Dispersion-Corrected Mean-Field Electronic Structure

Chemical Reviews 116, 5105-5154 DOI: 10.1021/acs.chemrev.5b00533

Citation Report

#	Article	IF	CITATIONS
22	Halogen bonded supramolecular capsules: a challenging test case for quantum chemical methods. Chemical Communications, 2016, 52, 9893-9896.	2.2	26
23	Intermolecular dissociation energies of dispersively bound 1-naphtholâ‹cycloalkane complexes. Journal of Chemical Physics, 2016, 145, 244314.	1.2	11
24	Communication: Physical origins of ionization potential shifts in mixed carboxylic acids and water complexes. Journal of Chemical Physics, 2016, 145, 051101.	1.2	6
25	Water adsorption on bimetallic PtRu/Pt(111) surface alloys. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160618.	1.0	12
26	Theoretical Study of the Structural, Energetic, and Electronic Properties of 55-Atom Metal Nanoclusters: A DFT Investigation within van der Waals Corrections, Spin–Orbit Coupling, and PBE+ <i>U</i> of 42 Metal Systems. Journal of Physical Chemistry C, 2016, 120, 28844-28856.	1.5	75
27	Lattice thermal expansion and anisotropic displacements in ?-sulfur from diffraction experiments and first-principles theory. Journal of Chemical Physics, 2016, 145, 234512.	1.2	19
28	Accurate dissociation energies of two isomers of the 1-naphtholâ‹cyclopropane complex. Journal of Chemical Physics, 2016, 145, 164304.	1.2	19
29	Short- and long-range corrected hybrid density functionals with the D3 dispersion corrections. Journal of Chemical Physics, 2016, 145, 204101.	1.2	26
30	Dispersion Forces, Disproportionation, and Stable Highâ€Valent Late Transition Metal Alkyls. Angewandte Chemie, 2016, 128, 14986-14989.	1.6	13
31	Approaching the basis set limit for DFT calculations using an environment-adapted minimal basis with perturbation theory: Formulation, proof of concept, and a pilot implementation. Journal of Chemical Physics, 2016, 145, 044109.	1.2	16
32	The structure of water at a Pt(111) electrode and the potential of zero charge studied from first principles. Journal of Chemical Physics, 2016, 144, 194701.	1.2	127
33	From single molecules to water networks: Dynamics of water adsorption on Pt(111). Journal of Chemical Physics, 2016, 145, 094703.	1.2	18
34	Revised Damping Parameters for the D3 Dispersion Correction to Density Functional Theory. Journal of Physical Chemistry Letters, 2016, 7, 2197-2203.	2.1	305
35	Screened exchange hybrid density functional for accurate and efficient structures and interaction energies. Physical Chemistry Chemical Physics, 2016, 18, 15519-15523.	1.3	49
36	Organic crystal polymorphism: a benchmark for dispersion-corrected mean-field electronic structure methods. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 502-513.	0.5	53
37	Ïfâ€Bond Activation in Aluminiumâ€Functionalized Alkynylchlorogermanes: Facile Insertion of Isocyanate and Azide into Al–C and Ge–Cl Bonds. European Journal of Inorganic Chemistry, 2016, 2016, 4170-4178.	1.0	6
38	Structural, Electronic, and Optical Properties of Bulk Boric Acid <i>2A</i> and <i>3T</i> Polymorphs: Experiment and Density Functional Theory Calculations. Crystal Growth and Design, 2016, 16, 6631-6640.	1.4	13
39	Systematic and Automated Development of Quantum Mechanically Derived Force Fields: The Challenging Case of Halogenated Hydrocarbons. Journal of Chemical Theory and Computation, 2016, 12, 5525-5540.	2.3	35

#	Article	IF	Citations
40	Assessing Ion–Water Interactions in the AMOEBA Force Field Using Energy Decomposition Analysis of Electronic Structure Calculations. Journal of Chemical Theory and Computation, 2016, 12, 5422-5437.	2.3	79
41	Rotational Barriers of Substituted BIPHEP Ligands: A Comparative Experimental and Theoretical Study. European Journal of Organic Chemistry, 2016, 2016, 5123-5126.	1.2	8
42	Accurate adsorption energies for small molecules on oxide surfaces: CH ₄ /MgO(001) and C ₂ H ₆ /MgO(001). Journal of Computational Chemistry, 2016, 37, 2374-2385.	1.5	20
43	Dispersion and Hydrogen Bonding Rule: Why the Vaporization Enthalpies of Aprotic Ionic Liquids Are Significantly Larger than those of Protic Ionic liquids. Angewandte Chemie - International Edition, 2016, 55, 11682-11686.	7.2	50
44	Why metal–oxos react with dihydroanthracene and cyclohexadiene at comparable rates, despite having different C–H bond strengths. A computational study. Chemical Communications, 2016, 52, 10509-10512.	2.2	28
45	The INV24 test set: how well do quantum-chemical methods describe inversion and racemization barriers?. Canadian Journal of Chemistry, 2016, 94, 1133-1143.	0.6	45
46	Noncovalent interactions between the second coordination sphere and the active site of [NiFeSe] hydrogenase. RSC Advances, 2016, 6, 81636-81646.	1.7	1
47	Understanding the Shape of GeTe Nanocrystals from First Principles. Chemistry of Materials, 2016, 28, 6682-6688.	3.2	16
48	Theoretical Study of Cyclic Pyrene Oligomers and Their Resemblance with Cyclic Paraphenylenes: Disclosing Structure–Property Relationships for Cyclic Nanorings. Journal of Physical Chemistry C, 2016, 120, 22069-22078.	1.5	4
49	Effect of Li Adsorption on the Electronic and Hydrogen Storage Properties of Acenes: A Dispersion-Corrected TAO-DFT Study. Scientific Reports, 2016, 6, 33081.	1.6	46
50	Dispersion Forces, Disproportionation, and Stable Highâ€Valent Late Transition Metal Alkyls. Angewandte Chemie - International Edition, 2016, 55, 14766-14769.	7.2	43
51	Alchemical screening of ionic crystals. Physical Chemistry Chemical Physics, 2016, 18, 31078-31091.	1.3	25
52	Benchmarking DFT-GGA calculations for the structure optimisation of neutral-framework zeotypes. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	38
53	Effect of metal complexation on the equilibrium between methylphosphepine and methylphosphanorcaradiene and their benzo analogues. New Journal of Chemistry, 2016, 40, 7804-7813.	1.4	0
54	Benchmark tests of a strongly constrained semilocal functional with a long-range dispersion correction. Physical Review B, 2016, 94, .	1.1	152
55	Theoretical Determination of Interaction and Cohesive Energies of Weakly Bound Cycloparaphenylene Molecules. Journal of Physical Chemistry C, 2016, 120, 22627-22634.	1.5	17
56	Toward Accurate Adsorption Energetics on Clay Surfaces. Journal of Physical Chemistry C, 2016, 120, 26402-26413.	1.5	30
57	Dispersion und Wasserstoffbrücken bestimmend – Warum die Verdampfungsenthalpien von aprotischen größer als die von protischen ionischen Flüssigkeiten sind. Angewandte Chemie, 2016, 128, 11856-11860.	1.6	10

#	Article	IF	CITATIONS
58	van der Waals potential energy surfaces from the exchange-hole dipole moment dispersion model. Canadian Journal of Chemistry, 2016, 94, 1049-1056.	0.6	1
59	Assessment of Different Quantum Mechanical Methods for the Prediction of Structure and Cohesive Energy of Molecular Crystals. Journal of Chemical Theory and Computation, 2016, 12, 3340-3352.	2.3	85
60	Methane adsorption on the surface of a model of shale: A density functional theory study. Applied Surface Science, 2016, 387, 379-384.	3.1	25
61	Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications. Chemical Reviews, 2016, 116, 5038-5071.	23.0	346
62	Towards full Quantumâ€Mechanicsâ€based Protein–Ligand Binding Affinities. ChemPhysChem, 2017, 18, 898-905.	1.0	46
63	Quantum Chemical Methods for the Prediction of Energetic, Physical, and Spectroscopic Properties of Ionic Liquids. Chemical Reviews, 2017, 117, 6696-6754.	23.0	181
64	Evaluation of DFT-D3 dispersion corrections for various structural benchmark sets. Journal of Chemical Physics, 2017, 146, 044115.	1.2	23
65	The role of London dispersion interactions in strong and moderate intermolecular hydrogen bonds in the gas phase. Chemical Physics Letters, 2017, 672, 124-127.	1.2	11
66	Adsorption of Organic Molecules to van der Waals Materials: Comparison of Fluorographene and Fluorographite with Graphene and Graphite. Journal of Chemical Theory and Computation, 2017, 13, 1328-1340.	2.3	47
67	London dispersion forces in sterically crowded inorganic and organometallic molecules. Nature Reviews Chemistry, 2017, 1, .	13.8	296
68	Weak Supramolecular Interactions Governing Parallel and Antiparallel DNA Quadruplexes: Insights from Largeâ€6cale Quantum Mechanics Analysis of Experimentally Derived Models. Chemistry - A European Journal, 2017, 23, 5573-5584.	1.7	9
69	Development of New Density Functional Approximations. Annual Review of Physical Chemistry, 2017, 68, 155-182.	4.8	51
70	First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications. Chemical Reviews, 2017, 117, 4714-4758.	23.0	408
71	Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles. Nature Reviews Chemistry, 2017, 1, .	13.8	95
72	Partnering dispersion corrections with modern parameter-free double-hybrid density functionals. Physical Chemistry Chemical Physics, 2017, 19, 13481-13487.	1.3	31
73	Revealing the Intermolecular Interactions of Asphaltene Dimers by Quantum Chemical Calculations. Energy & Fuels, 2017, 31, 2488-2495.	2.5	59
74	CO-Reduction Chemistry: Reaction of a CO-Derived Formylhydridoborate with Carbon Monoxide, with Carbon Dioxide, and with Dihydrogen. Journal of the American Chemical Society, 2017, 139, 6474-6483.	6.6	50
75	A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (<i>Z</i> = 1–86). Journal of Chemical Theory and Computation, 2017, 13, 1989-2009.	2.3	1,072

#	Article	IF	CITATIONS
76	London Dispersion Enables the Shortest Intermolecular Hydrocarbon H··Ĥ Contact. Journal of the American Chemical Society, 2017, 139, 7428-7431.	6.6	126
77	SparseMaps—A systematic infrastructure for reduced scaling electronic structure methods. V. Linear scaling explicitly correlated coupled-cluster method with pair natural orbitals. Journal of Chemical Physics, 2017, 146, 174108.	1.2	122
78	C–F/C–H Functionalization by Manganese(I) Catalysis: Expedient (Per)Fluoro-Allylations and Alkenylations. ACS Catalysis, 2017, 7, 4209-4213.	5.5	165
79	Plane-Wave Density Functional Theory Meets Molecular Crystals: Thermal Ellipsoids and Intermolecular Interactions. Accounts of Chemical Research, 2017, 50, 1231-1239.	7.6	47
80	Performance of van der Waals Corrected Functionals for Guest Adsorption in the M ₂ (dobdc) Metal–Organic Frameworks. Journal of Physical Chemistry A, 2017, 121, 4139-4151.	1.1	41
81	Noble Gas Encapsulated Endohedral Zintl Ions Ng@Pb ₁₂ ^{2–} and Ng@Sn ₁₂ ^{2–} (Ng = He, Ne, Ar, and Kr): A Theoretical Investigation. Journal of Physical Chemistry C, 2017, 121, 11932-11949.	1.5	16
82	The Fractional Occupation Number Weighted Density as a Versatile Analysis Tool for Molecules with a Complicated Electronic Structure. Chemistry - A European Journal, 2017, 23, 6150-6164.	1.7	102
83	Method Dependence of Proline Ring Flexibility in the Poly- <scp>l</scp> -Proline Type II Polymer. Journal of Chemical Theory and Computation, 2017, 13, 370-379.	2.3	16
84	Atom- and Ion-Centered Icosahedral Shaped Subnanometer-Sized Clusters of Molecular Hydrogen. Journal of Physical Chemistry C, 2017, 121, 15036-15048.	1.5	7
85	Effect of dispersion corrections on covalent and non-covalent interactions in DFTB calculations. Structural Chemistry, 2017, 28, 1399-1407.	1.0	4
86	Powder diffraction and crystal structure prediction identify four new coumarin polymorphs. Chemical Science, 2017, 8, 4926-4940.	3.7	97
87	B–H _b â<ï€ interaction in borane–graphene complexes: coronene as a case study. New Journal of Chemistry, 2017, 41, 5040-5054.	1.4	14
88	Computational Modeling and Simulation of CO ₂ Capture by Aqueous Amines. Chemical Reviews, 2017, 117, 9524-9593.	23.0	143
89	Full Selectivity Control in Cobalt(III) atalyzed Câ^'H Alkylations by Switching of the Câ^'H Activation Mechanism. Angewandte Chemie, 2017, 129, 10514-10518.	1.6	95
90	Full Selectivity Control in Cobalt(III) atalyzed Câ^'H Alkylations by Switching of the Câ^'H Activation Mechanism. Angewandte Chemie - International Edition, 2017, 56, 10378-10382.	7.2	243
91	Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Molecular Physics, 2017, 115, 2315-2372.	0.8	1,401
92	Pancake Bond Orders of a Series of π‧tacked Triangulene Radicals. Angewandte Chemie - International Edition, 2017, 56, 10188-10191.	7.2	46
93	Hydrogen adsorption on MoS ₂ -surfaces: a DFT study on preferential sites and the effect of sulfur and hydrogen coverage. Physical Chemistry Chemical Physics, 2017, 19, 16231-16241.	1.3	64

#	Article	IF	CITATIONS
94	Conventional and Explicitly Correlated ab Initio Benchmark Study on Water Clusters: Revision of the BEGDB and WATER27 Data Sets. Journal of Chemical Theory and Computation, 2017, 13, 3136-3152.	2.3	81
95	Periodic Dispersion-Corrected Approach for Isolation Spectroscopy of N ₂ in an Argon Environment: Clusters, Surfaces, and Matrices. Journal of Physical Chemistry A, 2017, 121, 4093-4102.	1.1	4
96	Dispersion-Corrected Spin-Component-Scaled Double-Hybrid Density Functional Theory: Implementation and Performance for Non-covalent Interactions. Journal of Chemical Theory and Computation, 2017, 13, 2650-2666.	2.3	8
97	A comparison between quantum chemistry and quantum Monte Carlo techniques for the adsorption of water on the (001) LiH surface. Journal of Chemical Physics, 2017, 146, 204108.	1.2	35
98	Reaction Mechanism of Cu(I)-Mediated Reductive CO ₂ Coupling for the Selective Formation of Oxalate: Cooperative CO ₂ Reduction To Give Mixed-Valence Cu ₂ (CO ₂ ^{•–}) and Nucleophilic-Like Attack. Inorganic Chemistry, 2017, 56, 6809-6819.	1.9	39
99	Can DFT and ab initio methods adequately describe binding energies in strongly interacting C6X6⋯C2X π–Ĩ€ complexes?. Chemical Physics, 2017, 493, 12-19.	0.9	7
100	Assessment of van der Waals inclusive density functional theory methods for layered electroactive materials. Physical Chemistry Chemical Physics, 2017, 19, 10133-10139.	1.3	43
101	How strongly do hydrogen and water molecules stick to carbon nanomaterials?. Journal of Chemical Physics, 2017, 146, .	1.2	38
102	Methanol Oxidation on Pt(111) from First-Principles in Heterogeneous and Electrocatalysis. Electrocatalysis, 2017, 8, 577-586.	1.5	26
103	Role of exact exchange in thermally-assisted-occupation density functional theory: A proposal of new hybrid schemes. Journal of Chemical Physics, 2017, 146, 044102.	1.2	38
104	Manganese(I) atalyzed Dispersionâ€Enabled Câ^'H/Câ^'C Activation. Chemistry - A European Journal, 2017, 23, 5443-5447.	1.7	98
105	Trapping Experiments on a Trichlorosilanide Anion: a Key Intermediate of Halogenosilane Chemistry. Inorganic Chemistry, 2017, 56, 8683-8688.	1.9	22
106	Why Are Vinyl Cations Sluggish Electrophiles?. Journal of the American Chemical Society, 2017, 139, 1499-1511.	6.6	59
107	Anziehung gleich geladener Ionen in ionischen Flüssigkeiten: Kontrolle der Bildung kationischer Cluster über die Wechselwirkungsstäke der Gegenionen. Angewandte Chemie, 2017, 129, 510-514.	1.6	21
108	When Like Charged Ions Attract in Ionic Liquids: Controlling the Formation of Cationic Clusters by the Interaction Strength of the Counterions. Angewandte Chemie - International Edition, 2017, 56, 496-500.	7.2	81
109	Firstâ€principles modeling of molecular crystals: structures and stabilities, temperature and pressure. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1294.	6.2	141
110	A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Physical Chemistry Chemical Physics, 2017, 19, 32184-32215.	1.3	1,230
111	Fast and Reasonable Geometry Optimization of Lanthanoid Complexes with an Extended Tight Binding Quantum Chemical Method. Inorganic Chemistry, 2017, 56, 12485-12491.	1.9	41

#	Article	IF	CITATIONS
112	A Computational Scheme To Evaluate Hamaker Constants of Molecules with Practical Size and Anisotropy. Journal of Chemical Theory and Computation, 2017, 13, 5217-5230.	2.3	16
113	Inverting Steric Effects: Using "Attractive―Noncovalent Interactions To Direct Silver-Catalyzed Nitrene Transfer. Journal of the American Chemical Society, 2017, 139, 17376-17386.	6.6	52
114	Proton transfer and hydrogen bonding in glycosylation reactions. Journal of Carbohydrate Chemistry, 2017, 36, 59-99.	0.4	20
115	Study on the pH Dependence of the Photophysical Properties of a Functionalized Perylene Bisimide and Its Potential Applications as a Fluorescence Lifetime Based pH Probe. Journal of Physical Chemistry C, 2017, 121, 24786-24797.	1.5	19
116	Noncovalent interactions underlying binary mixtures of amino acid based ionic liquids: insights from theory. Physical Chemistry Chemical Physics, 2017, 19, 29561-29582.	1.3	1
117	MD and QM/MM Study of the Quaternary HutP Homohexamer Complex with mRNA, <scp>l</scp> -Histidine Ligand, and Mg ²⁺ . Journal of Chemical Theory and Computation, 2017, 13, 5658-5670.	2.3	17
118	Sandwiches of N-doped diamondoids and benzene <i>via</i> lone pair–cation and cation–pi interaction: a DFT study. New Journal of Chemistry, 2017, 41, 14420-14430.	1.4	8
119	Synthesis, Structure, and Luminescence of Copper(I) Halide Complexes of Chiral Bis(phosphines). Inorganic Chemistry, 2017, 56, 12809-12820.	1.9	37
120	Thermal Expansion of Carbamazepine: Systematic Crystallographic Measurements Challenge Quantum Chemical Calculations. Journal of Physical Chemistry Letters, 2017, 8, 4319-4324.	2.1	50
121	Benchmark Databases of Intermolecular Interaction Energies: Design, Construction, and Significance. Annual Reports in Computational Chemistry, 2017, 13, 3-91.	0.9	8
122	Paving the Way for the Molecular-Level Design of Adsorbents for Carbon Capture: A Quantum-Chemical Investigation of the Adsorption of CO ₂ and N ₂ on Pure-Silica Chabazite. Journal of Physical Chemistry C, 2017, 121, 19314-19320.	1.5	7
123	Attenuation of London Dispersion in Dichloromethane Solutions. Journal of the American Chemical Society, 2017, 139, 13126-13140.	6.6	93
124	Quantum mechanical force fields for condensed phase molecular simulations. Journal of Physics Condensed Matter, 2017, 29, 383002.	0.7	22
125	Improved description of the structural and optoelectronic properties of DNA/RNA nucleobase anhydrous crystals: Experiment and dispersion-corrected density functional theory calculations. Physical Review B, 2017, 96, .	1.1	13
126	Intricacies of van der Waals Interactions in Systems with Elongated Bonds Revealed by Electron-Groups Embedding and High-Level Coupled-Cluster Approaches. Journal of Chemical Theory and Computation, 2017, 13, 5404-5419.	2.3	16
127	The BioFragment Database (BFDb): An open-data platform for computational chemistry analysis of noncovalent interactions. Journal of Chemical Physics, 2017, 147, 161727.	1.2	82
128	Synthesis of Electronâ€Rich, Planarized Silicon(IV) Species and a Theoretical Analysis of Dimerizing Aminosilanes. Chemistry - A European Journal, 2017, 23, 17764-17774.	1.7	16
129	General optimization procedure towards the design of a new family of minimal parameter spin-component-scaled double-hybrid density functional theory. Physical Chemistry Chemical Physics, 2017, 19, 26191-26200.	1.3	20

