Light and oxygen induced degradation limits the operate lead triiodide perovskite solar cells

Energy and Environmental Science 9, 1655-1660

DOI: 10.1039/c6ee00409a

Citation Report

#	Article	IF	CITATIONS
1	Synergistic Effects of Water and Oxygen Molecule Co-adsorption on (001) Surfaces of Tetragonal CH ₃ NH ₃ Pbl ₃ : A First-Principles Study. Journal of Physical Chemistry C, 2016, 120, 28448-28455.	1.5	47
2	Research Update: Behind the high efficiency of hybrid perovskite solar cells. APL Materials, 2016, 4, .	2.2	47
3	Research Update: Strategies for improving the stability of perovskite solar cells. APL Materials, 2016, 4,	2.2	126
4	Electro- and photoluminescence imaging as fast screening technique of the layer uniformity and device degradation in planar perovskite solar cells. Journal of Applied Physics, 2016, 120, .	1.1	27
5	Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy, 2016, 30, 162-172.	8.2	258
6	Thermal degradation of CH ₃ NH ₃ PbI ₃ perovskite into NH ₃ and CH ₃ I gases observed by coupled thermogravimetry–mass spectrometry analysis. Energy and Environmental Science, 2016, 9, 3406-3410.	15.6	616
7	Extending the Lifetime of Perovskite Solar Cells using a Perfluorinated Dopant. ChemSusChem, 2016, 9, 2708-2714.	3.6	62
8	Direct Observation of Reversible Transformation of CH ₃ NH ₃ PbI ₃ and NH ₄ PbI ₃ Induced by Polar Gaseous Molecules. Journal of Physical Chemistry Letters, 2016, 7, 5068-5073.	2.1	62
9	Graphene–Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study. ChemSusChem, 2016, 9, 2609-2619.	3.6	163
10	Elemental Mapping of Perovskite Solar Cells by Using Multivariate Analysis: An Insight into Degradation Processes. ChemSusChem, 2016, 9, 2673-2678.	3.6	21
11	Interaction of Organic Cation with Water Molecule in Perovskite MAPbl ₃ : From Dynamic Orientational Disorder to Hydrogen Bonding. Chemistry of Materials, 2016, 28, 7385-7393.	3.2	169
12	Photoluminescence Blinking of Single-Crystal Methylammonium Lead Iodide Perovskite Nanorods Induced by Surface Traps. ACS Omega, 2016, 1, 148-159.	1.6	76
13	Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells?. ACS Energy Letters, 2016, 1, 949-955.	8.8	404
14	Liquid Water- and Heat-Resistant Hybrid Perovskite Photovoltaics via an Inverted ALD Oxide Electron Extraction Layer Design. Nano Letters, 2016, 16, 7786-7790.	4.5	71
15	Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?. Energy and Environmental Science, 2016, 9, 3650-3656.	15.6	239
16	Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene. Nature Communications, 2016, 7, 12806.	5.8	350
17	Undesirable role of remnant PbI ₂ layer on low temperature processed planar perovskite solar cells. RSC Advances, 2016, 6, 101250-101258.	1.7	18
18	A simple method to evaluate the effectiveness of encapsulation materials for perovskite solar cells. Solar Energy, 2016, 139, 426-432.	2.9	36

#	Article	IF	CITATIONS
19	Influence of Surface Termination on the Energy Level Alignment at the CH ₃ NH ₃ PbI ₃ Perovskite/C60 Interface. Chemistry of Materials, 2017, 29, 958-968.	3.2	149
20	Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy and Environmental Science, 2017, 10, 604-613.	15.6	525
21	Probe Decomposition of Methylammonium Lead Iodide Perovskite in N ₂ and O ₂ by in Situ Infrared Spectroscopy. Journal of Physical Chemistry A, 2017, 121, 1169-1174.	1.1	35
22	Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. Journal of Materials Chemistry A, 2017, 5, 11462-11482.	5.2	378
23	Probing the Intrinsic Thermal and Photochemical Stability of Hybrid and Inorganic Lead Halide Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 1211-1218.	2.1	216
24	A pure and stable intermediate phase is key to growing aligned and vertically monolithic perovskite crystals for efficient PIN planar perovskite solar cells with high processibility and stability. Nano Energy, 2017, 34, 58-68.	8.2	151
25	Optimizing the Activity of Nanoneedle Structured WO ₃ Photoanodes for Solar Water Splitting: Direct Synthesis via Chemical Vapor Deposition. Journal of Physical Chemistry C, 2017, 121, 5983-5993.	1.5	71
26	Light-Induced Degradation of CH ₃ NH ₃ PbI ₃ Hybrid Perovskite Thin Film. Journal of Physical Chemistry C, 2017, 121, 3904-3910.	1.5	265
27	Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges. Sustainable Energy and Fuels, 2017, 1, 30-55.	2.5	150
28	Degradation mechanism of planar-perovskite solar cells: correlating evolution of iodine distribution and photocurrent hysteresis. Journal of Materials Chemistry A, 2017, 5, 4527-4534.	5.2	69
29	The investigation of an amidine-based additive in the perovskite films and solar cells. Journal of Semiconductors, 2017, 38, 014001.	2.0	6
30	Ab initio study of the role of oxygen and excess electrons in the degradation of CH ₃ NH ₃ PbI ₃ . Journal of Materials Chemistry A, 2017, 5, 9042-9049.	5.2	71
31	Fourâ€Terminal Perovskite/Silicon Multijunction Solar Modules. Advanced Energy Materials, 2017, 7, 1602807.	10.2	75
32	Recent progress in stabilizing hybrid perovskites for solar cell applications. Journal of Power Sources, 2017, 355, 98-133.	4.0	96
33	Cu–In Halide Perovskite Solar Absorbers. Journal of the American Chemical Society, 2017, 139, 6718-6725.	6.6	316
34	Impact of moisture on efficiency-determining electronic processes in perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 10917-10927.	5.2	95
35	Spontaneous Passivation of Hybrid Perovskite by Sodium Ions from Glass Substrates: Mysterious Enhancement of Device Efficiency Revealed. ACS Energy Letters, 2017, 2, 1400-1406.	8.8	143
36	Reversible and Irreversible Electric Field Induced Morphological and Interfacial Transformations of Hybrid Lead Iodide Perovskites. ACS Applied Materials & Interfaces, 2017, 9, 33478-33483.	4.0	27

#	Article	IF	CITATIONS
37	Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nature Communications, 2017, 8, 15218.	5.8	917
38	Pinhole-Free Hybrid Perovskite Film with Arbitrarily-Shaped Micro-Patterns for Functional Optoelectronic Devices. Nano Letters, 2017, 17, 3563-3569.	4.5	57
39	Efficient and Airâ€Stable Mixedâ€Cation Lead Mixedâ€Halide Perovskite Solar Cells with nâ€Doped Organic Electron Extraction Layers. Advanced Materials, 2017, 29, 1604186.	11.1	237
40	Stabilitävon Perowskitâ€Solarzellen: Einfluss der Substitution von Aâ€Kation und Xâ€Anion. Angewandte Chemie, 2017, 129, 1210-1233.	1.6	27
41	Radiative Thermal Annealing/in Situ X-ray Diffraction Study of Methylammonium Lead Triiodide: Effect of Antisolvent, Humidity, Annealing Temperature Profile, and Film Substrates. Chemistry of Materials, 2017, 29, 5931-5941.	3.2	35
42	Pronounced Exciton Dynamics in the Vacancy-Ordered Bismuth Halide Perovskite (CH ₃ NH ₃) ₃ Bi ₂ I ₉ Observed by Ultrafast UV–vis–NIR Transient Absorption Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 12110-12116.	1.5	39
43	Revealing a Discontinuity in the Degradation Behavior of CH ₃ NH ₃ PbI ₃ during Thermal Operation. Journal of Physical Chemistry C, 2017, 121, 13577-13585.	1.5	37
44	Revealing the role of thiocyanate anion in layered hybrid halide perovskite (CH3NH3)2Pb(SCN)2I2. Journal of Chemical Physics, 2017, 146, 224702.	1.2	49
45	Structure formation and evolution in semiconductor films for perovskite and organic photovoltaics. Journal of Materials Research, 2017, 32, 1798-1824.	1.2	16
46	First Evidence of CH ₃ NH ₃ PbI ₃ Optical Constants Improvement in a N ₂ Environment in the Range 40–80 °C. Journal of Physical Chemistry C, 2017, 121, 7703-7710.	1.5	49
47	Conductivity of CH 3 NH 3 PbI 3 thin film perovskite stored in ambient atmosphere. Physica B: Condensed Matter, 2017, 514, 85-88.	1.3	11
48	Tuning CH ₃ NH ₃ Pb(I _{1â^³x} Br _x) ₃ perovskite oxygen stability in thin films and solar cells. Journal of Materials Chemistry A, 2017, 5, 9553-9560.	5.2	72
49	Gold and iodine diffusion in large area perovskite solar cells under illumination. Nanoscale, 2017, 9, 4700-4706.	2.8	133
50	Lead-Free Perovskite Nanowire Array Photodetectors with Drastically Improved Stability in Nanoengineering Templates. Nano Letters, 2017, 17, 523-530.	4.5	232
51	Stability issues pertaining large area perovskite and dye-sensitized solar cells and modules. Journal Physics D: Applied Physics, 2017, 50, 033001.	1.3	42
52	High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration. Nature Energy, 2017, 2, .	19.8	247
53	Lessons Learnt from Spatially Resolved Electro―and Photoluminescence Imaging: Interfacial Delamination in CH ₃ NH ₃ PbI ₃ Planar Perovskite Solar Cells upon Illumination. Advanced Energy Materials, 2017, 7, 1602111.	10.2	50
54	Improved stability and efficiency of perovskite solar cells with submicron flexible barrier films deposited in air. Journal of Materials Chemistry A, 2017, 5, 22975-22983.	5.2	38

	CITATION RE	PORT	
#	Article	IF	CITATIONS
55	Imaging Energy Harvesting and Storage Systems at the Nanoscale. ACS Energy Letters, 2017, 2, 2761-2777.	8.8	39
56	Metalâ€Halide Perovskite Transistors for Printed Electronics: Challenges and Opportunities. Advanced Materials, 2017, 29, 1702838.	11.1	117
57	Decorating Perovskite Quantum Dots in TiO ₂ Nanotubes Array for Broadband Response Photodetector. Advanced Functional Materials, 2017, 27, 1703115.	7.8	142
58	Enhancing Efficiency of Perovskite Solar Cells via Surface Passivation with Graphene Oxide Interlayer. ACS Applied Materials & Interfaces, 2017, 9, 38967-38976.	4.0	118
59	Route to Stable Lead-Free Double Perovskites with the Electronic Structure of CH ₃ NH ₃ Pbl ₃ : A Case for Mixed-Cation [Cs/CH ₃ NH ₃ /CH(NH ₂) ₂] ₂ InBiBr ₆ . Journal of Physical Chemistry Letters, 2017, 8, 3917-3924.	2.1	82
60	Heat- and Gas-Induced Transformation in CH ₃ NH ₃ PbI ₃ Perovskites and Its Effect on the Efficiency of Solar Cells. Chemistry of Materials, 2017, 29, 8478-8485.	3.2	50
61	Enhanced efficiency and stability of inverted perovskite solar cells by interfacial engineering with alkyl bisphosphonic molecules. RSC Advances, 2017, 7, 42105-42112.	1.7	13
62	High-Stability, Self-Powered Perovskite Photodetector Based on a CH ₃ NH ₃ Pbl ₃ /GaN Heterojunction with C ₆₀ as an Electron Transport Layer. Journal of Physical Chemistry C, 2017, 121, 21541-21545.	1.5	64
63	Investigation of Thermally Induced Degradation in CH3NH3PbI3 Perovskite Solar Cells using In-situ Synchrotron Radiation Analysis. Scientific Reports, 2017, 7, 4645.	1.6	177
64	Updating the road map to metal-halide perovskites for photovoltaics. Journal of Materials Chemistry A, 2017, 5, 17135-17150.	5.2	33
65	Long‣asting Nanophosphors Applied to UVâ€Resistant and Energy Storage Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700758.	10.2	117
66	Emerging Semitransparent Solar Cells: Materials and Device Design. Advanced Materials, 2017, 29, 1700192.	11.1	200
67	Role of Microstructure in Oxygen Induced Photodegradation of Methylammonium Lead Triiodide Perovskite Films. Advanced Energy Materials, 2017, 7, 1700977.	10.2	183
68	Dimensional Engineering of a Graded 3D–2D Halide Perovskite Interface Enables Ultrahigh <i>V</i> _{oc} Enhanced Stability in the pâ€iâ€n Photovoltaics. Advanced Energy Materials, 2017, 7, 1701038.	10.2	319
69	Hindered Amine Light Stabilizers Increase the Stability of Methylammonium Lead Iodide Perovskite Against Light and Oxygen. ChemSusChem, 2017, 10, 3760-3764.	3.6	17
70	Bromine substitution improves excited-state dynamics in mesoporous mixed halide perovskite films. Nanoscale, 2017, 9, 12005-12013.	2.8	21
71	Thermal Conductivity of Methylammonium Lead Halide Perovskite Single Crystals and Thin Films: A Comparative Study. Journal of Physical Chemistry C, 2017, 121, 28306-28311.	1.5	93
72	Insights into the increased degradation rate of CH ₃ NH ₃ PbI ₃ solar cells in combined water and O ₂ environments. Journal of Materials Chemistry A, 2017, 5, 25469-25475.	5.2	52

#	Article	IF	CITATIONS
73	Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Science Advances, 2017, 3, eaao5616.	4.7	635
74	Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites. Journal of the American Chemical Society, 2017, 139, 18632-18639.	6.6	111
75	Unraveling the Lightâ€Induced Degradation Mechanisms of CH ₃ NH ₃ PbI ₃ Perovskite Films. Advanced Electronic Materials, 2017, 3, 1700158.	2.6	130
76	Ultrasound-spray deposition of multi-walled carbon nanotubes on NiO nanoparticles-embedded perovskite layers for high-performance carbon-based perovskite solar cells. Nano Energy, 2017, 42, 322-333.	8.2	82
77	Intrinsic and interfacial kinetics of perovskite solar cells under photo and bias-induced degradation and recovery. Journal of Materials Chemistry C, 2017, 5, 7799-7805.	2.7	34
78	Spatially-resolved nanoscale measurements of grain boundary enhanced photocurrent in inorganic CsPbBr3 perovskite films. Solar Energy Materials and Solar Cells, 2017, 171, 205-212.	3.0	38
79	Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nature Communications, 2017, 8, 16045.	5.8	359
80	Solar Cells Overview and Perspective to Light-Trapping Schemes. Green Energy and Technology, 2017, , 1-16.	0.4	0
81	Realization of efficient perovskite solar cells with MEH:PPV hole transport layer. Journal of Materials Science: Materials in Electronics, 2017, 28, 3451-3457.	1.1	12
82	Device preâ€conditioning and steadyâ€state temperature dependence of CH ₃ NH ₃ Pbl ₃ perovskite solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 533-544.	4.4	17
83	Decomposition and Cell Failure Mechanisms in Lead Halide Perovskite Solar Cells. Inorganic Chemistry, 2017, 56, 92-101.	1.9	117
84	Beyond methylammonium lead iodide: prospects for the emergent field of ns ² containing solar absorbers. Chemical Communications, 2017, 53, 20-44.	2.2	357
85	Stability of Perovskite Solar Cells: A Prospective on the Substitution of the Aâ€Cation and Xâ€Anion. Angewandte Chemie - International Edition, 2017, 56, 1190-1212.	7.2	473
86	Progress in fullerene-based hybrid perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 2635-2651.	2.7	114
87	Morphology and Photoluminescence of CH3NH3PbI3 Deposits on Nonplanar, Strongly Curved Substrates. ACS Photonics, 2018, 5, 1476-1485.	3.2	16
88	Graphene Oxide for DSSC, OPV and Perovskite Stability. , 2018, , 503-531.		3
89	[6,6]-Phenyl-C ₆₁ -Butyric Acid Methyl Ester/Cerium Oxide Bilayer Structure as Efficient and Stable Electron Transport Layer for Inverted Perovskite Solar Cells. ACS Nano, 2018, 12, 2403-2414.	7.3	114
90	Characterising degradation of perovskite solar cells through in-situ and operando electron microscopy. Nano Energy, 2018, 47, 243-256.	8.2	67

