	CRISPR-Cap: multiplexed double-stranded DNA enrichment based on the CRISPR system. Nucleic Acids Research, 2019, 47, e1-e1.	14.5	24
774	Single transcript unit <scp>CRISPR</scp> 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. Plant Biotechnology Journal, 2019, 17, 1431-1445.	8.3	120
775	Genome Editing for Cardiovascular Diseasesâ€"A Brief Review for Cardiologists. American Journal of Cardiology, 2019, 123, 1002-1006.	1.6	0
776	Predicting and visualizing features of CRISPR–Cas systems. Methods in Enzymology, 2019, 616, 1-25.	1.0	13
777	Generation of genetically engineered nonâ€human primate models of brain function and neurological disorders. American Journal of Primatology, 2019, 81, e22931.	1.7	34
778	Methodologies for Improving HDR Efficiency. Frontiers in Genetics, 2018, 9, 691.	2.3	211
779	Harnessing CRISPR-Cas systems for precision engineering of designer probiotic lactobacilli. Current Opinion in Biotechnology, 2019, 56, 163-171.	6.6	41
780	CRISPR/Cas-based genome engineering in natural product discovery. Natural Product Reports, 2019, 36, 1262-1280.	10.3	88
781	A pipeline for characterization of novel Cas9 orthologs. Methods in Enzymology, 2019, 616, 219-240.	1.0	13
782	Efficient base editing in G/C-rich regions to model androgen insensitivity syndrome. Cell Research, 2019, 29, 174-176.	12.0	15
783	CRISPR RNA-guided autonomous delivery of Cas9. Nature Structural and Molecular Biology, 2019, 26, 14-24.	8.2	27
784	R-loop formation by dCas9 is mutagenic in <i>Saccharomyces cerevisiae</i> . Nucleic Acids Research, 2019, 47, 2389-2401.	14.5	28
785	Plant Genome Editing with CRISPR Systems. Methods in Molecular Biology, 2019, , .	0.9	12
786	A Bump-Hole Approach for Directed RNA Editing. Cell Chemical Biology, 2019, 26, 269-277.e5.	5.2	28

#	Article	IF	CITATIONS
787	Gene disruption through base editingâ€induced <scp>messenger RNA</scp> missplicing in plants. New Phytologist, 2019, 222, 1139-1148.	7.3	46
788	Human germline editing: Insights to future clinical treatment of diseases. Protein and Cell, 2019, 10, 470-475.	11.0	3
789	Entering the Modern Era of Gene Therapy. Annual Review of Medicine, 2019, 70, 273-288.	12.2	311
790	Synthetic Biology Toolbox and Chassis Development in Bacillus subtilis. Trends in Biotechnology, 2019, 37, 548-562.	9.3	81
791	Designing an Elusive C•G→G•C CRISPR Base Editor. Trends in Biochemical Sciences, 2019, 44, 91-94.	7.5	10
792	Atlantic salmon (<i>Salmo salar</i> L.) genetics in the 21st century: taking leaps forward in aquaculture and biological understanding. Animal Genetics, 2019, 50, 3-14.	1.7	66
793	Recent Advances in CRISPR/Cas9-Mediated Genome Editing in Dictyostelium. Cells, 2019, 8, 46.	4.1	12
794	The first genetically geneâ€edited babies: It's "irresponsible and too early― Animal Models and Experimental Medicine, 2019, 2, 1-4.	3.3	7
795	Plant DNA Repair Pathways and Their Applications in Genome Engineering. Methods in Molecular Biology, 2019, 1917, 3-24.	0.9	16
796	An Agrobacterium-Mediated CRISPR/Cas9 Platform for Genome Editing in Maize. Methods in Molecular Biology, 2019, 1917, 121-143.	0.9	8
797	A Multiplexed CRISPR/Cas9 Editing System Based on the Endogenous tRNA Processing. Methods in Molecular Biology, 2019, 1917, 63-73.	0.9	7
799	Base-Editing-Mediated R17H Substitution in Histone H3 Reveals Methylation-Dependent Regulation of Yap Signaling and Early Mouse Embryo Development. Cell Reports, 2019, 26, 302-312.e4.	6.4	21
800	Genome-wide profiling of adenine base editor specificity by EndoV-seq. Nature Communications, 2019, 10, 67.	12.8	103
801	In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model. BMC Biology, 2019, 17, 4.	3.8	59
802	A natural regulatory mutation in the proximal promoter elevates fetal globin expression by creating a de novo GATA1 site. Blood, 2019, 133, 852-856.	1.4	46
803	Allogeneic CAR T cell therapies for leukemia. American Journal of Hematology, 2019, 94, S50-S54.	4.1	55
804	CRISPR/Cas9â€Based Genome Editing and its Applications for Functional Genomic Analyses in Plants. Small Methods, 2019, 3, 1800473.	8.6	24
805	CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification. Cell, 2019, 176, 254-267.e16.	28.9	73

#	Article	IF	CITATIONS
806	Allele-specific genome editing using CRISPR–Cas9 is associated with loss of heterozygosity in diploid yeast. Nucleic Acids Research, 2019, 47, 1362-1372.	14.5	32
807	CRISPR–Cas9 a boon or bane: the bumpy road ahead to cancer therapeutics. Cancer Cell International, 2019, 19, 12.	4.1	46
808	Emerging Genetic Therapy for Sickle Cell Disease. Annual Review of Medicine, 2019, 70, 257-271.	12.2	90
809	CRISPR/Cas system: A game changing genome editing technology, to treat human genetic diseases. Gene, 2019, 685, 70-75.	2.2	37
810	CRISPR Correction of Duchenne Muscular Dystrophy. Annual Review of Medicine, 2019, 70, 239-255.	12.2	130
811	Genome editing opens a new era of genetic improvement in polyploid crops. Crop Journal, 2019, 7, 141-150.	5.2	67
812	High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nature Medicine, 2019, 25, 242-248.	30.7	280
813	Efficient CRISPR/Cas9â€Mediated Mutagenesis in Primary Murine T Lymphocytes. Current Protocols in Immunology, 2019, 124, e62.	3.6	13
814	Renaissance of traditional DNA transfer strategies for improvement of industrial lactic acid bacteria. Current Opinion in Biotechnology, 2019, 56, 61-68.	6.6	36
815	Developing a highly efficient and wildly adaptive <scp>CRISPR</scp> â€ <i>Sa</i> Cas9 toolset for plant genome editing. Plant Biotechnology Journal, 2019, 17, 706-708.	8.3	50
816	Creating Genetically Modified Marmosets. , 2019, , 335-353.		4
817	Genome, Epigenome, and Transcriptome Editing via Chemical Modification of Nucleobases in Living Cells. Biochemistry, 2019, 58, 330-335.	2.5	10
818	Marker-assisted breeding of hexaploid spring wheat in the Canadian prairies. Canadian Journal of Plant Science, 2019, 99, 111-127.	0.9	28
819	Functional Genomics for Cancer Research: Applications In Vivo and In Vitro. Annual Review of Cancer Biology, 2019, 3, 345-363.	4.5	9
820	CRISPR/Cas-mediated genome editing for crop improvement: current applications and future prospects. Plant Biotechnology Reports, 2019, 13, 1-10.	1.5	20
821	CRISPR/Cas9-mediated genome editing in sea urchins. Methods in Cell Biology, 2019, 151, 305-321.	1.1	14
822	Dissecting Tissue-Specific Super-Enhancers by Integrating Genome-Wide Analyses and CRISPR/Cas9 Genome Editing. Journal of Mammary Gland Biology and Neoplasia, 2019, 24, 47-59.	2.7	11
823	Yeast genetic interaction screens in the age of CRISPR/Cas. Current Genetics, 2019, 65, 307-327.	1.7	29

#	Article	IF	CITATIONS
824	CRISPRInc: a manually curated database of validated sgRNAs for IncRNAs. Nucleic Acids Research, 2019, 47, D63-D68.	14.5	37
825	Gene-edited CRISPy Critters for alcohol research. Alcohol, 2019, 74, 11-19.	1.7	7
826	Nodal and BMP dispersal during early zebrafish development. Developmental Biology, 2019, 447, 14-23.	2.0	38
827	CRISPR/Cas9 for cancer research and therapy. Seminars in Cancer Biology, 2019, 55, 106-119.	9.6	206
828	Application and future perspective of CRISPR/Cas9 genome editing in fruit crops. Journal of Integrative Plant Biology, 2020, 62, 269-286.	8.5	52
829	Optimized Cas9 expression systems for highly efficient Arabidopsis genome editing facilitate isolation of complex alleles in a single generation. Functional and Integrative Genomics, 2020, 20, 151-162.	3.5	43
830	Adenine base editing in an adult mouse model of tyrosinaemia. Nature Biomedical Engineering, 2020, 4, 125-130.	22.5	136
831	Highâ€efficient and precise base editing of C•G to T•A in the allotetraploid cotton (<i>Gossypium) Tj ETQq1 2020, 18, 45-56.</i>	1 0.78431 8.3	14 rgBT /0\ 114
832	Development and characterization of markerâ€free and transgene insertion siteâ€defined transgenic wheat with improved grain storability and fatty acid content. Plant Biotechnology Journal, 2020, 18, 129-140.	8.3	15
833	Increasing fidelity and efficiency by modifying cytidine base-editing systems in rice. Crop Journal, 2020, 8, 396-402.	5.2	16
834	CRISPR/Cas9 gene-editing strategies in cardiovascular cells. Cardiovascular Research, 2020, 116, 894-907.	3.8	40
835	Genome editing in grass plants. ABIOTECH, 2020, 1, 41-57.	3.9	11
836	Discriminated sgRNAs-Based SurroGate System Greatly Enhances the Screening Efficiency of Plant Base-Edited Cells. Molecular Plant, 2020, 13, 169-180.	8.3	25
837	Applications of genome editing in farm animals. , 2020, , 131-149.		5
838	KnockTF: a comprehensive human gene expression profile database with knockdown/knockout of transcription factors. Nucleic Acids Research, 2020, 48, D93-D100.	14.5	72
839	Base Editor Correction of COL7A1 in RecessiveÂDystrophic Epidermolysis Bullosa Patient-Derived Fibroblasts and iPSCs. Journal of Investigative Dermatology, 2020, 140, 338-347.e5.	0.7	69
840	An Allele-Specific Functional SNP Associated with Two Systemic Autoimmune Diseases Modulates IRF5 Expression by Long-Range Chromatin Loop Formation. Journal of Investigative Dermatology, 2020, 140, 348-360.e11.	0.7	25
841	Base editing in crops: current advances, limitations and future implications. Plant Biotechnology Journal, 2020, 18, 20-31.	8.3	152

#	Article	IF	CITATIONS
842	Efficient base editing by RNA-guided cytidine base editors (CBEs) in pigs. Cellular and Molecular Life Sciences, 2020, 77, 719-733.	5.4	26
843	A CRISPR-based base-editing screen for the functional assessment of BRCA1 variants. Oncogene, 2020, 39, 30-35.	5.9	64
844	Prefrontal GABA and glutamate levels correlate with impulsivity and cognitive function of prescription opioid addicts: A ¹ Hâ€magnetic resonance spectroscopy study. Psychiatry and Clinical Neurosciences, 2020, 74, 77-83.	1.8	20
845	Multiplex Gene Disruption by Targeted Base Editing of <i>Yarrowia lipolytica</i> Genome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System. Biotechnology Journal, 2020, 15, e1900238.	3.5	40
846	CRISPR/Cas9: Nature's gift to prokaryotes and an auspicious tool in genome editing. Journal of Basic Microbiology, 2020, 60, 91-102.	3.3	19
847	Precise gene replacement in plants through CRISPR/Cas genome editing technology: current status and future perspectives. ABIOTECH, 2020, 1, 58-73.	3.9	28
848	CRISPR-associated nucleases: the Dawn of a new age of efficient crop improvement. Transgenic Research, 2020, 29, 1-35.	2.4	31
849	Synthetic lethality as an engine for cancer drug target discovery. Nature Reviews Drug Discovery, 2020, 19, 23-38.	46.4	295
850	Simplified adenine base editors improve adenine base editing efficiency in rice. Plant Biotechnology Journal, 2020, 18, 770-778.	8.3	72
851	FE parametric study on the longitudinal tensile strength and damage mechanism of Zâ€pinned laminates. Polymer Composites, 2020, 41, 585-599.	4.6	5
852	Recent developments and applications of genetic transformation and genome editing technologies in wheat. Theoretical and Applied Genetics, 2020, 133, 1603-1622.	3.6	28
853	SNP-CRISPR: A Web Tool for SNP-Specific Genome Editing. G3: Genes, Genomes, Genetics, 2020, 10, 489-494.	1.8	35
854	Context-Dependent Strategies for Enhanced Genome Editing of Genodermatoses. Cells, 2020, 9, 112.	4.1	29
855	Programmable adenine deamination in bacteria using a Cas9–adenine-deaminase fusion. Chemical Science, 2020, 11, 1657-1664.	7.4	21
856	A brief history of human disease genetics. Nature, 2020, 577, 179-189.	27.8	441
857	Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces. Science China Life Sciences, 2020, 63, 1053-1062.	4.9	28
858	Nano-enabled cellular engineering for bioelectric studies. Nano Research, 2020, 13, 1214-1227.	10.4	11
859	Precise base editing of non-allelic acetolactate synthase genes confers sulfonylurea herbicide resistance in maize. Crop Journal, 2020, 8, 449-456.	5.2	55

#	Article	IF	CITATIONS
860	Sharpening the Molecular Scissors: Advances in Gene-Editing Technology. IScience, 2020, 23, 100789.	4.1	81
861	Establishment of SLC15A1/PEPT1-Knockout Human-Induced Pluripotent Stem Cell Line for Intestinal Drug Absorption Studies. Molecular Therapy - Methods and Clinical Development, 2020, 17, 49-57.	4.1	14
862	Correction of the aprt Gene Using Repair-Polypurine Reverse Hoogsteen Hairpins in Mammalian Cells. Molecular Therapy - Nucleic Acids, 2020, 19, 683-695.	5.1	11
863	Highly efficient base editing with expanded targeting scope using SpCas9â€NG in rabbits. FASEB Journal, 2020, 34, 588-596.	0.5	18
864	Strategies for Developing CRISPRâ€Based Gene Editing Methods in Bacteria. Small Methods, 2020, 4, 1900560.	8.6	19
866	A Universal Surrogate Reporter for Efficient Enrichment of CRISPR/Cas9-Mediated Homology-Directed Repair in Mammalian Cells. Molecular Therapy - Nucleic Acids, 2020, 19, 775-789.	5.1	23
867	Base editing in plants: Current status and challenges. Crop Journal, 2020, 8, 384-395.	5.2	71
868	Computational approaches for effective CRISPR guide RNA design and evaluation. Computational and Structural Biotechnology Journal, 2020, 18, 35-44.	4.1	119
869	CRISPR-Cas nucleases and base editors for plant genome editing. ABIOTECH, 2020, 1, 74-87.	3.9	16
870	Efficient, continuous mutagenesis in human cells using a pseudo-random DNA editor. Nature Biotechnology, 2020, 38, 165-168.	17.5	59
871	Strategies for the CRISPR-Based Therapeutics. Trends in Pharmacological Sciences, 2020, 41, 55-65.	8.7	39
872	Efficient Gene Silencing by Adenine Base Editor-Mediated Start Codon Mutation. Molecular Therapy, 2020, 28, 431-440.	8.2	37
873	Increasing the targeting scope and efficiency of base editing with Proxyâ€BE strategy. FEBS Letters, 2020, 594, 1319-1328.	2.8	3
874	Recent advances in mammalian reproductive biology. Science China Life Sciences, 2020, 63, 18-58.	4.9	23
875	Prostate cancer research: The next generation; report from the 2019 Coffeyâ∈Holden Prostate Cancer Academy Meeting. Prostate, 2020, 80, 113-132.	2.3	25
876	In situ readout of DNA barcodes and single base edits facilitated by in vitro transcription. Nature Biotechnology, 2020, 38, 66-75.	17.5	52
877	Wholeâ€Genome Regulation for Yeast Metabolic Engineering. Small Methods, 2020, 4, 1900640.	8.6	12
878	A heterodimer of evolved designer-recombinases precisely excises a human genomic DNA locus. Nucleic Acids Research, 2020, 48, 472-485.	14.5	20

#	Article	IF	CITATIONS
879	Optimizing plant adenine base editor systems by modifying the transgene selection system. Plant Biotechnology Journal, 2020, 18, 1495-1497.	8.3	19
880	Highly Efficient Base Editing in Viral Genome Based on Bacterial Artificial Chromosome Using a Cas9-Cytidine Deaminase Fused Protein. Virologica Sinica, 2020, 35, 191-199.	3.0	8
881	CRISPR Diagnosis and Therapeutics with Single Base Pair Precision. Trends in Molecular Medicine, 2020, 26, 337-350.	6.7	30
882	Gene editing prospects for treating inherited retinal diseases. Journal of Medical Genetics, 2020, 57, 437-444.	3.2	32
883	Potato Virus X Vector-Mediated DNA-Free Genome Editing in Plants. Plant and Cell Physiology, 2020, 61, 1946-1953.	3.1	63
884	Sensing through Non-Sensing Ocular Ion Channels. International Journal of Molecular Sciences, 2020, 21, 6925.	4.1	11
885	Base editing: advances and therapeutic opportunities. Nature Reviews Drug Discovery, 2020, 19, 839-859.	46.4	218
886	Manipulation of Developmental Gamma-Globin Gene Expression: an Approach for Healing Hemoglobinopathies. Molecular and Cellular Biology, 2021, 41, .	2.3	7
887	Precise Genome Editing in Poultry and Its Application to Industries. Genes, 2020, 11, 1182.	2.4	17
888	Improving Horticultural Crops via CRISPR/Cas9: Current Successes and Prospects. Plants, 2020, 9, 1360.	3.5	18
889	Delivery Approaches for Therapeutic Genome Editing and Challenges. Genes, 2020, 11, 1113.	2.4	37
890	Editing the Mitochondrial Genome: No CRISPR Required. Trends in Genetics, 2020, 36, 809-810.	6.7	2
891	Therapy in Rhodopsin-Mediated Autosomal Dominant Retinitis Pigmentosa. Molecular Therapy, 2020, 28, 2139-2149.	8.2	40
892	Engineering domain-inlaid SaCas9 adenine base editors with reduced RNA off-targets and increased on-target DNA editing. Nature Communications, 2020, 11, 4871.	12.8	46
893	Applications of CRISPR–Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology, 2020, 21, 661-677.	37.0	433
894	CRISPR/Cas: From Tumor Gene Editing to T Cell-Based Immunotherapy of Cancer. Frontiers in Immunology, 2020, 11, 2062.	4.8	45
895	New prospects on the horizon: Genome editing to engineer plants for desirable traits. Current Plant Biology, 2020, 24, 100171.	4.7	26
896	CRISPR base editing and prime editing: DSB and template-free editing systems for bacteria and plants. Synthetic and Systems Biotechnology, 2020, 5, 277-292.	3.7	33

#	Article	IF	CITATIONS
897	Base Editing Mediated Generation of Point Mutations Into Human Pluripotent Stem Cells for Modeling Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 590581.	3.7	22
898	In Vivo Cancer-Based Functional Genomics. Trends in Cancer, 2020, 6, 1002-1017.	7.4	5
899	CRISPR-Cas9: A Promising Genome Editing Therapeutic Tool for Alzheimer's Disease—A Narrative Review. Neurology and Therapy, 2020, 9, 419-434.	3.2	24
900	Progresses, Challenges, and Prospects of Genome Editing in Soybean (Glycine max). Frontiers in Plant Science, 2020, 11, 571138.	3.6	26
901	Precise Correction of Heterozygous SHOX2 Mutations in hiPSCs Derived from Patients with Atrial Fibrillation via Genome Editing and Sib Selection. Stem Cell Reports, 2020, 15, 999-1013.	4.8	6
902	Highly elevated base excision repair pathway in primordial germ cells causes low base editing activity in chickens. FASEB Journal, 2020, 34, 15907-15921.	0.5	11
903	Recent progress in translational engineered <i>in vitro</i> models of the central nervous system. Brain, 2020, 143, 3181-3213.	7.6	64
904	Gene Editing by Extracellular Vesicles. International Journal of Molecular Sciences, 2020, 21, 7362.	4.1	30
905	Anticipating and Identifying Collateral Damage in Genome Editing. Trends in Genetics, 2020, 36, 905-914.	6.7	28
906	RNA editing of BFP, a point mutant of GFP, using artificial APOBEC1 deaminase to restore the genetic code. Scientific Reports, 2020, 10, 17304.	3.3	15
907	Sharpening gene editing toolbox in Arabidopsis for plants. Journal of Plant Biochemistry and Biotechnology, 2020, 29, 769-784.	1.7	12
908	Genome editing systems across yeast species. Current Opinion in Biotechnology, 2020, 66, 255-266.	6.6	15
909	Thermoreversible Control of Nucleic Acid Structure and Function with Glyoxal Caging. Journal of the American Chemical Society, 2020, 142, 17766-17781.	13.7	33
910	Type II anti-CRISPR proteins as a new tool for synthetic biology. RNA Biology, 2021, 18, 1085-1098.	3.1	7
911	InÂVivo Repair of a Protein Underlying a Neurological Disorder by Programmable RNA Editing. Cell Reports, 2020, 32, 107878.	6.4	44
912	Computational Methods for Analysis of Large-Scale CRISPR Screens. Annual Review of Biomedical Data Science, 2020, 3, 137-162.	6.5	4
913	ABC-GWAS: Functional Annotation of Estrogen Receptor-Positive Breast Cancer Genetic Variants. Frontiers in Genetics, 2020, 11, 730.	2.3	3
914	Use of Cell and Genome Modification Technologies to Generate Improved "Off-the-Shelf―CAR T and CAR NK Cells. Frontiers in Immunology, 2020, 11, 1965.	4.8	85

#	Article	IF	CITATIONS
915	Gene therapy: a double-edged sword with great powers. Molecular and Cellular Biochemistry, 2020, 474, 73-81.	3.1	44
916	Innovative Therapeutic and Delivery Approaches Using Nanotechnology to Correct Splicing Defects Underlying Disease. Frontiers in Genetics, 2020, 11, 731.	2.3	14
917	Single C-to-T substitution using engineered APOBEC3G-nCas9 base editors with minimum genome- and transcriptome-wide off-target effects. Science Advances, 2020, 6, eaba1773.	10.3	55
918	Microbes as Biosensors. Annual Review of Microbiology, 2020, 74, 337-359.	7.3	35
919	A Guide to Understanding "State-of-the-Art―Basic Research Techniques in Anesthesiology. Anesthesia and Analgesia, 2020, 131, 450-463.	2.2	2
920	A positive, growth-based PAM screen identifies noncanonical motifs recognized by the <i>S. pyogenes</i> Cas9. Science Advances, 2020, 6, eabb4054.	10.3	21
921	Key Players in the Mutant p53 Team: Small Molecules, Gene Editing, Immunotherapy. Frontiers in Oncology, 2020, 10, 1460.	2.8	30
922	Can We Use Gene-Editing to Induce Apomixis in Sexual Plants?. Genes, 2020, 11, 781.	2.4	15
923	CRISPR-sub: Analysis of DNA substitution mutations caused by CRISPR-Cas9 in human cells. Computational and Structural Biotechnology Journal, 2020, 18, 1686-1694.	4.1	17
924	BE4max and AncBE4max Are Efficient in Germline Conversion of C:G to T:A Base Pairs in Zebrafish. Cells, 2020, 9, 1690.	4.1	16
925	Development of a Single Construct System for Site-Directed RNA Editing Using MS2-ADAR. International Journal of Molecular Sciences, 2020, 21, 4943.	4.1	15
926	Cost-effective generation of A-to-G mutant mice by zygote electroporation of adenine base editor ribonucleoproteins. Journal of Genetics and Genomics, 2020, 47, 337-340.	3.9	3
927	Applications of CRISPR for musculoskeletal research. Bone and Joint Research, 2020, 9, 351-359.	3.6	6
928	CRISPR–Cas immune systems and genome engineering. , 2020, , 157-177.		0
929	Critical cancer vulnerabilities identified by unbiased CRISPR/Cas9 screens inform on efficient cancer Immunotherapy. European Journal of Immunology, 2020, 50, 1871-1884.	2.9	6
930	Docking sites inside Cas9 for adenine base editing diversification and RNA off-target elimination. Nature Communications, 2020, 11, 5827.	12.8	17
931	Cytosine Base Editor (hA3A-BE3-NG)-Mediated Multiple Gene Editing for Pyramid Breeding in Pigs. Frontiers in Genetics, 2020, 11, 592623.	2.3	12
932	Genome Editing for CNS Disorders. Frontiers in Neuroscience, 2020, 14, 579062.	2.8	18

#	Article	IF	CITATIONS
933	Broadening the GMO risk assessment in the EU for genome editing technologies in agriculture. Environmental Sciences Europe, 2020, 32, .	5.5	43
934	Precision Genome Engineering Through Cytidine Base Editing in Rapeseed (Brassica napus. L). Frontiers in Genome Editing, 2020, 2, 605768.	5.2	5
935	Massively parallel techniques for cataloguing the regulome of the human brain. Nature Neuroscience, 2020, 23, 1509-1521.	14.8	39
936	Measuring targeting specificity of genome-editing by nuclear transfer and sequencing (NT-seq). Cell Discovery, 2020, 6, 78.	6.7	4
937	Multiple gene substitution by Target-AID base-editing technology in tomato. Scientific Reports, 2020, 10, 20471.	3.3	36
938	CRISPR Fokl Dead Cas9 System: Principles and Applications in Genome Engineering. Cells, 2020, 9, 2518.	4.1	21
939	The milestone of genetic screening: Mammalian haploid cells. Computational and Structural Biotechnology Journal, 2020, 18, 2471-2479.	4.1	4
940	From Basic Biology to Patient Mutational Spectra of GATA2 Haploinsufficiencies: What Are the Mechanisms, Hurdles, and Prospects of Genome Editing for Treatment. Frontiers in Genome Editing, 2020, 2, 602182.	5.2	5
941	Genome Editing as A Versatile Tool to Improve Horticultural Crop Qualities. Horticultural Plant Journal, 2020, 6, 372-384.	5.0	18
942	Base Editing in Human Cells to Produce Singleâ€Nucleotideâ€Variant Clonal Cell Lines. Current Protocols in Molecular Biology, 2020, 133, e129.	2.9	4
943	Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biology, 2020, 21, 289.	8.8	102
944	Generation of Common Marmoset Model Lines of Spinocerebellar Ataxia Type 3. Frontiers in Neuroscience, 2020, 14, 548002.	2.8	8
945	An optimized base editor with efficient C-to-T base editing in zebrafish. BMC Biology, 2020, 18, 190.	3.8	17
946	Recent developments of tools for genome and metabolome studies in basidiomycete fungi and their application to natural product research. Biology Open, 2020, 9, .	1.2	16
947	Modeling Non-Alcoholic Fatty Liver Disease (NAFLD) Using "Good-Fit―Genome-Editing Tools. Cells, 2020, 9, 2572.	4.1	4
948	Production of gene-edited pigs harboring orthologous human mutations via double cutting by CRISPR/Cas9 with long single-stranded DNAs as homology-directed repair templates by zygote injection. Transgenic Research, 2020, 29, 587-598.	2.4	5
949	Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods. Biomaterials, 2020, 258, 120282.	11.4	58
950	Recent advances of genome editing and related technologies in China. Gene Therapy, 2020, 27, 312-320.	4.5	5

#	Article	IF	CITATIONS
951	A Revolution toward Gene-Editing Technology and Its Application to Crop Improvement. International Journal of Molecular Sciences, 2020, 21, 5665.	4.1	62
952	Advances on systems metabolic engineering of Bacillus subtilis as a chassis cell. Synthetic and Systems Biotechnology, 2020, 5, 245-251.	3.7	29
953	Current Status and Challenges of DNA Base Editing Tools. Molecular Therapy, 2020, 28, 1938-1952.	8.2	72
954	The Evolution of Gene Therapy in the Treatment of Metabolic Liver Diseases. Genes, 2020, 11, 915.	2.4	3
955	Precision Breeding Made Real with CRISPR: Illustration through Genetic Resistance to Pathogens. Plant Communications, 2020, 1, 100102.	7.7	32
956	Generation of a Hutchinson–Gilford progeria syndrome monkey model by base editing. Protein and Cell, 2020, 11, 809-824.	11.0	46
957	Integration of CRISPR-engineering and hiPSC-based models of psychiatric genomics. Molecular and Cellular Neurosciences, 2020, 107, 103532.	2.2	8
958	Spatiotemporal DNA methylome dynamics of the developing mouse fetus. Nature, 2020, 583, 752-759.	27.8	84
959	Applying gene editing to tailor precise genetic modifications in plants. Journal of Biological Chemistry, 2020, 295, 13267-13276.	3.4	29
960	DNA capture by a CRISPR-Cas9–guided adenine base editor. Science, 2020, 369, 566-571.	12.6	114
961	AcrIIA5 Suppresses Base Editors and Reduces Their Off-Target Effects. Cells, 2020, 9, 1786.	4.1	24
962	The Role of Noncoding Variants in Heritable Disease. Trends in Genetics, 2020, 36, 880-891.	6.7	67
963	Aspects of Gene Therapy Products Using Current Genome-Editing Technology in Japan. Human Gene Therapy, 2020, 31, 1043-1053.	2.7	8
964	Applications of CRISPR technology in studying plant-pathogen interactions: overview and perspective. Phytopathology Research, 2020, 2, .	2.4	21
965	First progeria monkey model generated using base editor. Protein and Cell, 2020, 11, 862-865.	11.0	1
966	Development of Geneâ€Targeted Polypyridyl Triplexâ€Forming Oligonucleotide Hybrids. ChemBioChem, 2020, 21, 3563-3574.	2.6	14
967	CRISPR Start-Loss: A Novel and Practical Alternative for Gene Silencing through Base-Editing-Induced Start Codon Mutations. Molecular Therapy - Nucleic Acids, 2020, 21, 1062-1073.	5.1	16
968	CRISPR-Assisted Multiplex Base Editing System in Pseudomonas putida KT2440. Frontiers in Bioengineering and Biotechnology, 2020, 8, 905.	4.1	25

#	Article	IF	CITATIONS
969	Production of Herbicide-Sensitive Strain to Prevent Volunteer Rice Infestation Using a CRISPR-Cas9 Cytidine Deaminase Fusion. Frontiers in Plant Science, 2020, 11, 925.	3.6	13
970	Recent Progress in Germplasm Evaluation and Gene Mapping to Enable Breeding of Drought-Tolerant Wheat. Frontiers in Plant Science, 2020, 11, 1149.	3.6	24
971	Overview of the current status of gene therapy for primary immune deficiencies (PIDs). Journal of Allergy and Clinical Immunology, 2020, 146, 229-233.	2.9	8
972	Large-Fragment Deletions Induced by Cas9 Cleavage while Not in the BEs System. Molecular Therapy - Nucleic Acids, 2020, 21, 523-526.	5.1	48
973	Rationally Designed APOBEC3B Cytosine Base Editors with Improved Specificity. Molecular Cell, 2020, 79, 728-740.e6.	9.7	104
974	The Development and Application of a Base Editor in Biomedicine. BioMed Research International, 2020, 2020, 1-12.	1.9	2
975	Long-Term Rewritable Report and Recording of Environmental Stimuli in Engineered Bacterial Populations. ACS Synthetic Biology, 2020, 9, 2440-2449.	3.8	13
976	Genome-wide specificity of dCpf1 cytidine base editors. Nature Communications, 2020, 11, 4072.	12.8	17
977	GOTI, a method to identify genome-wide off-target effects of genome editing in mouse embryos. Nature Protocols, 2020, 15, 3009-3029.	12.0	24
978	CRISPR GUARD protects off-target sites from Cas9 nuclease activity using short guide RNAs. Nature Communications, 2020, 11, 4132.	12.8	51
979	Patient derived stem cells for discovery and validation of novel pathogenic variants in inherited retinal disease. Progress in Retinal and Eye Research, 2021, 83, 100918.	15.5	16
980	PhieCBEs: Plant High-Efficiency Cytidine Base Editors with Expanded Target Range. Molecular Plant, 2020, 13, 1666-1669.	8.3	34
981	Improving Nutritional and Functional Quality by Genome Editing of Crops: Status and Perspectives. Frontiers in Plant Science, 2020, 11, 577313.	3.6	53
982	Time for remodeling: SNF2-family DNA translocases in replication fork metabolism and human disease. DNA Repair, 2020, 95, 102943.	2.8	25
983	Emerging drugs for the treatment of epidermolysis bullosa. Expert Opinion on Emerging Drugs, 2020, 25, 467-489.	2.4	9
984	Revisiting CRISPR/Cas-mediated crop improvement: Special focus on nutrition. Journal of Biosciences, 2020, 45, 1.	1.1	18
985	Biologia futura: animal testing in drug developmentâ€"the past, the present and the future. Biologia Futura, 2020, 71, 443-452.	1.4	6
986	In silico Method in CRISPR/Cas System: An Expedite and Powerful Booster. Frontiers in Oncology, 2020, 10, 584404.	2.8	7

#	Article	IF	CITATIONS
987	The PTEN Conundrum: How to Target PTEN-Deficient Prostate Cancer. Cells, 2020, 9, 2342.	4.1	34
988	Genome targeting by hybrid Flp-TAL recombinases. Scientific Reports, 2020, 10, 17479.	3.3	8
989	Aglycosylated antibody-producing mice for aglycosylated antibody-lectin coupled immunoassay for the quantification of tumor markers (ALIQUAT). Communications Biology, 2020, 3, 636.	4.4	2
990	CRISPR-Cas12a (Cpf1): A Versatile Tool in the Plant Genome Editing Tool Box for Agricultural Advancement. Frontiers in Plant Science, 2020, 11, 584151.	3.6	66
991	SOAT1 promotes mevalonate pathway dependency in pancreatic cancer. Journal of Experimental Medicine, 2020, 217, .	8.5	65
992	Precise base editing with CC context-specificity using engineered human APOBEC3G-nCas9 fusions. BMC Biology, 2020, 18, 111.	3.8	28
993	CRISPR-Cas9 DNA Base-Editing and Prime-Editing. International Journal of Molecular Sciences, 2020, 21, 6240.	4.1	179
994	Fine-tuning sugar content in strawberry. Genome Biology, 2020, 21, 230.	8.8	97
995	Challenges and Prospects of New Plant Breeding Techniques for GABA Improvement in Crops: Tomato as an Example. Frontiers in Plant Science, 2020, 11 , 577980.	3.6	34
996	CRISPR-CBEI: a Designing and Analyzing Tool Kit for Cytosine Base Editor-Mediated Gene Inactivation. MSystems, 2020, 5, .	3.8	20
997	Polyglutamine spinocerebellar ataxias: emerging therapeutic targets. Expert Opinion on Therapeutic Targets, 2020, 24, 1099-1119.	3.4	8
998	Designing custom CRISPR libraries for hypothesis-driven drug target discovery. Computational and Structural Biotechnology Journal, 2020, 18, 2237-2246.	4.1	10
999	The era of editing plant genomes using CRISPR/Cas: A critical appraisal. Journal of Biotechnology, 2020, 324, 34-60.	3.8	12
1000	Base Editing Landscape Extends to Perform Transversion Mutation. Trends in Genetics, 2020, 36, 899-901.	6.7	37
1001	Interrogating genome function using CRISPR tools: a narrative review. Journal of Bio-X Research, 2020, 3, 83-91.	0.2	0
1002	ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems. BMC Biology, 2020, 18, 131.	3.8	41
1003	Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Research, 2020, 48, 10576-10589.	14.5	104
1004	Breeding and biotechnological interventions for trait improvement: status and prospects. Planta, 2020, 252, 54.	3.2	48

#	ARTICLE	IF	CITATIONS
1005	Genome scale analysis of pathogenic variants targetable for single base editing. BMC Medical Genomics, 2020, 13, 80.	1.5	6
1006	CrisPam: SNP-Derived PAM Analysis Tool for Allele-Specific Targeting of Genetic Variants Using CRISPR-Cas Systems. Frontiers in Genetics, 2020, 11, 851.	2.3	16
1007	A Single Cas9-VPR Nuclease for Simultaneous Gene Activation, Repression, and Editing in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2020, 9, 2252-2257.	3.8	24
1008	CRISPR Screens in Plants: Approaches, Guidelines, and Future Prospects. Plant Cell, 2020, , tpc.00463.2020.	6.6	9
1009	Synthetic Virus-Derived Nanosystems (SVNs) for Delivery and Precision Docking of Large Multifunctional DNA Circuitry in Mammalian Cells. Pharmaceutics, 2020, 12, 759.	4.5	13
1010	New Directions in Pulmonary Gene Therapy. Human Gene Therapy, 2020, 31, 921-939.	2.7	10
1011	Use of Customizable Nucleases for Gene Editing and Other Novel Applications. Genes, 2020, 11, 976.	2.4	9
1012	sgBE: a structure-guided design of sgRNA architecture specifies base editing window and enables simultaneous conversion of cytosine and adenosine. Genome Biology, 2020, 21, 222.	8.8	15
1013	TRADES: Targeted RNA Demethylation by SunTag System. Advanced Science, 2020, 7, 2001402.	11.2	27
1014	CRISPR/Cas9 Delivery Potentials in Alzheimer's Disease Management: A Mini Review. Pharmaceutics, 2020, 12, 801.	4.5	15
1015	Your Base Editor Might Be Flirting with Single (Stranded) DNA: Faithful On-Target CRISPR Base Editing without Promiscuous Deamination. Molecular Cell, 2020, 79, 703-704.	9.7	0
1016	Mitochondrial DNA Base Editing: Good Editing Things Still Come in Small Packages. Molecular Cell, 2020, 79, 708-709.	9.7	6
1017	Innovative Therapies for Hemoglobin Disorders. BioDrugs, 2020, 34, 625-647.	4.6	7
1018	Catalytic-state structure and engineering of Streptococcus thermophilus Cas9. Nature Catalysis, 2020, 3, 813-823.	34.4	23
1019	Novel Therapeutic Approaches for the Treatment of Retinal Degenerative Diseases: Focus on CRISPR/Cas-Based Gene Editing. Frontiers in Neuroscience, 2020, 14, 838.	2.8	12
1020	Cellular therapy options for genetic skin disorders with a focus on recessive dystrophic epidermolysis bullosa. British Medical Bulletin, 2020, 136, 30-45.	6.9	5
1021	A polyclonal allelic expression assay for detecting regulatory effects of transcript variants. Genome Medicine, 2020, 12, 79.	8.2	5
1022	Gene-Editing Technologies Paired With Viral Vectors for Translational Research Into Neurodegenerative Diseases. Frontiers in Molecular Neuroscience, 2020, 13, 148.	2.9	20

#	Article	IF	CITATIONS
1023	Targeting Alternative Splicing as a Potential Therapy for Episodic Ataxia Type 2. Biomedicines, 2020, 8, 332.	3.2	13
1024	Enhanced genome editing to ameliorate a genetic metabolic liver disease through co-delivery of adeno-associated virus receptor. Science China Life Sciences, 2022, 65, 718-730.	4.9	16
1025	Generation and characterisation of a COV434 cell clone carrying a monoallelic FecBB mutation introduced by CRISPR/Cas9. Reproduction, Fertility and Development, 2020, , .	0.4	0
1026	Using Gene Editing Approaches to Fine-Tune the Immune System. Frontiers in Immunology, 2020, 11, 570672.	4.8	13
1027	Engineering drought tolerance in plants through CRISPR/Cas genome editing. 3 Biotech, 2020, 10, 400.	2.2	39
1028	The road ahead in genetics and genomics. Nature Reviews Genetics, 2020, 21, 581-596.	16.3	118
1029	Methodologies and Challenges for CRISPR/Cas9 Mediated Genome Editing of the Mammalian Brain. Frontiers in Genome Editing, 2020, 2, 602970.	5 . 2	17
1030	Various Aspects of a Gene Editing Systemâ€"CRISPRâ€"Cas9. International Journal of Molecular Sciences, 2020, 21, 9604.	4.1	57
1031	AsCRISPR: A Web Server for Allele-Specific Single Guide RNA Design in Precision Medicine. CRISPR Journal, 2020, 3, 512-522.	2.9	8
1032	Gene Editing and Genotoxicity: Targeting the Off-Targets. Frontiers in Genome Editing, 2020, 2, 613252.	5. 2	31
1033	In vivo diversification of target genomic sites using processive base deaminase fusions blocked by dCas9. Nature Communications, 2020, 11, 6436.	12.8	47
1034	Active immunotherapy and alternative therapeutic modalities for Alzheimer's disease. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12090.	3.7	3
1035	CRISPR-Mediated Base Conversion Allows Discriminatory Depletion of Endogenous T Cell Receptors for Enhanced Synthetic Immunity. Molecular Therapy - Methods and Clinical Development, 2020, 19, 149-161.	4.1	14
1036	Functional Genomics in Pancreatic \hat{l}^2 Cells: Recent Advances in Gene Deletion and Genome Editing Technologies for Diabetes Research. Frontiers in Endocrinology, 2020, 11, 576632.	3.5	13
1037	Generating broad-spectrum tolerance to ALS-inhibiting herbicides in rice by base editing. Science China Life Sciences, 2021, 64, 1624-1633.	4.9	49
1038	CRISPR/Cas9 nickaseâ€mediated efficient and seamless knockâ€in of lethal genes in the medaka fish <i>Oryzias latipes</i> . Development Growth and Differentiation, 2020, 62, 554-567.	1.5	11
1039	Selecting for useful properties of plants and fungi – Novel approaches, opportunities, and challenges. Plants People Planet, 2020, 2, 409-420.	3.3	17
1040	Screening for functional transcriptional and splicing regulatory variants with GenIE. Nucleic Acids Research, 2020, 48, e131-e131.	14.5	8

#	Article	IF	CITATIONS
1041	Advances in engineering CRISPR-Cas9 as a molecular Swiss Army knife. Synthetic Biology, 2020, 5, ysaa021.	2.2	9
1042	Applications of CRISPR/Cas to Improve Crop Disease Resistance: Beyond Inactivation of Susceptibility Factors. IScience, 2020, 23, 101478.	4.1	55
1043	CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids. Cell Stem Cell, 2020, 27, 705-731.	11.1	95
1044	Optical Manipulation of CRISPR/Cas9 Functions: From Ultraviolet to Near-Infrared Light. , 2020, 2, 644-653.		22
1045	Engineering biosynthetic enzymes for industrial natural product synthesis. Natural Product Reports, 2020, 37, 1122-1143.	10.3	55
1046	Amelioration of an Inherited Metabolic Liver Disease through Creation of a De Novo Start Codon by Cytidine Base Editing. Molecular Therapy, 2020, 28, 1673-1683.	8.2	24
1047	Genome editing technology and application in soybean improvement. Oil Crop Science, 2020, 5, 31-40.	2.0	32
1048	A Cas9 with PAM recognition for adenine dinucleotides. Nature Communications, 2020, 11, 2474.	12.8	77
1049	A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects. Nature Methods, 2020, 17, 600-604.	19.0	97
1050	Molecular Insight into the Therapeutic Promise of Targeting <i>APOE4</i> for Alzheimer's Disease. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-16.	4.0	38
1051	Massively parallel CRISPRi assays reveal concealed thermodynamic determinants of dCas12a binding. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11274-11282.	7.1	20
1052	Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain. Nature Cell Biology, 2020, 22, 740-750.	10.3	69
1053	Base editing goes into hyperdrive. Nature Cell Biology, 2020, 22, 617-618.	10.3	0
1054	Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nature Reviews Rheumatology, 2020, 16, 316-333.	8.0	400
1055	An engineered ScCas9 with broad PAM range and high specificity and activity. Nature Biotechnology, 2020, 38, 1154-1158.	17.5	93
1056	Efficient Generation and Correction of Mutations in Human iPS Cells Utilizing mRNAs of CRISPR Base Editors and Prime Editors. Genes, 2020, 11, 511.	2.4	86
1057	Multiplex precise base editing in cynomolgus monkeys. Nature Communications, 2020, 11, 2325.	12.8	28
1058	Progress and Challenges in the Improvement of Ornamental Plants by Genome Editing. Plants, 2020, 9, 687.	3.5	27

#	Article	IF	Citations
1059	Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nature Biotechnology, 2020, 38, 856-860.	17.5	165
1060	A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nature Biotechnology, 2020, 38, 861-864.	17.5	168
1061	Cas12a Base Editors Induce Efficient and Specific Editing with Low DNA Damage Response. Cell Reports, 2020, 31, 107723.	6.4	62
1062	Future technologies for preimplantation genetic applications. , 2020, , 255-269.		0
1063	CLUE: a bioinformatic and wet-lab pipeline for multiplexed cloning of custom sgRNA libraries. Nucleic Acids Research, 2020, 48, e78.	14.5	2
1064	CRISPR screen in mechanism and target discovery for cancer immunotherapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188378.	7.4	25
1065	Genomics-guided pre-clinical development of cancer therapies. Nature Cancer, 2020, 1, 482-492.	13.2	23
1066	Plant Genome Editing and the Relevance of Off-Target Changes. Plant Physiology, 2020, 183, 1453-1471.	4.8	68
1067	CRISPR Meets Zebrafish: Accelerating the Discovery of New Therapeutic Targets. SLAS Discovery, 2020, 25, 552-567.	2.7	14
1068	Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biology, 2020, 20, 234.	3.6	152
1069	An overview of development in gene therapeutics in China. Gene Therapy, 2020, 27, 338-348.	4.5	25
1070	Development and Application of CRISPR/Cas in Microbial Biotechnology. Frontiers in Bioengineering and Biotechnology, 2020, 8, 711.	4.1	37
1071	Oncolytic Adenoviruses: Strategies for Improved Targeting and Specificity. Cancers, 2020, 12, 1504.	3.7	18
1072	CRISPR artificial splicing factors. Nature Communications, 2020, 11, 2973.	12.8	70
1073	CRISPR/Cas mediated base editing: a practical approach for genome editing in oil palm. 3 Biotech, 2020, 10, 306.	2.2	10
1074	Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology, 2020, 38, 824-844.	17.5	1,277
1075	Synthetic Genomes. Annual Review of Biochemistry, 2020, 89, 77-101.	11.1	48
1076	Applications of CRISPR technologies in transplantation. American Journal of Transplantation, 2020, 20, 3285-3293.	4.7	12

#	ARTICLE	IF	CITATIONS
1077	In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Science Translational Medicine, 2020, 12, .	12.4	114
1078	Description of CRISPR/Cas9 development and its prospect in hepatocellular carcinoma treatment. Journal of Experimental and Clinical Cancer Research, 2020, 39, 97.	8.6	13
1079	Repurposing Modular Polyketide Synthases and Non-ribosomal Peptide Synthetases for Novel Chemical Biosynthesis. Frontiers in Molecular Biosciences, 2020, 7, 87.	3 . 5	29
1080	Recent Advances in CRISPR/Cas9 Delivery Strategies. Biomolecules, 2020, 10, 839.	4.0	164
1081	Gene Therapy for Cystic Fibrosis: Progress and Challenges of Genome Editing. International Journal of Molecular Sciences, 2020, 21, 3903.	4.1	39
1082	Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria. Enzyme and Microbial Technology, 2020, 140, 109619.	3.2	22
1083	Potential for gene editing in antiviral resistance. Current Opinion in Virology, 2020, 42, 47-52.	5.4	4
1084	Development of a DNA double-strand break-free base editing tool in Corynebacterium glutamicum for genome editing and metabolic engineering. Metabolic Engineering Communications, 2020, 11, e00135.	3.6	9
1085	An aurora of natural products-based drug discovery is coming. Synthetic and Systems Biotechnology, 2020, 5, 92-96.	3.7	11
1086	SWISS: multiplexed orthogonal genome editing in plants with a Cas9 nickase and engineered CRISPR RNA scaffolds. Genome Biology, 2020, 21, 141.	8.8	38
1087	Functional genomics based on germline genome-wide association studies of endocrine therapy for breast cancer. Pharmacogenomics, 2020, 21, 615-625.	1.3	1
1088	CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in <i>Bacillus subtilis</i> Biology, 2020, 9, 1781-1789.	3.8	38
1089	Various strategies of effector accumulation to improve the efficiency of genome editing and derivative methodologies. In Vitro Cellular and Developmental Biology - Animal, 2020, 56, 359-366.	1.5	5
1090	Gene Editing and Alzheimer's Disease: Is There Light at the End of the Tunnel?. Frontiers in Genome Editing, 2020, 2, 4.	5.2	14
1091	Prime Editing: Genome Editing for Rare Genetic Diseases Without Double-Strand Breaks or Donor DNA. Frontiers in Genetics, 2020, 11, 528.	2.3	46
1092	Genome Editing Technologies for Rice Improvement: Progress, Prospects, and Safety Concerns. Frontiers in Genome Editing, 2020, 2, 5.	5.2	51
1093	Seq-ing Higher Ground: Functional Investigation of Adaptive Variation Associated With High-Altitude Adaptation. Frontiers in Genetics, 2020, 11, 471.	2.3	10
1094	Chronic Granulomatous Disease: a Comprehensive Review. Clinical Reviews in Allergy and Immunology, 2021, 61, 101-113.	6.5	92