#	Article	IF	CITATIONS
130	The nature of three-body interactions in DFT: Exchange and polarization effects. Journal of Chemical Physics, 2017, 147, 084106.	1.2	15
131	Anthracenyl polar embedded stationary phases with enhanced aromatic selectivity. Part II: A density functional theory study. Journal of Chromatography A, 2017, 1519, 91-99.	1.8	2
132	Mechanisms for C(sp2)–Si activation of aryltrimethylsilyl groups in palladium-catalysed couplings. Organic and Biomolecular Chemistry, 2017, 15, 8179-8185.	1.5	5
133	Is the R ₃ Si Moiety in Metal–Silyl Complexes a Z ligand? An Answer from the Interaction Energy. Chemistry - A European Journal, 2017, 23, 17058-17069.	1.7	25
134	Thermochemistry of Racemic and Enantiopure Organic Crystals for Predicting Enantiomer Separation. Crystal Growth and Design, 2017, 17, 4676-4686.	1.4	33
135	Pancake Bond Orders of a Series of Ï€â€Stacked Triangulene Radicals. Angewandte Chemie, 2017, 129, 10322-10325.	1.6	8
136	Quantitative probing of subtle interactions among H-bonds in alpha hydroxy carboxylic acid complexes. Physical Chemistry Chemical Physics, 2017, 19, 24399-24411.	1.3	6
137	A general intermolecular force field based on tight-binding quantum chemical calculations. Journal of Chemical Physics, 2017, 147, 161708.	1.2	53
138	Extension of the D3 dispersion coefficient model. Journal of Chemical Physics, 2017, 147, 034112.	1.2	617
139	On the hydrogen activation by frustrated Lewis pairs in the solid state: benchmark studies and theoretical insights. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20170006.	1.6	8
140	Secondary Phosphine Oxide Preligands for Palladium atalyzed C–H (Hetero)Arylations: Efficient Access to Pybox Ligands. Advanced Synthesis and Catalysis, 2017, 359, 3137-3141.	2.1	20
141	Mild Cobalt(III) atalyzed Allylative Câ^'F/Câ^'H Functionalizations at Room Temperature. Chemistry - A European Journal, 2017, 23, 12145-12148.	1.7	95
142	Understanding Noncovalent Interactions of Small Molecules with Carbon Nanotubes. Chemistry - A European Journal, 2017, 23, 12909-12916.	1.7	30
143	W4â€17: A diverse and highâ€confidence dataset of atomization energies for benchmarking highâ€level electronic structure methods. Journal of Computational Chemistry, 2017, 38, 2063-2075.	1.5	120
144	Accurate DFT-D3 Calculations in a Small Basis Set. Journal of Chemical Theory and Computation, 2017, 13, 3575-3585.	2.3	70
145	On Atomsâ€inâ€Molecules Energies from Kohn–Sham Calculations. ChemPhysChem, 2017, 18, 2675-2687.	1.0	29
146	Dispersion Interactions and the Stability of Amine Dimers. ChemistryOpen, 2017, 6, 571-584.	0.9	6
147	Simple way to apply nonlocal van der Waals functionals within all-electron methods. Physical Review B, 2017, 96, .	1.1	16

#	Article	IF	CITATIONS
148	Intramolecular interactions in sterically crowded hydrocarbon molecules. Journal of Computational Chemistry, 2017, 38, 2500-2508.	1.5	17
149	Reactions of a Ga/Pâ€Based Frustrated Lewis Pair with H <i>X</i> (<i>X</i> = F – I), Heterocumulenes <i>R</i> –NC <i>Y</i> (<i>Y</i> = O, S) and Chalcogens–Adduct Formation and Surprising Stability towards Protolysis. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1016-1029.	0.6	16
150	Impact of dispersion forces on the atomic structure of a prototypical network-forming disordered system: The case of liquid GeSe2. Journal of Chemical Physics, 2017, 147, 044504.	1.2	9
151	Changing the gap type of solid state boric acid by heating: a dispersion-corrected density functional study of I±-, I²-, and I³-metaboric acid polymorphs. New Journal of Chemistry, 2017, 41, 15533-15544.	1.4	4
152	Tuning the inter-molecular charge transfer, second-order nonlinear optical and absorption spectra properties of a l€-dimer under an external electric field. Physical Chemistry Chemical Physics, 2017, 19, 31958-31964.	1.3	16
153	Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model. Journal of Chemical Theory and Computation, 2017, 13, 6146-6157.	2.3	40
154	Polymer Segments at the Folding Limit: Raman Scattering for the Diglyme Benchmark. ChemPhysChem, 2017, 18, 3570-3575.	1.0	1
155	Self-consistent determination of the fictitious temperature in thermally-assisted-occupation density functional theory. RSC Advances, 2017, 7, 50496-50507.	1.7	33
156	On the structure of the P-iodo-, bromo- and chloro-bis(imino)phosphoranes: A DFT study. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2017, 72, 895-901.	0.3	0
157	Effect of Li Termination on the Electronic and Hydrogen Storage Properties of Linear Carbon Chains: A TAO-DFT Study. Scientific Reports, 2017, 7, 4966.	1.6	27
158	Dispersion corrections applied to the TCA family of exchange-correlation functionals. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	4
159	Origin of the Strong Interaction between Polar Molecules and Copper(II) Paddle-Wheels in Metal Organic Frameworks. Journal of Physical Chemistry C, 2017, 121, 15135-15144.	1.5	23
160	Controlling the kinetic and thermodynamic stability of cationic clusters by the addition of molecules or counterions. Physical Chemistry Chemical Physics, 2017, 19, 18854-18862.	1.3	29
161	Understanding the Role of Dispersion in Frustrated Lewis Pairs and Classical Lewis Adducts: A Domainâ€Based Local Pair Natural Orbital Coupled Cluster Study. Chemistry - A European Journal, 2017, 23, 865-873.	1.7	91
162	Cooperative Activation of Isocyanates by Al–Nâ€Based Active Lewis Pairs and the Generation of a C ₅ Chain by Simultaneous Formation of Two C–C Bonds. Chemistry - A European Journal, 2017, 23, 6129-6141.	1.7	15
163	Sizing the role of London dispersion in the dissociation of all-meta tert-butyl hexaphenylethane. Chemical Science, 2017, 8, 405-410.	3.7	104
164	Computational Chemistry Methods for Nanoporous Materials. Chemistry of Materials, 2017, 29, 199-212.	3.2	69
166	Noncovalent Interactions in Molecular Crystals. , 2017, , 303-331.		7

#	Article	IF	CITATIONS
167	Molecular Crystal Structure Prediction. , 2017, , 333-363.		16
168	A Comprehensive Overview of the DFT-D3 London-Dispersion Correction. , 2017, , 195-219.		57
169	Noncovalent Interactions in the Catechol Dimer. Biomimetics, 2017, 2, 18.	1.5	17
170	Density Functional Theory Investigation into the B and Ga Doped Clean and Water Covered <i>$\hat{I}^3 < i\rangle$-Alumina Surfaces. Journal of Chemistry, 2017, 2017, 1-7.</i>	0.9	4
171	A First Principles Study of H2 Adsorption on LaNiO3(001) Surfaces. Materials, 2017, 10, 36.	1.3	8
172	Benchmarking the performance of density-functional-based approaches on intermolecular interactions of Helium–water complexes. Journal of Physics: Conference Series, 2017, 875, 102026.	0.3	1
173	Intermolecular Interaction Energies from Kohn–Sham Random Phase Approximation Correlation Methods. , 2017, , 65-136.		6
174	Toward Accurate Conformational Energies of Smaller Peptides and Medium-Sized Macrocycles: MPCONF196 Benchmark Energy Data Set. Journal of Chemical Theory and Computation, 2018, 14, 1254-1266.	2.3	69
175	Comment on "HYDROPHOBE Challenge: A Joint Experimental and Computational Study on the Host–Guest Binding of Hydrocarbons to Cucurbiturils, Allowing Explicit Evaluation of Guest Hydration Free-Energy Contributions― Journal of Physical Chemistry B, 2018, 122, 2825-2826.	1.2	4
176	Cluster approach to the prediction of thermodynamic and transport properties of ionic liquids. Journal of Chemical Physics, 2018, 148, 193832.	1.2	11
177	Finding the best density functional approximation to describe interaction energies and structures of ionic liquids in molecular dynamics studies. Journal of Chemical Physics, 2018, 148, 193835.	1.2	38
178	Composite and Low-Cost Approaches for Molecular Crystal Structure Prediction. Journal of Chemical Theory and Computation, 2018, 14, 2265-2276.	2.3	18
179	Quantumâ€mechanical condensed matter simulations with CRYSTAL. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1360.	6.2	1,277
180	Computational prediction of chemical reactions: current status and outlook. Drug Discovery Today, 2018, 23, 1203-1218.	3.2	126
181	Importance of van der Waals interaction on structural, vibrational, and thermodynamic properties of NaCl. Solid State Communications, 2018, 273, 11-16.	0.9	16
182	<i>in,in</i> -Cyclophanes with Bridgehead Methyl Groups. Organic Letters, 2018, 20, 2576-2579.	2.4	3
183	Simplified DFT methods for consistent structures and energies of large systems. Journal of Physics Condensed Matter, 2018, 30, 213001.	0.7	42
184	<i>Ab initio</i> prediction of the polymorph phase diagram for crystalline methanol. Chemical Science, 2018, 9, 4622-4629.	3.7	53

#	Article	IF	CITATIONS
185	Rotational and translational dynamics and their relation to hydrogen bond lifetimes in an ionic liquid by means of NMR relaxation time experiments and molecular dynamics simulation. Journal of Chemical Physics, 2018, 148, 193843.	1.2	22
186	Atomic Orbital Implementation of Extended Symmetry-Adapted Perturbation Theory (XSAPT) and Benchmark Calculations for Large Supramolecular Complexes. Journal of Chemical Theory and Computation, 2018, 14, 2955-2978.	2.3	43
187	Quest for Insight into Ultrashort C–H···π Proximities in Molecular "Iron Maidens― Journal of Organic Chemistry, 2018, 83, 5114-5122.	1.7	8
188	Likeâ€likesâ€Like: Cooperative Hydrogen Bonding Overcomes Coulomb Repulsion in Cationic Clusters with Net Charges up to Q =+6 e. ChemPhysChem, 2018, 19, 1691-1695.	1.0	29
189	Revealing weak spin-orbit coupling effects on charge carriers in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Ï€</mml:mi> -conjugated polymer. Physical Review B, 2018, 97, .</mml:math 	1.1	26
190	Statistical Analysis of Semiclassical Dispersion Corrections. Journal of Chemical Theory and Computation, 2018, 14, 2480-2494.	2.3	25
191	Benchmarking several van der Waals dispersion approaches for the description of intermolecular interactions. Journal of Chemical Physics, 2018, 148, 064112.	1.2	37
192	Accurate Lattice Energies for Molecular Crystals from Experimental Crystal Structures. Journal of Chemical Theory and Computation, 2018, 14, 1614-1623.	2.3	164
193	Density-Dependent Formulation of Dispersion–Repulsion Interactions in Hybrid Multiscale Quantum/Molecular Mechanics (QM/MM) Models. Journal of Chemical Theory and Computation, 2018, 14, 1671-1681.	2.3	24
194	An Exceptionally Close, Nonâ€Bonded Hydrogen–Hydrogen Contact with Strong Throughâ€ S pace Spin–Spin Coupling. Angewandte Chemie, 2018, 130, 2266-2269.	1.6	2
195	Supramolecular polymer chemistry meets computational chemistry: theoretical simulations on advanced self-assembling chiral materials. Supramolecular Chemistry, 2018, 30, 876-890.	1.5	3
196	The influence of like-charge attraction on the structure and dynamics of ionic liquids: NMR chemical shifts, quadrupole coupling constants, rotational correlation times and failure of Stokes–Einstein–Debye. Physical Chemistry Chemical Physics, 2018, 20, 5617-5625.	1.3	26
197	Introducing DDEC6 atomic population analysis: part 4. Efficient parallel computation of net atomic charges, atomic spin moments, bond orders, and more. RSC Advances, 2018, 8, 2678-2707.	1.7	129
198	From Noncovalent Chalcogen–Chalcogen Interactions to Supramolecular Aggregates: Experiments and Calculations. Chemical Reviews, 2018, 118, 2010-2041.	23.0	244
199	Fast and accurate quantum Monte Carlo for molecular crystals. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1724-1729.	3.3	69
200	B97-3c: A revised low-cost variant of the B97-D density functional method. Journal of Chemical Physics, 2018, 148, 064104.	1.2	400
201	Pushing Electrons—Which Carbene Ligand for Which Application?. Organometallics, 2018, 37, 275-289.	1.1	199
202	Application of the Interacting Quantum Atoms Approach to the S66 and Ionicâ€Hydrogenâ€Bond Datasets for Noncovalent Interactions. ChemPhysChem, 2018, 19, 973-987.	1.0	21

#	ARTICLE	IF	CITATIONS
203	Hydrogen bonding in protic ionic liquids: structural correlations, vibrational spectroscopy, and rotational dynamics of liquid ethylammonium nitrate. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 034002.	0.6	21
204	Enantioselectivity in CPA-catalyzed Friedel–Crafts reaction of indole and <i>N</i> -tosylimines: a challenge for guiding models. Organic and Biomolecular Chemistry, 2018, 16, 2225-2238.	1.5	11
205	Citronellal assumes a folded conformation in solution due to dispersion interactions: A joint NMR-DFT analysis. Journal of Molecular Structure, 2018, 1157, 401-407.	1.8	5
206	Conductance Switching in Expanded Porphyrins through Aromaticity and Topology Changes. Journal of the American Chemical Society, 2018, 140, 1313-1326.	6.6	56
207	An Exceptionally Close, Nonâ€Bonded Hydrogen–Hydrogen Contact with Strong Throughâ€Space Spin–Spin Coupling. Angewandte Chemie - International Edition, 2018, 57, 2244-2247.	7.2	20
208	Vibrational Properties of Bulk Boric Acid2Aand3TPolymorphs and Their Two-Dimensional Layers: Measurements and Density Functional Theory Calculations. Journal of Physical Chemistry A, 2018, 122, 1312-1325.	1.1	10
209	Aurophilic Interactions in [(L)AuCl][(L′)AuCl] Dimers: Calibration by Experiment and Theory. Journal of the American Chemical Society, 2018, 140, 2316-2325.	6.6	48
210	Accurate geometries for "Mountain pass―regions of the Ramachandran plot using quantum chemical calculations. Proteins: Structure, Function and Bioinformatics, 2018, 86, 273-278.	1.5	7
211	How do London Dispersion Interactions Impact the Photochemical Processes of Molecular Switches?. Journal of Physical Chemistry Letters, 2018, 9, 464-470.	2.1	22
212	Comparison of the Performance of van der Waals Dispersion Functionals in the Description of Water and Ethanol on Transition Metal Surfaces. Journal of Physical Chemistry C, 2018, 122, 1577-1588.	1.5	36
213	Interaction Energy Landscapes of Aromatic Heterocycles through a Reliable yet Affordable Computational Approach. Journal of Chemical Theory and Computation, 2018, 14, 543-556.	2.3	23
214	Structure and Stability of Molecular Crystals with Many-Body Dispersion-Inclusive Density Functional Tight Binding. Journal of Physical Chemistry Letters, 2018, 9, 399-405.	2.1	37
215	Highâ€Level Ab Initio Calculations of Intermolecular Interactions: Heavy Mainâ€Group Element Ï€â€Interactions. Chemistry - A European Journal, 2018, 24, 10238-10245.	1.7	22
216	Crystalline Moduli of Polymers, Evaluated from Density Functional Theory Calculations under Periodic Boundary Conditions. ACS Omega, 2018, 3, 4824-4835.	1.6	24
217	Estimations of energy of noncovalent bonding from integrals over interatomic zeroâ€flux surfaces: Correlation trends and beyond. Journal of Computational Chemistry, 2018, 39, 1607-1616.	1.5	34
218	Intermolecular dissociation energies of dispersively bound complexes of aromatics with noble gases and nitrogen. Journal of Chemical Physics, 2018, 148, 134302.	1.2	21
219	An accurate empirical method to predict the adsorption strength for ï€-orbital contained molecules on two dimensional materials. Journal of Molecular Graphics and Modelling, 2018, 82, 93-100.	1.3	25
220	Identifying pragmatic quasi-harmonic electronic structure approaches for modeling molecular crystal thermal expansion. Faraday Discussions, 2018, 211, 181-207.	1.6	29

	Charlon	KEI OKI	
#	Article	IF	CITATIONS
221	Lowest-Energy Crystalline Polymorphs of P3HT. Journal of Physical Chemistry C, 2018, 122, 9141-9151.	1.5	18
222	Understanding titanium-catalysed radical–radical reactions: a DFT study unravels the complex kinetics of ketone–nitrile couplings. Dalton Transactions, 2018, 47, 5072-5082.	1.6	18
223	Rocksalt or cesium chloride: Investigating the relative stability of the cesium halide structures with random phase approximation based methods. Physical Review B, 2018, 97, .	1.1	13
224	Crystal structure prediction of flexible pharmaceutical-like molecules: density functional tight-binding as an intermediate optimisation method and for free energy estimation. Faraday Discussions, 2018, 211, 275-296.	1.6	29
225	Software update: the ORCA program system, version 4.0. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1327.	6.2	3,771
226	A first-principles study on Pd modified ZSM-12 zeolites. Microporous and Mesoporous Materials, 2018, 260, 227-234.	2.2	10
227	Trivalent ions modification for high-silica mordenite: A first principles study. Applied Surface Science, 2018, 433, 627-638.	3.1	15
228	Comment on "Substrate Folding Modes in Trichodiene Synthase: A Determinant of Chemo- and Stereoselectivity― ACS Catalysis, 2018, 8, 1371-1375.	5.5	17
229	Graphene Oxide Epoxy (GOâ€xy): GO as Epoxy Adhesive by Interfacial Reaction of Functionalities. Advanced Materials Interfaces, 2018, 5, 1700657.	1.9	19
230	Organocatalytic Enantioselective Higherâ€Order Cycloadditions of In Situ Generated Amino Isobenzofulvenes. Angewandte Chemie - International Edition, 2018, 57, 1246-1250.	7.2	42
231	Crystalline packing in pentacene-like organic semiconductors. CrystEngComm, 2018, 20, 63-74.	1.3	59
232	Computerchemie: das Schicksal aktueller Methoden und zukünftige Herausforderungen. Angewandte Chemie, 2018, 130, 4241-4248.	1.6	16
233	Computational Chemistry: The Fate of Current Methods and Future Challenges. Angewandte Chemie - International Edition, 2018, 57, 4170-4176.	7.2	138
234	O ₂ Activation by Metal Surfaces: Implications for Bonding and Reactivity on Heterogeneous Catalysts. Chemical Reviews, 2018, 118, 2816-2862.	23.0	363
235	Distal Weak Coordination of Acetamides in Ruthenium(II)â€Catalyzed Câ^'H Activation Processes. Angewandte Chemie, 2018, 130, 773-776.	1.6	22
236	Distal Weak Coordination of Acetamides in Ruthenium(II)â€Catalyzed Câ^'H Activation Processes. Angewandte Chemie - International Edition, 2018, 57, 765-768.	7.2	83
237	Bare <i>versus</i> protected tetrairidium clusters by density functional theory. Physical Chemistry Chemical Physics, 2018, 20, 29480-29492.	1.3	4
238	Molecular interactions in electron-groups embedding generalized valence bond picture. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	7

ARTICLE IF CITATIONS Quantum-chemical modelling of clay mineral surfaces and clay mineral–surface–adsorbate 239 0.3 7 interactions. Developments in Clay Science, 2018, 9, 49-87. Are dispersion corrections accurate outside equilibrium? A case study on benzene. Beilstein Journal 240 1.3 of Organic Chemistry, 2018, 14, 1181-1191. 241 Quantitative Chiral Analysis by Molecular Rotational Spectroscopy., 2018, , 679-729. 35 Experimental and Computational Evidence for "Double Pancake Bonds†The Role of Dispersion-Corrected DFT Methods in Strongly Dimerized 5-Aryl-1λ²,3λ²-dithia-2,4,6-triazines. ACS Omega, 2018, 3, 18170-18180. 242 Stacking Principles on Ĩ€- and Lamellar Stacking for Organic Semiconductors Evaluated by Energy 243 1.6 29 Decomposition Analysis. ACS Omega, 2018, 3, 18656-18662. Low-scaling analytical gradients for the direct random phase approximation using an atomic orbital formalism. Journal of Chemical Physics, 2018, 149, 244111. 244 1.2 Dependence of the multipole moments, static polarizabilities, and static hyperpolarizabilities of the hydrogen molecule on the Hâ€"H separation in the ground singlet state. Journal of Chemical Physics, 245 1.2 9 2018, 149, 234103. Spektroskopischer Nachweis einer attraktiven Kationâ€Kation―Wechselwirkung in OHâ€funktionalisierten ionischen Fl¼ssigkeiten: ein Hâ€Brückenâ€gebundenes kettenförmiges Trimer. Angewandte Chemie, 2018, 1.6 246 9 130, 15590-15594 Adsorption of PTCDA on NaCl Surfaces with Color Centers: Charge Transfer and Formation of Radical 247 7 1.5 Ions. Journal of Physical Chemistry C, 2018, 122, 29426-29434. Impact of Lowâ€Frequency Vibrations on Charge Transport in Highâ€Mobility Organic Semiconductors. 248 1.2 Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800485. Properties of Ion Complexes and Their Impact on Charge Transport in Organic Solvent-Based Electrolyte Solutions for Lithium Batteries: Insights from a Theoretical Perspective. Batteries, 2018, 4, 249 2.1 36 62. Intermolecular dissociation energies of hydrogen-bonded 1-naphthol complexes. Journal of Chemical 1.2 Physics, 2018, 149, 204311. Performance of Density-Functional Tight-Binding in Comparison to Ab Initio and First-Principles Methods for Isomer Geometries and Energies of Glucose Epimers in Vacuo and Solution. ACS Omega, 251 1.6 12 2018, 3, 16899-16915. Self-Assembly of Nanocubic Molecular Capsules via Solvent-Guided Formation of Rectangular Blocks. 2.1 Journal of Physical Chemistry Letters, 2018, 9, 6082-6088. A Simple Correction for Nonadditive Dispersion within Extended Symmetry-Adapted Perturbation 253 2.319 Theory (XSAPT). Journal of Chemical Theory and Computation, 2018, 14, 5128-5142. Spectroscopic Evidence for an Attractive Cation–Cation Interaction in Hydroxyâ€Functionalized Ionic Liquids: A Hydrogenâ€Bonded Chainâ€like Trimer. Angewandte Chemie - International Edition, 2018, 57, 254 15364-15368. Constructing soft-conjugated materials from small molecules to polymers: a theoretical study. 255 0.5 1 Theoretical Chemistry Accounts, 2018, 137, 1. The Nonlocal Kernel in van der Waals Density Functionals as an Additive Correction: An Extensive Analysis with Special Emphasis on the B97M-V and ωB97M-V Approaches. Journal of Chemical Theory and 2.3 170 Computation, 2018, 14, 5725-5738.