#	Article	IF	CITATIONS
91	Temperature Variation-Induced Performance Decline of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 16390-16399.	4.0	89
92	Interfacial benzenethiol modification facilitates charge transfer and improves stability of cm-sized metal halide perovskite solar cells with up to 20% efficiency. Energy and Environmental Science, 2018, 11, 1880-1889.	15.6	148
93	Improving the stability and decreasing the trap state density of mixed-cation perovskite solar cells through compositional engineering. Sustainable Energy and Fuels, 2018, 2, 1332-1341.	2.5	36
94	The Role of Excitation Energy in Photobrightening and Photodegradation of Halide Perovskite Thin Films. Journal of Physical Chemistry Letters, 2018, 9, 2062-2069.	2.1	74
95	Elucidating ultrafast electron dynamics at surfaces using extreme ultraviolet (XUV) reflection–absorption spectroscopy. Chemical Communications, 2018, 54, 4216-4230.	2.2	26
96	Nanoscale photocurrent mapping in perovskite solar cells. Nano Energy, 2018, 48, 543-550.	8.2	19
97	Interplay between Ion Transport, Applied Bias, and Degradation under Illumination in Hybrid Perovskite p-i-n Devices. Journal of Physical Chemistry C, 2018, 122, 13986-13994.	1.5	50
98	Improved Stability of Organometal Halide Perovskite Films and Solar Cells toward Humidity via Surface Passivation with Oleic Acid. ACS Applied Energy Materials, 2018, 1, 387-392.	2.5	66
99	Aromatic Alkylammonium Spacer Cations for Efficient Twoâ€Dimensional Perovskite Solar Cells with Enhanced Moisture and Thermal Stability. Solar Rrl, 2018, 2, 1700215.	3.1	55
100	Dark electrical bias effects on moisture-induced degradation in inverted lead halide perovskite solar cells measured by using advanced chemical probes. Sustainable Energy and Fuels, 2018, 2, 905-914.	2.5	32
101	In Situ Observation of Light Illumination-Induced Degradation in Organometal Mixed-Halide Perovskite Films. ACS Applied Materials & Interfaces, 2018, 10, 6737-6746.	4.0	69
102	Stability and Performance of CsPbI ₂ Br Thin Films and Solar Cell Devices. ACS Applied Materials & amp; Interfaces, 2018, 10, 3750-3760.	4.0	123
103	Design Strategy for Improving Optical and Electrical Properties and Stability of Lead-Halide Semiconductors. Journal of the American Chemical Society, 2018, 140, 2805-2811.	6.6	210
104	In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1706923.	7.8	543
105	Lowâ€Temperature Solutionâ€Processed CuCrO ₂ Holeâ€Transporting Layer for Efficient and Photostable Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1702762.	10.2	137
106	Improving the Stability of Metal Halide Perovskite Materials and Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, e1704587.	11.1	368
107	Manipulation of cation combinations and configurations of halide double perovskites for solar cell absorbers. Journal of Materials Chemistry A, 2018, 6, 1809-1815.	5.2	85
108	Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nature Energy, 2018, 3, 61-67.	19.8	544

#	ARTICLE	IF	CITATIONS
109	Light-induced reactivity of gold and hybrid perovskite as a new possible degradation mechanism in perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 1780-1786.	5.2	132
110	Metal halide perovskite: a game-changer for photovoltaics and solar devices via a tandem design. Science and Technology of Advanced Materials, 2018, 19, 53-75.	2.8	28
111	How does alkyl chain length modify the properties of triphenylamine-based hole transport materials?. Journal of Materials Chemistry C, 2018, 6, 960-965.	2.7	23
112	Mechanically-stacked perovskite/CICS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity. Energy and Environmental Science, 2018, 11, 394-406.	15.6	209
113	Effect of Interfacial Energetics on Charge Transfer from Lead Halide Perovskite to Organic Hole Conductors. Journal of Physical Chemistry C, 2018, 122, 1326-1332.	1.5	32
114	Alternative Perovskites for Photovoltaics. Advanced Energy Materials, 2018, 8, 1703120.	10.2	85
115	Light-current-induced acceleration of degradation of methylammonium lead iodide perovskite solar cells. Journal of Power Sources, 2018, 384, 303-311.	4.0	9
116	Review of recent developments and persistent challenges in stability of perovskite solar cells. Renewable and Sustainable Energy Reviews, 2018, 90, 210-222.	8.2	96
117	Lithiumâ€lon Endohedral Fullerene (Li ⁺ @C ₆₀) Dopants in Stable Perovskite Solar Cells Induce Instant Doping and Antiâ€Oxidation. Angewandte Chemie, 2018, 130, 4697-4701.	1.6	18
118	Advances in the Synthesis of Small Molecules as Hole Transport Materials for Lead Halide Perovskite Solar Cells. Accounts of Chemical Research, 2018, 51, 869-880.	7.6	121
119	Highlyâ€Stable Organoâ€Lead Halide Perovskites Synthesized Through Green Selfâ€Assembly Process. Solar Rrl, 2018, 2, 1800052.	3.1	56
120	Enhancing Moisture and Water Resistance in Perovskite Solar Cells by Encapsulation with Ultrathin Plasma Polymers. ACS Applied Materials & Interfaces, 2018, 10, 11587-11594.	4.0	125
121	Lithiumâ€Ion Endohedral Fullerene (Li ⁺ @C ₆₀) Dopants in Stable Perovskite Solar Cells Induce Instant Doping and Antiâ€Oxidation. Angewandte Chemie - International Edition, 2018, 57, 4607-4611.	7.2	89
122	Low-temperature SnO ₂ -modified TiO ₂ yields record efficiency for normal planar perovskite solar modules. Journal of Materials Chemistry A, 2018, 6, 10233-10242.	5.2	75
123	Perowskitâ€Solarzellen: atomare Ebene, Schichtqualitäund Leistungsfäigkeit der Zellen. Angewandte Chemie, 2018, 130, 2582-2598.	1.6	37
124	Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance. Angewandte Chemie - International Edition, 2018, 57, 2554-2569.	7.2	413
125	Improving the moisture stability of perovskite solar cells by using PMMA/P3HT based hole-transport layers. Materials Chemistry Frontiers, 2018, 2, 81-89.	3.2	43
126	Stability of Molecular Devices: Halide Perovskite Solar Cells. Green Chemistry and Sustainable Technology, 2018, , 477-531.	0.4	1

ARTICLE IF CITATIONS The effect of oxygen molecule adsorption on lead iodide perovskite surface by first-principles 127 3.139 calculation. Applied Surface Science, 2018, 428, 140-147. Molecular Interlayers in Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1701544. 10.2 Degradation of encapsulated perovskite solar cells driven by deep trap states and interfacial 129 2.7 91 deterioration. Journal of Materials Chemistry C, 2018, 6, 162-170. Highly Efficient and Stable Perovskite Solar Cells Enabled by All-Crosslinked Charge-Transporting Layers. Joule, 2018, 2, 168-183. Compositional Engineering To Improve the Stability of Lead Halide Perovskites: A Comparative Study of 131 2.5 29 Cationic and Anionic Dopants. ACS Applied Energy Materials, 2018, 1, 181-190. Influence of water intercalation and hydration on chemical decomposition and ion transport in 5.2 94 methylammonium lead halide perovskites. Journal of Materials Chemistry A, 2018, 6, 1067-1074. Degradation of inverted architecture 133 <scp>CH</scp>₃<scp>NH</scp>₃Pbl_{3â€}<scp>_xC</scp>l<sub}a</sub>21 perovskite solar cells due to trapped moisture. Energy Science and Engineering, 2018, 6, 35-46. Influence of Radiation on the Properties and the Stability of Hybrid Perovskites. Advanced Materials, 134 11.1 2018, 30, 1702905. Photo-induced dual passivation <i>via</i> Usanovich acidâ€"base on surface defects of 135 1.3 5 methylammonium lead triiodide perovskite. Physical Chemistry Chemical Physics, 2018, 20, 28068-28074. Photovoltaic effect in a few-layer ReS₂/WSe₂ heterostructure. Nanoscale, 2.8 38 2018, 10, 20306-20312. Highly efficient and stable inverted perovskite solar cells with two-dimensional ZnSe deposited using 137 5.2 10 a thermal evaporator for electron collection. Journal of Materials Chemistry A, 2018, 6, 22713-22720. Atomic scale insights into structure instability and decomposition pathway of methylammonium lead 138 5.8 161 iodide perovskite. Nature Communications, 2018, 9, 4807. The Role of Charge Selective Contacts in Perovskite Solar Cell Stability. Advanced Energy Materials, 139 10.2 120 2019, 9, 1803140. Intrinsic Behavior of CH₃NH₃PbBr₃ Single Crystals under Light 140 Illumination. Advanced Materials Interfaces, 2018, 5, 1801206. The Impact of Nano―and Microstructure on the Stability of Perovskite Solar Cells. Small, 2018, 14, 141 5.242 e1802573. MoS₂ Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH₃NH₃Pbl₃Perovskite Solar Cell with an Efficiency of over 20%. 142 201 ACS Nano, 2018, 12, 10736-10754. Enhancing Quantum Dot Solar Cells Stability with a Semiconducting Singleâ€Walled Carbon Nanotubes 143 1.9 23 Interlayer Below the Top Anode. Advanced Materials Interfaces, 2018, 5, 1801155. Phase Pure 2D Perovskite for Highâ€Performance 2D–3D Heterostructured Perovskite Solar Cells. 144 11.1 244 Advanced Materials, 2018, 30, e1805323.

#	Article	IF	CITATIONS
145	Excitation Density Dependent Photoluminescence Quenching and Charge Transfer Efficiencies in Hybrid Perovskite/Organic Semiconductor Bilayers. Advanced Energy Materials, 2018, 8, 1802474.	10.2	59
146	Significant Stability Enhancement of Perovskite Solar Cells by Facile Adhesive Encapsulation. Journal of Physical Chemistry C, 2018, 122, 25260-25267.	1.5	31
147	Initial photochemical stability in perovskite solar cells based on the Cu electrode and the appropriate charge transport layers. Synthetic Metals, 2018, 246, 101-107.	2.1	18
148	Comprehensive studies of air-brush spray deposition used in fabricating high-efficiency CH3NH3PbI3 perovskite solar cells: Combining theories with practices. Journal of Power Sources, 2018, 402, 82-90.	4.0	31
149	Chemical interaction dictated energy level alignment at the N,N′-dipentyl-3,4,9,10-perylenedicarboximide/CH3NH3Pbl3 interface. Applied Physics Letters, 2018, 113, .	1.5	11
150	Eliminating Light-Soaking Instability in Planar Heterojunction Perovskite Solar Cells by Interfacial Modifications. ACS Applied Materials & Interfaces, 2018, 10, 33144-33152.	4.0	30
151	Engineering Stress in Perovskite Solar Cells to Improve Stability. Advanced Energy Materials, 2018, 8, 1802139.	10.2	271
152	Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nature Materials, 2018, 17, 900-907.	13.3	351
153	Realâ€Time In Situ Observation of Microstructural Change in Organometal Halide Perovskite Induced by Thermal Degradation. Advanced Functional Materials, 2018, 28, 1804039.	7.8	45
154	In Situ Cesium Modification at Interface Enhances the Stability of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 33205-33213.	4.0	27
155	Perovskites for Light Emission. Advanced Materials, 2018, 30, e1801996.	11.1	417
156	<i>In situ</i> XPS study of the surface chemistry of MAPI solar cells under operating conditions in vacuum. Physical Chemistry Chemical Physics, 2018, 20, 17180-17187.	1.3	59
157	Interaction of oxygen with halide perovskites. Journal of Materials Chemistry A, 2018, 6, 10847-10855.	5.2	140
158	Improving the stability and performance of perovskite solar cells <i>via</i> off-the-shelf post-device ligand treatment. Energy and Environmental Science, 2018, 11, 2253-2262.	15.6	181
159	Investigation on Enhanced Moisture Resistance of Two-Dimensional Layered Hybrid Organic–Inorganic Perovskites (C ₄ H ₉ NH ₃) ₂ PbI ₄ . Journal of Physical Chemistry C, 2018, 122, 11862-11869.	1.5	13
160	Stability and Degradation in Hybrid Perovskites: Is the Class Half-Empty or Half-Full?. Journal of Physical Chemistry Letters, 2018, 9, 3000-3007.	2.1	102
161	Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energy and Environmental Science, 2018, 11, 2609-2619.	15.6	276
162	Ion Migration in Hybrid Perovskites. , 2018, , 163-196.		10

#	ARTICLE	IF	CITATIONS
163	Fabrication and Life Time of Perovskite Solar Cells. , 2018, , 231-287.		7
165	Ultrahigh open-circuit voltage for high performance mixed-cation perovskite solar cells using acetate anions. Journal of Materials Chemistry A, 2018, 6, 14387-14391.	5.2	18
166	High Performance and Stable Allâ€Inorganic Metal Halide Perovskiteâ€Based Photodetectors for Optical Communication Applications. Advanced Materials, 2018, 30, e1803422.	11.1	342
167	Stability of Perovskites at the Surface Analytic Level. Journal of Physical Chemistry Letters, 2018, 9, 4657-4666.	2.1	17
168	Optimizing film morphology and crystal orientation of perovskite for efficient planar-heterojunction solar cells by slowing crystallization process. Organic Electronics, 2018, 62, 26-34.	1.4	10
169	Spray-Pyrolyzed ZnO as Electron Selective Contact for Long-Term Stable Planar CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 4057-4064.	2.5	18
170	Effect of halide ratio and Cs+ addition on the photochemical stability of lead halide perovskites. Journal of Materials Chemistry A, 2018, 6, 22134-22144.	5.2	26
171	Anomalous effect of UV light on the humidity dependence of photocurrent in perovskite solar cells. Nanotechnology, 2018, 29, 405701.	1.3	3
172	Oxygen aging time: A dominant step for spiro-OMeTAD in perovskite solar cells. Journal of Renewable and Sustainable Energy, 2018, 10, .	0.8	12
173	Mixed A-Cation Perovskites for Solar Cells: Atomic-Scale Insights Into Structural Distortion, Hydrogen Bonding, and Electronic Properties. Chemistry of Materials, 2018, 30, 5194-5204.	3.2	127
174	Influence of Hot Spot Heating on Stability of Large Size Perovskite Solar Module with a Power Conversion Efficiency of â^1/414%. ACS Applied Energy Materials, 2018, 1, 3565-3570.	2.5	13
175	Synergistic effects of thiocyanate additive and cesium cations on improving the performance and initial illumination stability of efficient perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 2435-2441.	2.5	27
176	Dynamically Disordered Lattice in a Layered Pb-I-SCN Perovskite Thin Film Probed by Two-Dimensional Infrared Spectroscopy. Journal of the American Chemical Society, 2018, 140, 9882-9890.	6.6	49
177	Low-Temperature Solution-Processed ZnSe Electron Transport Layer for Efficient Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Photostability. ACS Nano, 2018, 12, 5605-5614.	7.3	89
178	Probing the origins of photodegradation in organic–inorganic metal halide perovskites with time-resolved mass spectrometry. Sustainable Energy and Fuels, 2018, 2, 2460-2467.	2.5	84
179	Methylammonium, formamidinium and ethylenediamine mixed triple-cation perovskite solar cells with high efficiency and remarkable stability. Journal of Materials Chemistry A, 2018, 6, 17625-17632.	5.2	37
180	Cs _{0.15} FA _{0.85} PbI ₃ perovskite solar cells for concentrator photovoltaic applications. Journal of Materials Chemistry A, 2018, 6, 21913-21917.	5.2	31
181	Air molecules in XPbI3 (X=MA, FA, Cs) perovskite: A degradation mechanism based on first <i>-</i> principles calculations. Journal of Applied Physics, 2018, 124, .	1.1	15

