Ligand-Binding Affinity Estimates Supported by Quant

Chemical Reviews 116, 5520-5566 DOI: 10.1021/acs.chemrev.5b00630

Citation Report

#	Article	IF	CITATIONS
1	Converging ligandâ€binding free energies obtained with freeâ€energy perturbations at the quantum mechanical level. Journal of Computational Chemistry, 2016, 37, 1589-1600.	1.5	46
2	Effective representation of amide III, II, I, and A modes on local vibrational modes: Analysis of ab initio quantum calculation results. Journal of Chemical Physics, 2016, 145, 164113.	1.2	4
3	Screened exchange hybrid density functional for accurate and efficient structures and interaction energies. Physical Chemistry Chemical Physics, 2016, 18, 15519-15523.	1.3	49
4	QM/MM Calculations on Proteins. Methods in Enzymology, 2016, 577, 119-158.	0.4	75
5	The electron's spin and molecular chirality – how are they related and how do they affect life processes?. Chemical Society Reviews, 2016, 45, 6478-6487.	18.7	194
6	Blind prediction of distribution in the SAMPL5 challenge with QM based protomer and pK a corrections. Journal of Computer-Aided Molecular Design, 2016, 30, 1087-1100.	1.3	27
7	An efficient protocol for obtaining accurate hydration free energies using quantum chemistry and reweighting from molecular dynamics simulations. Bioorganic and Medicinal Chemistry, 2016, 24, 4988-4997.	1.4	15
8	Efficient Geometry Optimization of Large Molecular Systems in Solution Using the Fragment Molecular Orbital Method. Journal of Physical Chemistry A, 2016, 120, 9794-9804.	1.1	12
9	Calculating distribution coefficients based on multi-scale free energy simulations: an evaluation of MM and QM/MM explicit solvent simulations of water-cyclohexane transfer in the SAMPL5 challenge. Journal of Computer-Aided Molecular Design, 2016, 30, 989-1006.	1.3	24
10	Towards full Quantumâ€Mechanicsâ€based Protein–Ligand Binding Affinities. ChemPhysChem, 2017, 18, 898-905.	1.0	46
11	Computing converged free energy differences between levels of theory via nonequilibrium work methods: Challenges and opportunities. Journal of Computational Chemistry, 2017, 38, 1376-1388.	1.5	28
12	Recent advances in dynamic docking for drug discovery. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2017, 7, e1320.	6.2	55
13	Full QM Calculation of RNA Energy Using Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps Method. Journal of Physical Chemistry A, 2017, 121, 2503-2514.	1.1	21
14	Comparison of QM/MM Methods To Obtain Ligand-Binding Free Energies. Journal of Chemical Theory and Computation, 2017, 13, 2245-2253.	2.3	45
15	On-the-Fly QM/MM Docking with Attracting Cavities. Journal of Chemical Information and Modeling, 2017, 57, 73-84.	2.5	42
16	Can System Truncation Speed up Ligand-Binding Calculations with Periodic Free-Energy Simulations?. Journal of Chemical Information and Modeling, 2017, 57, 2865-2873.	2.5	0
17	How Many Conformations Need To Be Sampled To Obtain Converged QM/MM Energies? The Curse of Exponential Averaging. Journal of Chemical Theory and Computation, 2017, 13, 5745-5752.	2.3	70
18	New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking. Journal of Molecular Graphics and Modelling, 2017, 78, 139-147.	1.3	37

#	Article	IF	CITATIONS
19	Theoretical models of inhibitory activity for inhibitors of protein–protein interactions: targeting menin–mixed lineage leukemia with small molecules. MedChemComm, 2017, 8, 2216-2227.	3.5	7
20	Electrostatics Explains the Positionâ€Dependent Effect of Gâ‹U Wobble Base Pairs on the Affinity of RNA Kissing Complexes. ChemPhysChem, 2017, 18, 2782-2790.	1.0	5
21	Calculations of the absolute binding free energies for Ralstonia solanacearum lectins bound with methyl-α- <scp>l</scp> -fucoside at molecular mechanical and quantum mechanical/molecular mechanical levels. RSC Advances, 2017, 7, 38570-38580.	1.7	7