#	Article	IF	CITATIONS
1095	Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning. Cell, 2020, 182, 463-480.e30.	28.9	166
1096	Repurposing type l–F CRISPR–Cas system as a transcriptional activation tool in human cells. Nature Communications, 2020, 11, 3136.	12.8	45
1097	Development of a Simple and Quick Method to Assess Base Editing in Human Cells. Molecular Therapy - Nucleic Acids, 2020, 20, 580-588.	5.1	9
1098	Perspectives of CRISPR/Cas-mediated cis-engineering in horticulture: unlocking the neglected potential for crop improvement. Horticulture Research, 2020, 7, 36.	6.3	52
1099	Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nature Biotechnology, 2020, 38, 883-891.	17.5	502
1100	Prime genome editing in rice and wheat. Nature Biotechnology, 2020, 38, 582-585.	17.5	544
1101	Therapeutic base editing of human hematopoietic stem cells. Nature Medicine, 2020, 26, 535-541.	30.7	196
1102	Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies. Nature Methods, 2020, 17, 471-479.	19.0	158
1103	Binding Energy as Driving Force for Controllable Reconstruction of Hydrogen Bonds with Molecular Scissors. Journal of the American Chemical Society, 2020, 142, 6085-6092.	13.7	51
1104	Detection of Marker-Free Precision Genome Editing and Genetic Variation through the Capture of Genomic Signatures. Cell Reports, 2020, 30, 3280-3295.e6.	6.4	7
1105	Mutation in myostatin 3′UTR promotes C2C12 myoblast proliferation and differentiation by blocking the translation of MSTN. International Journal of Biological Macromolecules, 2020, 154, 634-643.	7. 5	14
1106	Toolkit Development for Cyanogenic and Gold Biorecovery Chassis Chromobacterium violaceum. ACS Synthetic Biology, 2020, 9, 953-961.	3.8	11
1107	gscreend: modelling asymmetric count ratios in CRISPR screens to decrease experiment size and improve phenotype detection. Genome Biology, 2020, 21, 53.	8.8	34
1108	Genomeâ€edited adult stem cells: Nextâ€generation advanced therapy medicinal products. Stem Cells Translational Medicine, 2020, 9, 674-685.	3.3	12
1109	Engineering salinity tolerance in plants: progress and prospects. Planta, 2020, 251, 76.	3.2	123
1110	Application of CRISPR/Cas-mediated base editing for directed protein evolution in plants. Science China Life Sciences, 2020, 63, 613-616.	4.9	5
1111	Overcoming bottlenecks in plant gene editing. Current Opinion in Plant Biology, 2020, 54, 79-84.	7.1	71
1112	Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. Journal of Molecular Medicine, 2020, 98, 615-632.	3.9	66

#	Article	IF	CITATIONS
1113	Recent advances in CRISPR research. Protein and Cell, 2020, 11, 786-791.	11.0	12
1114	Allele-specific genome targeting in the development of precision medicine. Theranostics, 2020, 10, 3118-3137.	10.0	18
1115	CRISPR-Edited Immune Effectors: The End of the Beginning. Molecular Therapy, 2020, 28, 995-996.	8.2	3
1116	Emerging approaches for restoration of hearing and vision. Physiological Reviews, 2020, 100, 1467-1525.	28.8	45
1117	Highly efficient CRISPR-SaKKH tools for plant multiplex cytosine base editing. Crop Journal, 2020, 8, 418-423.	5.2	11
1118	Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science, 2020, 368, 290-296.	12.6	714
1119	Plant Prime Editors Enable Precise Gene Editing inÂRice Cells. Molecular Plant, 2020, 13, 667-670.	8.3	148
1120	A compact Cas9 ortholog from Staphylococcus Auricularis (SauriCas9) expands the DNA targeting scope. PLoS Biology, 2020, 18, e3000686.	5.6	96
1121	Next-generation stem cells $\hat{a}\in$ " ushering in a new era of cell-based therapies. Nature Reviews Drug Discovery, 2020, 19, 463-479.	46.4	161
1122	Principles of Genetic Engineering. Genes, 2020, 11, 291.	2.4	41
1123	Somatic base editing to model oncogenic drivers in breast cancer. Lab Animal, 2020, 49, 115-116.	0.4	1
1124	Direct genome editing of patient-derived xenografts using CRISPR-Cas9 enables rapid in vivo functional genomics. Nature Cancer, 2020, 1, 359-369.	13.2	25
1125	A multiplex guide RNA expression system and its efficacy for plant genome engineering. Plant Methods, 2020, 16, 37.	4.3	50
1126	Emergent challenges for CRISPR: biosafety, biosecurity, patenting, and regulatory issues. , 2020, , 281-307.		1
1127	CRISPR-mediated accelerated domestication of African rice landraces. PLoS ONE, 2020, 15, e0229782.	2.5	53
1128	Targeted genome editing using CRISPR/Cas9 system in fungi. , 2020, , 45-67.		0
1129	A method for CRISPR/Cas9 mutation of genes in fathead minnow (Pimephales promelas). Aquatic Toxicology, 2020, 222, 105464.	4.0	7
1130	Gene editing and central nervous system regeneration. , 2020, , 399-433.		0

#	Article	IF	CITATIONS
1131	CRISPR/Cas9 Editing: Sparking Discussion on Safety in Light of the Need for New Therapeutics. Human Gene Therapy, 2020, 31, 794-807.	2.7	2
1132	Application of CRISPR/Cas9 to human-induced pluripotent stem cells: from gene editing to drug discovery. Human Genomics, 2020, 14, 25.	2.9	53
1133	Shortening the sgRNA-DNA interface enables SpCas9 and eSpCas9 (1.1) to nick the target DNA strand. Science China Life Sciences, 2020, 63, 1619-1630.	4.9	10
1134	Designing sgRNAs for CRISPR-BEST base editing applications with CRISPy-web 2.0. Synthetic and Systems Biotechnology, 2020, 5, 99-102.	3.7	20
1135	The delivery challenge: fulfilling the promise of therapeutic genome editing. Nature Biotechnology, 2020, 38, 845-855.	17.5	163
1136	Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC–Cas9. Nature Biotechnology, 2020, 38, 1460-1465.	17.5	49
1137	Highly efficient generation of sheep with a defined FecBB mutation via adenine base editing. Genetics Selection Evolution, 2020, 52, 35.	3.0	21
1138	Translating genomic insights into cardiovascular medicine: Opportunities and challenges of CRISPR-Cas9. Trends in Cardiovascular Medicine, 2021, 31, 341-348.	4.9	5
1139	A Tale of Two Moieties: Rapidly Evolving CRISPR/Cas-Based Genome Editing. Trends in Biochemical Sciences, 2020, 45, 874-888.	7.5	23
1140	In vivo functional screening for systems-level integrative cancer genomics. Nature Reviews Cancer, 2020, 20, 573-593.	28.4	44
1141	Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells, 2020, 9, 1608.	4.1	257
1142	Therapeutic Editing of the TP53 Gene: Is CRISPR/Cas9 an Option?. Genes, 2020, 11, 704.	2.4	31
1143	A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature, 2020, 583, 631-637.	27.8	409
1144	A Review of Gene, Drug and Cell-Based Therapies for Usher Syndrome. Frontiers in Cellular Neuroscience, 2020, 14, 183.	3.7	18
1145	Cystic Fibrosis: Overview of the Current Development Trends and Innovative Therapeutic Strategies. Pharmaceutics, 2020, 12, 616.	4.5	20
1146	CRISPR-based functional genomics for neurological disease. Nature Reviews Neurology, 2020, 16, 465-480.	10.1	89
1147	High-fidelity SaCas9 identified by directional screening in human cells. PLoS Biology, 2020, 18, e3000747.	5 . 6	38
1148	Cas9 Cuts and Consequences; Detecting, Predicting, and Mitigating CRISPR/Cas9 On―and Offâ€Target Damage. BioEssays, 2020, 42, e2000047.	2.5	9

#	Article	IF	CITATIONS
1149	How Crisp is CRISPR? CRISPR-Cas-mediated crop improvement with special focus on nutritional traits. , 2020, , 159-197.		5
1150	CRISPR in livestock: From editing to printing. Theriogenology, 2020, 150, 247-254.	2.1	48
1151	Alzheimer's disease: unraveling APOE4 binding to amyloid-beta peptide and lipids with molecular dynamics and quantum mechanics. Journal of Biomolecular Structure and Dynamics, 2021, 39, 5026-5032.	3.5	3
1152	A Handbook of Gene and Cell Therapy. , 2020, , .		9
1153	Current trends in gene recovery mediated by the CRISPR-Cas system. Experimental and Molecular Medicine, 2020, 52, 1016-1027.	7.7	30
1154	CRISPR–Cas9, CRISPRi and CRISPR-BEST-mediated genetic manipulation in streptomycetes. Nature Protocols, 2020, 15, 2470-2502.	12.0	50
1155	The novel insight into the outcomes of CRISPR/Cas9 editing intra- and inter-species. International Journal of Biological Macromolecules, 2020, 163, 711-717.	7.5	7
1156	Ready for Repair? Gene Editing Enters the Clinic for the Treatment of Human Disease. Molecular Therapy - Methods and Clinical Development, 2020, 18, 532-557.	4.1	67
1157	Reprogramming Acetogenic Bacteria with CRISPR-Targeted Base Editing <i>via </i> Deamination. ACS Synthetic Biology, 2020, 9, 2162-2171.	3.8	30
1158	Exploiting CRISPR Cas9 in Three-Dimensional Stem Cell Cultures to Model Disease. Frontiers in Bioengineering and Biotechnology, 2020, 8, 692.	4.1	21
1159	A review of application of base editing for the treatment of inner ear disorders. Journal of Bio-X Research, 2020, 3, 66-71.	0.2	1
1160	<i>De Novo</i> Engineering of <i>Corynebacterium glutamicum</i> for <scp>l</scp> -Proline Production. ACS Synthetic Biology, 2020, 9, 1897-1906.	3.8	25
1161	Sequence-specific prediction of the efficiencies of adenine and cytosine base editors. Nature Biotechnology, 2020, 38, 1037-1043.	17.5	73
1162	Genetic Engineering and Editing of Plants: An Analysis of New and Persisting Questions. Annual Review of Plant Biology, 2020, 71, 659-687.	18.7	40
1163	Using human induced pluripotent stem cells (hiPSCs) to investigate the mechanisms by which Apolipoprotein E (APOE) contributes to Alzheimer's disease (AD) risk. Neurobiology of Disease, 2020, 138, 104788.	4.4	23
1164	Strategies to eliminate HBV infection: an update. Future Virology, 2020, 15, 35-51.	1.8	7
1165	Principles, Applications, and Biosafety of Plant Genome Editing Using CRISPR-Cas9. Frontiers in Plant Science, 2020, 11, 56.	3.6	133
1166	Engineering herbicideâ€resistant oilseed rape by CRISPR/Cas9â€mediated cytosine baseâ€editing. Plant Biotechnology Journal, 2020, 18, 1857-1859.	8.3	80

#	Article	IF	CITATIONS
1167	CRISPR/Cas9â€mediated genome editing: From basic research to translational medicine. Journal of Cellular and Molecular Medicine, 2020, 24, 3766-3778.	3.6	61
1168	Human embryo gene editing: God's scalpel or Pandora's box?. Briefings in Functional Genomics, 2020, 19, 154-163.	2.7	3
1169	Genome editing methods in animal models. Animal Cells and Systems, 2020, 24, 8-16.	2.2	33
1170	GO: a functional reporter system to identify and enrich base editing activity. Nucleic Acids Research, 2020, 48, 2841-2852.	14.5	27
1171	Recent advances in genome editing of stem cells for drug discovery and therapeutic application. , 2020, 209, 107501.		36
1172	Improving Cancer Immunotherapy with CRISPRâ€Based Technology. Advanced Biology, 2020, 4, e1900253.	3.0	6
1173	Carotenoid biofortification in crop plants: citius, altius, fortius. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158664.	2.4	50
1174	CRISPR-Based Adenine Editors Correct Nonsense Mutations in a Cystic Fibrosis Organoid Biobank. Cell Stem Cell, 2020, 26, 503-510.e7.	11.1	136
1175	CRISPR system: Discovery, development and off-target detection. Cellular Signalling, 2020, 70, 109577.	3.6	37
1176	Cytosine base editor 4 but not adenine base editor generates off-target mutations in mouse embryos. Communications Biology, 2020, 3, 19.	4.4	41
1177	High-Throughput Screens of PAM-Flexible Cas9 Variants for Gene Knockout and Transcriptional Modulation. Cell Reports, 2020, 30, 2859-2868.e5.	6.4	46
1178	Continuous evolution of SpCas9 variants compatible with non-G PAMs. Nature Biotechnology, 2020, 38, 471-481.	17.5	234
1179	Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nature Biotechnology, 2020, 38, 620-628.	17.5	272
1180	The rapidly advancing Class 2 CRISPRâ€Cas technologies: A customizable toolbox for molecular manipulations. Journal of Cellular and Molecular Medicine, 2020, 24, 3256-3270.	3.6	39
1181	Developing high-efficiency base editors by combining optimized synergistic core components with new types of nuclear localization signal peptide. Crop Journal, 2020, 8, 408-417.	5.2	8
1182	Small fish, big prospects: using zebrafish to unravel the mechanisms of hereditary hearing loss. Hearing Research, 2020, 397, 107906.	2.0	20
1183	Efficient targeted mutation of genomic essential genes in yeast Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2020, 104, 3037-3047.	3.6	14
1184	The promise and challenge of therapeutic genome editing. Nature, 2020, 578, 229-236.	27.8	599

#	Article	IF	CITATIONS
1185	Establishment of MDR1-knockout human induced pluripotent stem cell line. Drug Metabolism and Pharmacokinetics, 2020, 35, 288-296.	2.2	7
1186	Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials, 2020, 234, 119711.	11.4	58
1187	Treatment of a Mouse Model of ALS by InÂVivo Base Editing. Molecular Therapy, 2020, 28, 1177-1189.	8.2	133
1188	High-throughput analysis of the activities of xCas9, SpCas9-NG and SpCas9 at matched and mismatched target sequences in human cells. Nature Biomedical Engineering, 2020, 4, 111-124.	22.5	98
1189	Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nature Biotechnology, 2020, 38, 875-882.	17.5	259
1190	<i>In situ</i> CRISPRâ€Cas9 base editing for the development of genetically engineered mouse models of breast cancer. EMBO Journal, 2020, 39, e102169.	7.8	40
1191	Correcting tyrosinaemia via a point mutation. Nature Biomedical Engineering, 2020, 4, 14-15.	22.5	0
1192	Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nature Biomedical Engineering, 2020, 4, 97-110.	22.5	293
1193	Rewriting Human History and Empowering Indigenous Communities with Genome Editing Tools. Genes, 2020, 11, 88.	2.4	9
1194	i-Silence, Please! An Alternative for Gene Disruption via Adenine Base Editors. Molecular Therapy, 2020, 28, 348-349.	8.2	3
1195	Fusion of the Cas9 endonuclease and the VirD2 relaxase facilitates homology-directed repair for precise genome engineering in rice. Communications Biology, 2020, 3, 44.	4.4	91
1196	Versatile 3′ Functionalization of CRISPR Single Guide RNA. ChemBioChem, 2020, 21, 1633-1640.	2.6	10
1197	Prime Editing: Precision Genome Editing by Reverse Transcription. Molecular Cell, 2020, 77, 210-212.	9.7	21
1198	The CRISPR toolbox in medical mycology: State of the art and perspectives. PLoS Pathogens, 2020, 16, e1008201.	4.7	49
1199	Effective generation of maternal genome point mutated porcine embryos by injection of cytosine base editor into germinal vesicle oocytes. Science China Life Sciences, 2020, 63, 996-1005.	4.9	3
1200	Prime Editing: A New Way for Genome Editing. Trends in Cell Biology, 2020, 30, 257-259.	7.9	45
1201	Tandem Paired Nicking Promotes Precise Genome Editing with Scarce Interference by p53. Cell Reports, 2020, 30, 1195-1207.e7.	6.4	29
1202	BIG-TREE: Base-Edited Isogenic hPSC Line Generation Using a Transient Reporter for Editing Enrichment. Stem Cell Reports, 2020, 14, 184-191.	4.8	18

#	Article	IF	CITATIONS
1203	Genome editing technologies to treat rare liver diseases. Translational Gastroenterology and Hepatology, 2020, 5, 23-23.	3.0	10
1204	How are genes modified? Crossbreeding, mutagenesis, and CRISPR-Cas9. , 2020, , 39-54.		4
1205	Efficient base editing with high precision in rabbits using YFE-BE4max. Cell Death and Disease, 2020, 11, 36.	6.3	25
1206	Expanding the genome-targeting scope and the site selectivity of high-precision base editors. Nature Communications, 2020, 11 , 629.	12.8	52
1207	The Future of In Utero Gene Therapy. Molecular Diagnosis and Therapy, 2020, 24, 135-142.	3.8	27
1208	CRISPR/Cas Systems in Genome Editing: Methodologies and Tools for sgRNA Design, Offâ€Target Evaluation, and Strategies to Mitigate Offâ€Target Effects. Advanced Science, 2020, 7, 1902312.	11.2	162
1209	CRISPR/Cas Derivatives as Novel Gene Modulating Tools: Possibilities and In Vivo Applications. International Journal of Molecular Sciences, 2020, 21, 3038.	4.1	27
1210	Efficient generation of mouse models with the prime editing system. Cell Discovery, 2020, 6, 27.	6.7	146
1211	Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity. Nature Communications, 2020, 11, 2052.	12.8	124
1212	Grand Challenges in Gene and Epigenetic Editing for Neurologic Disease. Frontiers in Genome Editing, 2020, $1,1.$	5 . 2	2
1213	Editorial: Precise Genome Editing Techniques and Applications. Frontiers in Genetics, 2020, 11, 412.	2.3	5
1214	Base Editing: The Ever Expanding Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Tool Kit for Precise Genome Editing in Plants. Genes, 2020, 11, 466.	2.4	37
1215	Inhibitors of DNA Glycosylases as Prospective Drugs. International Journal of Molecular Sciences, 2020, 21, 3118.	4.1	20
1216	Comparison of gene disruption induced by cytosine base editingâ€mediated iSTOP with CRISPR/Cas9â€mediated frameshift. Cell Proliferation, 2020, 53, e12820.	5.3	6
1217	Developing a baseâ€editing system to expand the carbon source utilization spectra of <i>Shewanella oneidensis</i> MRâ€1 for enhanced pollutant degradation. Biotechnology and Bioengineering, 2020, 117, 2389-2400.	3.3	29
1218	BEON: A Functional Fluorescence Reporter for Quantification and Enrichment of Adenine Base-Editing Activity. Molecular Therapy, 2020, 28, 1696-1705.	8.2	16
1219	Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair. Nature Communications, 2020, 11, 2109.	12.8	84
1220	Efficient and risk-reduced genome editing using double nicks enhanced by bacterial recombination factors in multiple species. Nucleic Acids Research, 2020, 48, e57-e57.	14.5	2

#	Article	IF	CITATIONS
1221	Gene delivery into cells and tissues. , 2020, , 519-554.		3
1222	Induced pluripotent stem cell technology: venturing into the second decade. , 2020, , 435-443.		2
1223	Development of Plant Prime-Editing Systems for Precise Genome Editing. Plant Communications, 2020, 1, 100043.	7.7	146
1224	Exploration of Hygromycin B Biosynthesis Utilizing CRISPR-Cas9-Associated Base Editing. ACS Chemical Biology, 2020, 15, 1417-1423.	3.4	17
1225	Design and analysis of CRISPR–Cas experiments. Nature Biotechnology, 2020, 38, 813-823.	17.5	127
1226	Directed evolution of adenine base editors with increased activity and therapeutic application. Nature Biotechnology, 2020, 38, 892-900.	17.5	299
1227	A CRISPR way for accelerating improvement of food crops. Nature Food, 2020, 1, 200-205.	14.0	125
1228	Prediction of synonymous corrections by the BE-FF computational tool expands the targeting scope of base editing. Nucleic Acids Research, 2020, 48, W340-W347.	14.5	13
1229	Current and future gene therapies for hemoglobinopathies. Current Opinion in Hematology, 2020, 27, 149-154.	2.5	9
1230	Adenoviral Vectors Meet Gene Editing: A Rising Partnership for the Genomic Engineering of Human Stem Cells and Their Progeny. Cells, 2020, 9, 953.	4.1	19
1231	Innovative Precision Geneâ€Editing Tools in Personalized Cancer Medicine. Advanced Science, 2020, 7, 1902552.	11.2	9
1232	Chemical modifications of adenine base editor mRNA and guide RNA expand its application scope. Nature Communications, 2020, 11, 1979.	12.8	66
1233	Single-cell analysis of a mutant library generated using CRISPR-guided deaminase in human melanoma cells. Communications Biology, 2020, 3, 154.	4.4	25
1234	In Vivo CRISPR/Cas9-Mediated Genome Editing Mitigates Photoreceptor Degeneration in a Mouse Model of X-Linked Retinitis Pigmentosa. , 2020, 61, 31.		27
1235	Battling Neurodegenerative Diseases with Adeno-Associated Virus-Based Approaches. Viruses, 2020, 12, 460.	3.3	11
1236	CRISPR/Cas9-deaminase enables robust base editing in Rhodobacter sphaeroides 2.4.1. Microbial Cell Factories, 2020, 19, 93.	4.0	19
1237	Comparative analysis of genome editing systems, Cas9 and BE3, in silkworms. International Journal of Biological Macromolecules, 2020, 158, 486-492.	7.5	2
1238	Computer simulations explain mutation-induced effects on the DNA editing by adenine base editors. Science Advances, 2020, 6, eaaz2309.	10.3	18

#	Article	IF	CITATIONS
1240	Decreased Protein Abundance of Lycopene $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Cyclase Contributes to Red Flesh in Domesticated Watermelon. Plant Physiology, 2020, 183, 1171-1183.	4.8	37
1241	Modeling Psychiatric Disorder Biology with Stem Cells. Current Psychiatry Reports, 2020, 22, 24.	4.5	25
1242	Enabling large-scale genome editing at repetitive elements by reducing DNA nicking. Nucleic Acids Research, 2020, 48, 5183-5195.	14.5	41
1243	Animal Models for Understanding Human Skeletal Defects. Advances in Experimental Medicine and Biology, 2020, 1236, 157-188.	1.6	0
1244	Single-nucleotide editing for zebra3 and wsl5 phenotypes in rice using CRISPR/Cas9-mediated adenine base editors. ABIOTECH, 2020, 1, 106-118.	3.9	37
1245	Genome and base editing for genetic hearing loss. Hearing Research, 2020, 394, 107958.	2.0	18
1246	Permanent Inactivation of HBV Genomes by CRISPR/Cas9-Mediated Non-cleavage Base Editing. Molecular Therapy - Nucleic Acids, 2020, 20, 480-490.	5.1	66
1247	DNA Editing for Amyotrophic Lateral Sclerosis: Leading Off First Base. CRISPR Journal, 2020, 3, 75-77.	2.9	1
1248	Target base editing in soybean using a modified CRISPR/Cas9 system. Plant Biotechnology Journal, 2020, 18, 1996-1998.	8.3	69
1249	A modular cloning toolkit for genome editing in plants. BMC Plant Biology, 2020, 20, 179.	3.6	42
1250	Inference of single-cell phylogenies from lineage tracing data using Cassiopeia. Genome Biology, 2020, 21, 92.	8.8	61
1251	HDACi mediate UNG2 depletion, dysregulated genomic uracil and altered expression of oncoproteins and tumor suppressors in B- and T-cell lines. Journal of Translational Medicine, 2020, 18, 159.	4.4	10
1252	Second Generation Genome Editing Technologies in Drug Discovery. , 2020, , 213-242.		0
1253	The CRISPR/Cas system in zebrafish. , 2020, , 293-307.		2
1254	Advances in genome editing: the technology of choice for precise and efficient \hat{l}^2 -thalassemia treatment. Gene Therapy, 2021, 28, 6-15.	4.5	11
1255	Presynaptic dysfunction in neurodevelopmental disorders: Insights from the synaptic vesicle life cycle. Journal of Neurochemistry, 2021, 157, 179-207.	3.9	51
1256	Advances in genome editing for genetic hearing loss. Advanced Drug Delivery Reviews, 2021, 168, 118-133.	13.7	24
1257	Retinal gene therapy: an eye-opener of the 21st century. Gene Therapy, 2021, 28, 209-216.	4.5	21

#	Article	IF	CITATIONS
1258	A primer to gene therapy: Progress, prospects, and problems. Journal of Inherited Metabolic Disease, 2021, 44, 54-71.	3.6	9
1259	CRISPR/Cas9 for the treatment of haematological diseases: a journey from bacteria to the bedside. British Journal of Haematology, 2021, 192, 33-49.	2.5	4
1260	Base editing with high efficiency in allotetraploid oilseed rape by A3Aâ€PBE system. Plant Biotechnology Journal, 2021, 19, 87-97.	8.3	59
1261	Reverse Transcriptase: From Transcriptomics to Genome Editing. Trends in Biotechnology, 2021, 39, 194-210.	9.3	31
1262	Improvements in Genomic Technologies: Applications to Crop Research. , 2021, , 113-126.		0
1263	Ocular delivery of CRISPR/Cas genome editing components for treatment of eye diseases. Advanced Drug Delivery Reviews, 2021, 168, 181-195.	13.7	17
1264	Therapeutic genome editing in cardiovascular diseases. Advanced Drug Delivery Reviews, 2021, 168, 147-157.	13.7	23
1265	Improving the Cpf1-mediated base editing system by combining dCas9/dead sgRNA with human APOBEC3A variants. Journal of Genetics and Genomics, 2021, 48, 92-95.	3.9	4
1266	Glycosylase base editors enable C-to-A and C-to-G base changes. Nature Biotechnology, 2021, 39, 35-40.	17.5	277
1267	CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nature Biotechnology, 2021, 39, 41-46.	17.5	328
1268	Expanding plant genome-editing scope by an engineered iSpyMacCas9 system that targets A-rich PAM sequences. Plant Communications, 2021, 2, 100101.	7.7	31
1269	Microbial Base Editing: A Powerful Emerging Technology for Microbial Genome Engineering. Trends in Biotechnology, 2021, 39, 165-180.	9.3	42
1270	Improving drought tolerance in rice: Ensuring food security through multiâ€dimensional approaches. Physiologia Plantarum, 2021, 172, 645-668.	5.2	48
1271	Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing. Nature Biomedical Engineering, 2021, 5, 169-178.	22.5	90
1272	An overview of currently available molecular Cas-tools for precise genome modification. Gene, 2021, 769, 145225.	2.2	5
1273	One-step genotyping method in CRISPR based on short inner primer-assisted, tetra primer-paired amplifications. Molecular and Cellular Probes, 2021, 55, 101675.	2.1	0
1274	Next-Generation CRISPR Technologies and Their Applications in Gene and Cell Therapy. Trends in Biotechnology, 2021, 39, 692-705.	9.3	52
1275	Establishment of human fetal hepatocyte organoids and CRISPR–Cas9-based gene knockin and knockout in organoid cultures from human liver. Nature Protocols, 2021, 16, 182-217.	12.0	73

#	ARTICLE	IF	Citations
1276	Tools for experimental and computational analyses of off-target editing by programmable nucleases. Nature Protocols, 2021, 16, 10-26.	12.0	52
1277	CRISPR gets crunchy. Lab Animal, 2021, 50, 9-11.	0.4	1
1278	Lipid nanoparticles loaded with ribonucleoprotein–oligonucleotide complexes synthesized using a microfluidic device exhibit robust genome editing and hepatitis B virus inhibition. Journal of Controlled Release, 2021, 330, 61-71.	9.9	54
1279	Sophisticated CRISPR/Cas tools for fine-tuning plant performance. Journal of Plant Physiology, 2021, 257, 153332.	3.5	10
1280	Optogenetic control of <i>Neisseria meningitidis</i> Cas9 genome editing using an engineered, light-switchable anti-CRISPR protein. Nucleic Acids Research, 2021, 49, e29-e29.	14.5	25
1281	Re-structuring lentiviral vectors to express genomic RNA via cap-dependent translation. Molecular Therapy - Methods and Clinical Development, 2021, 20, 357-365.	4.1	2
1282	An unbiased method for evaluating the genome-wide specificity of base editors in rice. Nature Protocols, 2021, 16, 431-457.	12.0	11
1283	Emerging tools and paradigm shift of gene editing in cereals, fruits, and horticultural crops for enhancing nutritional value and food security. Food and Energy Security, 2021, 10, e258.	4.3	21
1284	Nobel Prize 2020 in Chemistry honors CRISPR: a tool for rewriting the code of life. Pflugers Archiv European Journal of Physiology, 2021, 473, 1-2.	2.8	29
1285	Recent advances in chemical modifications of guide RNA, mRNA and donor template for CRISPR-mediated genome editing. Advanced Drug Delivery Reviews, 2021, 168, 246-258.	13.7	39
1286	Programmed sequential cutting endows Cas9 versatile base substitution capability in plants. Science China Life Sciences, 2021, 64, 1025-1028.	4.9	5
1287	CRISPR-Mediated Engineering across the Central Dogma in Plant Biology for Basic Research and Crop Improvement. Molecular Plant, 2021, 14, 127-150.	8.3	71
1288	CRISPR-based metabolic pathway engineering. Metabolic Engineering, 2021, 63, 148-159.	7.0	24
1289	Regulating CRISPR/Cas9 Function through Conditional Guide RNA Control. ChemBioChem, 2021, 22, 63-72.	2.6	18
1290	Recent advances in gene therapy for neurodevelopmental disorders with epilepsy. Journal of Neurochemistry, 2021, 157, 229-262.	3.9	36
1291	CRISPR/Cas gene therapy. Journal of Cellular Physiology, 2021, 236, 2459-2481.	4.1	87
1292	Massively parallel kinetic profiling of natural and engineered CRISPR nucleases. Nature Biotechnology, 2021, 39, 84-93.	17.5	80
1293	Myostatin siteâ€directed mutation and simultaneous PPARγ siteâ€directed knockin in bovine genome. Journal of Cellular Physiology, 2021, 236, 2592-2605.	4.1	9

#	Article	IF	Citations
1294	Rational designs of in vivo CRISPR-Cas delivery systems. Advanced Drug Delivery Reviews, 2021, 168, 3-29.	13.7	125
1295	Genetic engineering in plants using CRISPRs. , 2021, , 223-233.		0
1296	Understanding and treating paediatric hearing impairment. EBioMedicine, 2021, 63, 103171.	6.1	8
1297	CRISPR/Cas9: A magic bullet to deal with plant viruses. , 2021, , 443-460.		0
1298	CRISPR and RNAi technology for crop improvements in the developing countries. , 2021, , 129-161.		0
1299	Analysis of Wild Type LbCpf1 Protein, and PAM Recognition Variants, in a Cellular Context. Frontiers in Genetics, 2020, 11, 571591.	2.3	2
1300	CRISPR/Cas-Mediated Abiotic Stress Tolerance in Crops. , 2021, , 177-211.		4
1301	Single Base Editing Using Cytidine Deaminase to Change Grain Size and Seed Coat Color in Rice. Methods in Molecular Biology, 2021, 2238, 135-143.	0.9	2
1302	Full-Spectrum Targeted Mutagenesis in Plant and Animal Cells. International Journal of Molecular Sciences, 2021, 22, 857.	4.1	0
1303	CRISPR-Cas9 system for functional genomics of filamentous fungi: applications and challenges. , 2021, , 541-576.		2
1304	CRISPR-Cas9 for treating hereditary diseases. Progress in Molecular Biology and Translational Science, 2021, 181, 165-183.	1.7	10
1305	CRISPR-Cas9 based genome editing for defective gene correction in humans and other mammals. Progress in Molecular Biology and Translational Science, 2021, 181, 185-229.	1.7	4
1306	Inflammation-driven deaminase deregulation fuels human pre-leukemia stem cell evolution. Cell Reports, 2021, 34, 108670.	6.4	22
1307	The CRISPR-Cas Mechanism for Adaptive Immunity and AlternateÂBacterialÂFunctions Fuels Diverse Biotechnologies. Frontiers in Cellular and Infection Microbiology, 2020, 10, 619763.	3.9	35
1308	History, evolution and classification of CRISPR-Cas associated systems. Progress in Molecular Biology and Translational Science, 2021, 179, 11-76.	1.7	18
1309	Natural and Artificial Mechanisms of Mitochondrial Genome Elimination. Life, 2021, 11, 76.	2.4	4
1310	Gene-specific mutagenesis enables rapid continuous evolution of enzymes <i>in vivo</i> . Nucleic Acids Research, 2021, 49, e32-e32.	14.5	37
1311	Base and Prime Editing Technologies for Blood Disorders. Frontiers in Genome Editing, 2021, 3, 618406.	5.2	36

#	Article	IF	CITATIONS
1312	Prime Editing Guide RNA Design Automation Using PINE-CONE. ACS Synthetic Biology, 2021, 10, 422-427.	3.8	30
1313	In vivo cytidine base editing of hepatocytes without detectable off-target mutations in RNA and DNA. Nature Biomedical Engineering, 2021, 5, 179-189.	22.5	62
1314	CRISPR-Cas systems for genome editing of mammalian cells. Progress in Molecular Biology and Translational Science, 2021, 181, 15-30.	1.7	2
1315	APOE: The New Frontier in the Development of a Therapeutic Target towards Precision Medicine in Late-Onset Alzheimer's. International Journal of Molecular Sciences, 2021, 22, 1244.	4.1	23
1316	Functional genomics of psychiatric disease risk using genome engineering., 2021,, 711-734.		0
1317	CRISPR base editing applications for identifying cancer-driving mutations. Biochemical Society Transactions, 2021, 49, 269-280.	3.4	8
1318	Genome editing and RNA interference technologies in plants. , 2021, , 195-212.		0
1319	Is subretinal AAV gene replacement still the only viable treatment option for choroideremia?. Expert Opinion on Orphan Drugs, 2021, 9, 13-24.	0.8	4
1320	Zebrafish as a model system to evaluate the safety and toxicity of nutraceuticals., 2021,, 395-409.		0
1321	CRISPR-based pathogenic fungal genome editing for control of infection and disease. Progress in Molecular Biology and Translational Science, 2021, 179, 161-196.	1.7	2
1322	CRISPR-Cas epigenome editing: improving crop resistance to pathogens. , 2021, , 65-106.		0
1323	Genetic Diversity for Barley Adaptation to Stressful Environments. , 2021, , 153-191.		1
1324	Resistance to Abiotic Stress: Theory and Applications in Maize Breeding., 2021,, 105-151.		1
1325	Target binding and residence: a new determinant of DNA double-strand break repair pathway choice in CRISPR/Cas9 genome editing. Journal of Zhejiang University: Science B, 2021, 22, 73-86.	2.8	16
1326	Precision genome editing using cytosine and adenine base editors in mammalian cells. Nature Protocols, 2021, 16, 1089-1128.	12.0	90
1327	In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing. Nature Communications, 2021, 12, 678.	12.8	44
1328	CRISPR genome engineering for retinal diseases. Progress in Molecular Biology and Translational Science, 2021, 182, 29-79.	1.7	13
1329	Optimization of CRISPR/Cas System for Improving Genome Editing Efficiency in Plasmodium falciparum. Frontiers in Microbiology, 2020, 11, 625862.	3.5	7

#	Article	IF	CITATIONS
1330	Natural variations of TFIIA \hat{I}^3 gene and LOB1 promoter contribute to citrus canker disease resistance in Atalantia buxifolia. PLoS Genetics, 2021, 17, e1009316.	3.5	14
1331	Base editing., 2021, , 101-121.		0
1332	CRISPR/Cas9-mediated mutagenesis at microhomologous regions of human mitochondrial genome. Science China Life Sciences, 2021, 64, 1463-1472.	4.9	14
1333	Targeted Base Editing in Soybean Using a CRISPR-Cas9 Cytidine Deaminase Fusion. Springer Protocols, 2021, , 137-148.	0.3	1
1336	Convergence of human pluripotent stem cell, organoid, and genome editing technologies. Experimental Biology and Medicine, 2021, 246, 861-875.	2.4	5
1337	Induced Mutagenesis in Date Palm (Phoenix dactylifera L.) Breeding. Compendium of Plant Genomes, 2021, , 121-154.	0.5	1
1338	CRISPR-Cas9 in cancer therapeutics. Progress in Molecular Biology and Translational Science, 2021, 181, 129-163.	1.7	2
1339	Recent advances in stem cells and gene editing: Drug discovery and therapeutics. Progress in Molecular Biology and Translational Science, 2021, 181, 231-269.	1.7	6
1340	Rewriting CFTR to cure cystic fibrosis. Progress in Molecular Biology and Translational Science, 2021, 182, 185-224.	1.7	8
1341	Approach for in vivo delivery of CRISPR/Cas system: a recent update and future prospect. Cellular and Molecular Life Sciences, 2021, 78, 2683-2708.	5.4	29
1342	Current status of the application of gene editing in pigs. Journal of Reproduction and Development, 2021, 67, 177-187.	1.4	17
1343	Precise and broad scope genome editing based on high-specificity Cas9 nickases. Nucleic Acids Research, 2021, 49, 1173-1198.	14.5	29
1344	Genome editing for plant research and crop improvement. Journal of Integrative Plant Biology, 2021, 63, 3-33.	8.5	70
1345	In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature, 2021, 589, 608-614.	27.8	275
1346	Genome-wide detection and analysis of CRISPR-Cas off-targets. Progress in Molecular Biology and Translational Science, 2021, 181, 31-43.	1.7	11
1347	Modulating Cas9 activity for precision gene editing. Progress in Molecular Biology and Translational Science, 2021, 181, 89-127.	1.7	2
1348	Genome engineering technologies in rabbits. Journal of Biomedical Research, 2021, 35, 135.	1.6	7
1349	Genome editing approaches to \hat{l}^2 -hemoglobinopathies. Progress in Molecular Biology and Translational Science, 2021, 182, 153-183.	1.7	13

#	Article	IF	CITATIONS
1350	Reprogramming translation for gene therapy. Progress in Molecular Biology and Translational Science, 2021, 182, 439-476.	1.7	5
1351	Progress and challenges in CRISPR-mediated therapeutic genome editing for monogenic diseases. Journal of Biomedical Research, 2021, 35, 148.	1.6	6
1352	CRISPR/Cas-Based Insect Resistance in Crops. , 2021, , 117-149.		3
1353	Efficient Genome Editing in Rice Protoplasts Using CRISPR/CAS9 Construct. Methods in Molecular Biology, 2021, 2238, 173-191.	0.9	2
1354	Genome Editing of Rice by CRISPR-Cas: End-to-End Pipeline for Crop Improvement. Methods in Molecular Biology, 2021, 2238, 115-134.	0.9	3
1355	Identifying genome-wide off-target sites of CRISPR RNA–guided nucleases and deaminases with Digenome-seq. Nature Protocols, 2021, 16, 1170-1192.	12.0	16
1356	Targeted genome editing., 2021,, 75-89.		7
1357	Base editing in rice: current progress, advances, limitations, and future perspectives. Plant Cell Reports, 2021, 40, 595-604.	5. 6	13
1358	Multiomics Technologies and Genetic Modification in Plants: Rationale, Opportunities and Reality. , 2021, , 313-328.		1
1359	Selenium-atom-modified thymidine enhances the specificity and sensitivity of DNA polymerization and detection. Chemical Communications, 2021, 57, 5434-5437.	4.1	4
1360	Highly Multiplexed Analysis of CRISPR Genome Editing Outcomes in Mammalian Cells. Methods in Molecular Biology, 2021, 2312, 193-223.	0.9	1
1361	Precise Genome Editing in miRNA Target Site via Gene Targeting and Subsequent Single-Strand-Annealing-Mediated Excision of the Marker Gene in Plants. Frontiers in Genome Editing, 2020, 2, 617713.	5.2	6
1362	Efficient and high-fidelity base editor with expanded PAM compatibility for cytidine dinucleotide. Science China Life Sciences, 2021, 64, 1355-1367.	4.9	26
1363	Perspectives of Advanced Genetics and Genomics Approaches to Exploit Solanum Wild Crop Relatives for Breeding. Compendium of Plant Genomes, 2021, , 231-240.	0.5	0
1364	Universal toxin-based selection for precise genome engineering in human cells. Nature Communications, 2021, 12, 497.	12.8	29
1365	Therapeutic gene editing strategies using CRISPR-Cas9 for the \hat{l}^2 -hemoglobinopathies. Journal of Biomedical Research, 2021, 35, 115.	1.6	6
1366	CRISPR–Cas9-based genetic engineering for crop improvement under drought stress. Bioengineered, 2021, 12, 5814-5829.	3.2	17
1367	Genome Editing: Prospects and Challenges. Compendium of Plant Genomes, 2021, , 191-203.	0.5	1

#	Article	IF	Citations
1368	Assembly and Assessment of Prime Editing Systems for Precise Genome Editing in Plants. Springer Protocols, 2021, , 83-101.	0.3	0
1369	Guide-target mismatch effects on dCas9–sgRNA binding activity in living bacterial cells. Nucleic Acids Research, 2021, 49, 1263-1277.	14.5	16
1370	Challenges and Future Perspective of CRISPR/Cas Technology for Crop Improvement. , 2021, , 289-306.		1
1371	A Small Key for a Heavy Door: Genetic Therapies for the Treatment of Hemoglobinopathies. Frontiers in Genome Editing, 2020, 2, 617780.	5. 2	7
1372	Efficient Immune Cell Genome Engineering with Enhanced CRISPR Editing Tools. ImmunoHorizons, 2021, 5, 117-132.	1.8	4
1373	CRISPR base editor screens identify variant function at scale. Molecular Cell, 2021, 81, 647-648.	9.7	3
1374	Design of Smart Antibody Mimetics with Photosensitive Switches. Advanced Biology, 2021, 5, e2000541.	2.5	12
1375	Future Approaches for Treating Chronic Myeloid Leukemia: CRISPR Therapy. Biology, 2021, 10, 118.	2.8	9
1376	Hematopoietic Stem Cell-Targeted Gene-Addition and Gene-Editing Strategies for \hat{l}^2 -hemoglobinopathies. Cell Stem Cell, 2021, 28, 191-208.	11.1	17
1377	Development of CRISPR technology for precise single-base genome editing: a brief review. BMB Reports, 2021, 54, 98-105.	2.4	10
1378	PrimeDesign software for rapid and simplified design of prime editing guide RNAs. Nature Communications, 2021, 12, 1034.	12.8	105
1379	The implications of the gender-based prohibitions relating to human germline genome editing in the Human Fertilisation and Embryology Act. Reproductive BioMedicine Online, 2021, 42, 457-462.	2.4	0
1381	Mini review: genome and transcriptome editing using CRISPR-cas systems for haematological malignancy gene therapy. Transgenic Research, 2021, 30, 129-141.	2.4	4
1382	Precise base editing for the in vivo study of developmental signaling and human pathologies in zebrafish. ELife, 2021, 10, .	6.0	26
1383	History of genome editing: From meganucleases to CRISPR. Laboratory Animals, 2022, 56, 60-68.	1.0	25
1384	Small-molecule inhibitors of histone deacetylase improve CRISPR-based adenine base editing. Nucleic Acids Research, 2021, 49, 2390-2399.	14.5	24
1385	In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal \hat{l}^3 -globin in \hat{l}^2 -YAC mice. Blood Advances, 2021, 5, 1122-1135.	5 . 2	50
1386	Evolving AAV-delivered therapeutics towards ultimate cures. Journal of Molecular Medicine, 2021, 99, 593-617.	3.9	41

#	Article	IF	CITATIONS
1387	Prospects of genome editing using CRISPR/CAS or how to master genetic scissors. Nobel Prize in Chemistry 2020. Ukrainian Biochemical Journal, 2021, 93, 113-128.	0.5	0
1388	Applications of CRISPR Genome Editing to Advance the Next Generation of Adoptive Cell Therapies for Cancer. Cancer Discovery, 2021, 11, 560-574.	9.4	12
1389	Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases. Nature Communications, 2021, 12, 1190.	12.8	86
1390	Massively parallel assessment of human variants with base editor screens. Cell, 2021, 184, 1064-1080.e20.	28.9	175
1391	Recording of elapsed time and temporal information about biological events using Cas9. Cell, 2021, 184, 1047-1063.e23.	28.9	29
1392	A blueprint for gene function analysis through Base Editing in the model plant <i>Physcomitrium (Physcomitrella) patens</i> New Phytologist, 2021, 230, 1258-1272.	7.3	18
1393	Gene-based therapies for neurodegenerative diseases. Nature Neuroscience, 2021, 24, 297-311.	14.8	83
1394	Harnessing A3G for efficient and selective C-to-T conversion at C-rich sequences. BMC Biology, 2021, 19, 34.	3.8	5
1395	Parameters affecting successful stem cell collections for genetic therapies in sickle cell disease. Transfusion and Apheresis Science, 2021, 60, 103059.	1.0	3
1396	Adenine Base Editor Ribonucleoproteins Delivered by Lentivirus-Like Particles Show High On-Target Base Editing and Undetectable RNA Off-Target Activities. CRISPR Journal, 2021, 4, 69-81.	2.9	24
1397	Gene editing technology: Towards precision medicine in inherited retinal diseases. Seminars in Ophthalmology, 2021, 36, 176-184.	1.6	1
1398	Advances and Obstacles in Homology-Mediated Gene Editing of Hematopoietic Stem Cells. Journal of Clinical Medicine, 2021, 10, 513.	2.4	11
1399	Nanomedicine for Gene Delivery and Drug Repurposing in the Treatment of Muscular Dystrophies. Pharmaceutics, 2021, 13, 278.	4.5	17
1400	A comprehensive review on genetically modified fish: key techniques, applications and future prospects. Reviews in Aquaculture, 2021, 13, 1635-1660.	9.0	12
1401	Genomics Armed With Diversity Leads the Way in Brassica Improvement in a Changing Global Environment. Frontiers in Genetics, 2021, 12, 600789.	2.3	18
1402	The use of CRISPR/Cas9-based gene editing strategies to explore cancer gene function in mice. Current Opinion in Genetics and Development, 2021, 66, 57-62.	3.3	16
1403	In vivo Genome Editing Therapeutic Approaches for Neurological Disorders: Where Are We in the Translational Pipeline?. Frontiers in Neuroscience, 2021, 15, 632522.	2.8	11
1404	Applications of genome editing on laboratory animals. Laboratory Animals, 2022, 56, 13-25.	1.0	4