#	Article	IF	CITATIONS
182	Effect of Ion Migration-Induced Electrode Degradation on the Operational Stability of Perovskite Solar Cells. ACS Omega, 2018, 3, 10042-10047.	1.6	76
183	Benchmarking Chemical Stability of Arbitrarily Mixed 3D Hybrid Halide Perovskites for Solar Cell Applications. Small Methods, 2018, 2, 1800242.	4.6	26
184	Outdoor performance monitoring of perovskite solar cell mini-modules: Diurnal performance, observance of reversible degradation and variation with climatic performance. Solar Energy, 2018, 170, 549-556.	2.9	40
185	Enabling reliability assessments of pre-commercial perovskite photovoltaics with lessons learned from industrial standards. Nature Energy, 2018, 3, 459-465.	19.8	123
186	Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Materials, 2018, 17, 820-826.	13.3	1,046
187	Passivation against oxygen and light induced degradation by the PCBM electron transport layerÂin planar perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 1686-1692.	2.5	27
188	Efficient and UV-stable perovskite solar cells enabled by side chain-engineered polymeric hole-transporting layers. Journal of Materials Chemistry A, 2018, 6, 12999-13004.	5.2	43
189	Methodologies toward Efficient and Stable Cesium Lead Halide Perovskiteâ€Based Solar Cells. Advanced Science, 2018, 5, 1800509.	5.6	53
190	Quantifying the Interface Defect for the Stability Origin of Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901352.	10.2	91
191	Moisture proof hole transport layers based on CISe quantum dots for highly stable and large active area perovskite solar cells. Applied Surface Science, 2019, 496, 143610.	3.1	17
192	Quantifying Performance of Permeation Barrier—Encapsulation Systems for Flexible and Glassâ€Based Electronics and Their Application to Perovskite Solar Cells. Advanced Electronic Materials, 2019, 5, 1800978.	2.6	42
193	Efficient and stable perovskite solar cells based on perfluorinated polymers. Polymer Chemistry, 2019, 10, 5726-5736.	1.9	20
194	Atomic-scale view of stability and degradation of single-crystal MAPbBr ₃ surfaces. Journal of Materials Chemistry A, 2019, 7, 20760-20766.	5.2	46
195	Unveiling the Photo―and Thermal‣tability of Cesium Lead Halide Perovskite Nanocrystals. ChemPhysChem, 2019, 20, 2647-2656.	1.0	44
196	High-Performance CsPbIBr ₂ Perovskite Solar Cells: Effectively Promoted Crystal Growth by Antisolvent and Organic Ion Strategies. ACS Applied Materials & Interfaces, 2019, 11, 33868-33878.	4.0	52
197	Variation of Interfacial Interactions in PC ₆₁ BM-like Electron-Transporting Compounds for Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2019, 11, 34408-34415.	4.0	29
198	p-Doping of organic hole transport layers in p–i–n perovskite solar cells: correlating open-circuit voltage and photoluminescence quenching. Journal of Materials Chemistry A, 2019, 7, 18971-18979.	5.2	55
199	Searching for stability at lower dimensions: current trends and future prospects of layered perovskite solar cells. Energy and Environmental Science, 2019, 12, 2860-2889.	15.6	132

#	Article	IF	CITATIONS
200	Stability and Dark Hysteresis Correlate in NiOâ€Based Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901642.	10.2	69
201	Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature, 2019, 571, 245-250.	13.7	1,103
202	Impact of charge transport layers on the photochemical stability of MAPbI ₃ in thin films and perovskite solar cells. Sustainable Energy and Fuels, 2019, 3, 2705-2716.	2.5	22
203	Synergistic Effect of Elevated Device Temperature and Excess Charge Carriers on the Rapid Lightâ€Induced Degradation of Perovskite Solar Cells. Advanced Materials, 2019, 31, e1902413.	11.1	90
204	Light induced degradation in mixed-halide perovskites. Journal of Materials Chemistry C, 2019, 7, 9326-9334.	2.7	67
205	Thermochemical Stability of Hybrid Halide Perovskites. ACS Energy Letters, 2019, 4, 2859-2870.	8.8	91
206	A Simple Way to Simultaneously Release the Interface Stress and Realize the Inner Encapsulation for Highly Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905336.	7.8	96
207	Role of Moisture in the Preparation of Efficient Planar Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 17691-17696.	3.2	20
208	Light Processing Enables Efficient Carbon-Based, All-Inorganic Planar CsPbIBr ₂ Solar Cells with High Photovoltages. ACS Applied Materials & Interfaces, 2019, 11, 2997-3005.	4.0	98
210	Probing the Degradation Chemistry and Enhanced Stability of 2D Organolead Halide Perovskites. Journal of the American Chemical Society, 2019, 141, 18170-18181.	6.6	50
211	Mechanistic Insights into Photochemical Reactions on CH3NH3PbBr3Perovskite Nanoparticles from Singleâ€Particle Photoluminescence Spectroscopy. ChemNanoMat, 2019, 5, 340-345.	1.5	5
212	Efficient and semi-transparent perovskite solar cells using a room-temperature processed MoO _x /ITO/Ag/ITO electrode. Journal of Materials Chemistry C, 2019, 7, 10981-10987.	2.7	31
213	Improved Moisture Stability of Perovskite Solar Cells Using N719 Dye Molecules. Solar Rrl, 2019, 3, 1900345.	3.1	30
214	Branched capping ligands improve the stability of cesium lead halide (CsPbBr ₃) perovskite quantum dots. Journal of Materials Chemistry C, 2019, 7, 11251-11257.	2.7	41
215	Long-Term Stabilization of Two-Dimensional Perovskites by Encapsulation with Hexagonal Boron Nitride. Nanomaterials, 2019, 9, 1120.	1.9	31
216	Long-term stable perovskite solar cells with room temperature processed metal oxide carrier transporters. Journal of Materials Chemistry A, 2019, 7, 21085-21095.	5.2	16
217	Improved Charge Separation and Photovoltaic Performance of Bil ₃ Absorber Layers by Use of an In Situ Formed BiSI Interlayer. ACS Applied Energy Materials, 2019, 2, 7056-7061.	2.5	20
218	Controlled Redox of Lithium-Ion Endohedral Fullerene for Efficient and Stable Metal Electrode-Free Perovskite Solar Cells. Journal of the American Chemical Society, 2019, 141, 16553-16558.	6.6	61

#	Article	IF	CITATIONS
219	Enhanced Performance and Stability in DNA-Perovskite Heterostructure-Based Solar Cells. ACS Energy Letters, 2019, 4, 2646-2655.	8.8	45
220	Multivariate approach for studying the degradation of perovskite solar cells. Solar Energy, 2019, 193, 12-19.	2.9	4
221	Bias-dependent degradation of various solar cells: lessons for stability of perovskite photovoltaics. Energy and Environmental Science, 2019, 12, 550-558.	15.6	84
222	Improving the light harvesting and colour range of methyl ammonium lead tri-bromide (MAPbBr ₃) perovskite solar cells through co-sensitisation with organic dyes. Chemical Communications, 2019, 55, 35-38.	2.2	16
223	Effect of mechanical forces on thermal stability reinforcement for lead based perovskite materials. Journal of Materials Chemistry A, 2019, 7, 540-548.	5.2	26
224	Evidence for surface defect passivation as the origin of the remarkable photostability of unencapsulated perovskite solar cells employing aminovaleric acid as a processing additive. Journal of Materials Chemistry A, 2019, 7, 3006-3011.	5.2	70
225	Ultrahigh Durability Perovskite Solar Cells. Nano Letters, 2019, 19, 1251-1259.	4.5	30
226	Highâ€Performance Perovskite Solar Cells with Enhanced Environmental Stability Based on a (<i>p</i> â€FC ₆ H ₄ C ₂ H ₄ NH ₃) ₂ Capping Layer. Advanced Energy Materials, 2019, 9, 1802595.	ol<50,12>4<,	'su2tu 3]
227	Efficient and Stable Perovskite Solar Cell with High Open-Circuit Voltage by Dimensional Interface Modification. ACS Applied Materials & Interfaces, 2019, 11, 9149-9155.	4.0	54
228	Structure and chemical stability in perovskite–polymer hybrid photovoltaic materials. Journal of Materials Chemistry A, 2019, 7, 1687-1699.	5.2	60
229	Simultaneous enhancement in performance and UV-light stability of organic–inorganic perovskite solar cells using a samarium-based down conversion material. Journal of Materials Chemistry A, 2019, 7, 322-329.	5.2	42
230	First-Principles Prediction of the ZnO Morphology in the Perovskite Solar Cell. Journal of Physical Chemistry C, 2019, 123, 14164-14172.	1.5	4
231	Ultraviolet Light-Induced Degradation of Luminescence in Mn-Doped CsPbCl ₃ Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 14849-14857.	1.5	28
232	Electrospun Fibers Containing Emissive Hybrid Perovskite Quantum Dots. ACS Applied Materials & Interfaces, 2019, 11, 24468-24477.	4.0	13
233	First-Principles Study of Enhanced Out-of-Plane Transport Properties and Stability in Dion–Jacobson Two-Dimensional Perovskite Semiconductors for High-Performance Solar Cell Applications. Journal of Physical Chemistry Letters, 2019, 10, 3670-3675.	2.1	42
234	Bifunctional Dye Molecule in Allâ€Inorganic CsPbIBr ₂ Perovskite Solar Cells with Efficiency Exceeding 10%. Solar Rrl, 2019, 3, 1900212.	3.1	64
235	Carbon nanotubes embedded poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid hole collector for inverted planar perovskite solar cells. Journal of Power Sources, 2019, 435, 226765.	4.0	22
236	Enhancing Efficiency and Stability of Hot Casting p–i–n Perovskite Solar Cell via Dipolar Ion Passivation. ACS Applied Energy Materials, 2019, 2, 4821-4832.	2.5	49

#	Article	IF	CITATIONS
237	Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules. ACS Energy Letters, 2019, 4, 1862-1871.	8.8	125
238	Temperature-Dependent Local Electrical Properties of Organic–Inorganic Halide Perovskites: In Situ KPFM and c-AFM Investigation. ACS Applied Materials & Interfaces, 2019, 11, 21627-21633.	4.0	42
239	Intermediate Phase Halide Exchange Strategy toward a High-Quality, Thick CsPbBr ₃ Film for Optoelectronic Applications. ACS Applied Materials & Interfaces, 2019, 11, 22543-22549.	4.0	34
240	Fabrication and characterization of perovskite solar cells with ZnGa ₂ O ₄ mixed TiO ₂ photoelectrode. Japanese Journal of Applied Physics, 2019, 58, SDDE15.	0.8	4
241	Fundamental Understanding of Solar Cells. , 2019, , 1-17.		3
242	Imperfections and their passivation in halide perovskite solar cells. Chemical Society Reviews, 2019, 48, 3842-3867.	18.7	1,257
243	Synthesis, Characterization, and Morphological Control of Cs ₂ CuCl ₄ Nanocrystals. Journal of Physical Chemistry C, 2019, 123, 16951-16956.	1.5	38
244	Simultaneous Mapping of Thermal Conductivity, Thermal Diffusivity, and Volumetric Heat Capacity of Halide Perovskite Thin Films: A Novel Nanoscopic Thermal Measurement Technique. Journal of Physical Chemistry Letters, 2019, 10, 3019-3023.	2.1	32
245	High-throughput computational design of organic–inorganic hybrid halide semiconductors beyond perovskites for optoelectronics. Energy and Environmental Science, 2019, 12, 2233-2243.	15.6	82
246	Analysis of light-induced degradation in inverted perovskite solar cells under short-circuited conditions. Organic Electronics, 2019, 71, 123-130.	1.4	22
247	Oligomeric Silica-Wrapped Perovskites Enable Synchronous Defect Passivation and Grain Stabilization for Efficient and Stable Perovskite Photovoltaics. ACS Energy Letters, 2019, 4, 1231-1240.	8.8	111
248	Degradation of CH ₃ NH ₃ PbI ₃ perovskite materials by localized charges and its polarity dependency. Journal of Materials Chemistry A, 2019, 7, 12075-12085.	5.2	23
249	Achieving Longâ€Term Operational Stability of Perovskite Solar Cells with a Stabilized Efficiency Exceeding 20% after 1000 h. Advanced Science, 2019, 6, 1900528.	5.6	70
250	An atomistic mechanism for the degradation of perovskite solar cells by trapped charge. Nanoscale, 2019, 11, 11369-11378.	2.8	45
251	Radiation tolerance of perovskite solar cells under gamma ray. Organic Electronics, 2019, 71, 79-84.	1.4	40
252	Origin of Exceptionally Slow Light Soaking Effect in Mesoporous Carbon Perovskite Solar Cells with AVA Additive. Journal of Physical Chemistry C, 2019, 123, 11414-11421.	1.5	29
253	Optimizing the optical properties of a dye-based luminescent down-shifter to improve the performance of organic photovoltaic devices. Dyes and Pigments, 2019, 169, 1-6.	2.0	6
254	Stable, Highâ€Sensitivity and Fastâ€Response Photodetectors Based on Leadâ€Free Cs ₂ AgBiBr ₆ Double Perovskite Films. Advanced Optical Materials, 2019, 7, 1801732.	3.6	126