22	HYDROPHOBE Challenge: A Joint Experimental and Computational Study on the Host–Guest Binding of Hydrocarbons to Cucurbiturils, Allowing Explicit Evaluation of Guest Hydration Free-Energy Contributions. Journal of Physical Chemistry B, 2017, 121, 11144-11162.	1.2	62
23	Binding free energies in the SAMPL5 octa-acid host–guest challenge calculated with DFT-D3 and CCSD(T). Journal of Computer-Aided Molecular Design, 2017, 31, 87-106.	1.3	21
24	Determination of the Bridging Ligand in the Active Site of Tyrosinase. Molecules, 2017, 22, 1836.	1.7	14
25	In Silico Studies of Small Molecule Interactions with Enzymes Reveal Aspects of Catalytic Function. Catalysts, 2017, 7, 212.	1.6	21
26	Molecular Dynamics, Quantum Mechanics, and Combined Quantum Mechanics/Molecular Mechanics Methods for Drug Discovery and Development. , 2017, , 51-66.		1
27	Imidazo[1,2â€ <i>c</i>]pyrimidinâ€5(6 <i>H</i>)â€one as a novel core of cyclinâ€dependent kinase 2 inhibitors: Synthesis, activity measurement, docking, and quantum mechanical scoring. Journal of Molecular Recognition, 2018, 31, e2720.	1.1	10
28	Can MM/GBSA calculations be sped up by system truncation?. Journal of Computational Chemistry, 2018, 39, 361-372.	1.5	6
29	Different Positron Emission Tomography Tau Tracers Bind to Multiple Binding Sites on the Tau Fibril: Insight from Computational Modeling. ACS Chemical Neuroscience, 2018, 9, 1757-1767.	1.7	69
30	Multiscale methods in drug design bridge chemical and biological complexity in the search for cures. Nature Reviews Chemistry, 2018, 2, .	13.8	112
31	Inhibition of the checkpoint protein PD-1 by the therapeutic antibody pembrolizumab outlined by quantum chemistry. Scientific Reports, 2018, 8, 1840.	1.6	33
32	Large-Scale Functional Group Symmetry-Adapted Perturbation Theory on Graphical Processing Units. Journal of Chemical Theory and Computation, 2018, 14, 1737-1753.	2.3	19
33	Structural Origin of Metal Specificity in Isatin Hydrolase from <i>Labrenzia aggregata</i> Investigated by Computer Simulations. Chemistry - A European Journal, 2018, 24, 5074-5077.	1.7	4
34	Ranking Power of the SQM/COSMO Scoring Function on Carbonic Anhydrase II–Inhibitor Complexes. ChemPhysChem, 2018, 19, 873-879.	1.0	29
35	Fragmentâ€based quantum mechanical calculation of protein–protein binding affinities. Journal of Computational Chemistry, 2018, 39, 1617-1628.	1.5	23
36	Estimations of energy of noncovalent bonding from integrals over interatomic zeroâ€flux surfaces: Correlation trends and beyond. Journal of Computational Chemistry, 2018, 39, 1607-1616.	1.5	34

#	Article	IF	CITATIONS
37	The possibility of iron chelation therapy in the presence of different HPOs; a molecular approach to the non-covalent interactions and binding energies. Journal of Molecular Structure, 2018, 1166, 448-455.	1.8	13
38	Computational structureâ€based drug design: Predicting target flexibility. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1367.	6.2	13
39	Fragment Molecular Orbital Calculations with Implicit Solvent Based on the Poisson–Boltzmann Equation: Implementation and DNA Study. Journal of Physical Chemistry B, 2018, 122, 4457-4471.	1.2	35
40	Integrative approaches in HIV â€1 nonâ€nucleoside reverse transcriptase inhibitor design. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1328.	6.2	10
41	Macrocycle Conformational Sampling by DFT-D3/COSMO-RS Methodology. Journal of Chemical Information and Modeling, 2018, 58, 48-60.	2.5	19
42	How accurate is the description of ligand–protein interactions by a hybrid QM/MM approach?. Journal of Molecular Modeling, 2018, 24, 11.	0.8	19
43	Computerchemie: das Schicksal aktueller Methoden und zukünftige Herausforderungen. Angewandte Chemie, 2018, 130, 4241-4248.	1.6	16
44	Computational Chemistry: The Fate of Current Methods and Future Challenges. Angewandte Chemie - International Edition, 2018, 57, 4170-4176.	7.2	138
45	A QM protein–ligand investigation of antipsychotic drugs with the dopamine D2 Receptor (D2R). Journal of Biomolecular Structure and Dynamics, 2018, 36, 2668-2677.	2.0	6