#	Article	IF	CITATIONS
1405	Development and Characterization of a Modular CRISPR and RNA Aptamer Mediated Base Editing System. CRISPR Journal, 2021, 4, 58-68.	2.9	9
1406	CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases. Molecular Therapy, 2021, 29, 571-586.	8.2	124
1407	Current Evidence and Future Directions of PCSK9 Inhibition. US Cardiology Review, 0, 15, .	0.5	0
1408	Base editing and prime editing in laboratory animals. Laboratory Animals, 2022, 56, 35-49.	1.0	14
1409	CRISPR/Cas9 gene editing therapies for cystic fibrosis. Expert Opinion on Biological Therapy, 2021, 21, 1-14.	3.1	9
1410	The CRISPR revolution and its potential impact on global health security. Pathogens and Global Health, 2021, 115, 80-92.	2.3	8
1411	Scalable characterization of the PAM requirements of CRISPR–Cas enzymes using HT-PAMDA. Nature Protocols, 2021, 16, 1511-1547.	12.0	23
1412	Recent Advances in the Application of CRISPR/Cas9 Gene Editing System in Poultry Species. Frontiers in Genetics, 2021, 12, 627714.	2.3	15
1413	Alternative splicing and cancer: a systematic review. Signal Transduction and Targeted Therapy, 2021, 6, 78.	17.1	183
1414	Functional interrogation of DNA damage response variants with base editing screens. Cell, 2021, 184, 1081-1097.e19.	28.9	145
1415	A <i>piggyBac</i> â€mediated transgenesis system for the temporary expression of CRISPR/Cas9 in rice. Plant Biotechnology Journal, 2021, 19, 1386-1395.	8.3	20
1416	Efficient base editing in tomato using a highly expressed transient system. Plant Cell Reports, 2021, 40, 667-676.	5 . 6	8
1417	Advanced domestication: harnessing the precision of gene editing in crop breeding. Plant Biotechnology Journal, 2021, 19, 660-670.	8.3	39
1418	State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants. Plant Cell Reports, 2022, 41, 815-831.	5 . 6	29
1419	Mosaic CRISPR-stop enables rapid phenotyping of nonsense mutations in essential genes. Development (Cambridge), 2021, 148, .	2.5	19
1420	Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nature Communications, 2021, 12, 1384.	12.8	117
1421	Recent advances of Cas12a applications in bacteria. Applied Microbiology and Biotechnology, 2021, 105, 2981-2990.	3.6	16
1422	Herbicide Resistance: Another Hot Agronomic Trait for Plant Genome Editing. Plants, 2021, 10, 621.	3.5	26

#	Article	IF	CITATIONS
1423	CRISPR/Cas: Advances, Limitations, and Applications for Precision Cancer Research. Frontiers in Medicine, 2021, 8, 649896.	2.6	48
1424	Jumping on base editing to repair the diseased cardiovascular system <i>in vivo</i> . Cardiovascular Research, 2021, 117, e46-e48.	3.8	O
1425	CRISPR/Cas9-Mediated Gene Editing Revolutionizes the Improvement of Horticulture Food Crops. Journal of Agricultural and Food Chemistry, 2021, 69, 13260-13269.	5. 2	21
1426	CRISPR Gene-Editing Models Geared Toward Therapy for Hereditary and Developmental Neurological Disorders. Frontiers in Pediatrics, 2021, 9, 592571.	1.9	4
1428	CRISPR technology for abiotic stress resistant crop breeding. Plant Growth Regulation, 2021, 94, 115-129.	3.4	8
1429	Lineage tracing and analog recording in mammalian cells by single-site DNA writing. Nature Chemical Biology, 2021, 17, 739-747.	8.0	42
1430	PnB Designer: a web application to design prime and base editor guide RNAs for animals and plants. BMC Bioinformatics, 2021, 22, 101.	2.6	254
1432	Can genetic engineering-based methods for gene function identification be eclipsed by genome editing in plants? A comparison of methodologies. Molecular Genetics and Genomics, 2021, 296, 485-500.	2.1	3
1433	Heritable human genome editing: Research progress, ethical considerations, and hurdles to clinical practice. Cell, 2021, 184, 1561-1574.	28.9	19
1434	Genome engineering for crop improvement and future agriculture. Cell, 2021, 184, 1621-1635.	28.9	405
1435	CRISPR/Cas-Dependent and Nuclease-Free i>In Vivo /i>Therapeutic Gene Editing. Human Gene Therapy, 2021, 32, 275-293.	2.7	26
1436	CRISPRâ€Cas9 Based Genome Editing in Wheat. Current Protocols, 2021, 1, e65.	2.9	22
1437	Transcription factor competition at the \hat{l}^3 -globin promoters controls hemoglobin switching. Nature Genetics, 2021, 53, 511-520.	21.4	43
1438	Delivery Platforms for CRISPR/Cas9 Genome Editing of Glial Cells in the Central Nervous System. Frontiers in Genome Editing, 2021, 3, 644319.	5.2	11
1439	Generation and characterization of a novel rat model of primary hyperoxaluria type 1 with a nonsense mutation in alanine-glyoxylate aminotransferase gene. American Journal of Physiology - Renal Physiology, 2021, 320, F475-F484.	2.7	4
1440	Precision Chemistry on the Genome: Interview with David R. Liu. Human Gene Therapy, 2021, 32, 237-242.	2.7	2
1441	The next frontier of oncotherapy: accomplishing clinical translation of oncolytic bacteria through genetic engineering. Future Microbiology, 2021, 16, 341-368.	2.0	5
1442	Development and application of a highly efficient CRISPR-Cas9 system for genome engineering in Bacillus megaterium. Journal of Biotechnology, 2021, 329, 170-179.	3.8	16

#	Article	IF	Citations
1443	Transcriptional Inhibition of IncRNA gadd7 by CRISPR/dCas9-KRAB Protects Spermatocyte Viability. Frontiers in Molecular Biosciences, 2021, 8, 652392.	3.5	4
1444	Re-defining synthetic lethality by phenotypic profiling for precision oncology. Cell Chemical Biology, 2021, 28, 246-256.	5.2	18
1445	Single-Base Resolution: Increasing the Specificity of the CRISPR-Cas System in Gene Editing. Molecular Therapy, 2021, 29, 937-948.	8.2	12
1446	<i>Ex vivo</i> gene modification therapy for genetic skin diseasesâ€"recent advances in gene modification technologies and delivery. Experimental Dermatology, 2021, 30, 887-896.	2.9	11
1447	The Path to Progress Preclinical Studies of Age-Related Neurodegenerative Diseases: A Perspective on Rodent and hiPSC-Derived Models. Molecular Therapy, 2021, 29, 949-972.	8.2	10
1448	Identification of pathogenic variants in cancer genes using base editing screens with editing efficiency correction. Genome Biology, 2021, 22, 80.	8.8	23
1449	Nanotechnology to advance CRISPR–Cas genetic engineering of plants. Nature Nanotechnology, 2021, 16, 243-250.	31.5	119
1450	Genome Editing Strategies Towards Enhancement of Rice Disease Resistance. Rice Science, 2021, 28, 133-145.	3.9	14
1453	Genome Editing in iPSC-Based Neural Systems: From Disease Models to Future Therapeutic Strategies. Frontiers in Genome Editing, 2021, 3, 630600.	5.2	22
1454	Discovery and engineering of small SlugCas9 with broad targeting range and high specificity and activity. Nucleic Acids Research, 2021, 49, 4008-4019.	14.5	33
1455	Antisense RNA Interference-Enhanced CRISPR/Cas9 Base Editing Method for Improving Base Editing Efficiency in <i>Streptomyces lividans</i> 66. ACS Synthetic Biology, 2021, 10, 1053-1063.	3.8	15
1456	Assisted Reproductive Techniques and Genetic Manipulation in the Common Marmoset. ILAR Journal, 2020, 61, 286-303.	1.8	12
1457	Editing GWAS: experimental approaches to dissect and exploit disease-associated genetic variation. Genome Medicine, 2021, 13, 41.	8.2	32
1458	The efficacy of CRISPR-mediated cytosine base editing with the RPS5a promoter in Arabidopsis thaliana. Scientific Reports, 2021, 11, 8087.	3.3	20
1459	Genome Editing in Bacteria: CRISPR-Cas and Beyond. Microorganisms, 2021, 9, 844.	3.6	57
1460	Cas9 deactivation with photocleavable guide RNAs. Molecular Cell, 2021, 81, 1553-1565.e8.	9.7	30
1461	Advances and Perspectives for Genome Editing Tools of Corynebacterium glutamicum. Frontiers in Microbiology, 2021, 12, 654058.	3.5	25
1462	Rationally Designed Base Editors for Precise Editing of the Sickle Cell Disease Mutation. CRISPR Journal, 2021, 4, 169-177.	2.9	55

#	ARTICLE	IF	CITATIONS
1463	Plant genome editing: ever more precise and wide reaching. Plant Journal, 2021, 106, 1208-1218.	5.7	30
1464	Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nature Genetics, 2021, 53, 895-905.	21.4	305
1466	Novel genome-editing-based approaches to treat motor neuron diseases: Promises and challenges. Molecular Therapy, 2022, 30, 47-53.	8.2	13
1467	Dead Cas9–sgRNA Complex Shelters Vulnerable DNA Restriction Enzyme Sites from Cleavage for Cloning Applications. CRISPR Journal, 2021, 4, 275-289.	2.9	7
1469	Improving the Precision of Base Editing by Bubble Hairpin Single Guide RNA. MBio, 2021, 12, .	4.1	14
1470	Using CRISPR to understand and manipulate gene regulation. Development (Cambridge), 2021, 148, .	2.5	9
1471	Gene Therapy for Lysosomal Storage Disorders: Ongoing Studies and Clinical Development. Biomolecules, 2021, 11, 611.	4.0	27
1472	Frontiers of CRISPR-Cas9 for Cancer Research and Therapy. Journal of Exploratory Research in Pharmacology, 2021, 000, 000-000.	0.4	1
1473	CRISPR Cas9 based genome editing in inherited retinal dystrophies. Ophthalmic Genetics, 2021, 42, 365-374.	1.2	5
1474	Co-opting regulation bypass repair as a gene-correction strategy for monogenic diseases. Molecular Therapy, 2021, 29, 3274-3292.	8.2	2
1476	CRISPR/Cas9 Technology as a Modern Genetic Manipulation Tool for Recapitulating of Neurodegenerative Disorders in Large Animal Models. Current Gene Therapy, 2021, 21, 130-148.	2.0	6
1477	Highly efficient Câ€toâ€T and Aâ€toâ€G base editing in a <i>Populus</i> hybrid. Plant Biotechnology Journal, 2021, 19, 1086-1088.	8.3	32
1478	Immunotherapy to get on point with base editing. Drug Discovery Today, 2021, 26, 2350-2357.	6.4	4
1480	Prospects of Non-Coding Elements in Genomic DNA Based Gene Therapy. Current Gene Therapy, 2022, 22, 89-103.	2.0	3
1481	DNAâ€Targeted Metallodrugs: An Untapped Source of Artificial Gene Editing Technology. ChemBioChem, 2021, 22, 2184-2205.	2.6	18
1482	Evolutionary Timeline of Genetic Delivery and Gene Therapy. Current Gene Therapy, 2021, 21, 89-111.	2.0	2
1483	Efficient generation of homozygous substitutions in rice in one generation utilizing an rABE8e base editor. Journal of Integrative Plant Biology, 2021, 63, 1595-1599.	8.5	30
1484	Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Frontiers in Genetics, 2021, 12, 615491.	2.3	24

#	Article	IF	CITATIONS
1485	CRISPR technologies for the treatment of Duchenne muscular dystrophy. Molecular Therapy, 2021, 29, 3179-3191.	8.2	31
1486	Recent advances in CRISPR/Cas9 and applications for wheat functional genomics and breeding. ABIOTECH, 2021, 2, 375-385.	3.9	27
1488	Attaining the promise of plant gene editing at scale. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	51
1489	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	27.8	84
1490	Identification and characterization of a novel mutant isocitrate dehydrogenase 1 inhibitor for glioma treatment. Biochemical and Biophysical Research Communications, 2021, 551, 38-45.	2.1	4
1491	CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. Journal of Zhejiang University: Science B, 2021, 22, 253-284.	2.8	97
1492	Directed evolution in mammalian cells. Nature Methods, 2021, 18, 346-357.	19.0	43
1493	CRISPR Co-Editing Strategy for Scarless Homology-Directed Genome Editing. International Journal of Molecular Sciences, 2021, 22, 3741.	4.1	9
1494	Targeted Therapy in Cardiovascular Disease: A Precision Therapy Era. Frontiers in Pharmacology, 2021, 12, 623674.	3.5	12
1495	CRISPR-Cas9 cytidine and adenosine base editing of splice-sites mediates highly-efficient disruption of proteins in primary and immortalized cells. Nature Communications, 2021, 12, 2437.	12.8	50
1496	CRISPR screens in plants: approaches, guidelines, and future prospects. Plant Cell, 2021, 33, 794-813.	6.6	54
1497	Interactions of APOBEC3s with DNA and RNA. Current Opinion in Structural Biology, 2021, 67, 195-204.	5.7	12
1498	On the Corner of Models and Cure: Gene Editing in Cystic Fibrosis. Frontiers in Pharmacology, 2021, 12, 662110.	3.5	16
1499	Integrating Biomaterials and Genome Editing Approaches to Advance Biomedical Science. Annual Review of Biomedical Engineering, 2021, 23, 493-516.	12.3	4
1500	Novel plant breeding techniques to advance nitrogen use efficiency in rice: A review. GM Crops and Food, 2021, 12, 627-646.	3.8	16
1501	Creating RNA Specific C-to-U Editase from APOBEC3A by Separation of Its Activities on DNA and RNA Substrates. ACS Synthetic Biology, 2021, 10, 1106-1115.	3.8	14
1502	In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature, 2021, 593, 429-434.	27.8	408
1503	Early and late stage gene therapy interventions for inherited retinal degenerations. Progress in Retinal and Eye Research, 2022, 86, 100975.	15.5	85

#	Article	IF	CITATIONS
1504	Prime editing – an update on the field. Gene Therapy, 2021, 28, 396-401.	4.5	74
1505	In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nature Biotechnology, 2021, 39, 949-957.	17.5	196
1506	Smart Breeding for Climate Resilient Agriculture. , 0, , .		2
1507	Using of Genome Editing Methods in Plant Breeding. , 0, , .		1
1509	Cytosine Base Editor-Mediated Multiplex Genome Editing to Accelerate Discovery of Novel Antibiotics in Bacillus subtilis and Paenibacillus polymyxa. Frontiers in Microbiology, 2021, 12, 691839.	3.5	15
1510	Knock-in and precise nucleotide substitution using near-PAMless engineered Cas9 variants in Dictyostelium discoideum. Scientific Reports, 2021, 11, 11163.	3.3	11
1511	The application of genome editing technology in fish. Marine Life Science and Technology, 2021, 3, 326-346.	4.6	9
1512	Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security. International Journal of Molecular Sciences, 2021, 22, 5585.	4.1	27
1513	Correction of the pathogenic mutation in TGM1 gene by adenine base editing in mutant embryos. Molecular Therapy, 2021, , .	8.2	5
1514	Advances in the Integration of Nucleic Acid Nanotechnology into CRISPR-Cas System. Journal of Analysis and Testing, 2021, 5, 130-141.	5.1	14
1515	Encounters between Cas9/dCas9 and G-Quadruplexes: Implications for Transcription Regulation and Cas9-Mediated DNA Cleavage. ACS Synthetic Biology, 2021, 10, 972-978.	3.8	5
1516	Small Molecule Inhibitors of Activation-Induced Deaminase Decrease Class Switch Recombination in B Cells. ACS Pharmacology and Translational Science, 2021, 4, 1214-1226.	4.9	5
1517	A stress-free strategy to correct point mutations in patient iPS cells. Stem Cell Research, 2021, 53, 102332.	0.7	4
1519	Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations. Nature Cell Biology, 2021, 23, 552-563.	10.3	50
1520	PE-Designer and PE-Analyzer: web-based design and analysis tools for CRISPR prime editing. Nucleic Acids Research, 2021, 49, W499-W504.	14.5	57
1521	Genome editing for crop improvement: A perspective from India. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 565-573.	2.1	16
1523	iPSC modeling of stage-specific leukemogenesis reveals BAALC as a key oncogene in severe congenital neutropenia. Cell Stem Cell, 2021, 28, 906-922.e6.	11.1	13
1524	GTR 2.0: gRNA-tRNA Array and Cas9-NG Based Genome Disruption and Single-Nucleotide Conversion in <i>Saccharomyces cerevisiae</i>	3.8	10

#	Article	IF	CITATIONS
1525	STAT1 gain-of-function heterozygous cell models reveal diverse interferon-signature gene transcriptional responses. Npj Genomic Medicine, 2021, 6, 34.	3.8	13
1526	Interrogating immune cells and cancer with CRISPR-Cas9. Trends in Immunology, 2021, 42, 432-446.	6.8	13
1527	Base-edited CAR T cells for combinational therapy against T cell malignancies. Leukemia, 2021, 35, 3466-3481.	7.2	63
1528	CRISPR/Cas9 gene editing in legume crops: Opportunities and challenges. , 2021, 3, e96.		49
1529	Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing. Protein and Cell, 2022, 13, 316-335.	11.0	17
1530	What Is Genome Editing?., 2021,, 69-110.		0
1531	Evolutionary Comparative Analyses of DNA-Editing Enzymes of the Immune System: From 5-Dimensional Description of Protein Structures to Immunological Insights and Applications to Protein Engineering. Frontiers in Immunology, 2021, 12, 642343.	4.8	6
1532	Distance-Based Biosensor for Ultrasensitive Detection of Uracil-DNA Glycosylase Using Membrane Filtration of DNA Hydrogel. ACS Sensors, 2021, 6, 2395-2402.	7.8	20
1533	CRISPR-Based Genome Editing Tools: Insights into Technological Breakthroughs and Future Challenges. Genes, 2021, 12, 797.	2.4	22
1534	Novel therapies in βâ€ŧhalassaemia. British Journal of Clinical Pharmacology, 2022, 88, 2509-2524.	2.4	7
1535	CRISPR/Cas systems: opportunities and challenges for crop breeding. Plant Cell Reports, 2021, 40, 979-998.	5.6	32
1536	InÂvivo gene editing via homology-independent targeted integration for adrenoleukodystrophy treatment. Molecular Therapy, 2022, 30, 119-129.	8.2	9
1537	Advances in application of genome editing in tomato and recent development of genome editing technology. Theoretical and Applied Genetics, 2021, 134, 2727-2747.	3.6	35
1538	CRISPR Adventures in China. CRISPR Journal, 2021, 4, 304-306.	2.9	0
1539	Human iPSCs and Genome Editing Technologies for Precision Cardiovascular Tissue Engineering. Frontiers in Cell and Developmental Biology, 2021, 9, 639699.	3.7	16
1540	Detect-seq reveals out-of-protospacer editing and target-strand editing by cytosine base editors. Nature Methods, 2021, 18, 643-651.	19.0	36
1541	Recent advances in CRISPR technologies for genome editing. Archives of Pharmacal Research, 2021, 44, 537-552.	6.3	5
1544	Nonviral genome engineering of natural killer cells. Stem Cell Research and Therapy, 2021, 12, 350.	5.5	18

#	Article	IF	CITATIONS
1546	Improved plant cytosine base editors with high editing activity, purity, and specificity. Plant Biotechnology Journal, 2021, 19, 2052-2068.	8.3	55
1547	Genome- and transcriptome-wide off-target analyses of an improved cytosine base editor. Plant Physiology, 2021, 187, 73-87.	4.8	25
1548	CRISPR/Cas9: Principle, Applications, and Delivery through Extracellular Vesicles. International Journal of Molecular Sciences, 2021, 22, 6072.	4.1	56
1549	Genome Editing for Plasmodesmal Biology. Frontiers in Plant Science, 2021, 12, 679140.	3.6	4
1550	Engineered prime editors with PAM flexibility. Molecular Therapy, 2021, 29, 2001-2007.	8.2	56
1551	Sequence modification on demand: search and replace tools for precise gene editing in plants. Transgenic Research, 2021, 30, 353-379.	2.4	7
1552	In-planta Gene Targeting in Barley Using Cas9 With and Without Geminiviral Replicons. Frontiers in Genome Editing, 2021, 3, 663380.	5.2	9
1553	Base editing strategy for insertion of the A673T mutation in the APP gene to prevent the development of AD inÂvitro. Molecular Therapy - Nucleic Acids, 2021, 24, 253-263.	5.1	17
1554	CRISPR/Cas9-mediated correction of MITF homozygous point mutation in a Waardenburg syndrome 2A pig model. Molecular Therapy - Nucleic Acids, 2021, 24, 986-999.	5.1	10
1555	Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Nature Reviews Molecular Cell Biology, 2021, 22, 563-579.	37.0	56
1556	Development of Precision Medical Technology and its Current Clinical Applications. Recent Patents on Engineering, 2021, 15, .	0.4	0
1557	CRISPR/Cas systems: The link between functional genes and genetic improvement. Crop Journal, 2021, 9, 678-687.	5.2	7
1558	Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature, 2021, 595, 295-302.	27.8	175
1559	Engineering Gene Therapy: Advances and Barriers. Advanced Therapeutics, 2021, 4, 2100040.	3.2	23
1560	Biotechnological Resources to Increase Disease-Resistance by Improving Plant Immunity: A Sustainable Approach to Save Cereal Crop Production. Plants, 2021, 10, 1146.	3.5	14
1561	Genome editing to define the function of risk loci and variants in rheumatic disease. Nature Reviews Rheumatology, 2021, 17, 462-474.	8.0	9
1562	Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nature Biotechnology, 2021, 39, 1414-1425.	17.5	118
1563	New and novel genetic tools for improving crops. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	1.0	4

#	Article	IF	CITATIONS
1566	Genome-wide interrogation of gene functions through base editor screens empowered by barcoded sgRNAs. Nature Biotechnology, 2021, 39, 1403-1413.	17.5	34
1567	Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. Biology, 2021, 10, 530.	2.8	7
1568	Repurposing CRISPR-Cas Systems as Genetic Tools for the Enterobacteriales. EcoSal Plus, 2021, 9, eESP00062020.	5.4	2
1569	Diversification of the CRISPR Toolbox: Applications of CRISPR-Cas Systems Beyond Genome Editing. CRISPR Journal, 2021, 4, 400-415.	2.9	5
1570	CRISPR/Cas based gene editing: marking a new era in medical science. Molecular Biology Reports, 2021, 48, 4879-4895.	2.3	9
1572	Base editors: Expanding the types of DNA damage products harnessed for genome editing. Gene and Genome Editing, 2021, 1, 100005.	2.6	19
1573	The Development of Herbicide Resistance Crop Plants Using CRISPR/Cas9-Mediated Gene Editing. Genes, 2021, 12, 912.	2.4	45
1574	Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor. Genome Biology, 2021, 22, 170.	8.8	66
1575	CRISPAltRations: A validated cloud-based approach for interrogation of double-strand break repair mediated by CRISPR genome editing. Molecular Therapy - Methods and Clinical Development, 2021, 21, 478-491.	4.1	18
1577	Diagnosis and Intervention of Genetic Hearing Loss. Journal of Clinical Otolaryngology, 2021, 32, 5-19.	0.1	0
1578	A Decade of CRISPR Gene Editing in China and Beyond: A Scientometric Landscape. CRISPR Journal, 2021, 4, 313-320.	2.9	5
1579	Expanding the range of CRISPR/Cas9-directed genome editing in soybean. ABIOTECH, 0, , 1.	3.9	3
1580	mRNAâ€Loaded Lipidâ€Like Nanoparticles for Liver Base Editing Via the Optimization of Central Composite Design. Advanced Functional Materials, 2021, 31, 2011068.	14.9	19
1581	Highly Efficient CRISPR-Mediated Base Editing in Sinorhizobium meliloti. Frontiers in Microbiology, 2021, 12, 686008.	3.5	5
1582	Therapy Development by Genome Editing of Hematopoietic Stem Cells. Cells, 2021, 10, 1492.	4.1	15
1583	Efficient precise in vivo base editing in adult dystrophic mice. Nature Communications, 2021, 12, 3719.	12.8	61
1584	Gene Therapy for Neurodegenerative Disease: Clinical Potential and Directions. Frontiers in Molecular Neuroscience, 2021, 14, 618171.	2.9	9
1585	Efficient Peptide-Mediated In Vitro Delivery of Cas9 RNP. Pharmaceutics, 2021, 13, 878.	4.5	24

#	Article	IF	CITATIONS
1586	Application of the modified cytosine base-editing in the cultured cells of bama minipig. Biotechnology Letters, 2021, 43, 1699-1714.	2.2	4
1587	Current widely-used web-based tools for CRISPR nucleases, base editors, and prime editors. Gene and Genome Editing, 2021, 1, 100004.	2.6	6
1588	Versatile and efficient inÂvivo genome editing with compact Streptococcus pasteurianus Cas9. Molecular Therapy, 2022, 30, 256-267.	8.2	16
1589	Potential of helper-dependent Adenoviral vectors in CRISPR-cas9-mediated lung gene therapy. Cell and Bioscience, 2021, 11, 145.	4.8	17
1590	Challenges in delivery systems for CRISPR-based genome editing and opportunities of nanomedicine. Biomedical Engineering Letters, 2021, 11, 217-233.	4.1	11
1591	Advances in CRISPR/Cas9-mediated genome editing on vegetable crops. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 672-682.	2.1	6
1592	CRISPR-mediated base editing in mice using cytosine deaminase base editor 4. Electronic Journal of Biotechnology, 2021, 52, 59-66.	2.2	2
1593	Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases. Nature Communications, 2021, 12, 4219.	12.8	29
1595	Genome editing and its applications in genetic improvement in aquaculture. Reviews in Aquaculture, 2022, 14, 178-191.	9.0	44
1596	Small-molecule compounds boost genome-editing efficiency of cytosine base editor. Nucleic Acids Research, 2021, 49, 8974-8986.	14.5	10
1597	CRISPR-Based Crop Improvements: A Way Forward to Achieve Zero Hunger. Journal of Agricultural and Food Chemistry, 2021, 69, 8307-8323.	5.2	50
1598	dCas9 techniques for transcriptional repression in mammalian cells: Progress, applications and challenges. BioEssays, 2021, 43, 2100086.	2.5	3
1599	Base editingâ€mediated perturbation of endogenous PKM1/2 splicing facilitates isoformâ€specific functional analysis in vitro and in vivo. Cell Proliferation, 2021, 54, e13096.	5.3	10
1600	Signal amplification and output of CRISPR/Cas-based biosensing systems: A review. Analytica Chimica Acta, 2021, 1185, 338882.	5.4	69
1601	Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance. Biomolecules, 2021, 11, 1122.	4.0	14
1604	CRISPR-based genome editing technology and its applications in oil crops. Oil Crop Science, 2021, 6, 105-113.	2.0	9
1605	Non-viral transfection technologies for next-generation therapeutic T cell engineering. Biotechnology Advances, 2021, 49, 107760.	11.7	33
1606	Review of applications of CRISPR-Cas9 gene-editing technology in cancer research. Biological Procedures Online, 2021, 23, 14.	2.9	18

#	Article	IF	CITATIONS
1607	Application of genome editing tools in plants. Tap Chi Cong Nghe Sinh Hoc, 2021, 19, 15-40.	0.0	0
1608	Base editing-coupled survival screening enabled high-sensitive analysis of PAM compatibility and finding of the new possible off-target. IScience, 2021, 24, 102769.	4.1	2
1609	Genome editing in cereal crops: an overview. Transgenic Research, 2021, 30, 461-498.	2.4	46
1610	Investigational Treatments for Epidermolysis Bullosa. American Journal of Clinical Dermatology, 2021, 22, 801-817.	6.7	26
1611	Opportunities and challenges applying gene editing to specialty crops. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 709-719.	2.1	6
1612	Advances in Accurate Microbial Genome-Editing CRISPR Technologies. Journal of Microbiology and Biotechnology, 2021, 31, 903-911.	2.1	6
1613	Immunity and Viral Infections: Modulating Antiviral Response via CRISPR–Cas Systems. Viruses, 2021, 13, 1373.	3.3	9
1614	Multiplexed functional genomic analysis of 5' untranslated region mutations across the spectrum of prostate cancer. Nature Communications, 2021, 12, 4217.	12.8	30
1615	Base Editing in Plants: Applications, Challenges, and Future Prospects. Frontiers in Plant Science, 2021, 12, 664997.	3.6	31
1616	Get ready for the CRISPR/Cas system: A beginner's guide to the engineering and design of guide RNAs. Journal of Gene Medicine, 2021, 23, e3377.	2.8	3
1617	Accelerating Selective Oxidation of Biomass-Based Hydroxyl Compounds with Hydrogen Bond Acceptors. Journal of Physical Chemistry Letters, 2021, 12, 7041-7045.	4.6	5
1618	CRISPR-Cas9 and beyond: what's next in plant genome engineering. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 584.	2.1	13
1619	Screening and validation of genome-edited animals. Laboratory Animals, 2022, 56, 69-82.	1.0	8
1620	Gene therapy for Fabry disease: Progress, challenges, and outlooks on gene-editing. Molecular Genetics and Metabolism, 2021, 134, 117-131.	1.1	13
1621	Construct design for CRISPR/Cas-based genome editing in plants. Trends in Plant Science, 2021, 26, 1133-1152.	8.8	76
1622	CRISPR/Cas9 gene editing: New hope for Alzheimer's disease therapeutics. Journal of Advanced Research, 2022, 40, 207-221.	9.5	37
1623	Stress tolerance enhancement via SPT15 base editing in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2021, 14, 155.	6.2	11
1624	Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives. Viruses, 2021, 13, 1288.	3.3	44

#	Article	IF	Citations
1625	Gene Editing and Modulation: the Holy Grail for the Genetic Epilepsies?. Neurotherapeutics, 2021, 18, 1515-1523.	4.4	7
1626	OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security. Plants, 2021, 10, 1423.	3.5	15
1627	Paving the way towards precise and safe CRISPR genome editing. Biotechnology Advances, 2021, 49, 107737.	11.7	19
1628	Immune-based therapies in cardiovascular and metabolic diseases: past, present and future. Nature Reviews Immunology, 2021, 21, 669-679.	22.7	16
1629	Dual-AAV delivering split prime editor system for inÂvivo genome editing. Molecular Therapy, 2022, 30, 283-294.	8.2	87
1630	Rodent genetic models of Ah receptor signaling. Drug Metabolism Reviews, 2021, 53, 350-374.	3.6	7
1631	Genome-wide genotype-phenotype associations in microbes. Journal of Bioscience and Bioengineering, 2021, 132, 1-8.	2.2	9
1633	Applications and Potential of Genome-Editing Systems in Rice Improvement: Current and Future Perspectives. Agronomy, 2021, 11, 1359.	3.0	35
1634	Cytosine and adenine deaminase base-editors induce broad and nonspecific changes in gene expression and splicing. Communications Biology, 2021, 4, 882.	4.4	5
1635	Genetic toolkits for engineering Rhodococcus species with versatile applications. Biotechnology Advances, 2021, 49, 107748.	11.7	20
1636	Adenine base editing reduces misfolded protein accumulation and toxicity in alpha-1 antitrypsin deficient patient iPSC-hepatocytes. Molecular Therapy, 2021, 29, 3219-3229.	8.2	14
1637	Present and future prospects for wheat improvement through genome editing and advanced technologies. Plant Communications, 2021, 2, 100211.	7.7	46
1638	Splice-switching as cancer therapy. Current Opinion in Pharmacology, 2021, 59, 140-148.	3.5	10
1639	Tissue specificity of DNA repair: the CRISPR compass. Trends in Genetics, 2021, 37, 958-962.	6.7	14
1640	Loss of MAR1 Function is a Marker for Co-Selection of CRISPR-Induced Mutations in Plants. Frontiers in Genome Editing, 2021, 3, 723384.	5.2	9
1642	Transversion Expansion of Base Editing. CRISPR Journal, 2021, 4, 462-463.	2.9	2
1643	Allele-Specific Gene Editing Rescues Pathology in a Human Model of Charcot-Marie-Tooth Disease Type 2E. Frontiers in Cell and Developmental Biology, 2021, 9, 723023.	3.7	10
1644	Gene editing in Brassica napus for basic research and trait development. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 731-748.	2.1	7

#	Article	IF	CITATIONS
1645	Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods. Nature Communications, 2021, 12, 4902.	12.8	28
1646	Strategies to Identify Genetic Variants Causing Infertility. Trends in Molecular Medicine, 2021, 27, 792-806.	6.7	9
1648	Precise editing of methylated cytosine in Arabidopsis thaliana using a human APOBEC3Bctd-Cas9 fusion. Science China Life Sciences, 2022, 65, 219-222.	4.9	8
1649	Recent Approaches for Manipulating Globin Gene Expression in Treating Hemoglobinopathies. Frontiers in Genome Editing, 2021, 3, 618111.	5 . 2	12
1650	Versatile Applications of the CRISPR/Cas Toolkit in Plant Pathology and Disease Management. Phytopathology, 2021, 111, 1080-1090.	2.2	28
1651	Approaches to Enhance Precise CRISPR/Cas9-Mediated Genome Editing. International Journal of Molecular Sciences, 2021, 22, 8571.	4.1	9
1652	Different DNA repair pathways are involved in single-strand break-induced genomic changes in plants. Plant Cell, 2021, 33, 3454-3469.	6.6	7
1653	Current advances in overcoming obstacles of CRISPR/Cas9 off-target genome editing. Molecular Genetics and Metabolism, 2021, 134, 77-86.	1.1	15
1654	High-purity production and precise editing of DNA base editing ribonucleoproteins. Science Advances, 2021, 7, .	10.3	43
1655	Structural basis of substrate specificity in human cytidine deaminase family APOBEC3s. Journal of Biological Chemistry, 2021, 297, 100909.	3.4	14
1656	The detection and functions of RNA modification m6A based on m6A writers and erasers. Journal of Biological Chemistry, 2021, 297, 100973.	3.4	43
1657	Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids. Life Science Alliance, 2021, 4, e202000940.	2.8	67
1659	A synonymous mutation in IGF-1 impacts the transcription and translation process of gene expression. Molecular Therapy - Nucleic Acids, 2021, 26, 1446-1465.	5.1	11
1661	Easy-Prime: a machine learning–based prime editor design tool. Genome Biology, 2021, 22, 235.	8.8	32
1662	Progress in soybean functional genomics over the past decade. Plant Biotechnology Journal, 2022, 20, 256-282.	8.3	76
1663	Genome editor-directed inÂvivo library diversification. Cell Chemical Biology, 2021, 28, 1109-1118.	5.2	7
1664	Engineering Cas9 for human genome editing. Current Opinion in Structural Biology, 2021, 69, 86-98.	5.7	19
1665	Development of a base editor for protein evolution via <i>in situ</i> mutation <i>in vivo</i> Nucleic Acids Research, 2021, 49, 9594-9605.	14.5	18

#	Article	IF	CITATIONS
1666	Advances in Genetic and Molecular Understanding of Alzheimer's Disease. Genes, 2021, 12, 1247.	2.4	9
1667	Fast and Efficient Generation of Isogenic Induced Pluripotent Stem Cell Lines Using Adenine Base Editing. CRISPR Journal, 2021, 4, 502-518.	2.9	6
1668	Stargardt disease and progress in therapeutic strategies. Ophthalmic Genetics, 2022, 43, 1-26.	1.2	18
1669	APOBECs orchestrate genomic and epigenomic editing across health and disease. Trends in Genetics, 2021, 37, 1028-1043.	6.7	30
1670	Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens. Nature Communications, 2021, 12, 5114.	12.8	36
1671	Linking genome variants to disease: scalable approaches to test the functional impact of human mutations. Human Molecular Genetics, 2021, 30, R187-R197.	2.9	27
1672	The CRISPR/Cas9 revolution continues: From base editing to prime editing in plant science. Journal of Genetics and Genomics, 2021, 48, 661-670.	3.9	31
1673	A first step toward in vivo gene editing in patients. Nature Medicine, 2021, 27, 1515-1517.	30.7	5
1675	Embryo-Engineered Nonhuman Primate Models: Progress and Gap to Translational Medicine. Research, 2021, 2021, 9898769.	5.7	3
1676	Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Pharmaceuticals, 2021, 14, 765.	3.8	3
1677	Considerations for Cardiovascular Genetic and Genomic Research With Marginalized Racial and Ethnic Groups and Indigenous Peoples: A Scientific Statement From the American Heart Association. Circulation Genomic and Precision Medicine, 2021, 14, e000084.	3.6	24
1680	Genome Editing for the Development of Rice Resistance against Stresses: A Review. Pertanika Journal of Science and Technology, 2021, 44, .	0.3	1
1681	Improved Eating and Cooking Quality of indica Rice Cultivar YK17 via Adenine Base Editing of Wx Allele of Granule-Bound Starch Synthase I (GBSS I). Rice Science, 2021, 28, 427-430.	3.9	5
1682	Trends towards revealing the genetic architecture of sheep tail patterning: Promising genes and investigatory pathways. Animal Genetics, 2021, 52, 799-812.	1.7	23
1683	Helicase-AID: A novel molecular device for base editing at random genomic loci. Metabolic Engineering, 2021, 67, 396-402.	7.0	6
1684	FnCas12a/crRNA-Mediated Genome Editing in Eimeria tenella. Frontiers in Genetics, 2021, 12, 738746.	2.3	6
1685	Methods and cell-based strategies to produce antibody libraries: current state. Applied Microbiology and Biotechnology, 2021, 105, 7215-7224.	3.6	1
1686	Perfecting Targeting in CRISPR. Annual Review of Genetics, 2021, 55, 453-477.	7.6	10

#	Article	IF	CITATIONS
1688	Hearing impairment: new frontiers of regenerative medicine. Otorhinolaryngology(Italy), 2021, 71, .	0.1	0
1689	Systems-based rice improvement approaches for sustainable food and nutritional security. Plant Cell Reports, 2021, 40, 2021-2036.	5.6	19
1690	Innovations in CRISPR-Based Therapies. Molecular Biotechnology, 2021, , 1.	2.4	5
1691	LATE–a novel sensitive cell-based assay for the study of CRISPR/Cas9-related long-term adverse treatment effects. Molecular Therapy - Methods and Clinical Development, 2021, 22, 249-262.	4.1	1
1692	Exploring C-To-G Base Editing in Rice, Tomato, and Poplar. Frontiers in Genome Editing, 2021, 3, 756766.	5.2	32
1693	Understanding and overcoming adverse consequences of genome editing on hematopoietic stem and progenitor cells. Molecular Therapy, 2021, 29, 3205-3218.	8.2	14
1694	Applications of high-resolution clone tracking technologies in cancer. Current Opinion in Biomedical Engineering, 2021, 19, 100317.	3.4	5
1695	Tissue Specific DNA Repair Outcomes Shape the Landscape of Genome Editing. Frontiers in Genetics, 2021, 12, 728520.	2.3	11
1696	The rise of developmental biology in China. Development Growth and Differentiation, 2022, 64, 106-115.	1.5	3
1697	Off-target effects of base editors: what we know and how we can reduce it. Current Genetics, 2022, 68, 39-48.	1.7	9
1698	Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing. Molecular Cell, 2021, 81, 4333-4345.e4.	9.7	177
1699	Comparison of the Feasibility, Efficiency, and Safety of Genome Editing Technologies. International Journal of Molecular Sciences, 2021, 22, 10355.	4.1	24
1700	InÂvivo somatic cell base editing and prime editing. Molecular Therapy, 2021, 29, 3107-3124.	8.2	87
1702	Kontrolle von Genexpression in Sägetierzellen mithilfe von parallel schaltbaren Guideâ€RNAs fÃ⅓r Cas12a**. Angewandte Chemie, 0, , .	2.0	2
1703	Random Base Editing for Genome Evolution in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2021, 10, 2440-2446.	3.8	12
1704	A third-generation mouse model of Alzheimer's disease shows early and increased cored plaque pathology composed of wild-type human amyloid \hat{l}^2 peptide. Journal of Biological Chemistry, 2021, 297, 101004.	3.4	16
1706	Development of <scp>Ultranarrowâ€Bore</scp> Open Tubular High Efficiency Liquid Chromatography. Chinese Journal of Chemistry, 2022, 40, 137-152.	4.9	3
1707	Synthetic directed evolution in plants: unlocking trait engineering and improvement. Synthetic Biology, 2021, 6, ysab025.	2.2	13

#	Article	IF	CITATIONS
1708	CRISPR/Cas9 technology for improving agronomic traits and future prospective in agriculture. Planta, 2021, 254, 68.	3.2	28
1709	Precise plant genome editing using base editors and prime editors. Nature Plants, 2021, 7, 1166-1187.	9.3	172
1710	Modeling a cataract disorder in mice with prime editing. Molecular Therapy - Nucleic Acids, 2021, 25, 494-501.	5.1	15
1712	Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nature Biotechnology, 2022, 40, 94-102.	17.5	119
1713	Points of View on the Tools for Genome/Gene Editing. International Journal of Molecular Sciences, 2021, 22, 9872.	4.1	10
1714	Functional correction of <i>CFTR </i> mutations in human airway epithelial cells using adenine base editors. Nucleic Acids Research, 2021, 49, 10558-10572.	14.5	25
1715	Roadmap for the use of base editors to decipher drug mechanism of action. PLoS ONE, 2021, 16, e0257537.	2.5	1
1716	Optical Control of Base Editing and Transcription through Lightâ€Activated Guide RNA. ChemPhotoChem, 0, , .	3.0	8
1717	Singleâ€base editing of rs12603332 on Chromosome 17q21 with a Cytosine Base Editor regulates ORMDL3 and ATF6α expression. Allergy: European Journal of Allergy and Clinical Immunology, 2021, , .	5.7	2
1718	Genetic and Epigenetic Therapies for \hat{I}^2 -Thalassaemia by Altering the Expression of \hat{I}_\pm -Globin Gene. Frontiers in Genome Editing, 2021, 3, 752278.	5.2	8
1719	Changes in cortical gene expression in the muscarinic M1 receptor knockout mouse: potential relevance to schizophrenia, Alzheimer's disease and cognition. NPJ Schizophrenia, 2021, 7, 44.	3.6	9
1720	Current Advancements and Limitations of Gene Editing in Orphan Crops. Frontiers in Plant Science, 2021, 12, 742932.	3.6	20
1721	Efficient retroelement-mediated DNA writing in bacteria. Cell Systems, 2021, 12, 860-872.e5.	6.2	17
1722	A versatile genetic engineering toolkit for E. coli based on CRISPR-prime editing. Nature Communications, 2021, 12, 5206.	12.8	49
1723	A non-viral and selection-free COL7A1 HDR approach with improved safety profile for dystrophic epidermolysis bullosa. Molecular Therapy - Nucleic Acids, 2021, 25, 237-250.	5.1	14
1724	Regulation of germination by targeted mutagenesis of grain dormancy genes in barley. Plant Biotechnology Journal, 2022, 20, 37-46.	8.3	13
1725	Progress in Gene-Editing Technology of Zebrafish. Biomolecules, 2021, 11, 1300.	4.0	12
1726	Generating novel plant genetic variation via genome editing to escape the breeding lottery. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 627.	2.1	3

#	Article	IF	CITATIONS
1727	Advances in engineering and synthetic biology toward improved therapeutic immune cells. Current Opinion in Biomedical Engineering, 2021, 20, 100342.	3.4	2
1729	Breeding customâ€designed crops for improved drought adaptation. Genetics & Genomics Next, 2021, 2, e202100017.	1.5	48
1730	Macrophages M1-Related Prognostic Signature in Hepatocellular Carcinoma. Journal of Oncology, 2021, 2021, 1-10.	1.3	3
1731	Controlling Gene Expression in Mammalian Cells Using Multiplexed Conditional Guide RNAs for Cas12a**. Angewandte Chemie - International Edition, 2021, 60, 23894-23902.	13.8	18
1732	CRISPR/dCas9-Based Systems: Mechanisms and Applications in Plant Sciences. Plants, 2021, 10, 2055.	3.5	32
1733	Approaches for the sensitive detection of rare base and prime editing events. Methods, 2021, 194, 75-82.	3.8	1
1734	Advances in base editing with an emphasis on an AAV-based strategy. Methods, 2021, 194, 56-64.	3.8	1
1735	Harnessing the power of directed evolution to improve genome editing systems. Current Opinion in Chemical Biology, 2021, 64, 10-19.	6.1	3
1736	Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Molecular Cancer, 2021, 20, 126.	19.2	86
1737	Mutant IDH1 promotes phagocytic function of microglia/macrophages in gliomas by downregulating ICAM1. Cancer Letters, 2021, 517, 35-45.	7.2	15
1738	Progression and application of CRISPR-Cas genomic editors. Methods, 2021, 194, 65-74.	3.8	9
1739	CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease. Molecular Therapy - Methods and Clinical Development, 2021, 23, 276-285.	4.1	13
1740	Toward the Treatment of Inherited Diseases of the Retina Using CRISPR-Based Gene Editing. Frontiers in Medicine, 2021, 8, 698521.	2.6	6
1741	Engineered DNase-inactive Cpf1 variants to improve targeting scope for base editing in E. coli. Synthetic and Systems Biotechnology, 2021, 6, 326-334.	3.7	3
1742	TALE and TALEN genome editing technologies. Gene and Genome Editing, 2021, 2, 100007.	2.6	54
1743	Towards a CRISPeR understanding of homologous recombination with high-throughput functional genomics. Current Opinion in Genetics and Development, 2021, 71, 171-181.	3.3	6
1744	Replacing the SpCas9 HNH domain by deaminases generates compact base editors with an alternative targeting scope. Molecular Therapy - Nucleic Acids, 2021, 26, 502-510.	5.1	7
1745	Base editing: a brief review and a practical example. Journal of Biomedical Research, 2021, 35, 107.	1.6	O

#	Article	IF	CITATIONS
1746	Targeted genome editing for the correction or alleviation of primary Immunodeficiencies. Progress in Molecular Biology and Translational Science, 2021, 182, 111-151.	1.7	3
1747	CRISPR/Cas-Based Techniques in Plants. , 2021, , 37-61.		3
1748	Will CRISPR-Cas9 Have Cards to Play Against Cancer? An Update on its Applications. Molecular Biotechnology, 2021, 63, 93-108.	2.4	5
1749	Improvements in Gene Editing Technology Boost Its Applications in Livestock. Frontiers in Genetics, 2020, 11, 614688.	2.3	34
1750	A disorder-related variant (E420K) of a PP2A-regulatory subunit (PPP2R5D) causes constitutively active AKT-mTOR signaling and uncoordinated cell growth. Journal of Biological Chemistry, 2021, 296, 100313.	3.4	18
1751	enAsCas12a Enables CRISPR-Directed Evolution to Screen for Functional Drug Resistance Mutations in Sequences Inaccessible to SpCas9. Molecular Therapy, 2021, 29, 208-224.	8.2	8
1752	Recombineering and MAGE. Nature Reviews Methods Primers, 2021, 1, .	21.2	47
1753	Principles and Applications of RNA-Based Genome Editing for Crop Improvement. Concepts and Strategies in Plant Sciences, 2021, , 247-278.	0.5	1
1754	Resistant starch: biosynthesis, regulatory pathways, and engineering via CRISPR system., 2021, , 303-317.		1
1755	Tricks and trends in CRISPR/Cas9-based genome editing and use of bioinformatics tools for improving on-target efficiency., 2021,, 441-462.		0
1756	CRISPR-based genome editing of zebrafish. Progress in Molecular Biology and Translational Science, 2021, 180, 69-84.	1.7	12
1757	Genome editing of hPSCs: Recent progress in hPSC-based disease modeling for understanding disease mechanisms. Progress in Molecular Biology and Translational Science, 2021, 181, 271-287.	1.7	1
1758	Gene and epigenetic editing in the treatment of primary ciliopathies. Progress in Molecular Biology and Translational Science, 2021, 182, 353-401.	1.7	3
1759	CHD2-Related CNS Pathologies. International Journal of Molecular Sciences, 2021, 22, 588.	4.1	20
1761	Utility of Zebrafish Models of Acquired and Inherited Long QT Syndrome. Frontiers in Physiology, 2020, 11, 624129.	2.8	4
1763	Detection of CRISPR-Cas9-Mediated Mutations Using a Carbon Nanotube-Modified Electrochemical Genosensor. Biosensors, 2021, 11, 17.	4.7	8
1765	CRISPR based development of RNA editing and the diagnostic platform. Progress in Molecular Biology and Translational Science, 2021, 179, 117-159.	1.7	0
1766	DGK and DZHK position paper on genome editing: basic science applications and future perspective. Basic Research in Cardiology, 2021, 116, 2.	5.9	5