#	Article	IF	CITATIONS
255	Liquid Crystal Molecule as "Binding Agent―Enables Superior Stable Perovskite Solar Cells with High Fill Factor. Solar Rrl, 2019, 3, 1900125.	3.1	10
256	Perovskites for Next-Generation Optical Sources. Chemical Reviews, 2019, 119, 7444-7477.	23.0	640
257	Materials for Photovoltaics: State of Art and Recent Developments. International Journal of Molecular Sciences, 2019, 20, 976.	1.8	185
258	Deprotonation and vacancies at the CH3NH3PbI3/ZnO and CH3NH3PbI3/GaN interfaces, detected in their theoretical XANES. Journal of Materials Chemistry C, 2019, 7, 5307-5313.	2.7	2
259	New Strategy to Overcome the Instability That Could Speed up the Commercialization of Perovskite Solar Cells. Advanced Materials Interfaces, 2019, 6, 1900134.	1.9	11
260	Toward Improved Environmental Stability of Polymer:Fullerene and Polymer:Nonfullerene Organic Solar Cells: A Common Energetic Origin of Light- and Oxygen-Induced Degradation. ACS Energy Letters, 2019, 4, 846-852.	8.8	71
261	Inorganic–organic hybridization induced uniaxial zero thermal expansion in MC ₄ O ₄ (M = Ba, Pb). Chemical Communications, 2019, 55, 4107-4110.	2.2	12
262	Recent Challenges in Perovskite Solar Cells Toward Enhanced Stability, Less Toxicity, and Largeâ€Area Mass Production. Advanced Materials Interfaces, 2019, 6, 1801758.	1.9	52
263	Solutionâ€Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges. Advanced Functional Materials, 2019, 29, 1807661.	7.8	149
264	Grapheneâ€Assisted Growth of Patterned Perovskite Films for Sensitive Light Detector and Optical Image Sensor Application. Small, 2019, 15, e1900730.	5.2	53
265	Visualizing Nonradiative Mobile Defects in Organic–Inorganic Perovskite Materials. Small Methods, 2019, 3, 1900110.	4.6	17
266	Efficient inverted all inorganic CsPbI3 planar solar cells via twice-coating in air condition. Journal of Power Sources, 2019, 426, 61-66.	4.0	8
267	Improving Performance and Stability of Planar Perovskite Solar Cells through Grain Boundary Passivation with Block Copolymers. Solar Rrl, 2019, 3, 1900078.	3.1	40
268	Improved characteristics of a perovskite solar cell by the annealing process and UV irradiation on the TiO ₂ layer. Japanese Journal of Applied Physics, 2019, 58, SBBF11.	0.8	3
269	Stability improvement under high efficiency—next stage development of perovskite solar cells. Science China Chemistry, 2019, 62, 684-707.	4.2	50
270	PbI ₂ Initiated Cross-Linking and Integration of a Polymer Matrix with Perovskite Films: 1000 h Operational Devices under Ambient Humidity and Atmosphere and with Direct Solar Illumination. ACS Applied Energy Materials, 2019, 2, 2214-2222.	2.5	28
271	Perovskite Photovoltaics: The Significant Role of Ligands in Film Formation, Passivation, and Stability. Advanced Materials, 2019, 31, e1805702.	11.1	192
272	Progress of Leadâ€Free Halide Double Perovskites. Advanced Energy Materials, 2019, 9, 1803150.	10.2	322

k

#	Article	IF	CITATIONS
273	Fullerene Polymer Complex Inducing Dipole Electric Field for Stable Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1804419.	7.8	42
274	Blinking Beats Bleaching: The Control of Superoxide Generation by Photoâ€ionized Perovskite Nanocrystals. Angewandte Chemie, 2019, 131, 4929-4933.	1.6	9
275	Blinking Beats Bleaching: The Control of Superoxide Generation by Photoâ€ionized Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2019, 58, 4875-4879.	7.2	23
276	A promising europium-based down conversion material: organic–inorganic perovskite solar cells with high photovoltaic performance and UV-light stability. Journal of Materials Chemistry A, 2019, 7, 6467-6474.	5.2	43
277	Halide Perovskites: Is It All about the Interfaces?. Chemical Reviews, 2019, 119, 3349-3417.	23.0	404
278	Effects of pressure on the ionic transport and photoelectrical properties of CsPbBr3. Applied Physics Letters, 2019, 114, .	1.5	25
279	A Review of Perovskites Solar Cell Stability. Advanced Functional Materials, 2019, 29, 1808843.	7.8	835
280	Influence of a lecithin additive on the performance of all-inorganic perovskite light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 2905-2910.	2.7	21
281	Two‣tep Structure Phase Transition, Dielectric Anomalies, and Thermochromic Luminescence Behavior in a Direct Band Gap 2D Corrugated Layer Lead Chloride Hybrid of [(CH ₃) ₄ <scp>N</scp>] ₄ Pb ₃ Cl ₁₀ . Chemistry - A European Journal, 2019, 25, 5280-5287.	1.7	21
282	Light enhanced moisture degradation of perovskite solar cell material CH ₃ NH ₃ PbI ₃ . Journal of Materials Chemistry A, 2019, 7, 27469-27474.	5.2	37
283	Improved Moisture Stability of Perovskite Solar Cells Using N719 Dye Molecules. Solar Rrl, 2019, 3, 1970115.	3.1	1
284	High-performance and moisture-stable perovskite solar cells with a 2D modified layer <i>via</i> introducing a high dipole moment cation. Journal of Materials Chemistry C, 2019, 7, 15276-15284.	2.7	24
285	Indirect-to-direct band gap transition and optical properties of metal alloying of Cs2AgMxBr6 (M = Bi,) Tj ET	Qq0 0 0 rş	gBT_/Overloc
286	Surface Passivation of Perovskite Films via Iodide Salt Coatings for Enhanced Stability of Organic Lead Halide Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800282.	3.1	34
287	Toward Long-Term Stability: Single-Crystal Alloys of Cesium-Containing Mixed Cation and Mixed Halide Perovskite. Journal of the American Chemical Society, 2019, 141, 1665-1671.	6.6	141
288	Low dimensional metal halide perovskites and hybrids. Materials Science and Engineering Reports, 2019, 137, 38-65.	14.8	300
289	Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chemical Reviews, 2019, 119, 3418-3451.	23.0	1,131

²⁹⁰Development of hermetic glass frit encapsulation for perovskite solar cells. Journal Physics D:1.329Applied Physics, 2019, 52, 074005.

ARTICLE IF CITATIONS # Acid-Compatible Halide Perovskite Photocathodes Utilizing Atomic Layer Deposited TiO₂ 291 8.8 75 for Solar-Driven Hydrogen Evolution. ACS Energy Letters, 2019, 4, 293-298. Unraveling the light-induced degradation mechanism of CH3NH3Pbl3 perovskite films. Organic 1.4 44 Electronics, 2019, 67, 19-25. Enhanced efficiency and light stability of planar perovskite solar cells by diethylammonium bromide 293 1.4 28 induced large-grain 2D/3D hybrid film. Organic Electronics, 2019, 67, 101-108. The Relation of Phaseâ€Transition Effects and Thermal Stability of Planar Perovskite Solar Cells. 294 Advanced Science, 2019, 6, 1801079. Hydrophobic polythiophene hole-transport layers to address the moisture-induced decomposition 295 0.6 8 problem of perovskite solar cells. Canadian Journal of Chemistry, 2019, 97, 435-441. 20% Efficient Perovskite Solar Cells with 2D Electron Transporting Layer. Advanced Functional 296 7.8 Materials, 2019, 29, 1805168. 297 Machine Learning for Perovskites' Reap-Rest-Recovery Cycle. Joule, 2019, 3, 325-337. 11.7 62 Stability Enhancement in Perovskite Solar Cells with Perovskite/Silver–Graphene Composites in the 298 8.8 Active Layer. ACS Energy Letters, 2019, 4, 235-241. Rapid evaluation of different perovskite absorber layers through the application of depth profile 299 2.9 3 analysis using glow discharge – Time of flight mass spectrometry. Talanta, 2019, 192, 317-324. Stable and efficient perovskite solar cells fabricated using aqueous lead nitrate precursor: Interpretation of the conversion mechanism and renovation of the sequential deposition. Materials 2.5 Today Energy, 2019, 14, 100125. Study on the stability of organic–inorganic perovskite solar cell materials based on first principle. 301 12 0.8 Molecular Physics, 2020, 118, e1665200. Investigating the role of reduced graphene oxide as a universal additive in planar perovskite solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 386, 112141. Ambient stable FAPbI3-based perovskite solar cells with a 2D-EDAPbI4 thin capping layer. Science China 303 3.5 18 Materials, 2020, 63, 47-54. Thermal stability of mobility in methylammonium lead iodide. JPhys Materials, 2020, 3, 014003. 304 1.8 14 Enhanced efficiency and stability of perovskite solar cells by 2D perovskite vapor-assisted interface 305 32 7.1 optimization. Journal of Energy Chemistry, 2020, 45, 103-109. Biasâ€Dependent Stability of Perovskite Solar Cells Studied Using Natural and Concentrated Sunlight. Solar Rrl, 2020, 4, 1900335. 306 3.1 Stability of Lead and Tin Halide Perovskites: The Link between Defects and Degradation. Journal of 307 2.1 84 Physical Chemistry Letters, 2020, 11, 574-585. (TMT–TTF)[Pb2.6/3â–;0.4/312]3: a TTF-intercalated two-dimensional hybrid lead iodide: crystal structure 1.4 and properties. New Journal of Chemistry, 2020, 44, 1263-1268.

# 309	ARTICLE Crystallization kinetics of rapid spray plasma processed multiple cation perovskites in open air. Journal of Materials Chemistry A, 2020, 8, 169-176.	IF 5.2	CITATIONS
310	Elimination of Light-Soaking Effect in Hysteresis-Free Perovskite Solar Cells by Interfacial Modification. Journal of Physical Chemistry C, 2020, 124, 1851-1860.	1.5	18
311	Single Crystals: The Next Big Wave of Perovskite Optoelectronics. , 2020, 2, 184-214.		89
312	Extending Carrier Lifetimes in Lead Halide Perovskites with Alkali Metals by Passivating and Eliminating Halide Interstitial Defects. Angewandte Chemie - International Edition, 2020, 59, 4684-4690.	7.2	78
313	Chemical Approaches for Stabilizing Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1903249.	10.2	132
314	The Role of the Interfaces in Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 1901469.	1.9	239
315	Enhancement of Openâ€Circuit Voltage of Perovskite Solar Cells by Interfacial Modification with <i>p</i> â€Aminobenzoic Acid. Advanced Materials Interfaces, 2020, 7, 1901584.	1.9	21
316	Extending Carrier Lifetimes in Lead Halide Perovskites with Alkali Metals by Passivating and Eliminating Halide Interstitial Defects. Angewandte Chemie, 2020, 132, 4714-4720.	1.6	18
317	Understanding the Enhanced Stability of Bromide Substitution in Lead Iodide Perovskites. Chemistry of Materials, 2020, 32, 400-409.	3.2	53
318	Light or Heat: What Is Killing Lead Halide Perovskites under Solar Cell Operation Conditions?. Journal of Physical Chemistry Letters, 2020, 11, 333-339.	2.1	85
319	Reduction of Methylammonium Cations as a Major Electrochemical Degradation Pathway in MAPbl ₃ Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2020, 11, 221-228.	2.1	33
320	Enhanced Charge Carrier Transport in 2D Perovskites by Incorporating Single-Walled Carbon Nanotubes or Graphene. ACS Energy Letters, 2020, 5, 109-116.	8.8	17
321	Microscopic insight into the reversibility of photodegradation in MAPbI3 thin films. Journal of Luminescence, 2020, 219, 116916.	1.5	7
322	Temperature effects in lead halide perovskites. , 2020, , 181-196.		0
323	Stability of materials and complete devices. , 2020, , 197-215.		1
324	Unraveling Reversible Quenching Processes of O 2 , N 2 , Ar, and H 2 O in Metal Halide Perovskites at Moderate Photon Flux Densities. Advanced Optical Materials, 2020, 9, 2001317.	3.6	11
325	Surface modification of ZnO electron transport layer with thermally evaporated WO3 for stable perovskite solar cells. Synthetic Metals, 2020, 269, 116547.	2.1	5
326	Molecularly engineered thienyl-triphenylamine substituted zinc phthalocyanine as dopant free hole transporting materials in perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 6188-6195.	2.5	12

#	Article	IF	CITATIONS
327	Methodologies for structural investigations of organic lead halide perovskites. Materials Today, 2020, 38, 67-83.	8.3	7
328	Charge Transport Layer-Dependent Electronic Band Bending in Perovskite Solar Cells and Its Correlation to Light-Induced Device Degradation. ACS Energy Letters, 2020, 5, 2580-2589.	8.8	39
329	Lowâ€Dimensional Hybrid Perovskites for Fieldâ€Effect Transistors with Improved Stability: Progress and Challenges. Advanced Electronic Materials, 2020, 6, 2000137.	2.6	45
330	<i>Operando</i> Surface Characterization on Catalytic and Energy Materials from Single Crystals to Nanoparticles. ACS Nano, 2020, 14, 16392-16413.	7.3	24
331	Recent developments in fabrication and performance of metal halide perovskite field-effect transistors. Journal of Materials Chemistry C, 2020, 8, 16691-16715.	2.7	34
332	Voltage bias stress effects in metal halide perovskites are strongly dependent on morphology and ion migration pathways. Journal of Materials Chemistry A, 2020, 8, 25109-25119.	5.2	11
333	Excitonic Energy Transfer in Heterostructures of Quasi-2D Perovskite and Monolayer WS ₂ . ACS Nano, 2020, 14, 11482-11489.	7.3	31
334	Hybrid Perovskites with Larger Organic Cations Reveal Autocatalytic Degradation Kinetics and Increased Stability under Light. Inorganic Chemistry, 2020, 59, 12176-12186.	1.9	12
335	Artemisinin (ART)-Induced "perovskite/perovskite―bilayer structured photovoltaics. Nano Energy, 2020, 78, 105133.	8.2	30
336	Why Oxygen Increases Carrier Lifetimes but Accelerates Degradation of CH ₃ NH ₃ PbI ₃ under Light Irradiation: Time-Domain Ab Initio Analysis. Journal of the American Chemical Society, 2020, 142, 14664-14673.	6.6	64
337	Efficient CsPbIBr ₂ Perovskite Solar Cells: Precise Control of Film Growth through the Application of Organic Iodized Salt and Anti-solvent. Energy & Fuels, 2020, 34, 11472-11478.	2.5	14
338	Toward Greener Solution Processing of Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 13126-13138.	3.2	41
339	Defects chemistry in high-efficiency and stable perovskite solar cells. Journal of Applied Physics, 2020, 128, .	1.1	91
340	Durable strategies for perovskite photovoltaics. APL Materials, 2020, 8, .	2.2	7
341	Beyond Strain: Controlling the Surface Chemistry of CsPbI ₃ Nanocrystal Films for Improved Stability against Ambient Reactive Oxygen Species. Chemistry of Materials, 2020, 32, 7850-7860.	3.2	23
342	Interaction of the Cation and Vacancy in Hybrid Perovskites Induced by Light Illumination. ACS Applied Materials & Interfaces, 2020, 12, 42369-42377.	4.0	9
343	Surface chelation of cesium halide perovskite by dithiocarbamate for efficient and stable solar cells. Nature Communications, 2020, 11, 4237.	5.8	106
344	Perovskite Quantum Dots. Springer Series in Materials Science, 2020, , .	0.4	4

ARTICLE IF CITATIONS Towards commercialization: the operational stability of perovskite solar cells. Chemical Society 345 18.7 371 Reviews, 2020, 49, 8235-8286. Thermal properties of metal-halide perovskites. Journal of Materials Chemistry C, 2020, 8, 14289-14311. 346 2.7 74 Synergistic engineering of bromine and cetyltrimethylammonium chloride molecules enabling 347 efficient and stable flexible perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 5.29 19425-19433. Moisture-Induced Structural Degradation in Methylammonium Lead Iodide Perovskite Thin Films. ACS 348 34 Applied Energy Materials, 2020, 3, 8240-8248. Enhanced Electro-Optical Performance of Inorganic Perovskite/a-InGaZnO Phototransistors Enabled by Sn–Pb Binary Incorporation with a Selective Photonic Deactivation. ACS Applied Materials & amp; 349 4.0 9 Interfaces, 2020, 12, 58038-58048. Deterioration mechanism of perovskite solar cells by operando observation of spin states. Communications Materials, 2020, 1, . CsPbl₃ nanocrystal films: towards higher stability and efficiency. Journal of Materials 351 2.7 20 Chemistry C, 2020, 8, 17139-17156. Synergistic Effect of <i>N</i>,<i>N</i>-Dimethylformamide and Hydrochloric Acid on the Growth of 1.6 MAPbl₃ Perovskite Films for Solar Cells. ACS Omega, 2020, 5, 32295-32304. Stability of 2D and 3D Perovskites Due to Inhibition of Light-Induced Decomposition. Journal of 353 1.0 4 Electronic Materials, 2020, 49, 7072-7084. An Interlaboratory Study on the Stability of Allâ€Printable Hole Transport Material–Free Perovskite 354 1.8 Solar Cells. Energy Technology, 2020, 8, 2000134. Spatially correlated photoluminescence blinking and flickering of hybrid-halide perovskite 355 1.5 10 micro-róds. Journal of Luminescence, 2020, 223, 117202. [NH₃(CH₂)₆NH₃]PbI₄ as Dion–Jacobson phase bifunctional capping layer for 2D/3D perovskite solar cells with high efficiency and excellent 5.2 26 UV stability. Journal of Materials Chemistry A, 2020, 8, 10283-10290. General Decomposition Pathway of Organicâ€"Inorganic Hybrid Perovskites through an Intermediate 357 11.1 42 Superstructure and its Suppression Mechanism. Advanced Materials, 2020, 32, e2001107. Improving the Quality and Luminescence Performance of Allâ€Inorganic Perovskite Nanomaterials for 5.2 54 Lightâ€Emitting Devices by Surface Engineering. Small, 2020, 16, e1907089. Decoupling Contributions of Chargeâ€Transport Interlayers to Lightâ€Induced Degradation of pâ€iâ€n 359 3.1 18 Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000191. Reversible Decomposition of Single-Crystal Methylammonium Lead Iodide Perovskite Nanorods. ACS Central Science, 2020, 6, 959-968. Structure optimization of CH3NH3PbI3 by higher-valence Pb in perovskite solar cells with enhanced 361 2.9 10 efficiency and stability. Solar Energy, 2020, 205, 202-210. Colloidal quantum dot hybrids: an emerging class of materials for ambient lighting. Journal of Materials Chemistry C, 2020, 8, 10676-10695.

