Direct Reprogramming of Hepatic Myofibroblasts into E Fibrosis

Cell Stem Cell 18, 797-808 DOI: 10.1016/j.stem.2016.01.010

Citation Report

#	Article	IF	CITATIONS
1	In vivo reprogramming of hepatic myofibroblasts into hepatocytes attenuates liver fibrosis: back to the future?. Stem Cell Investigation, 2016, 3, 53-53.	1.3	1
2	Novel methods for the treatment of liver fibrosis using in vivo direct reprogramming technology. Stem Cell Investigation, 2016, 3, 92-92.	1.3	1
3	Antifibrotics in chronic liver disease: tractable targets and translational challenges. The Lancet Gastroenterology and Hepatology, 2016, 1, 328-340.	3.7	36
4	Hepatocytes induced from myofibroblasts in vivo. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 250-250.	8.2	0
5	Progress and Challenges of Cell Replacement Therapy for Neurodegenerative Diseases Based on Direct Neural Reprogramming. Human Gene Therapy, 2016, 27, 962-970.	1.4	6
6	InÂVivo Cellular Reprogramming: The Next Generation. Cell, 2016, 166, 1386-1396.	13.5	234
7	An easy method for preparation of Cre-loxP regulated fluorescent adenoviral expression vectors and its application for direct reprogramming into hepatocytes. Biotechnology Reports (Amsterdam,) Tj ETQq0 0 0 rgB	T 20 verloc	k20 Tf 50 4
8	Hepatic stellate cells: fibrogenic, regenerative or both? Heterogeneity and context are key. Hepatology International, 2016, 10, 902-908.	1.9	34
9	Lineage tracing reveals conversion of liver sinusoidal endothelial cells into hepatocytes. Development Growth and Differentiation, 2016, 58, 620-631.	0.6	4
10	InÂVivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells. Neuron, 2016, 91, 728-738.	3.8	131
11	Liver fibrosis: Which mechanisms matter?. Clinical Liver Disease, 2016, 8, 94-99.	1.0	15
12	Emerging advancements in liver regeneration and organogenesis as tools for liver replacement. Current Opinion in Organ Transplantation, 2016, 21, 581-587.	0.8	15
13	Treating Liver Fibrosis: (Re)Programmed to Succeed. Cell Stem Cell, 2016, 18, 683-684.	5.2	5
14	Human Pluripotent Stem Cells: Myths and Future Realities for Liver Cell Therapy. Cell Stem Cell, 2016, 18, 703-706.	5.2	14
15	Progress in stem cellâ€based therapy for liver disease. Hepatology Research, 2017, 47, 127-141.	1.8	32
16	Core Transcription Factors, MicroRNAs, and Small Molecules Drive Transdifferentiation of Human Fibroblasts Towards The Cardiac Cell Lineage. Scientific Reports, 2017, 7, 40285.	1.6	36
17	Reprogramming cell fates by small molecules. Protein and Cell, 2017, 8, 328-348.	4.8	82
18	InÂVivo Interplay between p27Kip1, GATA3, ATOH1, and POU4F3 Converts Non-sensory Cells to Hair Cells in Adult Mice. Cell Reports, 2017, 19, 307-320.	2.9	133

