Graphene-based artificial nacre nanocomposites

Chemical Society Reviews 45, 2378-2395

DOI: 10.1039/c5cs00258c

Citation Report

#	Article	IF	CITATIONS
2	Integrated ternary artificial nacre via synergistic toughening of reduced graphene oxide/double-walled carbon nanotubes/poly(vinyl alcohol). Materials Research Express, 2016, 3, 075002.	0.8	23
3	Space-Confined Growth of Defect-Rich Molybdenum Disulfide Nanosheets Within Graphene: Application in The Removal of Smoke Particles and Toxic Volatiles. ACS Applied Materials & Samp; Interfaces, 2016, 8, 34735-34743.	4.0	45
4	The era of water-enabled electricity generation from graphene. Journal of Materials Chemistry A, 2016, 4, 9730-9738.	5.2	53
5	Microwave heating time dependent synthesis of various dimensional graphene oxide supported hierarchical ZnO nanostructures and its photoluminescence studies. Materials and Design, 2016, 111, 291-300.	3.3	52
6	Mechanical enhancement of a nanoconfined-electrodeposited nacre-like Cu ₂ O layered crystal/graphene oxide nanosheet composite thin film. RSC Advances, 2016, 6, 94845-94850.	1.7	6
7	Supramolecular Double-Helix Formation by Diastereoisomeric Conformations of Configurationally Enantiomeric Macrocycles. Journal of the American Chemical Society, 2016, 138, 14469-14480.	6.6	42
8	Robust bioinspired graphene-based nanocomposites via synergistic toughening of zinc ions and covalent bonding. Journal of Materials Chemistry A, 2016, 4, 17073-17079.	5.2	44
9	Reinforcement of organo-modified molybdenum disulfide nanosheets on the mechanical and thermal properties of polyurethane acrylate films. Composites Science and Technology, 2016, 137, 188-195.	3.8	11
10	Tough and strong bioinspired nanocomposites with interfacial cross-links. Nanoscale, 2016, 8, 18531-18540.	2.8	13
11	Biomimetic Nanofibrillation in Two-Component Biopolymer Blends with Structural Analogs to Spider Silk. Scientific Reports, 2016, 6, 34572.	1.6	24
12	Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chemical Reviews, 2017, 117, 1826-1914.	23.0	425
13	Cyclic microbridge testing of graphene oxide membrane. Carbon, 2017, 116, 479-489.	5.4	4
14	Biomineralization: From Material Tactics to Biological Strategy. Advanced Materials, 2017, 29, 1605903.	11,1	239
15	Graphene Oxide-Polymer Composite Langmuir Films Constructed by Interfacial Thiol-Ene Photopolymerization. Nanoscale Research Letters, 2017, 12, 99.	3.1	83
16	Application of bio-inspired nanocomposites for enhancing impact resistance of cementitious materials. International Journal of Impact Engineering, 2017, 110, 171-180.	2.4	3
17	Nacre-inspired polyglutamic acid/layered double hydroxide bionanocomposite film with high mechanical, translucence and UV-blocking properties. Chinese Journal of Polymer Science (English) Tj ETQq1 1 0	.78 4 814 r	gB 7 /Overlo <mark>ck</mark>
18	Lubricantâ€Infused Anisotropic Porous Surface Design of Reduced Graphene Oxide Toward Electrically Driven Smart Control of Conductive Droplets' Motion. Advanced Functional Materials, 2017, 27, 1606199.	7.8	71
19	Three-dimensional hierarchical porous graphene aerogel for efficient adsorption and preconcentration of chemical warfare agents. Carbon, 2017, 122, 556-563.	5.4	67