		CITATION REPORT		
#	Article		IF	CITATIONS
257	Cationic clustering influences the phase behaviour of ionic liquids. Scientific Reports, 20	18, 8, 14753.	1.6	51
258	Interacting Quantum Atoms Approach and Electrostatic Solvation Energy: Assessing Ato Group Solvation Contributions. ChemPhysChem, 2018, 19, 3425-3435.	mic and	1.0	5
259	The Shape of Native Plant Cellulose Microfibrils. Scientific Reports, 2018, 8, 13983.		1.6	86
260	Crystal structure evaluation: calculating relative stabilities and other criteria: general disc Faraday Discussions, 2018, 211, 325-381.	ussion.	1.6	7
261	Semiempirical molecular orbital models based on the neglect of diatomic differential ove approximation. International Journal of Quantum Chemistry, 2018, 118, e25799.	rlap	1.0	46
262	Non-Covalent Interactions in Molecular Crystals: Exploring the Accuracy of the Exchange Moment Model with Local Orbitals. Journal of Chemical Theory and Computation, 2018,	Hole Dipole 14, 5715-5724.	2.3	9
263	A selenium-catalysed para-amination of phenols. Nature Communications, 2018, 9, 4293		5.8	43
264	Assessment of a range-separated orbital-optimised random-phase approximation electro method. Theoretical Chemistry Accounts, 2018, 137, 1.	n correlation	0.5	6
265	Dispersion Energy of Symmetry-Adapted Perturbation Theory from the Explicitly Correlat Approach. Journal of Chemical Theory and Computation, 2018, 14, 5105-5117.	ed F12	2.3	9
266	Vibrational Modes and Phonon and Thermodynamic Properties of the Metaboric Acid Pol and \hat{I}^3 -(BOH) ₃ O ₃ within a Density Functional Theory Framewo Physical Chemistry A, 2018, 122, 7628-7645.	ymorphs α-, β-, rk. Journal of	1.1	4
267	Highly-sensitive optical organic vapor sensor through polymeric swelling induced variatic fluorescent intensity. Nature Communications, 2018, 9, 3799.	n of	5.8	86
268	Reduktion von Phosphanoxiden mit Oxalylchlorid und Wasserstoff, vermittelt durch ein elektrophiles Phosphoniumkation. Angewandte Chemie, 2018, 130, 15473-15476.		1.6	7
269	Electrophilic Phosphonium Cationâ€Mediated Phosphane Oxide Reduction Using Oxalyl Hydrogen. Angewandte Chemie - International Edition, 2018, 57, 15253-15256.	Chloride and	7.2	37
270	Accurate lattice geometrical parameters and bulk moduli from a semilocal density function Advances, 2018, 8, .	bnal. AIP	0.6	15
271	QM/MM Calculations on Protein–RNA Complexes: Understanding Limitations of Classi Simulations and Search for Reliable Cost-Effective QM Methods. Journal of Chemical The Computation, 2018, 14, 5419-5433.	cal MD ory and	2.3	34
272	DFT calculations of solids in the ground state. , 2018, , 67-100.			2
273	Dinuclear Tricyclic Transition State Model for Carbonyl Addition of Organotitanium Reag Study on the Activity and Enantioselectivity of BINOLate Titanium Catalysts. Journal of O Chemistry, 2018, 83, 7825-7835.	ents: DFT rganic	1.7	1
274	Effects of Dispersion Corrections and Nonlocality on Density Functional Predictions of Pressure-Induced Polymorphic Transitions of Crystalline Diborane. Journal of Physical Che 2018, 122, 14781-14787.	mistry C,	1.5	5

#	Article	IF	CITATIONS
275	Assessment of Density Functional Methods for Geometry Optimization of Bimolecular van der Waals Complexes. Journal of Chemical Theory and Computation, 2018, 14, 3004-3013.	2.3	27
276	Structural Motifs in Cold Ternary Ion Complexes of Hydroxyl-Functionalized Ionic Liquids: Isolating the Role of Cation–Cation Interactions. Journal of Physical Chemistry Letters, 2018, 9, 2979-2984.	2.1	47
277	Sweet graphene: exfoliation of graphite and preparation of glucose-graphene cocrystals through mechanochemical treatments. Green Chemistry, 2018, 20, 3581-3592.	4.6	56
278	Density-functional tight-binding approach for metal clusters, nanoparticles, surfaces and bulk: application to silver and gold. Journal of Physics Condensed Matter, 2018, 30, 303001.	0.7	24
279	First-principles stability ranking of molecular crystal polymorphs with the DFT+MBD approach. Faraday Discussions, 2018, 211, 253-274.	1.6	39
280	Semi-empirical or non-empirical double-hybrid density functionals: which are more robust?. Physical Chemistry Chemical Physics, 2018, 20, 23175-23194.	1.3	102
281	Development and Validation of Quantum Mechanically Derived Force-Fields: Thermodynamic, Structural, and Vibrational Properties of Aromatic Heterocycles. Journal of Chemical Theory and Computation, 2018, 14, 4884-4900.	2.3	26
282	Unraveling substituent effects on the glass transition temperatures of biorenewable polyesters. Nature Communications, 2018, 9, 2880.	5.8	58
283	Geometry optimisations with a nonlocal density-functional theory method based on a double Hirshfeld partitioning. Journal of Chemical Physics, 2018, 149, 044103.	1.2	2
284	Intermolecular dissociation energies of 1-naphthol·‹i>n-alkane complexes. Journal of Chemical Physics, 2018, 149, 034306.	1.2	7
285	Communication: Accurate description of interaction energies and three-body effects in weakly bound molecular complexes by PBE-QIDH models. Journal of Chemical Physics, 2018, 149, 041101.	1.2	4
286	On the exfoliation and anisotropic thermal expansion of black phosphorus. Chemical Communications, 2018, 54, 9793-9796.	2.2	15
287	Attractive Nonbonded Interactions Help Stabilize the Z Form of Alkenyl Anions. Journal of Organic Chemistry, 2018, 83, 8208-8213.	1.7	4
288	Mutual Kinetic Resolution of Racemic 3,4â€Dihydroâ€3â€methylâ€2 <i>H</i> â€[1,4]benzoxazines with Acyl Chlorides of Racemic <i>O</i> â€Phenyllactic Acids and DFT Modelling of Transition States. European Journal of Organic Chemistry, 2018, 2018, 4577-4585.	1.2	11
289	Toward a Reliable Description of the Lattice Vibrations in Organic Molecular Crystals: The Impact of van der Waals Interactions. Journal of Chemical Theory and Computation, 2018, 14, 4380-4390.	2.3	26
290	Quantum chemical exploration of formaldehyde clusters (H ₂ CO) _{<i>n</i>} (<i>n</i> = 2–4). Journal of Computational Chemistry, 2018, 39, 1498-1507.	1.5	11
292	The S66 Non-Covalent Interactions Benchmark Reconsidered Using Explicitly Correlated Methods Near the Basis Set Limit. Australian Journal of Chemistry, 2018, 71, 238.	0.5	40
293	Bâ^'H _b ↕X (X= N, O, P, S, F, Cl, Br) interactions: A density functional study. International Journal of Quantum Chemistry, 2018, 118, e25654.	1.0	4

#	Article	IF	CITATIONS
294	Exposing Key Vibrational Contributions to Properties of Organic Molecular Solids with High Signal, Low Frequency Neutron Spectroscopy and Ab Initio Simulations. Crystal Growth and Design, 2018, 18, 4815-4821.	1.4	5
295	Superbenzene–Porphyrin Gasâ€Phase Architectures Derived from Intermolecular Dispersion Interactions. Chemistry - A European Journal, 2018, 24, 15818-15824.	1.7	21
296	Analysis of Phosphoryl-Transfer Enzymes with QM/MM Free Energy Simulations. Methods in Enzymology, 2018, 607, 53-90.	0.4	11
297	The electric double layer at metal-water interfaces revisited based on a charge polarization scheme. Journal of Chemical Physics, 2018, 149, 084705.	1.2	128
298	Quantum-Chemical Insights into the Self-Assembly of Carbon-Based Supramolecular Complexes. Molecules, 2018, 23, 118.	1.7	9
299	Accurate Noncovalent Interactions via Dispersion-Corrected Second-Order MÃ,ller–Plesset Perturbation Theory. Journal of Chemical Theory and Computation, 2018, 14, 4711-4721.	2.3	41
300	Short is strong: experimental electron density in a very short N··À·I halogen bond. Zeitschrift Fur Kristallographie - Crystalline Materials, 2018, 233, 733-744.	0.4	17
301	Evaluation of dispersion type metal···Ĩ€ arene interaction in arylbismuth compounds – an experimental and theoretical study. Beilstein Journal of Organic Chemistry, 2018, 14, 2125-2145.	1.3	25
302	A spectroscopic study of indigo dye in aqueous solution: A combined experimental and TD-DFT study. Journal of Luminescence, 2018, 204, 568-572.	1.5	3
303	A Systematic Protocol for Benchmarking Guest–Host Interactions by Firstâ€Principles Computations: Capturing CO ₂ in Clathrate Hydrates. Chemistry - A European Journal, 2018, 24, 9353-9363.	1.7	13
304	Toward Accurate QM/MM Reaction Barriers with Large QM Regions Using Domain Based Pair Natural Orbital Coupled Cluster Theory. Journal of Chemical Theory and Computation, 2018, 14, 3524-3531.	2.3	37
305	Survival of the most transferable at the top of Jacob's ladder: Defining and testing the <i>ï‰</i> B97M(2) double hybrid density functional. Journal of Chemical Physics, 2018, 148, 241736.	1.2	136
306	Stimulating intra- and intermolecular charge transfer and nonlinear optical response for biphenalenyl biradicaloid dimer under an external electric field. Physical Chemistry Chemical Physics, 2018, 20, 18699-18706.	1.3	14
307	Pancake Bonding: An Unusual Piâ€Stacking Interaction. Chemistry - A European Journal, 2019, 25, 400-416.	1.7	171
308	Noncovalent interactions in inorganic supramolecular chemistry based in heavy metals. Quantum chemistry point of view. International Journal of Quantum Chemistry, 2019, 119, e25675.	1.0	27
309	Vacuum-Level Shift at Al/LiF/Alq ₃ Interfaces: A First-Principles Study. ACS Omega, 2019, 4, 13426-13434.	1.6	3
310	Accessing the Accuracy of Density Functional Theory through Structure and Dynamics of the Water–Air Interface. Journal of Physical Chemistry Letters, 2019, 10, 4914-4919.	2.1	43
311	A comparison of computational methodologies for the structural modelling of biologically relevant zinc complexes. Journal of Molecular Modeling, 2019, 25, 258.	0.8	1

#	Article	IF	CITATIONS
312	How to Model Inter- and Intramolecular Hydrogen Bond Strengths with Quantum Chemistry. Journal of Chemical Information and Modeling, 2019, 59, 3735-3743.	2.5	7
313	Beyond Density Functional Theory: The Multiconfigurational Approach To Model Heterogeneous Catalysis. ACS Catalysis, 2019, 9, 8481-8502.	5.5	75
314	Evolutionary Algorithmâ€Based Crystal Structure Prediction for Copper(I) Fluoride. Chemistry - A European Journal, 2019, 25, 11528-11537.	1.7	6
315	Compensation of London Dispersion in the Gas Phase and in Aprotic Solvents. Angewandte Chemie - International Edition, 2019, 58, 14281-14288.	7.2	24
316	Compensation of London Dispersion in the Gas Phase and in Aprotic Solvents. Angewandte Chemie, 2019, 131, 14419-14426.	1.6	4
317	Off-the-shelf DFT-DISPersion methods: Are they now "on-trend―for organic molecular crystals?. Journal of Chemical Physics, 2019, 151, 044106.	1.2	11
318	Nonclassical Bâ€H b â∢ï€ interaction in diboraneâ <localizedâ€ï€ a="" dftâ€d3="" international<br="" sandwiches:="" study.="">Journal of Quantum Chemistry, 2019, 119, e25998.</localizedâ€ï€>	1.0	2
319	Stereoinversion in the diastereoselective acylation of benzoxazine derivatives with 2-aryloxypropionyl chlorides. Russian Chemical Bulletin, 2019, 68, 1257-1263.	0.4	5
320	Hydrogen Bonding Between Ions of Like Charge in Ionic Liquids Characterized by NMR Deuteron Quadrupole Coupling Constants—Comparison with Salt Bridges and Molecular Systems. Angewandte Chemie, 2019, 131, 18027-18035.	1.6	7
321	Hydrogen Bonding Between Ions of Like Charge in Ionic Liquids Characterized by NMR Deuteron Quadrupole Coupling Constants—Comparison with Salt Bridges and Molecular Systems. Angewandte Chemie - International Edition, 2019, 58, 17863-17871.	7.2	41
322	CrystaLattE: Automated computation of lattice energies of organic crystals exploiting the many-body expansion to achieve dual-level parallelism. Journal of Chemical Physics, 2019, 151, 144103.	1.2	14
323	Theoretical studies on the bond strength and electron density characteristics in multiple hydrogen bonded arrays. Journal of Molecular Graphics and Modelling, 2019, 93, 107439.	1.3	10
324	Chiral Self Recognition: Interactions in Propylene Oxide Complexes. Journal of Physical Chemistry A, 2019, 123, 8607-8618.	1.1	4
325	Fantasy versus reality in fragment-based quantum chemistry. Journal of Chemical Physics, 2019, 151, 170901.	1.2	102
326	Interaction of Graphene Quantum Dots with Oligothiophene: A Comprehensive Theoretical Study. Journal of Physical Chemistry C, 2019, 123, 29556-29570.	1.5	22
327	Evaluierung von Londonâ€Dispersions―und Lösungsmittelâ€Interaktionen an Alkylâ€Alkylâ€Grenzflähen mittels Azobenzolschaltern. Angewandte Chemie, 2019, 131, 18724-18729.	1.6	12
328	Exploring London Dispersion and Solvent Interactions at Alkyl–Alkyl Interfaces Using Azobenzene Switches. Angewandte Chemie - International Edition, 2019, 58, 18552-18556.	7.2	45
329	Gaussian Process-Based Refinement of Dispersion Corrections. Journal of Chemical Theory and Computation, 2019, 15, 6046-6060.	2.3	44

#	Article	IF	CITATIONS
330	How much do we know about seabird bycatch in pelagic longline fisheries? A simulation study on the potential bias caused by the usually unobserved portion of seabird bycatch. PLoS ONE, 2019, 14, e0220797.	1.1	5
331	Exploring Chemical Bonding in Phaseâ€Change Materials with Orbitalâ€Based Indicators. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800579.	1.2	22
332	Interaction between water and carbon nanostructures: How good are current density functional approximations?. Journal of Chemical Physics, 2019, 151, 164702.	1.2	47
333	Long-range dispersion-corrected density functional for noncovalent interactions. International Journal of Modern Physics B, 2019, 33, 1950300.	1.0	5
334	lsotropic Site-Site Dispersion Potential Determined from Localized Frequency-Dependent Density Susceptibility. Bulletin of the Chemical Society of Japan, 2019, 92, 1694-1700.	2.0	3
335	A Linear-Scaling Method for Noncovalent Interactions: An Efficient Combination of Absolutely Localized Molecular Orbitals and a Local Random Phase Approximation Approach. Journal of Chemical Theory and Computation, 2019, 15, 5352-5369.	2.3	4
336	Platinum, gold, and silver standards of intermolecular interaction energy calculations. Journal of Chemical Physics, 2019, 151, 070901.	1.2	33
337	A noncovalent interaction insight onto the concerted metallation deprotonation mechanism. Physical Chemistry Chemical Physics, 2019, 21, 20486-20498.	1.3	17
338	Density Functional Calculations for Aqueous Silver Clusters Containing Water and Nitrate Ligands. Journal of Physical Chemistry B, 2019, 123, 8300-8312.	1.2	0
339	HFLD: A Nonempirical London Dispersion-Corrected Hartree–Fock Method for the Quantification and Analysis of Noncovalent Interaction Energies of Large Molecular Systems. Journal of Chemical Theory and Computation, 2019, 15, 5894-5907.	2.3	36
340	Revisiting the Potential Energy Surface of the Stacked Cytosine Dimer: FNO-CCSD(T) Interaction Energies, SAPT Decompositions, and Benchmarking. Journal of Physical Chemistry A, 2019, 123, 9209-9222.	1.1	9
341	Cost-Effective Quantum Mechanical Approach for Predicting Thermodynamic and Mechanical Stability of Pure-Silica Zeolites. ACS Omega, 2019, 4, 1838-1846.	1.6	17
342	Adjusting dispersion parameters for the density-functional tight-binding description of molecular crystals. Chemical Physics Letters, 2019, 718, 7-11.	1.2	5
343	Origin of the Immiscibility of Alkanes and Perfluoroalkanes. Journal of the American Chemical Society, 2019, 141, 3489-3506.	6.6	45
344	Adhesion, forces and the stability of interfaces. Beilstein Journal of Organic Chemistry, 2019, 15, 106-129.	1.3	3
345	The interaction of aluminum with catecholamine-based neurotransmitters: can the formation of these species be considered a potential risk factor for neurodegenerative diseases?. Dalton Transactions, 2019, 48, 6003-6018.	1.6	16
346	TEMPO-Mediated Catalysis of the Sterically Hindered Hydrogen Atom Transfer Reaction between (C ₅ Ph ₅)Cr(CO) ₃ H and a Trityl Radical. Journal of the American Chemical Society, 2019, 141, 1882-1886.	6.6	25
347	Local Energy Decomposition of Open-Shell Molecular Systems in the Domain-Based Local Pair Natural Orbital Coupled Cluster Framework. Journal of Chemical Theory and Computation, 2019, 15, 1616-1632.	2.3	86