#	Article	IF	CITATIONS
363	Whether Addition of Phenethylammonium Ion is Always Beneficial to Stability Enhancement of MAPbI 3 Perovskite Film?. Advanced Materials Interfaces, 2020, 7, 2000197.	1.9	6
364	Study on the properties of perovskite materials under light and different temperatures and electric fields based on DFT. RSC Advances, 2020, 10, 20960-20971.	1.7	8
365	A review of flexible halide perovskite solar cells towards scalable manufacturing and environmental sustainability. Journal of Semiconductors, 2020, 41, 041603.	2.0	20
366	In situ studies of the degradation mechanisms of perovskite solar cells. EcoMat, 2020, 2, e12025.	6.8	123
367	Eu ³⁺ , Sm ³⁺ Deepâ€Red Phosphors as Novel Materials for White Lightâ€Emitting Diodes and Simultaneous Performance Enhancement of Organic–Inorganic Perovskite Solar Cells. Small, 2020, 16, e2001551.	5.2	51
368	Defect suppression and passivation for perovskite solar cells: from the birth to the lifetime operation. EnergyChem, 2020, 2, 100032.	10.1	22
369	Impact of Moisture on Mobility in Methylammonium Lead Iodide and Formamidinium Lead Iodide. Journal of Physical Chemistry Letters, 2020, 11, 4976-4983.	2.1	17
370	Novel dopant-free hole-transporting materials for efficient perovskite solar cells. Solar Energy, 2020, 206, 279-286.	2.9	15
371	External quantum efficiency measurements used to study the stability of differently deposited perovskite solar cells. Journal of Applied Physics, 2020, 127, .	1.1	15
372	Unravelling the Material Composition Effects on the Gamma Ray Stability of Lead Halide Perovskite Solar Cells: MAPbI ₃ Breaks the Records. Journal of Physical Chemistry Letters, 2020, 11, 2630-2636.	2.1	35
373	Shining Light on the Photoluminescence Properties of Metal Halide Perovskites. Advanced Functional Materials, 2020, 30, 1910004.	7.8	101
374	Smart Textiles for Electricity Generation. Chemical Reviews, 2020, 120, 3668-3720.	23.0	644
375	Polarons in Halide Perovskites: A Perspective. Journal of Physical Chemistry Letters, 2020, 11, 3271-3286.	2.1	110
376	UV degradation of the interface between perovskites and the electron transport layer. RSC Advances, 2020, 10, 11551-11556.	1.7	24
377	Multi-component engineering to enable long-term operational stability of perovskite solar cells. JPhys Energy, 2020, 2, 024008.	2.3	13
378	Facile Deposition of Mesoporous PbI2 through DMF:DMSO Solvent Engineering for Sequentially Deposited Metal Halide Perovskites. ACS Applied Energy Materials, 2020, 3, 3358-3368.	2.5	11
379	Unraveling the Impact of Hole Transport Materials on Photostability of Perovskite Films and p–i–n Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 19161-19173.	4.0	35
380	Reverse Manufacturing Enables Perovskite Photovoltaics to Reach the Carbon Footprint Limit of a Glass Substrate. Joule, 2020, 4, 882-901.	11.7	23

~	~
CITATION	
CHAILON	REFORT

#	Article	IF	CITATIONS
381	Easy Strategy to Enhance Thermal Stability of Planar PSCs by Perovskite Defect Passivation and Low-Temperature Carbon-Based Electrode. ACS Applied Materials & Interfaces, 2020, 12, 32536-32547.	4.0	28
382	Light-induced degradation and self-healing inside CH3NH3PbI3-based solar cells. Applied Physics Letters, 2020, 116, .	1.5	12
383	Challenges, myths, and opportunities of electron microscopy on halide perovskites. Journal of Applied Physics, 2020, 128, .	1.1	35
384	Investigating the Superoxide Formation and Stability in Mesoporous Carbon Perovskite Solar Cells with an Aminovaleric Acid Additive. Advanced Functional Materials, 2020, 30, 1909839.	7.8	30
385	Enhanced performance and stability of ambient-processed CH3NH3PbI3-x(SCN)x planar perovskite solar cells by introducing ammonium salts. Applied Surface Science, 2020, 513, 145790.	3.1	14
386	Highly stable inverted methylammonium lead tri-iodide perovskite solar cells achieved by surface re-crystallization. Energy and Environmental Science, 2020, 13, 840-847.	15.6	44
387	Influence of substrate temperature on the chemical, microstructural and optical properties of spray deposited CH3NH3PbI3 perovskite thin films. Journal of Materials Research and Technology, 2020, 9, 3411-3417.	2.6	5
388	Forecasting the Decay of Hybrid Perovskite Performance Using Optical Transmittance or Reflected Dark-Field Imaging. ACS Energy Letters, 2020, 5, 946-954.	8.8	22
389	Optical Absorptionâ€Based In Situ Characterization of Halide Perovskites. Advanced Energy Materials, 2020, 10, 1903587.	10.2	42
390	From Defects to Degradation: A Mechanistic Understanding of Degradation in Perovskite Solar Cell Devices and Modules. Advanced Energy Materials, 2020, 10, 1904054.	10.2	256
391	Thermal properties of CsPbCl3 thin films across phase transitions. JPhys Materials, 2020, 3, 024004.	1.8	15
392	A highly stable hole-conductor-free Cs MA1-PbI3 perovskite solar cell based on carbon counter electrode. Electrochimica Acta, 2020, 335, 135686.	2.6	16
393	Nanochemical Investigation of Degradation in Organic–Inorganic Hybrid Perovskite Films Using Infrared Nanoscopy. Journal of Physical Chemistry C, 2020, 124, 3915-3922.	1.5	12
394	Halide perovskites: current issues and new strategies to push material and device stability. JPhys Energy, 2020, 2, 021005.	2.3	40
395	Understanding size dependence of phase stability and band gap in CsPbI3 perovskite nanocrystals. Journal of Chemical Physics, 2020, 152, 034702.	1.2	56
396	Mechanisms of Oxygen Passivation on Surface Defects in MAPbI ₃ Revealed by First-Principles Study. Journal of Physical Chemistry C, 2020, 124, 3731-3737.	1.5	10
397	Formation Thermodynamics, Stability, and Decomposition Pathways of CsPbX ₃ (X = Cl, Br,) Tj ETQq	0 0 0 rgBT 1.5	Qverlock 1

398	Degradation Mechanism of Silver Metal Deposited on Lead Halide Perovskites. ACS Applied Materials & amp; Interfaces, 2020, 12, 7212-7221.	4.0	85
-----	---	-----	----

#	Article	IF	CITATIONS
399	Mixed-Dimensional Naphthylmethylammonium-Methylammonium Lead Iodide Perovskites with Improved Thermal Stability. Scientific Reports, 2020, 10, 429.	1.6	39
400	Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nature Energy, 2020, 5, 35-49.	19.8	797
401	Dimensionality-Controlled Surface Passivation for Enhancing Performance and Stability of Perovskite Solar Cells via Triethylenetetramine Vapor. ACS Applied Materials & Interfaces, 2020, 12, 6651-6661.	4.0	29
402	Effects of halogen substitutions on the properties of CH3NH3Sn0.5Pb0.5I3 perovskites. Computational Materials Science, 2020, 177, 109576.	1.4	5
403	Perovskite solar cells based on the synergy between carbon electrodes and polyethylene glycol additive with excellent stability. Organic Electronics, 2020, 83, 105734.	1.4	16
404	Impact of the implementation of a mesoscopic TiO2 film from a low-temperature method on the performance and degradation of hybrid perovskite solar cells. Solar Energy, 2020, 201, 836-845.	2.9	4
405	Cu ₁₂ Sb ₄ S ₁₃ Quantum Dots with Ligand Exchange as Hole Transport Materials in All-Inorganic Perovskite CsPbl ₃ Quantum Dot Solar Cells. ACS Applied Energy Materials, 2020, 3, 3521-3529.	2.5	29
406	Two-Stage Ultraviolet Degradation of Perovskite Solar Cells Induced by the Oxygen Vacancy-Ti4+ States. IScience, 2020, 23, 101013.	1.9	57
407	Elucidating tuneable ambipolar charge transport and field induced bleaching at the CH ₃ NH ₃ PbI ₃ /electrolyte interface. Physical Chemistry Chemical Physics, 2020, 22, 11062-11074.	1.3	20
408	Intrinsic thermal decomposition pathways of lead halide perovskites APbX3. Solar Energy Materials and Solar Cells, 2020, 213, 110559.	3.0	45
409	Selective UV Absorbance of Copper Chalcogenide Nanoparticles for Enhanced Illumination Durability in Perovskite Photovoltaics. ACS Sustainable Chemistry and Engineering, 2020, 8, 7617-7627.	3.2	6
410	The effect of ethylene-amine ligands enhancing performance and stability of perovskite solar cells. Journal of Power Sources, 2020, 463, 228210.	4.0	19
411	Dye Engineered Perovskite Solar Cells under Accelerated Thermal Stress and Prolonged Light Exposure. ChemistrySelect, 2020, 5, 4454-4462.	0.7	13
412	Making fully printed perovskite solar cells stable outdoor with inorganic superhydrophobic coating. Journal of Energy Chemistry, 2020, 50, 332-338.	7.1	18
413	Groups-dependent phosphines as the organic redox for point defects elimination in hybrid perovskite solar cells. Journal of Energy Chemistry, 2021, 54, 23-29.	7.1	18
414	Highâ€Efficiency Perovskite Solar Cells with Imidazoliumâ€Based Ionic Liquid for Surface Passivation and Charge Transport. Angewandte Chemie - International Edition, 2021, 60, 4238-4244.	7.2	221
415	Natural passivation of the perovskite layer by oxygen in ambient air to improve the efficiency and stability of perovskite solar cells simultaneously. Organic Electronics, 2021, 88, 106007.	1.4	11
416	Allâ€Ambientâ€Processed CuSCN as an Inexpensive Alternative to Spiroâ€OMeTAD for Perovskiteâ€Based Devices. Energy Technology, 2021, 9, .	1.8	8

#	Article	IF	CITATIONS
417	Advanced Characterization Techniques for Overcoming Challenges of Perovskite Solar Cell Materials. Advanced Energy Materials, 2021, 11, 2001753.	10.2	29
418	Strain Engineering of Metal Halide Perovskites on Coupling Anisotropic Behaviors. Advanced Functional Materials, 2021, 31, 2006243.	7.8	71
419	Compositional effect on water adsorption on metal halide perovskites. Applied Surface Science, 2021, 538, 148058.	3.1	30
420	Enhanced efficiency and stability of quasi-2D/3D perovskite solar cells by thermal assisted blade coating method. Chemical Engineering Journal, 2021, 405, 126992.	6.6	20
421	Kinetics of light-induced degradation in semi-transparent perovskite solar cells. Solar Energy Materials and Solar Cells, 2021, 219, 110776.	3.0	29
422	Superior photovoltaics/optoelectronics of two-dimensional halide perovskites. Journal of Energy Chemistry, 2021, 57, 69-82.	7.1	20
423	Mechanisms and Suppression of Photoinduced Degradation in Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2002326.	10.2	118
424	Progress in recycling organic–inorganic perovskite solar cells for eco-friendly fabrication. Journal of Materials Chemistry A, 2021, 9, 2612-2627.	5.2	17
425	Deep surface passivation for efficient and hydrophobic perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 2919-2927.	5.2	74
426	<scp>Smallâ€band</scp> gap halide double perovskite for optoelectronic properties. International Journal of Energy Research, 2021, 45, 7222-7234.	2.2	15
427	Highâ€Efficiency Perovskite Solar Cells with Imidazoliumâ€Based Ionic Liquid for Surface Passivation and Charge Transport. Angewandte Chemie, 2021, 133, 4284-4290.	1.6	14
428	Stability-improved perovskite solar cells through 4-tertbutylpyridine surface-passivated perovskite layer fabricated in ambient air. Optical Materials, 2021, 112, 110753.	1.7	12
429	Degradation of perovskite solar cells by the doping level decrease of HTL revealed by capacitance spectroscopy. Solar Energy Materials and Solar Cells, 2021, 220, 110854.	3.0	12
430	Vacancy defects on optoelectronic properties of double perovskite Cs2AgBiBr6. Materials Science in Semiconductor Processing, 2021, 123, 105541.	1.9	27
431	Highâ€ŧhroughput computational design of halide perovskites and beyond for optoelectronics. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1500.	6.2	16
432	Ambient Fabrication of Organic–Inorganic Hybrid Perovskite Solar Cells. Small Methods, 2021, 5, e2000744.	4.6	63
433	Organic Inorganic Perovskites: A Low-Cost-Efficient Photovoltaic Material. , 0, , .		0
434	Spectacular Enhancement of the Thermal and Photochemical Stability of MAPbI3 Perovskite Films Using Functionalized Tetraazaadamantane as a Molecular Modifier Energies 2021, 14, 669	1.6	7

ARTICLE

IF CITATIONS

Preparation and Properties of Films of Organic-Inorganic Perovskites MAPbX3 (MA = CH3NH3; X = Cl,) Tj ETQq0 0 0 rgBT /Ovgrlock 10 T 0.2 Preparation and Properties of Films of Organic-Inorganic Perovskites MAPbX3 (MA = CH3NH3; X = Cl,) Tj ETQq0 0 0 rgBT /Ovgrlock 10 T

436	Solution-processed two-dimensional materials for next-generation photovoltaics. Chemical Society Reviews, 2021, 50, 11870-11965.	18.7	96
437	Ammonium sulfate treatment at TiO2/perovskite interface boosts operational stability of perovskite solar cells. Journal of Materials Chemistry C, 0, , .	2.7	0
438	Bioinspired scaffolds that sequester lead ions in physically damaged high efficiency perovskite solar cells. Chemical Communications, 2021, 57, 994-997.	2.2	24
439	lon Migration Accelerated Reaction between Oxygen and Metal Halide Perovskites in Light and Its Suppression by Cesium Incorporation. Advanced Energy Materials, 2021, 11, 2002552.	10.2	64
440	Enhancing the Photoluminescence and Stability of Methylammonium Lead Halide Perovskite Nanocrystals with Phenylalanine. Journal of Physical Chemistry C, 2021, 125, 2793-2801.	1.5	11
441	Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy and Environmental Science, 2021, 14, 5161-5190.	15.6	255
442	Efficient Passivation Strategy on Sn Related Defects for High Performance Allâ€Inorganic CsSnI ₃ Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2007447.	7.8	128
443	Bi-functional interfaces by poly(ionic liquid) treatment in efficient pin and nip perovskite solar cells. Energy and Environmental Science, 2021, 14, 4508-4522.	15.6	76
444	Proton sponge lead halides containing 1D polyoctahedral chains. CrystEngComm, 2021, 23, 1126-1139.	1.3	7
445	Lowâ€Dimensionalâ€Networked Perovskites with Aâ€Siteâ€Cation Engineering for Optoelectronic Devices. Small Methods, 2021, 5, e2001147.	4.6	27
446	Influence of Deposition and Annealing Parameters on the Degradation of Spray-Deposited Perovskite Films. Materials Research, 2021, 24, .	0.6	1
447	Pushing commercialization of perovskite solar cells by improving their intrinsic stability. Energy and Environmental Science, 2021, 14, 3233-3255.	15.6	166
448	Raman spectroscopy insights into the α- and Î′-phases of formamidinium lead iodide (FAPbI ₃). Dalton Transactions, 2021, 50, 3315-3323.	1.6	12
449	Water and oxygen co-induced microstructure relaxation and evolution in CH ₃ NH ₃ PbI ₃ . Physical Chemistry Chemical Physics, 2021, 23, 17242-17247.	1.3	5
450	Research progress of light irradiation stability of functional layers in perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 098402.	0.2	2
451	Observing and Understanding the Corrosion of Silver Nanowire Electrode by Precursor Reagents and MAPbl ₃ Film in Different Environmental Conditions. Advanced Materials Interfaces, 2021, 8, 2001669.	1.9	5
452	Lead-free halide double perovskites: Toward stable and sustainable optoelectronic devices. Materials Today, 2021, 49, 123-144.	8.3	57