#	ARTICLE	IF	CITATIONS
20	Nacre-inspired design of graphene oxide–polydopamine nanocomposites for enhanced mechanical properties and multi-functionalities. Nano Futures, 2017, 1, 011003.	1.0	41
21	Programmable molecular composites of tandem proteins with graphene oxide for efficient bimorph actuators. Carbon, 2017, 118, 404-412.	5.4	27
22	Superstretchable Nacre-Mimetic Graphene/Poly(vinyl alcohol) Composite Film Based on Interfacial Architectural Engineering. ACS Nano, 2017, 11, 4777-4784.	7.3	163
23	Fracture mechanisms in multilayer phosphorene assemblies: from brittle to ductile. Physical Chemistry Chemical Physics, 2017, 19, 13083-13092.	1.3	10
24	Learning from nature: constructing high performance graphene-based nanocomposites. Materials Today, 2017, 20, 210-219.	8.3	104
25	Fatigue Resistant Bioinspired Composite from Synergistic Two-Dimensional Nanocomponents. ACS Nano, 2017, 11, 7074-7083.	7.3	49
26	Bioinspired Interface Engineering for Moisture Resistance in Nacre-Mimetic Cellulose Nanofibrils/Clay Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2017, 9, 20169-20178.	4.0	93
27	Synergistically toughening nacre-like graphene nanocomposites via gel-film transformation. Journal of Materials Chemistry A, 2017, 5, 16386-16392.	5.2	43
28	Mechanical, Structural and Thermal Properties of Transparent Bi2O3–Al2O3–ZnO–TeO2 Glass System. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 788-794.	1.9	6
29	Nacre-mimetic bulk lamellar composites reinforced with high aspect ratio glass flakes. Bioinspiration and Biomimetics, 2017, 12, 016002.	1.5	1
30	Graphene as initiator/catalyst in polymerization chemistry. Progress in Polymer Science, 2017, 67, 48-76.	11.8	39
31	Nacre-mimic Reinforced Ag@reduced Graphene Oxide-Sodium Alginate Composite Film for Wound Healing. Scientific Reports, 2017, 7, 13851.	1.6	29
32	Fatigueâ€Resistant Bioinspired Grapheneâ€Based Nanocomposites. Advanced Functional Materials, 2017, 27, 1703459.	7.8	37
33	Highâ€Performance Nanocomposites Inspired by Nature. Advanced Materials, 2017, 29, 1702959.	11.1	138
34	Variable self-assembly and in situ host–guest reaction of beta-cyclodextrin-modified graphene oxide composite Langmuir films with azobenzene compounds. RSC Advances, 2017, 7, 41043-41051.	1.7	18
35	Topological Design of Ultrastrong and Highly Conductive Graphene Films. Advanced Materials, 2017, 29, 1702831.	11.1	108
36	Effect of flake size on the mechanical properties of graphene aerogels prepared by freeze casting. RSC Advances, 2017, 7, 33600-33605.	1.7	53
37	Learning from nacre: Constructing polymer nanocomposites. Composites Science and Technology, 2017, 150, 141-166.	3.8	72

#	Article	IF	CITATIONS
38	Sheet Collapsing Approach for Rubber-like Graphene Papers. ACS Nano, 2017, 11, 8092-8102.	7.3	50
39	Thermochromic Artificial Nacre Based on Montmorillonite. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24993-24998.	4.0	34
40	Robust Bioinspired Graphene Film via π–π Cross-linking. ACS Applied Materials & Interfaces, 2017, 9, 24987-24992.	4.0	53
41	Preparation of graphene oxide-polymer composite hydrogels via thiol-ene photopolymerization as efficient dye adsorbents for wastewater treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 668-676.	2.3	42
42	Precisely controlled growth of poly(ethyl acrylate) chains on graphene oxide and the formation of layered structure with improved mechanical properties. Composites Part A: Applied Science and Manufacturing, 2017, 93, 100-106.	3.8	19
43	Properties of Soy Protein Isolate Biopolymer Film Modified by Graphene. Polymers, 2017, 9, 312.	2.0	26
44	Improvement in Functional Properties of Soy Protein Isolate-Based Film by Cellulose Nanocrystal–Graphene Artificial Nacre Nanocomposite. Polymers, 2017, 9, 321.	2.0	30
45	Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Materials Science and Engineering Reports, 2018, 125, 1-41.	14.8	182
46	Porous nanocomposite membranes based on functional GO with selective function for lithium adsorption. New Journal of Chemistry, 2018, 42, 4432-4442.	1.4	16
47	Adjustable and pseudocapacitance-prompted Li storage via the controlled preparation of nanocomposites with 0D-2D carbon networks. Electrochimica Acta, 2018, 268, 323-331.	2.6	9
48	Advanced Materials through Assembly of Nanocelluloses. Advanced Materials, 2018, 30, e1703779.	11.1	493
49	Scalable Waterâ€Based Production of Highly Conductive 2D Nanosheets with Ultrahigh Volumetric Capacitance and Rate Capability. Advanced Energy Materials, 2018, 8, 1800227.	10.2	26
50	Smart Nacreâ€inspired Nanocomposites. ChemPhysChem, 2018, 19, 1980-1986.	1.0	8
51	Nacre-inspired composites with different macroscopic dimensions: strategies for improved mechanical performance and applications. NPG Asia Materials, 2018, 10, 1-22.	3.8	147
52	Bio-inspired layered nanolignocellulose/graphene-oxide composite with high mechanical strength due to borate cross-linking. Industrial Crops and Products, 2018, 118, 65-72.	2.5	22
53	<i>Grapheneâ€Based Nanocomposites. Advanced Functional Materials, 2018, 28, 1800924.</i>	7.8	35
54	Anti-fouling and thermosensitive ion-imprinted nanocomposite membranes based on grapheme oxide and silicon dioxide for selectively separating europium ions. Journal of Hazardous Materials, 2018, 353, 244-253.	6.5	97
55	Chemical Approach to Ultrastiff, Strong, and Environmentally Stable Graphene Films. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5812-5818.	4.0	20