#	Article	IF	CITATIONS
1767	In vivo genome editing in single mammalian brain neurons through CRISPR-Cas9 and cytosine base editors. Computational and Structural Biotechnology Journal, 2021, 19, 2477-2485.	4.1	1
1768	Strategies for mitochondrial gene editing. Computational and Structural Biotechnology Journal, 2021, 19, 3319-3329.	4.1	22
1769	Rapid Vector Construction and Assessment of BE3 and Target-AID C to T Base Editing Systems in Rice Protoplasts. Methods in Molecular Biology, 2021, 2238, 95-113.	0.9	5
1770	A method for characterizing Cas9 variants via a one-million target sequence library of self-targeting sgRNAs. Nucleic Acids Research, 2021, 49, e31-e31.	14.5	12
1771	Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing. RNA Biology, 2021, 18, 1048-1062.	3.1	24
1772	Advances in gene editing strategies for epidermolysis bullosa. Progress in Molecular Biology and Translational Science, 2021, 182, 81-109.	1.7	10
1773	The TRACE-Seq method tracks recombination alleles and identifies clonal reconstitution dynamics of gene targeted human hematopoietic stem cells. Nature Communications, 2021, 12, 472.	12.8	23
1774	Advances in Genome Editing With CRISPR Systems and Transformation Technologies for Plant DNA Manipulation. Frontiers in Plant Science, 2020, 11, 637159.	3.6	61
1775	Data Storage Based on DNA. Small Structures, 2021, 2, 2000046.	12.0	36
1776	Wide Horizons of CRISPR-Cas-Derived Technologies for Basic Biology, Agriculture, and Medicine. Springer Protocols, 2020, , 1-23.	0.3	15
1778	Light-Inducible CRISPR Labeling. Methods in Molecular Biology, 2020, 2173, 137-150.	0.9	1
1779	Genetic Manipulation of MRSA Using CRISPR/Cas9 Technology. Methods in Molecular Biology, 2020, 2069, 113-124.	0.9	5
1780	Grape Biotechnology: Past, Present, and Future. Compendium of Plant Genomes, 2019, , 349-367.	0.5	1
1781	CRISPR/Cas9 Editing in Induced Pluripotent Stem Cells: A Way Forward for Treating Cystic Fibrosis?. , 2019, , 153-178.		2
1782	Genome Editing and Trait Improvement in Wheat. , 2021, , 263-283.		7
1783	Retroviral Vectors for Cancer Gene Therapy. Recent Results in Cancer Research, 2016, 209, 17-35.	1.8	24
1784	Application of CRISPR-Cas9 Screening Technologies to Study Mitochondrial Biology in Healthy and Disease States. Advances in Experimental Medicine and Biology, 2019, 1158, 269-277.	1.6	2
1785	Genome Editing: Advances and Prospects. , 2019, , 147-174.		5

#	Article	IF	CITATIONS
1786	Animal Model Contributions to Congenital Metabolic Disease. Advances in Experimental Medicine and Biology, 2020, 1236, 225-244.	1.6	13
1787	Therapeutic Gene Editing with CRISPR. Clinics in Laboratory Medicine, 2020, 40, 205-219.	1.4	3
1788	CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Computational and Structural Biotechnology Journal, 2020, 18, 2401-2415.	4.1	100
1789	CRISPR screens in the era of microbiomes. Current Opinion in Microbiology, 2020, 57, 70-77.	5.1	15
1790	Celebrating Rosalind Franklin's Centennial with a Nobel Win for Doudna and Charpentier. Molecular Therapy, 2020, 28, 2519-2520.	8.2	2
1791	CRISPR hacks enable pinpoint repairs to genome. Nature, 2017, 550, 439-440.	27.8	5
1792	Am I ready for CRISPR? A user's guide to genetic screens. Nature Reviews Genetics, 2018, 19, 67-80.	16.3	325
1793	Engineer chimeric Cas9 to expand PAM recognition based on evolutionary information. Nature Communications, 2019, 10, 560.	12.8	43
1794	Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nature Biotechnology, 2020, 38, 865-869.	17.5	137
1795	Targeted point mutations of the m6A modification in miR675 using RNA-guided base editing induce cell apoptosis. Bioscience Reports, 2020, 40, .	2.4	7
1796	Gene editing and CRISPR in the clinic: current and future perspectives. Bioscience Reports, 2020, 40, .	2.4	122
1797	Editor's cut: DNA cleavage by CRISPR RNA-guided nucleases Cas9 and Cas12a. Biochemical Society Transactions, 2020, 48, 207-219.	3.4	14
1798	CRISPR-based gene expression control for synthetic gene circuits. Biochemical Society Transactions, 2020, 48, 1979-1993.	3.4	30
1799	Base editors: modular tools for the introduction of point mutations in living cells. Emerging Topics in Life Sciences, 2019, 3, 483-491.	2.6	15
1800	Synthetic biology for improving cell fate decisions and tissue engineering outcomes. Emerging Topics in Life Sciences, 2019, 3, 631-643.	2.6	12
1801	Efficient CRISPR-mediated base editing in $\langle i \rangle$ Agrobacterium $\langle i \rangle$ spp Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	38
1802	CRISPR-Cas "Non-Target―Sites Inhibit On-Target Cutting Rates. CRISPR Journal, 2020, 3, 550-561.	2.9	17
1803	Toward precise CRISPR DNA fragment editing and predictable 3D genome engineering. Journal of Molecular Cell Biology, 2021, 12, 828-856.	3.3	9

#	ARTICLE	IF	CITATIONS
1804	Advances in actinomycete research: an ActinoBase review of 2019. Microbiology (United Kingdom), 2020, 166, 683-694.	1.8	20
1869	A most formidable arsenal: genetic technologies for building a better mouse. Genes and Development, 2020, 34, 1256-1286.	5.9	24
1870	Gene therapy in wound healing using nanotechnology. Wound Repair and Regeneration, 2021, 29, 225-239.	3.0	11
1871	Correction of muscular dystrophies by CRISPR gene editing. Journal of Clinical Investigation, 2020, 130, 2766-2776.	8.2	60
1872	Therapeutic applications of CRISPR/Cas9 in breast cancer and delivery potential of gold nanomaterials. Nanobiomedicine, 2020, 7, 184954352098319.	5.7	14
1873	Beyond Seek and Destroy: how to Generate Allelic Series Using Genome Editing Tools. Rice, 2020, 13, 5.	4.0	7
1874	CRISPR/Cas: a potential gene-editing tool in the nervous system. Cell Regeneration, 2020, 9, 12.	2.6	8
1875	CRISPR-based strategies for targeted transgene knock-in and gene correction. Faculty Reviews, 2020, 9, 20.	3.9	8
1876	Base Editing. Materials and Methods, 0, 9, .	0.0	2
1878	Creation of Novel Protein Variants with CRISPR/Cas9-Mediated Mutagenesis: Turning a Screening By-Product into a Discovery Tool. PLoS ONE, 2017, 12, e0170445.	2.5	50
1879	Generation of imidazolinone herbicide resistant trait in Arabidopsis. PLoS ONE, 2020, 15, e0233503.	2.5	15
1880	The protective mutation A673T in amyloid precursor protein gene decreases Aβ peptides production for 14 forms of Familial Alzheimer's Disease in SH-SY5Y cells. PLoS ONE, 2020, 15, e0237122.	2.5	11
1881	Targeted Base Editing via RNA-Guided Cytidine Deaminases in Xenopus laevis Embryos. Molecules and Cells, 2017, 40, 823-827.	2.6	30
1882	CRISPR and Target-Specific DNA Endonucleases for Efficient DNA Knock-in in Eukaryotic Genomes. Molecules and Cells, 2018, 41, 943-952.	2.6	22
1883	Programmable Câ€ŧoâ€U <scp>RNA</scp> editing using the human <scp>APOBEC</scp> 3A deaminase. EMBO Journal, 2020, 39, e104741.	7.8	35
1884	Base editing in pigs for precision breeding. Frontiers of Agricultural Science and Engineering, 2020, 7, 161.	1.4	6
1885	Base editors: a powerful tool for generating animal models of human diseases. Cell Stress, 2018, 2, 242-245.	3.2	2
1886	Could Seeking Human Germline Genome Editing Force Journeys of Transnational Care?. Generos, 2020, 9, 184.	0.4	3

#	Article	IF	CITATIONS
1887	Genetically engineered mouse models for studying radiation biology. Translational Cancer Research, 2017, 6, S900-S913.	1.0	21
1888	The transformational impact of site-specific DNA modifiers on biomedicine and agriculture. Animal Reproduction, 2018, 15, 171-179.	1.0	1
1889	Understanding the Plant-microbe Interactions in CRISPR/Cas9 Era: Indeed a Sprinting Start in Marathon. Current Genomics, 2020, 21, 429-443.	1.6	14
1890	Genetic Variants and Oxidative Stress in Alzheimer's Disease. Current Alzheimer Research, 2020, 17, 208-223.	1.4	23
1891	Targeted Nucleotide Substitution in Mammalian Cell by Target-AID. Bio-protocol, 2017, 7, .	0.4	2
1892	CRISPR-Cas9 in agriculture: Approaches, applications, future perspectives, and associated challenges. Malaysian Journal of Halal Research, 2020, 3, 6-16.	0.6	13
1893	MagnEditâ€"interacting factors that recruit DNA-editing enzymes to single base targets. Life Science Alliance, 2020, 3, e201900606.	2.8	7
1894	Applicability of the EFSA Opinion on siteâ€directed nucleases type 3 for the safety assessment of plants developed using siteâ€directed nucleases type 1 and 2 and oligonucleotideâ€directed mutagenesis. EFSA Journal, 2020, 18, e06299.	1.8	31
1895	The ALS Gene as Genetic Target in CRISPR/ Cas Approaches: What Have We Learned So Far?. Modern Concepts & Developments in Agronomy, 2020, 7, .	0.1	2
1896	RABBIT BIOMODELS OF HUMAN DISEASES DEVELOPED USING NEW GENOMIC TECHNOLOGIES. CRISPR/CAS9 (REVIEW). Journal Biomed, 2019, , 12-33.	0.3	2
1897	Precision Genome Engineering for the Breeding of Tomatoes: Recent Progress and Future Perspectives. Frontiers in Genome Editing, 2020, 2, 612137.	5.2	17
1898	Drug Screening with Genetically Encoded Fluorescent Sensors: Today and Tomorrow. International Journal of Molecular Sciences, 2021, 22, 148.	4.1	13
1899	Prime Editing Technology and Its Prospects for Future Applications in Plant Biology Research. Biodesign Research, 2020, 2020, .	1.9	34
1900	The CRISPR Growth Spurt: from Bench to Clinic on Versatile Small RNAs. Journal of Microbiology and Biotechnology, 2017, 27, 207-218.	2.1	17
1901	CRISPR/CAS9 as a Powerful Tool for Crop Improvement. Journal of Plant Biotechnology, 2017, 44, 107-114.	0.4	3
1902	Current status on the modification of the scope for GMO regulation on the gene edited plants with no remnants of inserted foreign DNA fragments. Journal of Plant Biotechnology, 2019, 46, 137-142.	0.4	5
1903	Identification of compounds that rescue otic and myelination defects in the zebrafish adgrg6 (gpr126) mutant. ELife, 2019, 8 , .	6.0	19
1904	Current Status and Prospect of Wheat Functional Genomics using Next Generation Sequencing. Han'guk Yukchong Hakhoe Chi, 2018, 50, 364-377.	0.5	5

#	Article	IF	CITATIONS
1905	Raising Climate-Resilient Crops: Journey From the Conventional Breeding to New Breeding Approaches. Current Genomics, 2021, 22, 450-467.	1.6	7
1906	Human cell based directed evolution of adenine base editors with improved efficiency. Nature Communications, 2021, 12, 5897.	12.8	15
1907	Controllable genome editing with split-engineered base editors. Nature Chemical Biology, 2021, 17, 1262-1270.	8.0	31
1908	Interrogating Mitochondrial Biology and Disease Using CRISPR/Cas9 Gene Editing. Genes, 2021, 12, 1604.	2.4	10
1909	Editing Properties of Base Editors with SpCas9-NG in Discarded Human Tripronuclear Zygotes. CRISPR Journal, 2021, 4, 710-727.	2.9	1
1910	Multiplex Genome-Editing Technologies for Revolutionizing Plant Biology and Crop Improvement. Frontiers in Plant Science, 2021, 12, 721203.	3.6	36
1911	Engineered pegRNAs improve prime editing efficiency. Nature Biotechnology, 2022, 40, 402-410.	17.5	293
1912	PRIMA: a rapid and cost-effective genotyping method to detect single-nucleotide differences using probe-induced heteroduplexes. Scientific Reports, 2021, 11, 20741.	3.3	7
1913	CRISPR-derived genome editing therapies: Progress from bench to bedside. Molecular Therapy, 2021, 29, 3125-3139.	8.2	14
1914	C-to-G Base Editing Enhances Oleic Acid Production by Generating Novel Alleles of FATTY ACID DESATURASE 2 in Plants. Frontiers in Plant Science, 2021, 12, 748529.	3.6	4
1916	Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. Journal of Experimental Botany, 2022, 73, 646-664.	4.8	21
1917	Hepatocyte organoids and cell transplantation: What the future holds. Experimental and Molecular Medicine, 2021, 53, 1512-1528.	7.7	23
1918	The genome-editing decade. Molecular Therapy, 2021, 29, 3093-3094.	8.2	1
1919	No apparent p53 activation in CRISPRâ€engineered geneâ€edited rabbits. Journal of Cellular and Molecular Medicine, 2021, 25, 10313-10317.	3.6	2
1920	CRISPR/Cas9 Delivery System Engineering for Genome Editing in Therapeutic Applications. Pharmaceutics, 2021, 13, 1649.	4.5	35
1921	Recent progress on n-butanol production by lactic acid bacteria. World Journal of Microbiology and Biotechnology, 2021, 37, 205.	3.6	2
1922	Therapeutic Exon Skipping Through a CRISPR-Guided Cytidine Deaminase Rescues Dystrophic Cardiomyopathy in Vivo. Circulation, 2021, 144, 1760-1776.	1.6	26
1923	Global quantification exposes abundant low-level off-target activity by base editors. Genome Research, 2021, 31, 2354-2361.	5.5	14

#	ARTICLE	IF	CITATIONS
1924	Efficient Multi-Sites Genome Editing and Plant Regeneration via Somatic Embryogenesis in Picea glauca. Frontiers in Plant Science, 2021, 12, 751891.	3.6	15
1925	Future Perspectives of Oral Delivery of Next Generation Therapies for Treatment of Skin Diseases. Pharmaceutics, 2021, 13, 1722.	4.5	4
1926	Genome editing of Corynebacterium glutamicum mediated with Cpf1 plus Ku/LigD. Biotechnology Letters, 2021, 43, 2273-2281.	2.2	3
1927	Prenatal Gene Therapy for Metabolic Disorders. Clinical Obstetrics and Gynecology, 2021, 64, 904-916.	1.1	1
1928	The Generic Risks and the Potential of SDN-1 Applications in Crop Plants. Plants, 2021, 10, 2259.	3.5	10
1929	The Functional Association of ACQOS/VICTR with Salt Stress Resistance in Arabidopsis thaliana Was Confirmed by CRISPR-Mediated Mutagenesis. International Journal of Molecular Sciences, 2021, 22, 11389.	4.1	17
1930	Efficient Breeding of Early-Maturing Rice Cultivar by Editing PHYC via CRISPR/Cas9. Rice, 2021, 14, 86.	4.0	11
1934	Improving CRISPR Gene Editing Efficiency by Proximal dCas9 Targeting. Bio-protocol, 2017, 7, e2432.	0.4	1
1942	Genetic profiling of the 5-top cancers among Arabian populations in relation to their genealogical landscape: towards establishment of gene therapy platform in the region. International Journal of Molecular Biology Open Access, 2018, 3, .	0.2	2
1945	Cas9ãf‹ãffã,«ãf¼ã,¼ã,'用ã¸ãŸã¸ªãf•ã,¿ãf¼ã,²ãffãf^ã®ãªã¸æ—°ã•—ã¸ã,²ãfŽãfç¨é›†æ³•ï¼^CRISPR Nickaseã,∙ã	,¹ ã ƒфãƒï¼	¦‰ã®é—‹ç™
1956	Clinical Genetics of Vitelliform Macular Dystrophy: An Asian Perspective. Essentials in Ophthalmology, 2019, , 255-271.	0.1	0
1957	Human mitochondrial genome surgery. Genes and Cells, 2018, 13, 32-37.	0.2	O
1958	Applications of Genome Engineering/Editing Tools in Plants. , 2019, , 143-165.		1
1960	Human Induced Pluripotent Stem Cells as Platform for Functional Examination of Cardiovascular Genetics in a Dish. Cardiac and Vascular Biology, 2019, , 341-357.	0.2	O
1961	Gene Modification of Medicinal Plant Germplasm Resources., 2019,, 145-190.		0
1962	CRISPR-based Technologies for Genome Engineering: Properties, Current Improvements and Applications in Medicine. RSC Drug Discovery Series, 2019, , 400-433.	0.3	1
1963	An Update on the Applications of CRISPR/Cas9 Technology in Tomato. Energy, Environment, and Sustainability, 2019, , 249-263.	1.0	0
1964	Gene Delivery in Lipid Research and Therapies. Methodist DeBakey Cardiovascular Journal, 2021, 15, 62.	1.0	5

#	Article	IF	CITATIONS
1969	Genome Editing by Programmable Nucleases and their applications in livestock species. Journal of Livestock Science, $2019,10,$.	0.1	1
1970	USE OF GENOME EDITING TECHNOLOGIES: ACHIEVEMENTS AND FURURE PROSPECTS. Journal Biomed, 2019, , 34-42.	0.3	1
1973	Current Status of New Plant Breeding Technologies and Crop Development. Han'guk Yukchong Hakhoe Chi, 2019, 51, 161-174.	0.5	3
1978	Biopharmaceutical molecules., 2020,, 31-68.		1
1985	Correction of RNA splicing defect in $\hat{1}^2$ ⁶⁵⁴-thalassemia mice using CRISPR/Cas9 gene-editing technology. Haematologica, 2022, 107, 1427-1437.	3.5	9
1986	Increasing the efficiency and precision of prime editing with guide RNA pairs. Nature Chemical Biology, 2022, 18, 29-37.	8.0	60
1987	Therapeutic Targeting of Alternative RNA Splicing in Gastrointestinal Malignancies and Other Cancers. International Journal of Molecular Sciences, 2021, 22, 11790.	4.1	13
1988	Target Identification of Small Molecules Using Large-Scale CRISPR–Cas Mutagenesis Scanning of Essential Genes. Methods in Molecular Biology, 2022, 2377, 43-67.	0.9	1
1989	The Role of APOE and NF-κB in Alzheimer's Disease. Immuno, 2021, 1, 391-399.	1.5	4
1990	Gene therapy for cystic fibrosis: new tools for precision medicine. Journal of Translational Medicine, 2021, 19, 452.	4.4	23
1991	Progress in Gene Editing Tools and Their Potential for Correcting Mutations Underlying Hearing and Vision Loss. Frontiers in Genome Editing, 2021, 3, 737632.	5.2	13
1993	The Next Generation of Molecular and Cellular Therapeutics for Inherited Retinal Disease. International Journal of Molecular Sciences, 2021, 22, 11542.	4.1	7
1994	Genome editing from Cas9 to IscB: Backwards and forwards towards new breakthroughs. Engineering Microbiology, 2021, 1, 100004.	4.7	1
1995	Disruption of HIV-1 co-receptors CCR5 and CXCR4 in primary human TÂcells and hematopoietic stem and progenitor cells using base editing. Molecular Therapy, 2022, 30, 130-144.	8.2	23
1997	Base editing technology. Frontiers of Agricultural Science and Engineering, 2020, 7, 227.	1.4	0
1998	TRPC3-Based Protein Signaling Complex as a Therapeutic Target of Myocardial Atrophy. Current Molecular Pharmacology, 2020, 14, 123-131.	1.5	7
1999	PROSPECTS FOR GENE EDITING USING CRISPR/CAS, OR HOW TO MASTER THE GENETIC SCISSORS Nobel Prize in Chemistry for 2020. Visnik Nacional Noi Academii Nauk Ukrai Ni, 2020, , 31-49.	0.3	0
2001	DENT-seq for genome-wide strand-specific identification of DNA single-strand break sites with single-nucleotide resolution. Genome Research, 2021, 31, 75-87.	5.5	6

#	ARTICLE	IF	Citations
2004	CRISPR-Cas orthologs and variants. , 2022, , 7-38.		0
2005	Conditional and tissue-specific approaches to dissect essential mechanisms in plant development. Current Opinion in Plant Biology, 2022, 65, 102119.	7.1	6
2008	Introduction to Genome Editing Techniques: Implications in Modern Agriculture. Concepts and Strategies in Plant Sciences, 2020, , 1-30.	0.5	1
2009	Search-and-replace editing of genetic information. Frontiers of Agricultural Science and Engineering, 2020, 7, 231.	1.4	0
2011	Gene Editing. , 2020, , 147-164.		0
2012	A brief review of genome editing technology for generating animal models. Frontiers of Agricultural Science and Engineering, 2020, 7, 123.	1.4	5
2014	Enhancing Abiotic Stress Tolerance in Plants Through Genome Editing. Concepts and Strategies in Plant Sciences, 2020, , 91-117.	0.5	0
2015	Super-precise CRISPR tool enhanced by enzyme engineering. Nature, 2020, , .	27.8	4
2021	Synthetic biology toolkit for engineering Cupriviadus necator H16 as a platform for CO2 valorization. Biotechnology for Biofuels, 2021, 14, 212.	6.2	14
2022	BEAR reveals that increased fidelity variants can successfully reduce the mismatch tolerance of adenine but not cytosine base editors. Nature Communications, 2021, 12, 6353.	12.8	10
2024	Gene Therapy for Cardiovascular Disease: Basic Research and Clinical Prospects. Frontiers in Cardiovascular Medicine, 2021, 8, 760140.	2.4	14
2025	CRISPR/Cas9-Based Genome Editing Platform for <i>Companilactobacillus crustorum</i> to Reveal the Molecular Mechanism of Its Probiotic Properties. Journal of Agricultural and Food Chemistry, 2021, 69, 15279-15289.	5. 2	6
2026	Functional pre-therapeutic evaluation by genome editing of variants of uncertain significance of essential tumor suppressor genes. Genome Medicine, 2021, 13, 174.	8.2	2
2027	Orthogonal CRISPR-Cas tools for genome editing, inhibition, and CRISPR recording in zebrafish embryos. Genetics, 2022, 220, .	2.9	11
2028	CRISPRâ€BETS: a baseâ€editing design tool for generating stop codons. Plant Biotechnology Journal, 2022, 20, 499-510.	8.3	21
2030	C-to-U RNA Editing: From Computational Detection to Experimental Validation. Methods in Molecular Biology, 2021, 2181, 51-67.	0.9	4
2042	Heritable Human Genome Editing: A Basic Biology Perspective. Trends in the Sciences, 2020, 25, 10_12-10_18.	0.0	0
2043	Yeast Still a Beast: Diverse Applications of CRISPR/Cas Editing Technology in. Yale Journal of Biology and Medicine, 2017, 90, 643-651.	0.2	11

#	Article	IF	Citations
2044	Genome Editing: Past, Present, and Future. Yale Journal of Biology and Medicine, 2017, 90, 653-659.	0.2	59
2045	Expression of RecA and cell-penetrating peptide (CPP) fusion protein in bacteria and in mammalian cells. International Journal of Biochemistry and Molecular Biology, 2018, 9, 1-10.	0.1	4
2046	Editing of Genomic TNFSF9 by CRISPR-Cas9 Can Be Followed by Re-Editing of Its Transcript. Molecules and Cells, 2018, 41, 917-922.	2.6	0
2047	Screening of CRISPR/Cas base editors to target the AMD high-risk Y402H complement factor H variant. Molecular Vision, 2019, 25, 174-182.	1.1	5
2048	Advances in Brain Cancer: Creating Monoallelic Single Point Mutation in IDH1 by Single Base Editing. Journal of Oncology Research and Therapy, 2019, 5, .	0.0	2
2052	Breeding Strategies of Garden Pea (Pisum sativum L.). , 2021, , 331-377.		2
2053	dCas9 binding inhibits the initiation of base excision repair in vitro. DNA Repair, 2022, 109, 103257.	2.8	5
2054	Better living through chemistry: CRISPR/Cas engineered T cells for cancer immunotherapy. Current Opinion in Immunology, 2022, 74, 76-84.	5.5	12
2055	Application of CRISPR–Cas9 in plant–plant growth-promoting rhizobacteria interactions for next Green Revolution. 3 Biotech, 2021, 11, 492.	2.2	3
2056	Using Multiplexed CRISPR/Cas9 for Suppression of Cotton Leaf Curl Virus. International Journal of Molecular Sciences, 2021, 22, 12543.	4.1	16
2057	A general theoretical framework to design base editors with reduced bystander effects. Nature Communications, 2021, 12, 6529.	12.8	10
2058	Intracellular RNase activity dampens zinc finger nuclease-mediated gene editing in hematopoietic stem and progenitor cells. Molecular Therapy - Methods and Clinical Development, 2022, 24, 30-39.	4.1	4
2059	In Silico Analysis of Pathogenic CRB1 Single Nucleotide Variants and Their Amenability to Base Editing as a Potential Lead for Therapeutic Intervention. Genes, 2021, 12, 1908.	2.4	4
2060	CRISPR-SID: Identifying EZH2 as a druggable target for desmoid tumors via inÂvivo dependency mapping. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
2062	Engineering a PAM-flexible SpdCas9 variant as a universal gene repressor. Nature Communications, 2021, 12, 6916.	12.8	17
2063	Gene editing with CRISPR-Cas12a guides possessing ribose-modified pseudoknot handles. Nature Communications, 2021, 12, 6591.	12.8	11
2064	Applications of CRISPR-Cas Technologies to Proteomics. Genes, 2021, 12, 1790.	2.4	5
2065	CRISPR-Cas Technology: Emerging Applications in Clinical Microbiology and Infectious Diseases. Pharmaceuticals, 2021, 14, 1171.	3.8	11

#	Article	IF	CITATIONS
2066	Discovering new biology with drug-resistance alleles. Nature Chemical Biology, 2021, 17, 1219-1229.	8.0	11
2067	High expression of uracil DNA glycosylase determines C to T substitution in human pluripotent stem cells. Molecular Therapy - Nucleic Acids, 2022, 27, 175-183.	5.1	12
2068	Controlling pathogenic risks of water treatment biotechnologies at the source by genetic editing means. Environmental Microbiology, 2021, 23, 7578-7590.	3.8	9
2069	Prime Editing for Inherited Retinal Diseases. Frontiers in Genome Editing, 2021, 3, 775330.	5.2	17
2070	Association of PCSK9 Variants With the Risk of Atherosclerotic Cardiovascular Disease and Variable Responses to PCSK9 Inhibitor Therapy. Current Problems in Cardiology, 2022, 47, 101043.	2.4	10
2071	Base Editing of Somatic Cells Using CRISPR–Cas9 in <i>Drosophila</i>). CRISPR Journal, 2021, , .	2.9	6
2072	Genetic therapies for neurological disorders. Human Genetics, 2022, 141, 1085-1091.	3.8	2
2073	Current technological interventions and applications of CRISPR/Cas for crop improvement. Molecular Biology Reports, 2022, 49, 5751-5770.	2.3	6
2075	Personalized Medicine to Improve Treatment of Dopa-Responsive Dystoniaâ€"A Focus on Tyrosine Hydroxylase Deficiency. Journal of Personalized Medicine, 2021, 11, 1186.	2.5	6
2076	A Critical Review: Recent Advancements in the Use of CRISPR/Cas9 Technology to Enhance Crops and Alleviate Global Food Crises. Current Issues in Molecular Biology, 2021, 43, 1950-1976.	2.4	48
2077	CRISPR/Cas Technologies and Their Applications in Escherichia coli. Frontiers in Bioengineering and Biotechnology, 2021, 9, 762676.	4.1	9
2078	A split cytosine deaminase architecture enables robust inducible base editing. FASEB Journal, 2021, 35, e22045.	0.5	7
2079	Applications of Genome Editing Tools in Stem Cells Towards Regenerative Medicine: An Update. Current Stem Cell Research and Therapy, 2022, 17, 267-279.	1.3	4
2080	Simultaneous high-efficiency base editing and reprogramming of patient fibroblasts. Stem Cell Reports, 2021, 16, 3064-3075.	4.8	8
2081	Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Frontiers in Aging Neuroscience, 2021, 13, 755392.	3.4	5
2082	CRISPER/CAS: A potential tool for genomes editing. Biomedical Letters, 2021, 7, 122-129.	0.3	0
2083	Enhancement of Agricultural Crops: A CRISPR/Cas9-Based Approach. , 0, , .		0
2084	Modulating CRISPR/Cas9 genome-editing activity by small molecules. Drug Discovery Today, 2022, 27, 951-966.	6.4	12

#	Article	IF	CITATIONS
2085	Generation and characterization of stable pig pregastrulation epiblast stem cell lines. Cell Research, 2022, 32, 383-400.	12.0	48
2086	Molecular Mechanism of the Cytosine CRISPR Base Editing Process and the Roles of Translesion DNA Polymerases. ACS Synthetic Biology, 2021, 10, 3353-3358.	3.8	10
2087	Genetic Code Expansion System for Tight Control of Gene Expression in Bombyx mori Cell Lines. Insects, 2021, 12, 1081.	2.2	1
2088	Development of Lipid Nanoparticles for the Delivery of Macromolecules Based on the Molecular Design of pH-Sensitive Cationic Lipids. Chemical and Pharmaceutical Bulletin, 2021, 69, 1141-1159.	1.3	14
2089	The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy. Journal of Advanced Research, 2022, 40, 135-152.	9.5	16
2090	Sequence motifs and prediction model of GBE editing outcomes based on target library analysis and machine learning. Journal of Genetics and Genomics, 2022, 49, 254-257.	3.9	6
2091	The Miniature CRISPR-Cas12m Effector Binds DNA To Block Transcription. SSRN Electronic Journal, 0, , .	0.4	0
2092	A Protonâ€Activatable DNAâ€Based Nanosystem Enables Coâ€Delivery of CRISPR/Cas9 and DNAzyme for Combined Gene Therapy. Angewandte Chemie - International Edition, 2022, 61, .	13.8	61
2093	The application of new breeding technology based on gene editing in pig industry — A review. Animal Bioscience, 2022, 35, 791-803.	2.0	8
2094	Base Editing of Human Pluripotent Stem Cells for Modeling Long QT Syndrome. Stem Cell Reviews and Reports, 2022, 18, 1434-1443.	3.8	4
2095	Knockout of circRNAs by base editing back-splice sites of circularized exons. Genome Biology, 2022, 23, 16.	8.8	16
2096	PhieABEs: a PAMâ€less/free highâ€efficiency adenine base editor toolbox with wide target scope in plants. Plant Biotechnology Journal, 2022, 20, 934-943.	8.3	40
2097	Beyond Genome Editing: CRISPR Approaches. , 2022, , 187-218.		2
2098	Moving toward genome-editing therapies for cardiovascular diseases. Journal of Clinical Investigation, 2022, 132, .	8.2	22
2099	A New Era in Herbicide-Tolerant Crops Development by Targeted Genome Editing. ACS Agricultural Science and Technology, 2022, 2, 184-191.	2.3	4
2100	A Protonâ€Activatable DNAâ€Based Nanosystem Enables Coâ€Delivery of CRISPR/Cas9 and DNAzyme for Combined Gene Therapy. Angewandte Chemie, 2022, 134, e202116569.	2.0	3
2101	Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. Journal of Controlled Release, 2022, 342, 345-361.	9.9	82
2102	Review of gene therapies for age-related macular degeneration. Eye, 2022, 36, 303-311.	2.1	38

#	Article	IF	CITATIONS
2103	CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells. Advanced Drug Delivery Reviews, 2022, 181, 114087.	13.7	18
2104	Prime Editing in the model plant Physcomitrium patens and its potential in the tetraploid potato. Plant Science, 2022, 316, 111162.	3.6	32
2105	Mutation of PD-1 immune receptor tyrosine-based switch motif (ITSM) enhances the antitumor activity of cytotoxic T cells. Translational Cancer Research, 2020, 9, 6811-6819.	1.0	5
2106	Update of Regulatory Options of New Breeding Techniques and Biosafety Approaches among Selected Countries: A Review. Asian Journal of Biotechnology and Bioresource Technology, 0, , 18-35.	0.1	1
2107	Using Genome Editing for Alzheimer's Disease Therapy: from Experiment to Clinic. Neurochemical Journal, 2021, 15, 367-375.	0.5	1
2108	CRISPR-Cas9 Delivery with the Ribonucleoprotein Complexes Increased EGFP Editing Efficiency. Neurochemical Journal, 2021, 15, 390-397.	0.5	0
2109	Genome Editing Technology for the Study and Correction of Neurodegenerative Diseases. Neurochemical Journal, 2021, 15, 339-352.	0.5	1
2110	Genome editing in cultured fishes. CABI Agriculture and Bioscience, 2021, 2, .	2.4	7
2111	Human Induced Pluripotent Stem Cell as a Disease Modeling and Drug Development Platformâ€"A Cardiac Perspective. Cells, 2021, 10, 3483.	4.1	7
2112	Green Fluorescent Protein Tagged Polycistronic Reporter System Reveals Functional Editing Characteristics of CRISPR-Cas. CRISPR Journal, 2022, 5, 254-263.	2.9	1
2114	Methodologies in visualizing the activation of CRISPR/Cas: The last mile in developing CRISPR-Based diagnostics and biosensing – A review. Analytica Chimica Acta, 2022, 1205, 339541.	5.4	20
2115	Expanding the plant genome editing toolbox with recently developed CRISPR–Cas systems. Plant Physiology, 2022, 188, 1825-1837.	4.8	39
2116	Updates on CRISPR-based gene editing in HIV-1/AIDS therapy. Virologica Sinica, 2022, 37, 1-10.	3.0	8
2117	Efficient Genome Editing in Setaria italica Using CRISPR/Cas9 and Base Editors. Frontiers in Plant Science, 2021, 12, 815946.	3.6	13
2119	The CRISPR-Cas toolbox and gene editing technologies. Molecular Cell, 2022, 82, 333-347.	9.7	151
2120	Mapping the Morphological Landscape of Oligomeric Diâ€block Peptide–Polymer Amphiphiles**. Angewandte Chemie, 0, , .	2.0	O
2121	Parallel functional assessment of m6A sites in human endodermal differentiation with base editor screens. Nature Communications, 2022, 13, 478.	12.8	8
2123	The Impact of Fasciation on Maize Inflorescence Architecture. Journal of Plant Biology, 2022, 65, 87-98.	2.1	6

#	Article	IF	CITATIONS
2124	Gene Therapy Using Nanocarriers for Pancreatic Ductal Adenocarcinoma: Applications and Challenges in Cancer Therapeutics. Pharmaceutics, 2022, 14, 137.	4.5	4
2125	From Genome Sequencing to CRISPR-Based Genome Editing for Climate-Resilient Forest Trees. International Journal of Molecular Sciences, 2022, 23, 966.	4.1	16
2126	One-step base editing in multiple genes by direct embryo injection for pig trait improvement. Science China Life Sciences, 2022, 65, 739-752.	4.9	14
2127	Efficient generation of targeted point mutations in the Brassica oleracea var. botrytis genome via a modified CRISPR/Cas9 system. Horticultural Plant Journal, 2022, 8, 527-530.	5.0	9
2128	Highly Efficient Genome Editing in Plant Protoplasts by Ribonucleoprotein Delivery of CRISPR-Cas12a Nucleases. Frontiers in Genome Editing, 2022, 4, 780238.	5. 2	21
2129	An update on precision genome editing by homology-directed repair in plants. Plant Physiology, 2022, 188, 1780-1794.	4.8	18
2130	Mapping the Morphological Landscape of Oligomeric Diâ€block Peptide–Polymer Amphiphiles**. Angewandte Chemie - International Edition, 2022, , .	13.8	3
2131	High-throughput methods for genome editing: the more the better. Plant Physiology, 2022, 188, 1731-1745.	4.8	10
2132	Targeting Cancer with CRISPR/Cas9-Based Therapy. International Journal of Molecular Sciences, 2022, 23, 573.	4.1	18
2134	Targeted therapies in genetic dilated and hypertrophic cardiomyopathies: from molecular mechanisms to therapeutic targets. A position paper from the Heart Failure Association (HFA) and the Working Group on Myocardial Function of the European Society of Cardiology (ESC). European Journal of Heart Failure. 2022, 24, 406-420.	7.1	22
2135	The Role of Recombinant AAV in Precise Genome Editing. Frontiers in Genome Editing, 2021, 3, 799722.	5.2	24
2136	Engineered virus-like particles for efficient inÂvivo delivery of therapeutic proteins. Cell, 2022, 185, 250-265.e16.	28.9	251
2137	High-throughput navigation of the sequence space. , 2022, , 123-146.		0
2138	The application of iPSC-derived kidney organoids and genome editing in kidney disease modeling. , 2022, , 111-136.		2
2139	UdgX-Mediated Uracil Sequencing at Single-Nucleotide Resolution. Journal of the American Chemical Society, 2022, 144, 1323-1331.	13.7	8
2140	CRISPR-based genome editing through the lens of DNA repair. Molecular Cell, 2022, 82, 348-388.	9.7	90
2141	Classification of CRISPR/Cas system and its application in tomato breeding. Theoretical and Applied Genetics, 2022, 135, 367-387.	3.6	29
2142	Crop Quality Improvement Through Genome Editing Strategy. Frontiers in Genome Editing, 2021, 3, 819687.	5.2	3

#	Article	IF	CITATIONS
2143	DAJIN enables multiplex genotyping to simultaneously validate intended and unintended target genome editing outcomes. PLoS Biology, 2022, 20, e3001507.	5.6	9
2144	Applications of CRISPR/Cas9 technology for modification of the plant genome. Genetica, 2022, 150, 1-12.	1.1	8
2145	Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases. Nature Communications, 2022, 13, 366.	12.8	43
2146	Optophysiology: Illuminating cell physiology with optogenetics. Physiological Reviews, 2022, 102, 1263-1325.	28.8	51
2147	Strategies for Enhancing the Homology-Directed Repair Efficiency of CRISPR-Cas Systems. CRISPR Journal, 2022, 5, 7-18.	2.9	8
2148	Toward Gene Transfer Nanoparticles as Therapeutics. Advanced Healthcare Materials, 2022, 11, e2102145.	7.6	17
2149	Advances and application of CRISPR-Cas systems. , 2022, , 331-348.		0
2150	Application of CRISPR/Cas system in iPSC-based disease model of hereditary deafness. , 2022, , 225-245.		0
2151	Massively parallel phenotyping of coding variants in cancer with Perturb-seq. Nature Biotechnology, 2022, 40, 896-905.	17.5	44
2152	Advances and prospects of genetic mapping of Verticillium wilt resistance in cotton. Journal of Cotton Research, 2022, 5, .	2.5	2
2153	In Vivo Rapid Investigation of CRISPR-Based Base Editing Components in Escherichia coli (IRI-CCE): A Platform for Evaluating Base Editing Tools and Their Components. International Journal of Molecular Sciences, 2022, 23, 1145.	4.1	17
2154	New Frontiers: Precise Editing of Allergen Genes Using CRISPR. Frontiers in Allergy, 2021, 2, 821107.	2.8	7
2155	Basic Principles and Clinical Applications of CRISPR-Based Genome Editing. Yonsei Medical Journal, 2022, 63, 105.	2.2	11
2156	Bacterial Retrons Enable Precise Gene Editing in Human Cells. CRISPR Journal, 2022, 5, 31-39.	2.9	22
2157	Highly efficient A-to-G base editing by ABE8.17 in rabbits. Molecular Therapy - Nucleic Acids, 2022, 27, 1156-1163.	5.1	4
2158	Inhibition of base editors with anti-deaminases derived from viruses. Nature Communications, 2022, 13, 597.	12.8	5
2159	CRISPR-based therapeutics: current challenges and future applications. Trends in Pharmacological Sciences, 2022, 43, 151-161.	8.7	32
2160	Evaluation of cytosine base editing and adenine base editing as a potential treatment for alpha-1 antitrypsin deficiency. Molecular Therapy, 2022, 30, 1396-1406.	8.2	13

#	Article	IF	CITATIONS
2161	A universal strategy for AAV delivery of base editors to correct genetic point mutations in neonatal PKU mice. Molecular Therapy - Methods and Clinical Development, 2022, 24, 230-240.	4.1	13
2164	Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. Nature Communications, 2022, 13, 760.	12.8	74
2165	Recent advances in lipid nanoparticles for delivery of nucleic acid, mRNA, and gene editing-based therapeutics. Drug Metabolism and Pharmacokinetics, 2022, 44, 100450.	2.2	33
2166	Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin. ELife, 2022, 11, .	6.0	29
2168	The use of new CRISPR tools in cardiovascular research and medicine. Nature Reviews Cardiology, 2022, 19, 505-521.	13.7	21
2169	dCas9-VPR-mediated transcriptional activation of functionally equivalent genes for gene therapy. Nature Protocols, 2022, 17, 781-818.	12.0	11
2170	Molecular evolution and functional modification of plant miRNAs with CRISPR. Trends in Plant Science, 2022, 27, 890-907.	8.8	27
2171	CRISPR Therapeutics for Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2022, 23, 1832.	4.1	14
2172	Insertion of the Icelandic Mutation (A673T) by Prime Editing: A Potential Preventive Treatment for Familial and Sporadic Alzheimer's Disease. CRISPR Journal, 2022, 5, 109-122.	2.9	13
2173	The potential of mitochondrial genome engineering. Nature Reviews Genetics, 2022, 23, 199-214.	16.3	59
2174	Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nature Biotechnology, 2022, 40, 731-740.	17.5	230
2175	Feel That Base: An Interview with Base Editing Pioneer David Liu. , 2021, 3, 187-196.		0
2177	Cas9-Mediated Targeted Mutagenesis in Plants. Methods in Molecular Biology, 2022, 2379, 1-26.	0.9	5
2178	Reinventing positive-strand RNA virus reverse genetics. Advances in Virus Research, 2022, , 1-29.	2.1	4
2180	A Method to Reduce off-Targets in CRISPR/Cas9 System in Plants. Methods in Molecular Biology, 2022, 2408, 317-324.	0.9	2
2185	Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Molecular Cancer, 2022, 21, 57.	19.2	85
2186	CRISPR Genome Editing: Into the Second Decade. , 2022, 1, 37-39.		1
2187	Design of Acetohydroxyacid Synthase Herbicide-Resistant Germplasm through MB-QSAR and CRISPR/Cas9-Mediated Base-Editing Approaches. Journal of Agricultural and Food Chemistry, 2022, 70, 2817-2824.	5.2	4

#	Article	IF	CITATIONS
2188	Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants. Nature Biotechnology, 2022, 40, 862-873.	17.5	44
2189	PEAR, a flexible fluorescent reporter for the identification and enrichment of successfully prime edited cells. ELife, 2022, 11, .	6.0	22
2190	Splicing factor arginine/serineâ€rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosomeâ€based cellular communication. Clinical and Translational Medicine, 2022, 12, e684.	4.0	9
2191	CRISPR/Cas-Mediated Resistance against Viruses in Plants. International Journal of Molecular Sciences, 2022, 23, 2303.	4.1	19
2192	Development of Whole Genomeâ€Scale Base Editing Toolbox to Promote Efficiency of Extracellular Electron Transfer in <i>Shewanella oneidensis</i> /i> MRâ€1. Advanced Biology, 2022, 6, e2101296.	2.5	6
2193	Ligation-assisted homologous recombination enables precise genome editing by deploying both MMEJ and HDR. Nucleic Acids Research, 2022, 50, e62-e62.	14.5	7
2194	Recent Advances in the Production of Genome-Edited Rats. International Journal of Molecular Sciences, 2022, 23, 2548.	4.1	10
2195	Base Editors for Citrus Gene Editing. Frontiers in Genome Editing, 2022, 4, 852867.	5. 2	22
2197	Efficient silencing of the multicopy DUX4 gene by ABE-mediated start codon mutation in human embryos. Journal of Genetics and Genomics, 2022, 49, 982-985.	3.9	2
2198	CRISPR-Cas9 Gene Therapy for Duchenne Muscular Dystrophy. Neurotherapeutics, 2022, 19, 931-941.	4.4	17
2199	CRISPR in cancer biology and therapy. Nature Reviews Cancer, 2022, 22, 259-279.	28.4	157
2200	Application of the CRISPR/Cas9 System to Study Regulation Pathways of the Cellular Immune Response to Influenza Virus. Viruses, 2022, 14, 437.	3.3	3
2201	å^©ç""CRISPR/Cas9基å›ç¼−辑技术治ç−−β-åœ°ä¸æµ∙è′«è¡€çš"最æ−°è¿›å±•. Chinese Scier	nc@ B ulletii	ո, 2 022, , .
2202	Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair <i>In Vitro</i> and <i>In Vivo</i> CRISPR Journal, 2022, 5, 40-52.	2.9	1
2203	Efficient gene targeting in soybean using <i>Ochrobactrum haywardense</i> marker-free donor template. Plant Physiology, 2022, 189, 585-594.	4.8	9
2204	Genome editing via non-viral delivery platforms: current progress in personalized cancer therapy. Molecular Cancer, 2022, 21, 71.	19.2	15
2205	Imperfect guide-RNA (igRNA) enables CRISPR single-base editing with ABE and CBE. Nucleic Acids Research, 2022, 50, 4161-4170.	14.5	13
2206	Modeling genetic diseases in nonhuman primates through embryonic and germline modification: Considerations and challenges. Science Translational Medicine, 2022, 14, eabf4879.	12.4	7

#	Article	IF	CITATIONS
2207	Modulating DNA Repair Pathways to Diversify Genomic Alterations in Saccharomyces cerevisiae. Microbiology Spectrum, 2022, , e0232621.	3.0	1
2209	Functions and consequences of AID/APOBEC-mediated DNA and RNA deamination. Nature Reviews Genetics, 2022, 23, 505-518.	16.3	103
2213	Phage peptides mediate precision base editing with focused targeting window. Nature Communications, 2022, 13, 1662.	12.8	4
2214	CRISPR-Cas gene editing technology and its application prospect in medicinal plants. Chinese Medicine, 2022, 17, 33.	4.0	19
2215	Targeting DNA polymerase to DNA double-strand breaks reduces DNA deletion size and increases templated insertions generated by CRISPR/Cas9. Nucleic Acids Research, 2022, 50, 3944-3957.	14.5	12
2216	Recent Advances in the Modeling of Alzheimer's Disease. Frontiers in Neuroscience, 2022, 16, 807473.	2.8	55
2218	Bioorthogonally Activatable Base Editing for On-Demand Pyroptosis. Journal of the American Chemical Society, 2022, 144, 5411-5417.	13.7	18
2220	Engineered Campylobacter jejuni Cas9 variant with enhanced activity and broader targeting range. Communications Biology, 2022, 5, 211.	4.4	19
2221	Elimination of Cas9-dependent off-targeting of adenine base editor by using TALE to separately guide deaminase to target sites. Cell Discovery, 2022, 8, 28.	6.7	6
2222	Curative Cell and Gene Therapy for Osteogenesis Imperfecta. Journal of Bone and Mineral Research, 2020, 37, 826-836.	2.8	15
2223	A Taxonomic and Phylogenetic Classification of Diverse Base Editors. CRISPR Journal, 2022, , .	2.9	1
2224	In vivo prime editing of a metabolic liver disease in mice. Science Translational Medicine, 2022, 14, eabl9238.	12.4	71
2225	Benchmarking of SpCas9 variants enables deeper base editor screens of BRCA1 and BCL2. Nature Communications, 2022, 13, 1318.	12.8	25
2226	The current toolbox for APOBEC drug discovery. Trends in Pharmacological Sciences, 2022, 43, 362-377.	8.7	12
2227	Increasing the Targeting Scope of CRISPR Base Editing System Beyond NGG. CRISPR Journal, 2022, 5, 187-202.	2.9	12
2228	Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Molecular Cancer, 2022, 21, 78.	19.2	88
2231	Development and Optimization of CRISPR Prime Editing System in Photoautotrophic Cells. Molecules, 2022, 27, 1758.	3.8	4
2233	Efficient silencing of hepatitis B virus S gene through CRISPRâ€mediated base editing. Hepatology Communications, 2022, 6, 1652-1663.	4.3	14