46	Validation of approximate nonempirical scoring model for menin-mixed lineage leukemia inhibitors. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	2
47	Potential of quantum computing for drug discovery. IBM Journal of Research and Development, 2018, 62, 6:1-6:20.	3.2	130
48	Molecular mechanism of substrate selectivity of the arginine-agmatine Antiporter AdiC. Scientific Reports, 2018, 8, 15607.	1.6	4
49	Theoretical Study of Protein–Ligand Interactions Using the Molecules-in-Molecules Fragmentation-Based Method. Journal of Chemical Theory and Computation, 2018, 14, 5143-5155.	2.3	33
50	Molecular insight into the interaction mechanisms of an annulated pyrazole (DB08446) with HIV-1 RT: a QM and QM/QM′ study. Monatshefte Für Chemie, 2018, 149, 1919-1929.	0.9	1
51	Force matching as a stepping stone to QM/MM CB[8] host/guest binding free energies: a SAMPL6 cautionary tale. Journal of Computer-Aided Molecular Design, 2018, 32, 983-999.	1.3	21
52	Empirical Scoring Functions for Structure-Based Virtual Screening: Applications, Critical Aspects, and Challenges. Frontiers in Pharmacology, 2018, 9, 1089.	1.6	185
53	Computational investigation of the α ₂ β ₁ integrin–collagen triple helix complex interaction. New Journal of Chemistry, 2018, 42, 17115-17125.	1.4	16
54	Accelerating QM/MM Free Energy Computations via Intramolecular Force Matching. Journal of Chemical Theory and Computation, 2018, 14, 6327-6335.	2.3	40

#	Article	IF	CITATIONS
55	A Comparison of QM/MM Simulations with and without the Drude Oscillator Model Based on Hydration Free Energies of Simple Solutes. Molecules, 2018, 23, 2695.	1.7	29
56	SAMPL6 host–guest challenge: binding free energies via a multistep approach. Journal of Computer-Aided Molecular Design, 2018, 32, 1097-1115.	1.3	16
57	Binding free energies in the SAMPL6 octa-acid host–guest challenge calculated with MM and QM methods. Journal of Computer-Aided Molecular Design, 2018, 32, 1027-1046.	1.3	15
58	Theoretical Model of EphA2-Ephrin A1 Inhibition. Molecules, 2018, 23, 1688.	1.7	4
59	Relative Ligand-Binding Free Energies Calculated from Multiple Short QM/MM MD Simulations. Journal of Chemical Theory and Computation, 2018, 14, 3228-3237.	2.3	23
60	Interaction energy profile for diphenyl diselenide in complex with δ-aminolevulinic acid dehydratase enzyme using quantum calculations and a molecular fragmentation method. Computational Toxicology, 2018, 7, 9-19.	1.8	5
61	Metal–ligand interactions in drug design. Nature Reviews Chemistry, 2018, 2, 100-112.	13.8	124
62	Novel insights into the selection to electron's spin of chiral structure. Nano Energy, 2018, 52, 142-152.	8.2	14
64	Quantum Chemical Approaches in Structure-Based Virtual Screening and Lead Optimization. Frontiers in Chemistry, 2018, 6, 188.	1.8	61
65	On the convergence of multi-scale free energy simulations. Molecular Simulation, 2018, 44, 1062-1081.	0.9	42
66	Calculating free energies from the vibrational density of states function: Validation and critical assessment. Journal of Chemical Physics, 2019, 150, 194111.	1.2	11
67	EnzyDock: Protein–Ligand Docking of Multiple Reactive States along a Reaction Coordinate in Enzymes. Journal of Chemical Theory and Computation, 2019, 15, 5116-5134.	2.3	28
68	Energy Decomposition Analysis of Protein–Ligand Interactions Using Molecules-in-Molecules Fragmentation-Based Method. Journal of Chemical Information and Modeling, 2019, 59, 3474-3484.	2.5	35
69	Prediction of AChE-ligand affinity using the umbrella sampling simulation. Journal of Molecular Graphics and Modelling, 2019, 93, 107441.	1.3	24
70	Binding energies of the drugs capreomycin and streptomycin in complex with tuberculosis bacterial ribosome subunits. Physical Chemistry Chemical Physics, 2019, 21, 19192-19200.	1.3	26
71	Click chemistry in silico, docking, quantum chemical calculations, and molecular dynamics simulations to identify novel 1,2,4-triazole-based compounds as potential aromatase inhibitors. SN Applied Sciences, 2019, 1, 1.	1.5	3