#	Article	IF	Citations
19	Cell fate modification toward the hepatic lineage by extrinsic factors. Journal of Biochemistry, 2017, 162, 11-16.	0.9	1
20	Hepatic stellate cells as key target in liver fibrosis. Advanced Drug Delivery Reviews, 2017, 121, 27-42.	6.6	943
21	Assessment of engineered cells using CellNet and RNA-seq. Nature Protocols, 2017, 12, 1089-1102.	5.5	41
22	Engineering kidney cells: reprogramming and directed differentiation to renal tissues. Cell and Tissue Research, 2017, 369, 185-197.	1.5	17
23	Gli -fully Halting the Progression of Fibrosis. Cell Stem Cell, 2017, 20, 735-736.	5.2	7
24	The novel tool of cell reprogramming for applications in molecular medicine. Journal of Molecular Medicine, 2017, 95, 695-703.	1.7	19
25	Seeds in the liver. Acta Histochemica, 2017, 119, 349-356.	0.9	4
26	Gene regulatory networks in differentiation and direct reprogramming of hepatic cells. Seminars in Cell and Developmental Biology, 2017, 66, 43-50.	2.3	38
27	Specific Cell (Re-)Programming: Approaches and Perspectives. Advances in Biochemical Engineering/Biotechnology, 2017, 163, 71-115.	0.6	3
28	Evaluating the regenerative potential and functionality of human liver cells in mice. Differentiation, 2017, 98, 25-34.	1.0	7
29	Integrating Vectors for Gene Therapy and Clonal Tracking of Engineered Hematopoiesis. Hematology/Oncology Clinics of North America, 2017, 31, 737-752.	0.9	16
30	Advances in cancer stem cell targeting: How to strike the evil at its root. Advanced Drug Delivery Reviews, 2017, 120, 89-107.	6.6	58
31	Cardiac reprogramming factor Gata4 reduces postinfarct cardiac fibrosis through direct repression of the profibrotic mediator snail. Journal of Thoracic and Cardiovascular Surgery, 2017, 154, 1601-1610.e3.	0.4	20
32	A Scalable Approach for the Generation of Human Pluripotent Stem Cell-Derived Hepatic Organoids with Sensitive Hepatotoxicity Features. Stem Cells and Development, 2017, 26, 1490-1504.	1.1	40
33	Chemical Cocktails Enable Hepatic Reprogramming of Mouse Fibroblasts with a Single Transcription Factor. Stem Cell Reports, 2017, 9, 499-512.	2.3	30
34	In vivo reprogramming for tissue regeneration and organismal rejuvenation. Current Opinion in Genetics and Development, 2017, 46, 132-140.	1.5	31
35	Direct conversion of human fibroblasts into hepatocyte-like cells by ATF5, PROX1, FOXA2, FOXA3, and HNF4A transduction. Scientific Reports, 2017, 7, 16675.	1.6	54
36	Shp2 promotes liver cancer stem cell expansion by augmenting βâ€catenin signaling and predicts chemotherapeutic response of patients. Hepatology, 2017, 65, 1566-1580.	3.6	127

CITATION REPORT

	CITATION	I REPORT	
#	Article	IF	CITATIONS
37	Direct reprogramming of mouse fibroblasts into neural cells via Porphyra yezoensis polysaccharide based high efficient gene co-delivery. Journal of Nanobiotechnology, 2017, 15, 82.	4.2	7
38	A Roadmap for Human Liver Differentiation from Pluripotent Stem Cells. Cell Reports, 2018, 22, 2190-2205.	2.9	145
39	Engineering and Application of Pluripotent Stem Cells. Advances in Biochemical Engineering/Biotechnology, 2018, , .	0.6	0
40	Applied RNA Bioscience. , 2018, , .		1
42	Applications of Virus Vector–Mediated Gene Therapy in China. Human Gene Therapy, 2018, 29, 98-109.	1.4	3
43	Gene therapy approaches in the non-human primate model of Parkinson's disease. Journal of Neural Transmission, 2018, 125, 575-589.	1.4	20
44	Mechanisms of Renal Fibrosis. Annual Review of Physiology, 2018, 80, 309-326.	5.6	681
45	Liver cell therapy: is this the end of the beginning?. Cellular and Molecular Life Sciences, 2018, 75, 1307-1324.	2.4	56
46	Monitoring cytochrome P450 activity in living hepatocytes by chromogenic substrates in response to drug treatment or during cell maturation. Archives of Toxicology, 2018, 92, 1133-1149.	1.9	6
47	Targeting secreted cytokine BMP9 gates the attenuation of hepatic fibrosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 709-720.	1.8	34
48	The Potential Role of Stem Cell Reprogramming in Antiaging. , 2018, , 35-45.		2
49	Generation of Hepatocyte-Like Cells by Different Strategies for Liver Regeneration. Nano LIFE, 2018, 08, 1841004.	0.6	1
50	Impact of Three-Dimentional Culture Systems on Hepatic Differentiation of Puripotent Stem Cells and Beyond. Advances in Experimental Medicine and Biology, 2018, 1077, 41-66.	0.8	0
51	Prolonged inhibition of hepatocellular carcinoma cell proliferation by combinatorial expression of defined transcription factors. Cancer Science, 2018, 109, 3543-3553.	1.7	33
52	Cancer driver mutations in endometriosis: Variations on the major theme of fibrogenesis. Reproductive Medicine and Biology, 2018, 17, 369-397.	1.0	35
53	Homologous recombination mediates stable Fah gene integration and phenotypic correction in tyrosinaemia mouse-model. World Journal of Hepatology, 2018, 10, 277-286.	0.8	10
54	Clinical applications of retinal gene therapies. Precision Clinical Medicine, 2018, 1, 5-20.	1.3	11
55	Highly Efficient Intracellular Protein Delivery by Cationic Polyethyleneimine-Modified Gelatin Nanoparticles. Materials, 2018, 11, 301.	1.3	27