#	Article	IF	CITATIONS
2234	CRISPR/Cas gene editing in the human germline. Seminars in Cell and Developmental Biology, 2022, 131, 93-107.	5.0	8
2235	New Advances of CRISPR/Cas9 Technique and its Application in Disease Treatment and Medicinal Plants Research. Current Pharmaceutical Biotechnology, 2022, 23, 1678-1690.	1.6	1
2236	Application of CRISPR/Cas9 in Rapeseed for Gene Function Research and Genetic Improvement. Agronomy, 2022, 12, 824.	3.0	7
2237	Efficient C-to-G Base Editing with Improved Target Compatibility Using Engineered Deaminase–nCas9 Fusions. CRISPR Journal, 2022, 5, 389-396.	2.9	12
2238	Multiple isogenic GNE-myopathy modeling with mutation specific phenotypes from human pluripotent stem cells by base editors. Biomaterials, 2022, 282, 121419.	11.4	11
2239	Principles and Applications of CRISPR Toolkit in Virus Manipulation, Diagnosis, and Virus-Host Interactions. Cells, 2022, 11, 999.	4.1	3
2240	Two Compact Cas9 Ortholog-Based Cytosine Base Editors Expand the DNA Targeting Scope and Applications In Vitro and In Vivo. Frontiers in Cell and Developmental Biology, 2022, 10, 809922.	3.7	2
2242	CRISPR–Cas9 gene editing induced complex on-target outcomes in human cells. Experimental Hematology, 2022, 110, 13-19.	0.4	6
2243	Targeted introduction of heritable point mutations into the plant mitochondrial genome. Nature Plants, 2022, 8, 245-256.	9.3	25
2244	Modified Gene Editing Systems: Diverse Bioengineering Tools and Crop Improvement. Frontiers in Plant Science, 2022, 13, 847169.	3.6	8
2245	Generation of Transfer-DNA-Free Base-Edited Citrus Plants. Frontiers in Plant Science, 2022, 13, 835282.	3.6	14
2246	Predicting base editing outcomes using position-specific sequence determinants. Nucleic Acids Research, 2022, 50, 3551-3564.	14.5	15
2248	Nanoscale delivery platforms for RNA therapeutics: Challenges and the current state of the art. Med, 2022, 3, 167-187.	4.4	7
2249	Swiftly Evolving CRISPR Genome Editing: A Revolution in Genetic Engineering for Developing Stress-Resilient Crops. Current Chinese Science, 2022, 2, 382-399.	0.5	2
2250	Combined Theoretical, Bioinformatic, and Biochemical Analyses of RNA Editing by Adenine Base Editors. CRISPR Journal, 2022, 5, 294-310.	2.9	4
2251	The heat is on: a simple method to increase genome editing efficiency in plants. BMC Plant Biology, 2022, 22, 142.	3.6	18
2252	Target residence of Cas9: challenges and opportunities in genome editing. Genome Instability & Disease, 2022, 3, 57-69.	1.1	1
2254	Gene Editing for Inherited Red Blood Cell Diseases. Frontiers in Physiology, 2022, 13, 848261.	2.8	5

#	Article	IF	CITATIONS
2255	Selective Xi reactivation and alternative methods to restore MECP2 function in Rett syndrome. Trends in Genetics, 2022, 38, 920-943.	6.7	13
2256	Genome Engineering Technology for Durable Disease Resistance: Recent Progress and Future Outlooks for Sustainable Agriculture. Frontiers in Plant Science, 2022, 13, 860281.	3.6	12
2257	A cytosine base editor toolkit with varying activity windows and target scopes for versatile gene manipulation in plants. Nucleic Acids Research, 2022, 50, 3565-3580.	14.5	21
2259	Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing. Nature Communications, 2022, 13, 1204.	12.8	40
2260	The Base-Editing Enzyme APOBEC3A Catalyzes Cytosine Deamination in RNA with Low Proficiency and High Selectivity. ACS Chemical Biology, 2022, 17, 629-636.	3.4	10
2261	Current developments in gene therapy for epidermolysis bullosa. Expert Opinion on Biological Therapy, 2022, 22, 1137-1150.	3.1	7
2262	KPT330 improves Cas9 precision genome- and base-editing by selectively regulating mRNA nuclear export. Communications Biology, 2022, 5, 237.	4.4	4
2263	Technical Evaluation of Commercial Sperm DFI Quality Control Products in SCSA Testing. Journal of Healthcare Engineering, 2022, 2022, 1-14.	1.9	4
2264	Genetic Engineering Technologies for Improving Crop Yield and Quality. Agronomy, 2022, 12, 759.	3.0	5
2266	Base-edited cynomolgus monkeys mimic core symptoms of STXBP1 encephalopathy. Molecular Therapy, 2022, 30, 2163-2175.	8.2	8
2267	CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA. Nature Biotechnology, 2022, 40, 1378-1387.	17.5	81
2268	Adenine Base Editing System for <i>Pseudomonas</i> and Prediction Workflow for Protein Dysfunction via ABE. ACS Synthetic Biology, 2022, 11, 1650-1657.	3.8	7
2269	Genome Editing Technology and Its Application to Metabolic Engineering in Rice. Rice, 2022, 15, 21.	4.0	7
2270	Donor T cells for CAR T cell therapy. Biomarker Research, 2022, 10, 14.	6.8	9
2271	In vivo base editing rescues cone photoreceptors in a mouse model of early-onset inherited retinal degeneration. Nature Communications, 2022, 13, 1830.	12.8	42
2272	From pharmacogenetics to pharmaco-omics: Milestones and future directions. Human Genetics and Genomics Advances, 2022, 3, 100100.	1.7	14
2273	Poly(beta-amino ester)-Based Nanoparticles Enable Nonviral Delivery of Base Editors for Targeted Tumor Gene Editing. Biomacromolecules, 2022, 23, 2116-2125.	5.4	10
2274	Development and Application of CRISPR-Cas Based Tools. Frontiers in Cell and Developmental Biology, 2022, 10, 834646.	3.7	13

#	Article	IF	CITATIONS
2275	CRISPR and cardiovascular diseases. Cardiovascular Research, 2023, 119, 79-93.	3.8	10
2276	Enhancement of prime editing via xrRNA motif-joined pegRNA. Nature Communications, 2022, 13, 1856.	12.8	51
2277	Reconstructed glycosylase base editors GBE2.0 with enhanced C-to-G base editing efficiency and purity. Molecular Therapy, 2022, 30, 2452-2463.	8.2	17
2279	Controlling <scp>CRISPRâ€Cas9</scp> by guide <scp>RNA</scp> engineering. Wiley Interdisciplinary Reviews RNA, 2023, 14, e1731.	6.4	6
2280	Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction. ELife, 2022, 11 , .	6.0	12
2281	Latest biotechnology tools and targets for improving abiotic stress tolerance in protein legumes. Environmental and Experimental Botany, 2022, 197, 104824.	4.2	13
2282	CRISPR/Cas-based Human T cell Engineering: Basic Research and Clinical Application. Immunology Letters, 2022, 245, 18-28.	2.5	5
2283	mRNA-mediated delivery of gene editing tools to human primary muscle stem cells. Molecular Therapy - Nucleic Acids, 2022, 28, 47-57.	5.1	14
2284	SgRNA engineering for improved genome editing and expanded functional assays. Current Opinion in Biotechnology, 2022, 75, 102697.	6.6	12
2285	Hairy CRISPR: Genome Editing in Plants Using Hairy Root Transformation. Plants, 2022, 11, 51.	3.5	26
2286	Improvement of base editors and prime editors advances precision genome engineering in plants. Plant Physiology, 2022, 188, 1795-1810.	4.8	24
2287	Efficient Generation of P53 Biallelic Mutations in Diannan Miniature Pigs Using RNA-Guided Base Editing. Life, 2021, 11, 1417.	2.4	3
2289	BVES is a novel interactor of ANO5 and regulates myoblast differentiation. Cell and Bioscience, 2021, 11, 222.	4.8	6
2290	Application of CRISPR/Cas9 in Alzheimer's Disease. Frontiers in Neuroscience, 2021, 15, 803894.	2.8	17
2291	Improving CRISPR tools by elucidating DNA repair. Nature Biotechnology, 2021, 39, 1512-1514.	17.5	1
2292	Compact SchCas9 Recognizes the Simple NNGR PAM. Advanced Science, 2022, 9, e2104789.	11.2	13
2293	Development of a genome-targeting mutator for the adaptive evolution of microbial cells. Nucleic Acids Research, 2022, 50, e38-e38.	14.5	7
2294	Current topics in Epidermolysis bullosa: Pathophysiology and therapeutic challenges. Journal of Dermatological Science, 2021, 104, 164-176.	1.9	10

#	Article	IF	CITATIONS
2295	Programmable Base Editing in Mycobacterium tuberculosis Using an Engineered CRISPR RNA-Guided Cytidine Deaminase. Frontiers in Genome Editing, 2021, 3, 734436.	5.2	10
2296	The Potential of CRISPR/Cas9 Gene Editing as a Treatment Strategy for Inherited Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 699597.	3.7	19
2297	Perspectives on the Role of APOE4 as a Therapeutic Target for Alzheimer's Disease. Journal of Alzheimer's Disease Reports, 2021, 5, 899-910.	2.2	2
2298	Targeted Gene Knockouts by Protoplast Transformation in the Moss Physcomitrella patens. Frontiers in Genome Editing, 2021, 3, 719087.	5.2	2
2299	Recent Progress and Future Prospective in HBV Cure by CRISPR/Cas. Viruses, 2022, 14, 4.	3.3	18
2300	Genetic and Covalent Protein Modification Strategies to Facilitate Intracellular Delivery. Biomacromolecules, 2021, 22, 4883-4904.	5.4	21
2301	Adaptation Strategies to Improve the Resistance of Oilseed Crops to Heat Stress Under a Changing Climate: An Overview. Frontiers in Plant Science, 2021, 12, 767150.	3.6	30
2302	Clustered regularly interspaced short palindromic repeats, a glimpse– impacts in molecular biology, trends and highlights. Hormone Molecular Biology and Clinical Investigation, 2022, 43, 105-112.	0.7	0
2303	Target-AID-Mediated Multiplex Base Editing in Porcine Fibroblasts. Animals, 2021, 11, 3570.	2.3	2
2304	Gene editing and its applications in biomedicine. Science China Life Sciences, 2022, 65, 660-700.	4.9	20
2305	Sulfur atom modification on thymine improves the specificity and sensitivity of DNA polymerization and detection. Analyst, The, 2022, , .	3.5	0
2306	The use of base editing technology to characterize single nucleotide variants. Computational and Structural Biotechnology Journal, 2022, 20, 1670-1680.	4.1	4
2307	Development of an efficient and precise adenine base editor (ABE) with expanded target range in allotetraploid cotton (Gossypium hirsutum). BMC Biology, 2022, 20, 45.	3.8	33
2308	Expansion of the prime editing modality with Cas9 from Francisella novicida. Genome Biology, 2022, 23, 92.	8.8	13
2309	Efficient multi-nucleotide deletions using deaminase-Cas9 fusions in human cells. Journal of Genetics and Genomics, 2022, , .	3.9	0
2310	Application of CRISPR-Cas9 System to Study Biological Barriers to Drug Delivery. Pharmaceutics, 2022, 14, 894.	4.5	2
2313	Eliminating predictable DNA off-target effects of cytosine base editor by using dual guiders including sgRNA and TALE. Molecular Therapy, 2022, 30, 2443-2451.	8.2	7
2314	Comparison of the efficiency and precision of Base editor and CRISPR/Cas9 for inducing defined point mutation (S395F) in ovine embryos. Reproduction in Domestic Animals, 2022, 57, 829-838.	1.4	0

#	Article	IF	CITATIONS
2315	WT-PE: Prime editing with nuclease wild-type Cas9 enables versatile large-scale genome editing. Signal Transduction and Targeted Therapy, 2022, 7, 108.	17.1	25
2317	Therapeutic homology-independent targeted integration in retina and liver. Nature Communications, 2022, 13, 1963.	12.8	14
2318	Phosphonoacetate Modifications Enhance the Stability and Editing Yields of Guide RNAs for Cas9 Editors. Biochemistry, 2023, 62, 3512-3520.	2.5	2
2319	High-throughput functional evaluation of human cancer-associated mutations using base editors. Nature Biotechnology, 2022, 40, 874-884.	17.5	32
2320	CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement. International Journal of Molecular Sciences, 2022, 23, 4454.	4.1	14
2321	Insights to improve the plant nutrient transport by CRISPR/Cas system. Biotechnology Advances, 2022, 59, 107963.	11.7	22
2358	Recent advancements in CRISPR/Cas technology for accelerated crop improvement. Planta, 2022, 255, 109.	3.2	9
2359	Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduction and Targeted Therapy, 2022, 7, 134.	17.1	18
2360	Enhancing prime editing via inhibition of mismatch repair pathway. Molecular Biomedicine, 2022, 3, 7.	4.4	4
2364	Research Progress on Cloning and Function of Xa Genes Against Rice Bacterial Blight. Frontiers in Plant Science, 2022, 13, 847199.	3.6	9
2365	High-Throughput Gene Mutagenesis Screening Using Base Editing. Methods in Molecular Biology, 2022, 2477, 331-348.	0.9	0
2367	CRISPR/Cas genome editing in grapevine: recent advances, challenges and future prospects. Fruit Research, 2022, 2, 1-9.	2.0	10
2368	CRISPR-Cas9 library screening approach for anti-cancer drug discovery: overview and perspectives. Theranostics, 2022, 12, 3329-3344.	10.0	16
2369	Progress and challenges in applying CRISPR/Cas techniques to the genome editing of trees. Forestry Research, 2022, 2, 0-0.	1.1	2
2370	An assessment on CRISPR Cas as a novel asset in mitigating drought stress. Genetic Resources and Crop Evolution, 2022, 69, 2011-2027.	1.6	4
2371	Cyanobacterial secondary metabolites towards improved commercial significance through multiomics approaches. World Journal of Microbiology and Biotechnology, 2022, 38, 100.	3.6	12
2372	Natural and Experimental Rewiring of Gene Regulatory Regions. Annual Review of Genomics and Human Genetics, 2022, 23, .	6.2	1
2373	Detection of Major SARS-CoV-2 Variants of Concern in Clinical Samples via CRISPR-Cas12a-Mediated Mutation-Specific Assay. ACS Synthetic Biology, 2022, 11, 1811-1823.	3.8	9

#	Article	IF	CITATIONS
2374	Expanding the Editing Window of Cytidine Base Editors With the Rad51 DNA-Binding Domain in Rice. Frontiers in Plant Science, 2022, 13, 865848.	3.6	6
2375	Cytokinins: A Genetic Target for Increasing Yield Potential in the CRISPR Era. Frontiers in Genetics, 2022, 13, 883930.	2.3	21
2376	An Insight into Modern Targeted Genome-Editing Technologies with a Special Focus on CRISPR/Cas9 and its Applications. Molecular Biotechnology, 2023, 65, 227-242.	2.4	17
2377	A New Generation of Lineage Tracing Dynamically Records Cell Fate Choices. International Journal of Molecular Sciences, 2022, 23, 5021.	4.1	7
2378	CRISPR/Cas9-Based Genome Editing and Its Application in Aspergillus Species. Journal of Fungi (Basel,) Tj ETQq0	O Q rgBT /	Overlock 10 1
2379	Base edit your way to better crops. Nature, 2022, 604, 790-792.	27.8	5
2380	Trapping of CDC42 C-terminal variants in the Golgi drives pyrin inflammasome hyperactivation. Journal of Experimental Medicine, 2022, 219, .	8.5	18
2381	PAM-Expanded Streptococcus thermophilus Cas9 C-to-T and C-to-G Base Editors for Programmable Base Editing in Mycobacteria. Engineering, 2022, 15, 67-77.	6.7	3
2382	Potential of Genome Editing to Capture Diversity From Australian Wild Rice Relatives. Frontiers in Genome Editing, 2022, 4, 875243.	5.2	3
2384	NMDA Inhibitors: A Potential Contrivance to Assist in Management of Alzheimer Disease. Combinatorial Chemistry and High Throughput Screening, 2022, 25, .	1.1	1
2385	Engineering of near-PAMless adenine base editor with enhanced editing activity and reduced off-target. Molecular Therapy - Nucleic Acids, 2022, 28, 732-742.	5.1	8
2386	Base Editing in Peanut Using CRISPR/nCas9. Frontiers in Genome Editing, 2022, 4, .	5.2	4
2387	Comprehensive Analysis of CRISPR-Cas9 Editing Outcomes in Yeast <i>Xanthophyllomyces dendrorhous</i> . CRISPR Journal, 2022, 5, 558-570.	2.9	2
2388	AGBE: a dual deaminase-mediated base editor by fusing CGBE with ABE for creating a saturated mutant population with multiple editing patterns. Nucleic Acids Research, 2022, 50, 5384-5399.	14.5	29
2389	Administration of Drugs/Gene Products to the Respiratory System: A Historical Perspective of the Use of Inert Liquids. Frontiers in Physiology, 2022, 13, .	2.8	2
2390	Integrating CRISPR/Cas systems with programmable DNA nanostructures for delivery and beyond. IScience, 2022, , 104389.	4.1	9
2391	Gene-independent therapeutic interventions to maintain and restore light sensitivity in degenerating photoreceptors. Progress in Retinal and Eye Research, 2022, 90, 101065.	15.5	4
2392	CRISPR/Cas therapeutic strategies for autosomal dominant disorders. Journal of Clinical Investigation, 2022, 132, .	8.2	8

#	Article	IF	CITATIONS
2393	Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell, 2022, 185, 1764-1776.e12.	28.9	102
2394	Mitochondrial base editor induces substantial nuclear off-target mutations. Nature, 2022, 606, 804-811.	27.8	62
2395	Advance of Clustered Regularly Interspaced Short Palindromic Repeats-Cas9 System and Its Application in Crop Improvement. Frontiers in Plant Science, 2022, 13, .	3.6	11
2396	Enhancing cereal productivity by genetic modification of root architecture. Biotechnology Journal, 2022, 17, e2100505.	3.5	4
2398	Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality. BMC Genomics, 2022, 23, 348.	2.8	6
2399	Reverting TP53 Mutation in Breast Cancer Cells: Prime Editing Workflow and Technical Considerations. Cells, 2022, 11, 1612.	4.1	7
2400	Recent advances in high-throughput metabolic engineering: Generation of oligonucleotide-mediated genetic libraries. Biotechnology Advances, 2022, 59, 107970.	11.7	3
2401	Green Revolution to Gene Revolution: Technological Advances in Agriculture to Feed the World. Plants, 2022, 11, 1297.	3.5	10
2402	Envisioning the development of a CRISPR-Cas mediated base editing strategy for a patient with a novel pathogenic <i>CRB1</i> single nucleotide variant. Ophthalmic Genetics, 2022, 43, 661-670.	1.2	1
2403	Cytosine base editing enables quadruple-edited allogeneic CART cells for T-ALL. Blood, 2022, 140, 619-629.	1.4	45
2404	Efficient Simultaneous Introduction of Premature Stop Codons in Three Tumor Suppressor Genes in PFFs via a Cytosine Base Editor. Genes, 2022, 13, 835.	2.4	2
2405	New Editing Tools for Gene Therapy in Inherited Retinal Dystrophies. CRISPR Journal, 2022, 5, 377-388.	2.9	9
2406	Targeting double-strand break indel byproducts with secondary guide RNAs improves Cas9 HDR-mediated genome editing efficiencies. Nature Communications, 2022, 13, 2351.	12.8	11
2407	A <scp>CRISPR</scp> View of Hematopoietic Stem Cells: Moving Innovative Bioengineering into the Clinic. American Journal of Hematology, 2022, , .	4.1	3
2408	Development and expansion of the CRISPR/Cas9 toolboxes for powerful genome engineering in yeast. Enzyme and Microbial Technology, 2022, 159, 110056.	3.2	4
2409	From Bench to Bed: The Current Genome Editing Therapies for Glaucoma. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	4
2410	Developing a CRISPRâ€assisted baseâ€editing system for genome engineering of <i>Pseudomonas chlororaphis</i> . Microbial Biotechnology, 2022, 15, 2324-2336.	4.2	10
2411	Pathogenic or benign?. Nature Biotechnology, 2022, , .	17.5	O

#	Article	IF	CITATIONS
2412	Application of CRISPR/Cas9 System in Establishing Large Animal Models. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	8
2413	Modern therapeutic approaches to liver-related disorders. Journal of Hepatology, 2022, 76, 1392-1409.	3.7	22
2414	Genome editing and beyond: what does it mean for the future of plant breeding?. Planta, 2022, 255, 130.	3.2	17
2415	CRISPR/Cas9 is a powerful tool for precise genome editing of legume crops: a review. Molecular Biology Reports, 2022, 49, 5595-5609.	2.3	12
2416	Efficient Single-Nucleotide Microbial Genome Editing Achieved Using CRISPR/Cpf1 with Maximally $3\hat{a}\in^2$ -End-Truncated crRNAs. ACS Synthetic Biology, 2022, , .	3.8	5
2417	Multiplex base- and prime-editing with drive-and-process CRISPR arrays. Nature Communications, 2022, 13, 2771.	12.8	30
2418	Development of an Efficient C-to-T Base-Editing System and Its Application to Cellulase Transcription Factor Precise Engineering in Thermophilic Fungus <i>Myceliophthora thermophila</i> Spectrum, 2022, 10, .	3.0	12
2419	Inner Ear Drug Delivery for Sensorineural Hearing Loss: Current Challenges and Opportunities. Frontiers in Neuroscience, 2022, 16, .	2.8	14
2420	Correction of Beta-Thalassemia IVS-II-654 Mutation in a Mouse Model Using Prime Editing. International Journal of Molecular Sciences, 2022, 23, 5948.	4.1	10
2421	Mitochondrial genome engineering coming-of-age. Trends in Genetics, 2022, 38, 869-880.	6.7	20
2422	The origin of unwanted editing byproducts in gene editing. Acta Biochimica Et Biophysica Sinica, 2022, 54, 767-781.	2.0	6
2423	Structural basis for RNA-guided DNA cleavage by IscB-ωRNA and mechanistic comparison with Cas9. Science, 2022, 376, 1476-1481.	12.6	37
2424	Application of CRISPR/Cas9 System for Efficient Gene Editing in Peanut. Plants, 2022, 11, 1361.	3.5	7
2426	Improving Homology-Directed Repair in Genome Editing Experiments by Influencing the Cell Cycle. International Journal of Molecular Sciences, 2022, 23, 5992.	4.1	9
2427	Mouse models of Alzheimer's disease for preclinical research. Neurochemistry International, 2022, 158, 105361.	3.8	9
2428	Breeding and Omics Approaches to Understand Abiotic Stress Response in Rice. , 2022, , 341-404.		1
2429	Targeted Therapeutics for Rare Disorders. , 2024, , 249-271.		1
2430	Application of CRISPR-Cas-Based Genome Editing for Precision Breeding in Wheat. , 2022, , 539-556.		0

#	ARTICLE	IF	CITATIONS
2431	Muscular Dystrophy Therapy Using Viral Vector-based CRISPR/Cas., 2022, , 61-83.		1
2433	CRISPR-Based Genome-Editing Tools for Huntington's Disease Research and Therapy. Neuroscience Bulletin, 2022, 38, 1397-1408.	2.9	2
2434	PAM-flexible dual base editor-mediated random mutagenesis and self-activation strategies to improve CRISPRa potency. Molecular Therapy - Methods and Clinical Development, 2022, 26, 26-37.	4.1	1
2435	<scp>Siteâ€directed</scp> integration of exogenous <scp>DNA</scp> into the soybean genome by <scp>LbCas12a</scp> fused to a plant viral <scp>HUH</scp> endonuclease. Plant Journal, 2022, 111, 905-916.	5.7	2
2436	Modular (de)construction of complex bacterial phenotypes by CRISPR/nCas9-assisted, multiplex cytidine base-editing. Nature Communications, 2022, 13, .	12.8	39
2437	Scalable biological signal recording in mammalian cells using Cas12a base editors. Nature Chemical Biology, 2022, 18, 742-750.	8.0	12
2438	Prime Editing Permits the Introduction of Specific Mutations in the Gene Responsible for Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2022, 23, 6160.	4.1	16
2439	Speciation and adaptation research meets genome editing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	4.0	7
2440	Molecular and Computational Strategies to Increase the Efficiency of CRISPR-Based Techniques. Frontiers in Plant Science, 2022, 13, .	3.6	4
2445	Engineering the next generation of cell-based therapeutics. Nature Reviews Drug Discovery, 2022, 21, 655-675.	46.4	93
2446	Tips, Tricks, and Potential Pitfalls of CRISPR Genome Editing in Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology, 2022, 10 , .	4.1	9
2447	HDAC inhibitors improve CRISPR-Cas9 mediated prime editing and base editing. Molecular Therapy - Nucleic Acids, 2022, 29, 36-46.	5.1	27
2449	Base editing the synapse: Modeling a complex neurological disorder in non-human primates. Molecular Therapy, 2022, 30, 2114-2116.	8.2	0
2451	Transcriptome Analysis to Identify Crucial Genes for Reinforcing Flavins-Mediated Extracellular Electron Transfer in Shewanella oneidensis. Frontiers in Microbiology, 2022, 13, .	3.5	3
2452	Modeling hypertrophic cardiomyopathy with human cardiomyocytes derived from induced pluripotent stem cells. Stem Cell Research and Therapy, 2022, 13, .	5.5	8
2453	If Mendel Was Using CRISPR: Genome Editing Meets Nonâ€Mendelian Inheritance. Advanced Functional Materials, 0, , 2202585.	14.9	2
2454	Development of a universal antibiotic resistance screening reporter for improving efficiency of cytosine and adenine base editing. Journal of Biological Chemistry, 2022, 298, 102103.	3.4	2
2455	Genome-wide protein–DNA interaction site mapping in bacteria using a double-stranded DNA-specific cytosine deaminase. Nature Microbiology, 2022, 7, 844-855.	13.3	12

#	ARTICLE	IF	Citations
2456	Hematopoietic Stem Cell Gene-Addition/Editing Therapy in Sickle Cell Disease. Cells, 2022, 11, 1843.	4.1	12
2457	Genetic therapeutic advancements for Dravet Syndrome. Epilepsy and Behavior, 2022, 132, 108741.	1.7	10
2459	Generation of Double-Muscled Sheep and Goats by CRISPR/Cas9-Mediated Knockout of the Myostatin Gene. Methods in Molecular Biology, 2022, , 295-323.	0.9	4
2461	Tools for Efficient Genome Editing; ZFN, TALEN, and CRISPR. Methods in Molecular Biology, 2022, , 29-46.	0.9	16
2464	Internally inlaid SaCas9 base editors enable window specific base editing. Theranostics, 2022, 12, 4767-4778.	10.0	6
2465	Lipid-Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Components. Molecular Pharmaceutics, 2022, 19, 1669-1686.	4.6	58
2466	Prime editing in plants and mammalian cells: Mechanism, achievements, limitations, and future prospects. BioEssays, 2022, 44, .	2.5	18
2467	Exploring the Involvement of the Amyloid Precursor Protein A673T Mutation against Amyloid Pathology and Alzheimer's Disease in Relation to Therapeutic Editing Tools. Pharmaceutics, 2022, 14, 1270.	4.5	2
2468	Therapeutic base editing and prime editing of COL7A1 mutations in recessive dystrophic epidermolysis bullosa. Molecular Therapy, 2022, 30, 2664-2679.	8.2	20
2469	Gene Therapy: The Next-Generation Therapeutics and Their Delivery Approaches for Neurological Disorders. Frontiers in Genome Editing, 0, 4, .	5. 2	6
2470	CRISPR Modeling and Correction of Cardiovascular Disease. Circulation Research, 2022, 130, 1827-1850.	4.5	32
2471	Understanding on CRISPR/Cas9 mediated cutting-edge approaches for cancer therapeutics. Discover Oncology, 2022, 13, .	2.1	2
2472	Improvements in pig agriculture through gene editing. CABI Agriculture and Bioscience, 2022, 3, .	2.4	8
2473	Adenine Base Editing <i>In Vivo</i> with a Single Adeno-Associated Virus Vector., 2022, 1, 285-299.		27
2475	Application of CRISPR-Mediated Gene Editing for Crop Improvement. Molecular Biotechnology, 2022, 64, 1198-1217.	2.4	8
2476	Coiled-coil heterodimer-based recruitment of an exonuclease to CRISPR/Cas for enhanced gene editing. Nature Communications, 2022, 13, .	12.8	8
2477	Reprogramming Microbial CO2-Metabolizing Chassis With CRISPR-Cas Systems. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	4
2478	Generation of C-to-G transversion in mouse embryos via CG editors. Transgenic Research, 0, , .	2.4	3

#	Article	IF	CITATIONS
2480	Functional Allele Validation by Gene Editing to Leverage the Wealth of Genetic Resources for Crop Improvement. International Journal of Molecular Sciences, 2022, 23, 6565.	4.1	6
2481	Tools and targets: The dual role of plant viruses in CRISPR–Cas genome editing. Plant Genome, 2023, 16,	2.8	17
2482	Review: Precision Medicine Approaches for Genetic Cardiomyopathy: Targeting Phospholamban R14del. Current Heart Failure Reports, 2022, 19, 170-179.	3.3	6
2483	Disease modeling by efficient genome editing using a near PAM-less base editor in vivo. Nature Communications, 2022, 13, .	12.8	20
2484	Compact Cje3Cas9 for Efficient <i>In Vivo</i> Genome Editing and Adenine Base Editing. CRISPR Journal, 2022, 5, 472-486.	2.9	15
2485	Peptide fusion improves prime editing efficiency. Nature Communications, 2022, 13, .	12.8	27
2486	CRISPR screening in cancer stem cells. Essays in Biochemistry, 0, , .	4.7	1
2487	Myosin Heavy Chain Converter Domain Mutations Drive Early-Stage Changes in Extracellular Matrix Dynamics in Hypertrophic Cardiomyopathy. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	8
2489	Molecular genetics of human developmental neurocranial anomalies: towards "precision surgery― Cerebral Cortex, 2023, 33, 2912-2918.	2.9	1
2490	Origin of the genome editing systems: application for crop improvement. , 2022, 77, 3353-3383.		1
2491	Innovative cancer nanomedicine based on immunology, gene editing, intracellular trafficking control. Journal of Controlled Release, 2022, 348, 357-369.	9.9	3
2492	The Mechanisms of Genome Editing Technologies in Crop Plants. , 2022, , 295-313.		2
2493	Genomic Region Analysis and Genome Editing for Grain Quality Improvement in Cereals., 2022, , 315-345.		1
2494	CRISPR/Cas9 applications for improvement of soybeans, current scenarios, and future perspectives. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2022, 50, 12678.	1.1	3
2496	The application of CRISPR/Cas technologies to Brassica crops: current progress and future perspectives. ABIOTECH, 2022, 3, 146-161.	3.9	9
2497	Frequency and mechanisms of LINE-1 retrotransposon insertions at CRISPR/Cas9 sites. Nature Communications, 2022, 13, .	12.8	30
2498	Recent Developments and Strategies for the Application of Agrobacterium-Mediated Transformation of Apple Malus $\tilde{A}-$ domestica Borkh. Frontiers in Plant Science, 0, 13, .	3.6	7
2499	Soybean Molecular Design Breeding. , 0, , .		O

#	ARTICLE	IF	CITATIONS
2500	CASPER: An Integrated Software Platform for Rapid Development of CRISPR Tools. CRISPR Journal, 2022, 5, 609-617.	2.9	3
2501	DNA base editing in nuclear and organellar genomes. Trends in Genetics, 2022, 38, 1147-1169.	6.7	14
2502	Template-independent genome editing in the Pcdh15 mouse, a model of human DFNB23 nonsyndromic deafness. Cell Reports, 2022, 40, 111061.	6.4	12
2503	A precise and efficient adenine base editor. Molecular Therapy, 2022, 30, 2933-2941.	8.2	14
2504	Probing GPCR Dimerization Using Peptides. Frontiers in Endocrinology, 0, 13, .	3.5	1
2505	Base editing in bovine embryos reveals a species-specific role of SOX2 in regulation of pluripotency. PLoS Genetics, 2022, 18, e1010307.	3.5	10
2506	Phenotypic Characterization of High Carotenoid Tomato Mutants Generated by the Target-AID Base-Editing Technology. Frontiers in Plant Science, 0, 13, .	3.6	4
2507	Development and application of CRISPR-based genetic tools in Bacillus species and Bacillus phages. Journal of Applied Microbiology, 2022, 133, 2280-2298.	3.1	7
2508	A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. Plant Science, 2022, 323, 111376.	3.6	43
2509	RNA-targeting strategies as a platform for ocular gene therapy. Progress in Retinal and Eye Research, 2023, 92, 101110.	15.5	10
2510	Reflections about the Molecular Tool That Could Change the Course of Human History: Genome Editing. Persona Y Bioética, 2022, 26, 1-13.	0.1	0
2511	Massively targeted evaluation of therapeutic CRISPR off-targets in cells. Nature Communications, 2022, 13, .	12.8	11
2512	Programmable RNA-Guided Large DNA Transgenesis by CRISPR/Cas9 and Site-Specific Integrase Bxb1. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	6
2513	Recent Advances in Improving Gene-Editing Specificity through CRISPR–Cas9 Nuclease Engineering. Cells, 2022, 11, 2186.	4.1	25
2515	Base editing in human cells with monomeric DddA-TALE fusion deaminases. Nature Communications, 2022, 13, .	12.8	17
2516	Cytoplasmic Injection of Zygotes to Genome Edit Naturally Occurring Sequence Variants Into Bovine Embryos. Frontiers in Genetics, $0,13,.$	2.3	1
2517	Precision genome editing in plants using gene targeting and prime editing: existing and emerging strategies. Biotechnology Journal, 2022, 17, .	3.5	2
2518	Systematic exploration of optimized base editing gRNA design and pleiotropic effects with BExplorer. Genomics, Proteomics and Bioinformatics, 2022, , .	6.9	O

#	ARTICLE	IF	CITATIONS
2519	Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus. Nucleic Acids Research, 2022, 50, 7783-7799.	14.5	15
2520	Current landscape of geneâ€editing technology in biomedicine: Applications, advantages, challenges, and perspectives. MedComm, 2022, 3, .	7.2	2
2522	Examination of the Cell Cycle Dependence of Cytosine and Adenine Base Editors. Frontiers in Genome Editing, 0, 4, .	5.2	6
2523	Therapeutic inÂvivo delivery of gene editing agents. Cell, 2022, 185, 2806-2827.	28.9	131
2524	The role of single-cell genomics in human genetics. Journal of Medical Genetics, 2022, 59, 827-839.	3.2	11
2525	A Curative DNA Code for Hematopoietic Defects. Hematology/Oncology Clinics of North America, 2022, 36, 647-665.	2.2	6
2526	CRISPR-Cas9 mediated genome tailoring to improve nutritional quality and shelf life in crops: A review. Plant Gene, 2022, 31, 100369.	2.3	1
2527	A Novel Anti-Cancer Therapy: CRISPR/Cas9 Gene Editing. Frontiers in Pharmacology, 0, 13, .	3.5	10
2528	A straightforward plant prime editing system enabled highly efficient precise editing of rice Waxy gene. Plant Science, 2022, 323, 111400.	3.6	9
2529	Improvements of nuclease and nickase gene modification techniques for the treatment of genetic diseases. Frontiers in Genome Editing, 0, 4, .	5.2	5
2530	Enhancing glycosylase base-editor activity by fusion to transactivation modules. Cell Reports, 2022, 40, 111090.	6.4	7
2531	Pioneer Factor Improves CRISPRâ€Based Câ€Toâ€G and Câ€Toâ€T Base Editing. Advanced Science, 0, , 2202957.	11.2	5
2532	Making small molecules in plants: A chassis for synthetic biologyâ€based production of plant natural products. Journal of Integrative Plant Biology, 2023, 65, 417-443.	8.5	14
2533	DNA nicks induce mutational signatures associated with BRCA1 deficiency. Nature Communications, 2022, 13, .	12.8	8
2534	Designer bacterial cell factories for improved production of commercially valuable non-ribosomal peptides. Biotechnology Advances, 2022, 60, 108023.	11.7	3
2535	Gene Editing and Rett Syndrome: Does It Make the Cut?. CRISPR Journal, 2022, 5, 490-499.	2.9	1
2536	CRISPR DNA Base Editing Strategies for Treating Retinitis Pigmentosa Caused by Mutations in Rhodopsin. Genes, 2022, 13, 1327.	2.4	5
2537	Cloning and base editing of GFP transgenic rhesus monkey and off-target analysis. Science Advances, 2022, 8, .	10.3	6

#	Article	IF	CITATIONS
2538	Genome Editing and CRISPR Technology. , 2022, , .		0
2539	Limitations of mouse models for sickle cell disease conferred by their human globin transgene configurations. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	9
2540	Correction of Fanconi Anemia Mutations Using Digital Genome Engineering. International Journal of Molecular Sciences, 2022, 23, 8416.	4.1	2
2541	Understanding floral biology for CRISPR-based modification of color and fragrance in horticultural plants. F1000Research, 0, $11,854$.	1.6	2
2542	Perspectives on Genetic Medicine for Cystic Fibrosis. Current Gene Therapy, 2022, 22, .	2.0	0
2543	Systematicidentification of CRISPR off-target effects by CROss-seq. Protein and Cell, 0, , .	11.0	2
2544	CRISPR-Based Genome Editing for Nutrient Enrichment in Crops: A Promising Approach Toward Global Food Security. Frontiers in Genetics, $0,13,.$	2.3	29
2545	Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors. Nature Biomedical Engineering, 2022, 6, 1272-1283.	22.5	70
2546	< scp>CRISPR $<$ /scp> applications for Duchenne muscular dystrophy: From animal models to potential therapies. WIREs Mechanisms of Disease, 2023, 15, .	3.3	6
2548	Structure and engineering of the minimal type VI CRISPR-Cas13bt3. Molecular Cell, 2022, 82, 3178-3192.e5.	9.7	12
2549	Increasing disease resistance in host plants through genome editing. Proceedings of the Indian National Science Academy, 2022, 88, 417-429.	1.4	7
2550	Programmable RNA base editing with a single gRNA-free enzyme. Nucleic Acids Research, 2022, 50, 9580-9595.	14.5	9
2551	The Application of the CRISPR-Cas System in Antibiotic Resistance. Infection and Drug Resistance, 0, Volume 15, 4155-4168.	2.7	17
2552	Genome Editing of Veterinary Relevant Mycoplasmas Using a CRISPR-Cas Base Editor System. Applied and Environmental Microbiology, 2022, 88, .	3.1	9
2554	Comprehending the evolution of gene editing platforms for crop trait improvement. Frontiers in Genetics, $0,13,\ldots$	2.3	6
2555	From Evolution to Revolution: Accelerating Crop Domestication through Genome Editing. Plant and Cell Physiology, 2022, 63, 1607-1623.	3.1	7
2556	Genome editing for primary immunodeficiencies: A therapeutic perspective on Wiskott-Aldrich syndrome. Frontiers in Immunology, 0, 13 , .	4.8	6
2557	Developing Bottom-Up Induced Pluripotent Stem Cell Derived Solid Tumor Models Using Precision Genome Editing Technologies. CRISPR Journal, 2022, 5, 517-535.	2.9	3

#	Article	IF	Citations
2558	Hypercompact adenine base editors based on a Cas12f variant guided by engineered RNA. Nature Chemical Biology, 2022, 18, 1005-1013.	8.0	21
2559	Programmable Genome-Editing Technologies as Single-Course Therapeutics for Atherosclerotic Cardiovascular Disease. Current Atherosclerosis Reports, 0, , .	4.8	O
2560	Overcoming tumor resistance mechanisms in CAR-NK cell therapy. Frontiers in Immunology, $0,13,.$	4.8	22
2561	COL17A1 editing via homology-directed repair in junctional epidermolysis bullosa. Frontiers in Medicine, $0, 9, .$	2.6	6
2562	Cytosine base editing systems with minimized off-target effect and molecular size. Nature Communications, 2022, 13 , .	12.8	19
2563	Designing and executing prime editing experiments in mammalian cells. Nature Protocols, 2022, 17, 2431-2468.	12.0	35
2564	Biomolecular Insights into Extracellular Pollutant Reduction Pathways of <i>Geobacter sulfurreducens</i> Using a Base Editor System. Environmental Science & Editor System. Environmental Science & Editor System. 12247-12256.	10.0	5
2565	Multiplex base editing to convert TAG into TAA codons in the human genome. Nature Communications, 2022, 13, .	12.8	6
2566	Advances of Epigenetic Biomarkers and Epigenome Editing for Early Diagnosis in Breast Cancer. International Journal of Molecular Sciences, 2022, 23, 9521.	4.1	8
2567	CRISPR base editing of cis-regulatory elements enables the perturbation of neurodegeneration-linked genes. Molecular Therapy, 2022, 30, 3619-3631.	8.2	10
2568	<i>In Vitro</i> Nanobody Library Construction by Using Gene Designated-Region Pan-Editing Technology. Biodesign Research, 2022, 2022, .	1.9	1
2569	Closely related type II-C Cas9 orthologs recognize diverse PAMs. ELife, 0, 11, .	6.0	13
2572	Gene Therapy for Rhodopsin Mutations. Cold Spring Harbor Perspectives in Medicine, 2022, 12, a041283.	6.2	2
2573	Translational potential of base-editing tools for gene therapy of monogenic diseases. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	4.1	5
2575	The uncut version: base-edited allo-CAR T cells. Blood, 2022, 140, 526-527.	1.4	0
2576	The Prominent Characteristics of the Effective sgRNA for a Precise CRISPR Genome Editing. , 0, , .		3
2577	Precise somatic genome editing for treatment of inborn errors of immunity. Frontiers in Immunology, 0, 13, .	4.8	1
2578	CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants. Molecular Biology Reports, 2022, 49, 11443-11467.	2.3	4

#	Article	IF	CITATIONS
2579	Effective therapies for sickle cell disease: are we there yet?. Trends in Genetics, 2022, , .	6.7	3
2580	Harnessing nucleic acid technologies for human health on earth and in space. Life Sciences in Space Research, 2022, 35, 113-126.	2.3	2
2581	CRISPR/Cas9 genome editing to create nonhuman primate models for studying stem cell therapies for HIV infection. Retrovirology, 2022, 19 , .	2.0	5
2582	Liveâ€ell imaging of genomic loci with Cas9 variants. Biotechnology Journal, 0, , 2100381.	3.5	0
2583	High-throughput continuous evolution of compact Cas9 variants targeting single-nucleotide-pyrimidine PAMs. Nature Biotechnology, 2023, 41, 96-107.	17.5	36
2584	Diverse Approaches to Gene Therapy of Sickle Cell Disease. Annual Review of Medicine, 2023, 74, 473-487.	12.2	12
2585	Generation of corrected hiPSC clones from a Cornelia de Lange Syndrome (CdLS) patient through CRISPR-Cas-based technology. Stem Cell Research and Therapy, 2022, 13, .	5.5	0
2586	CRISPR/Cas9 Technology and Its Utility for Crop Improvement. International Journal of Molecular Sciences, 2022, 23, 10442.	4.1	12
2587	Defining and targeting patterns of T cell dysfunction in inborn errors of immunity. Frontiers in Immunology, 0, 13 , .	4.8	3
2588	Microtubule modification defects underlie cilium degeneration in cell models of retinitis pigmentosa associated with pre-mRNA splicing factor mutations. Frontiers in Genetics, 0, 13, .	2.3	4
2589	Delivery of Cas9-guided ABE8e into stem cells using poly(l-lysine) polypeptides for correction of the hemophilia-associated FIX missense mutation. Biochemical and Biophysical Research Communications, 2022, 628, 49-56.	2.1	2
2590	Genome editing in cancer: Challenges and potential opportunities. Bioactive Materials, 2023, 21, 394-402.	15.6	3
2591	Genome Editing Toward Rice Improvement. , 2022, , 211-240.		0
2592	CRISPR Genome Editing Brings Global Food Security into the First Lane: Enhancing Nutrition and Stress Resilience in Crops., 2022,, 285-344.		2
2593	Genome Editing Is Revolutionizing Crop Improvement. , 2022, , 3-41.		0
2594	Genome Editing Technologies Contribute for Precision Breeding in Soybean. , 2022, , 349-366.		0
2595	Site-specific unnatural base excision <i>via</i> visible light. Chemical Communications, 2022, 58, 11717-11720.	4.1	1
2596	Generation of Gene Edited Pigs. Sustainable Agriculture Reviews, 2022, , 71-130.	1.1	3

#	Article	IF	Citations
2597	Current status and trends in forest genomics. Forestry Research, 2022, 2, 0-0.	1.1	12
2598	The Use of CRISPR Technologies for Crop Improvement in Maize. , 2022, , 271-294.		2
2599	CRISPR-Cas Technology: A Genome-Editing Powerhouse for Molecular Plant Breeding., 2022,, 803-879.		4
2600	BEtarget: A versatile web-based tool to design guide RNAs for base editing in plants. Computational and Structural Biotechnology Journal, 2022, 20, 4009-4014.	4.1	5
2601	Medical Application of Molecular Robots. , 2022, , 247-281.		0
2602	Expanding the Scope of Base Editing in Crops Using Cas9 Variants. , 2022, , 161-175.		1
2603	Genome Editing for Stress Tolerance in Cereals: Methods, Opportunities, and Applications. , 2022, , 345-367.		0
2604	Advances and Applications of Transgenesis in Farm Animals. , 2022, , 255-288.		0
2605	Integrating Advanced Molecular, Genomic, and Speed Breeding Methods for Genetic Improvement of Stress Tolerance in Rice., 2022,, 263-283.		2
2606	The application of genome-wide CRISPR-Cas9 screens to dissect the molecular mechanisms of toxins. Computational and Structural Biotechnology Journal, 2022, 20, 5076-5084.	4.1	7
2607	New Frontier in the Management of Corneal Dystrophies: Basics, Development, and Challenges in Corneal Gene Therapy and Gene Editing. Asia-Pacific Journal of Ophthalmology, 2022, 11, 346-359.	2.5	6
2608	SIQ: easy quantitative measurement of mutation profiles in sequencing data. NAR Genomics and Bioinformatics, 2022, 4, .	3.2	4
2610	Small-molecule activators specific to adenine base editors through blocking the canonical TGF-Î ² pathway. Nucleic Acids Research, 2022, 50, 9632-9646.	14.5	0
2611	Applications and prospects of genome editing in plant fatty acid and triacylglycerol biosynthesis. Frontiers in Plant Science, $0,13,\ldots$	3.6	6
2612	Xenotransplantation: The Contribution of CRISPR/Cas9 Gene Editing Technology. Current Transplantation Reports, 2022, 9, 268-275.	2.0	1
2614	The Bibliometric Landscape of Gene Editing Innovation and Regulation in the Worldwide. Cells, 2022, 11, 2682.	4.1	18
2615	Emerging CRISPR Technologies. , 0, , .		0
2616	How to Completely Squeeze a Fungus—Advanced Genome Mining Tools for Novel Bioactive Substances. Pharmaceutics, 2022, 14, 1837.	4.5	9