72	Predicting protein–ligand binding affinity and correcting crystal structures with quantum mechanical calculations: lactate dehydrogenase A. Chemical Science, 2019, 10, 2218-2227.	3.7	11
73	End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chemical Reviews, 2019, 119, 9478-9508.	23.0	1,064

#	Article	IF	CITATIONS
74	Use of Interaction Energies in QM/MM Free Energy Simulations. Journal of Chemical Theory and Computation, 2019, 15, 4632-4645.	2.3	21
75	Binding affinity in drug design: experimental and computational techniques. Expert Opinion on Drug Discovery, 2019, 14, 755-768.	2.5	75
76	Increasing the Potential of the Auristatin Cancer-Drug Family by Shifting the Conformational Equilibrium. Molecular Pharmaceutics, 2019, 16, 3600-3608.	2.3	7
77	Design and Optimization of Catalysts Based on Mechanistic Insights Derived from Quantum Chemical Reaction Modeling. Chemical Reviews, 2019, 119, 6509-6560.	23.0	130
78	In silico identification of genetic mutations conferring resistance to acetohydroxyacid synthase inhibitors: A case study of Kochia scoparia. PLoS ONE, 2019, 14, e0216116.	1.1	6
79	Probing the local conformational flexibility in receptor recognition: mechanistic insight from an atomic-scale investigation. RSC Advances, 2019, 9, 13968-13980.	1.7	4
80	Host–Guest Relative Binding Affinities at Density-Functional Theory Level from Semiempirical Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2019, 15, 2659-2671.	2.3	19
81	Efficient Corrections for DFT Noncovalent Interactions Based on Ensemble Learning Models. Journal of Chemical Information and Modeling, 2019, 59, 1849-1857.	2.5	19
82	The Good, the Bad, and the Ugly: "HiPenâ€, a New Dataset for Validating (S)QM/MM Free Energy Simulations. Molecules, 2019, 24, 681.	1.7	9
84	Improving the accuracy of predicting protein–ligand binding-free energy with semiempirical quantum chemistry charge. Future Medicinal Chemistry, 2019, 11, 303-321.	1.1	13
85	Catalytic Mechanism for 2,3-Dihydroxybiphenyl Ring Cleavage by Nonheme Extradiol Dioxygenases BphC: Insights from QM/MM Analysis. Journal of Physical Chemistry B, 2019, 123, 2244-2253.	1.2	5
86	Effective Estimation of Ligand-Binding Affinity Using Biased Sampling Method. ACS Omega, 2019, 4, 3887-3893.	1.6	52
87	Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal. Journal of Chemical Information and Modeling, 2019, 59, 5148-5160.	2.5	5
89	Predicting Stability Constants for Terbium(III) Complexes with Dipicolinic Acid and 4-Substituted Dipicolinic Acid Analogues using Density Functional Theory. ACS Omega, 2019, 4, 20665-20671.	1.6	19
90	Improved Modeling of Halogenated Ligand–Protein Interactions Using the Drude Polarizable and CHARMM Additive Empirical Force Fields. Journal of Chemical Information and Modeling, 2019, 59, 215-228.	2.5	23
91	Understanding non-covalent interactions in larger molecular complexes from first principles. Journal of Chemical Physics, 2019, 150, 010901.	1.2	56
92	Recent Advancements in Computing Reliable Binding Free Energies in Drug Discovery Projects. Challenges and Advances in Computational Chemistry and Physics, 2019, , 221-246.	0.6	1
93	Computational chemistry in drug lead discovery and design. International Journal of Quantum Chemistry, 2019, 119, e25678.	1.0	50

#	Article	IF	CITATIONS
94	Ligand binding free energy and kinetics calculation in 2020. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10, e1455.	6.2	86
95	Exploring the Binding Mechanism of GABA _B Receptor Agonists and Antagonists through in Silico Simulations. Journal of Chemical Information and Modeling, 2020, 60, 1005-1018.	2.5	16
96	Oversampling Free Energy Perturbation Simulation in Determination of the Ligandâ€Binding Free Energy. Journal of Computational Chemistry, 2020, 41, 611-618.	1.5	30
97	Analysis of Density-Functional Errors for Noncovalent Interactions between Charged Molecules. Journal of Physical Chemistry A, 2020, 124, 353-361.	1.1	5