#	ARTICLE	IF	Citations
348	Mg ²⁺ storage and mobility in anatase TiO ₂ : the role of frustrated coordination. Journal of Materials Chemistry A, 2019, 7, 3704-3713.	5.2	10
349	Mapping the polymorphic transformation gateway vibration in crystalline 1,2,4,5-tetrabromobenzene. Chemical Science, 2019, 10, 1332-1341.	3.7	26
350	When hydrogen bonding overcomes Coulomb repulsion: from kinetic to thermodynamic stability of cationic dimers. Physical Chemistry Chemical Physics, 2019, 21, 8215-8220.	1.3	29
351	Mixed Layered Growth of Fullerene C ₆₀ Self-Assembly on an Oxygen-Passivated Fe(001)- <i>p</i> (1 × 1)O Surface. Journal of Physical Chemistry C, 2019, 123, 15477-15482.	1.5	4
352	New scaling relations to compute atom-in-material polarizabilities and dispersion coefficients: part 1. Theory and accuracy. RSC Advances, 2019, 9, 19297-19324.	1.7	16
353	Face, Notch, or Edge? Intermolecular dissociation energies of 1-naphthol complexes with linear molecules. Journal of Chemical Physics, 2019, 150, 234303.	1.2	10
354	The Doubleâ€Faced Nature of Hydrogen Bonding in Hydroxyâ€Functionalized Ionic Liquids Shown by Neutron Diffraction and Molecular Dynamics Simulations. Angewandte Chemie - International Edition, 2019, 58, 12887-12892.	7.2	40
355	Structure Optimisation of Large Transitionâ€Metal Complexes with Extended Tightâ€Binding Methods. Angewandte Chemie - International Edition, 2019, 58, 11078-11087.	7.2	72
356	Benchmarking the Accuracy of Seniority-Zero Wave Function Methods for Noncovalent Interactions. Journal of Chemical Theory and Computation, 2019, 15, 4021-4035.	2.3	15
357	Assessment of DFT Methods for Transition Metals with the TMC151 Compilation of Data Sets and Comparison with Accuracies for Main-Group Chemistry. Journal of Chemical Theory and Computation, 2019, 15, 3610-3622.	2.3	85
358	Structure Optimisation of Large Transitionâ€Metal Complexes with Extended Tightâ€Binding Methods. Angewandte Chemie, 2019, 131, 11195-11204.	1.6	21
359	Die zweigesichtige Natur der Wasserstoffbrückenbindung in hydroxylfunktionalisierten ionischen Flüssigkeiten, offenbart durch Neutronendiffraktometrie und Molekulardynamik‧imulation. Angewandte Chemie, 2019, 131, 13019-13024.	1.6	5
360	Single crystal structure, hydrogen bonding interaction, charge transfer and thermal properties of a new guanidine derivative crystal: Phosphate bis-guanidinoacetate. Journal of Molecular Structure, 2019, 1195, 883-890.	1.8	1
361	Exploring the chemical nature of super-heavy main-group elements by means of efficient plane-wave density-functional theory. Physical Chemistry Chemical Physics, 2019, 21, 18048-18058.	1.3	31
362	Boric acid-based ternary deep eutectic solvent for extraction and oxidative desulfurization of diesel fuel. Green Chemistry, 2019, 21, 3074-3080.	4.6	151
363	Interaction in Li@Fullerenes and Li+@Fullerenes: First Principle Insights to Li-Based Endohedral Fullerenes. Nanomaterials, 2019, 9, 630.	1.9	23
364	A Universal Quantitative Descriptor of the Dispersion Interaction Potential. Angewandte Chemie - International Edition, 2019, 58, 9758-9769.	7.2	41
365	Deciphering the Origin of Enantioselectivity on the Cis-Cyclopropanation of Styrene with Enantiopure Di-chloro,Di-gold(I)-SECPHOS Carbenoids Generated from Propargylic Esters. Journal of Organic Chemistry, 2019, 84, 7664-7673.	1.7	6

#	Article	IF	CITATIONS
366	Accurate and Efficient <i>ab Initio</i> Calculations for Supramolecular Complexes: Symmetry-Adapted Perturbation Theory with Many-Body Dispersion. Journal of Physical Chemistry Letters, 2019, 10, 2706-2714.	2.1	51
367	Structure and Dynamics of Water at the Water–Air Interface Using First-Principles Molecular Dynamics Simulations. II. NonLocal vs Empirical van der Waals Corrections. Journal of Chemical Theory and Computation, 2019, 15, 3836-3843.	2.3	12
368	A generally applicable atomic-charge dependent London dispersion correction. Journal of Chemical Physics, 2019, 150, 154122.	1.2	697
369	Spectroscopic characterization of non-covalent CuPc-GO system. Experiment and theory. Materials Chemistry and Physics, 2019, 231, 301-310.	2.0	4
370	Comparative studies on the effect of CB[8] on the charge transfer interaction. Theoretical Chemistry Accounts, 2019, 138, 1.	0.5	2
371	van der Waals interactions in DFT using Wannier functions without empirical parameters. Journal of Chemical Physics, 2019, 150, 164109.	1.2	14
372	Clarifying the multiple roles of confinement in zeolites: From stabilization of transition states to modification of internal diffusion rates. Journal of Catalysis, 2019, 372, 382-387.	3.1	13
373	Assessment of Density Functional Theory in Predicting Interaction Energies between Water and Polycyclic Aromatic Hydrocarbons: from Water on Benzene to Water on Graphene. Journal of Chemical Theory and Computation, 2019, 15, 2359-2374.	2.3	18
374	Benchmarking the performance of approximate van der Waals methods for the structural and energetic properties of SiO2 and AlPO4 frameworks. Journal of Chemical Physics, 2019, 150, 094102.	1.2	24
375	A Variational Approach to London Dispersion Interactions without Density Distortion. Journal of Physical Chemistry Letters, 2019, 10, 1537-1541.	2.1	9
377	Quantum chemical exploration of new π-electron systems: Capsule-formed dimers of polycyclic aromatic hydrocarbons. Chemical Physics Letters, 2019, 725, 59-65.	1.2	5
378	Improved DFT Adsorption Energies with Semiempirical Dispersion Corrections. Journal of Chemical Theory and Computation, 2019, 15, 3250-3259.	2.3	43
379	London dispersion effects in the coordination and activation of alkanes in I_f -complexes: a local energy decomposition study. Physical Chemistry Chemical Physics, 2019, 21, 11569-11577.	1.3	54
380	The role of dispersion and anharmonic corrections in conformational analysis of flexible molecules: the allyl group rotamerization of matrix isolated safrole. Physical Chemistry Chemical Physics, 2019, 21, 8352-8364.	1.3	5
381	The structure and racemization of 1,2-bis(pentaphenylphenyl)benzene. Tetrahedron, 2019, 75, 2778-2784.	1.0	9
382	Structure and adhesion energy of the (10.4) calcite/(001) ice Ih and (210) baryte/(001) ice Ih interfaces. CrystEngComm, 2019, 21, 2920-2928.	1.3	3
383	Equation of State of Fluid Methane from First Principles with Machine Learning Potentials. Journal of Chemical Theory and Computation, 2019, 15, 2574-2586.	2.3	40
384	Phase stability of intercalated V ₂ O ₅ battery cathodes elucidated through the Goldschmidt tolerance factor. Physical Chemistry Chemical Physics, 2019, 21, 7732-7744.	1.3	9

#	Article	IF	CITATIONS
385	Advances in Density-Functional Calculations for Materials Modeling. Annual Review of Materials Research, 2019, 49, 1-30.	4.3	87
386	Anomalous Temperature Dependence of the Lowest-Frequency Lattice Vibration in Crystalline γ-Aminobutyric Acid. Journal of Physical Chemistry A, 2019, 123, 2058-2064.	1.1	24
387	Sn-based deep eutectic solvents assisted synthesis of Sn and SnO2 supported hexagonal boron nitrides for adsorptive desulfurization. Chemical Engineering Research and Design, 2019, 144, 11-18.	2.7	21
388	GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. Journal of Chemical Theory and Computation, 2019, 15, 1652-1671.	2.3	1,704
389	A Simple Model for Halogen Bond Interaction Energies. Inorganics, 2019, 7, 19.	1.2	11
390	Effect of the exchange–correlation functional on the synchronicity/nonsynchronicity in bond formation in Diels–Alder reactions: a reaction force constant analysis. Physical Chemistry Chemical Physics, 2019, 21, 7412-7428.	1.3	31
391	A Trip to the Density Functional Theory Zoo: Warnings and Recommendations for the User. Australian Journal of Chemistry, 2019, 72, 563.	0.5	115
392	Weak interaction between water molecule and different rank coals: a DFT-D3 study. International Journal of Oil, Gas and Coal Technology, 2019, 21, 91.	0.1	2
393	Extending and assessing composite electronic structure methods to the solid state. Journal of Chemical Physics, 2019, 151, 121101.	1.2	21
394	Emerging DFT Methods and Their Importance for Challenging Molecular Systems with Orbital Degeneracy. Computation, 2019, 7, 62.	1.0	5
395	Intermolecular interaction energies from fourth order many-body perturbation theory. Impact of individual electron correlation contributions. Journal of Chemical Physics, 2019, 151, 114105.	1.2	1
396	The axial/equatorial conformational landscape and intramolecular dispersion: new insights from the rotational spectra of monoterpenoids. Physical Chemistry Chemical Physics, 2019, 21, 26111-26116.	1.3	14
397	A Universal Quantitative Descriptor of the Dispersion Interaction Potential. Angewandte Chemie, 2019, 131, 9860-9871.	1.6	8
398	Preparation and structure of 4-(dimethylamino)thiopivalophenone – intermolecular interactions in the crystal. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2019, 74, 825-831.	0.3	1
399	Modeling chemical reactions on surfaces: The roles of chemical bonding and van der Waals interactions. Progress in Surface Science, 2019, 94, 100561.	3.8	39
400	Ab Initio Calculations for Molecule–Surface Interactions with Chemical Accuracy. Accounts of Chemical Research, 2019, 52, 3502-3510.	7.6	70
401	Second-Order Exchange-Dispersion Energy Based on a Multireference Description of Monomers. Journal of Chemical Theory and Computation, 2019, 15, 6712-6723.	2.3	11
402	sp-hybridized carbon allotrope molecular structures: An ongoing challenge for density-functional approximations. Journal of Chemical Physics, 2019, 151, 211104.	1.2	29

#	Article	IF	CITATIONS
407	Fluorine conformational effects characterized by energy decomposition analysis. Physical Chemistry Chemical Physics, 2019, 21, 25258-25275.	1.3	13
408	Impact of dihydrogen bonding on lattice energies and sublimation enthalpies of crystalline [H ₂ GaNH ₂] ₃ , [H ₂ BNH ₂] ₃ and [H ₂ GeCH ₂] ₃ . RSC Advances, 2019, 9, 29448-29455.	1.7	Ο
409	A collection of forcefield precursors for metal–organic frameworks. RSC Advances, 2019, 9, 36492-36507.	1.7	21
410	Understanding and Quantifying London Dispersion Effects in Organometallic Complexes. Accounts of Chemical Research, 2019, 52, 258-266.	7.6	117
411	Silicon–Halogen Bond Activation in Mixed Si/Al Compounds and an Approach to Intramolecular Stabilized Silylium Ions. European Journal of Inorganic Chemistry, 2019, 2019, 693-711.	1.0	6
412	Affinity Calculations of Cyclodextrin Host–Guest Complexes: Assessment of Strengths and Weaknesses of End-Point Free Energy Methods. Journal of Chemical Information and Modeling, 2019, 59, 421-440.	2.5	17
413	Anionâ<ï€ interaction in oxoanion-graphene complex using coronene as model system: A DFT study. Computational and Theoretical Chemistry, 2019, 1147, 62-71.	1.1	15
414	Insights into the non-covalent interaction between modified nucleobases and graphene nanoflake from first-principles. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 107, 73-79.	1.3	19
415	Assessment of Newest Meta-GGA Hybrids for Late Transition Metal Reactivity: Fractional Charge and Fractional Spin Perspective. Journal of Physical Chemistry C, 2019, 123, 8047-8056.	1.5	17
416	Deriving bonding concepts for molecules, surfaces, and solids with energy decomposition analysis for extended systems. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2019, 9, e1401.	6.2	28
417	The Niecke Biradicals and Their Congeners – The Journey from Stable Biradicaloids to Their Utilization for the Design of Nonlinear Optical Properties. European Journal of Inorganic Chemistry, 2019, 2019, 1495-1506.	1.0	22
418	Understanding non-covalent interactions in larger molecular complexes from first principles. Journal of Chemical Physics, 2019, 150, 010901.	1.2	56
419	New Light on an Old Story: The Crystal Structure of Boron Tetrathiophosphate Revisited. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 267-271.	0.6	11
420	Partial and Complete Substitution of the 1,4-Benzenedicarboxylate Linker in UiO-66 with 1,4-Naphthalenedicarboxylate: Synthesis, Characterization, and H ₂ -Adsorption Properties. Inorganic Chemistry, 2019, 58, 1607-1620.	1.9	42
421	O ₂ Activation and Oxidative Dehydrogenation of Propane on Hexagonal Boron Nitride: Mechanism Revisited. Journal of Physical Chemistry C, 2019, 123, 2256-2266.	1.5	42
422	Physisorption of Water on Graphene: Subchemical Accuracy from Many-Body Electronic Structure Methods. Journal of Physical Chemistry Letters, 2019, 10, 358-368.	2.1	90
423	Performance of van der Waals DFT approaches for helium diffraction on metal surfaces. Journal of Physics Condensed Matter, 2019, 31, 135901.	0.7	4
424	Quantum chemical exploration of dimeric forms of polycyclic aromatic hydrocarbons, naphthalene, perylene, and coronene. Chemical Physics Letters, 2019, 716, 147-154.	1.2	6

#	Article	IF	CITATIONS
425	Second-Order Dispersion Energy Based on Multireference Description of Monomers. Journal of Chemical Theory and Computation, 2019, 15, 1016-1027.	2.3	17
426	Developments in the Atomistic Modelling of Catalytic Processes for the Production of Platform Chemicals from Biomass. ChemCatChem, 2019, 11, 357-367.	1.8	3
427	The electronic structure and physicochemical property of boron nitridene. Journal of Molecular Graphics and Modelling, 2020, 94, 107475.	1.3	2
428	The [4+2]â€Cycloaddition of αâ€Nitrosoalkenes with Thiochalcones as a Prototype of Periselective Heteroâ€Diels–Alder Reactions—Experimental and Computational Studies. Chemistry - A European Journal, 2020, 26, 237-248.	1.7	16
429	Finding chemical concepts in the Hilbert space: Coupled cluster analyses of noncovalent interactions. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1442.	6.2	56
430	Alkali and Alkalineâ€Earth Cations in Complexes with Small Bioorganic Ligands: Abâ€Initio Benchmark Calculations and Bond Energy Decomposition. ChemPhysChem, 2020, 21, 99-112.	1.0	10
431	Ab Initio Investigation of CO2 Adsorption on 13-Atom 4d Clusters. Journal of Chemical Information and Modeling, 2020, 60, 537-545.	2.5	20
432	Vibrational Response of Felodipine in the THz Domain: Optical and Neutron Spectroscopy Versus Plane-Wave DFT Modeling. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 1301-1336.	1.2	7
433	Dissecting intermolecular interactions in the condensed phase of ibuprofen and related compounds: the specific role and quantification of hydrogen bonding and dispersion forces. Physical Chemistry Chemical Physics, 2020, 22, 4896-4904.	1.3	13
434	Random Phase Approximation Applied to Many-Body Noncovalent Systems. Journal of Chemical Theory and Computation, 2020, 16, 427-442.	2.3	12
435	A theoretical indicator of transition-metal nanoclusters applied in the carbon nanotube nucleation process: a DFT study. Dalton Transactions, 2020, 49, 492-503.	1.6	10
436	Prediction of correct intermolecular interactions in host-guest systems involving cyclodextrins. Journal of Molecular Structure, 2020, 1205, 127517.	1.8	6
437	Empirical Doubleâ€Hybrid Density Functional Theory: A â€~Third Way' in Between WFT and DFT. Israel Journal of Chemistry, 2020, 60, 787-804.	1.0	129
438	Quantum Chemical Exploration of Intermolecular Reactions of Acetylene. Journal of Computational Chemistry, 2020, 41, 687-697.	1.5	2
439	Recent developments in symmetryâ€edapted perturbation theory. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1452.	6.2	102
440	Cause, Regulation and Utilization of Dye Aggregation in Dye-Sensitized Solar Cells. Molecules, 2020, 25, 4478.	1.7	30
441	Conformational preferences of cationic Î ² -peptide in water studied by CCSD(T), MP2, and DFT methods. Heliyon, 2020, 6, e04721.	1.4	4
442	On the hydrogen storage performance of Cu-doped and Cu-decorated graphene quantum dots: a computational study. Theoretical Chemistry Accounts, 2020, 139, 1.	0.5	10

#	Article	IF	CITATIONS
443	Structural Stability of the CO ₂ @sl Hydrate: a Bottomâ€Up Quantum Chemistry Approach on the Guestâ€Cage and Interâ€Cage Interactions. ChemPhysChem, 2020, 21, 2618-2628.	1.0	9
444	From S–O–S to B–O–S to B–O–B Bridges: Ba[B(S ₂ O ₇) ₂] ₂ as a Model System for the Structural Diversity in Borosulfate Chemistry. Inorganic Chemistry, 2020, 59, 15180-15188.	1.9	14
445	Reactions of Alâ€N Based Active Lewis Pairs with Ketones and 1,2â€Diketones: Insertion into Alâ€N Bonds, Câ€C and Câ€N Bond Formation and a Tricyclic Saturated Tetraaza Compound. European Journal of Inorganic Chemistry, 2020, 2020, 3760-3770.	1.0	7
446	Cost-effective composite methods for large-scale solid-state calculations. Faraday Discussions, 2020, 224, 292-308.	1.6	13
447	Probing Mg Intercalation in the Tetragonal Tungsten Bronze Framework V ₄ Nb ₁₈ O ₅₅ . Inorganic Chemistry, 2020, 59, 9783-9797.	1.9	7
448	Protobranching as repulsion-induced attraction: a prototype for geminal stabilization. Physical Chemistry Chemical Physics, 2020, 22, 16998-17006.	1.3	1
449	Density Functional Theories and Coordination Chemistry. , 2020, , .		2
450	Cohesiveness and Nondiffusive Rotational Jump Dynamics of Protic Ionic Liquid from Dispersion-Corrected FPMD Simulations. Journal of Physical Chemistry B, 2020, 124, 10752-10765.	1.2	5
451	Synthesis of Platinum-Containing Conjugated Polymers Bearing Optically Active Amide Groups: A Mechanistic Study of Chiral Aggregation. Macromolecules, 2020, 53, 11077-11088.	2.2	12
452	Liquid water contains the building blocks of diverse ice phases. Nature Communications, 2020, 11, 5757.	5.8	50
453	Efficient Calculation of Small Molecule Binding in Metal–Organic Frameworks and Porous Organic Cages. Journal of Physical Chemistry C, 2020, 124, 27529-27541.	1.5	32
454	Symmetry/Asymmetry of the NHN Hydrogen Bond in Protonated 1,8-Bis(dimethylamino)naphthalene. Symmetry, 2020, 12, 1924.	1.1	8
455	The usefulness of energy decomposition schemes to rationalize host–guest interactions. Dalton Transactions, 2020, 49, 17457-17471.	1.6	13
456	Diffusion, permeation and solubility of hydrogen, deuterium and tritium in crystalline tungsten: First principles DFT simulations. International Journal of Hydrogen Energy, 2020, 45, 29095-29109.	3.8	27
457	A Second Modification of Beryllium Bromide: β-BeBr2. Inorganic Chemistry, 2020, 59, 16783-16788.	1.9	8
458	What Does the BrÃ,nsted Slope Measure in the Phosphoryl Transfer Transition State?. ACS Catalysis, 2020, 10, 13932-13945.	5.5	3
459	Application of XDM to ionic solids: The importance of dispersion for bulk moduli and crystal geometries. Journal of Chemical Physics, 2020, 153, 054121.	1.2	11
460	Synthesis of Alkyl Silanes via Reaction of Unactivated Alkyl Chlorides and Triflates with Silyl Lithium Reagents. Organic Letters, 2020, 22, 6568-6572.	2.4	17

#	Article	IF	CITATIONS
461	The interaction nature between hollow silica-based porous ionic liquids and CO2: A DFT study. Journal of Molecular Graphics and Modelling, 2020, 100, 107694.	1.3	21
462	Applications of Quantum Chemistry in Pharmaceutical Process Development: Current State and Opportunities. Organic Process Research and Development, 2020, 24, 1496-1507.	1.3	25

Bingelâ \in "Hirsch Addition of Diethyl Bromomalonate to Ionâ \in Encapsulated Fullerenes M@C 60 (M=Ã⁻, Li + ,) Tj ETQq0 0 0 rgBT /Overloch 2007 rgBT /Overloch 200