ARTICLE IF CITATIONS Insights into iodoplumbate complex evolution of precursor solutions for perovskite solar cells: 453 5.2 26 from aging to degradation. Journal of Materials Chemistry A, 2021, 9, 6732-6748. Performance and stability improvements in metal halide perovskite with intralayer incorporation of 454 5.2 28 organic additives. Journal of Materials Chemistry A, 2021, 9, 16281-16338. Recent Advances and Opportunities of Lead-Free Perovskite Nanocrystal for Optoelectronic 455 4.7 43 Application. Energy Material Advances, 2021, 2021, . The Opto-Electronic Functional Devices Based on Three-Dimensional Lead Halide Perovskites. Applied 456 Sciences (Switzerland), 2021, 11, 1453. Crystallization Features of MAPbI3 Hybrid Perovskite during the Reaction of PbI2 with Reactive 457 0.3 8 Polyiodide Melts. Russian Journal of Inorganic Chemistry, 2021, 66, 153-162. Preventing Superoxide Generation on Molecule-Protected CH₃NH₃Pbl₃Perovskite: A Time-Domain Ab Initio Study. Journal of 2.1 Physical Chemistry Letters, 2021, 12, 1664-1670. van der Waals Interaction-Induced Tunable Schottky Barriers in Metal–2D Perovskite Contacts. 459 2.1 11 Journal of Physical Chemistry Letters, 2021, 12, 1718-1725. Accelerated Thermal Aging Effects on Carbonâ€Based Perovskite Solar Cells: A Joint Experimental and 3.1 Theoretical Analysis. Solar Rrl, 2021, 5, 2000759. Investigation of Defectâ€Tolerant Perovskite Solar Cells with Longâ€Term Stability via Controlling the 461 10.2 38 Selfâ€Doping Effect. Advanced Energy Materials, 2021, 11, 2100555. Halide Perovskite Lightâ€Emitting Diode Technologies. Advanced Optical Materials, 2021, 9, 2002128. 3.6 The Complex Interplay of Lead Halide Perovskites with Their Surroundings. Advanced Optical 463 7 3.6 Materials, 2021, 9, 2100133. Suppression of ion migration through cross-linked PDMS doping to enhance the operational stability 464 of perovskite solar cells. Solar Energy, 2021, 217, 105-112. A review of stability and progress in tin halide perovskite solar cell. Solar Energy, 2021, 216, 26-47. 465 2.9 67 Interface Engineering of 2D/3D Perovskite Heterojunction Improves Photovoltaic Efficiency and Stability. Solar Rrl, 2021, 5, 2100072. 3.1 Interfacial Enhancement of Photovoltaic Performance in MAPbI₃/CsPbI₃ 467 4.0 13 Superlattice. ACS Applied Materials & amp; Interfaces, 2021, 13, 14679-14687. Origin, Influence, and Countermeasures of Defects in Perovskite Solar Cells. Small, 2021, 17, e2005495. Ion Movement Explains Huge <i>V</i>_{OC} Increase despite Almost Unchanged Internal 469 1.8 18 Quasiâ€Fermiâ€Level Splitting in Planar Perovskite Solar Cells. Energy Technology, 2021, 9, 2001104. Metalâ€Free Phthalocyanine as a Hole Transporting Material and a Surface Passivator for Efficient and 470 Stable Perovskite Solar Cells. Small Methods, 2021, 5, e2001248.

#	Article	IF	CITATIONS
471	Printing strategies for scaling-up perovskite solar cells. National Science Review, 2021, 8, nwab075.	4.6	48
472	Effect of methylammonium lead tribromide perovskite based-photoconductor under gamma photons radiation. Radiation Physics and Chemistry, 2021, 181, 109337.	1.4	16
473	Perovskite Quantum Dots as Multifunctional Interlayers in Perovskite Solar Cells with Dopant-Free Organic Hole Transporting Layers. Journal of the American Chemical Society, 2021, 143, 5855-5866.	6.6	59
474	On the Use of PEDOT as a Catalytic Counter Electrode Material in Dye-Sensitized Solar Cells. Applied Sciences (Switzerland), 2021, 11, 3795.	1.3	14
475	Quantifying Stabilized Phase Purity in Formamidinium-Based Multiple-Cation Hybrid Perovskites. Chemistry of Materials, 2021, 33, 2769-2776.	3.2	13
476	Polymer strategies for high-efficiency and stable perovskite solar cells. Nano Energy, 2021, 82, 105712.	8.2	64
477	Water repellent room temperature vulcanized silicone for enhancing the long-term stability of perovskite solar cells. Solar Energy, 2021, 218, 28-34.	2.9	4
478	Perspective on the physics of two-dimensional perovskites in high magnetic field. Applied Physics Letters, 2021, 118, .	1.5	18
479	Flip hip Packaged Perovskite Solar Cells. Energy Technology, 2021, 9, 2001129.	1.8	2
480	Photoemission Studies on the Environmental Stability of Thermal Evaporated MAPbI3 Thin Films and MAPbBr3 Single Crystals. Energies, 2021, 14, 2005.	1.6	3
481	Photodegradation pathways of CH3NH3PbI3 organic perovskite polycrystalline film observed by in-situ scanning probe microscopy. Applied Surface Science, 2021, 545, 149081.	3.1	1
482	Ambient Air Bladeâ€Coating Fabrication of Stable Tripleâ€Cation Perovskite Solar Modules by Green Solvent Quenching. Solar Rrl, 2021, 5, 2100073.	3.1	34
483	Insights into the Development of Monolithic Perovskite/Silicon Tandem Solar Cells. Advanced Energy Materials, 2022, 12, 2003628.	10.2	72
484	Scalable Production of Ambient Stable Hybrid Bismuthâ€Based Materials: AACVD of Phenethylammonium Bismuth Iodide Films**. Chemistry - A European Journal, 2021, 27, 9406-9413.	1.7	4
485	Heterovalent Billl/PbII Ionic Substitution in One-Dimensional Trimethylsulfoxonium Halide Pseudo-Perovskites (X = I, Br). Journal of Physical Chemistry C, 2021, 125, 11728-11742.	1.5	6
486	Degradation mechanism of hybrid tin-based perovskite solar cells and the critical role of tin (IV) iodide. Nature Communications, 2021, 12, 2853.	5.8	236
487	Evolution of stability enhancement in organo-metallic halide perovskite photovoltaics-a review. Materials Today Communications, 2021, 27, 102159.	0.9	12
488	Stability of Perovskite Thin Films under Working Condition: Biasâ€Dependent Degradation and Grain Boundary Effects. Advanced Functional Materials, 2021, 31, 2103894.	7.8	28

#	Article	IF	CITATIONS
489	Orientational Dependence of Electron Beam Irradiation Damage in Lead-Free Halide Double Perovskite Cs ₂ AgBiBr ₆ . Journal of Physical Chemistry C, 2021, 125, 13033-13040.	1.5	5
490	Exploring Transport Behavior in Hybrid Perovskites Solar Cells via Machine Learning Analysis of Environmentalâ€Dependent Impedance Spectroscopy. Advanced Science, 2021, 8, e2002510.	5.6	23
491	Progress towards l <scp>eadâ€free</scp> , efficient, and stable perovskite solar cells. Journal of Chemical Technology and Biotechnology, 2022, 97, 810-829.	1.6	19
492	A New Type of Hybrid Copper lodide as Nontoxic and Ultrastable LED Emissive Layer Material. ACS Energy Letters, 2021, 6, 2565-2574.	8.8	46
493	Current Development toward Commercialization of Metalâ€Halide Perovskite Photovoltaics. Advanced Optical Materials, 2021, 9, 2100390.	3.6	15
494	Elimination of Charge Recombination Centers in Metal Halide Perovskites by Strain. Journal of the American Chemical Society, 2021, 143, 9982-9990.	6.6	52
495	Laserâ€induced recoverable fluorescence quenching of perovskite films at a microscopic grainâ€scale. Energy and Environmental Materials, 0, , .	7.3	2
496	Bias-Dependent Dynamics of Degradation and Recovery in Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 6562-6573.	2.5	11
497	Protecting Perovskite Solar Cells against Moisture-Induced Degradation with Sputtered Inorganic Barrier Layers. ACS Applied Energy Materials, 2021, 4, 7571-7578.	2.5	20
498	Pathways toward 30% Efficient Singleâ€Junction Perovskite Solar Cells and the Role of Mobile Ions. Solar Rrl, 2021, 5, 2100219.	3.1	48
499	The Progress of Additive Engineering for CH3NH3PbI3 Photo-Active Layer in the Context of Perovskite Solar Cells. Crystals, 2021, 11, 814.	1.0	17
500	Transformation and degradation of metal halide perovskites induced by energetic electrons and their practical implications. Nano Futures, 2021, 5, 032001.	1.0	4
501	Defect Passivation of Perovskite Films for Highly Efficient and Stable Solar Cells. Solar Rrl, 2021, 5, 2100295.	3.1	58
502	A Review on Emerging Barrier Materials and Encapsulation Strategies for Flexible Perovskite and Organic Photovoltaics. Advanced Energy Materials, 2021, 11, 2101383.	10.2	57
503	Progress in ambient air-processed perovskite solar cells: Insights into processing techniques and stability assessment. Solar Energy, 2021, 224, 1369-1395.	2.9	43
504	Synergistic passivation of MAPbI3 perovskite solar cells by compositional engineering using acetamidinium bromide additives. Journal of Energy Chemistry, 2021, 59, 755-762.	7.1	21
505	Hydrophobic compressed carbon/graphite based long-term stable perovskite solar cells. Materials Chemistry and Physics, 2021, 268, 124709.	2.0	7
506	Machine Learning Roadmap for Perovskite Photovoltaics. Journal of Physical Chemistry Letters, 2021, 12, 7866-7877.	2.1	51

#	Article	IF	Citations
507	Role of Alkali Cations in Stabilizing Mixed-Cation Perovskites to Thermal Stress and Moisture Conditions. ACS Applied Materials & Interfaces, 2021, 13, 43573-43586.	4.0	16
508	Dimension-controlled halide perovkites using templates. Nano Today, 2021, 39, 101181.	6.2	11
509	Role of PMMA to make MAPbI3 grain boundary heat-resistant. Applied Surface Science, 2021, 558, 149852.	3.1	7
511	Donor–Acceptor Competition via Halide Vacancy Filling for Oxygen Detection of High Sensitivity and Stability by Allâ€Inorganic Perovskite Films. Small, 2021, 17, 2102733.	5.2	3
512	Investigation of Opto-Electronic Properties and Stability of Mixed-Cation Mixed-Halide Perovskite Materials with Machine-Learning Implementation. Energies, 2021, 14, 5431.	1.6	5
513	Encapsulation Strategies for Highly Stable Perovskite Solar Cells under Severe Stress Testing: Damp Heat, Freezing, and Outdoor Illumination Conditions. ACS Applied Materials & Interfaces, 2021, 13, 45455-45464.	4.0	34
514	Correlating the Active Layer Structure and Composition with the Device Performance and Lifetime of Amino-Acid-Modified Perovskite Solar Cells. ACS Applied Materials & (1), 10, 43505-43515.	4.0	17
515	Imaging Real-Time Amorphization of Hybrid Perovskite Solar Cells under Electrical Biasing. ACS Energy Letters, 2021, 6, 3530-3537.	8.8	12
516	Design of Superhydrophobic Surfaces for Stable Perovskite Solar Cells with Reducing Lead Leakage. Advanced Energy Materials, 2021, 11, 2102281.	10.2	58
517	Two-dimensional hybrid perovskite solar cells: a review. Environmental Chemistry Letters, 2022, 20, 189-210.	8.3	10
518	2D Hybrid Halide Perovskites: Structure, Properties, and Applications in Solar Cells. Small, 2021, 17, e2103514.	5.2	59
519	Stability Issues of Perovskite Solar Cells: A Critical Review. Energy Technology, 2021, 9, 2100560.	1.8	31
520	First-Principles Characterization of Surface Phonons of Halide Perovskite CsPbI ₃ and Their Role in Stabilization. Journal of Physical Chemistry Letters, 2021, 12, 9253-9261.	2.1	4
521	Advances in perovskite solar cells: Film morphology control and interface engineering. Journal of Cleaner Production, 2021, 317, 128368.	4.6	10
522	Self-templated hollow nanospheres of B-site engineered non-stoichiometric perovskite for supercapacitive energy storage via anion-intercalation mechanism. Journal of Colloid and Interface Science, 2021, 600, 729-739.	5.0	19
523	Materials, methods and strategies for encapsulation of perovskite solar cells: From past to present. Renewable and Sustainable Energy Reviews, 2021, 151, 111608.	8.2	45
524	Construction of efficient perovskite solar cell through small-molecule synergistically assisted surface defect passivation and fluorescence resonance energy transfer. Chemical Engineering Journal, 2021, 426, 131358.	6.6	22
525	A guide to use fluorinated aromatic bulky cations for stable and high-performance 2D/3D perovskite solar cells: The more fluorination the better?. Journal of Energy Chemistry, 2022, 64, 179-189.	7.1	28

#	Article	IF	CITATIONS
526	Improved open-circuit voltage of CsPbI3 quantum dot solar cells by PMMA interlayer. Journal of Alloys and Compounds, 2022, 891, 161985.	2.8	6
527	Dynamic temperature effects in perovskite solar cells and energy yield. Sustainable Energy and Fuels, 0, , .	2.5	5
528	Research Progress on the Application of Lanthanide-Ion-Doped Phosphor Materials in Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 1035-1060.	3.2	33
529	Interfaces in metal halide perovskites probed by solid-state NMR spectroscopy. Journal of Materials Chemistry A, 2021, 9, 19206-19244.	5.2	28
530	Spectral response and quantum efficiency evaluation of solar cells: a review. , 2021, , 525-566.		3
531	Photoconductive Detectors Based on Perovskite Quantum Dots or Nanocrystals: From Lead-Based System to Lead-Free System. Lecture Notes in Nanoscale Science and Technology, 2021, , 119-156.	0.4	0
532	Photoelectric Properties of Composite Films Based on Organometallic Perovskite CH3NH3PbBr3 Modified with Mixed Cellulose Ester. Physics of the Solid State, 2021, 63, 160-164.	0.2	1
533	Preparation of perovskite CsPb(Br _x l _{1â^{~°}x}) ₃ quantum dots at room temperature. RSC Advances, 2021, 11, 18432-18439.	1.7	4
534	Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering. Advanced Materials, 2018, 30, e1800455.	11.1	332
535	Steric Impediment of Ion Migration Contributes to Improved Operational Stability of Perovskite Solar Cells. Advanced Materials, 2020, 32, e1906995.	11.1	142
536	Effect of Oxygen Vacancies in Electron Transport Layer for Perovskite Solar Cells. , 2020, , 283-305.		3
537	Transmission electron microscopy of organic-inorganic hybrid perovskites: myths and truths. Science Bulletin, 2020, 65, 1643-1649.	4.3	34
538	Halide Perovskites With Ambipolar Transport Properties for Transistor Applications. RSC Smart Materials, 2020, , 41-82.	0.1	2
539	A stable, efficient textile-based flexible perovskite solar cell with improved washable and deployable capabilities for wearable device applications. RSC Advances, 2017, 7, 54361-54368.	1.7	51
540	Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, .	2.2	102
541	Basis and effects of ion migration on photovoltaic performance of perovskite solar cells. Journal Physics D: Applied Physics, 2021, 54, 063001.	1.3	20
542	Laser printed metal halide perovskites. JPhys Materials, 2020, 3, 034010.	1.8	5
543	Perovskite solar cell performance assessment. JPhys Energy, 2020, 2, 044002.	2.3	12