#	Article	IF	CITATIONS
56	Underwater Mechanically Robust Oilâ€Repellent Materials: Combining Conflicting Properties Using a Heterostructure. Advanced Materials, 2018, 30, 1706634.	11.1	58
57	The selectivity of nanoparticles for polydispersed ligand chains during the grafting-to process: a computer simulation study. Physical Chemistry Chemical Physics, 2018, 20, 2066-2074.	1.3	8
58	Bioinspired graphene-based nanocomposites via ionic interfacial interactions. Composites Communications, 2018, 7, 16-22.	3.3	25
59	Integration of Stiff Graphene and Tough Silk for the Design and Fabrication of Versatile Electronic Materials. Advanced Functional Materials, 2018, 28, 1705291.	7.8	148
60	Bioinspired Reduced Graphene Oxide/Polyacrylonitrileâ€Based Carbon Fibers/CoFe ₂ O ₄ Nanocomposite for Flexible Supercapacitors with High Strength and Capacitance. ChemElectroChem, 2018, 5, 1297-1305.	1.7	26
61	Role of Interface Interactions in the Construction of GOâ€Based Artificial Nacres. Advanced Materials Interfaces, 2018, 5, 1800107.	1.9	25
62	Highly Tough Bioinspired Ternary Hydrogels Synergistically Reinforced by Graphene/Xonotlite Network. Small, 2018, 14, e1800673.	5.2	13
63	A review of recent research on materials used in polymer–matrix composites for body armor application. Journal of Composite Materials, 2018, 52, 3241-3263.	1.2	157
64	Bio-inspired graphene-derived membranes with strain-controlled interlayer spacing. Nanoscale, 2018, 10, 8585-8590.	2.8	7
65	A new strategy for air-stable black phosphorus reinforced PVA nanocomposites. Journal of Materials Chemistry A, 2018, 6, 7142-7147.	5.2	47
66	Analysis of optimal crosslink density and platelet size insensitivity in graphene-based artificial nacres. Nanoscale, 2018, 10, 556-565.	2.8	13
67	Engineering the interface in mechanically responsive graphene-based films. RSC Advances, 2018, 8, 36257-36263.	1.7	13
68	Design, Fabrication, and Function of Silkâ€Based Nanomaterials. Advanced Functional Materials, 2018, 28, 1805305.	7.8	120
69	Programmable wettability on photocontrolled graphene film. Science Advances, 2018, 4, eaat7392.	4.7	245
70	Combining In Silico Design and Biomimetic Assembly: A New Approach for Developing Highâ€Performance Dynamic Responsive Bioâ€Nanomaterials. Advanced Materials, 2018, 30, e1802306.	11.1	34
71	Pop-Up Conducting Large-Area Biographene Kirigami. ACS Nano, 2018, 12, 9714-9720.	7.3	27
72	Emerging trends in 2D nanotechnology that are redefining our understanding of "Nanocomposites― Nano Today, 2018, 21, 18-40.	6.2	59
73	Assembly Preparation of Multilayered Biomaterials with High Mechanical Strength and Bone-Forming Bioactivity. Chemistry of Materials, 2018, 30, 4646-4657.	3.2	32

#	Article	IF	Citations
74	Integrated strength and toughness in graphene/calcium alginate films for highly efficient electromagnetic interference shielding. Journal of Materials Chemistry C, 2018, 6, 9166-9174.	2.7	54
75	Biomimicking of Hierarchal Molluscan Shell Structure Via Layer by Layer 3D Printing. Industrial & Samp; Engineering Chemistry Research, 2018, 57, 10832-10840.	1.8	42
76	Effect of Reaction Temperature on Structure, Appearance and Bonding Type of Functionalized Graphene Oxide Modified P-Phenylene Diamine. Materials, 2018, 11, 647.	1.3	5
77	Nature-Inspired Green Procedure for Improving Performance of Protein-Based Nanocomposites via Introduction of Nanofibrillated Cellulose-Stablized Graphene/Carbon Nanotubes Hybrid. Polymers, 2018, 10, 270.	2.0	26
78	Nacre-like laminate nitrogen-doped porous carbon/carbon nanotubes/graphene composite for excellent comprehensive performance supercapacitors. Nanoscale, 2018, 10, 15229-15237.	2.8	19
79	Self-healing and superstretchable conductors from hierarchical nanowire assemblies. Nature Communications, 2018, 9, 2786.	5.8	195
80	Strong, Conductive, Foldable Graphene Sheets by Sequential Ionic and π Bridging. Advanced Materials, 2018, 30, e1802733.	11.1	73
81	Bioinspired Supertough Graphene Fiber through Sequential Interfacial Interactions. ACS Nano, 2018, 12, 8901-8908.	7.3	67
82	Graphene oxide modified cobalt metallated porphyrin photocatalyst for conversion of formic acid from carbon dioxide. Journal of CO2 Utilization, 2018, 27, 107-114.	3.3	37
83	A review on the very high nanofiller-content nanocomposites: Their preparation methods and properties with high aspect ratio fillers. Progress in Polymer Science, 2018, 86, 1-39.	11.8	95
84	Sequentially bridged graphene sheets with high strength, toughness, and electrical conductivity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5359-5364.	3.3	114
85	Fabrication the hybrization of ZnO nanorods–Graphene nanoslices and their electrochemical properties to Levodopa in the presence of uric acid. Journal of Materials Science: Materials in Electronics, 2018, 29, 16894-16902.	1.1	8
86	Highly Conductive Nanocomposite Enabled by an Accordion-like Graphene Network for Flexible Heating Films and Supercapacitors. ACS Applied Nano Materials, 2018, 1, 4781-4787.	2.4	13
87	Artificial Nacre from Supramolecular Assembly of Graphene Oxide. ACS Nano, 2018, 12, 6228-6235.	7. 3	85
88	Mechanical Properties of Nanolaminates Based on Graphene Nanoplatelets., 2018,, 233-251.		0
89	In Situ Polymerization Approach to Grapheneâ€Oxideâ€Reinforced Silicone Composites for Superior Anticorrosive Coating. Macromolecular Rapid Communications, 2019, 40, e1800252.	2.0	9
90	Moist-electric generation. Nanoscale, 2019, 11, 23083-23091.	2.8	82
91	Multivariate nanocomposites for electrochemical sensing in the application of food. TrAC - Trends in Analytical Chemistry, 2019, 118, 759-769.	5.8	10