#	Article	IF	CITATIONS
2618	Applications of In Vitro Tissue Culture Technologies in Breeding and Genetic Improvement of Wheat. Plants, 2022, 11, 2273.	3.5	10
2619	MERTK missense variants in three patients with retinitis pigmentosa. Ophthalmic Genetics, 0, , 1-9.	1.2	1
2620	Prime Editing: An All-Rounder for Genome Editing. International Journal of Molecular Sciences, 2022, 23, 9862.	4.1	13
2621	Optimization of Prime Editing in Rice, Peanut, Chickpea, and Cowpea Protoplasts by Restoration of GFP Activity. International Journal of Molecular Sciences, 2022, 23, 9809.	4.1	18
2624	Functional Phosphoproteomics in Cancer Chemoresistance Using CRISPRâ€Mediated Base Editors. Advanced Science, 2022, 9, .	11.2	6
2625	Prokaryotic Argonaute Proteins as a Tool for Biotechnology. Molecular Biology, 2022, 56, 854-873.	1.3	17
2626	Modeling diverse genetic subtypes of lung adenocarcinoma with a next-generation alveolar type 2 organoid platform. Genes and Development, 2022, 36, 936-949.	5.9	14
2627	A Pan-RNase Inhibitor Enabling CRISPR-mRNA Platforms for Engineering of Primary Human Monocytes. International Journal of Molecular Sciences, 2022, 23, 9749.	4.1	O
2628	Genome Editing by CRISPR/Cas12 Recognizing AT-Rich PAMs in <i>Shewanella oneidensis</i> /i> MR-1. ACS Synthetic Biology, 2022, 11, 2947-2955.	3.8	6
2629	Delivering the CRISPR/Cas9 system for engineering gene therapies: Recent cargo and delivery approaches for clinical translation. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	9
2630	High-throughput approaches to understand and engineer bacteriophages. Trends in Biochemical Sciences, 2023, 48, 187-197.	7.5	3
2631	Editing human hematopoietic stem cells: advances and challenges. Cytotherapy, 2023, 25, 261-269.	0.7	4
2632	Base editor enables rational genome-scale functional screening for enhanced industrial phenotypes in <i>Corynebacterium glutamicum </i> . Science Advances, 2022, 8, .	10.3	11
2633	Genetic adaptation of skin pigmentation in highland Tibetans. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	9
2634	CureHeart wins Big Beat Challenge, a $\hat{A}\pm30$ million research award from the British Heart Foundation. European Heart Journal, 0 , , .	2.2	0
2635	Gene editing monkeys: Retrospect and outlook. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	1
2637	Treatment of Genetic Diseases With CRISPR Genome Editing. JAMA - Journal of the American Medical Association, 2022, 328, 980.	7.4	9
2638	Multiplexed functional genomic assays to decipher the noncoding genome. Human Molecular Genetics, 2022, 31, R84-R96.	2.9	4

#	Article	IF	CITATIONS
2639	Scalable Functional Assays for the Interpretation of Human Genetic Variation. Annual Review of Genetics, 2022, 56, 441-465.	7.6	18
2640	CRISPR/Cas9 mediated genome editing tools and their possible role in disease resistance mechanism. Molecular Biology Reports, 2022, 49, 11587-11600.	2.3	1
2643	Optimization of the base editor BE4max in chicken somatic cells. Poultry Science, 2022, , 102174.	3.4	1
2644	Therapeutic Gene Editing in Inherited Retinal Disorders. Cold Spring Harbor Perspectives in Medicine, 0, , a041292.	6.2	2
2646	Robust genome editing via modRNA-based Cas9 or base editor in human pluripotent stem cells. Cell Reports Methods, 2022, 2, 100290.	2.9	4
2647	CRISPR-Based Genome Editing and Its Applications in Woody Plants. International Journal of Molecular Sciences, 2022, 23, 10175.	4.1	14
2648	CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives. Cells, 2022, 11, 2964.	4.1	8
2649	Engineering plant immune circuit: walking to the bright future with a novel toolbox. Plant Biotechnology Journal, 2023, 21, 17-45.	8.3	7
2650	Towards next-generation cell factories by rational genome-scale engineering. Nature Catalysis, 2022, 5, 751-765.	34.4	15
2651	Reversibility and therapeutic development for neurodevelopmental disorders, insights from genetic animal models. Advanced Drug Delivery Reviews, 2022, 191, 114562.	13.7	4
2652	Recent Advances in <i>In Vivo</i> Genome Editing Targeting Mammalian Preimplantation Embryos., 0,,.		1
2653	Engineering of the Translesion DNA Synthesis Pathway Enables Controllable C-to-G and C-to-A Base Editing in <i>Corynebacterium glutamicum</i> . ACS Synthetic Biology, 2022, 11, 3368-3378.	3.8	8
2654	Rare and undiagnosed diseases: From disease-causing gene identification to mechanism elucidation. Fundamental Research, 2022, 2, 918-928.	3.3	1
2655	CRISPR/Cas9 in the era of nanomedicine and synthetic biology. Drug Discovery Today, 2023, 28, 103375.	6.4	2
2656	Precision genome editing in the eye. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	15
2657	Modelling urea cycle disorders using iPSCs. Npj Regenerative Medicine, 2022, 7, .	5.2	8
2658	Genomic Mutations of the STAT5 Transcription Factor Are Associated with Human Cancer and Immune Diseases. International Journal of Molecular Sciences, 2022, 23, 11297.	4.1	3
2659	Recent Advances in Double-Strand Break-Free Kilobase-Scale Genome Editing Technologies. Biochemistry, 2023, 62, 3493-3499.	2.5	5

#	Article	IF	CITATIONS
2660	Translational enhancement by base editing of the Kozak sequence rescues haploinsufficiency. Nucleic Acids Research, 2022, 50, 10756-10771.	14.5	2
2662	Rice grain yield and quality improvement via CRISPR/Cas9 system: an updated review. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2022, 50, 12388.	1.1	3
2663	Advantages of CRISPR-Cas9 combined organoid model in the study of congenital nervous system malformations. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	3
2664	Non-Viral Delivery of CRISPR/Cas Cargo to the Retina Using Nanoparticles: Current Possibilities, Challenges, and Limitations. Pharmaceutics, 2022, 14, 1842.	4.5	15
2666	CRISPR for accelerating genetic gains in under-utilized crops of the drylands: Progress and prospects. Frontiers in Genetics, $0,13,.$	2.3	3
2667	CRISPR/CAS9: A promising approach for the research and treatment of cardiovascular diseases. Pharmacological Research, 2022, 185, 106480.	7.1	3
2668	The expanding CRISPR toolbox for natural product discovery and engineering in filamentous fungi. Natural Product Reports, 2023, 40, 158-173.	10.3	6
2669	Engineering a precise adenine base editor with minimal bystander editing. Nature Chemical Biology, 2023, 19, 101-110.	8.0	52
2670	Transient inhibition of p53 enhances prime editing and cytosine base-editing efficiencies in human pluripotent stem cells. Nature Communications, 2022, 13, .	12.8	17
2671	Tuning neurodegeneration-linked gene expression, one (edited) base at a time. Molecular Therapy, 2022,	8.2	0
2672	Selecting for CRISPR-Edited Knock-In Cells. International Journal of Molecular Sciences, 2022, 23, 11919.	4.1	5
2673	Current advances of CRISPR-Cas technology in cell therapy. , 2022, 1, 100067.		10
2674	Base and Prime Editing in the Retina—From Preclinical Research toward Human Clinical Trials. International Journal of Molecular Sciences, 2022, 23, 12375.	4.1	4
2675	Genetically modified organisms: adapting regulatory frameworks for evolving genome editing technologies. Biological Research, 2022, 55, .	3.4	10
2676	Rapid creation of <scp>CENH3</scp> â€mediated haploid induction lines using a cytosine base editor (<scp>CBE</scp>). Plant Biology, 2023, 25, 226-230.	3.8	4
2677	Opportunities and challenges with CRISPR-Cas mediated homologous recombination based precise editing in plants and animals. Plant Molecular Biology, 2023, 111, 1-20.	3.9	11
2678	The Power of Gene Technologies: 1001 Ways to Create a Cell Model. Cells, 2022, 11, 3235.	4.1	3
2679	CRISPR-Cas9-based Strategies for Acute Lymphoblastic Leukemia Therapy. , 0, , .		O

#	ARTICLE	IF	CITATIONS
2680	In vivo application of base and prime editing to treat inherited retinal diseases. Progress in Retinal and Eye Research, 2023, 94, 101132.	15.5	3
2681	Stem Cell Models for Context-Specific Modeling in Psychiatric Disorders. Biological Psychiatry, 2023, 93, 642-650.	1.3	9
2682	Adding a Chemical Biology Twist to CRISPR Screening. Israel Journal of Chemistry, 0, , .	2.3	0
2683	New CRISPR Tools to Correct Pathogenic Mutations in Usher Syndrome. International Journal of Molecular Sciences, 2022, 23, 11669.	4.1	2
2684	Genome-edited allogeneic donor "universal―chimeric antigen receptor T cells. Blood, 2023, 141, 835-845.	1.4	11
2685	Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops. International Journal of Molecular Sciences, 2022, 23, 12053.	4.1	20
2686	Base editor scanning charts the DNMT3A activity landscape. Nature Chemical Biology, 2023, 19, 176-186.	8.0	17
2687	CRISPR/Cas systems usher in a new era of disease treatment and diagnosis. Molecular Biomedicine, 2022, 3, .	4.4	5
2688	Drugging p53 in cancer: one protein, many targets. Nature Reviews Drug Discovery, 2023, 22, 127-144.	46.4	151
2689	Transgene-free genome editing and RNAi ectopic application in fruit trees: Potential and limitations. Frontiers in Plant Science, 0, 13, .	3.6	2
2690	Human Induced Pluripotent Stem Cell Phenotyping and Preclinical Modeling of Familial Parkinson's Disease. Genes, 2022, 13, 1937.	2.4	4
2691	Gene regulatory and gene editing tools and their applications for retinal diseases and neuroprotection: From proof-of-concept to clinical trial. Frontiers in Neuroscience, 0, 16, .	2.8	3
2692	Gene editing for cardiomyopathy takes a step forward. Cardiovascular Research, 2022, 118, 3011-3012.	3.8	2
2693	Exploring and engineering PAM-diverse Streptococci Cas9 for PAM-directed bifunctional and titratable gene control in bacteria. Metabolic Engineering, 2023, 75, 68-77.	7.0	6
2694	Toward brain organoid-based precision medicine in neurodegenerative diseases. Organoid, 0, 2, e21.	0.0	1
2695	Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses. Plants, 2022, 11, 2625.	3.5	20
2696	Advances in CRISPR therapeutics. Nature Reviews Nephrology, 2023, 19, 9-22.	9.6	41
2697	Precise Aâ^™T to Gâ^™C base editing in the allotetraploid rapeseed (<i>Brassica napus</i> L.) genome. Journal of Cellular Physiology, 0, , .	4.1	O

#	Article	IF	CITATIONS
2698	Disabling Uncompetitive Inhibition of Oncogenic IDH Mutations Drives Acquired Resistance. Cancer Discovery, 2023, 13, 170-193.	9.4	6
2699	Enhancement of Gene Editing and Base Editing with Therapeutic Ribonucleoproteins through In Vivo Delivery Based on Absorptive Silica Nanoconstruct. Advanced Healthcare Materials, 2023, 12, .	7.6	6
2700	Finding abundance regulators. ELife, 0, 11, .	6.0	0
2701	Multiplexed base editing through Cas12a variant-mediated cytosine and adenine base editors. Communications Biology, 2022, 5, .	4.4	6
2702	GwAAP: A genome-wide amino acid coding-decoding quantitative proteomics system. IScience, 2022, 25, 105471.	4.1	0
2703	A comprehensive Bioconductor ecosystem for the design of CRISPR guide RNAs across nucleases and technologies. Nature Communications, 2022, 13, .	12.8	10
2704	Genome-wide base editor screen identifies regulators of protein abundance in yeast. ELife, 0, 11, .	6.0	7
2705	DNA topology regulates PAM-Cas9 interaction and DNA unwinding to enable near-PAMless cleavage by thermophilic Cas9. Molecular Cell, 2022, 82, 4160-4175.e6.	9.7	13
2706	Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chemical Reviews, 2023, 123, 31-72.	47.7	54
2707	Construction of a cytidine base editor based on Exopalaemon carinicauda cytidine deaminase and its application in crustacean genome editing. Aquaculture Reports, 2022, 27, 101366.	1.7	0
2708	Gene editing hPSCs for modeling neurological disorders. , 2023, , 289-311.		0
2709	Highly efficient multiplex base editing: One-shot deactivation of eight genes in Shewanella oneidensis MR-1. Synthetic and Systems Biotechnology, 2023, 8, 1-10.	3.7	3
2710	New Cas Endonuclease Variants Broadening the Scope of the CRISPR Toolbox. , 2022, , 133-141.		0
2711	Recent Advances and Application of CRISPR Base Editors for Improvement of Various Traits in Crops. , 2022, , 105-131.		O
2712	Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs) as a Platform for Modeling Arrhythmias., 2022,, 875-893.		0
2713	Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nature Biotechnology, 2023, 41, 663-672.	17.5	50
2714	Upgrading the genome of an elite japonica rice variety Kongyu 131 for lodging resistance improvement. Plant Biotechnology Journal, 2023, 21, 419-432.	8.3	2
2715	CRISPR-based engineering of phages for in situ bacterial base editing. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	12

#	Article	IF	CITATIONS
2716	CRISPR/Cas9 Genome-Editing Technology and Potential Clinical Application in Gastric Cancer. Genes, 2022, 13, 2029.	2.4	2
2717	Efficient multitool/multiplex gene engineering with TALE-BE. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	2
2718	Prime editing for precise and highly versatile genome manipulation. Nature Reviews Genetics, 2023, 24, 161-177.	16.3	134
2719	CRISPR nuclease off-target activity and mitigation strategies. Frontiers in Genome Editing, 0, 4, .	5.2	14
2720	Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Nature Biotechnology, 2023, 41, 673-685.	17.5	50
2721	Pooled genetic screens with imageâ€based profiling. Molecular Systems Biology, 2022, 18, .	7.2	8
2722	High-Fidelity Cytosine Base Editing in a GC-Rich Corynebacterium glutamicum with Reduced DNA Off-Target Editing Effects. Microbiology Spectrum, 2022, 10, .	3.0	4
2723	SuperFi-Cas9 exhibits remarkable fidelity but severely reduced activity yet works effectively with ABE8e. Nature Communications, 2022, 13, .	12.8	15
2724	Novel methods for the generation of genetically engineered animal models. Bone, 2023, 167, 116612.	2.9	1
2725	A CRISPR Path to Finding Vulnerabilities and Solving Drug Resistance: Targeting the Diverse Cancer Landscape and Its Ecosystem. Genetics & Genomics Next, 2022, 3, .	1.5	3
2727	Prime editing in chicken fibroblasts and primordial germ cells. Development Growth and Differentiation, 2022, 64, 548-557.	1.5	4
2728	Site-specific genome editing in treatment of inherited diseases: possibility, progress, and perspectives. Medical Review, 2022, 2, 471-500.	1.2	6
2730	CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells, 2022, 11, 3615.	4.1	4
2731	Genome editing is induced in a binary manner in single human cells. IScience, 2022, 25, 105619.	4.1	1
2732	Immune Editing: Overcoming Immune Barriers in Stem Cell Transplantation. Current Stem Cell Reports, 2022, 8, 206-218.	1.6	9
2733	Hearing of Otof-deficient mice restored by trans-splicing of N- and C-terminal otoferlin. Human Genetics, 2023, 142, 289-304.	3.8	22
2734	Potential abiotic stress targets for modern genetic manipulation. Plant Cell, 2023, 35, 139-161.	6.6	14
2735	Potential CRISPR Base Editing Therapeutic Options in a Sorsby Fundus Dystrophy Patient. Genes, 2022, 13, 2103.	2.4	2

#	Article	IF	CITATIONS
2736	Site-specific CRISPR-based mitochondrial DNA manipulation is limited by gRNA import. Scientific Reports, 2022, 12 , .	3.3	11
2737	Applying CRISPR-Cas9 screens to dissect hematological malignancies. Blood Advances, 2023, 7, 2252-2270.	5. 2	2
2738	ABE8e adenine base editor precisely and efficiently corrects a recurrent COL7A1 nonsense mutation. Scientific Reports, 2022, 12, .	3.3	10
2739	Leveraging a natural murine meiotic drive to suppress invasive populations. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	17
2740	Annotation and evaluation of base editing outcomes in multiple cell types using CRISPRbase. Nucleic Acids Research, 2023, 51, D1249-D1256.	14.5	1
2741	Genome editing in chickens. Gene and Genome Editing, 2022, 3-4, 100015.	2.6	1
2742	Gene editing strategies to treat lysosomal disorders: The example of mucopolysaccharidoses. Advanced Drug Delivery Reviews, 2022, 191, 114616.	13.7	4
2743	From nuclease-based gene knock-in to prime editing – promising technologies of precision gene engineering. Gene and Genome Editing, 2022, 3-4, 100017.	2.6	1
2744	Genetics of Cystic Fibrosis. Clinics in Chest Medicine, 2022, 43, 591-602.	2.1	4
2745	Elucidation of the etiological mechanisms underlying rare hereditary cilia/centrosome disorders using genome editing technology. Gene and Genome Editing, 2022, 3-4, 100016.	2.6	O
2746	Genome editing and bioinformatics. Gene and Genome Editing, 2022, 3-4, 100018.	2.6	2
2747	EpiCas-DL: Predicting sgRNA activity for CRISPR-mediated epigenome editing by deep learning. Computational and Structural Biotechnology Journal, 2023, 21, 202-211.	4.1	5
2748	Base editing for reprogramming cyanobacterium Synechococcus elongatus. Metabolic Engineering, 2023, 75, 91-99.	7.0	9
2750	Towards elucidating disease-relevant states of neurons and glia by CRISPR-based functional genomics. Genome Medicine, 2022, 14, .	8.2	1
2751	Intertwined relationship among ROS, mitochondria and APOE4 during the onset of Alzheimer's disease. AIP Conference Proceedings, 2022, , .	0.4	0
2752	Applications and challenges for CRISPR/Cas9-mediated gene editing. AIP Conference Proceedings, 2022, ,	0.4	O
2753	Japanese Regulatory Framework and Approach for Genome-edited Foods Based on Latest Scientific Findings. Food Safety (Tokyo, Japan), 2022, 10, 113-128.	1.8	7
2754	Improvements in the genetic editing technologies: CRISPR-Cas and beyond. Gene, 2023, 852, 147064.	2.2	1

#	Article	IF	CITATIONS
2755	Gene therapies for RyR1-related myopathies. Current Opinion in Pharmacology, 2023, 68, 102330.	3 . 5	1
2756	A novel base editor SpRY-ABE8eF148A mediates efficient A-to-G base editing with a reduced off-target effect. Molecular Therapy - Nucleic Acids, 2023, 31, 78-87.	5.1	1
2757	Correction of DMD in human iPSC-derived cardiomyocytes by base-editing-induced exon skipping. Molecular Therapy - Methods and Clinical Development, 2023, 28, 40-50.	4.1	8
2758	Generating a New sgRNA Vector, pGL3-U6-sgRNA-PGK-mRFP-T2A-PuroR, to Improve Base Editing. Journal of Urban Archaeology, 2022, 2, 1-6.	0.8	0
2759	A Review of CRISPR Cas9 for Alzheimer's Disease: Treatment Strategies and Could target APOE e4, APP, and PSEN-1 Gene using CRISPR cas9 Prevent the Patient from Alzheimer's Disease?. Open Access Macedonian Journal of Medical Sciences, 2022, 10, 745-757.	0.2	1
2760	Genome editing. Scientific Reports, 2022, 12, .	3.3	1
2761	Versatile and efficient genome editing with Neisseria cinerea Cas9. Communications Biology, 2022, 5, .	4.4	2
2762	In Vivo Hematopoietic Stem Cell Genome Editing: Perspectives and Limitations. Genes, 2022, 13, 2222.	2.4	6
2763	Competition for DNA binding between the genome protector replication protein A and the genome modifying APOBEC3 single-stranded DNA deaminases. Nucleic Acids Research, 2022, 50, 12039-12057.	14.5	8
2764	Gene Editing Technologies to Target HBV cccDNA. Viruses, 2022, 14, 2654.	3.3	10
2765	Evaluation of genome and base editing tools in maize protoplasts. Frontiers in Plant Science, 0, 13, .	3.6	2
2766	Anthocyanin-assisted Agrobacterium infiltration for the rapid evaluation of genome editing efficiencies across multiple plant species. , 2022, , .		1
2767	Genome editing for vegetable crop improvement: Challenges and future prospects. Frontiers in Genetics, $0,13,.$	2.3	2
2768	Description of CRISPR-Cas9 development and its prospects in human papillomavirus-driven cancer treatment. Frontiers in Immunology, 0, 13 , .	4.8	3
2769	Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nature Biotechnology, 2023, 41, 500-512.	17.5	121
2770	Acylation driven by intracellular metabolites in host cells inhibits Cas9 activity used for genome editing. , 2022, 1 , .		1
2771	Automated high-throughput genome editing platform with an AI learning in situ prediction model. Nature Communications, 2022, 13, .	12.8	6
2772	Isocitrate dehydrogenase 1 mutation drives leukemogenesis by PDGFRA activation due to insulator disruption in acute myeloid leukemia (AML). Leukemia, 2023, 37, 134-142.	7.2	3

#	Article	IF	CITATIONS
2775	Multiplexed engineering and precision gene editing in cellular immunotherapy. Frontiers in Immunology, 0, 13 , .	4.8	4
2776	Gene therapy for inborn errors of immunity: past, present and future. Nature Reviews Immunology, 2023, 23, 397-408.	22.7	12
2778	Genes in pediatric pulmonary arterial hypertension and the most promising BMPR2 gene therapy. Frontiers in Genetics, $0,13,13$	2.3	0
2779	CRISPR-Based Tools for Fighting Rare Diseases. Life, 2022, 12, 1968.	2.4	2
2780	LMNA Co-Regulated Gene Expression as a Suitable Readout after Precise Gene Correction. International Journal of Molecular Sciences, 2022, 23, 15525.	4.1	1
2781	Genome Editing and Fatty Liver. Advances in Experimental Medicine and Biology, 2023, , 191-206.	1.6	0
2782	Research Advances in Improving Disease Resistance and Abiotic Stress Tolerance Using CRISPR/Cas9 Gene Editing in Rice. Han'guk Yukchong Hakhoe Chi, 2022, 54, 331-344.	0.5	0
2783	Advances in Gene Therapy Techniques to Treat LRRK2 Gene Mutation. Biomolecules, 2022, 12, 1814.	4.0	2
2784	Efficient and Safe Editing of Porcine Endogenous Retrovirus Genomes by Multiple-Site Base-Editing Editor. Cells, 2022, 11, 3975.	4.1	2
2785	Genome editing in plants. Gene and Genome Editing, 2022, 3-4, 100020.	2.6	2
2786	Plant Genome Editing. , 2022, , 205-216.		0
2788	Enabling Precision Medicine with CRISPR-Cas Genome Editing Technology: A Translational Perspective. Advances in Experimental Medicine and Biology, 2023, , 315-339.	1.6	0
2789	Efficient modification and preparation of circular DNA for expression in cell culture. Communications Biology, 2022, 5, .	4.4	3
2792	Circular Guide RNA for Improved Stability and CRISPR-Cas9 Editing Efficiency <i>in Vitro</i> and in Bacteria. ACS Synthetic Biology, 2023, 12, 350-359.	3.8	4
2793	Intelligent nanotherapeutic strategies for the delivery of CRISPR system. Acta Pharmaceutica Sinica B, 2023, 13, 2510-2543.	12.0	4
2794	CRISPRâ€Suppressor Scanning for Systematic Discovery of Drugâ€Resistance Mutations. Current Protocols, 2022, 2, .	2.9	3
2795	Site-Directed Mutagenesis – A Chance to Meet Environmental Challenges and Provide Healthy Food for People or an Unacceptable Hazard to Humans, Animals, and the Environment. Consequences of the European Court of Justice Judgment in Case C-528/16. Journal of Horticultural Research, 2022, 30, 1-12.	0.9	0
2796	Induced Pluripotent Stem Cells and Genome-Editing Tools in Determining Gene Function and Therapy for Inherited Retinal Disorders. International Journal of Molecular Sciences, 2022, 23, 15276.	4.1	1

#	Article	IF	CITATIONS
2797	Prime editing: A potential treatment option for $\hat{l}^2\hat{a}\in\mathbf{t}$ halassemia. Cell Biology International, 2023, 47, 699-713.	3.0	3
2799	Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: applications, challenges, and emerging opportunities. Journal of Nanobiotechnology, 2022, 20, .	9.1	10
2801	An Overview of Genome Editing in Cardiovascular and Metabolic Diseases. Advances in Experimental Medicine and Biology, 2023, , 3-16.	1.6	1
2802	The miniature CRISPR-Cas12m effector binds DNA to block transcription. Molecular Cell, 2022, 82, 4487-4502.e7.	9.7	26
2803	A Review on Advanced CRISPR-Based Genome-Editing Tools: Base Editing and Prime Editing. Molecular Biotechnology, 2023, 65, 849-860.	2.4	12
2804	RNA in Therapeutics: CRISPR in the Clinic. Molecules and Cells, 2023, 46, 4-9.	2.6	1
2805	Cytosine base editing in cyanobacteria by repressing archaic Type <scp>IV uracilâ€DNA</scp> glycosylase. Plant Journal, 0, , .	5.7	5
2806	Plant base editing and prime editing: The current status and future perspectives. Journal of Integrative Plant Biology, 2023, 65, 444-467.	8.5	23
2807	Current advances in gene therapy of mitochondrial diseases. Journal of Translational Medicine, 2022, 20, .	4.4	7
2808	A Simple and Lowâ€Tech Heatâ€Shock Method to Increase Genome Editing Efficiency in Plants. Current Protocols, 2022, 2, .	2.9	0
2809	Homology-based identification of candidate genes for male sterility editing in upland cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 0, 13, .	3.6	2
2810	Decorating chromatin for enhanced genome editing using CRISPR-Cas9. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	14
2811	Prime Editing for the Installation and Correction of Mutations Causing Inherited Retinal Disease: A Brief Methodology. Methods in Molecular Biology, 2023, , 313-331.	0.9	3
2813	Compact Cas9d and HEARO enzymes for genome editing discovered from uncultivated microbes. Nature Communications, 2022, 13, .	12.8	10
2814	Prime Editing in Mammals: The Next Generation of Precision Genome Editing. CRISPR Journal, 2022, 5, 746-768.	2.9	0
2815	CRISPR-Cas-Guided Mutagenesis of Chromosome and Virulence Plasmid in Shigella flexneri by Cytosine Base Editing. MSystems, 0, , .	3.8	0
2816	Advances in off-target detection for CRISPR-based genome editing. Human Gene Therapy, 0, , .	2.7	0
2817	Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing. Nature Communications, 2023, 14, .	12.8	36

#	ARTICLE	IF	CITATIONS
2818	Clinical genome editing to treat sickle cell disease—A brief update. Frontiers in Medicine, 0, 9, .	2.6	5
2819	Hematopoietic stem and progenitors cells gene editing: Beyond blood disorders. Frontiers in Genome Editing, 0, 4, .	5.2	2
2820	Improved Dual Base Editor Systems (iACBEs) for Simultaneous Conversion of Adenine and Cytosine in the Bacterium Escherichia coli. MBio, 2023, 14, .	4.1	8
2821	Web-Based Computational Tools for Base Editors. Methods in Molecular Biology, 2023, , 13-22.	0.9	1
2822	Gene Editing Corrects <i>In Vitro</i> a G > A <i>GLB1</i> Transition from a GM1 Gangliosidosis Patient. CRISPR Journal, 2023, 6, 17-31.	2.9	1
2823	Therapeutic adenine base editing of human hematopoietic stem cells. Nature Communications, 2023, 14,	12.8	16
2824	Targeted Mutagenesis in Mice Using a Base Editor. Methods in Molecular Biology, 2023, , 99-119.	0.9	0
2825	Profiling Genome-Wide Specificity of dCpf1 Cytidine Base Editors Using Digenome-Seq. Methods in Molecular Biology, 2023, , 33-40.	0.9	0
2826	A/C Simultaneous Conversion Using the Dual Base Editor in Human Cells. Methods in Molecular Biology, 2023, , 63-72.	0.9	0
2827	Prediction of Base Editing Efficiencies and Outcomes Using DeepABE and DeepCBE. Methods in Molecular Biology, 2023, , 23-32.	0.9	4
2828	RNA recording in single bacterial cells using reprogrammed tracrRNAs. Nature Biotechnology, 2023, 41, 1107-1116.	17.5	6
2829	Gene editing for dyslipidemias: New tools to "cut―lipids. Atherosclerosis, 2023, 368, 14-24.	0.8	5
2830	Whole genome sequencing of CCR5 CRISPR-Cas9-edited Mauritian cynomolgus macaque blastomeres reveals large-scale deletions and off-target edits. Frontiers in Genome Editing, 0, 4, .	5.2	2
2831	Efficient CRISPR-Cas9 based cytosine base editors for phytopathogenic bacteria. Communications Biology, 2023, 6, .	4.4	5
2832	CRISPR-Cas9 base editors and their current role in human therapeutics. Cytotherapy, 2023, 25, 270-276.	0.7	4
2833	Engineering CRISPR/Cas-based nanosystems for therapeutics, diagnosis and bioimaging. Chinese Chemical Letters, 2023, 34, 108134.	9.0	2
2834	Application of Base Editor-Mediated Genome Editing in Mouse Retina. Methods in Molecular Biology, 2023, , 179-188.	0.9	0
2835	Delivering Base Editors In Vivo by Adeno-Associated Virus Vectors. Methods in Molecular Biology, 2023, , 135-158.	0.9	1

#	Article	IF	CITATIONS
2836	Base Editing of Human Hematopoietic Stem Cells. Methods in Molecular Biology, 2023, , 43-62.	0.9	1
2837	A CRISPR way for accelerating cereal crop improvement: Progress and challenges. Frontiers in Genetics, $0,13,\ldots$	2.3	10
2838	CRISPR/Cas9-mediated gene editing. A promising strategy in hematological disorders. Cytotherapy, 2023, 25, 277-285.	0.7	4
2839	Heterologous Expression and Purification of a CRISPR-Cas9-Based Adenine Base Editor. Methods in Molecular Biology, 2023, , 123-133.	0.9	1
2840	Introduction and Perspectives of DNA Base Editors. Methods in Molecular Biology, 2023, , 3-11.	0.9	1
2841	Functional Analysis of Variants in BRCA1 Using CRISPR Base Editors. Methods in Molecular Biology, 2023, , 73-85.	0.9	0
2842	Improved cytosine base editors generated from TadA variants. Nature Biotechnology, 2023, 41, 686-697.	17.5	31
2843	Ablation of CaMKIIδ oxidation by CRISPR-Cas9 base editing as a therapy for cardiac disease. Science, 2023, 379, 179-185.	12.6	37
2844	CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	73
2845	Systematic optimization of Cas12a base editors in wheat and maize using the ITER platform. Genome Biology, 2023, 24, .	8.8	18
2846	Facioscapulohumeral muscular dystrophy: the road to targeted therapies. Nature Reviews Neurology, 2023, 19, 91-108.	10.1	8
2847	Pigs with an INS point mutation derived from zygotes electroporated with CRISPR/Cas9 and ssODN. Frontiers in Cell and Developmental Biology, 0, 11 , .	3.7	3
2848	Updated toolkits for nucleic acid-based biosensors. TrAC - Trends in Analytical Chemistry, 2023, 159, 116943.	11.4	3
2849	Enhancement of a prime editing system via optimal recruitment of the pioneer transcription factor P65. Nature Communications, 2023, 14, .	12.8	9
2850	Dual guide RNA-mediated concurrent C&G-to-T&A and A&T-to-G&C conversions using CRISPR base editors. Computational and Structural Biotechnology Journal, 2023, 21, 856-868.	4.1	3
2851	Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nature Biotechnology, 2023, 41, 1080-1084.	17.5	58
2852	Cytosine Base Editing in Bacteria. Methods in Molecular Biology, 2023, , 219-231.	0.9	0
2853	Guide RNA library-based CRISPR screens in plants: opportunities and challenges. Current Opinion in Biotechnology, 2023, 79, 102883.	6.6	7

#	Article	IF	CITATIONS
2854	Accelerating wood domestication in forest trees through genome editing: Advances and prospects. Current Opinion in Plant Biology, 2023, 71, 102329.	7.1	8
2855	GEM: Genome Editing Meta-database, a dataset of genome editing related metadata systematically extracted from PubMed literatures. Gene and Genome Editing, 2023, 5, 100024.	2.6	O
2856	Plant genome editing: CRISPR, base editing, prime editing, and beyond., 0,,.		4
2857	Genome editing for vegetatively propagated crops improvement: a new horizon of possibilities. Journal of Plant Biochemistry and Biotechnology, 2023, 32, 718-729.	1.7	2
2858	A minimally invasive fin scratching protocol for fast genotyping and early selection of zebrafish embryos. Scientific Reports, 2022, 12, .	3.3	0
2859	A Toolkit for Effective and Successive Genome Engineering of Escherichia coli. Fermentation, 2023, 9, 14.	3.0	2
2860	Biomarker-responsive engineered probiotic diagnoses, records, and ameliorates inflammatory bowel disease in mice. Cell Host and Microbe, 2023, 31, 199-212.e5.	11.0	26
2861	TAPE-seq is a cell-based method for predicting genome-wide off-target effects of prime editor. Nature Communications, 2022, 13, .	12.8	9
2862	Genome Editing Using Cas9 Ribonucleoprotein Is Effective for Introducing PDGFRA Variant in Cultured Human Glioblastoma Cell Lines. International Journal of Molecular Sciences, 2023, 24, 500.	4.1	0
2863	CRISPR engineering in organoids for gene repair and disease modelling. , 2023, 1, 32-45.		11
2865	TadA reprogramming to generate potent miniature base editors with high precision. Nature Communications, 2023, 14, .	12.8	11
2866	SNPD-CRISPR: Single Nucleotide Polymorphism-Distinguishable Repression or Enhancement of a Target Gene Expression by CRISPR System. Methods in Molecular Biology, 2023, , 49-62.	0.9	O
2867	CRISPR/FnCas12a-mediated efficient multiplex and iterative genome editing in bacterial plant pathogens without donor DNA templates. PLoS Pathogens, 2023, 19, e1010961.	4.7	3
2868	Genetic manipulation of colored cereals for improved nutritional quality., 2023,, 217-240.		0
2869	Towards the Clinical Application of Gene Therapy for Genetic Inner Ear Diseases. Journal of Clinical Medicine, 2023, 12, 1046.	2.4	8
2870	Updates and Applications of CRISPR/Cas Technology in Plants. Journal of Plant Biology, 0, , .	2.1	3
2871	The genome editing revolution. Trends in Biotechnology, 2023, 41, 396-409.	9.3	22
2872	Principles of genome editing and its applications in fisheries. , 2023, , 147-154.		2

#	Article	IF	CITATIONS
2874	CRISPRâ€Cas Biochemistry and CRISPRâ€Based Molecular Diagnostics. Angewandte Chemie - International Edition, 2023, 62, .	13.8	24
2875	Clinical and Therapeutic Evaluation of the Ten Most Prevalent CRB1 Mutations. Biomedicines, 2023, 11, 385.	3.2	3
2876	$\mbox{\sc i>De novo}\mbox{\sc /i> PAM generation to reach initially inaccessible target sites for base editing.}$ Development (Cambridge), 2023, 150, .	2.5	1
2877	Clinical progress in genome-editing technology and in vivo delivery techniques. Trends in Genetics, 2023, 39, 208-216.	6.7	10
2878	Base editing screens map mutations affecting interferon-l ³ signaling in cancer. Cancer Cell, 2023, 41, 288-303.e6.	16.8	14
2879	CRISPRâ€Cas Biochemistry and CRISPRâ€Based Molecular Diagnostics. Angewandte Chemie, 0, , .	2.0	0
2880	Advances in CRISPR/Cas technologies and their application in plants. , 2023, 2, 1-10.		1
2881	Future Perspectives of Prime Editing for the Treatment of Inherited Retinal Diseases. Cells, 2023, 12, 440.	4.1	4
2882	Applications and Prospects of CRISPR/Cas9-Mediated Base Editing in Plant Breeding. Current Issues in Molecular Biology, 2023, 45, 918-935.	2.4	7
2883	Gene Modulation with CRISPR-based Tools in Human iPSC-Cardiomyocytes. Stem Cell Reviews and Reports, 0, , .	3.8	3
2884	Expanded MutaT7 toolkit efficiently and simultaneously accesses all possible transition mutations in bacteria. Nucleic Acids Research, 2023, 51, e31-e31.	14.5	6
2885	Applications of CRISPR/Cas genome editing in economically important fruit crops: recent advances and future directions. Molecular Horticulture, 2023, 3, .	5.8	5
2886	Recent Advances in CRISPR-Cas Technologies for Synthetic Biology. Journal of Microbiology, 2023, 61, 13-36.	2.8	4
2887	Automating the design-build-test-learn cycle towards next-generation bacterial cell factories. New Biotechnology, 2023, 74, 1-15.	4.4	14
2888	TadA orthologs enable both cytosine and adenine editing of base editors. Nature Communications, 2023, 14, .	12.8	7
2889	Roles of innovative genome editing technologies in stem cell engineering, rheumatic diseases and other joint/bone diseases., 2023,, 53-77.		0
2890	Drug discovery: Standing on the shoulders of giants. , 2023, , 207-338.		0
2891	Genome Editing Using CRISPR. , 2023, , 1-26.		0

#	Article	IF	CITATIONS
2892	Visualizing the Nucleome Using the CRISPR–Cas9 System: From in vitro to in vivo. Biochemistry (Moscow), 2023, 88, S123-S149.	1.5	1
2894	Reversing the Central Dogma: RNA-guided control of DNA in epigenetics and genome editing. Molecular Cell, 2023, 83, 442-451.	9.7	5
2896	Precise genome editing with base editors. Medical Review, 2023, 3, 75-84.	1.2	1
2897	CRISPR-detector: fast and accurate detection, visualization, and annotation of genome-wide mutations induced by genome editing events. Journal of Genetics and Genomics, 2023, 50, 563-572.	3.9	0
2898	Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine. Genes and Diseases, 2024, 11, 268-282.	3.4	5
2899	Recent advances in therapeutic CRISPR-Cas9 genome editing: mechanisms and applications. Molecular Biomedicine, 2023, 4, .	4.4	3
2900	CRISPR/Cas9 system and its applications in nervous system diseases. Genes and Diseases, 2023, , .	3.4	0
2901	Highly efficient CRISPRâ€mediated base editing for the gut <i>Bacteroides</i> spp. with pnCasBS BE. Biotechnology Journal, 2023, 18, .	3.5	2
2902	Accelerating crop domestication through genome editing for sustainable agriculture. Journal of Plant Biochemistry and Biotechnology, 2023, 32, 688-704.	1.7	3
2903	Resistance strategies for defense against Albugo candida causing white rust disease. Microbiological Research, 2023, 270, 127317.	5.3	2
2904	Genome editing, a superior therapy for inherited retinal diseases. Vision Research, 2023, 206, 108192.	1.4	10
2905	The use of CRISPR-Cas-based systems in bacterial cell factories. Biochemical Engineering Journal, 2023, 194, 108880.	3 . 6	3
2906	Potential of the endogenous and artificially inserted CRISPR-Cas system for controlling virulence and antimicrobial resistance of food pathogens., 2023, 2, 100229.		2
2907	Regulatory Aspects of the Seed Business in Relation to Plant Breeding. , 2022, , 323-387.		2
2908	The Current Status of Antisense Gene Therapies for Bacteria-caused Diseases Challenges and Opportunities. Current Pharmaceutical Design, 2023, 29, 272-282.	1.9	0
2909	CRISPR technology: A decade of genome editing is only the beginning. Science, 2023, 379, .	12.6	233
2910	Modulating mutational outcomes and improving precise gene editing at CRISPR-Cas9-induced breaks by chemical inhibition of end-joining pathways. Cell Reports, 2023, 42, 112019.	6.4	11
2911	Challenges of Gene Editing Therapies for Genodermatoses. International Journal of Molecular Sciences, 2023, 24, 2298.	4.1	6

#	Article	IF	Citations
2912	The Novel Role of the B-Cell Lymphoma/Leukemia 11A (BCL11A) Gene in \hat{l}^2 -Thalassaemia Treatment. Cardiovascular & Hematological Disorders Drug Targets, 2022, 22, 226-236.	0.7	1
2913	Targeted dual base editing with Campylobacter jejuni Cas9 by single AAV-mediated delivery. Experimental and Molecular Medicine, 2023, 55, 377-384.	7.7	3
2914	Obtaining the best igRNAs for bystander-less correction of all ABE-reversible pathogenic SNVs using high-throughput screening. Molecular Therapy, 2023, 31, 1167-1176.	8.2	2
2915	Chemical and Biological Approaches to Interrogate off-Target Effects of Genome Editing Tools. ACS Chemical Biology, 2023, 18, 205-217.	3.4	4
2916	Ultra-sensitive biosensor based on CRISPR-Cas12a and Endo IV coupled DNA hybridization reaction for uracil DNA glycosylase detection and intracellular imaging. Biosensors and Bioelectronics, 2023, 226, 115118.	10.1	4
2918	Genome engineering via gene editing technologies in microalgae. Bioresource Technology, 2023, 373, 128701.	9.6	15
2919	Dual-AAV split prime editor corrects the mutation and phenotype in mice with inherited retinal degeneration. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	14
2922	CRISPR-Cas: A robust technology for enhancing consumer-preferred commercial traits in crops. Frontiers in Plant Science, 0, 14, .	3.6	10
2923	Advances in gene therapy hold promise for treating hereditary hearing loss. Molecular Therapy, 2023, 31, 934-950.	8.2	25
2924	Prime Editing for Human Gene Therapy: Where Are We Now?. Cells, 2023, 12, 536.	4.1	11
2925	Enabling technology and core theory of synthetic biology. Science China Life Sciences, 2023, 66, 1742-1785.	4.9	10
2926	Microbial medics diagnose and treat gut inflammation. Cell Host and Microbe, 2023, 31, 164-166.	11.0	0
2927	Rare immune diseases paving the road for genome editing-based precision medicine. Frontiers in Genome Editing, 0, 5, .	5.2	5
2928	Systematically attenuating DNA targeting enables CRISPR-driven editing in bacteria. Nature Communications, 2023, 14, .	12.8	7
2929	Vision rescue via unconstrained in vivo prime editing in degenerating neural retinas. Journal of Experimental Medicine, 2023, 220, .	8.5	24
2930	The PROTECTOR strategy employs dCas orthologs to sterically shield off-target sites from CRISPR/Cas activity. Scientific Reports, 2023, 13, .	3.3	2
2931	Introduction of Genetic Mutations Into Mice by Base Editor and Target-AID. Methods in Molecular Biology, 2023, , 111-124.	0.9	0
2932	Lipid nanoparticle-based ribonucleoprotein delivery for in vivo genome editing. Journal of Controlled Release, 2023, 355, 406-416.	9.9	5

#	Article	IF	CITATIONS
2933	Increasing the Editing Efficiency of the MS2-ADAR System for Site-Directed RNA Editing. Applied Sciences (Switzerland), 2023, 13, 2383.	2.5	0
2934	Intracellular Delivery of mRNA for Cellâ€Selective CRISPR/Cas9 Genome Editing using Lipid Nanoparticles. ChemBioChem, 2023, 24, .	2.6	4
2935	Revolutionizing DNA repair research and cancer therapy with CRISPR–Cas screens. Nature Reviews Molecular Cell Biology, 2023, 24, 477-494.	37.0	17
2936	CRISPR/Cas genome editing system and its application in potato. Frontiers in Genetics, 0, 14, .	2.3	6
2937	Recent advances in nanocomposite-based delivery systems for targeted CRISPR/Cas delivery and therapeutic genetic manipulation. Journal of Materials Chemistry B, 2023, 11, 5251-5271.	5.8	5
2938	TMEM164 is an acyltransferase that forms ferroptotic C20:4 ether phospholipids. Nature Chemical Biology, 2023, 19, 378-388.	8.0	19
2939	Therapeutic gene correction for Lesch-Nyhan syndrome using CRISPR-mediated base and prime editing. Molecular Therapy - Nucleic Acids, 2023, 31, 586-595.	5.1	3
2940	A luciferase reporter mouse model to optimize inÂvivo gene editing validated by lipid nanoparticle delivery of adenine base editors. Molecular Therapy, 2023, 31, 1159-1166.	8.2	4
2941	CRISPR/Cas9-mediated targeted knock-in of large constructs using nocodazole and RNase HII. Scientific Reports, 2023, 13, .	3.3	4
2942	Progress in and Prospects of Genome Editing Tools for Human Disease Model Development and Therapeutic Applications. Genes, 2023, 14, 483.	2.4	3
2943	CRISPR-Cas9: A Potent Gene-editing Tool for the Treatment of Cancer. Current Molecular Medicine, 2024, 24, 191-204.	1.3	1
2944	The Technologist's Dilemma. , 2023, 2, 21-22.		0
2945	Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nature Medicine, 2023, 29, 401-411.	30.7	48
2946	Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nature Medicine, 2023, 29, 412-421.	30.7	52
2947	DddA homolog search and engineering expand sequence compatibility of mitochondrial base editing. Nature Communications, 2023, 14, .	12.8	25
2948	Current advancement in the application of prime editing. Frontiers in Bioengineering and Biotechnology, $0,11,.$	4.1	12
2949	Cas9â€orthologueâ€mediated cytosine and adenine base editors recognizing NNAAAA PAM sequences. Biotechnology Journal, 2023, 18, .	3.5	0
2950	Counteracting the Common Shwachman–Diamond Syndrome-Causing SBDS c.258+2T>C Mutation by RNA Therapeutics and Base/Prime Editing. International Journal of Molecular Sciences, 2023, 24, 4024.	4.1	1