ARTICLE IF CITATIONS # Review on methods for improving the thermal and ambient stability of perovskite solar cells. Journal 544 0.8 32 of Photonics for Energy, 2019, 9, 1. 545 Perovskite Solar Cells Yielding Reproducible Photovoltage of 1.20 V. Research, 2019, 2019, 1-9. 2.8 Stable High-Efficiency Two-Dimensional Perovskite Solar Cells Via Bromine Incorporation. Nanoscale 546 3.112 Research Letters, 2020, 15, 194. Advances in Dion-Jacobson phase two-dimensional metal halide perovskite solar cells. Nanophotonics, 548 2.9 38 2021, 10, 2069-2102. Perovskite Solar Cells Yielding Reproducible Photovoltage of 1.20 V. Research, 2019, 2019, 8474698. 549 2.8 22 Direction-selective electron beam damage to CH₃NH₃PbI₃ based on crystallographic anisotropy. Applied Physics Express, 2020, 13, 091001. 1.1 N719 and N3 dyes for quasi-solid state dye sensitized solar cells - A comparative study using 551 0.1 9 polyacrylonitrile and Csl based electrolytes. Ceylon Journal of Science, 2016, 45, 61. Bismuth-based halide perovskite and perovskite-inspired light absorbing materials for photovoltaics. 1.3 Journal Physics D: Applied Physics, 2022, 55, 113002. Halide Ion Migration and its Role at the Interfaces in Perovskite Solar Cells. European Journal of 553 1.0 8 Inorganic Chemistry, 2021, 2021, 4781-4789. Dual-functional metal (IIB) diethyldithocarbamate salts passivation enabled high-efficiency and stable 554 carbon-based CsPbIBr2 all-inorganic perovskite solar cells. Journal of Power Sources, 2021, 516, 230675. Ab initio study of the role of oxygen and excess electrons in the degradation of CH3NH3PbI3., 2017, , . 555 0 Stable and Efficient Perovskite Solar Cells Fabricated Using Aqueous Lead Nitrate Precursor: Interpretation of the Conversion Mechanism and Renovation of the Sequential Deposition. SSRN 0.4 Electronic Journal, 0, , . Oligomeric Silica-Wrapped Perovskites Enable Synchronous Defect Passivation and Grain Stabilization 557 0.4 1 for Efficient and Stable Perovskite Photovoltaics. SSRN Electronic Journal, 0, , . Constraints and Opportunities for Co2-Neutral Photovoltaics: In-Situ Perovskite Solar Cell Manufacturing Enables Reaching the Ultimate Carbon Footprint Limit of the Glass Substrate. SSRN 0.4 Electronic Journal, O, , . Recent advances in photo-stability of lead halide perovskites. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 559 0.2 4 157102. Counter Electrode Materials for Organic-Inorganic Perovskite Solar Cells., 2019, , 165-225. Characterization of Lead Halide Perovskites Using Synchrotron X-ray Techniques. Springer Series in 561 0.4 1 Materials Science, 2020, , 157-179. Dual-functional passivators for highly efficient and hydrophobic FA-based perovskite solar cells. 6.6 Chemical Engineering Journal, 2022, 433, 133227.

#	Article	IF	CITATIONS
564	Nicotinamideâ€Modified PEDOT:PSS for High Performance Indoor and Outdoor Tin Perovskite Photovoltaics. Solar Rrl, 2021, 5, 2100713.	3.1	11
565	Review: Perovskite Photovoltaics. Springer Theses, 2020, , 53-63.	0.0	Ο
566	Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energy and Environmental Science, 2022, 15, 13-55.	15.6	158
567	A tailored spacer molecule in 2D/3D heterojunction for ultralow-voltage-loss and stable perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 26829-26838.	5.2	10
568	Determination of the nonradiative conversion efficiency of lead mixed-halide perovskites using optical and photothermal spectroscopy. Applied Optics, 2020, 59, D201.	0.9	1
569	Flexible and Wearable Optoelectronic Devices Based on Perovskites. Advanced Materials Technologies, 2022, 7, .	3.0	26
570	Opto-Electronic Properties of Methyl-Ammonium Lead Halide: A First Principle Approach. Journal of Physics: Conference Series, 2020, 1622, 012105.	0.3	0
571	A review on the emerging applications of 4-cyano-4′-alkylbiphenyl (nCB) liquid crystals beyond display. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 275, 115522.	1.7	9
572	First principles study on organic cation A-site doping in CsPbI3 perovskite. Computational Materials Science, 2022, 203, 111090.	1.4	5
573	Recent advances in crystalline hybrid photochromic materials driven by electron transfer. Coordination Chemistry Reviews, 2022, 452, 214304.	9.5	91
574	Gammaâ€Ray Radiation Stability of Mixedâ€Cation Lead Mixedâ€Halide Perovskite Single Crystals. Advanced Optical Materials, 2022, 10, 2102069.	3.6	15
575	Long-term stable perovskite solar cells prepared by doctor blade coating technology using bilayer structure and non-toxic solvent. Organic Electronics, 2022, 101, 106400.	1.4	5
576	The roles of black phosphorus in performance enhancement of halide perovskite solar cells. Journal of Energy Chemistry, 2022, 67, 672-683.	7.1	6
577	Stability and electronic properties of two-dimensional metal–organic perovskites in Janus phase. APL Materials, 2021, 9, 111105.	2.2	2
579	Degradation mechanism and addressing techniques of thermal instability in halide perovskite solar cells. Solar Energy, 2021, 230, 954-978.	2.9	19
580	Soft Polymer–Organolead Halide Perovskite Films for Highly Stretchable and Durable Photodetectors with Pt–Au Nanochain-Based Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 58956-58965.	4.0	14
581	Ambient Spray Coating of Organicâ€Inorganic Composite Thin Films for Perovskite Solar Cell Encapsulation. ChemSusChem, 2022, 15, .	3.6	8
582	Recent Advances and Perspectives of Photostability for Halide Perovskite Solar Cells. Advanced Optical Materials, 2022, 10, 2101822.	3.6	41

#	Article	IF	CITATIONS
583	Size-tunable MoS ₂ nanosheets for controlling the crystal morphology and residual stress in sequentially deposited perovskite solar cells with over 22.5% efficiency. Journal of Materials Chemistry A, 2022, 10, 3605-3617.	5.2	15
584	Cross-linkable molecule in spatial dimension boosting water-stable and high-efficiency perovskite solar cells. Nano Energy, 2022, 93, 106846.	8.2	29
585	Aryl quaternary ammonium modulation for perovskite solar cells with improved efficiency and stability. Nano Energy, 2022, 94, 106922.	8.2	18
587	Optimization of key parameters towards high performance perovskite solar cells. , 2020, , .		0
588	Interfacial Engineering of PTAA/Perovskites for Improved Crystallinity and Hole Extraction in Inverted Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2022, 14, 3284-3292.	4.0	36
589	Investigations of Fused Deposition Modeling for Perovskite Active Solar Cells. Polymers, 2022, 14, 317.	2.0	5
590	Defects and stability of perovskite solar cells: a critical analysis. Materials Chemistry Frontiers, 2022, 6, 400-417.	3.2	68
591	How Ternary Cations and Binary Halogens Stabilize Trigonal FA _{1–<i>x</i>–<i>y</i>} MA _{<i>x</i>} Cs _{<i>y</i>} Pbl _{3–<i>z</i> Perovskites: From a Single Crystal Perspective. Chemistry of Materials, 2022, 34, 1179-1190.}	ร น_{ี่}b2 Br<รเ	ub⊉œi>z<
592	Highâ€Performance Nonâ€Volatile Flash Photomemory via Highly Oriented Quasiâ€2D Perovskite. Advanced Functional Materials, 2022, 32, .	7.8	23
593	A DFT study of perovskite type halides KBeBr3, RbBeBr3, and CsBeBr3 in triclinic phase for advanced optoelectronic devices. Solid State Communications, 2022, 344, 114674.	0.9	23
594	Highâ€Polarizability Organic Ferroelectric Materials Doping for Enhancing the Builtâ€in Electric Field of Perovskite Solar Cells Realizing Efficiency over 24%. Advanced Materials, 2022, 34, e2110482.	11.1	65
595	Symmetrical Acceptor–Donor–Acceptor Molecule as a Versatile Defect Passivation Agent toward Efficient FA _{0.85} MA _{0.15} PbI ₃ Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	47
596	Evidence for polarization-induced phase transformations and degradation in CH ₃ NH ₃ PbI ₃ . SSRN Electronic Journal, 0, , .	0.4	0
597	Instability Issues and Stabilization Strategies of Lead Halide Perovskites for Photo(electro)catalytic Solar Fuel Production. Journal of Physical Chemistry Letters, 2022, 13, 1806-1824.	2.1	7
598	Unified picture for the pressure-controlled band gap in inorganic halide perovskites: Role of strain-phonon and phonon-phonon couplings. Physical Review B, 2022, 105, .	1.1	1
599	Exploring the Effects of Ionic Defects on the Stability of CsPbI ₃ with a Deep Learning Potential. ChemPhysChem, 2022, 23, e202100841.	1.0	8
600	Ab Initio Thermodynamic Study of PbI ₂ and CH ₃ NH ₃ PbI ₃ Surfaces in Reaction with CH ₃ NH ₂ Gas for Perovskite Solar Cells. Journal of Physical Chemistry C, 2022, 126, 3671-3680.	1.5	1
601	Quantitative Predictions of Moisture-Driven Photoemission Dynamics in Metal Halide Perovskites via Machine Learning. Journal of Physical Chemistry Letters, 2022, 13, 2254-2263.	2.1	13

#	Article	IF	CITATIONS
602	Effect of Steric Hindrance of Butylammonium lodide as Interface Modification Materials on the Performance of Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	10
603	Understanding Instability in Formamidinium Lead Halide Perovskites: Kinetics of Transformative Reactions at Grain and Subgrain Boundaries. ACS Energy Letters, 2022, 7, 1534-1543.	8.8	45
604	Bismuth Stabilizes the α-Phase of Formamidinium Lead Iodide Perovskite Single Crystals. , 2022, 4, 707-712.		10
605	Firstâ€principles investigation of structural, optoelectronic, and thermoelectric properties of Cs ₂ Tl(As/Sb)l ₆ . International Journal of Energy Research, 0, , .	2.2	2
606	High Efficiency Quasiâ€2D/3D Pb–Ba Perovskite Solar Cells via Phenethylammonium Chloride Addition. Solar Rrl, 2022, 6, .	3.1	4
607	Progress on the stability and encapsulation techniques of perovskite solar cells. Organic Electronics, 2022, 106, 106515.	1.4	22
608	Enhanced performance of hole-conductor free carbon-based perovskite solar cells through polyvinylidene fluoride as additive. Materials Today Communications, 2022, 31, 103446.	0.9	3
609	Oxidized Spiro-OMeTAD: Investigation of Stability in Contact with Various Perovskite Compositions. ACS Applied Energy Materials, 2021, 4, 13696-13705.	2.5	24
610	Moisture Stability of Perovskite Solar Cells Processed in Supercritical Carbon Dioxide. Molecules, 2021, 26, 7570.	1.7	2
611	Highly Transparent Bidirectional Transparent Photovoltaics for On-Site Power Generators. ACS Applied Materials & Interfaces, 2022, 14, 706-716.	4.0	13
612	Nonmonotonic Photostability of BA ₂ MA _{<i>n</i>–1} Pb _{<i>n</i>} I _{3<i>n</i>+1} Homologous Layered Perovskites. ACS Applied Materials & Interfaces, 2022, 14, 961-970.	4.0	13
613	Evaluation of Active Layer Thickness Influence in Long-Term Stability and Degradation Mechanisms in CsFAPbIBr Perovskite Solar Cells. Applied Sciences (Switzerland), 2021, 11, 11668.	1.3	1
614	Improving the Efficiency, Stability, and Adhesion of Perovskite Solar Cells Using Nanogel Additive Engineering. ACS Applied Materials & amp; Interfaces, 2021, 13, 58640-58651.	4.0	2
615	Carbon monoxide induced self-doping in methylammonium lead iodide films and associated long-term degradation effects. Journal of Materials Chemistry C, 0, , .	2.7	6
616	Highly effective surface defect passivation of perovskite quantum dots for excellent optoelectronic properties. Journal of Materials Research and Technology, 2022, 18, 4145-4155.	2.6	10
617	Anti-Stokes photoluminescence from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CsPbBr</mml:mi><mml:mn>3nanostructures embedded in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:msub><mml:mi>Cs</mml:mi><mml:mi><mml:m< td=""><td>0.9</td><td>11</td></mml:m<></mml:mi></mml:msub></mml:msub></mml:math </mml:mn></mml:msub></mml:math 	0.9	11
619	crystal Physical Review Materials, 2022, 6, . Impact of lifetime on the levelized cost of electricity from perovskite single junction and tandem solar cells. Sustainable Energy and Fuels, 2022, 6, 2718-2726.	2.5	11
620	Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics. Chinese Physics B, 2022, 31, 117803.	0.7	0

#	Article	IF	CITATIONS
621	Recent review on electron transport layers in perovskite solar cells. International Journal of Energy Research, 2022, 46, 21441-21451.	2.2	24
622	Basic understanding of perovskite solar cells and passivation mechanism. AIP Advances, 2022, 12, .	0.6	13
623	Recent progress of lead-free halide double perovskites for green energy and other applications. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	10
624	Restricting the Formation of Pb–Pb Dimer via Surface Pb Site Passivation for Enhancing the Light Stability of Perovskite. Small, 2022, 18, e2201831.	5.2	15
625	First-principles study on the electronic structures and optical properties of Cs2XInCl6 (X= Ag, Na). Solid State Communications, 2022, 352, 114812.	0.9	5
626	Review on two-terminal and four-terminal crystalline-silicon/perovskite tandem solar cells; progress, challenges, and future perspectives. Energy Reports, 2022, 8, 5820-5851.	2.5	24
627	Triphenyllead Hydroperoxide: A 1D Coordination Peroxo Polymer, Single-Crystal-to-Single-Crystal Disproportionation to a Superoxo/Hydroxo Complex, and Application in Catalysis. Inorganic Chemistry, 2022, 61, 8193-8205.	1.9	5
629	lon migration in hybrid perovskites: Classification, identification, and manipulation. Nano Today, 2022, 44, 101503.	6.2	41
630	Stability investigation of the titanium-based eco-friendly perovskite-like antifluorite Cs ₂ TiBr ₆ . Journal of Materials Chemistry C, 2022, 10, 9301-9309.	2.7	6
631	Strain Release of Formamidinium-Cesium Perovskite with Imprint-Assisted Organic Ammonium Halide Compensation for Efficient and Stable Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
632	Perovskite Nanowires as Defect Passivators and Charge Transport Networks for Efficient and Stable Perovskite Solar Cells. SSRN Electronic Journal, 0, , .	0.4	0
633	Downconversion Materials for Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	18
634	Steady-State Transporting Properties of Halide Perovskite Thin Films under 1 sun through Photo-Hall Effect Measurement. Journal of Physical Chemistry C, 0, , .	1.5	2
635	Photoinstability aversion in perovskite solar cell by downconversion cadmium chalcogenide filters. Journal of Photonics for Energy, 2022, 12, .	0.8	0
636	Dibenzoâ€18â€crownâ€6â€assisted inhibition of cationâ€migration for stable perovskite solar cells. Solar Rrl, 0,	3.1	3
637	Toward <scp>allâ€inorganic</scp> perovskite solar cells: Materials, performance, and stability. International Journal of Energy Research, 2022, 46, 14659-14695.	2.2	8
638	Review of technology specific degradation in crystalline silicon, cadmium telluride, copper indium gallium selenide, dye sensitised, organic and perovskite solar cells in photovoltaic modules: Understanding how reliability improvements in mature technologies can enhance emerging technologies. Progress in Photovoltaics: Research and Applications, 2022, 30, 1365-1392.	4.4	26
639	Plasma-Deposited Fluorocarbon Coatings on Methylammonium Lead Iodide Perovskite Films. Energies, 2022, 15, 4512.	1.6	1