464	Next-Generation Nonlocal van der Waals Density Functional. Journal of Chemical Theory and Computation, 2020, 16, 5893-5911.	2.3	57
465	Synthesisâ€Controlled Polymorphism and Optical Properties of Phyllosilicateâ€Analogous Borosulfates M [B 2 (SO 4) 4] (M =Mg, Co). Chemistry - A European Journal, 2020, 26, 14745-14753.	1.7	20
466	Basis Set Extrapolations for Density Functional Theory. Journal of Chemical Theory and Computation, 2020, 16, 5712-5722.	2.3	13
467	Design of novel conjugated microporous polymers for efficient adsorptive desulfurization of small aromatic sulfur molecules. Journal of Molecular Graphics and Modelling, 2020, 101, 107734.	1.3	3
468	Two effective computational schemes for a prototype of an excitable system. AIP Advances, 2020, 10, 105120.	0.6	22
469	PubChemQC PM6: Data Sets of 221 Million Molecules with Optimized Molecular Geometries and Electronic Properties. Journal of Chemical Information and Modeling, 2020, 60, 5891-5899.	2.5	36
470	Role of Methane as a Second Guest Component in Thermodynamic Stability and Isomer Selectivity of Butane Clathrate Hydrates. Journal of Physical Chemistry C, 2020, 124, 18474-18481.	1.5	17
471	Theoretical prediction of F-doped hexagonal boron nitride: A promising strategy to enhance the capacity of adsorptive desulfurization. Journal of Molecular Graphics and Modelling, 2020, 101, 107715.	1.3	11
472	DFT <scp>â€D4</scp> counterparts of leading <scp>metaâ€</scp> generalizedâ€gradient approximation and hybrid density functionals for energetics and geometries. Journal of Computational Chemistry, 2020, 41, 2562-2572.	1.5	61
473	Free-energy landscape of polymer-crystal polymorphism. Soft Matter, 2020, 16, 9683-9692.	1.2	9
474	How Much Dispersion Energy Is Included in the Multiconfigurational Interaction Energy?. Journal of Chemical Theory and Computation, 2020, 16, 6280-6293.	2.3	8
475	Cyclic Octamer of Hydroxylâ€functionalized Cations with Net Charge Q =+8 e Kinetically Stabilized by a â€~Molecular Island' of Cooperative Hydrogen Bonds. ChemPhysChem, 2020, 21, 2411-2416.	1.0	3
476	Accuracy of intermolecular interaction energies, particularly those of hetero-atom containing molecules obtained by DFT calculations with Grimme's D2, D3 and D3BJ dispersion corrections. Physical Chemistry Chemical Physics, 2020, 22, 22508-22519.	1.3	68
477	Bond Dissociation Energies in the Gas Phase for Large Molecular Ions by Threshold Collision-Induced Dissociation Experiments: Stretching the Limits. Journal of Physical Chemistry A, 2020, 124, 8692-8707.	1.1	11
478	Multifidelity Statistical Machine Learning for Molecular Crystal Structure Prediction. Journal of Physical Chemistry A, 2020, 124, 8065-8078.	1.1	38

#	Article	IF	CITATIONS
479	Modeling Biologically Important NH··Â-Ï€ Interactions Using <i>peri</i> -Disubstituted Naphthalenes. Journal of Organic Chemistry, 2020, 85, 12468-12481.	1.7	8
480	Crystalline Molecular Standards for Low-Frequency Vibrational Spectroscopies. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 1284-1300.	1.2	9
481	N ⁵ -Scaling Excited-State-Specific Perturbation Theory. Journal of Chemical Theory and Computation, 2020, 16, 6132-6141.	2.3	14
482	Differences in the Nature of the Phosphoryl Transfer Transition State in Protein Phosphatase 1 and Alkaline Phosphatase: Insights from QM Cluster Models. Journal of Physical Chemistry B, 2020, 124, 9371-9384.	1.2	4
483	Influence of Local Inhomogeneities and the Electrochemical Environment on the Oxygen Reduction Reaction on Pt-Based Electrodes: A DFT Study. Journal of Physical Chemistry C, 2020, 124, 27604-27613.	1.5	10
484	Reactivity and Selectivity Controlling Factors in the Pd/Dialkylbiarylphosphine-Catalyzed C–C Cleavage/Cross-Coupling of an N-Fused Bicyclo α-Hydroxy-β-Lactam. Journal of the American Chemical Society, 2020, 142, 21140-21152.	6.6	20
485	Local bottom-up effective theory of nonlocal electronic interactions. Physical Review B, 2020, 102, .	1.1	2
486	Many-Body Dispersion. Chemical Reviews, 2020, 120, 12343-12356.	23.0	16
487	Clusters of Hydroxyl-Functionalized Cations Stabilized by Cooperative Hydrogen Bonds: The Role of Polarizability and Alkyl Chain Length. Molecules, 2020, 25, 4972.	1.7	12
488	Ab Initio Study of Chiral Discrimination in the Glycidol Dimer. Journal of Physical Chemistry A, 2020, 124, 9436-9450.	1.1	3
489	Genetic Parameterization of Interfacial Force Fields Based on Classical Bulk Force Fields and Ab Initio Data: Application to the Methanol-ZnO Interfaces. Journal of Chemical Information and Modeling, 2020, 60, 6033-6043.	2.5	4
490	Theoretical free energy profile and benchmarking of functionals for amino-thiourea organocatalyzed nitro-Michael addition reaction. Physical Chemistry Chemical Physics, 2020, 22, 11529-11536.	1.3	20
491	Inclusion of Van der Waals Interactions in DFT using Wannier Functions without empirical parameters. EPJ Web of Conferences, 2020, 230, 00010.	0.1	1
492	Vibrational mode frequency correction of liquid water in density functional theory molecular dynamics simulations with van der Waals correction. Physical Chemistry Chemical Physics, 2020, 22, 12785-12793.	1.3	9
493	The CRYSTAL code, 1976–2020 and beyond, a long story. Journal of Chemical Physics, 2020, 152, 204111.	1.2	133
494	The ORCA quantum chemistry program package. Journal of Chemical Physics, 2020, 152, 224108.	1.2	1,915
495	Rationalization of Lattice Thermal Expansion for Beta-Blocker Organic Crystals. Crystals, 2020, 10, 350.	1.0	6
496	SQM/COSMO Scoring Function: Reliable Quantumâ€Mechanical Tool for Sampling and Ranking in Structureâ€Based Drug Design. ChemPlusChem, 2020, 85, 2362-2371.	1.3	12

ARTICLE IF CITATIONS Discovery and design of soft polymeric bio-inspired materials with multiscale simulations and 497 2.9 44 artificial intelligence. Journal of Materials Chemistry B, 2020, 8, 6562-6587. London dispersion forces without density distortion: a path to first principles inclusion in density 498 1.6 functional theory. Faraday Discussions, 2020, 224, 145-165. Electronic structures and bonding of graphdiyne and its BN analogs: Transition from quasi-planar to 499 2.8 5 planar sheets. Journal of Alloys and Compounds, 2020, 846, 155987. Intermolecular dissociation energies of 1-naphthol complexes with large dispersion-energy donors: 1.2 Decalins and adamantane. Journal of Chemical Physics, 2020, 152, 104304. Semiclassical Dispersion Corrections Efficiently Improve Multiconfigurational Theory with Short-Range Density-Functional Dynamic Correlation. Journal of Physical Chemistry A, 2020, 124, 501 1.1 4 2834-2841. Carbon dioxide gas sensing, capture, and storage potential of calcium oxide surface and single walled carbon nanotube: insights from <i>ab initio</i> simulation. Journal of Physics Condensed Matter, 2020, 32, 245901. Conformational Landscapes and Infrared Spectra of Gas-phase Interstellar Molecular Clusters 503 1.1 6 [(C3H3N)(CH3OH)n, n = 1–4]. Journal of Physical Chemistry A, 2020, 124, 2398-2407. Long-range-corrected multiconfiguration density functional with the on-top pair density. Journal of 504 1.2 Chemical Physics, 2020, 152, 094102. Modelling the bulk properties of ambient pressure polymorphs of zirconia. Physical Chemistry 505 1.3 16 Chemical Physics, 2020, 22, 6660-6676. Electronic and Vibrational Contributions to the Bulk Stabilities of Trivalent 3d Transition Metal Oxyhydroxides from Electronic Structure Calculations. Journal of Physical Chemistry C, 2020, 124, 1.5 <u>7500-7510.</u> Extension and evaluation of the D4 London-dispersion model for periodic systems. Physical Chemistry 507 138 1.3 Chemical Physics, 2020, 22, 8499-8512. Tridentate Ligand with Three Carbanions as Donor Atoms: Formation of Dinuclear, Heptacyclic Complexes of Boron, Aluminum, or Callium with B–C–B, Al–C–Al, or Ga–C–Ca 508 Three-Center–Two-Electron Bonds. Inorganic Chemistry, 2020, 59, 5558-5563. Asymptotic Pairwise Dispersion Corrections Can Describe Layered Materials Accurately. Journal of 509 2.1 17 Physical Chemistry Letters, 2020, 11, 2298-2302. Origins of fast diffusion of water dimers on surfaces. Nature Communications, 2020, 11, 1689. 5.8 39 511 Roadmap on post-DFT methods for nanoscience. Nano Futures, 2020, 4, 032004. 1.0 4 Making Base-Assisted C–H Bond Activation by Cp*Co(III) Effective: A Noncovalent Interaction-Inclusive Theoretical Insight and Experimental Validation. Organometallics, 2020, 39, 2609-2629. Interactions of CO₂ with cluster models of <scp>metalâ€"organic</scp> frameworks. 513 1.50 Journal of Computational Chemistry, 2020, 41, 2066-2083. New Reactivity Patterns in 3Hâ€Phosphaallene Chemistry [Arylâ€P=C=C(H)â€<i>t</i> 514 the C=C Bond, Deprotonation and Trimerisation. Chemistry - A European Journal, 2020, 26, 15977-15988.

#	Article	IF	CITATIONS
515	Inaccurate Conformational Energies Still Hinder Crystal Structure Prediction in Flexible Organic Molecules. Crystal Growth and Design, 2020, 20, 4875-4881.	1.4	48
516	A computational chemistry approach to modelling conducting polymers in ionic liquids for next generation batteries. Energy Reports, 2020, 6, 198-208.	2.5	13
517	Soot inception: A DFT study of I_f and $I \in$ dimerization of resonantly stabilized aromatic radicals. Fuel, 2020, 279, 118491.	3.4	19
518	Aspects of Phosphaallene Chemistry: Heat-Induced Formation of 1,2-Dihydrophosphetes by Intramolecular Nucleophilic Aromatic Substitution and Photochemical Generation of Tricyclic Phosphiranes. Journal of Organic Chemistry, 2020, 85, 14315-14332.	1.7	10
519	Performance study of the electronic and optical parameters of thermally activated delayed fluorescence nanosized emitters (CCX-I and CCX-II) via DFT, SCC-DFTB and B97-3c approaches. Journal of Nanostructure in Chemistry, 2020, 10, 115-124.	5.3	11
520	Alkoxyalleneâ€Based LANCA Threeâ€Component Synthesis of 1,2â€Diketones, Quinoxalines, and Unique Isoindenone Dimers and a Computational Study of the Isoindenone Dimerization. European Journal of Organic Chemistry, 2020, 2020, 1753-1763.	1.2	4
521	Structural, electronic, and vibrational properties of choline halides. Materials Chemistry and Physics, 2020, 246, 122787.	2.0	4
522	Benchmarking of Semiempirical Quantum-Mechanical Methods on Systems Relevant to Computer-Aided Drug Design. Journal of Chemical Information and Modeling, 2020, 60, 1453-1460.	2.5	45
523	Thermal spin crossover in Fe(<scp>ii</scp>) and Fe(<scp>iii</scp>). Accurate spin state energetics at the solid state. Physical Chemistry Chemical Physics, 2020, 22, 4938-4945.	1.3	32
524	Molecular Design of Aromatic Polythionoesters. ACS Omega, 2020, 5, 3016-3029.	1.6	3
525	Abundant new solutions of the transmission of nerve impulses of an excitable system. European Physical Journal Plus, 2020, 135, 1.	1.2	25
526	Benchmark Experimental Gas-Phase Intermolecular Dissociation Energies by the SEP-R2PI Method. Annual Review of Physical Chemistry, 2020, 71, 189-211.	4.8	8
527	Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory Based <i>Ab Initio</i> Molecular Dynamics. 1. Theory, Algorithm, and Performance. Journal of Chemical Theory and Computation, 2020, 16, 3757-3785.	2.3	29
528	B(C 6 F 5) 3 /Chiral Phosphoric Acid Catalyzed Ketimine–Ene Reaction of 2â€Arylâ€3 H â€indolâ€3â€ones and αâ€Methylstyrenes. Angewandte Chemie, 2020, 132, 4580-4586.	1.6	10
529	Controlling "like–like–like―charge attraction in hydroxy-functionalized ionic liquids by polarizability of the cations, interaction strength of the anions and varying alkyl chain length. Physical Chemistry Chemical Physics, 2020, 22, 2763-2774.	1.3	29
530	Water structures on a Pt(111) electrode from <i>ab initio</i> molecular dynamic simulations for a variety of electrochemical conditions. Physical Chemistry Chemical Physics, 2020, 22, 10431-10437.	1.3	65
531	Insight into the Expanded Mislinked Porphyrins with High Second Order Nonlinear Optical Response. Journal of Physical Chemistry A, 2020, 124, 955-965.	1.1	18
53 <u>2</u>	Modified Density Functional Dispersion Correction for Inorganic Layered MFX Compounds (M = Ca, Sr,) Tj ETQq1	1 0,78431 1.1	.4 ₅ rgBT /Ove

#	Article	IF	CITATIONS
533	B(C ₆ F ₅) ₃ /Chiral Phosphoric Acid Catalyzed Ketimine–Ene Reaction of 2â€Arylâ€3 <i>H</i> â€indolâ€3â€ones and αâ€Methylstyrenes. Angewandte Chemie - International Edition, 2 4550-4556.	0210259,	40
534	Evolutionary Algorithmâ€based Crystal Structure Prediction for Gold(I) Fluoride. ChemPhysChem, 2020, 21, 802-808.	1.0	8
535	A Short Review of Current Computational Concepts for High-Pressure Phase Transition Studies in Molecular Crystals. Crystals, 2020, 10, 81.	1.0	19
536	Feâ€porphyrin on Co(001) and Cu(001): A Comparative Dispersionâ€augmented Density Functional Theory Study. Israel Journal of Chemistry, 2020, 60, 870-875.	1.0	0
537	Quantum chemical exploration of polymerized forms of polycyclic aromatic hydrocarbons: D6h tetramer and polymer of coronene. Chemical Physics Letters, 2020, 747, 137366.	1.2	3
538	Introduction: Bond Specific Spectroscopy of Peptides and Proteins. Chemical Reviews, 2020, 120, 3231-3232.	23.0	1
539	Including dispersion in density functional theory for adsorption on flat oxide surfaces, in metal–organic frameworks and in acidic zeolites. Physical Chemistry Chemical Physics, 2020, 22, 7577-7585.	1.3	30
540	What is "many-body―dispersion and should I worry about it?. Physical Chemistry Chemical Physics, 2020, 22, 8266-8276.	1.3	30
541	Computational simulations of the couple Boiti–Leon–Pempinelli (BLP) system and the (3+1)-dimensional Kadomtsev–Petviashvili (KP) equation. AIP Advances, 2020, 10, .	0.6	28
542	The many-body expansion approach to <i>ab initio</i> calculation of electric field gradients in molecular crystals. Journal of Chemical Physics, 2020, 152, 124105.	1.2	5
543	Density Functional Model for van der Waals Interactions: Unifying Many-Body Atomic Approaches with Nonlocal Functionals. Physical Review Letters, 2020, 124, 146401.	2.9	53
544	Evaluation of bismuth-based dispersion energy donors – synthesis, structure and theoretical study of 2-biphenylbismuth(<scp>iii</scp>) derivatives. Physical Chemistry Chemical Physics, 2020, 22, 10189-10211.	1.3	5
545	Theoretical investigation of para aminoâ€dichloro chalcone isomers, part I: A DFT structure—stability study. Journal of Physical Organic Chemistry, 2020, 33, e4073.	0.9	3
546	Balancing Density Functional Theory Interaction Energies in Charged Dimers Precursors to Organic Semiconductors. Journal of Chemical Theory and Computation, 2020, 16, 3530-3542.	2.3	2
547	The H2S dimer revisited – Insights from wave-function and density functional theory methods. Ab initio molecular dynamics simulations of liquid H2S. Computational and Theoretical Chemistry, 2020, 1180, 112821.	1.1	3
548	Benchmarking Cationa 'le Interactions: Assessment of Density Functional Theory and MA¶Ilera€"Plesset Second-Order Perturbation Theory Calculations with Optimized Basis Sets (<scp>mp</scp> 2 <i>^{mod}</i>) for Complexes of Benzene, Phenol, and Catechol with Na ⁺ , K ⁺ , R ⁺ , and Cs ⁺ . Journal of Physical Chemistry	1.1	20
549	CO, NO, and SO adsorption on Ni nanoclusters: a DFT investigation. Dalton Transactions, 2020, 49, 6407-6417.	1.6	27
550	The Molpro quantum chemistry package. Journal of Chemical Physics, 2020, 152, 144107.	1.2	603

		CITATION REPORT		
#	Article		IF	CITATIONS
551	London Dispersion in Alkanen als Lösungsmittel. Angewandte Chemie, 2021, 133, 79	12-799.	1.6	3
552	Substituent effect on ESIPT and hydrogen bond mechanism of N-(8-Quinolyl) salicylald theoretical exploration. Spectrochimica Acta - Part A: Molecular and Biomolecular Spec 2021, 245, 118937.	limine: A detailed ctroscopy,	2.0	11
553	Intermolecular interaction characteristics of the all-carboatomic ring, cyclo[18]carbon molecular adsorption and stacking. Carbon, 2021, 171, 514-523.	: Focusing on	5.4	333
554	London Dispersion in Alkane Solvents. Angewandte Chemie - International Edition, 202	21, 60, 779-786.	7.2	22
555	Quantification of Noncovalent Interactions in Azide–Pnictogen, –Chalcogen, and Chemistry - A European Journal, 2021, 27, 4627-4639.	–Halogen Contacts.	1.7	25
556	On the formation of sandwich complexes of aromatic inorganic linker: A DFT-D3 appro Polyhedron, 2021, 194, 114911.	ach.	1.0	2
557	Guiding the design of practical MTW zeolite catalysts: An integrated experimental-the perspective. Microporous and Mesoporous Materials, 2021, 312, 110810.	oretical	2.2	10
558	High performance global exploration of isomers and isomerization channels on quantu potential energy surface of <scp>H₅C₂NO₂c/sub>10 computational Chemistry, 2021, 42, 192-204.</scp>	ım chemical scp>. Journal of	1.5	5
559	London Dispersion Interactions Rather than Steric Hindrance Determine the Enantiose Corey–Bakshi–Shibata Reduction. Angewandte Chemie - International Edition, 20	lectivity of the 21, 60, 4823-4832.	7.2	57
560	Understanding endohedral behaviors of ten-electron atomic and cluster system inside first-principles. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 127, 1	C60 from 14532.	1.3	7
561	Atomic scale mechanism of clay minerals dissolution revealed by ab initio simulations. Cosmochimica Acta, 2021, 293, 438-460.	Geochimica Et	1.6	13
562	London Dispersion Interactions Rather than Steric Hindrance Determine the Enantiose Corey–Bakshi–Shibata Reduction. Angewandte Chemie, 2021, 133, 4873-4882.	lectivity of the	1.6	10
563	Computational Methods in Heterogeneous Catalysis. Chemical Reviews, 2021, 121, 10)07-1048.	23.0	198
564	Experimental and Computational Analysis of CO ₂ Addition Reactions Rele Copper-Catalyzed Boracarboxylation of Vinyl Arenes: Evidence for a Phosphine-Promot Organometallics, 2021, 40, 23-37.	evant to red Mechanism.	1.1	16
565	Planar Tetracoordinate Silicon in Organic Molecules As Carbenoidâ€Ţype Amphoteric (Computational Study. Chemistry - A European Journal, 2021, 27, 1402-1409.	Centers: A	1.7	10
566	<scp>NCIPLOT</scp> and the analysis of noncovalent interactions using the reduced Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1497.	density gradient.	6.2	56
567	Computational evidence of glycosyl cations. Organic and Biomolecular Chemistry, 202	21, 19, 2350-2365.	1.5	14
568	Cyclopeptides from the Mushroom Pathogen Fungus <i>Cladobotryum varium</i> . Jou Products, 2021, 84, 327-338.	ırnal of Natural	1.5	9