#	Article	IF	CITATIONS
92	Cationic Polyelectrolyte Bridged Boron Nitride Microplatelet Based Poly(vinyl alcohol) Composite: A Novel Method toward High Thermal Conductivity. Advanced Materials Interfaces, 2019, 6, 1900787.	1.9	24
93	Synergistic Strengthening and Toughening the Interphase of Composites by Constructing Alternating "Rigidâ€andâ€Soft―Structure on Carbon Fiber Surface. Advanced Materials Interfaces, 2019, 6, 1900970.	1.9	33
94	Bioinspired multifunctional biomaterials with hierarchical microstructure for wound dressing. Acta Biomaterialia, 2019, 100, 270-279.	4.1	57
95	Highly Multifunctional Dopamine-Functionalized Reduced Graphene Oxide Supercapacitors. Matter, 2019, 1, 1532-1546.	5.0	66
96	Two-Dimensional Materials in Biosensing and Healthcare: From <i>In Vitro</i> Diagnostics to Optogenetics and Beyond. ACS Nano, 2019, 13, 9781-9810.	7.3	259
97	Optimization design on simultaneously strengthening and toughening graphene-based nacre-like materials through noncovalent interaction. Journal of the Mechanics and Physics of Solids, 2019, 133, 103706.	2.3	36
98	Strong and Highly Conductive Graphene Composite Film Based on the Nanocellulose-Assisted Dispersion of Expanded Graphite and Incorporation of Poly(ethylene oxide). ACS Sustainable Chemistry and Engineering, 2019, 7, 5045-5056.	3.2	43
99	Hybrid nanocomposites modified on sensors and biosensors for the analysis of food functionality and safety. Trends in Food Science and Technology, 2019, 90, 100-110.	7.8	19
100	Hierarchical Uniform Supramolecular Conjugated Spherulites with Suppression of Defect Emission. IScience, 2019, 16, 399-409.	1.9	30
101	Nacre-like composite films with high thermal conductivity, flexibility, and solvent stability for thermal management applications. Journal of Materials Chemistry C, 2019, 7, 9018-9024.	2.7	79
102	Synergistic effect of graphene oxide/montmorillonite-sodium carboxymethycellulose ternary mimic-nacre nanocomposites prepared via a facile evaporation and hot- pressing technique. Carbohydrate Polymers, 2019, 222, 115026.	5.1	19
103	Transparent, Highly Stretchable, Rehealable, Sensing, and Fully Recyclable Ionic Conductors Fabricated by Oneâ€Step Polymerization Based on a Small Biological Molecule. Advanced Functional Materials, 2019, 29, 1902467.	7.8	154
104	Nacre-Mimetic Graphene Oxide/Cross-Linking Agent Composite Films with Superior Mechanical Properties. ACS Nano, 2019, 13, 4522-4529.	7.3	43
105	Improvement in antibacterial and functional properties of mussel-inspired cellulose nanofibrils/gelatin nanocomposites incorporated with graphene oxide for active packaging. Industrial Crops and Products, 2019, 132, 197-212.	2.5	65
106	Self-Assembly of Ultralarge Graphene Oxide Nanosheets and Alginate into Layered Nanocomposites for Robust Packaging Materials. ACS Applied Nano Materials, 2019, 2, 1431-1444.	2.4	17
107	Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. Nanoscale, 2019, 11, 4653-4682.	2.8	161
108	Effect of Matrix Content on Mechanical and Thermal Properties of High Graphene Content Composites. MATEC Web of Conferences, 2019, 303, 01002.	0.1	5
109	Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. Chemical Reviews, 2019, 119, 12279-12336.	23.0	121