#	Article	IF	CITATIONS
641	Improving the stability of hybrid perovskite FAPbI ₃ by forming 3D/2D interfaces with organic spacers. Chemical Communications, 2022, 58, 8440-8443.	2.2	3
642	Sustainable Pb Management in Perovskite Solar Cells toward Ecoâ€Friendly Development. Advanced Energy Materials, 2022, 12, .	10.2	38
643	16.35 % efficient Cs2GeSnCl6 based heterojunction solar cell with hole-blocking SnO2 layer: DFT and SCAPS-1D simulation. Optik, 2022, 267, 169608.	1.4	6
644	Stability of perovskite materials and devices. Materials Today, 2022, 58, 275-296.	8.3	35
645	Enhance Photothermal Stability of Hybrid Perovskite Materials by Inhibiting Intrinsic Ion Migration. Solar Rrl, 2022, 6, .	3.1	3
646	Strain release of formamidinium-cesium perovskite with imprint-assisted organic ammonium halide compensation for efficient and stable solar cells. Nano Energy, 2022, 101, 107594.	8.2	17
647	Progress and challenges of halide perovskite-based solar cell- a brief review. Materials Science in Semiconductor Processing, 2022, 150, 106953.	1.9	22
648	Visualization of Ion Migration in an Inorganic Mixed Halide Perovskite by One-Photon and Multiphoton Absorption: Effect of Guanidinium A-Site Cation Incorporation. Journal of Physical Chemistry Letters, 2022, 13, 6944-6955.	2.1	2
649	Recent Criterion on Stability Enhancement of Perovskite Solar Cells. Processes, 2022, 10, 1408.	1.3	9
650	Photo-electro-striction in halide perovskite semiconductors. Applied Physics Letters, 2022, 121, .	1.5	1
651	Boosting the stability of lead halide perovskite nanocrystals by metal–organic frameworks and their applications. Journal of Materials Chemistry C, 2022, 10, 11532-11554.	2.7	9
652	Intensity Modulated Photocurrent Microspectrosopy for Next Generation Photovoltaics. Small Methods, 2022, 6, .	4.6	9
653	Analysis of degradation kinetics of halide perovskite solar cells induced by light and heat stress. Solar Energy Materials and Solar Cells, 2022, 246, 111899.	3.0	10
654	Perovskite nanowires as defect passivators and charge transport networks for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2023, 451, 138920.	6.6	8
655	Two-Dimensional Lead-Free Double Perovskite with Superior Stability and Optoelectronic Properties for Solar Cell Application. Journal of Physical Chemistry C, 2022, 126, 14824-14831.	1.5	2
656	Recent Advances in the Combined Elevated Temperature, Humidity, and Light Stability of Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	12
657	Stabilization of Perovskite Solar Cells: Recent Developments and Future Perspectives. Advanced Materials, 2022, 34, .	11.1	67
658	Single-Crystal Hybrid Lead Halide Perovskites: Growth, Properties, and Device Integration for Solar Cell Application. Crystal Growth and Design, 2022, 22, 6338-6362.	1.4	7

#	Article	IF	CITATIONS
659	Recent Progress on Defect Passivation of Allâ€Inorganic Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	9
660	Patterned 2D Perovskite Film with a Preferably Orientated 3D-Like Phase for Efficient Perovskite Solar Cells. Chemistry of Materials, 2022, 34, 8446-8455.	3.2	2
661	Addressing the stability challenge of metal halide perovskite based photocatalysts for solar fuel production. JPhys Energy, 2022, 4, 042005.	2.3	2
662	Probing the photodegradation of MAPI perovskite with concentrated sunlight. Optical Materials, 2022, 133, 113012.	1.7	3
663	Strain regulating mechanical stability and photoelectric properties of CH3NH3PbI3 containing the asymmetric CH3NH3 cations. Materials Today Communications, 2022, 33, 104527.	0.9	1
664	Revealing superoxide-induced degradation in lead-free tin perovskite solar cells. Energy and Environmental Science, 2022, 15, 5274-5283.	15.6	32
665	UV-Assisted Conversion of 2D Ruddlesden–Popper Iodide Perovskite Nanoplates into Stable 3D MAPbI ₃ Nanorods. Journal of Physical Chemistry C, 2022, 126, 18057-18066.	1.5	5
666	Stabilizing Wide Bandgap Tripleâ€Halide Perovskite Alloy through Organic Gelators. Solar Rrl, 2022, 6, .	3.1	2
667	Preparation of Perovskite Solar Cells in the Air: Degradation Mechanism and Prospects on <scp>Largeâ€Area</scp> Fabrication ^{â€} . Chinese Journal of Chemistry, 2023, 41, 599-617.	2.6	11
668	Cat-CVD SiN _x as a gas barrier for application to perovskite solar cells. Japanese Journal of Applied Physics, 2022, 61, 121002.	0.8	2
669	Holistic Approach toward a Damage-Less Sputtered Indium Tin Oxide Barrier Layer for High-Stability Inverted Perovskite Solar Cells and Modules. ACS Applied Materials & Interfaces, 2022, 14, 51438-51448.	4.0	6
670	Nondestructive Post-Treatment Enabled by <i>In Situ</i> Generated 2D Perovskites Derived from Multi-ammonium Molecule Vapor for High-Performance 2D/3D Bilayer Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 51053-51065.	4.0	3
671	Reduced Selfâ€Absorption of Quasiâ€2D Perovskites and Their Application in Color Conversion Layers. Advanced Optical Materials, 2023, 11, .	3.6	3
672	Early thermal aging detection in tin based perovskite solar cell. Heliyon, 2022, 8, e11455.	1.4	0
673	Halide Chemistry in Tin Perovskite Optoelectronics: Bottlenecks and Opportunities. Angewandte Chemie - International Edition, 2023, 62, .	7.2	12
674	Halide Chemistry in Tin Perovskite Optoelectronics: Bottlenecks and Opportunities. Angewandte Chemie, 2023, 135, .	1.6	1
675	Enhanced Performance of Camphorsulfonic Acid-Doped Perovskite Solar Cells. Molecules, 2022, 27, 7850.	1.7	1
676	Recent review of interfacial engineering for perovskite solar cells: effect of functional groups on the stability and efficiency. Materials Today Chemistry, 2022, 26, 101224.	1.7	8

#	Article	IF	CITATIONS
677	Role of inorganic cations in the excitonic properties of lead halide perovskites. Physical Chemistry Chemical Physics, 2023, 25, 2468-2476.	1.3	2
678	Rationalization of passivation strategies toward high-performance perovskite solar cells. Chemical Society Reviews, 2023, 52, 163-195.	18.7	81
679	Vitamin needed: Lanthanides in optoelectronic applications of metal halide perovskites. Materials Science and Engineering Reports, 2023, 152, 100710.	14.8	12
680	Lead-free Dion–Jacobson halide perovskites CsMX2Y2 (M = Sb, Bi and X, Y = Cl, Br, I) used for optoelectronic applications via first principle calculations. Journal of Physics and Chemistry of Solids, 2023, 174, 111157.	1.9	8
681	On current technology for light absorber materials used in highly efficient industrial solar cells. Renewable and Sustainable Energy Reviews, 2023, 173, 113027.	8.2	9
682	Cinnamate-Functionalized Cellulose Nanocrystals as Interfacial Layers for Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 1348-1357.	4.0	3
683	Analytical Evaluation of Lead Iodide Precursor Impurities Affecting Halide Perovskite Device Performance. ACS Applied Energy Materials, 2023, 6, 295-301.	2.5	3
684	Engineering Stable Leadâ€Free Tin Halide Perovskite Solar Cells: Lessons from Materials Chemistry. Advanced Materials, 2023, 35, .	11.1	13
685	The current state of the art in internal additive materials and quantum dots for improving efficiency and stability against humidity in perovskite solar cells. Heliyon, 2022, 8, e11878.	1.4	2
686	Effect of Edaravone (An Antioxidant) on the Performance of Organic Perovskite Solar Cells. Physica Status Solidi - Rapid Research Letters, 2023, 17, .	1.2	2
687	Healing aged metal halide perovskite toward robust optoelectronic devices: Mechanisms, strategies, and perspectives. Nano Energy, 2023, 108, 108219.	8.2	4
688	Trends in energy and charge transfer in 2D and integrated perovskite heterostructures. Nanoscale, 2023, 15, 3610-3629.	2.8	5
689	Phase Equilibria in Ternary System CsBr-AgBr-InBr3. Materials, 2023, 16, 559.	1.3	1
690	Stability of perovskite solar cells: issues and prospects. RSC Advances, 2023, 13, 1787-1810.	1.7	65
691	Understanding the Degradation Factors, Mechanism and Initiatives for Highly Efficient Perovskite Solar Cells. ChemNanoMat, 2023, 9, .	1.5	5
692	Accelerated formation of iodine vacancies in <scp> CH ₃ NH ₃ PbI ₃ </scp> perovskites: The impact of oxygen and charges. EcoMat, 0, , .	6.8	2
693	Carbon Dots in Perovskite Solar Cells: Properties, Applications, and Perspectives. Energy & Fuels, 2023, 37, 876-901.	2.5	7
694	Recycling of halide perovskites. , 2023, , 385-446.		0

#	Article	IF	CITATIONS
696	Discovering layered lead-free perovskite solar absorbers <i>via</i> cation transmutation. Nanoscale Horizons, 2023, 8, 483-488.	4.1	6
697	Halide Composition Engineered a Non-Toxic Perovskite–Silicon Tandem Solar Cell with 30.7% Conversion Efficiency. ACS Applied Electronic Materials, 2023, 5, 5303-5315.	2.0	50
698	Closed loop proportional resonant controller controlled DC microgrid system with advanced material technology in solar PV system. Materials Today: Proceedings, 2023, , .	0.9	4
699	Building optimistic perovskite-polymer composite solar cells: Feasible involvement of a BLP inclusion to efficiently stable perovskite films. Materials Science in Semiconductor Processing, 2023, 160, 107409.	1.9	0
700	Advances in Encapsulations for Perovskite Solar Cells: From Materials to Applications. Solar Rrl, 2023, 7, .	3.1	11
701	Structural Study of Paraffin-Stabilized Methylammonium Lead Bromide Magic-Sized Clusters. Journal of Physical Chemistry C, 2023, 127, 3367-3376.	1.5	4
702	Remarkable performance recovery in highly defective perovskite solar cells by photo-oxidation. Journal of Materials Chemistry C, 2023, 11, 8007-8017.	2.7	3
703	Identification of lead-free double halide perovskites for promising photovoltaic applications: first-principles calculations. European Physical Journal Plus, 2023, 138, .	1.2	0
704	Efficiency Enhancement Strategies for Stable Bismuth-Based Perovskite and Its Bioimaging Applications. International Journal of Molecular Sciences, 2023, 24, 4711.	1.8	2
705	Light-Induced Halide Segregation in 2D and Quasi-2D Mixed-Halide Perovskites. ACS Energy Letters, 2023, 8, 1662-1670.	8.8	13
706	Low-cost and LiTFSI-free diphenylamine-substituted hole transporting materials for highly efficient perovskite solar cells and modules. Materials Chemistry Frontiers, 2023, 7, 2241-2250.	3.2	2
707	The Effect of Redox Reactions on the Stability of Perovskite Solar Cells. ChemPhotoChem, 2023, 7, .	1.5	1
708	Recent Progress on Synthesis, Intrinsic Properties and Optoelectronic Applications of Perovskite Single Crystals. Advanced Functional Materials, 2023, 33, .	7.8	12
709	Phase Transition Kinetics of MAPbl ₃ for Tetragonal-to-Orthorhombic Evolution. Jacs Au, 2023, 3, 1205-1212.	3.6	6
710	Examining a Year-Long Chemical Degradation Process and Reaction Kinetics in Pristine and Defect-Passivated Lead Halide Perovskites. Chemistry of Materials, 2023, 35, 2904-2917.	3.2	3
711	Environmentally friendly anti-solvent engineering for high-efficiency tin-based perovskite solar cells. Energy and Environmental Science, 2023, 16, 2177-2186.	15.6	20
712	Effect of Air Exposure on Electron-Beam-Induced Degradation of Perovskite Films. ACS Nanoscience Au, 2023, 3, 230-240.	2.0	1
713	Review on Chemical Stability of Lead Halide Perovskite Solar Cells. Nano-Micro Letters, 2023, 15, .	14.4	29

	CITATION	on Report	
#	Article	IF	CITATIONS
714	Sn-Based Perovskite Solar Cells towards High Stability and Performance. Micromachines, 2023, 14, 806.	1.4	8
715	Mapping the pathways of photo-induced ion migration in organic-inorganic hybrid halide perovskites. Nature Communications, 2023, 14, .	5.8	15
716	The role of different dopants of Spiro-OMeTAD hole transport material on the stability of perovskite solar cells: A mini review. Vacuum, 2023, 214, 112076.	1.6	9
717	Ionic liquids tailoring crystal orientation and electronic properties for stable perovskite solar cells. Nano Energy, 2023, 112, 108449.	8.2	14
718	Role of surface terminations in the chemical stability of CH3NH3PbI3 perovskite in combined light, H2O, and O2 environments: DFT/AIMD calculations and experimental validation. Materials Today Advances, 2023, 18, 100370.	2.5	1
719	Covalent bonding strategy to enable non-volatile organic cation perovskite for highly stable and efficient solar cells. Joule, 2023, 7, 1033-1050.	11.7	13
720	"Metal Halide Perovskite Solar Modules: The Challenge of Upscaling and Commercializing This Technology― , 2023, , 297-321.		0
721	Selenium-sensitized TiO2 p-n heterojunction thin films with high resistance to oxidation and moisture for self-driven visible-light photodetection. Thin Solid Films, 2023, 774, 139853.	0.8	1
722	Experimental study on irradiation of perovskite solar cells. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 126101.	0.2	1
723	Systematic investigation of the impact of kesterite and zinc based charge transport layers on the device performance and optoelectronic properties of ecofriendly tin (Sn) based perovskite solar cells. Solar Energy, 2023, 257, 58-87.	2.9	14
734	Halide perovskites: Properties, synthesis, and applications. , 2024, , 659-678.		0
738	Advanced spectroscopic techniques for characterizing defects in perovskite solar cells. Communications Materials, 2023, 4, .	2.9	9
758	Methylammonium-free wide-bandgap metal halide perovskites for tandem photovoltaics. Nature Reviews Materials, 2023, 8, 822-838.	23.3	2