98	On the polarization of ligands by proteins. Physical Chemistry Chemical Physics, 2020, 22, 12044-12057.	1.3	8
99	Toward Simple, Predictive Understanding of Protein-Ligand Interactions: Electronic Structure Calculations on Torpedo Californica Acetylcholinesterase Join Forces with the Chemist's Intuition. Scientific Reports, 2020, 10, 9218.	1.6	5
100	A combined molecular dynamics and quantum mechanics study on the interaction of Fe3+ and human serum albumin relevant to iron overload disease. Journal of Molecular Liquids, 2020, 317, 113933.	2.3	11
101	On the faithfulness of molecular mechanics representations of proteins towards quantum-mechanical energy surfaces. Interface Focus, 2020, 10, 20190121.	1.5	13
102	A quantum biochemistry investigation of the protein–protein interactions for the description of allosteric modulation on biomass-degrading chimera. Physical Chemistry Chemical Physics, 2020, 22, 25936-25948.	1.3	3
103	Advances in Docking. Current Medicinal Chemistry, 2020, 26, 7555-7580.	1.2	66
104	Fragment-based quantum mechanical approach to biomolecules, molecular clusters, molecular crystals and liquids. Physical Chemistry Chemical Physics, 2020, 22, 12341-12367.	1.3	38
105	Quantum Mechanical Investigation of Three-Dimensional Activity Cliffs Using the Molecules-in-Molecules Fragmentation-Based Method. Journal of Chemical Information and Modeling, 2020, 60, 2924-2938.	2.5	9
106	Computational Determination of Potential Inhibitors of SARS-CoV-2 Main Protease. Journal of Chemical Information and Modeling, 2020, 60, 5771-5780.	2.5	118
107	Xanthine oxidoreductase inhibition – A review of computational aspect. Journal of Theoretical and Computational Chemistry, 2020, 19, 2040008.	1.8	6
108	Molecular Structure, Binding Affinity, and Biological Activity in the Epigenome. International Journal of Molecular Sciences, 2020, 21, 4134.	1.8	9
109	SQM/COSMO Scoring Function: Reliable Quantumâ€Mechanical Tool for Sampling and Ranking in Structureâ€Based Drug Design. ChemPlusChem, 2020, 85, 2362-2371.	1.3	12
110	Virtual screening in drug discovery: a precious tool for a still-demanding challenge. , 2020, , 309-327.		3
111	Quantum Mechanics in Drug Discovery. Methods in Molecular Biology, 2020, , .	0.4	22

#	Article	IF	CITATIONS
112	Quantum Chemical Calculation of Molecular and Periodic Peptide and Protein Structures. Journal of Physical Chemistry B, 2020, 124, 3636-3646.	1.2	33
113	Extended <scp>tightâ€binding</scp> quantum chemistry methods. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1493.	6.2	596
114	Estimating the <scp>ligandâ€binding</scp> affinity via <scp>λâ€dependent</scp> umbrella sampling simulations. Journal of Computational Chemistry, 2021, 42, 117-123.	1.5	14
115	Computational investigation of possible inhibitors of the winged-helix domain of MUS81. Journal of Molecular Graphics and Modelling, 2021, 103, 107771.	1.3	5
116	Unraveling individual <scp>host–guest</scp> interactions in molecular recognition from first principles quantum mechanics: Insights into the nature of nicotinic acetylcholine receptor agonist binding. Journal of Computational Chemistry, 2021, 42, 293-302.	1.5	12
117	The latest automated docking technologies for novel drug discovery. Expert Opinion on Drug Discovery, 2021, 16, 625-645.	2.5	29
118	<i>In silico</i> approach of modified melanoma peptides and their immunotherapeutic potential. Physical Chemistry Chemical Physics, 2021, 23, 2836-2845.	1.3	3
119	Exploration of stilbenoid trimers as potential inhibitors of sirtuin1 enzyme using a molecular docking and molecular dynamics simulation approach. RSC Advances, 2021, 11, 19323-19332.	1.7	1
120	Blockade of the checkpoint PD-1 by its ligand PD-L1 and the immuno-oncological drugs pembrolizumab and nivolumab. Physical Chemistry Chemical Physics, 2021, 23, 21207-21217.	1.3	9