#	Article	IF	CITATIONS
569	Benchmarking London dispersion corrected density functional theory for noncovalent ion–π interactions. Physical Chemistry Chemical Physics, 2021, 23, 11635-11648.	1.3	31
570	Tuning the first hyperpolarizability of hexaphyrins with different connections of mislinked pyrrole units: a theoretical study. Physical Chemistry Chemical Physics, 2021, 23, 8489-8499.	1.3	10
571	Towards the understanding of halogenation in peptide hydrogels: a quantum chemical approach. Materials Advances, 2021, 2, 4792-4803.	2.6	3
572	Assessing the Applicability of the Geometric Counterpoise Correction in B2PLYP/Double-ζ Calculations for Thermochemistry, Kinetics, and Noncovalent Interactions*. Australian Journal of Chemistry, 2021, ,	0.5	2
573	Rubrene untwisted: common density functional theory calculations overestimate its deviant tendencies. Journal of Materials Chemistry C, 2021, 9, 2848-2857.	2.7	20
574	The hierarchy of <i>ab initio</i> and DFT methods for describing an intramolecular non-covalent Siâ< N contact in the silicon compounds using electron diffraction geometries. Physical Chemistry Chemical Physics, 2021, 23, 2762-2774.	1.3	4
575	Spectroscopic evidence of the C–N covalent bond formed between two interstellar molecules (ISM): acrylonitrile and ammonia. Physical Chemistry Chemical Physics, 2021, 23, 9672-9678.	1.3	11
576	Computational Coordination Chemistry. , 2021, , 241-255.		4
577	Insights into the Mechanism of Low-Valent Cobalt-Catalyzed C–H Activation. ACS Catalysis, 2021, 11, 1505-1515.	5.5	32
578	Computational approaches to dissociative chemisorption on metals: towards chemical accuracy. Physical Chemistry Chemical Physics, 2021, 23, 8962-9048.	1.3	47
579	Exploring CO ₂ @sl Clathrate Hydrates as CO ₂ Storage Agents by Computational Density Functional Approaches. ChemPhysChem, 2021, 22, 359-369.	1.0	11
580	Quantum-mechanical exploration of the phase diagram of water. Nature Communications, 2021, 12, 588.	5.8	32
581	The power of trichlorosilylation: isolable trisilylated allyl anions, allyl radicals, and allenyl anions. Chemical Science, 2021, 12, 12419-12428.	3.7	4
582	Pyochelin Biosynthetic Metabolites Bind Iron and Promote Growth in <i>Pseudomonads</i> Demonstrating Siderophore-like Activity. ACS Infectious Diseases, 2021, 7, 544-551.	1.8	16
583	Combination of "Buttressing―and "Clothespin―Effects for Reaching the Shortest NHN Hydrogen Bond in Proton Sponge Cations. Journal of Organic Chemistry, 2021, 86, 3637-3647.	1.7	14
584	Single-Point Hessian Calculations for Improved Vibrational Frequencies and Rigid-Rotor-Harmonic-Oscillator Thermodynamics. Journal of Chemical Theory and Computation, 2021, 17, 1701-1714.	2.3	49
585	Improved accuracy and transferability of molecular-orbital-based machine learning: Organics, transition-metal complexes, non-covalent interactions, and transition states. Journal of Chemical Physics, 2021, 154, 064108.	1.2	37
586	r2SCAN-3c: A "Swiss army knife―composite electronic-structure method. Journal of Chemical Physics, 2021, 154, 064103.	1.2	290

#	Article	IF	CITATIONS
587	r2SCAN-D4: Dispersion corrected meta-generalized gradient approximation for general chemical applications. Journal of Chemical Physics, 2021, 154, 061101.	1.2	70
588	Revealing the Dynamic Process of Ion Pair Recognition by Calix[4]pyrrole: A Case Study of Cesium Chloride. Journal of Physical Chemistry Letters, 2021, 12, 3253-3259.	2.1	6
589	Identifying Barrierless Mechanisms for Benzene Formation in the Interstellar Medium Using Permutationally Invariant Reaction Discovery. Journal of Chemical Theory and Computation, 2021, 17, 2307-2322.	2.3	8
590	Dispersion without Many-Body Density Distortion: Assessment on Atoms and Small Molecules. Journal of Chemical Theory and Computation, 2021, 17, 2283-2293.	2.3	1
591	Relaxor ferroelectricity in the polar M2P-TCNQ charge-transfer crystal at the neutral-ionic interface. Physical Review B, 2021, 103, .	1.1	3
592	Ni/Cu-catalyzed silylation of allylic alcohol: Theoretical studies on the mechanisms, regioselectivity, and role of ligand. Molecular Catalysis, 2021, 504, 111456.	1.0	1
593	Interplay between London Dispersion, Hubbard U, and Metastable States for Uranium Compounds. Journal of Physical Chemistry A, 2021, 125, 2791-2799.	1.1	4
594	Dataset of noncovalent intermolecular interaction energy curves for 24 small high-spin open-shell dimers. Journal of Chemical Physics, 2021, 154, 134106.	1.2	5
595	Hetero-Diels-Alder Reactions of In Situ-Generated Azoalkenes with Thioketones; Experimental and Theoretical Studies. Molecules, 2021, 26, 2544.	1.7	9
596	A New Ligand Design Based on London Dispersion Empowers Chiral Bismuth–Rhodium Paddlewheel Catalysts. Journal of the American Chemical Society, 2021, 143, 5666-5673.	6.6	42
597	Adsorption of polycyclic aromatic hydrocarbons on FeOOH polymorphs: A theoretical study. Surface Science, 2021, 706, 121795.	0.8	7
598	Effects of edge substitution of subazaphenalenephthalocyanine with electron withdrawing and/or donating groups on electronic and optical properties: A DFT/TDDFT study. Materials Chemistry and Physics, 2021, 263, 124420.	2.0	4
599	Comment on "The Nature of Chalcogenâ€Bondingâ€Type Tellurium–Nitrogen Interactions― Fixing the Description of Finiteâ€Temperature Effects Restores the Agreement Between Experiment and Theory. Angewandte Chemie, 2021, 133, 13252-13257.	1.6	4
600	Effect of anion identity on ion association and dynamics of sodium ions in non-aqueous glyme based electrolytes—OTf vs TFSI. Journal of Chemical Physics, 2021, 154, 184505.	1.2	8
601	The role of long-range interactions on the selectivity of gaseous molecule-surface scattering. Chemical Physics Letters, 2021, 770, 138444.	1.2	4
602	Noncovalent Interactions from Models for the MÃller–Plesset Adiabatic Connection. Journal of Physical Chemistry Letters, 2021, 12, 4867-4875.	2.1	15
603	Phonon Kinetics of Fructose at the Melting Transition. Journal of Physical Chemistry C, 2021, 125, 12269-12276.	1.5	1
604	Synergy of Solid-State NMR, Single-Crystal X-ray Diffraction, and Crystal Structure Prediction Methods: A Case Study of Teriflunomide (TFM). Crystal Growth and Design, 2021, 21, 3328-3343.	1.4	10

#	ARTICLE	IF	Citations
605	Kinetic resolution of racemic 6-substituted 1,2,3,4-tetrahydroquinaldines with chiral acyl chlorides. Experiment and quantum chemical simulation. Russian Chemical Bulletin, 2021, 70, 890-899.	0.4	4
606	Analysis of the relative stability of lithium halide crystal structures: Density functional theory and classical models. Journal of Chemical Physics, 2021, 154, 184507.	1.2	2
607	Vibrational spectroscopy and phononâ€related properties of monoclinic GABA, a nonâ€proteinogenic inhibitory neurotransmitter amino acid. Journal of Raman Spectroscopy, 2021, 52, 1294-1307.	1.2	1
608	Analysis of Recent BLYP- and PBE-Based Range-Separated Double-Hybrid Density Functional Approximations for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. Journal of Physical Chemistry A. 2021, 125, 4026-4035.	1.1	31
609	Changes in Surface Free Energy and Surface Conductivity of Carbon Nanotube/Polyimide Nanocomposite Films Induced by UV Irradiation. ACS Applied Materials & Interfaces, 2021, 13, 24218-24227.	4.0	7
610	Comment on "The Nature of Chalcogenâ€Bondingâ€Type Tellurium–Nitrogen Interactionsâ€: Fixing the Description of Finiteâ€Temperature Effects Restores the Agreement Between Experiment and Theory. Angewandte Chemie - International Edition, 2021, 60, 13144-13149.	7.2	8
611	Stability Changes in Iridium Nanoclusters via Monoxide Adsorption: A DFT Study within the van der Waals Corrections. Journal of Physical Chemistry A, 2021, 125, 4805-4818.	1.1	7
612	Energy Decomposition to Access the Stability Changes Induced by CO Adsorption on Transition-Metal 13-Atom Clusters. Journal of Chemical Information and Modeling, 2021, 61, 2294-2301.	2.5	6
613	Diffusion quantum Monte Carlo study of argon dimer. Electronic Structure, 2021, 3, 024010.	1.0	1
614	Requirements for an accurate dispersion-corrected density functional. Journal of Chemical Physics, 2021, 154, 230902.	1.2	39
615	Catalytic Asymmetric Azaâ€Diels–Alder Reaction of Ketimines and Unactivated Dienes. Angewandte Chemie, 2021, 133, 17749-17755.	1.6	2
616	C–H activation. Nature Reviews Methods Primers, 2021, 1, .	11.8	277
617	Interactions between large molecules pose a puzzle for reference quantum mechanical methods. Nature Communications, 2021, 12, 3927.	5.8	57
618	Catalytic Asymmetric Azaâ€Diels–Alder Reaction of Ketimines and Unactivated Dienes. Angewandte Chemie - International Edition, 2021, 60, 17608-17614.	7.2	25
619	Toward a First-Principles Framework for Predicting Collective Properties of Electrolytes. Accounts of Chemical Research, 2021, 54, 2833-2843.	7.6	21
620	Dynamics of Ionic Liquid through Intrinsic Vibrational Probes Using the Dispersion-Corrected DFT Functionals. Journal of Physical Chemistry B, 2021, 125, 6994-7008.	1.2	11
621	The temperature - pressure phase diagram of the calcite I - calcite II phase transition: A first-principles investigation. Journal of Physics and Chemistry of Solids, 2021, 154, 110045.	1.9	1
622	Stability and Hydrogen Storage Properties of M <i>_x</i> -B ₆ H ₆ Complexes (M = Y–Mo, Ru–Ag, <i>x</i> = 1–2). ACS Sustainable Chemistry and Engineering, 2021, 9, 10868-10881.	3.2	3

#	Article	IF	CITATIONS
623	The Middle Science: Traversing Scale In Complex Many-Body Systems. ACS Central Science, 2021, 7, 1271-1287.	5.3	16
624	Future directions of chemical theory and computation. Pure and Applied Chemistry, 2021, 93, 1423-1433.	0.9	3
625	Could London Dispersion Force Control Regioselective (2 + 2) Cyclodimerizations of Benzynes? YES: Application to the Synthesis of Helical Biphenylenes. Journal of the American Chemical Society, 2021, 143, 10853-10859.	6.6	19
626	Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. Journal of Chemical Physics, 2021, 155, 084801.	1.2	518
627	Three in One: The Versatility of Hydrogen Bonding Interaction in Halide Salts with Hydroxyâ€Functionalized Pyridinium Cations. ChemPhysChem, 2021, 22, 1850-1856.	1.0	5
628	Neat, Simple, and Wrong: Debunking Electrostatic Fallacies Regarding Noncovalent Interactions. Journal of Physical Chemistry A, 2021, 125, 7125-7137.	1.1	21
629	Computational discovery of energy materials in the era of big data and machine learning: A critical review. Materials Reports Energy, 2021, 1, 100047.	1.7	24
630	Controllable electronic effect via deep eutectic solvents modification for boosted aerobic oxidative desulfurization. Molecular Catalysis, 2021, 512, 111757.	1.0	3
631	Quantum-mechanical force balance between multipolar dispersion and Pauli repulsion in atomic van der Waals dimers. Physical Review Research, 2021, 3, .	1.3	9
632	Research of cation dependences of structural and elastic properties of metal carbonates series by density functional theory calculations. Materials Today Communications, 2021, 28, 102509.	0.9	5
633	Unified Mechanistic Concept of the Copper-Catalyzed and Amide-Oxazoline-Directed C(sp ²)–H Bond Functionalization. ACS Catalysis, 2021, 11, 12620-12631.	5.5	12
634	Reduced-gradient analysis of van der Waals complexes. Electronic Structure, 2021, 3, 034009.	1.0	7
635	Assessing Density Functional Theory for Chemically Relevant Open-Shell Transition Metal Reactions. Journal of Chemical Theory and Computation, 2021, 17, 6134-6151.	2.3	75
636	Possible coordination modes of copper(II) atom in model silsesquioxanes complexes at various pH conditions: DFT study. Chemical Physics Letters, 2021, 778, 138739.	1.2	2
637	New computational results for a prototype of an excitable system. Results in Physics, 2021, 28, 104666.	2.0	53
638	Azideâ‹â‹â‹Oxygen Interaction: A Crystal Engineering Tool for Conformational Locking. Angewandte Chemie - International Edition, 2021, 60, 22797-22803.	7.2	26
639	Azideâ‹â‹â‹Oxygen Interaction: A Crystal Engineering Tool for Conformational Locking. Angewandte Chemie, 2021, 133, 22979.	1.6	3
640	Green Synthesis of Triangular ZnO Nanoparticles Using Azadirachta indica Leaf Extract and Its Shape Dependency for Significant Antimicrobial Activity: Joint Experimental and Theoretical Investigation. Journal of Cluster Science, 2022, 33, 2517-2530.	1.7	9

#	Article	IF	CITATIONS
641	Predicting and Understanding Non-Covalent Interactions Using Novel Forms of Symmetry-Adapted Perturbation Theory. Accounts of Chemical Research, 2021, 54, 3679-3690.	7.6	22
642	Electric Field Induced Twisted Bilayer Graphene Infrared Plasmon Spectrum. Nanomaterials, 2021, 11, 2433.	1.9	10
643	Towards thermodynamically stable anionic dimers with "anti-electrostatic―hydrogen bonds overcoming like-charge repulsion. Journal of Molecular Liquids, 2021, 340, 116882.	2.3	2
644	Hematite rhombuses for chemiresitive ozone sensors: Experimental and theoretical approaches. Applied Surface Science, 2021, 563, 150209.	3.1	8
645	Comparative study of halogen-doped (X Cl, Br, I) hexagonal boron nitride: A promising strategy to enhance the capacity of adsorptive desulfurization. Journal of Environmental Chemical Engineering, 2021, 9, 105886.	3.3	9
646	New models involving quantum chemical parameters for assessing the chromatographic retention process. Microchemical Journal, 2021, 170, 106693.	2.3	1
647	Diaphite-structured nanodiamonds with six- and twelve-fold symmetries. Diamond and Related Materials, 2021, 119, 108573.	1.8	16
648	Elasticity of selected icy satellite candidate materials (CO2, C6H6, MgSO4·7H2O and CaSO4·2H2O) revisited by dispersion corrected density functional theory. Icarus, 2021, 368, 114611.	1.1	3
649	Quantification and understanding of non-covalent interactions in molecular and ionic systems: Dispersion interactions and hydrogen bonding analysed by thermodynamic methods. Journal of Molecular Liquids, 2021, 343, 117547.	2.3	13
650	Solution-processed Cd-substituted CZTS nanocrystals for sensitized liquid junction solar cells. Journal of Alloys and Compounds, 2022, 890, 161575.	2.8	9
651	Three new polymorphs of 1,8-diacetylpyrene: a material with packing-dependent luminescence properties and a testbed for crystal structure prediction. Journal of Materials Chemistry C, 2021, 9, 2491-2503.	2.7	6
652	Electron confinement meet electron delocalization: non-additivity and finite-size effects in the polarizabilities and dispersion coefficients of the fullerenes. Physical Chemistry Chemical Physics, 2021, 23, 5773-5779.	1.3	4
653	Organocatalytic Enantioselective Higherâ€Order Cycloadditions of In Situ Generated Amino Isobenzofulvenes. Angewandte Chemie, 2018, 130, 1260-1264.	1.6	16
654	Effect of vacancy defects on electronic properties and wettability of coal surface. Applied Surface Science, 2020, 511, 145546.	3.1	20
655	Simulation and Assignment of the Terahertz Vibrational Spectra of Enalapril Maleate Cocrystal Polymorphs. Journal of Physical Chemistry A, 2020, 124, 9793-9800.	1.1	6
656	The Impact of Electron Correlation on Describing QM/MM Interactions in the Attendant Molecular Dynamics Simulations of CO in Myoglobin. Scientific Reports, 2020, 10, 8539.	1.6	6
657	Noncovalent Interactions in Key Metal-centred Catalytic Intermediates: Structure–Electronic Relationship. RSC Catalysis Series, 2019, , 579-607.	0.1	1
658	Vibrations of the guanine–cytosine pair in chloroform: an anharmonic computational study. Physical Chemistry Chemical Physics, 2020, 22, 5509-5522.	1.3	3

#	Article	IF	CITATIONS
659	Overcoming the difficulties of predicting conformational polymorph energetics in molecular crystals <i>via</i> correlated wavefunction methods. Chemical Science, 2020, 11, 2200-2214.	3.7	48
660	Thermal expansion in dispersion-bound molecular crystals. Physical Review Materials, 2018, 2, .	0.9	18
661	Nonlocal van der Waals functionals for solids: Choosing an appropriate one. Physical Review Materials, 2019, 3, .	0.9	65
662	Benchmarking van der Waals-treated DFT: The case of hexagonal boron nitride and graphene on Ir(111). Physical Review Materials, 2019, 3, .	0.9	12
663	Prediction of Li intercalation voltages in rechargeable battery cathode materials: Effects of exchange-correlation functional, van der Waals interactions, and Hubbard <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>U</mml:mi>. Physical Review Materials, 2020, 4, .</mml:math 	0.9	15
664	Ab initio investigation of the role of charge transfer in the adsorption properties of H2,ÂN2,ÂO2,CO,NO,CO2,ÂNO2 , and CH4 on the van der Waals layered Sn3O4 semiconductor. Physical Review Materials, 2020, 4, .	0.9	1
665	Quantum chemical exercise linking computational chemistry to general chemistry topics. Chemistry Teacher International, 2021, 3, .	0.9	5
666	DFT Study of the Mechanisms of Transition-Metal-Catalyzed Reductive Coupling Reactions. Current Organic Chemistry, 2020, 24, 1367-1383.	0.9	5
667	Chiral analysis of pantolactone with molecular rotational resonance spectroscopy. Chirality, 2022, 34, 114-125.	1.3	17
668	Adsorption energies of porphyrins on MgO(100): An experimental benchmark for dispersion-corrected density-functional theory. Surface Science, 2022, 717, 121979.	0.8	7
669	Unraveling the effects of O-doping into h-BN on the adsorptive desulfurization performance by DFT calculations. Journal of Environmental Chemical Engineering, 2021, 9, 106463.	3.3	17
670	Molecular adsorption of iminotriazine derivatives on graphene. JPhys Materials, 2020, 3, 034011.	1.8	4
672	0D Bismuth(III)-Based Hybrid Ferroelectric: Tris(acetamidinium) Hexabromobismuthate(III). Chemistry of Materials, 2021, 33, 8591-8601.	3.2	22
673	Excitedâ€State Dynamics of a <i>meta</i> â€Dimethylamino Locked GFP Chromophore as a Fluorescence Turnâ€on Water Sensor ^{â€} . Photochemistry and Photobiology, 2022, 98, 311-324.	1.3	4
674	Structure-Property Relationships of Polymers, Unraveled by Molecular Orbital, RIS, and Periodic Density Functional Theory Calculations. ACS Symposium Series, 2020, , 161-208.	0.5	1
675	Structure and Photophysical Properties of 1,1,2,2â€Tetra(1â€anthryl)ethane: A C(sp3)–C(sp3) Bond Substituted with Four Anthracene Units. ChemPlusChem, 2021, , .	1.3	2
676	Exploring the Properties of H 2 O@C 60 with the Local Secondâ€Order MÃ,llerâ€Plesset Perturbation Theory: Blue or Red Shift in C 60 and H 2 O Fundamentals to Expect?. ChemistrySelect, 2021, 6, 11583-11590.	0.7	2
677	Adsorption of CH4 on the Pt(111) surface: Random phase approximation compared to density functional theory. Journal of Chemical Physics, 2021, 155, 174702.	1.2	10