#	Article	IF	CITATIONS
2951	CRISPR/Cas genome editing in plants: Dawn of Agrobacterium transformation for recalcitrant and transgene-free plants for future crop breeding. Plant Physiology and Biochemistry, 2023, 196, 724-730.	5.8	4
2952	Shoot-root signal circuit: Phytoremediation of heavy metal contaminated soil. Frontiers in Plant Science, 0, 14, .	3.6	3
2953	Cytosine Deaminase Base Editing to Restore COL7A1 in Dystrophic Epidermolysis Bullosa Human: Murine Skin Model. JID Innovations, 2023, 3, 100191.	2.4	3
2954	Delivery challenges for CRISPRâ€"Cas9 genome editing for Duchenne muscular dystrophy. Biophysics Reviews, 2023, 4, .	2.7	2
2956	Molecular Advances in Breeding for Durable Resistance against Pests and Diseases in Wheat: Opportunities and Challenges. Agronomy, 2023, 13, 628.	3.0	3
2957	Hacking hematopoiesis $\hat{a} \in \hat{a}$ emerging tools for examining variant effects. DMM Disease Models and Mechanisms, 2023, 16, .	2.4	0
2958	Transition Substitution of Desired Bases in Human Pluripotent Stem Cells with Base Editors: A Step-by-Step Guide. International Journal of Stem Cells, 2023, 16, 234-243.	1.8	1
2959	Gene Therapy and Gene Editing. , 2023, , 269-334.		0
2960	Bacterial-Artificial-Chromosome-Based Genome Editing Methods and the Applications in Herpesvirus Research. Microorganisms, 2023, $11,589$.	3.6	3
2961	dCas9-BE3 and dCas12a-BE3 Systems Mediated Base Editing in Kiwifruit Canker Causal Agent Pseudomonas syringae pv. actinidiae. International Journal of Molecular Sciences, 2023, 24, 4597.	4.1	0
2962	New advances in CRISPR/Cas-mediated precise gene-editing techniques. DMM Disease Models and Mechanisms, 2023, 16 , .	2.4	6
2963	Applying the CRISPR/Cas9 for Treating Human and Animal Diseases – Comprehensive Review. Annals of Animal Science, 2023, 23, 979-992.	1.6	0
2965	Epigenetics in LMNA-Related Cardiomyopathy. Cells, 2023, 12, 783.	4.1	6
2966	Geneâ€targeted therapies: Overview and implications. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2023, 193, 13-18.	1.6	1
2967	Improving adenine and dual base editors through introduction of TadA-8e and Rad51DBD. Nature Communications, 2023, 14, .	12.8	6
2968	Improving the Editing Efficiency of CRISPR-Cas9 by Reducing the Generation of Escapers Based on the Surviving Mechanism. ACS Synthetic Biology, 2023, 12, 672-680.	3.8	2
2969	HAP1, a new revolutionary cell model for gene editing using CRISPR-Cas9. Frontiers in Cell and Developmental Biology, 0, 11 , .	3.7	5
2970	The history, use, and challenges of therapeutic somatic cell and germline gene editing. Fertility and Sterility, 2023, 120, 528-538.	1.0	0

#	Article	IF	CITATIONS
2971	APOE4 is a Risk Factor and Potential Therapeutic Target for Alzheimer's Disease. CNS and Neurological Disorders - Drug Targets, 2024, 23, 342-352.	1.4	6
2972	Synthetic biology tools for engineering Corynebacterium glutamicum. Computational and Structural Biotechnology Journal, 2023, 21, 1955-1965.	4.1	5
2973	A chemically controlled Cas9 switch enables temporal modulation of diverse effectors. Nature Chemical Biology, 2023, 19, 981-991.	8.0	5
2974	Mechanisms regulating the CRISPR-Cas systems. Frontiers in Microbiology, 0, 14, .	3.5	2
2975	Genome editing in maize: Toward improving complex traits in a global crop. Genetics and Molecular Biology, 2023, 46, .	1.3	1
2976	Induced Pluripotent Stem Cells in the Era of Precise Genome Editing. Current Stem Cell Research and Therapy, 2024, 19, 307-315.	1.3	0
2978	Application of CRISPR-Based C-to-G Base editing in rice protoplasts. Applied Biological Chemistry, 2023, 66, .	1.9	4
2979	High-efficiency editing in hematopoietic stem cells and the HUDEP-2 cell line based on in vitro mRNA synthesis. Frontiers in Genome Editing, 0, 5, .	5.2	2
2980	Off-target effects in CRISPR/Cas9 gene editing. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	4.1	53
2981	Functional restoration of a CFTR splicing mutation through RNA delivery of CRISPR adenine base editor. Molecular Therapy, 2023, 31, 1647-1660.	8.2	7
2982	Nucleases in gene-editing technologies: past and prologue. , 2023, , .		1
2983	Gene Therapy and Gene Editing for \hat{l}^2 -Thalassemia. Hematology/Oncology Clinics of North America, 2023, 37, 433-447.	2.2	8
2984	Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research. Military Medical Research, 2023, 10, .	3.4	5
2985	The potential of gene editing for Huntington's disease. Trends in Neurosciences, 2023, 46, 365-376.	8.6	2
2986	Prime editing in hematopoietic stem cellsâ€"From ex vivo to in vivo CRISPR-based treatment of blood disorders. Frontiers in Genome Editing, 0, 5, .	5.2	2
2987	Nonspecific interactions between Cas12a and dsDNA located downstream of the PAM mediate target search and assist AsCas12a for DNA cleavage. Chemical Science, 2023, 14, 3839-3851.	7.4	4
2988	CRISPR-assisted transcription activation by phase-separation proteins. Protein and Cell, 2023, 14, 874-887.	11.0	4
2989	CRISPR/Cas9 and <i>Agrobacterium tumefaciens</i> virulence proteins synergistically increase efficiency of precise genome editing via homology directed repair in plants. Journal of Experimental Botany, 2023, 74, 3518-3530.	4.8	3

#	ARTICLE	IF	CITATIONS
2990	Genome-engineering technologies for modeling and treatment of cystic fibrosis. Advances in Medical Sciences, 2023, 68, 111-120.	2.1	0
2991	New CRISPR Technology for Creating Cell Models of Lipoprotein Assembly and Secretion. Current Atherosclerosis Reports, 0, , .	4.8	0
2993	Role of p53 in breast cancer progression: An insight into p53 targeted therapy. Theranostics, 2023, 13, 1421-1442.	10.0	15
2994	Plant breeding advancements with "CRISPR-Cas―genome editing technologies will assist future food security. Frontiers in Plant Science, 0, 14, .	3.6	17
2995	Split-tracrRNA as an efficient tracrRNA system with an improved potential of scalability. Biomaterials Science, 0, , .	5.4	0
2996	<i>Ex vivo</i> gene therapy for lysosomal storage disorders: future perspectives. Expert Opinion on Biological Therapy, 2023, 23, 353-364.	3.1	1
2997	The progress of molecules and strategies for the treatment of HBV infection. Frontiers in Cellular and Infection Microbiology, $0,13,.$	3.9	6
2999	Cas9 off-target binding to the promoter of bacterial genes leads to silencing and toxicity. Nucleic Acids Research, 2023, 51, 3485-3496.	14.5	18
3000	Base Editing of EUI1 Improves the Elongation of the Uppermost Internode in Two-Line Male Sterile Rice Lines. Agriculture (Switzerland), 2023, 13, 693.	3.1	0
3001	Application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer. Frontiers in Endocrinology, 0, 14, .	3.5	4
3002	Current Approaches to and the Application of Intracytoplasmic Sperm Injection (ICSI) for Avian Genome Editing. Genes, 2023, 14, 757.	2.4	1
3004	Establishment, optimization, and application of genetic technology in Aspergillus spp Frontiers in Microbiology, $0,14,.$	3.5	O
3005	Tailoring crops with superior product quality through genome editing: an update. Planta, 2023, 257, .	3.2	4
3006	The Wildâ€Type tRNA Adenosine Deaminase Enzyme TadA Is Capable of Sequenceâ€Specific DNA Base Editing. ChemBioChem, 2023, 24, .	2.6	2
3007	CRISPR-Cas-mediated transcriptional modulation: The therapeutic promises of CRISPRa and CRISPRi. Molecular Therapy, 2023, 31, 1920-1937.	8.2	15
3008	Advances in CRISPR/Cas gene therapy for inborn errors of immunity. Frontiers in Immunology, 0, 14, .	4.8	5
3009	Nanotechnology and CRISPR/Cas9 system for sustainable agriculture. Environmental Science and Pollution Research, 0, , .	5.3	1
3010	Points to consider in the development of national human genome editing policy. , 2023, 1, .		O

#	ARTICLE	IF	Citations
3011	Functional characterization of human genomic variation linked to polygenic diseases. Trends in Genetics, 2023, 39, 462-490.	6.7	5
3012	Prime editing with genuine Cas9 nickases minimizes unwanted indels. Nature Communications, 2023, 14,	12.8	14
3013	Genotyping Genome-Edited Founders and Subsequent Generation. Methods in Molecular Biology, 2023, , 103-134.	0.9	0
3014	Transgenesis and Genome Engineering: A Historical Review. Methods in Molecular Biology, 2023, , 1-32.	0.9	2
3016	Base editing rescue of spinal muscular atrophy in cells and in mice. Science, 2023, 380, .	12.6	46
3017	Designing Guide-RNA for Generating Premature Stop Codons for Gene Knockout Using CRISPR-BETS. Methods in Molecular Biology, 2023, , 95-105.	0.9	0
3018	Cytosine base editors induce off-target mutations and adverse phenotypic effects in transgenic mice. Nature Communications, 2023, 14, .	12.8	10
3019	Base Editing in Poplar Through an Agrobacterium-Mediated Transformation Method. Methods in Molecular Biology, 2023, , 53-71.	0.9	1
3020	PAM-Less CRISPR-SpRY Genome Editing in Plants. Methods in Molecular Biology, 2023, , 3-19.	0.9	0
3021	The CRISPR technology: A promising strategy for improving dark fermentative biohydrogen production using Clostridium spp International Journal of Hydrogen Energy, 2023, 48, 23498-23515.	7.1	5
3022	Gene therapy and genome editing for type I glycogen storage diseases. Frontiers in Molecular Medicine, 0, 3, .	1.9	1
3024	Rhodopsin-associated retinal dystrophy: Disease mechanisms and therapeutic strategies. Frontiers in Neuroscience, 0, 17, .	2.8	3
3025	Outlook on the Security and Potential Improvements of CRISPR–Cas9. Molecular Biotechnology, 2023, 65, 1729-1736.	2.4	3
3027	Plant Mutagenesis Tools for Precision Breeding: Conventional CRISPR/Cas9 Tools and Beyond., 2023,, 269-291.		0
3028	The Design and Application of DNA-Editing Enzymes as Base Editors. Annual Review of Biochemistry, 2023, 92, 43-79.	11.1	7
3029	Gene Therapy for Primary Immune Deficiency Diseases. , 2023, , 1161-1171.		0
3030	Genome engineering in bacteria: Current and prospective applications. Methods in Microbiology, 2023, , 35-76.	0.8	1
3031	An overview of genome engineering in plants, including its scope, technologies, progress and grand challenges. Functional and Integrative Genomics, 2023, 23, .	3.5	14

#	Article	IF	CITATIONS
3033	CRISPR-Cas System: The Current and Emerging Translational Landscape. Cells, 2023, 12, 1103.	4.1	7
3034	Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing. Nature Communications, 2023, 14, .	12.8	17
3035	A Review of CRISPR-Based Advances in Dermatological Diseases. Molecular Diagnosis and Therapy, 2023, 27, 445-456.	3.8	1
3036	In the business of base editors: Evolution from bench to bedside. PLoS Biology, 2023, 21, e3002071.	5.6	10
3038	Highly Efficient A-to-G Editing in PFFs via Multiple ABEs. Genes, 2023, 14, 908.	2.4	1
3039	CRISPR-Editing Therapy for Duchenne Muscular Dystrophy. Human Gene Therapy, 2023, 34, 379-387.	2.7	7
3040	An outlook on the current challenges and opportunities in DNA data storage. Biotechnology Advances, 2023, 66, 108155.	11.7	7
3043	Overcoming the Limitations of CRISPR-Cas9 Systems in Saccharomyces cerevisiae: Off-Target Effects, Epigenome, and Mitochondrial Editing. Microorganisms, 2023, 11, 1040.	3.6	0
3045	Basic principles of genome editing., 2023,,.		0
3047	Unclasping potentials of genomics and gene editing in chickpea to fight climate change and global hunger threat. Frontiers in Genetics, 0, 14 , .	2.3	4
3048	Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants. Frontiers in Plant Science, 0, 14 , .	3.6	12
3050	A dual gene-specific mutator system installs all transition mutations at similar frequencies <i>in vivo</i> . Nucleic Acids Research, 2023, 51, e59-e59.	14.5	5
3051	Strategies for precise gene edits in mammalian cells. Molecular Therapy - Nucleic Acids, 2023, 32, 536-552.	5.1	7
3052	Single-swap editing for the correction of common Duchenne muscular dystrophy mutations. Molecular Therapy - Nucleic Acids, 2023, 32, 522-535.	5.1	3
3053	PAM-flexible Cas9-mediated base editing of a hemophilia B mutation in induced pluripotent stem cells. Communications Medicine, 2023, 3, .	4.2	5
3054	Vector enabled CRISPR gene editing – A revolutionary strategy for targeting the diversity of brain pathologies. Coordination Chemistry Reviews, 2023, 487, 215172.	18.8	0
3055	A Review of CRISPR Tools for Treating Usher Syndrome: Applicability, Safety, Efficiency, and In Vivo Delivery. International Journal of Molecular Sciences, 2023, 24, 7603.	4.1	2
3056	CRISPR-Combo–mediated orthogonal genome editing and transcriptional activation for plant breeding. Nature Protocols, 2023, 18, 1760-1794.	12.0	5

#	ARTICLE	IF	Citations
3057	Methodologies for the development of cereals and pseudocereals for improved quality and nutritional value. , 2023, , 205-231.		0
3058	Gene and base editing tools to accelerate cereal improvement. , 2023, , 315-336.		0
3059	Curing "GFP-itis―in Bacteria with Base Editors: Development of a Genome Editing Science Program Implemented with High School Biology Students. CRISPR Journal, 0, , .	2.9	0
3060	Application of new technologies in embryos: From gene editing to synthetic embryos. , 2023, , 853-886.		O
3061	Mechanisms of the Specificity of the CRISPR/Cas9 System in Genome Editing. Molecular Biology, 2023, 57, 258-271.	1.3	2
3062	Overcoming Multidrug Resistance by Base-Editing-Induced Codon Mutation. ACS Pharmacology and Translational Science, 2023, 6, 812-819.	4.9	1
3063	Production of MSTN knockout porcine cells using adenine base-editing-mediated exon skipping. In Vitro Cellular and Developmental Biology - Animal, 2023, 59, 241-255.	1.5	1
3064	HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing. Nature Communications, 2023, 14, .	12.8	3
3065	Harnessing CRISPR-Cas for oomycete genome editing. Trends in Microbiology, 2023, , .	7.7	0
3066	Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Biochemistry, 2023, 62, 3465-3487.	2.5	13
3067	Generation of stable integration $\hat{s} \in \mathbb{R}$ ree pig induced pluripotent stem cells under chemically defined culture condition. Cell Proliferation, 0 , , .	5. 3	0
3068	Discovery of target genes and pathways at GWAS loci by pooled single-cell CRISPR screens. Science, 2023, 380, .	12.6	36
3069	Advances In the Application of CRISPR/Cas9 Gene Editing Technology in Pig Breeding and Production., 0, 45, 308-313.		0
3070	Applications of Anti-CRISPR Proteins in Genome Editing and Biotechnology. Journal of Molecular Biology, 2023, 435, 168120.	4.2	5
3072	Parallel engineering and activity profiling of a base editor system. Cell Systems, 2023, 14, 392-403.e4.	6.2	1
3073	Generation of Herbicide-Resistant Soybean by Base Editing. Biology, 2023, 12, 741.	2.8	4
3074	Advancements in pre-clinical development of gene editing-based therapies to treat inherited retinal diseases. Vision Research, 2023, 209, 108257.	1.4	4
3075	Promoter editing for the genetic improvement of crops. Journal of Experimental Botany, 2023, 74, 4349-4366.	4.8	2

#	ARTICLE	IF	CITATIONS
3076	The applications of CRISPR/Cas-mediated genome editing in genetic hearing loss. Cell and Bioscience, 2023, 13 , .	4.8	2
3077	Strand-selective base editing of human mitochondrial DNA using mitoBEs. Nature Biotechnology, 0, , .	17.5	12
3078	Prime editing: advances and therapeutic applications. Trends in Biotechnology, 2023, 41, 1000-1012.	9.3	25
3079	Combining different CRISPR nucleases for simultaneous knock-in and base editing prevents translocations in multiplex-edited CAR T cells. Genome Biology, 2023, 24, .	8.8	13
3080	Precise integration of large DNA sequences in plant genomes using PrimeRoot editors. Nature Biotechnology, 2024, 42, 316-327.	17.5	26
3081	Advances in CRISPR/Cas9 Genome Editing for the Treatment of Muscular Dystrophies. Human Gene Therapy, 2023, 34, 388-403.	2.7	6
3082	Game changers in science and technology - now and beyond. Technological Forecasting and Social Change, 2023, 193, 122588.	11.6	14
3083	A DddA ortholog-based and transactivator-assisted nuclear and mitochondrial cytosine base editors with expanded target compatibility. Molecular Cell, 2023, 83, 1710-1724.e7.	9.7	12
3084	Regulation of plants developed through new breeding techniques must ensure societal benefits. Nature Plants, 2023, 9, 679-684.	9.3	4
3085	Saving eyesight, one gene at a time. Trends in Molecular Medicine, 2023, 29, 484-486.	6.7	0
3087	Discovery and characterization of novel Cre-type tyrosine site-specific recombinases for advanced genome engineering. Nucleic Acids Research, 2023, 51, 5285-5297.	14.5	3
3088	Deafness: from genetic architecture to gene therapy. Nature Reviews Genetics, 2023, 24, 665-686.	16.3	19
3089	Programmable deaminase-free base editors for G-to-Y conversion by engineered glycosylase. National Science Review, 2023, 10, .	9.5	12
3090	Profiling the impact of the promoters on CRISPR-Cas12a system in human cells. Cellular and Molecular Biology Letters, 2023, 28, .	7.0	3
3091	CRISPR for neuroscientists. Neuron, 2023, 111, 2282-2311.	8.1	8
3092	Gene editing and scalable functional genomic screening in Leishmania species using the CRISPR/Cas9 cytosine base editor toolbox LeishBASEedit. ELife, 0, 12, .	6.0	4
3094	Development of miniature base editors using engineered IscB nickase. Nature Methods, 2023, 20, 1029-1036.	19.0	8
3095	Application progress of CRISPR/Cas9 genome-editing technology in edible fungi. Frontiers in Microbiology, 0, 14, .	3.5	1

#	Article	IF	CITATIONS
3096	Prime editing strategies to mediate exon skipping in DMD gene. Frontiers in Medicine, 0, 10, .	2.6	0
3097	High-throughput base editing KO screening of cellular factors for enhanced GBE. Journal of Genetics and Genomics, 2023, , .	3.9	0
3098	Emerging Targeted Therapies for Inherited Cardiomyopathies and Arrhythmias. Cardiac Electrophysiology Clinics, 2023, , .	1.7	0
3099	The future of CRISPR in Mycobacterium tuberculosis infection. Journal of Biomedical Science, 2023, 30,	7.0	3
3100	INTEGRATING GENOMICS AND BIOTECHNOLOGICAL APPROACHES TO ENHANCE ABIOTIC STRESS TOLERANCE IN SESAME (SESAMUM INDICUM L.). , 2023, 2023, 37.		0
3101	Revolutionizing genetic disease treatment: Recent technological advances in base editing. Current Opinion in Biomedical Engineering, 2023, 28, 100472.	3.4	2
3102	CRISPR-Mediated Base Editing: Promises and Challenges for a Viable Oncotherapy Strategy. Human Gene Therapy, 0, , .	2.7	0
3103	Progress on RNA-based therapeutics for genetic diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban = Journal of Zhejiang University Medical Sciences, 2023, 52, 406-416.	0.3	O
3104	Detect-seq, a chemical labeling and biotin pull-down approach for the unbiased and genome-wide off-target evaluation of programmable cytosine base editors. Nature Protocols, 2023, 18, 2221-2255.	12.0	3
3105	Screening an effective dual-AAV split-CBE system for C-to-T conversion in vivo. Human Gene Therapy, 0,	2.7	1
3106	CRISPR-Cas9 in Alzheimer's disease: Therapeutic trends, modalities, and challenges. Drug Discovery Today, 2023, 28, 103652.	6.4	1
3107	Cytosine base editors (CBEs) for inducing targeted DNA base editing in Nicotiana benthamiana. BMC Plant Biology, 2023, 23, .	3.6	1
3108	One and Done? How CRISPR Is Changing the Clinical Outlook for Multiple Diseases. , 2023, 10, 16-19.		1
3109	A systematic review of computational methods for designing efficient guides for CRISPR DNA base editor systems. Briefings in Bioinformatics, 0, , .	6.5	0
3110	Advancing CRISPR/Cas gene editing with machine learning. Current Opinion in Biomedical Engineering, 2023, 28, 100477.	3.4	1
3111	DNA-Nukleasen und ihre Verwendung in der Viehzucht. , 2023, , 139-168.		O
3112	A Cas3-base editing tool for targetable in vivo mutagenesis. Nature Communications, 2023, 14, .	12.8	6
3113	Retinal organoid and gene editing for basic and translational research. Vision Research, 2023, 210, 108273.	1.4	5

#	Article	IF	CITATIONS
3114	Rapid and definitive treatment of phenylketonuria in variant-humanized mice with corrective editing. Nature Communications, 2023 , 14 , .	12.8	6
3115	Gene therapy for pediatric genetic kidney diseases. , 2023, 1, .		1
3116	Generation of sheep with defined FecBB and TBXT mutations and porcine blastocysts with KCNJ5G151R/+ mutation using prime editing. BMC Genomics, 2023, 24, .	2.8	1
3117	The p53 challenge of hematopoietic stem cell gene editing. Molecular Therapy - Methods and Clinical Development, 2023, 30, 83-89.	4.1	6
3118	Base Editing and Prime Editing: Potential Therapeutic Options for Rare and Common Diseases. BioDrugs, 2023, 37, 453-462.	4.6	3
3119	Base-Edited CAR7 T Cells for Relapsed T-Cell Acute Lymphoblastic Leukemia. New England Journal of Medicine, 2023, 389, 899-910.	27.0	56
3120	Genome- and transcriptome-wide off-target analyses of a high-efficiency adenine base editor in tomato. Plant Physiology, 2023, 193, 291-303.	4.8	3
3121	Innovations in the Treatment of Dystrophic Epidermolysis Bullosa (DEB): Current Landscape and Prospects. Therapeutics and Clinical Risk Management, 0, Volume 19, 455-473.	2.0	6
3122	Adenine transversion editors enable precise, efficient A•T-to-C•G base editing in mammalian cells and embryos. Nature Biotechnology, 0, , .	17.5	29
3123	Bioengineered Enzymes and Precision Fermentation in the Food Industry. International Journal of Molecular Sciences, 2023, 24, 10156.	4.1	2
3124	Liver-specific in vivo base editing of Angptl3 via AAV delivery efficiently lowers blood lipid levels in mice. Cell and Bioscience, 2023, 13, .	4.8	4
3125	Bacterial enzymes: powerful tools for protein labeling, cell signaling, and therapeutic discovery. Trends in Biotechnology, 2023, 41, 1385-1399.	9.3	2
3126	Large-scale single-cell cloning of genome-edited cultured human cells by On-chip SPiS. STAR Protocols, 2023, 4, 102364.	1.2	0
3127	Emerging Lipoprotein-Related Therapeutics for Patients with Diabetes. Contemporary Diabetes, 2023, , 821-878.	0.0	0
3128	Genetic tools for metabolic engineering of Pichia pastoris. Engineering Microbiology, 2023, 3, 100094.	4.7	7
3129	Characterizing off-target effects of genome editors. Current Opinion in Biomedical Engineering, 2023, , 100480.	3.4	3
3130	PE-STOP: A versatile tool for installing nonsense substitutions amenable for precise reversion. Journal of Biological Chemistry, 2023, , 104942.	3.4	0
3131	A Cell-Based Optimised Approach for Rapid and Efficient Gene Editing of Human Pluripotent Stem Cells. International Journal of Molecular Sciences, 2023, 24, 10266.	4.1	1

#	Article	IF	CITATIONS
3133	Gene editing with â€~pencil' rather than â€~scissors' in human pluripotent stem cells. Stem Cell Research and Therapy, 2023, 14, .	5 . 5	2
3134	Predicting Mutations Generated by Cas9, Base Editing, and Prime Editing in Mammalian Cells. CRISPR Journal, 0, , .	2.9	0
3135	Cellular Surveillance: DNA-Based Recording to Monitor and Memorize Biological Events. , 2023, 2, 197-210.		0
3136	Biological Sentinel: An Efficient Engineered Bacterial System for Monitoring and Tracing Regulated Hazardous Chemicals. Analytical Chemistry, 0, , .	6.5	0
3138	Applications and Prospects of CRISPR-Cas system in Cyanobacteria. BIO Web of Conferences, 2023, 61, 01009.	0.2	0
3139	CRISPR-based gene editing technology and its application in microbial engineering. Engineering Microbiology, 2023, 3, 100101.	4.7	1
3142	Progress and Perspective of CRISPRâ€Cas9 Technology in Translational Medicine. Advanced Science, 2023, 10, .	11.2	3
3143	Cell-type-specific CRISPRization of mitochondrial DNA using bifunctional biodegradable silica nanoparticles. Chemical Communications, 0, , .	4.1	O
3144	Base editor screens for in situ mutational scanning at scale. Molecular Cell, 2023, 83, 2167-2187.	9.7	8
3145	Protospacer modification improves base editing of a canonical splice site variant and recovery of CFTR function in human airway epithelial cells. Molecular Therapy - Nucleic Acids, 2023, 33, 335-350.	5.1	2
3146	Semi-automated optimized method to isolate CRISPR/Cas9 edited human pluripotent stem cell clones. Stem Cell Research and Therapy, 2023, 14, .	5.5	0
3147	Nucleic Acid Editing. , 2023, , 365-416.		O
3148	Specific correction of pyruvate kinase deficiency-causing point mutations by CRISPR/Cas9 and single-stranded oligodeoxynucleotides. Frontiers in Genome Editing, 0, 5, .	5.2	0
3149	Integrative dissection of gene regulatory elements at base resolution. Cell Genomics, 2023, 3, 100318.	6.5	6
3150	Beyond current treatment of Fanconi Anemia: What do advances in cell and gene-based approaches offer?. Blood Reviews, 2023, 60, 101094.	5.7	1
3151	Fast and efficient template-mediated synthesis of genetic variants. Nature Methods, 2023, 20, 841-848.	19.0	3
3153	Screening for functional regulatory variants in open chromatin using GenlE-ATAC. Nucleic Acids Research, 2023, 51, e64-e64.	14.5	1
3154	Massively parallel base editing to map variant effects in human hematopoiesis. Cell, 2023, 186, 2456-2474.e24.	28.9	23

#	Article	IF	CITATIONS
3155	Efficient Genome and Base Editing in Human Cells Using ThermoCas9. CRISPR Journal, 2023, 6, 278-288.	2.9	1
3156	Targeted CD7 CAR T-cells for treatment of T-Lymphocyte leukemia and lymphoma and acute myeloid leukemia: recent advances. Frontiers in Immunology, 0, 14, .	4.8	3
3157	<i>Ulva</i> : An emerging green seaweed model for systems biology. Journal of Phycology, 2023, 59, 433-440.	2.3	2
3158	Breakthrough in CRISPR/Cas system: Current and future directions and challenges. Biotechnology Journal, 2023, 18, .	3.5	3
3159	The Application of CRISPR-Cas System in Glioblastoma Research and Treatment. BIO Web of Conferences, 2023, 60, 01011.	0.2	0
3160	A prime editor mouse to model a broad spectrum of somatic mutations in vivo. Nature Biotechnology, 0, , .	17.5	14
3161	Comparison of TRIBE and STAMP for identifying targets of RNA binding proteins in human and <i> Drosophila < /i > cells. Rna, 2023, 29, 1230-1242.</i>	3.5	4
3162	Modeling Duchenne Muscular Dystrophy Cardiomyopathy with Patients' Induced Pluripotent Stem-Cell-Derived Cardiomyocytes. International Journal of Molecular Sciences, 2023, 24, 8657.	4.1	0
3163	CRISPR-Based Genome Editing Tools: An Accelerator in Crop Breeding for a Changing Future. International Journal of Molecular Sciences, 2023, 24, 8623.	4.1	2
3164	Patient-derived head and neck cancer organoids allow treatment stratification and serve as a tool for biomarker validation and identification. Med, 2023, 4, 290-310.e12.	4.4	12
3165	Deep learning models to predict the editing efficiencies and outcomes of diverse base editors. Nature Biotechnology, 0, , .	17.5	9
3166	A highly specific CRISPR-Cas12j nuclease enables allele-specific genome editing. Science Advances, 2023, 9, .	10.3	9
3167	Nanobiomaterial vectors for improving gene editing and gene therapy. Materials Today, 2023, 66, 114-136.	14.2	10
3168	A zebrafish model of combined saposin deficiency identifies acid sphingomyelinase as a potential therapeutic target. DMM Disease Models and Mechanisms, 2023, 16, .	2.4	4
3169	$MutSl_{\pm}$ and $MutSl_{\pm}^{2}$ as size-dependent cellular determinants for prime editing in human embryonic stem cells. Molecular Therapy - Nucleic Acids, 2023, 32, 914-922.	5.1	4
3170	Base editing-mediated one-step inactivation of the Dnmt gene family reveals critical roles of DNA methylation during mouse gastrulation. Nature Communications, 2023, 14, .	12.8	3
3171	Developing a PAM-Flexible CRISPR-Mediated Dual-Deaminase Base Editor to Regulate Extracellular Electron Transport in <i>Shewanella oneidensis</i>	3.8	1
3172	Treatment of infectious diseases by & amp; lt; italic& gt; in vivo& lt; /italic& gt; gene editing., 2023,, 20220061.		1

#	Article	IF	CITATIONS
3173	Comparison of In-Frame Deletion, Homology-Directed Repair, and Prime Editing-Based Correction of Duchenne Muscular Dystrophy Mutations. Biomolecules, 2023, 13, 870.	4.0	1
3174	The Promises and Pitfalls of CRISPR-Mediated Base Editing in Stem Cells. CRISPR Journal, 2023, 6, 196-215.	2.9	2
3175	The history of genome editing: advances from the interface of chemistry & Diology. Chemical Communications, 2023, 59, 7676-7684.	4.1	4
3176	Gene editing innovations and their applications in cardiomyopathy research. DMM Disease Models and Mechanisms, 2023, 16 , .	2.4	4
3177	Powerful Microbial Base-Editing Toolbox: From Optimization Strategies to Versatile Applications. ACS Synthetic Biology, 2023, 12, 1586-1598.	3.8	0
3178	Chitosan Hydrogel-Delivered ABE8e Corrects PAX9 Mutant in Dental Pulp Stem Cells. Gels, 2023, 9, 436.	4.5	0
3179	A review on CRISPR/Cas: a versatile tool for cancer screening, diagnosis, and clinic treatment. Functional and Integrative Genomics, 2023, 23, .	3.5	10
3180	New Approaches for Targeting PCSK9: Small-Interfering Ribonucleic Acid and Genome Editing. Arteriosclerosis, Thrombosis, and Vascular Biology, 2023, 43, 1081-1092.	2.4	7
3181	Similar deamination activities but different phenotypic outcomes induced by APOBEC3 enzymes in breast epithelial cells. Frontiers in Genome Editing, 0, 5, .	5.2	1
3182	Scanning mutagenesis of the voltage-gated sodium channel NaV1.2 using base editing. Cell Reports, 2023, 42, 112563.	6.4	2
3183	Genomic allele-specific base editing with imperfect gRNA. Journal of Genetics and Genomics, 2023, , .	3.9	0
3184	The construction of a PAM-less base editing toolbox in Bacillus subtilis and its application in metabolic engineering. Chemical Engineering Journal, 2023, 469, 143865.	12.7	1
3185	Base editors dissect genetic variants in human hematopoietic cells on a large scale. Trends in Immunology, 2023, 44, 490-492.	6.8	0
3186	Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Frontiers in Physiology, 0, 14, .	2.8	14
3187	CRISPR single base-editing: $\langle i \rangle$ in silico $\langle i \rangle$ predictions to variant clonal cell lines. Human Molecular Genetics, $0, , .$	2.9	0
3188	Discovery of deaminase functions by structure-based protein clustering. Cell, 2023, 186, 3182-3195.e14.	28.9	27
3189	Controlling genetic heterogeneity in gene-edited hematopoietic stem cells by single-cell expansion. Cell Stem Cell, 2023, 30, 987-1000.e8.	11.1	6
3190	Whole-Genome Resequencing Reveals the Diversity of Patchouli Germplasm. International Journal of Molecular Sciences, 2023, 24, 10970.	4.1	О

#	ARTICLE	IF	Citations
3191	Chromatin structure and context-dependent sequence features control prime editing efficiency. Frontiers in Genetics, $0,14,.$	2.3	1
3192	Enrichment strategies to enhance genome editing. Journal of Biomedical Science, 2023, 30, .	7.0	3
3193	Creation of herbicideâ€resistance in allotetraploid peanut using <scp>CRISPR</scp> /Cas9â€meditated cytosine baseâ€editing. Plant Biotechnology Journal, 0, , .	8.3	2
3194	Potent and uniform fetal hemoglobin induction via base editing. Nature Genetics, 2023, 55, 1210-1220.	21.4	10
3195	An engineered hypercompact CRISPR-Cas12f system with boosted gene-editing activity. Nature Chemical Biology, 2023, 19, 1384-1393.	8.0	7
3196	Emergent CRISPR–Cas-based technologies for engineering non-model bacteria. Current Opinion in Microbiology, 2023, 75, 102353.	5.1	12
3197	Stateâ€ofâ€theâ€art 2023 on gene therapy for phenylketonuria. Journal of Inherited Metabolic Disease, 2024, 47, 80-92.	3.6	5
3198	Targeting Hepatitis B Virus DNA Using Designer Gene Editors. Clinics in Liver Disease, 2023, 27, 895-916.	2.1	1
3200	Artificial evolution of <i>OsEPSPS</i> through an improved dual cytosine and adenine base editor generated a novel allele conferring rice glyphosate tolerance. Journal of Integrative Plant Biology, 2023, 65, 2194-2203.	8.5	5
3201	Programmable Molecular Signal Transmission Architecture and Reactant Regeneration Strategy Driven by EXO λ for DNA Circuits. ACS Synthetic Biology, 2023, 12, 2107-2117.	3.8	2
3202	Application of CRISPR in Filamentous Fungi and Macrofungi: From Component Function to Development Potentiality. ACS Synthetic Biology, 2023, 12, 1908-1923.	3.8	0
3203	Recent advances in precise plant genome editing technology. , 2023, , 45-54.		0
3205	To cut or not to cut: Next-generation genome editors for precision genome engineering. Current Opinion in Biomedical Engineering, 2023, 28, 100489.	3.4	3
3206	Methods of crop improvement and applications towards fortifying food security. Frontiers in Genome Editing, 0, 5, .	5.2	0
3207	A Dualâ€Enzyme–Responsive DNAâ€Based Nanoframework Enables Controlled Coâ€Delivery of CRISPRâ€Cas9 and Antisense Oligodeoxynucleotide for Synergistic Gene Therapy. Advanced Functional Materials, 2023, 33, .	14.9	4
3208	Microbial Technology for Neurological Disorders. , 2023, , 299-339.		O
3209	Large-Scale CRISPR Screen of LDLR Pathogenic Variants. Research, 2023, 6, .	5.7	O
3210	The recombinase activating genes: architects of immune diversity during lymphocyte development. Frontiers in Immunology, 0, 14 , .	4.8	2

#	Article	IF	CITATIONS
3211	Engineering of Therapeutic and Detoxifying Enzymes. Angewandte Chemie, 2023, 135, .	2.0	1
3212	Engineering of Therapeutic and Detoxifying Enzymes. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
3213	Spacer Fidelity Assessments of Guide RNA by Top-Down Mass Spectrometry. ACS Central Science, 2023, 9, 1437-1452.	11.3	1
3214	A new compact adenine base editor generated through deletion of HNH and REC2 domain of SpCas9. BMC Biology, 2023, 21, .	3.8	1
3215	Defining global strategies to improve outcomes in sickle cell disease: a Lancet Haematology Commission. Lancet Haematology,the, 2023, 10, e633-e686.	4.6	18
3216	Developing a Base Editing System for Marine <i>Roseobacter</i> Clade Bacteria. ACS Synthetic Biology, 2023, 12, 2178-2186.	3.8	3
3217	Base editors: development and applications in biomedicine. Frontiers of Medicine, 2023, 17, 359-387.	3.4	1
3218	Base editing enables duplex point mutagenesis in Clostridium autoethanogenum at the price of numerous off-target mutations. Frontiers in Bioengineering and Biotechnology, $0,11,.$	4.1	1
3219	Engineered bacterial orthogonal DNA replication system for continuous evolution. Nature Chemical Biology, 2023, 19, 1504-1512.	8.0	8
3220	Development of CRISPR Cas9, spin-off technologies and their application in model construction and potential therapeutic methods of Parkinson's disease. Frontiers in Neuroscience, 0, 17, .	2.8	0
3222	Applications of <scp>CRISPR</scp> technology in cellular immunotherapy. Immunological Reviews, 2023, 320, 199-216.	6.0	4
3223	Deep Characterization and Comparison of Different Retrovirus-like Particles Preloaded with CRISPR/Cas9 RNPs. International Journal of Molecular Sciences, 2023, 24, 11399.	4.1	1
3224	PINE-TREE enables highly efficient genetic modification of human cell lines. Molecular Therapy - Nucleic Acids, 2023, 33, 483-492.	5.1	1
3225	Structural basis of sequence-specific cytosine deamination by double-stranded DNA deaminase toxin DddA. Nature Structural and Molecular Biology, 2023, 30, 1153-1159.	8.2	4
3227	Advances in Split Vector Approaches for Adeno-Associated Virus Gene Therapy. Human Gene Therapy, 2023, 34, 592-593.	2.7	0
3228	Amphioxus adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U and A-to-I deamination of DNA. Communications Biology, 2023, 6, .	4.4	1
3229	Strategies for delivery of CRISPR/Cas-mediated genome editing to obtain edited plants directly without transgene integration. Frontiers in Genome Editing, 0, 5, .	5.2	4
3230	Efficient high-precision homology-directed repair-dependent genome editing by HDRobust. Nature Methods, 2023, 20, 1388-1399.	19.0	6

#	ARTICLE	IF	CITATIONS
3231	Genome editing and cancer therapy: handling the hypoxia-responsive pathway as a promising strategy. Cellular and Molecular Life Sciences, 2023, 80, .	5.4	0
3232	The CRISPR/Cas System in Human Cancer. Advances in Experimental Medicine and Biology, 2023, , 59-71.	1.6	0
3233	Genome Editing for Engineering the Next Generation of Advanced Immune Cell Therapies. Advances in Experimental Medicine and Biology, 2023, , 85-110.	1.6	0
3234	Functional annotation of variants of the BRCA2 gene via locally haploid human pluripotent stem cells. Nature Biomedical Engineering, 2024, 8, 165-176.	22.5	3
3235	CRISPR molecular detection techniques: Advances from single to multiple detection methods. TrAC - Trends in Analytical Chemistry, 2023, 166, 117198.	11.4	4
3236	Wheat Nutraceutomics: Breeding, Genomics, Biotechnology, and Nanotechnology., 2023, , 1-23.		0
3237	The expanded CRISPR toolbox for constructing microbial cell factories. Trends in Biotechnology, 2023, , .	9.3	3
3238	Precise mutagenesis in zebrafish using cytosine base editors. Nature Protocols, 2023, 18, 2794-2813.	12.0	3
3240	Practical Approaches for the Yeast Saccharomyces cerevisiae Genome Modification. International Journal of Molecular Sciences, 2023, 24, 11960.	4.1	3
3241	Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment. Journal of Genetics and Genomics, 2024, 51, 159-183.	3.9	2
3242	Targeting Duchenne muscular dystrophy by skipping DMD exon 45 with base editors. Molecular Therapy - Nucleic Acids, 2023, 33, 572-586.	5.1	1
3243	RNAâ€TAG Mediated Proteinâ€RNA Conjugation**. ChemBioChem, 0, , .	2.6	0
3245	Genome Editing Using CRISPR., 2023, , 2511-2536.		0
3246	Structure and engineering of miniature Acidibacillus sulfuroxidans Cas12f1. Nature Catalysis, 2023, 6, 695-709.	34.4	3
3248	Enhancer in cancer pathogenesis and treatment. Genetics and Molecular Biology, 2023, 46, .	1.3	0
3249	Revolutionising health care: Exploring the latest advances in medical sciences. Journal of Global Health, $0,13,.$	2.7	2
3252	Nonviral base editing of KCNJ13 mutation preserves vision in a model of inherited retinal channel opathy. Journal of Clinical Investigation, 2023, 133, .	8.2	1
3253	Mitochondrial diseases and mtDNA editing. Genes and Diseases, 2024, 11, 101057.	3.4	O

#	Article	IF	CITATIONS
3254	The interplay of quaternary ammonium lipid structure and protein corona on lung-specific mRNA delivery by selective organ targeting (SORT) nanoparticles. Journal of Controlled Release, 2023, 361, 361-372.	9.9	10
3255	CRISPR-dependent Base Editing Screens Identify Separation of Function Mutants of RADX with Altered RAD51 Regulatory Activity. Journal of Molecular Biology, 2023, 435, 168236.	4.2	0
3256	Generation of precision preclinical cancer models using regulated in vivo base editing. Nature Biotechnology, 0 , , .	17.5	4
3257	Improvement of floricultural traits in ornamental crops using genome editing tools. Journal of Plant Biochemistry and Biotechnology, 0, , .	1.7	1
3258	AAV-mediated base-editing therapy ameliorates the disease phenotypes in a mouse model of retinitis pigmentosa. Nature Communications, 2023, 14, .	12.8	2
3260	Drought stress tolerance in rice: advances in physiology and genetics research. Plant Physiology Reports, 0, , .	1.5	0
3262	CRISPR-based knockout and base editing confirm the role of MYRF in heart development and congenital heart disease. DMM Disease Models and Mechanisms, 2023, 16, .	2.4	1
3264	One-step generation of tumor models by base editor multiplexing in adult stem cell-derived organoids. Nature Communications, 2023, 14, .	12.8	1
3265	Beyond skin-deep: targeting the plant surface for crop improvement. Journal of Experimental Botany, 0, , .	4.8	0
3266	Genomic editing: From human health to the "perfect child― , 2023, , 1-32.		0
3267	Applications and Research Advances in the Delivery of CRISPR/Cas9 Systems for the Treatment of Inherited Diseases. International Journal of Molecular Sciences, 2023, 24, 13202.	4.1	1
3268	A streamlined guide RNA screening system for genome editing in Sorghum bicolor. Plant Methods, 2023, 19, .	4.3	1
3269	The Past, Present, and Future of Genetically Engineered Mouse Models for Skeletal Biology. Biomolecules, 2023, 13, 1311.	4.0	0
3270	CRISPR-Cas9-Mediated Cytosine Base Editing Screen for the Functional Assessment of CALR Intron Variants in Japanese Encephalitis Virus Replication. International Journal of Molecular Sciences, 2023, 24, 13331.	4.1	0
3271	Strand-preferred base editing of organellar and nuclear genomes using CyDENT. Nature Biotechnology, 0, , .	17.5	5
3272	Targeted large fragment deletion in plants using paired crRNAs with type I CRISPR system. Plant Biotechnology Journal, 2023, 21, 2196-2208.	8.3	2
3273	Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein 9 System: Factors Affecting Precision Gene Editing Efficiency and Optimization Strategies. Human Gene Therapy, 0, , .	2.7	0
3275	Epitope base editing CD45 in hematopoietic cells enables universal blood cancer immune therapy. Science Translational Medicine, 2023, 15, .	12.4	13

#	Article	IF	CITATIONS
3277	A temperature-tolerant CRISPR base editor mediates highly efficient and precise gene editing in <i>Drosophila</i> . Science Advances, 2023, 9, .	10.3	2
3278	Cytosine base editors optimized for genome editing in potato protoplasts. Frontiers in Genome Editing, 0, 5, .	5. 2	0
3279	Green revolution to genome revolution: driving better resilient crops against environmental instability. Frontiers in Genetics, $0,14,1$	2.3	0
3280	Shortened CRISPR-Cas9 arrays enable multiplexed gene targeting in bacteria from a smaller DNA footprint. RNA Biology, 2023, 20, 666-680.	3.1	O
3281	Continuous directed evolution of a compact CjCas9 variant with broad PAM compatibility. Nature Chemical Biology, 2024, 20, 333-343.	8.0	2
3282	Drug delivery systems for CRISPR-based genome editors. Nature Reviews Drug Discovery, 2023, 22, 875-894.	46.4	9
3283	Developing a highly efficient CGBE base editor in watermelon. Horticulture Research, 2023, 10, .	6.3	0
3284	Manipulating and studying gene function in human pluripotent stem cell models. FEBS Letters, 2023, 597, 2250-2287.	2.8	2
3285	Gene therapy for Duchenne muscular dystrophy: an update on the latest clinical developments. Expert Review of Neurotherapeutics, 2023, 23, 905-920.	2.8	2
3286	Directed evolution rice genes with randomly multiplexed sgRNAs assembly of base editors. Plant Biotechnology Journal, 2023, 21, 2597-2610.	8.3	3
3287	Retron-mediated multiplex genome editing and continuous evolution in <i>Escherichia coli</i> Nucleic Acids Research, 2023, 51, 8293-8307.	14.5	4
3288	Prospects and challenges of <scp>CRISPR</scp> /Cas9 geneâ€editing technology in cancer research. Clinical Genetics, 2023, 104, 613-624.	2.0	2
3289	Targeted C-to-T and A-to-G dual mutagenesis system for RhtA transporter <i>in vivo</i> evolution. Applied and Environmental Microbiology, 0, , .	3.1	1
3290	Development of CRISPR/Cas Delivery Systems for In Vivo Precision Genome Editing. Accounts of Chemical Research, 2023, 56, 2185-2196.	15.6	6
3291	Enhanced singleâ€base mutation diversity by the combination of cytidine deaminase with DNAâ€repairing enzymes in yeast. Biotechnology Journal, 2023, 18, .	3.5	1
3292	Biolistic transformation of the yeast <i>Saccharomyces cerevisiae</i> mitochondrial <scp>DNA</scp> . IUBMB Life, 2023, 75, 972-982.	3.4	O
3293	CRISPR-mediated acceleration of wheat improvement: advances and perspectives. Journal of Genetics and Genomics, 2023, 50, 815-834.	3.9	2
3294	Engineering a plant A-to-K base editor with improved performance by fusion with a transactivation module. Plant Communications, 2023, 4, 100667.	7.7	5

#	Article	IF	CITATIONS
3295	Genome editing in the treatment of ocular diseases. Experimental and Molecular Medicine, 2023, 55, 1678-1690.	7.7	3
3296	CRISPR-Cas9 Direct Fusions for Improved Genome Editing via Enhanced Homologous Recombination. International Journal of Molecular Sciences, 2023, 24, 14701.	4.1	1
3297	CRISPR applications in cancer diagnosis and treatment. Cellular and Molecular Biology Letters, 2023, 28, .	7.0	2
3298	A strategy for Cas13 miniaturization based on the structure and AlphaFold. Nature Communications, 2023, 14, .	12.8	2
3299	Genotoxic effects of base and prime editing in human hematopoietic stem cells. Nature Biotechnology, 0, , .	17.5	27
3300	Prediction of base editor off-targets by deep learning. Nature Communications, 2023, 14, .	12.8	3
3301	Prime editorâ€mediated functional reshaping of <i>ACE2</i> prevents the entry of multiple human coronaviruses, including SARSâ€CoVâ€2 variants. MedComm, 2023, 4, .	7.2	0
3302	Progress and Prospects of Gene Editing in Pluripotent Stem Cells. Biomedicines, 2023, 11, 2168.	3.2	0
3303	Gene-knockout by iSTOP enables rapid reproductive disease modeling and phenotyping in germ cells of the founder generation. Science China Life Sciences, 2024, 67, 1035-1050.	4.9	2
3304	Recent advances in genome-scale engineering in Escherichia coli and their applications. Engineering Microbiology, 2024, 4, 100115.	4.7	0
3305	PAM-flexible genome editing with an engineered chimeric Cas9. Nature Communications, 2023, 14, .	12.8	5
3306	Advances in Synthetic Biology Techniques and Industrial Applications of Corynebacterium glutamicum. Fermentation, 2023, 9, 729.	3.0	0
3307	Canadian Regulatory Framework and Regulatory Requirements for Cell and Gene Therapy Products. Advances in Experimental Medicine and Biology, 2023, , 91-116.	1.6	0
3308	Hope on the Horizon: New and Future Therapies for Sickle Cell Disease. Journal of Clinical Medicine, 2023, 12, 5692.	2.4	1
3309	A cleavage rule for selection of increased-fidelity SpCas9 variants with high efficiency and no detectable off-targets. Nature Communications, 2023, 14, .	12.8	1
3310	CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia. Annals of Hematology, 0, , .	1.8	1
3311	Applications of Genome Editing Technologies in CAD Research and Therapy with a Focus on Atherosclerosis. International Journal of Molecular Sciences, 2023, 24, 14057.	4.1	0
3312	APOBEC Reporter Systems for Evaluating diNucleotide Editing Levels. CRISPR Journal, 2023, 6, 430-446.	2.9	0