121	Protein–ligand free energies of binding from full-protein DFT calculations: convergence and choice of exchange–correlation functional. Physical Chemistry Chemical Physics, 2021, 23, 9381-9393.	1.3	20
122	Discovery of RTA ricin subunit inhibitors: a computational study using PM7 quantum chemical method and steered molecular dynamics. Journal of Biomolecular Structure and Dynamics, 2022, 40, 5427-5445.	2.0	4
123	Systematic Partitioning of Proteins for Quantum-Chemical Fragmentation Methods Using Graph Algorithms. Journal of Chemical Theory and Computation, 2021, 17, 1355-1367.	2.3	4
124	Exploring human porphobilinogen synthase metalloprotein by quantum biochemistry and evolutionary methods. Metallomics, 2021, 13, .	1.0	5
125	Ligand Strain and Its Conformational Complexity Is a Major Factor in the Binding of Cyclic Dinucleotides to STING Protein. Angewandte Chemie - International Edition, 2021, 60, 10172-10178.	7.2	22
126	Thermochemical and Quantum Descriptor Calculations for Gaining Insight into Ricin Toxin A (RTA) Inhibitors. ACS Omega, 2021, 6, 8764-8777.	1.6	6
127	Ligand Strain and Its Conformational Complexity Is a Major Factor in the Binding of Cyclic Dinucleotides to STING Protein. Angewandte Chemie, 2021, 133, 10260-10266.	1.6	3
128	Benchmark of Popular Free Energy Approaches Revealing the Inhibitors Binding to SARS-CoV-2 Mpro. Journal of Chemical Information and Modeling, 2021, 61, 2302-2312.	2.5	66
130	Application of deep learning and molecular modeling to identify small drug-like compounds as potential HIV-1 entry inhibitors. Journal of Biomolecular Structure and Dynamics, 2022, 40, 7555-7573.	2.0	15

	Стато	n Report	
#	Article	IF	CITATIONS
131	Docking Paradigm in Drug Design. Current Topics in Medicinal Chemistry, 2021, 21, 507-546.	1.0	23
132	Machine learning builds full-QM precision protein force fields in seconds. Briefings in Bioinformatics, 2021, 22, .	3.2	8
133	ETâ€score: Improving Proteinâ€ligand Binding Affinity Prediction Based on Distanceâ€weighted Interatomic Contact Features Using Extremely Randomized Trees Algorithm. Molecular Informatics, 2021, 40, e2060084.	1.4	9
134	Cryptic Sites in Tau Fibrils Explain the Preferential Binding of the AV-1451 PET Tracer toward Alzheimer's Tauopathy. ACS Chemical Neuroscience, 2021, 12, 2437-2447.	1.7	24
135	Quantum simulations of SARS-CoV-2 main protease Mpro enable high-quality scoring of diverse ligands. Journal of Computer-Aided Molecular Design, 2021, 35, 963-971.	1.3	13
136	<scp>RNA</scp> –ligand molecular docking: Advances and challenges. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1571.	6.2	20
137	Ligand binding: evaluating the contribution of the water molecules network using the Fragment Molecular Orbital method. Journal of Computer-Aided Molecular Design, 2021, 35, 1025-1036.	1.3	8
138	Identification of key stabilizing interactions of amyloidâ€ <i>β</i> oligomers based on fragment molecular orbital calculations on macrocyclic <scp><i>β</i>â€hairpin</scp> peptides. Proteins: Structure, Function and Bioinformatics, 2022, 90, 229-238.	1.5	6
139	Computational studies of protein–drug binding affinity changes upon mutations in the drug target. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1563.	6.2	16
140	Tissue-Specific Accumulation, Biotransformation, and Physiologically Based Toxicokinetic Modeling of Benzotriazole Ultraviolet Stabilizers in Zebrafish (<i>Danio rerio</i>). Environmental Science & amp; Technology, 2021, 55, 11874-11884.	4.6	37
141	Photopharmacological compounds based on azobenzenes and azoheteroarenes: principles of molecular design, molecular modelling, and synthesis. Russian Chemical Reviews, 2021, 90, 868-893.	2.5	11
142	Marine derivatives prevent <i>w</i> MUS81 <i>in silico</i> studies. Royal Society Open Science, 2021, 8, 210974.	1.1	5
143	Protein–Ligand Binding Molecular Details Revealed by Terahertz Optical Kerr Spectroscopy: A Simulation Study. Jacs Au, 2021, 1, 1788-1797.	3.6	3