#	Article	IF	CITATIONS
110	Moisture-enabled electricity generation from gradient polyoxometalates-modified sponge-like graphene oxide monolith. Journal of Materials Science, 2019, 54, 4831-4841.	1.7	19
111	Enhanced carbon dioxide flux by catechol–Zn2+ synergistic manipulation of graphene oxide membranes. Chemical Engineering Science, 2019, 195, 230-238.	1.9	26
112	Highly mineralized chitosan-based material with large size, gradient mineral distribution and hierarchical structure. Carbohydrate Polymers, 2019, 208, 336-344.	5.1	9
113	Borate Inorganic Cross-Linked Durable Graphene Oxide Membrane Preparation and Membrane Fouling Control. Environmental Science & Echnology, 2019, 53, 1501-1508.	4.6	37
114	Effect of Musselâ€Inspired Poly(Dopamine)â€Functionalized Carbon Nanotubes/Graphene Nanohybrids on Interfacial Adhesion of Soy Proteinâ€Based Nanocomposites. Polymer Composites, 2019, 40, E1649-E1661.	2.3	4
115	Biomimetic Graphite Foils with High Foldability and Conductivity. Small Methods, 2019, 3, 1800282.	4.6	1
116	In silicon testing of the mechanical properties of graphene oxide-silk nanocomposites. Acta Mechanica, 2019, 230, 1413-1425.	1.1	16
117	Revealing the interrelation between hydrogen bonds and interfaces in graphene/PVA composites towards highly electrical conductivity. Chemical Engineering Journal, 2020, 383, 123126.	6.6	33
118	Probing the room-temperature oxidative desulfurization activity of three-dimensional alkaline graphene aerogel. Applied Catalysis B: Environmental, 2020, 262, 118266.	10.8	59
119	Versatile poly(vinyl alcohol)/clay physical hydrogels with tailorable structure as potential candidates for wound healing applications. Materials Science and Engineering C, 2020, 109, 110395.	3.8	35
120	Coordinationâ€Driven Hierarchical Assembly of Hybrid Nanostructures Based on 2D Materials. Small, 2020, 16, 1902779.	5.2	11
121	Genetically engineered protein based nacre-like nanocomposites with superior mechanical and electrochemical performance. Journal of Materials Chemistry A, 2020, 8, 656-669.	5.2	10
122	Bioinspired Mineral–Organic Bone Adhesives for Stable Fracture Fixation and Accelerated Bone Regeneration. Advanced Functional Materials, 2020, 30, 1908381.	7.8	130
123	Bio-inspired stem-like composites based on highly aligned SiC nanowires. Chemical Engineering Journal, 2020, 389, 123466.	6.6	16
124	Glass Transition Temperature Regulates Mechanical Performance in Nacreâ€Mimetic Nanocomposites. Macromolecular Rapid Communications, 2020, 41, e2000380.	2.0	11
125	Self-Assembled Bioinspired Nanocomposites. Accounts of Chemical Research, 2020, 53, 2622-2635.	7.6	41
126	Novel bio-inspired three-dimensional nanocomposites based on montmorillonite and chitosan. International Journal of Biological Macromolecules, 2020, 165, 2702-2710.	3.6	10
127	Bioinspired Design of Grapheneâ€Based Materials. Advanced Functional Materials, 2020, 30, 2007458.	7.8	15