ATION R

#	Article	IF	CITATIONS
678	The Cyclization of Allenylâ€Substituted Hydroxylamines to 1,2â€Oxazines: an Experimental and Computational Study. European Journal of Organic Chemistry, 2020, 2020, 6740-6748.	1.2	1
679	Exhibiting environment sensitive optical properties through multiscale modelling: A study of photoactivatable probes. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 425, 113672.	2.0	2
680	Real-space imaging of anisotropic charge of Ï <i>f</i> -hole by means of Kelvin probe force microscopy. Science, 2021, 374, 863-867.	6.0	71
681	Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory-Based <i>Ab Initio</i> Molecular Dynamics II: Extensions to the Isobaric–Isoenthalpic and Isobaric–Isothermal Ensembles. Journal of Chemical Theory and Computation, 2021, 17, 7789-7813.	2.3	7
682	Assessment of the van der Waals, Hubbard <i>U</i> parameter and <scp>spinâ€orbit</scp> coupling corrections on the <scp>2D</scp> / <scp>3D</scp> structures from metal gold congeners clusters. Journal of Computational Chemistry, 2022, 43, 230-243.	1.5	4
683	London Dispersion Helps Refine Steric A-Values: Dispersion Energy Donor Scales. Journal of the American Chemical Society, 2021, 143, 20837-20848.	6.6	35
684	Enhancing the Accuracy of Ab Initio Molecular Dynamics by Fine Tuning of Effective Two-Body Interactions: Acetonitrile as a Test Case. Journal of Physical Chemistry A, 2021, 125, 10475-10484.	1.1	4
685	Electron spin resonance of single iron phthalocyanine molecules and role of their non-localized spins in magnetic interactions. Nature Chemistry, 2022, 14, 59-65.	6.6	51
686	Static and dynamic water structures at interfaces: A case study with focus on Pt(111). Journal of Chemical Physics, 2021, 155, 194702.	1.2	3
687	Synthesis, Structures, and Properties of Helically Fused Anthraquinones with Unusually Close Carbonylâ€Carbonyl Contacts. Chemistry - A European Journal, 2021, , .	1.7	3
688	Coming of Age of Computational Chemistry from a Resilient Past to a Promising Future. Israel Journal of Chemistry, 0, , .	1.0	2
689	Correlation Effects in Trimeric Acylphloroglucinols. Computation, 2021, 9, 121.	1.0	5
690	Comparative study of the effect of van der Waals interactions on stacking fault energies in SiC. Journal of Applied Physics, 2021, 130, .	1.1	3
691	Theoretical Approach to Evaluate the Gas-Sensing Performance of Graphene Nanoribbon/Oligothiophene Composites. ACS Omega, 2022, 7, 2260-2274.	1.6	6
692	Tunnelling assisted hydrogen elimination mechanisms of FeCl3/TEMPO. Chemical Communications, 2022, 58, 565-568.	2.2	5
693	Performance comparison of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>rand SCAN metaGGA density functionals for solid materials via an automated, high-throughput computational workflow. Physical Review Materials. 2022. 6.</mml:mi></mml:mrow></mml:msup></mml:math 	row> <mm 0.9</mm 	l:mŋ>2
694	Coronene surface for delivery of Favipiravir: Computational approach. Inorganic Chemistry Communication, 2022, 136, 109133.	1.8	3
695	2D IR spectra of the intrinsic vibrational probes of ionic liquid from dispersion corrected DFT-MD simulations. Journal of Molecular Liquids, 2022, 348, 118390.	2.3	4

#	Article	IF	CITATIONS
696	Theoretical studies on cycloaddition reactions of N-allyl substituted polycyclic Isoindole-1,3-dione with nitrones and nitrile oxides. Computational and Theoretical Chemistry, 2022, 1208, 113574.	1.1	10
697	Structure of PtRu/Ru(OÂOÂOÂ1) and AgPd/Pd(1Â1Â1) surface alloys: A kinetic Monte Carlo study. Chemical Physics, 2022, 555, 111428.	0.9	4
698	Impurity Controlled near Infrared Surface Plasmonic in AlN. Nanomaterials, 2022, 12, 459.	1.9	1
699	Correlation between the Stability of Substituted Cobaltocenium and Molecular Descriptors. Journal of Physical Chemistry A, 2022, 126, 80-87.	1.1	5
700	Structural Properties and Magnetic Ground States of 100 Binary d-Metal Oxides Studied by Hybrid Density Functional Methods. Molecules, 2022, 27, 874.	1.7	13
701	How many more polymorphs of ROY remain undiscovered. Chemical Science, 2022, 13, 1288-1297.	3.7	41
702	Ab Initio Simulations of Water/Metal Interfaces. Chemical Reviews, 2022, 122, 10746-10776.	23.0	72
703	Polymorphism and optical, magnetic and thermal properties of the either phyllo- or inosilicate-analogous borosulfate Cu[B ₂ (SO ₄) ₄]. Dalton Transactions, 2022, 51, 3104-3115.	1.6	5
704	Theoretical study of hydrogen adsorption on the graphene quantum dots doped with various first row transition metals: Switch of spin state as a way to improve H2 adsorption. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 139, 115144.	1.3	8
705	Half antiperovskites VII – DFT modelling of shandites that are isoelectronic to Co 3 Sn 2 S 2. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	1
706	Thermodynamically Stable Cationic Dimers in Carboxyl-Functionalized Ionic Liquids: The Paradoxical Case of "Anti-Electrostatic―Hydrogen Bonding. Molecules, 2022, 27, 366.	1.7	0
707	A contribution of molecular modeling to supramolecular structures in soil organic matter [#] . Journal of Plant Nutrition and Soil Science, 2022, 185, 44-59.	1.1	14
708	Quantum framework for describing retarded and nonretarded molecular interactions in external electric fields. Physical Review Research, 2022, 4, .	1.3	11
709	Speciation of organoarsenicals in aqueous solutions by Raman spectrometry and quantum chemical calculations. Microchemical Journal, 2022, 175, 107186.	2.3	2
710	Properties of binary mixtures of a novel natural deep eutectic solvent (glycolic acidÂ+Âxylitol) and water at several temperatures. Fluid Phase Equilibria, 2022, 556, 113390.	1.4	4
711	Theoretical studies on molecular conformers and infrared spectra of Triethylamine. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
712	Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews, 2022, 122, 6117-6321.	23.0	195
713	Behavior of counterpoise correction in manyâ€body molecular clusters of organic compounds: <scp>Hartree–Fock</scp> interaction energy perspective. Journal of Computational Chemistry, 2022, 43, 568-576.	1.5	5

C	тлт		REDOD	
	IIAI	IUN	NEPUK	

#	Article	IF	CITATIONS
714	Evaluating Hydrogen Bonding in Organic Cocrystals Using Low-Frequency Raman Vibrational Spectroscopy and Quantum Mechanical Simulations. Crystal Growth and Design, 2022, 22, 1922-1932.	1.4	5
715	O(N) Stochastic Evaluation of Many-Body van der Waals Energies in Large Complex Systems. Journal of Chemical Theory and Computation, 2022, 18, 1633-1645.	2.3	12
716	Amphiphilic cyclodextrins: Dimerization and diazepam binding explored by molecular dynamics simulations. Journal of Molecular Liquids, 2022, 349, 118457.	2.3	6
717	Barriers to predictive high-throughput screening for spin-crossover. Computational Materials Science, 2022, 206, 111161.	1.4	9
718	A first-principles study of water adsorbed on flat and stepped silver surfaces. Physical Chemistry Chemical Physics, 2022, 24, 6803-6810.	1.3	4
720	On the mechanism of electrochemical functionalization of carbon nanotubes with different structures with aminophenylphosphonic acid isomers: an experimental and computational approach. Journal of Materials Chemistry A, 2022, 10, 7271-7290.	5.2	4
721	Computational Chemistry as a Conceptual Game Changer: Understanding the Role of London Dispersion in Hexaphenylethane Derivatives (Gomberg Systems). Israel Journal of Chemistry, 2022, 62, .	1.0	12
722	Frustrated and Realized Hydrogen Bonding in 4-Hydroxy-3,5-di <i>tert</i> butylphenylphosphine Derivatives. Crystal Growth and Design, 2022, 22, 2512-2533.	1.4	8
723	QM/MM Energy Decomposition Using the Interacting Quantum Atoms Approach. Journal of Chemical Information and Modeling, 2022, 62, 1510-1524.	2.5	6
724	Appraisal of dispersion damping functions for the effective fragment potential method. Molecular Physics, 2023, 121, .	0.8	Ο
725	The PM6-FGC Method: Improved Corrections for Amines and Amides. Molecules, 2022, 27, 1678.	1.7	2
726	Diffusion Monte Carlo Study on Relative Stabilities of Boron Nitride Polymorphs. Journal of Physical Chemistry C, 2022, 126, 6000-6007.	1.5	6
727	All-hydrocarbon, all-conjugated cycloparaphenylene-polycyclic aromatic hydrocarbon host-guest complexes stabilized by CHâ~'ĺ€ interactions. Nano Research, 2022, 15, 5545-5555.	5.8	11
728	Challenges with Simulating Modified RNA: Insights into Role and Reciprocity of Experimental and Computational Approaches. Genes, 2022, 13, 540.	1.0	4
729	Vibrational Modes and Terahertz Phenomena of the Large-Cage Zeolitic Imidazolate Framework-71. Journal of Physical Chemistry Letters, 2022, 13, 2838-2844.	2.1	11
730	Computational Evaluation and Design of Polyethylene Zirconocene Catalysts with Noncovalent Dispersion Interactions. Organometallics, 2022, 41, 581-593.	1.1	4
731	Lateral Interactions of Dynamic Adlayer Structures from Artificial Neural Networks. Journal of Physical Chemistry C, 2022, 126, 5529-5540.	1.5	5
732	Highâ€Temperature Quantum Tunneling and Hydrogen Bonding Rearrangements Characterize the Solidâ€Solid Phase Transitions in a Phosphoniumâ€Based Protic Ionic Liquid. Chemistry - A European Journal, 2022, , .	1.7	1

#	Article	IF	CITATIONS
733	Microscopic EDL structures and charge–potential relation on stepped platinum surface: Insights from the <i>ab initio</i> molecular dynamics simulations. Journal of Chemical Physics, 2022, 156, 104701.	1.2	12
734	Adsorption of Transition-Metal Clusters on Graphene and N-Doped Graphene: A DFT Study. Langmuir, 2022, 38, 3694-3710.	1.6	23
735	Assessing the persistence of chalcogen bonds in solution with neural network potentials. Journal of Chemical Physics, 2022, 156, 154112.	1.2	6
736	Dispersion corrected r2SCAN based global hybrid functionals: r2SCANh, r2SCAN0, and r2SCAN50. Journal of Chemical Physics, 2022, 156, 134105.	1.2	32
737	Bonding character of intermediates in onâ€surface Ullmann reactions revealed with energy decomposition analysis. Journal of Computational Chemistry, 2023, 44, 179-189.	1.5	2
738	A rare diiodo-L-tyrosine copper(II) complexes – Crystal and molecular structure of materials stabilized by weak interactions. Polyhedron, 2022, 219, 115780.	1.0	0
739	Electronic Energy and Local Property Errors at QTAIM Critical Points while Climbing Perdew's Ladder of Density-Functional Approximations. Journal of Chemical Theory and Computation, 2022, 18, 293-308.	2.3	14
740	Kinetically Controlled Reduction of β-Vanadyl(V) Orthophosphate: Synthesis and Characterization of New Metastable Polymorphs of Vanadium(III) Phosphate. Inorganic Chemistry, 2022, 61, 507-519.	1.9	0
741	Implicit Solvation Methods for Catalysis at Electrified Interfaces. Chemical Reviews, 2022, 122, 10777-10820.	23.0	82
742	Electron Correlation: Nature's Weird and Wonderful Chemical Glue. Israel Journal of Chemistry, 2022, 62, .	1.0	13
743	An open-source framework for fast-yet-accurate calculation of quantum mechanical features. Physical Chemistry Chemical Physics, 2022, , .	1.3	1
744	Catalyst sites and active species in the early stages of MTO conversion over cobalt AlPO-18 followed by IR spectroscopy. Catalysis Science and Technology, 2022, 12, 2775-2792.	2.1	8
745	Conformational characteristics and conformation-dependent properties of poly(ε-caprolactone). Physical Chemistry Chemical Physics, 2022, , .	1.3	3
746	Open-Shell Variant of the London Dispersion-Corrected Hartree–Fock Method (HFLD) for the Quantification and Analysis of Noncovalent Interaction Energies. Journal of Chemical Theory and Computation, 2022, 18, 2292-2307.	2.3	7
747	First-Principle Studies of the Structural, Electronic, Mechanical, and Vibrational Properties of Double Carbonates with a Dolomite Structure. Izvestiya of Altai State University, 2022, , 23-29.	0.1	0
748	Photocatalytic Degradation of Rhodamine B Dye and Hydrogen Evolution by Hydrothermally Synthesized NaBH4—Spiked ZnS Nanostructures. Frontiers in Chemistry, 2022, 10, 835832.	1.8	10
749	Beyond Steric Crowding: Dispersion Energy Donor Effects in Large Hydrocarbon Ligands. Accounts of Chemical Research, 2022, 55, 1337-1348.	7.6	25
750	Tracing the Primordial Chemical Life of Glycine: A Review from Quantum Chemical Simulations. International Journal of Molecular Sciences, 2022, 23, 4252.	1.8	12

		15	0
#	ARTICLE	IF	CITATIONS
751	Chemistry Chemical Physics, 2022, 24, 11131-11136.	1.3	4
752	Noncovalently bound excited-state dimers: a perspective on current time-dependent density functional theory approaches applied to aromatic excimer models. RSC Advances, 2022, 12, 13014-13034.	1.7	18
753	TAO-DFT fictitious temperature made simple. RSC Advances, 2022, 12, 12193-12210.	1.7	7
754	Chiral Analysis of Linalool, an Important Natural Fragrance and Flavor Compound, by Molecular Rotational Resonance Spectroscopy. Symmetry, 2022, 14, 917.	1.1	7
755	First-Principles Investigation of Electronic Properties and Phase Transition of Ti ₃ O ₅ . Journal of Physical Chemistry C, 2022, 126, 7809-7817.	1.5	8
756	Accurate Deep Learning-Aided Density-Free Strategy for Many-Body Dispersion-Corrected Density Functional Theory. Journal of Physical Chemistry Letters, 2022, 13, 4381-4388.	2.1	12
757	Probing the SO ₂ Adsorption Mechanism in Hofmann Clathrates via Inelastic Neutron Scattering and Density Functional Theory Calculations. Journal of Physical Chemistry C, 2022, 126, 8090-8099.	1.5	7
758	Study on Hydration and Dehydration of Ezetimibe by Terahertz Spectroscopy with Humidity-Controlled Measurements and Theoretical Analysis. Journal of Physical Chemistry A, 2022, 126, 2879-2888.	1.1	3
759	Development and testing of an algorithm for efficient MP2/CCSD(T) energy estimation of molecular clusters with the 2–body approach. Journal of Computational Chemistry, 2022, , .	1.5	0
760	Increasing Complexity in a Conformer Space Step-by-Step: Weighing London Dispersion against Cationâ~'l€ Interactions. Journal of the American Chemical Society, 2022, 144, 9007-9022.	6.6	13
761	First-principle studies of electronic, elastic and vibrational properties of barytocalcite and paralstonite. Materials Today Communications, 2022, 31, 103644.	0.9	0
762	Dispersion Interactions in Exciton-Localized States. Theory and Applications to π–Ĩ€* and nâ~'Ĩ€* Excited States. Journal of Chemical Theory and Computation, 2022, 18, 3497-3511.	2.3	4
764	Can Domain-Based Local Pair Natural Orbitals Approaches Accurately Predict Phosphorescence Energies?. Physical Chemistry Chemical Physics, 0, , .	1.3	3
765	Conformational Energy Benchmark for Longer <i>n</i> -Alkane Chains. Journal of Physical Chemistry A, 2022, 126, 3521-3535.	1.1	16
766	P-functionalized carbon nanotubes promote highly stable electrocatalysts based on Fe-phthalocyanines for oxygen reduction: Experimental and computational studies. Journal of Energy Chemistry, 2022, 72, 276-290.	7.1	11
767	In Situ Observation of the Structure of Crystallizing Magnesium Sulfate Heptahydrate Solutions with Terahertz Transmission Spectroscopy. Crystal Growth and Design, 0, , .	1.4	1
768	Spirooxazine-Based Dual-Sensing Probe for Colorimetric Detection of Cu ²⁺ and Fe ³⁺ and Its Application in Drinking Water and Rice Quality Monitoring. ACS Omega, 2022, 7, 18671-18680.	1.6	12
769	The contribution of intermolecular spin interactions to the London dispersion forces between chiral molecules. Journal of Chemical Physics, 2022, 156, .	1.2	9

#	Article	IF	CITATIONS
770	Optimization of the r ² SCAN-3c Composite Electronic-Structure Method for Use with Slater-Type Orbital Basis Sets. Journal of Physical Chemistry A, 2022, 126, 3826-3838.	1.1	8
771	Tailoring Multifunctional Small Molecular Photosensitizers to In Vivo Selfâ€Assemble with Albumin to Boost Tumorâ€Preferential Accumulation, NIR Imaging, and Photodynamic/Photothermal/Immunotherapy. Small, 2022, 18, .	5.2	11
772	Rational Computational Design of Systems Exhibiting Strong Halogen Bonding Involving Fluorine in Bicyclic Diamine Derivatives. Journal of Organic Chemistry, 2022, 87, 8413-8419.	1.7	2
773	On the stability of MOPO4 structure types with M: V, Mo, Nb, W, Ta, Sb. Journal of Solid State Chemistry, 2022, 312, 123221.	1.4	Ο
775	Simulating the solvation structure of low- and high-spin [Fe(bpy) ₃] ²⁺ : long-range dispersion and many-body effects. Physical Chemistry Chemical Physics, 2022, 24, 16655-16670.	1.3	3
776	Charge Carrier Management in Semiconductors: Modeling Charge Transport and Recombination. Springer Handbooks, 2022, , 365-398.	0.3	2
777	Long-range dispersion-inclusive machine learning potentials for structure search and optimization of hybrid organic–inorganic interfaces. , 2022, 1, 463-475.		16
778	Spectroscopic evidence of Sâ^N and Sâ^O hemibonds in heterodimer cations. Physical Chemistry Chemical Physics, 2022, 24, 19354-19361.	1.3	5
779	Stabilization of Glucosyl Dioxolenium Ions by "Dual Participation―of the 2,2-Dimethyl-2-(<i>ortho</i> -nitrophenyl)acetyl (DMNPA) Protection Group for 1,2- <i>cis</i> -Glucosylation. Journal of Organic Chemistry, 2022, 87, 9139-9147.	1.7	11
780	Efficient and Accurate Description of Dielsâ€Alder Reactions Using Density Functional Theory**. ChemPhysChem, 2022, 23, .	1.0	6
781	Ag Atom Anchored on Defective Hexagonal Boron Nitride Nanosheets As Single Atom Adsorbents for Enhanced Adsorptive Desulfurization via S-Ag Bonds. Nanomaterials, 2022, 12, 2046.	1.9	11
783	Surface Reactivity of Cementitious Crystals Alite and Belite. Journal of Physical Chemistry C, 2022, 126, 11265-11276.	1.5	0
784	Complete Set of Diketopyrrolopyrrole Centrosymmetrical Cofacial Stacked Pairs. ChemPhysChem, 2022, 23, .	1.0	6
785	Coupled Cluster Benchmarking of Large Noncovalent Complexes in L7 and S12L as Well as the C ₆₀ Dimer, DNA–Ellipticine, and HIV–Indinavir. Journal of Physical Chemistry A, 2022, 126, 4326-4341.	1.1	11
786	Theoretical study of the stereoselectivity in the reaction of 4-haloglutamic acid derivatives with arylamines. Russian Chemical Bulletin, 2022, 71, 1135-1142.	0.4	2
787	Combining micro-infrared reflection absorption spectroscopy with density functional theory for investigating the adsorption of organic friction modifiers on steel surfaces. Vibrational Spectroscopy, 2022, 121, 103403.	1.2	1
788	Substitution Effects on the Reactivity and Thermostability of Five-Membered Ring Fluorides. ACS Omega, 2022, 7, 25476-25490.	1.6	2
789	Dissecting Noncovalent Interactions in Carboxylâ€Functionalized Ionic Liquids Exhibiting Double and Single Hydrogens Bonds Between Ions of Like Charge. Chemistry - A European Journal, 2022, 28, .	1.7	3

ARTICLE IF CITATIONS Accurate Determination of Adsorption-Energy Differences of Metalloporphyrins on Rutile 790 1.6 1 TiO₂(110) 1 × 1. Langmuir, 2022, 38, 8643-8650. A litmus test for the balanced description of dispersion interactions and coordination chemistry of 791 1.3 lanthanoids. Physical Chemistry Chemical Physics, 0, , . Ionic Dynamics and Vibrational Spectral Diffusion of a Protic Alkylammonium Ionic Salt through Intrinsic Cationic Nâ€"H Vibrational Probe from FPMD Simulations. Journal of Physical Chemistry A, 792 1.1 1 2022, 126, 5134-5147. Feasible Cluster Model Method for Simulating the Redox Potentials of Laccase CueO and Its Variant. 793 2.0 Frontiers in Bioengineering and Biotechnology, 0, 10, . Tailoring the hydrogen storage performance of the Cr-, Mn-, and Fe-doped circumcoronenes by the presence of N and B co-dopants: Computational study. International Journal of Hydrogen Energy, 2022, 794 3.8 3 47, 34570-34582. Nanoscale MXene Interlayer and Substrate Adhesion for Lubrication: A Density Functional Theory Study. ACS Applied Nano Materials, 2022, 5, 10516-10527. 795 2.4 Binding propensity and selectivity of cationic, anionic, and neutral guests with model hydrophobic 796 1.53 hosts: A first principles study. Journal of Computational Chemistry, 2023, 44, 432-441. Low-Frequency Vibrational Spectroscopy and Quantum Mechanical Simulations of the Crystalline 797 2.3 Polymorphs of the Antiviral Drug Ribavirin. Molecular Pharmaceutics, 2022, 19, 3385-3393. 798 Beyond GGA total energies for solids and surfaces. Journal of Chemical Physics, 2022, 157, 050401. 1.2 1 Modeling of Structure H Carbon Dioxide Clathrate Hydrates: Guest–Lattice Energies, Crystal 799 1.5 Structure, and Pressure Dependencies. Journal of Physical Chemistry C, 2022, 126, 14832-14842. Verification of the Accuracy and Efficiency of Dispersion-Corrected Density Functional Theory 800 Methods to Describe the Lattice Structure and Energy of Energetic Cocrystals. Crystal Growth and 5 1.4 Design, 2022, 22, 5307-5321. Quantum computational quantification of protein–ligand interactions. International Journal of 1.0 Quantum Chemistry, 2022, 122, . Comment on "Revealing the new structure of B8N8 nanocage and comparison of hydrogen storage 802 0.9 0 capacity―[Chem. Phys. 559 (2022) 111540]. Chemical Physics, 2022, 562, 111673. Copigmentation effect of flavonols on anthocyanins in black mulberry juice and their interaction 4.2 mechanism investigation. Food Chemistry, 2023, 399, 133927. 804 Semiempirical quantum mechanical methods., 2023, , 67-92. 1 Density-functional theory., 2023,, 27-65. Ethynylene-linked multifunctional benzoxazines: the effect of the ethynylene group and packing on 806 1.9 5 thermal behavior. Polymer Chemistry, 2022, 13, 5590-5596. Redox-switchable host–guest complexes of metallocenes and [8]cycloparaphenylene. Nanoscale, 2022, 2.8 14, 14276-14285.