144	Influence of the quantum mechanical region size in QM/MM modelling: A case study of fluoroacetate dehalogenase catalyzed C F bond cleavage. Computational and Theoretical Chemistry, 2021, 1204, 113399.	1.1	4
145	Nanomolar inhibition of human OGA by 2-acetamido-2-deoxy-d-glucono-1,5-lactone semicarbazone derivatives. European Journal of Medicinal Chemistry, 2021, 223, 113649.	2.6	6
146	Potential inhibitors for SARS-CoV-2 Mpro from marine compounds. RSC Advances, 2021, 11, 22206-22213.	1.7	8
147	Generalized energy-based fragmentation approach for calculations of solvation energies of large systems. Physical Chemistry Chemical Physics, 2021, 23, 19394-19401.	1.3	8
148	Current and Future Challenges in Modern Drug Discovery. Methods in Molecular Biology, 2020, 2114, 1-17.	0.4	10

#	Article	IF	CITATIONS
149	User-Friendly Quantum Mechanics: Applications for Drug Discovery. Methods in Molecular Biology, 2020, 2114, 231-255.	0.4	11
150	Binding Free Energy Calculation Using Quantum Mechanics Aimed for Drug Lead Optimization. Methods in Molecular Biology, 2020, 2114, 257-268.	0.4	26
151	Molecular Docking Using Quantum Mechanical-Based Methods. Methods in Molecular Biology, 2020, 2114, 269-284.	0.4	19
152	What Next for Quantum Mechanics in Structure-Based Drug Discovery?. Methods in Molecular Biology, 2020, 2114, 339-353.	0.4	11
153	Taking Water into Account with the Fragment Molecular Orbital Method. Methods in Molecular Biology, 2020, 2114, 105-122.	0.4	7
154	Current status and future prospects for enabling chemistry technology in the drug discovery process. F1000Research, 2016, 5, 2426.	0.8	6
155	Supercomputer Docking. Supercomputing Frontiers and Innovations, 2019, 6, .	0.5	3
156	Computational methods for calculation of protein-ligand binding affinities in structure-based drug design. ChemistrySelect, 2022, 7, 933-968.	0.7	1
157	Multispectroscopic and molecular modeling strategy to explore cholest-5-en-7-one and human serum albumin interactions: DFT and Hirshfeld surface analysis. Journal of King Saud University - Science, 2021, 33, 101661.	1.6	1
159	Improving <scp>ligandâ€ranking</scp> of <scp>AutoDock</scp> Vina by changing the empirical parameters. Journal of Computational Chemistry, 2022, 43, 160-169.	1.5	19
160	Docking and scoring for nucleic acid–ligand interactions: Principles and current status. Drug Discovery Today, 2022, 27, 838-847.	3.2	19
161	Analyzing Interactions with the Fragment Molecular Orbital Method. Methods in Molecular Biology, 2020, 2114, 49-73.	0.4	2
162	QM Implementation in Drug Design: Does It Really Help?. Methods in Molecular Biology, 2020, 2114, 19-35.	0.4	2
163	High Activity and Easily Hydrolyzable Sulfonylurea Inhibitor Design Based on Density Functional Theory Calculations. Journal of Computational Biophysics and Chemistry, 2021, 20, 41-52.	1.0	1
166	Vibration properties of immuneâ€oncological drugs. Journal of Raman Spectroscopy, 2022, 53, 715-723.	1.2	1
167	Local Electronic Charge Transfer in the Helical Induction of Cis-Transoid Poly(4-carboxyphenyl)acetylene by Chiral Amines. Journal of Chemical Information and Modeling, 2022, , .	2.5	1
168	Reliable Prediction of the Protein–Ligand Binding Affinity Using a Charge Penetration Corrected AMOEBA Force Field: A Case Study of Drug Resistance Mutations in Abl Kinase. Journal of Chemical Theory and Computation, 2022, , .	2.3	3
169	Property Map Collective Variable as a Useful Tool for a Force Field Correction. Journal of Chemical Information and Modeling, 2022, 62, 567-576.	2.5	2

#	Article	IF	CITATIONS
170	Decomposition of the interaction energy of several flavonoids with Escherichia coli DNA Gyr using the SAPT (DFT) method: The relation between the interaction energy components, ligand structure, and biological activity. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130111.	1.1	2
171	QM/MM Energy Decomposition Using the Interacting Quantum Atoms Approach. Journal of Chemical Information and Modeling, 2022, 62, 1510-1524.	2.5	6