#	Article	IF	CITATIONS
128	Nacre-Inspired Black Phosphorus/Nanofibrillar Cellulose Composite Film with Enhanced Mechanical Properties and Superior Fire Resistance. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36639-36651.	4.0	46
129	Comparative study on effects of covalent-covalent, covalent-ionic and ionic-ionic bonding of carbon fibers with polyether amine/GO on the interfacial adhesion of epoxy composites. Applied Surface Science, 2020, 532, 147359.	3.1	30
130	Ice templated nanocomposites containing rod-like hematite particles: Interplay between particle anisotropy and particle–matrix interactions. Journal of Applied Physics, 2020, 128, 034702.	1.1	4
131	Amyloidâ€Mediated Fabrication of Organic–Inorganic Hybrid Materials and Their Biomedical Applications. Advanced Materials Interfaces, 2020, 7, 2001060.	1.9	26
132	Metal-Level Robust, Folding Endurance, and Highly Temperature-Stable MXene-Based Film with Engineered Aramid Nanofiber for Extreme-Condition Electromagnetic Interference Shielding Applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 26485-26495.	4.0	113
133	Potential Natural Fiber Polymeric Nanobiocomposites: A Review. Polymers, 2020, 12, 1072.	2.0	154
134	Balancing oxygen-containing groups and structural defects for optimizing macroscopic tribological properties of graphene oxide coating. Applied Surface Science, 2020, 516, 146122.	3.1	15
135	Assembly of graphene oxide into the hyperbranched frameworks for the fabrication of flexible protein-based films with enhanced conductivities. Composites Part B: Engineering, 2020, 196, 108110.	5.9	29
136	InÂVivo Disintegration and Bioresorption of a Nacre-Inspired Graphene-Silk Film Caused by the Foreign-Body Reaction. IScience, 2020, 23, 101155.	1.9	8
137	Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chemical Society Reviews, 2020, 49, 4681-4736.	18.7	311
138	Multilevel mineral-coated imprinted nanocomposite membranes for template-dependent recognition and separation: A well-designed strategy with PDA/CaCO3-based loading structure. Journal of Colloid and Interface Science, 2020, 575, 356-366.	5.0	19
139	Hierarchically structured diamond composite with exceptional toughness. Nature, 2020, 582, 370-374.	13.7	141
140	Bioinspired Lamellar Barriers for Significantly Improving the Flame-Retardant Properties of Nanocellulose Composites. ACS Sustainable Chemistry and Engineering, 2020, 8, 4331-4336.	3.2	32
141	Micromechanics of engineered interphases in nacre-like composite structures. Mechanics of Advanced Materials and Structures, 2021, 28, 2327-2342.	1.5	14
142	Reviewâ€"Nanocomposite-Based Sensors for Voltammetric Detection of Hazardous Phenolic Pollutants in Water. Journal of the Electrochemical Society, 2020, 167, 037568.	1.3	39
143	A novel method for fabricating bioinspired layered nanocomposites using aligned graphene oxide/PVDF and their micromechanical modeling. Materials Today Communications, 2020, 24, 101050.	0.9	9
144	Stable lubrication in air and vacuum of GO-Al3+ coating via strong chemical bonding and reactive sites passivation by aluminum ions. Carbon, 2020, 160, 247-254.	5.4	11
145	Recent researches of the bio-inspired nano-carbon reinforced metal matrix composites. Composites Part A: Applied Science and Manufacturing, 2020, 131, 105816.	3.8	45

#	Article	IF	CITATIONS
146	Super-tough MXene-functionalized graphene sheets. Nature Communications, 2020, 11, 2077.	5.8	289
147	Ultratough graphene–black phosphorus films. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8727-8735.	3.3	74
148	Fire retardant cellulose aerogel with improved strength and hydrophobic surface by oneâ€pot method. Journal of Applied Polymer Science, 2021, 138, 50224.	1.3	8
149	Environmental impact of using nanomaterials in textiles. , 2021, , 321-342.		4
150	Mechanical, tribological and thermal properties of injection molded short carbon fiber/expanded graphite/polyetherimide composites. Composites Science and Technology, 2021, 201, 108498.	3.8	38
151	Highly thermally conductive yet mechanically robust composites with nacre-mimetic structure prepared by evaporation-induced self-assembly approach. Chemical Engineering Journal, 2021, 405, 126865.	6.6	34
152	Bioinspired layered proton-exchange membranes with high strength and proton conductivity. International Journal of Hydrogen Energy, 2021, 46, 4087-4099.	3.8	17
153	A facile cathodic electrophoretic deposition (EPD) of GO nanosheet with an orderly layered nanostructure for development of long-term durability anticorrosive coating. Progress in Organic Coatings, 2021, 151, 106034.	1.9	5
154	Interface mechanics in carbon nanomaterials-based nanocomposites. Composites Part A: Applied Science and Manufacturing, 2021, 141, 106212.	3.8	43
155	Fabrication of an orderly layered nanostructure coating via cathodic EPD of silanized GO nanosheet for anti-corrosion protection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125754.	2.3	5
156	Fabrication and properties for novel graphene oxide powder with extra large interlayer spacing and high reactivity. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 156-164.	1.2	3
157	Metal coordination assists fabrication of multifunctional aerogel. Journal of Materials Science and Technology, 2021, 71, 67-74.	5.6	4
158	Coordination-driven interfacial cross-linked graphene oxide-alginate nacre mesh with underwater superoleophobicity for oil-water separation. Carbohydrate Polymers, 2021, 251, 117097.	5.1	51
159	Strengthening of Black Phosphorus/Nanofibrillar Cellulose Composite Film with Nacre-Inspired Structure and Superior Fire Resistance. Springer Theses, 2021, , 85-110.	0.0	0
160	An overview of biopolymer-based nanocomposites for optics and electronics. Journal of Materials Chemistry C, 2021, 9, 5578-5593.	2.7	30
161	Transparent polymer nanocomposites based on two-dimensional materials and their multiple applications., 2021,, 1-30.		0
162	Ultratough and ultrastrong graphene oxide hybrid films <i>via</i> a polycationitrile approach. Nanoscale Horizons, 2021, 6, 341-347.	4.1	6
163	Nature-inspired hierarchical materials for sensing and energy storage applications. Chemical Society Reviews, 2021, 50, 4856-4871.	18.7	49