#	Article	IF	CITATIONS
808	Intramolecular Hydrogen Bonding Patterns and Conformational Preferences of Ouabain—A Molecule with Cardiotonic and Antiviral Activities. Engineering Materials, 2022, , 671-696.	0.3	0
809	DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science. Physical Chemistry Chemical Physics, 2022, 24, 28700-28781.	1.3	91
810	Hidden ordered structure in the archetypical Fe(pyrazine)[Pt(CN) ₄] spin-crossover porous coordination compound. CrystEngComm, 2022, 24, 6349-6356.	1.3	6
811	A flexible and scalable scheme for mixing computed formation energies from different levels of theory. Npj Computational Materials, 2022, 8, .	3.5	8
812	How van der Waals Approximation Methods Affect Activation Barriers of Cyclohexene Hydrogenation over a Pd Surface. ACS Engineering Au, 0, , .	2.3	0
813	Photochemical Dearomative Cycloadditions of Quinolines and Alkenes: Scope and Mechanism Studies. Journal of the American Chemical Society, 2022, 144, 17680-17691.	6.6	31
814	Biological activity of some thiazolylâ€ŧhiadiazines as BACEâ€1 inhibitors for Alzheimer's disease in the light of density functional theory based quantum descriptors. Journal of Physical Organic Chemistry, 2023, 36, .	0.9	0
815	Bestâ€Practice DFT Protocols for Basic Molecular Computational Chemistry**. Angewandte Chemie, 2022, 134, .	1.6	36
816	Bestâ€Practice DFT Protocols for Basic Molecular Computational Chemistry**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	168
817	Bromine Pentafluoride BrF ₅ , the Formation of [BrF ₆] ^{â^'} Salts, and the Stereochemical (In)activity of the Bromine Lone Pairs. Chemistry - A European Journal, 2022, 28, .	1.7	7
818	First-Principles Calculations to Investigate the Effect of Van der Waals Interactions on the Crystal and Electronic Structures of Tin-Based OD Hybrid Perovskites. Inorganics, 2022, 10, 155.	1.2	25
819	The Stacking Faulted Nature of the Narrow Gap Semiconductor Sc2Si2Te6. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	1
820	Role of van der Waals interactions on the binding energies of 2D transition-metal dichalcogenides. Applied Surface Science, 2023, 608, 155163.	3.1	13
821	Structures of the (Imidazole)nH+ Ar (n=1,2,3) complexes determined from IR spectroscopy and quantum chemical calculations. Structural Chemistry, 2023, 34, 203-213.	1.0	1
822	Chalcogen controlled redox behaviour in peri-substituted S, Se and Te naphthalene derivatives. New Journal of Chemistry, 0, , .	1.4	2
823	Systematic Evaluation of Counterpoise Correction in Density Functional Theory. Journal of Chemical Theory and Computation, 2022, 18, 6742-6756.	2.3	20
824	Chemical Bonding Effects and Physical Properties of Noncentrosymmetric Hexagonal Fluorocarbonates ABCO3F (A: K, Rb, Cs; B: Mg, Ca, Sr, Zn, Cd). Molecules, 2022, 27, 6840.	1.7	3
825	Density functional theory demonstrates orientation effects in the Raman spectra of hydroxy―and carbonated apatite. Journal of Raman Spectroscopy, 2023, 54, 159-170.	1.2	1

#	Article	IF	CITATIONS
826	In Situ Kinetic Studies of Rh(II)-Catalyzed C–H Functionalization to Achieve High Catalyst Turnover Numbers. ACS Catalysis, 2022, 12, 13400-13410.	5.5	6
827	Theoretical Study of the Effect of Pressure on the Structure and Electronic Properties of Metal Carbonates. Bulletin of the Russian Academy of Sciences: Physics, 2022, 86, 1230-1241.	0.1	0
828	Effect of the Silica–Magnetite Nanocomposite Coating Functionalization on the Doxorubicin Sorption/Desorption. Pharmaceutics, 2022, 14, 2271.	2.0	7
829	Insights of hydrogen adsorption and dissociation on Ni doped Mg4 clusters: A DFT study. Computational and Theoretical Chemistry, 2022, 1217, 113907.	1.1	5
830	How to Stabilize Carbenes in Enzyme Active Sites without Metal Ions. Journal of the American Chemical Society, 2022, 144, 20739-20751.	6.6	5
831	Seeking widely applicable dispersion-corrected GGA functionals: The performances of TCA+D3 and RevTCA+D3 on solid-state systems. Computational Materials Science, 2023, 216, 111826.	1.4	1
832	Deep eutectic solvents with multiple catalytic sites for highly efficient extractive and oxidative desulfurization. Fuel, 2023, 333, 126329.	3.4	8
833	Barrier heights, reaction energies and bond dissociation energies for RH + HO ₂ reactions with coupled-cluster theory, density functional theory and diffusion quantum Monte Carlo methods. Physical Chemistry Chemical Physics, 2022, 25, 341-350.	1.3	2
834	Native defects in monolayer GaS and GaSe: Electrical properties and thermodynamic stability. Physical Review Materials, 2022, 6, .	0.9	2
835	Electrochemical CO2 reduction: From catalysts to reactive thermodynamics and kinetics. Carbon Capture Science & Technology, 2023, 6, 100081.	4.9	8
836	The hydrogen storage capacities of 4d transition metals in various boron systems. Journal of Energy Storage, 2023, 57, 106216.	3.9	3
837	Sodium complexes as precise tools for cutting polymer chains. Exploration of PLA degradation by unique cooperation of sodium centers. Inorganic Chemistry Frontiers, 2023, 10, 1076-1090.	3.0	2
838	Towards predictive computational catalysis – a case study of olefin metathesis with Mo imido alkylidene N-heterocyclic carbene catalysts. Chemical Modelling, 2022, , 1-23.	0.2	1
839	DFT calculations in solution systems: solvation energy, dispersion energy and entropy. Physical Chemistry Chemical Physics, 2023, 25, 913-931.	1.3	14
840	Physical image of amino acid interaction on graphene surface: Scientific fundamental for biological identification and detection from first-principles. Diamond and Related Materials, 2023, 131, 109571.	1.8	2
841	A theoretical framework for the design of molecular crystal engines. Chemical Science, 2023, 14, 937-949.	3.7	7
842	A benchmark for non-covalent interactions in organometallic crystals. Physical Chemistry Chemical Physics, 2022, 24, 29338-29349.	1.3	0
843	Ab Initio Studies of the Influence of Pressure on the Structure and Electronic and Elastic Properties of Carbonates of Alkaline and Alkaline-Earth Metals. Physics of the Solid State, 2022, 64, 405-415.	0.2	1

#	ARTICLE	IF	CITATIONS
844	Multiscale Computational Approaches toward the Understanding of Materials. Advanced Theory and Simulations, 2023, 6, .	1.3	4
845	Semisynthetic Approach toward Biologically Active Derivatives of Phenylspirodrimanes from <i>S. chartarum</i> . ACS Omega, 2022, 7, 45215-45230.	1.6	3
846	Toward Reliable and Insightful Entropy Calculations on Flexible Molecules. Journal of Chemical Theory and Computation, 2022, 18, 7166-7178.	2.3	2
847	Efficient Computation of the Interaction Energies of Very Large Non-covalently Bound Complexes. Synlett, 2023, 34, 1135-1146.	1.0	2
848	Mechanistic Details of the Pdâ€catalyzed and MPAA Ligandâ€Enabled βâ€C(sp3)â€H Acetoxylation of Free Carboxylic Acid. Chemistry - an Asian Journal, 0, , .	1.7	0
849	Thermochemical evaluation of adaptive and fixed density functional theory quadrature schemes. Journal of Chemical Physics, 2022, 157, 234106.	1.2	Ο
850	Mind the Interface Gap: Exposing Hidden Interface Defects at the Epitaxial Heterostructure between CuO and Cu ₂ O. ACS Applied Materials & Interfaces, 2022, 14, 56331-56343.	4.0	1
851	Modeling of BN-Doped Carbon Nanotube as High-Performance Thermoelectric Materials. Nanomaterials, 2022, 12, 4343.	1.9	1
853	Investigation of the difference in color enhancement effect on cyanidin-3-O-glucoside by phenolic acids and the interaction mechanism. Food Chemistry, 2023, 411, 135409.	4.2	1
854	Substituent effects on helical structures and chiroptical properties of fused anthracenes with bulky phenyl groups. Tetrahedron, 2023, 132, 133243.	1.0	2
855	The role of nature of aromatic ring on cooperativity between π–π stacking and ion–π interactions: A computational study. Computational and Theoretical Chemistry, 2023, 1220, 114022.	1.1	2
856	The two-pronged approach of heteroatoms and substituents to achieve a synergistic regulation of the ESIPT process in amino 2-(2′-hydroxyphenyl)benzoxazole derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 291, 122318.	2.0	4
857	Molecular adsorption on coinage metal subnanoclusters: A <scp>DFT</scp> + <scp>D3</scp> investigation. Journal of Computational Chemistry, 0, , .	1.5	1
858	Stability and hydrogen storage properties of Sc6O8 and Y6O8 cage-like complexes. International Journal of Hydrogen Energy, 2023, , .	3.8	0
859	A theoretical study of M–M′ polar-covalent bonding in heterobimetallic multinuclear organometallic complexes of monovalent group 11 metal centres. Physical Chemistry Chemical Physics, 2023, 25, 7642-7647.	1.3	1
860	Computational study of the interaction of the psychoactive amphetamine with 1,2-indanedione and 1,8-diazafluoren-9-one as fingerprinting reagents. RSC Advances, 2023, 13, 4077-4088.	1.7	0
861	A specific MNDO parameterization for water. Journal of Chemical Physics, 2023, 158, .	1.2	1
862	Electronic structure and density functional theory. , 2023, , 3-35.		0

#	Article	IF	CITATIONS
863	Molecular Dynamics with Chemical Accuracy─Alkane Adsorption in Acidic Zeolites. ACS Catalysis, 2023, 13, 2011-2024.	5.5	5
864	Accuracy of Intermolecular interaction Energies, Particularly Those of Hetero Atom Containing Molecules Obtained by van der Waals DFT Calculations. ChemistrySelect, 2023, 8, .	0.7	1
865	Theoretical study of the excitation of proflavine H-dimers in an aqueous solution: the effect of functionals and dispersion corrections. Physical Chemistry Chemical Physics, 2023, 25, 12259-12276.	1.3	4
866	Pressure-induced second-order phase transition in fluorine. Physical Chemistry Chemical Physics, 2023, 25, 9935-9943.	1.3	1
867	Role of Hydrogen Bond Defects for Cluster Formation and Distribution in Ionic Liquids by Means of Neutron Diffraction and Molecular Dynamics Simulations. ChemPhysChem, 2023, 24, .	1.0	1
868	Ion-Neutral Collision Cross Section as a Function of the Static Dipole Polarizability and the Ionization Energy of the Ion. Journal of Physical Chemistry A, 2023, 127, 3274-3280.	1.1	1
869	Triazole based Schiff bases and their oxovanadium(IV) complexes: Synthesis, characterization, antibacterial assay, and computational assessments. Heliyon, 2023, 9, e15239.	1.4	6
870	Dependence of predicted bulk properties of hexagonal hydroxyapatite on exchange–correlation functional. Computational Materials Science, 2023, 224, 112153.	1.4	5
871	Construction of amphiphilic and polyoxometalate poly(ionic liquids) for enhanced oxidative desulfurization in fuel. Journal of Molecular Liquids, 2023, 379, 121650.	2.3	5
872	How an electric field makes endohedral fullerene an improved catalyst for hydrogen evolution reaction. Computational and Theoretical Chemistry, 2023, 1221, 114026.	1.1	3
873	Effects of dispersion corrections on the theoretical description of bulk metals. Physical Review B, 2023, 107, .	1.1	5
874	From 8- to 18-Cluster Electrons Superatoms: Evaluation via DFT Calculations of the Ligand-Protected W@Au ₁₂ (dppm) ₆ Cluster Displaying Distinctive Electronic and Optical Properties. Inorganic Chemistry, 2023, 62, 3047-3055.	1.9	3
875	Torsional Rotation in Ditopic Receptor Host and its Complex Formation with Resorcinol Guest: A Computational Study. ChemPhysChem, 0, , .	1.0	1
876	Generalized Many-Body Dispersion Correction through Random-Phase Approximation for Chemically Accurate Density Functional Theory. Journal of Physical Chemistry Letters, 2023, 14, 1609-1617.	2.1	3
877	Comparative First-Principles Study on Tetravalent Ion-Incorporated MTW-Type Zeolites. Journal of Physical Chemistry C, 2023, 127, 3837-3848.	1.5	0
878	Model Chemistry Recommendations for Scaled Harmonic Frequency Calculations: A Benchmark Study. Journal of Physical Chemistry A, 2023, 127, 1715-1735.	1.1	19
879	Noncovalent Interactions in Crowded Benzene Systems: How Much Strain Is Too Much? Attractions Overcome Repulsions!. Synlett, 0, , .	1.0	0
880	The Boekelheide Rearrangement of Pyrimidine <i>N</i> â€oxides as a Case Study of Closed or Open Shell Reactions ―Experimental and Computational Evidence for the Participation of Radical Intermediates. Chemistry - A European Journal, 2023, 29, .	1.7	0

#	Article	IF	CITATIONS
881	Toward Pair Atomic Density Fitting for Correlation Energies with Benchmark Accuracy. Journal of Chemical Theory and Computation, 2023, 19, 1499-1516.	2.3	8
882	Exploring alkali metal cationâ< hydrogen interaction in the formation half sandwich complexes with cycloalkanes: a DFT approach. Pure and Applied Chemistry, 2023, .	0.9	0
883	Enantiopurification of Mandelic Acid by Crystallization-Induced Diastereomer Transformation: An Experimental and Computational Study. Crystal Growth and Design, 2023, 23, 2001-2010.	1.4	2
884	Machine Learning Interatomic Potentials and Long-Range Physics. Journal of Physical Chemistry A, 2023, 127, 2417-2431.	1.1	19
885	Editorial: Fragment-based electronic structure methods for solids. Frontiers in Chemistry, 0, 11, .	1.8	0
886	Mechanism and Selectivity of Copper-Catalyzed Bromination of Distal C(sp ³)–H Bonds. Organometallics, 2023, 42, 2467-2476.	1.1	1
887	Anomalous thickness dependence of photoluminescence quantum yield in black phosphorous. Nature Nanotechnology, 2023, 18, 507-513.	15.6	16
888	Functional group corrections to the GFN2-xTB and PM6 semiempirical methods for noncovalent interactions in alkanes and alkenes. Journal of Chemical Physics, 2023, 158, .	1.2	1
889	Decomposing Chemical Space: Applications to the Machine Learning of Atomic Energies. Journal of Chemical Theory and Computation, 2023, 19, 2029-2038.	2.3	3
890	Synthesis of an aqueous, air-stable, superconducting 1T′-WS ₂ monolayer ink. Science Advances, 2023, 9, .	4.7	10
891	Understanding and Describing London Dispersion Effects in ÂTransition-Metal-Catalyzed C–H Activations. Synlett, 2023, 34, 1098-1112.	1.0	1
892	CO and CO ₂ adsorption mechanism in Fe(pz)[Pt(CN) ₄] probed by neutron scattering and density-functional theory calculations. Physical Chemistry Chemical Physics, 0, , .	1.3	1
894	Dispersion in Crystal Structures of 1-Chloro-3-aryl-5-trihalomethyl-1λ4,2,4,6-thiatriazines: Towards an Understanding of the Supramolecular Organization of Covalent Thiazyl Chlorides. Synlett, 2023, 34, 1113-1121.	1.0	3
895	Hydrogen adsorption on lithium clusters coordinated to a gC3N4 cavity. Journal of Molecular Graphics and Modelling, 2023, 122, 108491.	1.3	1
896	L-Histidine-based computation devices. Pramana - Journal of Physics, 2023, 97, .	0.6	1
897	Investigating the Structural, Electronic, and Topological Properties of [BMIm][Fe(NO) ₂ Cl ₂] Magnetic Ionic Liquid: Density Functional Theory Approaches. Journal of Physical Chemistry B, 2023, 127, 3787-3797.	1.2	1
898	Ab Initio Molecular Dynamics: A Guide to Applications. , 2024, , 493-517.		0
906	How to make symmetry-adapted perturbation theory more accurate?. Advances in Quantum Chemistry, 2023, , 37-72.	0.4	1

		CITATION R	EPORT	
#	Article		IF	CITATIONS
909	Benchmarking Modern Density Functionals for Broad Applications in Chemistry. , 2024, ,	78-93.		0
912	Approaching Coupled Cluster Accuracy with Density Functional Theory Using the General Connectivity-Based Hierarchy. Journal of Chemical Theory and Computation, 2023, 19, 37	ized 763-3778.	2.3	2
913	First-principles modeling of dye-sensitized solar cells: From the optical properties of stand to the charge separation at dye/TiO2 interfaces. , 2023, , 215-245.	lalone dyes		1
915	Density-Derived Electrostatic and Chemical Methods. , 2024, , 362-405.			1
923	Application of Molecular Simulation Methods in Treating Intrinsic Structures of Energetic , 2023, , 41-113.	Materials.		1
966	Benchmarks for transition metal spin-state energetics: why and how to employ experimendata?. Physical Chemistry Chemical Physics, 2023, 25, 30800-30820.	ntal reference	1.3	0
970	Density Functional Theory Calculations for Materials with Complex Structures. The Mater Research Society Series, 2024, , 187-216.	ials	0.2	0
995	The quest for superheavy elements and the limit of the periodic table. Nature Reviews Phy 86-98.	vsics, 2024, 6,	11.9	1
1028	Theoretical Understanding and Insights on Flexible Metal–Organic Frameworks. , 2024	,,231-303.		0