#	Article	IF	CITATIONS
3313	Synthetic circuits based on split Cas9 to detect cellular events. Scientific Reports, 2023, 13, .	3.3	0
3314	Genome-wide CRISPR screens and their applications in infectious disease. Frontiers in Genome Editing, 0, 5, .	5.2	O
3315	Assigning functionality to cysteines by base editing of cancer dependency genes. Nature Chemical Biology, 2023, 19, 1320-1330.	8.0	5
3316	Engineering CAR T Cells for Off-the-Shelf Use. New England Journal of Medicine, 2023, 389, 953-957.	27.0	0
3317	Fueling next-generation genome editing with DNA repair. Current Opinion in Biomedical Engineering, 2023, , 100506.	3.4	0
3318	Engineering extracellular vesicles to deliver CRISPR ribonucleoprotein for gene editing. Journal of Extracellular Vesicles, 2023, 12, .	12.2	3
3319	Gene Therapy for Hemoglobinopathies. Human Gene Therapy, 2023, 34, 793-807.	2.7	1
3320	Design and application of the transformer base editor in mammalian cells and mice. Nature Protocols, 0, , .	12.0	1
3321	The Dawn of In Vivo Gene Editing Era: A Revolution in the Making. Biologics, 2023, 3, 253-295.	4.1	1
3322	Applications of CRISPR-Cas9 for advancing precision medicine in oncology: from target discovery to disease modeling. Frontiers in Genetics, 0, 14 , .	2.3	3
3323	Precision RNA base editing with engineered and endogenous effectors. Nature Biotechnology, 2023, 41, 1526-1542.	17.5	6
3324	Amphipathic Cell-Penetrating Peptide-Aided Delivery of Cas9 RNP for In Vitro Gene Editing and Correction. Pharmaceutics, 2023, 15, 2500.	4.5	1
3325	Base editing of organellar DNA with programmable deaminases. Nature Reviews Molecular Cell Biology, 2024, 25, 34-45.	37.0	3
3326	Genome Editing: Mechanism and Utilization in Plant Breeding. , 2023, , 457-488.		0
3327	Digital data storage on DNA tape using CRISPR base editors. Nature Communications, 2023, 14, .	12.8	1
3328	Delivery of gene editing therapeutics. Nanomedicine: Nanotechnology, Biology, and Medicine, 2023, 54, 102711.	3.3	O
3329	Split complementation of base editors to minimize off-target edits. Nature Plants, 2023, 9, 1832-1847.	9.3	3
3330	Bringing enzymes to the proximity party. RSC Chemical Biology, 0, , .	4.1	1

#	Article	IF	CITATIONS
3331	Versatile generation of precise gene edits in bovines using SEGCPN. BMC Biology, 2023, 21, .	3.8	0
3332	Characterization of the AcrIIC1 antiâ€'CRISPR protein for Cas9â€'based genome engineering in E. coli. Communications Biology, 2023, 6, .	4.4	O
3333	A prime example of precisely delivered DNA. Trends in Genetics, 2023, 39, 717-718.	6.7	0
3334	Base editing therapy forges ahead., 2023, 2, .		O
3335	CRISPR screening in hematology research: from bulk to single-cell level. Journal of Hematology and Oncology, 2023, 16, .	17.0	1
3336	Non-viral inÂvivo cytidine base editing in hepatocytes using focused ultrasound targeted microbubbles. Molecular Therapy - Nucleic Acids, 2023, 33, 733-737.	5.1	0
3337	Unlocking the secrets of ABEs: the molecular mechanism behind their specificity. Biochemical Society Transactions, 2023, 51, 1635-1646.	3.4	0
3338	Research progress and applications of genomeâ€wide association study in farm animals. , 2023, 1, 56-77.		4
3339	Precise genome editing of the Kozak sequence enables bidirectional and quantitative modulation of protein translation to anticipated levels without affecting transcription. Nucleic Acids Research, 2023, 51, 10075-10093.	14.5	0
3340	Research progress in mitochondrial gene editing technology. Zhejiang Da Xue Xue Bao Yi Xue Ban = Journal of Zhejiang University Medical Sciences, 2023, 52, 460-472.	0.3	0
3341	New opportunities in the management and treatment of refractory hypercholesterolemia using inÂvivo CRISPR-mediated genome/base editing. Nutrition, Metabolism and Cardiovascular Diseases, 2023, , .	2.6	0
3342	DANGER analysis: risk-averse on/off-target assessment for CRISPR editing without a reference genome. Bioinformatics Advances, 2023, 3, .	2.4	0
3343	Enlarged DNA unwinding by Nme2Cas9 permits a broadened base editing window beyond the protospacer. Science China Life Sciences, 2024, 67, 424-427.	4.9	0
3344	Emerging and potential use of CRISPR in human liver disease. Hepatology, 0, , .	7. 3	0
3345	Gene Editing and Gene Therapy in Oncology. , 2023, , 155-180.		4
3346	Base editing corrects the common Salla disease SLC17A5 c.115C>T variant. Molecular Therapy - Nucleic Acids, 2023, 34, 102022.	5.1	1
3347	CRISPR-Cas-Based Engineering of Probiotics. Biodesign Research, 2023, 5, .	1.9	3
3348	Perspectives of genetic management strategy for inherited cardiovascular diseases in China. Chinese Medical Journal, 0, , .	2.3	O

#	Article	IF	CITATIONS
3349	Anti-SpCas9 IgY Polyclonal Antibodies Production for CRISPR Research Use. ACS Omega, 2023, 8, 33809-33818.	3.5	0
3350	CRISPR/Cas-mediated genome editing and its application on pig-to-human xenotransplantation. , 2023, , .		0
3351	Generation of a humanized mesonephros in pigs from induced pluripotent stem cells via embryo complementation. Cell Stem Cell, 2023, 30, 1235-1245.e6.	11.1	8
3352	Engineered lentivirus-derived nanoparticles (LVNPs) for delivery of CRISPR/Cas ribonucleoprotein complexes supporting base editing, prime editing and <i>in vivo</i> gene modification. Nucleic Acids Research, 2023, 51, 10059-10074.	14.5	3
3354	Genome Editing in Engineered T Cells for Cancer Immunotherapy. Human Gene Therapy, 2023, 34, 853-869.	2.7	1
3355	Precise Correction of <i>Lhcgr</i> Mutation in Stem Leydig Cells by Prime Editing Rescues Hereditary Primary Hypogonadism in Mice. Advanced Science, 2023, 10, .	11.2	0
3356	Characterization of a promiscuous DNA sulfur binding domain and application in site-directed RNA base editing. Nucleic Acids Research, 2023, 51, 10782-10794.	14.5	2
3357	Photoactivatable base editors for spatiotemporally controlled genome editing in vivo. Biomaterials, 2023, 302, 122328.	11.4	1
3359	Elimination of CaMKIll $^{'}$ Autophosphorylation by CRISPR-Cas9 Base Editing Improves Survival and Cardiac Function in Heart Failure in Mice. Circulation, 0, , .	1.6	3
3360	GENOME EDITING FOR EARLY AND LATE FLOWERING IN PLANTS. , 2023, 2023, 45.		2
3362	Current approaches and potential challenges in the delivery of gene editing cargos into hematopoietic stem and progenitor cells. Frontiers in Genome Editing, 0, 5, .	5.2	0
3363	Evolution of CRISPR/Cas Systems for Precise Genome Editing. International Journal of Molecular Sciences, 2023, 24, 14233.	4.1	5
3364	Gene therapy for inherited retinal diseases: exploiting new tools in genome editing and nanotechnology. Frontiers in Ophthalmology, 0, 3, .	0.5	0
3365	<scp>RNA</scp> â€based medicine: from molecular mechanisms to therapy. EMBO Journal, 2023, 42, .	7.8	7
3366	Inducible CRISPR-targeted "knockdown―of human gut <i>Bacteroides</i> in gnotobiotic mice discloses glycan utilization strategies. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	3
3367	Where is the <scp>EXIT</scp> ? Phenotypic screens for new egress factors in apicomplexan parasites. Molecular Microbiology, 0, , .	2.5	1
3368	Preface to the special issue "Current Status and Future Prospects for the Development of Crop Varieties and Breeding Materials Using Genome Editing Technology― Plant Biotechnology, 2023, 40, 181-184.	1.0	0
3369	Prime editing: Its systematic optimization and current applications in disease treatment and agricultural breeding. International Journal of Biological Macromolecules, 2023, 253, 127025.	7. 5	0

#	Article	IF	CITATIONS
3372	Recent advances in the application of induced pluripotent stem cell technology to the study of myeloid malignancies. Advances in Biological Regulation, 2024, 91, 100993.	2.3	0
3374	ANIMAL ENGINEERING FOR XENOTRANSPLANTATION. , 2023, 1, 182-191.		1
3375	Genome and transcriptome engineering by compact and versatile CRISPR-Cas systems. Drug Discovery Today, 2023, 28, 103793.	6.4	0
3376	Large-scale manufacturing of base-edited chimeric antigen receptor TÂcells. Molecular Therapy - Methods and Clinical Development, 2023, 31, 101123.	4.1	2
3377	Advances towards personalized therapies for Stargardt disease. Expert Review of Ophthalmology, 2023, 18, 315-325.	0.6	0
3378	Engineered mRNA Delivery Systems for Biomedical Applications. Advanced Materials, 0, , .	21.0	0
3379	CRISPR/Cas9-based Genome Editing of Pseudomonas aeruginosa. Methods in Molecular Biology, 2024, , 3-12.	0.9	0
3380	CRISPR-based precision medicine for hematologic disorders: Advancements, challenges, and prospects. Life Sciences, 2023, 333, 122165.	4.3	2
3381	Genome editing in rice using <scp>CRISPR</scp> /Cas12i3. Plant Biotechnology Journal, 2024, 22, 379-385.	8.3	2
3383	Development of New Genome Editing Tools for the Treatment of Hyperlipidemia. Cells, 2023, 12, 2466.	4.1	0
3384	Engineering of cytosine base editors with DNA damage minimization and editing scope diversification. Nucleic Acids Research, 2023, 51, e105-e105.	14.5	1
3385	CRISPR-Cas-mediated unfolded protein response control for enhancing plant stress resistance. Frontiers in Plant Science, 0, 14, .	3.6	0
3386	Decreasing predictable DNA off-target effects and narrowing editing windows of adenine base editors by fusing human Rad18 protein variant. International Journal of Biological Macromolecules, 2023, 253, 127418.	7.5	0
3389	Developing mitochondrial base editors with diverse context compatibility and high fidelity via saturated spacer library. Nature Communications, 2023 , 14 , .	12.8	1
3390	Nonsterilized Fermentation of Crude Glycerol for Polyhydroxybutyrate Production by Metabolically Engineered <i>Vibrio natriegens</i>	3.8	0
3391	CRISPR-Cas9 base editing of pathogenic CaMKIIÎ' improves cardiac function in a humanized mouse model. Journal of Clinical Investigation, 0, , .	8.2	1
3392	Engineered deaminases as a key component of DNA and RNA editing tools. Molecular Therapy - Nucleic Acids, 2023, , 102062.	5.1	0
3393	APOE set the microglia free. Nature Immunology, 2023, 24, 1790-1791.	14.5	1

#	Article	IF	CITATIONS
3394	Developing Strategies to Improve the Efficacy of CAR-T Therapy for Acute Myeloid Leukemia. Current Treatment Options in Oncology, 0, , .	3.0	0
3395	Multifunctional Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9-Based Nanobomb against Carbapenem-Resistant <i>Acinetobacter baumannii</i> Infection through Cascade Reaction and Amplification Synergistic Effect. ACS Nano, 0, , .	14.6	O
3396	A Rapid Antibody Enhancement Platform in <i>Saccharomyces cerevisiae</i> Using an Improved, Diversifying CRISPR Base Editor. ACS Synthetic Biology, 0, , .	3.8	0
3397	Gene and Cellular Therapies for Leukodystrophies. Pharmaceutics, 2023, 15, 2522.	4.5	0
3398	CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia. Human Genetics, 0, , .	3.8	0
3399	Prime editing: current advances and therapeutic opportunities in human diseases. Science Bulletin, 2023, 68, 3278-3291.	9.0	3
3400	CRISPR/Cas9 Landscape: Current State and Future Perspectives. International Journal of Molecular Sciences, 2023, 24, 16077.	4.1	0
3401	CRISPR/Cas9-Mediated genetically edited ornamental and aromatic plants: A promising technology in phytoremediation of heavy metals. Journal of Cleaner Production, 2023, 428, 139512.	9.3	3
3402	Adoptive NK Cell Therapy - a Beacon of Hope in Multiple Myeloma Treatment. Frontiers in Oncology, 0, 13, .	2.8	1
3403	Deep mutational scanning of proteins in mammalian cells. Cell Reports Methods, 2023, 3, 100641.	2.9	1
3404	CRISPR/Cas9: a powerful tool in colorectal cancer research. Journal of Experimental and Clinical Cancer Research, 2023, 42, .	8.6	0
3405	High-fidelity large-diversity monoclonal mammalian cell libraries by cell cycle arrested recombinase-mediated cassette exchange. Nucleic Acids Research, 2023, 51, e113-e113.	14.5	0
3406	Single-base editing in IGF2 improves meat production and intramuscular fat deposition in Liang Guang Small Spotted pigs. Journal of Animal Science and Biotechnology, 2023, 14, .	5.3	0
3407	Genome editing in East African cichlids and tilapias: state-of-the-art and future directions. Open Biology, 2023, 13, .	3.6	0
3408	Epigenome editing in cancer: Advances and challenges for potential therapeutic options. International Review of Cell and Molecular Biology, 2024, , 191-230.	3.2	0
3409	Reciprocal mutations of lung-tropic AAV capsids lead to improved transduction properties. Frontiers in Genome Editing, 0, 5, .	5. 2	1
3410	A new age of precision gene therapy. Lancet, The, 2024, 403, 568-582.	13.7	1
3411	CRISPR/Cas9 system: recent applications in immuno-oncology and cancer immunotherapy. Experimental Hematology and Oncology, 2023, 12, .	5.0	2

#	Article	IF	Citations
3412	Progress in gene editing tools, implications and success in plants: a review. Frontiers in Genome Editing, $0, 5, \ldots$	5.2	1
3413	Precise base editing without unintended indels in human cells and mouse primary myoblasts. Experimental and Molecular Medicine, 0, , .	7.7	1
3414	Whole-brain in vivo base editing reverses behavioral changes in Mef2c-mutant mice. Nature Neuroscience, 2024, 27, 116-128.	14.8	0
3415	Prime editing-mediated correction of the CFTR W1282X mutation in iPSCs and derived airway epithelial cells. PLoS ONE, 2023, 18, e0295009.	2.5	O
3416	Genome editing for sickle cell disease: still time to correct?. Frontiers in Pediatrics, 0, 11, .	1.9	0
3417	Plant Functional Genomics Based on Highâ€Throughput CRISPR Library Knockout Screening: A Perspective. Genetics & Genomics Next, 2024, 5, .	1.5	O
3418	In Vivo Base Editing of <i>Scn5a</i> Rescues Type 3 Long QT Syndrome in Mice. Circulation, 2024, 149, 317-329.	1.6	1
3419	CRISPRi gene modulation and all-optical electrophysiology in post-differentiated human iPSC-cardiomyocytes. Communications Biology, 2023, 6, .	4.4	1
3420	Unbiased interrogation of functional lysine residues in human proteome. Molecular Cell, 2023, 83, 4614-4632.e6.	9.7	1
3421	The development of an ingestible biosensor for the characterization of gut metabolites related to major depressive disorder: hypothesis and theory. Frontiers in Systems Biology, 0, 3, .	0.7	0
3422	Contribution of Biotechnological Approaches to Micronutrient Improvements in Legumes. , 2023, , 131-176.		0
3423	Adenine base editor–mediated splicing remodeling activates noncanonical splice sites. Journal of Biological Chemistry, 2023, 299, 105442.	3.4	0
3424	Germline Editing of <i>Drosophila</i> Using CRISPR-Cas9-based Cytosine and Adenine Base Editors. CRISPR Journal, 0, , .	2.9	0
3425	Modular cytosine base editing promotes epigenomic and genomic modifications. Nucleic Acids Research, 0, , .	14.5	0
3426	Expanding genome editing scopes with artificial intelligence. Science Bulletin, 2023, 68, 2881-2883.	9.0	1
3428	Protein engineering technologies for development of next-generation genome editors. Current Opinion in Biomedical Engineering, 2023, 28, 100514.	3.4	O
3429	A base editing strategy using mRNA-LNPs for inÂvivo correction of the most frequent phenylketonuria variant. Human Genetics and Genomics Advances, 2023, , 100253.	1.7	1
3430	CRISPR/Cas9-Editing K562 Cell Line as a Potential Tool in Transfusion Applications: Knockout of Vel Antigen Gene. Transfusion Medicine and Hemotherapy, 0, , 1-9.	1.6	0

#	Article	IF	CITATIONS
3431	Exploring Parkinson-associated kinases for CRISPR/Cas9-based gene editing: beyond alpha-synuclein. Ageing Research Reviews, 2023, 92, 102114.	10.9	2
3433	Efficient inÂvivo prime editing corrects the most frequent phenylketonuria variant, associated with high unmet medical need. American Journal of Human Genetics, 2023, 110, 2003-2014.	6.2	4
3434	All types of base conversions allowed by base editors. Science China Life Sciences, 2024, 67, 431-433.	4.9	0
3436	An Insight on Colon Cancer Stem Cells and Its Therapeutic Implications. , 2023, , 1-23.		0
3437	How Genome Editing Can Be Helpful in the Biofortification of Legumes. , 2023, , 207-232.		0
3438	Flow cytometry-based quantification of genome editing efficiency in human cell lines using the L1CAM gene. PLoS ONE, 2023, 18, e0294146.	2.5	1
3439	Recent application of CRISPR-Cas12 and OMEGA system for genome editing. Molecular Therapy, 2024, 32, 32-43.	8.2	2
3440	Roles of Skeletal Muscle in Development: A Bioinformatics and Systems Biology Overview. Advances in Anatomy, Embryology and Cell Biology, 2023, , 21-55.	1.6	0
3441	Advanced Therapeutic Approaches in Cancer Therapy. , 2024, , 1-26.		0
3444	CRISPR enables sustainable cereal production for a greener future. Trends in Plant Science, 2024, 29, 179-195.	8.8	0
3445	Enhanced Câ€Toâ€T and Aâ€Toâ€G Base Editing in Mitochondrial DNA with Engineered DdCBE and TALED. Advanced Science, 2024, 11, .	11.2	0
3446	Improving Plant Molecular Farming via Genome Editing. Concepts and Strategies in Plant Sciences, 2023, , 63-88.	0.5	0
3447	Genome editing for plant synthetic metabolic engineering and developmental regulation. Journal of Plant Physiology, 2023, 291, 154141.	3.5	2
3448	Development of TALEâ€edenine base editors in plants. Plant Biotechnology Journal, 0, , .	8.3	0
3449	The Expanding Dissemination and Distribution Patterns of Diverse CRISPR Plasmids by Addgene. CRISPR Journal, 0, , .	2.9	0
3450	CRISPR–dCas13a system for programmable small RNAs and polycistronic mRNA repression in bacteria. Nucleic Acids Research, 2024, 52, 492-506.	14.5	1
3451	Improvement of Câ€ŧoâ€U RNA editing using an artificial MS2â€APOBEC system. Biotechnology Journal, 0, , .	3.5	0
3452	Understanding genetic heterogeneity in gene-edited hematopoietic stem cell products. Experimental Hematology, 2024, 129, 104133.	0.4	O

#	Article	IF	CITATIONS
3453	Design and Engineering of Lightâ€Induced Base Editors Facilitating Genome Editing with Enhanced Fidelity. Advanced Science, 0, , .	11.2	0
3454	<scp>DNA</scp> on the move: mechanisms, functions and applications of transposable elements. FEBS Open Bio, 2024, 14, 13-22.	2.3	0
3457	Phage-assisted evolution of compact Cas9 variants targeting a simple NNG PAM. Nature Chemical Biology, 2024, 20, 344-352.	8.0	0
3458	Optimization of base editors for the functional correction of SMN2 as a treatment for spinal muscular atrophy. Nature Biomedical Engineering, 0, , .	22.5	1
3459	Applications of CRISPR/Cas9 Technology in Ornamental Plants. Plant Molecular Biology Reporter, 0, , .	1.8	1
3460	Cas9 degradation in human cells using phage anti-CRISPR proteins. PLoS Biology, 2023, 21, e3002431.	5.6	O
3461	Multiplexed CRISPR gene editing in primary human islet cells with Cas9 ribonucleoprotein. IScience, 2024, 27, 108693.	4.1	0
3462	Parallelized engineering of mutational models using piggyBac transposon delivery of CRISPR libraries. Cell Reports Methods, 2023, , 100672.	2.9	O
3463	Development of highly efficient and specific base editors in Actinobacillus succinogenes for enhancing succinic acid production. , 2023, 16 , .		0
3464	Targeted Gene Editing in Pome Fruit Genetics and Breeding: State-of-the-Art, Application Potential and Perspectives., 2024,, 309-345.		0
3465	Self-delivering, chemically modified CRISPR RNAs for AAV co-delivery and genome editing <i>in vivo</i> Nucleic Acids Research, 2024, 52, 977-997.	14.5	0
3468	Next-generation forward genetic screens: uniting high-throughput perturbations with single-cell analysis. Trends in Genetics, 2024, 40, 118-133.	6.7	0
3469	Unified Model to Predict gRNA Efficiency across Diverse Cell Lines and CRISPR-Cas9 Systems. Journal of Chemical Information and Modeling, 2023, 63, 7320-7329.	5.4	0
3470	Base editing of the HBG promoter induces potent fetal hemoglobin expression with no detectable off-target mutations in human HSCs. Cell Stem Cell, 2023, 30, 1624-1639.e8.	11.1	0
3471	Efficient gene editing in induced pluripotent stem cells enabled by an inducible adenine base editor with tunable expression. Scientific Reports, 2023, 13, .	3.3	0
3473	Base-editing mutagenesis maps alleles to tune human T cell functions. Nature, 2024, 625, 805-812.	27.8	2
3474	Genome Editing in Diatoms: Current Progress and Challenges. , 2023, , 54-60.		0
3475	Development of approaches for genome editing of pea plants using CRISPR/Cas9 prime-editing technique. Ecological Genetics, 0, , .	0.5	0

#	Article	IF	CITATIONS
3476	Base Editing and Prime Editing., 2024, , 17-39.		O
3477	Wheat Nutraceutomics: Breeding, Genomics, Biotechnology, and Nanotechnology., 2023,, 61-83.		0
3478	Using Gene Editing Strategies for Wheat Improvement. , 2024, , 183-201.		0
3479	First inÂvivo base-editing trial shows promise. Molecular Therapy, 2023, , .	8.2	O
3481	Highly efficient in vivo C-to-T base editing in Atlantic salmon (Salmo salar) – A step towards aquaculture precision breeding. Aquaculture, 2024, 581, 740487.	3.5	0
3483	<i>In Vivo</i> Prime Editing by Lipid Nanoparticle Co-Delivery of Chemically Modified pegRNA and Prime Editor mRNA., 2023, 2, 490-502.		1
3484	Approaches to Therapeutic Gene Editing in Alpha-1 Antitrypsin Deficiency. Methods in Molecular Biology, 2024, , 11-17.	0.9	0
3485	A Fluorescent Reporter Mouse for <i>In Vivo</i> Assessment of Genome Editing with Diverse Cas Nucleases and Prime Editors. CRISPR Journal, 2023, 6, 570-582.	2.9	0
3486	Genome editing of plant mitochondrial and chloroplast genomes. Plant and Cell Physiology, 0, , .	3.1	0
3487	Emerging Microbial Technologies: Mitigating Challenges to Humans. , 2023, , 177-191.		0
3488	InÂvivo base editing rescues primary hyperoxaluria type 1 in rats. Kidney International, 2024, 105, 496-507.	5.2	1
3489	The case of the missing Ks: Base editor screen to assess cellular fitness at single lysines. Molecular Cell, 2023, 83, 4442-4444.	9.7	0
3490	Targeted A-to-G base editing in the organellar genomes of Arabidopsis with monomeric programmable deaminases. Plant Physiology, 0, , .	4.8	0
3491	Treatment Strategy With Gene Editing for Late-Onset Retinal Degeneration Caused by a Founder Variant in <i>C1QTNF5</i> ., 2023, 64, 33.		0
3492	Cancer variant modeling in vivo. Nature Biotechnology, 0, , .	17.5	0
3493	Topical gene editing therapeutics using lipid nanoparticles: †gene creams' for genetic skin diseases?. British Journal of Dermatology, 0, , .	1.5	0
3494	Highly efficient biallelic correction of homozygous <i>COL7A1</i> mutation using ABE8e adenine base editor. British Journal of Dermatology, 2024, 190, 583-585.	1.5	0
3495	AAV-based gene editing of type 1 collagen mutation to treat osteogenesis imperfecta. Molecular Therapy - Nucleic Acids, 2024, 35, 102111.	5.1	0

#	Article	IF	Citations
3496	Optimising commercial traits through gene editing in aquaculture: Strategies for accelerating genetic improvement. Reviews in Aquaculture, 0 , , .	9.0	0
3497	Cytosine base editing inhibits hepatitis B virus replication and reduces HBsAg expression inÂvitro and inÂvivo. Molecular Therapy - Nucleic Acids, 2024, 35, 102112.	5.1	0
3498	Prime editing in mice with an engineered pegRNA. Vascular Pharmacology, 2024, 154, 107269.	2.1	0
3500	Application of gene editing technology to DNA digital data storage. , 0, 73, 452-458.		0
3501	Regulation of gene-edited plants in Europe: from the valley of tears into the shining sun?. ABIOTECH, 0,	3.9	0
3502	Genome-Editing – Gentherapie 2.0 oder nur eine Wunschvorstellung?. , 2023, , 103-120.		0
3503	mRNAâ€based chimeric antigen receptor T cell therapy: Basic principles, recent advances and future directions. , 2024, 2, .		0
3504	The Current Situation and Development Prospect of Whole-Genome Screening. International Journal of Molecular Sciences, 2024, 25, 658.	4.1	0
3505	Therapeutic strategies for aberrant splicing in cancer and genetic disorders. Clinical Genetics, 2024, 105, 345-354.	2.0	0
3506	The Development of a CRISPR-FnCpf1 System for Large-Fragment Deletion and Multiplex Gene Editing in Acinetobacter baumannii. Current Issues in Molecular Biology, 2024, 46, 570-584.	2.4	0
3507	The pAblo $\langle b \rangle \hat{A} \langle b \rangle$ pCasso self-curing vector toolset for unconstrained cytidine and adenine base-editing in Gram-negative bacteria. Nucleic Acids Research, 2024, 52, e19-e19.	14.5	2
3508	Molecular Basis and Engineering Strategies for Transcription Factor-Mediated Reproductive-Stage Heat Tolerance in Crop Plants. Agronomy, 2024, 14, 159.	3.0	1
3509	AAV for Gene Therapy in Ocular Diseases: Progress and Prospects. Research, 2023, 6, .	5.7	0
3510	Allogeneic CAR-T Therapy Technologies: Has the Promise Been Met?. Cells, 2024, 13, 146.	4.1	0
3511	Beyond the promise: evaluating and mitigating off-target effects in CRISPR gene editing for safer therapeutics. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	4.1	0
3512	Genetic Engineering: A Powerful Tool for Crop Improvement. , 2024, , 223-258.		0
3513	Engineering approaches for RNA-based and cell-based osteoarthritis therapies. Nature Reviews Rheumatology, 2024, 20, 81-100.	8.0	2
3514	Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells. Nature Biotechnology, 0, , .	17.5	3

#	Article	IF	CITATIONS
3515	CRISPR/Cas9-mediated base editors and their prospects for mitochondrial genome engineering. Gene Therapy, $0, , .$	4. 5	1
3516	CRISPR technologies for genome, epigenome and transcriptome editing. Nature Reviews Molecular Cell Biology, 0, , .	37.0	0
3518	CRISPR base editor-based targeted random mutagenesis (BE-TRM) toolbox for directed evolution. BMB Reports, 2024, 57, 30-39.	2.4	1
3519	Mitochondrial genome editing: strategies, challenges, and applications. BMB Reports, 2024, 57, 19-29.	2.4	0
3520	Precision engineering for localization, validation, and modification of allergenic epitopes. Journal of Allergy and Clinical Immunology, 2024, 153, 560-571.	2.9	1
3521	A society-wide conversation is needed about germline genome editing using CRISPR. Nature Medicine, 2024, 30, 30-32.	30.7	0
3522	Applications of CRISPR technologies to the development of gene and cell therapy. BMB Reports, 2024, 57, 2-11.	2.4	0
3523	Preclinical Anticipation of On- and Off-Target Resistance Mechanisms to Anti-Cancer Drugs: A Systematic Review. International Journal of Molecular Sciences, 2024, 25, 705.	4.1	1
3524	Resolving cellular dynamics using single-cell temporal transcriptomics. Current Opinion in Biotechnology, 2024, 85, 103060.	6.6	0
3525	A natural substitution of a conserved amino acid in <scp>elF4E</scp> confers resistance against multiple potyviruses. Molecular Plant Pathology, 2024, 25, .	4.2	0
3526	CRISPR/Cas9 as a Mutagenic Factor. International Journal of Molecular Sciences, 2024, 25, 823.	4.1	0
3527	Benzomorphan and non-benzomorphan agonists differentially alter sigma-1 receptor quaternary structure, as does types of cellular stress. Cellular and Molecular Life Sciences, 2024, 81, .	5.4	0
3530	Investing in vision: Innovation in retinal therapeutics and the influence on venture capital investment. Progress in Retinal and Eye Research, 2024, 99, 101243.	15.5	0
3532	Gene Editing in Hematopoietic Stem Cells. Advances in Experimental Medicine and Biology, 2023, , 177-199.	1.6	0
3533	Advances in RNA therapeutics for modulation of â€~undruggable' targets. Progress in Molecular Biology and Translational Science, 2024, , 249-294.	1.7	0
3534	Bacterial CRISPR systems and applications. , 2024, , 633-652.		0
3535	CRISPR/Cas systems and techniques. , 2024, , 21-41.		0
3536	Gene regulation in inborn errors of immunity: Implications for gene therapy design and efficacy. Immunological Reviews, 2024, 322, 157-177.	6.0	O

#	Article	IF	CITATIONS
3537	Nanotechnology-based delivery for CRISPR-Cas 9 cargo in Alzheimer's disease., 2024, , 139-152.		O
3538	Phenotypic characterization of pre-harvest sprouting resistance mutants generated by the CRISPR/Cas9-geminiviral replicon system in rice. BMB Reports, 2024, 57, 79-85.	2.4	0
3539	Compact CRISPR genetic screens enabled by improved guide RNA library cloning. Genome Biology, 2024, 25, .	8.8	0
3540	Advancing tree genomics to future proof next generation orchard production. Frontiers in Plant Science, 0, 14, .	3.6	0
3541	The Applications of Genome Editing in the Management of Cancer: A Narrative Overview. Al-Rafidain Journal of Medical Sciences, 2024, 6, 76-85.	0.0	0
3542	Monitoring Genomic Structural Rearrangements Resulting from Gene Editing. Journal of Personalized Medicine, 2024, 14, 110.	2.5	0
3544	Genetic modification of mice using CRISPR-Cas9: Best practices and practical concepts explained. , 2024, , 425-452.		0
3545	Applications and associated challenges of CRISPR-Cas technology in agriculture. , 2024, , 265-280.		0
3546	Genome editing technologies. , 2024, , 397-423.		0
3547	CRISPR/Cas genome editing and applications in forest tree breeding. , 2024, , 343-366.		0
3548	What a Clinician Needs to Know About Genome Editing: Status and Opportunities for Inborn Errors of Immunity. Journal of Allergy and Clinical Immunology: in Practice, 2024, 12, 1139-1149.	3.8	0
3549	Increased expression of SSEA-4 on TKI-resistant non–small cell lung cancer with EGFR-T790M mutation. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
3550	Cooperativity between Cas9 and hyperactive AID establishes broad and diversifying mutational footprints in base editors. Nucleic Acids Research, 2024, 52, 2078-2090.	14.5	0
3551	Innate programmable DNA binding by CRISPR-Cas12m effectors enable efficient base editing. Nucleic Acids Research, 2024, 52, 3234-3248.	14.5	1
3552	Advancements and future prospects of adeno-associated virus-mediated gene therapy for sensorineural hearing loss. Frontiers in Neuroscience, $0,18,.$	2.8	0
3553	C-to-G editing generates double-strand breaks causing deletion, transversion and translocation. Nature Cell Biology, 2024, 26, 294-304.	10.3	0
3556	Current RNA strategies in treating cardiovascular diseases. Molecular Therapy, 2024, 32, 580-608.	8.2	0
3557	Expanded palette of RNA base editors for comprehensive RBP-RNA interactome studies. Nature Communications, 2024, 15 , .	12.8	0

#	ARTICLE	IF	CITATIONS
3558	Building CRISPR Gene Therapies for the Central Nervous System. JAMA Neurology, 2024, 81, 283.	9.0	0
3559	CRISPR Manipulation of Age-Related Macular Degeneration Haplotypes in the Complement System: Potential Future Therapeutic Applications/Avenues. International Journal of Molecular Sciences, 2024, 25, 1697.	4.1	0
3560	Modeling mutation-specific arrhythmogenic phenotypes in isogenic human iPSC-derived cardiac tissues. Scientific Reports, 2024, 14, .	3.3	0
3561	Genomics and Genome Editing for Crop Improvement. , 2023, , 297-322.		0
3562	One-pot DTECT enables rapid and efficient capture of genetic signatures for precision genome editing and clinical diagnostics. Cell Reports Methods, 2024, 4, 100698.	2.9	0
3563	Nanopore sequencing improves construction of customized CRISPRâ€based gene activation libraries. Biotechnology and Bioengineering, 2024, 121, 1543-1553.	3.3	0
3564	Revolutionizing in vivo therapy with CRISPR/Cas genome editing: breakthroughs, opportunities and challenges. Frontiers in Genome Editing, 0, 6, .	5.2	0
3565	CRISPR-TE: a web-based tool to generate single guide RNAs targeting transposable elements. Mobile DNA, 2024, 15, .	3.6	0
3566	Genetic and Epigenetic Landscape for Drug Development in Polycystic Ovary Syndrome. Endocrine Reviews, 0, , .	20.1	0
3567	Molecular Mechanism of Activation-Induced Cytidine Deaminase. , 2024, , 257-308.		0
3568	Mechanism and Regulation of Immunoglobulin Class Switch Recombination., 2024, , 213-234.		0
3570	Is CRISPR/Cas9-based multi-trait enhancement of wheat forthcoming?. Plant Science, 2024, 341, 112021.	3.6	0
3572	CRISPR-Based Gene Editing Techniques in Pediatric Neurological Disorders. Pediatric Neurology, 2024, 153, 166-174.	2.1	0
3574	Role of gene therapy in sickle cell disease. Disease-a-Month, 2024, , 101689.	1.1	0
3575	Selection-free precise gene repair using high-capacity adenovector delivery of advanced prime editing systems rescues dystrophin synthesis in DMD muscle cells. Nucleic Acids Research, 2024, 52, 2740-2757.	14.5	0
3576	New Genomic Techniques applied to food cultures: a powerful contribution to innovative, safe, and sustainable food products. FEMS Microbiology Letters, 2024, 371, .	1.8	0
3577	Functional genomics in inborn errors of immunity. Immunological Reviews, 2024, 322, 53-70.	6.0	0
3578	Progress in Gene Editing and Metabolic Regulation of <i>Saccharomyces cerevisiae</i> with CRISPR/Cas9 Tools. ACS Synthetic Biology, 2024, 13, 428-448.	3.8	0

#	Article	IF	CITATIONS
3580	Functional <i>EPAS1</i> / <i> HIF2A</i> is missense variant is associated with hematocrit in Andean highlanders. Science Advances, 2024, 10, .	10.3	0
3581	Base editing effectively prevents early-onset severe cardiomyopathy in Mybpc3 mutant mice. Cell Research, 2024, 34, 327-330.	12.0	0
3582	Utilization of nicking properties of CRISPR-Cas12a effector for genome editing. Scientific Reports, 2024, 14, .	3.3	0
3583	When an Intruder Comes Home: GM and GE Strategies to Combat Virus Infection in Plants. Agriculture (Switzerland), 2024, 14, 282.	3.1	0
3584	Genome Editing and Opportunities for Trait Improvement in Pearl Millet. , 2024, , 163-178.		0
3585	Application of genome editing techniques to regulate gene expression in crops. BMC Plant Biology, 2024, 24, .	3.6	0
3586	Understanding the prion-like behavior of mutant p53 proteins in triple-negative breast cancer pathogenesis: The current therapeutic strategies and future directions. Heliyon, 2024, 10, e26260.	3.2	0
3587	Gene Editing Approaches for Haematological Disorders. , 2024, , .		O
3588	Generation of CRISPR-edited birch plants without DNA integration using Agrobacterium-mediated transformation technology. Plant Science, 2024, 342, 112029.	3.6	0
3589	Robust miniature Cas-based transcriptional modulation by engineering Un1Cas12f1 and tethering Sso7d. Molecular Therapy, 2024, 32, 910-919.	8.2	1
3590	Emerging Gene Therapeutics for Epidermolysis Bullosa under Development. International Journal of Molecular Sciences, 2024, 25, 2243.	4.1	0
3591	Unraveling the Genetic Landscape of Neurological Disorders: Insights into Pathogenesis, Techniques for Variant Identification, and Therapeutic Approaches. International Journal of Molecular Sciences, 2024, 25, 2320.	4.1	0
3592	Compact zinc finger architecture utilizing toxin-derived cytidine deaminases for highly efficient base editing in human cells. Nature Communications, 2024, 15, .	12.8	0
3593	How Gene Editing Is Changing Drug Development. , 2024, , 709-717.		0
3594	Gene editing for HD: Therapeutic prospects. , 2024, , 551-570.		0
3595	Domain-inlaid Nme2Cas9 adenine base editors with improved activity and targeting scope. Nature Communications, 2024, 15, .	12.8	0
3596	Prime editing in plants: prospects and challenges. Journal of Experimental Botany, 0, , .	4.8	0
3597	Future-Proofing Agriculture: De Novo Domestication for Sustainable and Resilient Crops. International Journal of Molecular Sciences, 2024, 25, 2374.	4.1	O

#	Article	IF	CITATIONS
3598	The impact of genomic distance on enhancerâ€promoter interactions at the <i>CFTR</i> locus. Journal of Cellular and Molecular Medicine, 2024, 28, .	3.6	0
3599	Protein language models-assisted optimization of a uracil-N-glycosylase variant enables programmable T-to-G and T-to-C base editing. Molecular Cell, 2024, 84, 1257-1270.e6.	9.7	O
3600	Understanding genomic medicine for thoracic aortic disease through the lens of induced pluripotent stem cells. Frontiers in Cardiovascular Medicine, 0, 11 , .	2.4	0
3601	A comprehensive review on Gossypium hirsutum resistance against cotton leaf curl virus. Frontiers in Genetics, $0,15,.$	2.3	0
3602	Deep learning models incorporating endogenous factors beyond DNA sequences improve the prediction accuracy of base editing outcomes. Cell Discovery, 2024, 10, .	6.7	0
3603	A versatile CRISPR-Cas13d platform for multiplexed transcriptomic regulation and metabolic engineering in primary human TÂcells. Cell, 2024, 187, 1278-1295.e20.	28.9	0
3604	On the everâ€growing functional versatility of the <scp>CRISPR as13</scp> system. Microbial Biotechnology, 2024, 17, .	4.2	0
3605	Enhancement of specialized metabolites using CRISPR/Cas gene editing technology in medicinal plants. Frontiers in Plant Science, 0, 15, .	3.6	0
3606	Phage-assisted evolution of highly active cytosine base editors with enhanced selectivity and minimal sequence context preference. Nature Communications, 2024, 15, .	12.8	0
3607	Precise genome-editing in human diseases: mechanisms, strategies and applications. Signal Transduction and Targeted Therapy, 2024, 9, .	17.1	0
3608	Precise fine-turning of GhTFL1 by base editing tools defines ideal cotton plant architecture. Genome Biology, 2024, 25, .	8.8	0
3609	The immune system of prokaryotes: potential applications and implications for gene editing. Biotechnology Journal, 2024, 19, .	3.5	0
3610	DNA and RNA base editors can correct the majority of pathogenic single nucleotide variants. Npj Genomic Medicine, 2024, 9, .	3.8	0
3611	Nucleoside deaminases: the key players in base editing toolkit. Biophysics Reports, 2023, 9, 325.	0.8	0
3613	An engineered baculoviral protein and DNA co-delivery system for CRISPR-based mammalian genome editing. Nucleic Acids Research, 2024, 52, 3450-3468.	14.5	0
3616	Programmable RNA base editing via targeted modifications. Nature Chemical Biology, 2024, 20, 277-290.	8.0	0
3617	Integrating machine learning and genome editing for crop improvement. ABIOTECH, 0, , .	3.9	0
3618	Past, present, and future of CRISPR genome editing technologies. Cell, 2024, 187, 1076-1100.	28.9	O

#	Article	IF	CITATIONS
3619	Peptide nucleic acid-assisted generation of targeted double-stranded DNA breaks with T7 endonuclease I. Nucleic Acids Research, 2024, 52, 3469-3482.	14.5	0
3620	Engineered CBEs based on Macaca fascicularis A3A with improved properties for precise genome editing. Cell Reports, 2024, 43, 113878.	6.4	0
3621	Cas9 variants expand the targeting scope of base editing systems in bacteria. Nucleus (India), 0, , .	2.2	0
3622	Anti-CRISPR Proteins and Their Application to Control CRISPR Effectors in Mammalian Systems. Methods in Molecular Biology, 2024, , 205-231.	0.9	0
3623	Genome editing based trait improvement in crops: current perspective, challenges and opportunities. Nucleus (India), 0, , .	2.2	0
3624	Breaking genetic shackles: The advance of base editing in genetic disorder treatment. Frontiers in Pharmacology, $0,15,.$	3.5	0
3625	Revolutionising healing: Gene Editing's breakthrough against sickle cell disease. Blood Reviews, 2024, 65, 101185.	5.7	0
3626	Deaminase deluge yields new opportunities for biotechnology and genome engineering. Molecular Cell, 2024, 84, 816-818.	9.7	0
3627	Technologies of gene editing and related clinical trials for the treatment of genetic and acquired diseases: a systematic review. Egyptian Journal of Medical Human Genetics, 2024, 25, .	1.0	0
3628	Breeding rice for yield improvement through CRISPR/Cas9 genome editing method: current technologies and examples. Physiology and Molecular Biology of Plants, 2024, 30, 185-198.	3.1	0
3629	Progress and prospect of genome editing tools development and molecular breeding in cotton. Chinese Science Bulletin, 2024, , .	0.7	0
3630	Epidermal growth factor receptor (EGFR) is a target of the tumor-suppressor E3 ligase FBXW7. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
3632	CRISPR-Cas and Its Applications in Food Production. , 2024, , 349-391.		0
3633	Mesoscale DNA features impact APOBEC3A and APOBEC3B deaminase activity and shape tumor mutational landscapes. Nature Communications, 2024, 15, .	12.8	0
3634	Impact of CRISPR/HDR editing versus lentiviral transduction on long-term engraftment and clonal dynamics of HSPCs in rhesus macaques. Cell Stem Cell, 2024, 31, 455-466.e4.	11.1	0
3635	Gene editing for abiotic stress resistance in horticulturalÂcrops. , 2024, , 337-348.		0
3636	Plant genome editing to achieve food and nutrient security. , 2024, 1 , .		0
3637	Discovering deaminases using AlphaFold2: a strategy to search for tool proteins for gene editing. Signal Transduction and Targeted Therapy, 2024, 9, .	17.1	0

#	Article	IF	CITATIONS
3638	Expanding the flexibility of base editing for high-throughput genetic screens in bacteria. Nucleic Acids Research, 2024, 52, 4079-4097.	14.5	0
3639	Bioengineering toolkits for potentiating organoid therapeutics. Advanced Drug Delivery Reviews, 2024, 208, 115238.	13.7	0
3641	Gene editing technology to improve antitumor T-cell functions in adoptive immunotherapy. Inflammation and Regeneration, 2024, 44, .	3.7	0
3642	CRISPR-Cas9-Mediated Genome Editing in Paenibacillus polymyxa. Methods in Molecular Biology, 2024, , 267-280.	0.9	0
3643	Secondary follicles enable efficient germline mtDNA base editing at hard-to-edit site. Molecular Therapy - Nucleic Acids, 2024, 35, 102170.	5.1	0
3644	Genome-Editing Advances for Disease Resistance in Plants. , 2024, , 293-316.		0
3645	Genome Editing Tool CRISPR-Cas: Legal and Ethical Considerations for Life Science. , 2024, , 839-864.		0
3646	CRISPR-Cas: A History of Discovery and Innovation. , 2024, , 1-16.		0
3647	Role of CRISPR-Cas and Its Application in Mitigating Plant Stress. , 2024, , 281-308.		0
3648	Navigating the prime editing strategy to treat cardiovascular genetic disorders in transforming heart health. Expert Review of Cardiovascular Therapy, 2024, 22, 75-89.	1.5	0
3649	Deciphering the Role of CRISPR/Cas9 in the Amelioration of Abiotic and Biotic Stress Conditions., 2024, , 193-226.		0
3650	Progress in Research and Prospects for Application of Precision Gene-Editing Technology Based on CRISPR–Cas9 in the Genetic Improvement of Sheep and Goats. Agriculture (Switzerland), 2024, 14, 487.	3.1	0
3652	CRISPR/Cas Genome Editing in Fruit Crops: Recent Advances, Challenges, and Future Prospects. , 2024, , 261-278.		0
3653	Fusion of a rice endogenous N-methylpurine DNA glycosylase to a plant adenine base transition editor ABE8e enables A-to-K base editing in rice plants. ABIOTECH, 0, , .	3.9	0
3654	Chemical proteomics to study metabolism, a reductionist approach applied at the systems level. Cell Chemical Biology, 2024, 31, 446-451.	5 . 2	0
3655	The Application of Genome Editing Technologies in Soybean (Glycine max L.) for Abiotic Stress Tolerance., 2024,, 221-237.		0
3656	Plant Breeding Becomes Smarter with Genome Editing. , 2024, , 113-147.		0
3657	Multiplex genome editing in plants through CRISPR-Cas. , 2024, , 127-142.		0

#	ARTICLE	IF	CITATIONS
3658	CRISPR-Cas technologies for food and nutritional security. , 2024, , 143-158.		0
3659	CRISPRized fruit, vegetable, and ornamental crops: A note from editors. , 2024, , 3-20.		0
3660	Recapitulating familial hypercholesterolemia in a mouse model by <scp>knockâ€in patientâ€specific LDLR</scp> mutation. FASEB Journal, 2024, 38, .	0.5	0
3661	High-throughput evaluation of genetic variants with prime editing sensor libraries. Nature Biotechnology, 0, , .	17.5	O
3662	Nucleic Acid Therapeutics: Successes, Milestones, and Upcoming Innovation. Nucleic Acid Therapeutics, 2024, 34, 52-72.	3.6	0