#	Article	IF	CITATIONS
164	Advanced Electrical Conductors: An Overview and Prospects of Metal Nanocomposite and Nanocarbon Based Conductors. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000704.	0.8	20
165	Reduced Graphene Oxide-Poly (Ionic Liquid) Composite Films of High Mechanical Performance. Frontiers in Materials, 2021, 8, .	1.2	2
166	Biomassâ€Derived Carbon Materials: Controllable Preparation and Versatile Applications. Small, 2021, 17, e2008079.	5.2	105
167	Biomimetic strategies for 4.0ÂV all-solid-state flexible supercapacitor: Moving toward eco-friendly, safe, aesthetic, and high-performance devices. Chemical Engineering Journal, 2021, 414, 128842.	6.6	10
168	Radiation synthesis of graphene oxide/composite hydrogels and their ability for potential dye adsorption from wastewater. Journal of Applied Polymer Science, 2021, 138, 51220.	1.3	14
169	Nacre-like GNP/Epoxy composites: Reinforcement efficiency vis-Ã-vis graphene content. Composites Science and Technology, 2021, 211, 108873.	3.8	18
170	Dragonfly wing-inspired architecture makes a stiff yet tough healable material. Matter, 2021, 4, 2474-2489.	5.0	63
171	Bioinspired multiscale Al2O3-rGO/Al laminated composites with superior mechanical properties. Composites Part B: Engineering, 2021, 217, 108916.	5.9	37
172	Bio-inspired graphene-based nano-systems for biomedical applications. Nanotechnology, 2021, 32, 502001.	1.3	38
173	Graphene-Based Films: Fabrication, Interfacial Modification, and Applications. Nanomaterials, 2021, 11, 2539.	1.9	11
174	Novel titin-inspired high-performance polyurethanes with self-healing and recyclable capacities based on dual dynamic network. Polymer, 2021, 230, 124096.	1.8	22
175	Interface Design of Iron Nanoparticles for Environmental Remediation. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 561.	0.6	1
176	Aramid Polycarbonate Resin Film Engineered Composite for Ballistic Protection: Engineered Layered Materials. Materials Horizons, 2021, , 49-66.	0.3	3
177	Strong and tough graphene papers constructed with pyrene-containing small molecules via $\ddot{\textbf{I}} \in \ddot{\textbf{I}} \in /\textbf{H}$ -bonding synergistic interactions. Science China Materials, 2021, 64, 1206-1218.	3.5	5
178	Biomimetic elastomeric, conductive and biodegradable polycitrate-based nanocomposites for guiding myogenic differentiation and skeletal muscle regeneration. Biomaterials, 2018, 157, 40-50.	5 . 7	107
179	Functional Hybrid Micro/Nanoentities Promote Agro-Food Safety Inspection. Journal of Agricultural and Food Chemistry, 2021, 69, 12402-12417.	2.4	18
180	A flexible and strong reduced graphene oxide film for high-performance electromagnetic shielding. Composites Communications, 2021, 28, 100954.	3.3	14
181	Ultrastretchable and Self-Healing Conductors with Double Dynamic Network for Omni-Healable Capacitive Strain Sensors. Nano Letters, 2022, 22, 1433-1442.	4.5	24

#	Article	IF	CITATIONS
182	Extended deformable tension-shear model for graphene layered materials with non-uniform staggering. Journal of the Mechanics and Physics of Solids, 2022, 159, 104728.	2.3	7
183	Flexible and High Thermal Conductivity Composites Based on Graphite Nanoplates Paper Impregnated with Polydimethylsiloxane. Journal of Composites Science, 2021, 5, 309.	1.4	2
184	Polycaprolactone Adsorption and Nucleation onto Graphite Nanoplates for Highly Flexible, Thermally Conductive, and Thermomechanically Stiff Nanopapers. ACS Applied Materials & District States (2021), .	4.0	5
185	Robust aramid nanopaper based on the uniform wrap of sodium alginate on the surface of nanofibers. Journal of Materials Science, 2022, 57, 1111-1122.	1.7	7
186	Interphase in Polymer Nanocomposites. Jacs Au, 2022, 2, 280-291.	3.6	49
187	Bioinspired strategies for making superior graphene composite coatings. Chemical Engineering Journal, 2022, 435, 134808.	6.6	17
188	Interfacial Assembly of Functional Mesoporous Carbonâ€Based Materials into Films for Batteries and Electrocatalysis. Advanced Materials Interfaces, 2022, 9, .	1.9	13
189	<scp>Twoâ€dimensional MXenes</scp> : New frontier of wearable and flexible electronics. InformaÄnÃ- MateriÃįly, 2022, 4, .	8.5	102
190	Biomimic Heterostructured Graphene Oxide Membranes via Supramolecularâ€Mediated Intercalation Assembly for Efficient Water Transport. Small, 2022, 18, e2200461.	5.2	7
191	A Bioinspired Ultratough Composite Produced by Integration of Inorganic Ionic Oligomers within Polymer Networks. ACS Nano, 2022, 16, 7926-7936.	7.3	29
192	Multifunctional Rgo-Based Films with "Brick-Slurry―Structure: High-Efficiency Electromagnetic Shielding Performance, High Strength and Excellent Environmental Adaptability. SSRN Electronic Journal, 0, , .	0.4	0
193	Synthesis of graphene polymer composites having high filler content. , 2022, , 49-60.		0
194	A Review of Preconcentrator Materials, Flow Regimes and Detection Technologies for Gas Adsorption and Sensing. Advanced Materials Interfaces, 2022, 9, .	1.9	3
195	Graphene oxide-modified layered double hydroxide/chitosan nacre-mimetic scaffolds treat breast cancer metastasis-induced bone defects. Carbon, 2022, 200, 63-74.	5.4	6
196	Multifunctional RGO-based films with "brick-slurry―structure: High-efficiency electromagnetic shielding performance, high strength and excellent environmental adaptability. Carbon, 2022, 200, 156-165.	5.4	14
197	Interfacial Mechanics of Polymer Nanocomposites. , 2022, , .		1
198	Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chemical Society Reviews, 2022, 51, 7883-7943.	18.7	70
199	Nanolayered Graphene/Black Phosphorus Films for Fire-Retardant Coatings. ACS Applied Nano Materials, 2022, 5, 14841-14849.	2.4	5

