Mechanical confinement triggers glioma linear migratio

Molecular Biology of the Cell 27, 1246-1261

DOI: 10.1091/mbc.e15-08-0565

Citation Report

#	Article	IF	CITATIONS
1	Function and regulation of the Arp2/3 complex during cell migration in diverse environments. Current Opinion in Cell Biology, 2016, 42, 63-72.	5.4	85
2	How cells respond to environmental cues – insights from bio-functionalized substrates. Journal of Cell Science, 2017, 130, 51-61.	2.0	93
3	Modeling collective cell migration in geometric confinement. Physical Biology, 2017, 14, 035001.	1.8	26
4	New advances in probing cell–extracellular matrix interactions. Integrative Biology (United) Tj ETQq1 1 0.7843	14 rgBT /C	Overlock 10 T
5	Recapitulating in vivo-like plasticity of glioma cell invasion along blood vessels and in astrocyte-rich stroma. Histochemistry and Cell Biology, 2017, 148, 395-406.	1.7	70
6	Drosophila and human FHOD family formin proteins nucleate actin filaments. Journal of Biological Chemistry, 2018, 293, 532-540.	3.4	23
7	Mechanisms of invasion and motility of high-grade gliomas in the brain. Molecular Biology of the Cell, 2018, 29, 2509-2515.	2.1	51
8	Extracellular matrix protein microarray-based biosensor with single cell resolution: Integrin profiling and characterization of cell-biomaterial interactions. Sensors and Actuators B: Chemical, 2019, 299, 126954.	7.8	16
9	Dissecting and rebuilding the glioblastoma microenvironment with engineered materials. Nature Reviews Materials, 2019, 4, 651-668.	48.7	103
10	The Cytoskeleton—A Complex Interacting Meshwork. Cells, 2019, 8, 362.	4.1	209
11	Targeting the mDia Formin-Assembled Cytoskeleton Is an Effective Anti-Invasion Strategy in Adult High-Grade Glioma Patient-Derived Neurospheres. Cancers, 2019, 11, 392.	3.7	12
12	Hyaluronic Acid-Coated Aligned Nanofibers for the Promotion of Glioblastoma Migration. ACS Applied Bio Materials, 2019, 2, 1088-1097.	4.6	8
13	Multiple roles of the actin and microtubule-regulating formins in the developing brain. Neuroscience Research, 2019, 138, 59-69.	1.9	34
14	Contractile myosin rings and cofilin-mediated actin disassembly orchestrate ECM nanotopography sensing. Biomaterials, 2020, 232, 119683.	11.4	15
15	Suppression of LIM Kinase 1 and LIM Kinase 2 Limits Glioblastoma Invasion. Cancer Research, 2020, 80, 69-78.	0.9	17
16	Stick-slip dynamics of cell adhesion triggers spontaneous symmetry breaking and directional migration of mesenchymal cells on one-dimensional lines. Science Advances, 2020, 6, eaau5670.	10.3	56
17	Multiple formin proteins participate in glioblastoma migration. BMC Cancer, 2020, 20, 710.	2.6	19
18	Investigation of Cancer Cell Migration and Proliferation on Synthetic Extracellular Matrix Peptide Hydrogels. Frontiers in Bioengineering and Biotechnology, 2020, 8, 773.	4.1	17

#	Article	IF	CITATIONS
19	MACC1 driven alterations in cellular biomechanics facilitate cell motility in glioblastoma. Cell Communication and Signaling, 2020, 18, 85.	6.5	13
20	Predicting Confined 1D Cell Migration from Parameters Calibrated to a 2D Motor-Clutch Model. Biophysical Journal, 2020, 118, 1709-1720.	0.5	20
21	Traction Forces Control Cell-Edge Dynamics and Mediate Distance Sensitivity during Cell Polarization. Current Biology, 2020, 30, 1762-1769.e5.	3.9	11
22	Engineered hydrogels for brain tumor culture and therapy. Bio-Design and Manufacturing, 2020, 3, 203-226.	7.7	24
23	Transferrin-targeted porous silicon nanoparticles reduce glioblastoma cell migration across tight extracellular space. Scientific Reports, 2020, 10, 2320.	3.3	36
24	MutT Homolog1 has multifaceted role in glioma and is under the apparent orchestration by Hypoxia Inducible factor1 alpha. Life Sciences, 2021, 264, 118673.	4.3	2
26	Long-term migratory velocity measurements of single glioma cells using microfluidics. Analyst, The, 2021, 146, 5143-5149.	3.5	3
27	PRG2 and AQPEP are misexpressed in fetal membranes in placenta previa and percreta †< /b > . Biology of Reproduction, 2021, 105, 244-257.	2.7	3
28	Adaptive mechanoproperties mediated by the formin FMN1 characterize glioblastoma fitness for invasion. Developmental Cell, 2021, 56, 2841-2855.e8.	7.0	12
29	Formins in Human Disease. Cells, 2021, 10, 2554.	4.1	16
30	FHOD3 promotes carcinogenesis by regulating RhoA/ROCK1/LIMK1 signaling pathway in medulloblastoma. Clinical and Translational Oncology, 2020, 22, 2312-2323.	2.4	4
32	One-dimensional cell motility patterns. Physical Review Research, 2020, 2, .	3.6	40
33	Dynamic Reorganization of Microtubule and Glioma Invasion. Acta Medica Okayama, 2019, 73, 285-297.	0.2	5
35	Problem and Handling of Anti-angiogenic Therapy for Glioblastoma: Vessel Co-option and Vascular Mimicry. Japanese Journal of Neurosurgery, 2018, 27, 723-735.	0.0	0
38	Cell signaling and strategies to modulate cell behavior. , 2020, , 231-246.		0
39	In Vitro Mechanobiology of Glioma: Mimicking the Brain Blood Vessels and White Matter Tracts Invasion Paths. Neuromethods, 2021, , 159-196.	0.3	3
40	Regulation of Tumor Invasion by the Physical Microenvironment: Lessons from Breast and Brain Cancer. Annual Review of Biomedical Engineering, 2022, 24, 29-59.	12.3	11
41	Molecular Mechanisms and Clinical Challenges of Glioma Invasion. Brain Sciences, 2022, 12, 291.	2.3	6

#	Article	IF	CITATIONS
42	Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduction and Targeted Therapy, 2021, 6, 426.	17.1	274
43	Protocol to assess human glioma propagating cell migration on linear micropatterns mimicking brain invasion tracks. STAR Protocols, 2022, 3, 101331.	1.2	2
45	Geometry Adaptation of Protrusion and Polarity Dynamics in Confined Cell Migration. Physical Review X, 2022, 12, .	8.9	6
46	Actin Filaments Couple the Protrusive Tips to the Nucleus through the Iâ€BAR Domain Protein IRSp53 during the Migration of Cells on 1D Fibers. Advanced Science, 2023, 10, .	11.2	5
47	Single-Cell Analysis of Unidirectional Migration of Glioblastoma Cells Using a Fiber-Based Scaffold. ACS Applied Bio Materials, 2023, 6, 765-773.	4.6	0
49	FHODs: Nuclear tethered formins for nuclear mechanotransduction. Frontiers in Cell and Developmental Biology, 0, 11 , .	3.7	0
50	Mechanical constraints in tumor guide emergent spatial patterns of glioblastoma cancer stem cells., 2024, 2, 100027.		0