172	Cov_DOX: A Method for Structure Prediction of Covalent Protein–Ligand Bindings. Journal of Medicinal Chemistry, 2022, 65, 5528-5538.	2.9	16
173	Searching for a Reliable Density Functional for Molecule–Environment Interactions, Found B97M-V/def2-mTZVP. Journal of Physical Chemistry A, 2022, 126, 2397-2406.	1.1	10
174	Umbrella Sampling-Based Method to Compute Ligand-Binding Affinity. Methods in Molecular Biology, 2022, 2385, 313-323.	0.4	5
175	Inverse Mixed-Solvent Molecular Dynamics for Visualization of the Residue Interaction Profile of Molecular Probes. International Journal of Molecular Sciences, 2022, 23, 4749.	1.8	0
176	Combining classical molecular docking with self-consistent charge density-functional tight-binding computations for the efficient and quality prediction of ligand binding structure. Journal of Chemical Research, 2022, 46, 174751982211019.	0.6	0
177	Searching for AChE inhibitors from natural compounds by using machine learning and atomistic simulations. Journal of Molecular Graphics and Modelling, 2022, 115, 108230.	1.3	8
178	Identifying Possible AChE Inhibitors from Drug-like Molecules via Machine Learning and Experimental Studies. ACS Omega, 2022, 7, 20673-20682.	1.6	11
179	Multistep orthophosphate release tunes actomyosin energy transduction. Nature Communications, 2022, 13, .	5.8	21
180	Searching for potential inhibitors of SARS-COV-2 main protease using supervised learning and perturbation calculations. Chemical Physics, 2023, 564, 111709.	0.9	6
181	MDO: A Computational Protocol for Prediction of Flexible Enzyme-Ligand Binding Mode. Current Computer-Aided Drug Design, 2022, 18, .	0.8	0
182	Molecular Docking: Principles, Advances, and Its Applications in Drug Discovery. Letters in Drug Design and Discovery, 2024, 21, 480-495.	0.4	9
183	BRD4: quantum mechanical protein–ligand binding free energies using the full-protein DFT-based QM-PBSA method. Physical Chemistry Chemical Physics, 2022, 24, 25240-25249.	1.3	1
184	Characterizing the ligand-binding affinity toward SARS-CoV-2 Mpro <i>via</i> physics- and knowledge-based approaches. Physical Chemistry Chemical Physics, 2022, 24, 29266-29278.	1.3	4
185	System truncation accelerates binding affinity calculations with the fragment molecular orbital method: A benchmark study. Journal of Computational Chemistry, 2023, 44, 824-831.	1.5	2
186	Molecular dynamics-based insight of VEGFR-2 kinase domain: a combined study of pharmacophore modeling and molecular docking and dynamics. Journal of Molecular Modeling, 2023, 29, .	0.8	3
187	A deep transfer learning-based protocol accelerates full quantum mechanics calculation of protein. Briefings in Bioinformatics, 2023, 24, .	3.2	3

#	Article	IF	CITATIONS
188	Fragment Molecular Orbital Based Affinity Prediction toward Pyruvate Dehydrogenase Kinases: Insights into the Charge Transfer in Hydrogen Bond Networks. Chemical and Pharmaceutical Bulletin, 2023, 71, 299-306.	0.6	2
189	TFRegNCI: Interpretable Noncovalent Interaction Correction Multimodal Based on Transformer Encoder Fusion. Journal of Chemical Information and Modeling, 2023, 63, 782-793.	2.5	1
190	Predicting Protein-Ligand Binding Affinity via Joint Global-Local Interaction Modeling. , 2022, , .		3
191	Quantum Mechanical-Cluster Approach to Solve the Bioisosteric Replacement Problem in Drug Design. Journal of Chemical Information and Modeling, 2023, 63, 1239-1248.	2.5	1
192	A computational study of the reaction mechanism and stereospecificity of dihydropyrimidinase. Physical Chemistry Chemical Physics, 2023, 25, 8767-8778.	1.3	2
203	Accelerating Scientific Applications with the Quantum Edge: A Drug Design Use Case. Lecture Notes in Computer Science, 2023, , 134-143.	1.0	1
214	Optoelectronics properties. , 2024, , 159-178.		0
215	Immune-oncological drug atezolizumab. , 2024, , 89-101.		0
216	Immune-oncological drug nivolumab. , 2024, , 103-121.		0

Immune-oncological drug nivolumab. , 2024, , 103-121. 216