#	Article	IF	CITATIONS
200	Preparation of Nitrogen-Doped Graphene Films for Temperature Sensing by Crosslinking with Two-Dimensional Small Molecule. Materials Science Forum, 0, 1070, 157-164.	0.3	0
201	Hydrogen Plasma on Graphene Oxide to Produce Gradients of Oxygen-Containing Functional Groups for Self-Powered Devices. ACS Applied Nano Materials, 2022, 5, 16664-16673.	2.4	1
202	Orb-Web-Inspired Polymer-Carbon Nanocomposite Mesh Film for Acoustic Sensing. ACS Applied Nano Materials, 2022, 5, 14654-14662.	2.4	2
203	Three-Dimensionally Conducting Network in Graphene-Based Composite Fibers toward Enhanced Electrochemical and Toughness Performance in Fibrous Supercapacitors. ACS Applied Energy Materials, 2022, 5, 13212-13221.	2.5	5
204	Layer-by-layer covalent bond coupling way making graphdiyne cages. Nano Energy, 2022, 104, 107904.	8.2	3
205	Iron ions induced self-assembly of graphene oxide lubricating coating with self-adapting low friction characteristics. Carbon, 2023, 201, 1151-1159.	5.4	11
206	Bending deformable tension-shear model for nacre-like composites. Journal of the Mechanics and Physics of Solids, 2023, 171, 105132.	2.3	3
207	Nature-mimicking rigid tough interface in fibrous composites: Effect of polymer/GO combination. Materials Today Communications, 2022, 33, 104883.	0.9	O
208	High strength in combination with high toughness in layered intrinsic heterocyclic aramid films via constructing liquid crystal-like structure during gelation self-assembly. European Polymer Journal, 2023, 183, 111740.	2.6	1
209	Maximum utilization of nacre-mimetic composites by architecture manipulation and interface modification towards critical damage state. Composites Science and Technology, 2023, 233, 109893.	3.8	4
210	Tuning lattice strain in Quasi-2D Au-rGO nanohybrid catalysts for dimethylphenylsilane solid state silylation to disiloxane. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 291, 116395.	1.7	0
211	Nacre-like graphene oxide nanocomposite with nanodiamonds as nanoasperities. Diamond and Related Materials, 2023, 135, 109878.	1.8	O
212	Mesoporous Carbon-Based Materials for Enhancing the Performance of Lithium-Sulfur Batteries. International Journal of Molecular Sciences, 2023, 24, 7291.	1.8	3
214	Review on natural fibre composites reinforced with nanoparticles. Materials Today: Proceedings, 2023, , .	0.9	4
215	Synthesis and Application of Mesoporous Materials: Process Status, Technical Problems, and Development Prospects: A Mini-Review. Energy & Energy & Status, 2023, 37, 3413-3427.	2.5	10
216	Interface modulations of high-performance graphene anticorrosion coatings. Progress in Organic Coatings, 2023, 178, 107463.	1.9	4
217	Electric Eel Biomimetics for Energy Storage and Conversion. Small Methods, 0, , .	4.6	4
225	Nature-inspired Green Supercapacitors: Advantages and Limitations. , 2023, , 291-325.		0

#	Article	IF	CITATIONS
229	Modern Perspective of Nanofiller. , 2024, , 1-24.		0
232	Functionalized Carbon Nanostructures Based on Metal–Organic Framework/Graphene-Derived Materials. , 2024, , 1-35.		0