ARTICLE IF CITATIONS # Bench to bedside: Current advances in regenerative medicine. Current Opinion in Cell Biology, 2018, 55, 2.6 14 56 59-66. Reprogramming of Cells by Lactic Acid Bacteria., 2018, , 47-61. Exploration for Cell Sources for Liver Regenerative Medicine: "CLiP―as a Dawn of Cell 58 0 Transplantation Therapy. , 2018, , 77-101. Generation of Hepatocytes by Transdifferentiation., 2018, , 103-114. 59 Current Advances in Red Blood Cell Generation Using Stem Cells from Diverse Sources. Stem Cells 60 1.2 22 International, 2019, 2019, 1-10. Oct4 and Hnf41±-induced hepatic stem cells ameliorate chronic liver injury in liver fibrosis model. PLoS 1.1 ONE, 2019, 14, e0221085. Liver stem cells: Plasticity of the liver epithelium. World Journal of Gastroenterology, 2019, 25, 62 1.4 19 1037-1049. Strategies for in vivo reprogramming. Current Opinion in Cell Biology, 2019, 61, 9-15. 2.6 19 64 Space of Disse: a stem cell niche in the liver. Biological Chemistry, 2019, 401, 81-95. 1.2 20 Phenotypical and Functional Polymorphism of Liver Resident Macrophages. Cells, 2019, 8, 1032. 1.8 <p>"Let my liver rather heat with wineâ€+ a review of hepatic fibrosis pathophysiology and 0.9 4 66 emerging therapeutics</p>. Hepatic Medicine: Evidence and Research, 2019, Volume 11, 109-129. TGFÎ² Impairs HNF1α Functional Activity in Epithelial-to-Mesenchymal Transition Interfering With the 1.6 Recruitment of CBP/p300 Acetyltransferases. Frontiers in Pharmacology, 2019, 10, 942. Toward a Reconceptualization of Stem Cells from Cellular Plasticity. International Journal of Stem 68 0.8 3 Cells, 2019, 12, 1-7. Design Approaches for Generating Organ Constructs. Cell Stem Cell, 2019, 24, 877-894. 5.2 Chemically induced cell fate reprogramming and the acquisition of plasticity in somatic cells. 70 2.8 11 Current Opinion in Chemical Biology, 2019, 51, 146-153. In Vivo Cell Conversion as aÂNew Cell Therapy. Current Human Cell Research and Applications, 2019, , 169-190. 72 Medical Applications of iPS Cells. Current Human Cell Research and Applications, 2019, , . 0.1 0 Wound healing and fibrosis: current stem cell therapies. Transfusion, 2019, 59, 884-892. 24

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
74	Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Molecular Aspects of Medicine, 2019, 65, 37-55.	2.7	628
75	Innovation for hepatotoxicity in vitro research models: A review. Journal of Applied Toxicology, 2019, 39, 146-162.	1.4	16
76	Direct cellular reprogramming and inner ear regeneration. Expert Opinion on Biological Therapy, 2019, 19, 129-139.	1.4	17
77	Conversion of Fibroblasts to Hepatocyte-Like Cells In Vivo. Methods in Molecular Biology, 2019, 1905, 103-115.	0.4	0
78	The therapeutic potential of induced hepatocyte-like cells generated by direct reprogramming on hepatic fibrosis. Stem Cell Research and Therapy, 2019, 10, 21.	2.4	26
79	New Technologies To Enhance In Vivo Reprogramming for Regenerative Medicine. Trends in Biotechnology, 2019, 37, 604-617.	4.9	23
80	Antifibrotics in liver disease: are we getting closer to clinical use?. Hepatology International, 2019, 13, 25-39.	1.9	25
81	Hepatic regeneration by associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) is feasible but attenuated in rat liver with thioacetamide-induced fibrosis. Surgery, 2019, 165, 345-352.	1.0	7
82	ExÂVivo/InÂvivo Gene Editing in Hepatocytes Using "All-in-One―CRISPR-Adeno-Associated Virus Vectors with a Self-Linearizing Repair Template. IScience, 2020, 23, 100764.	1.9	33
83	Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Reviews and Reports, 2020, 16, 3-32.	1.7	292
84	Wnt4 negatively regulates the TGF-β1-induced human dermal fibroblast-to-myofibroblast transition via targeting Smad3 and ERK. Cell and Tissue Research, 2020, 379, 537-548.	1.5	28
85	Epithelial Plasticity during Liver Injury and Regeneration. Cell Stem Cell, 2020, 27, 557-573.	5.2	72
86	Down-regulation of Beclin1 promotes direct cardiac reprogramming. Science Translational Medicine, 2020, 12, .	5.8	41
87	Overview of Tissue Engineering Concepts and Applications. , 2020, , 1289-1316.		4
88	Fibrosis: from mechanisms to medicines. Nature, 2020, 587, 555-566.	13.7	746
89	The Dynamics of Transcriptional Activation by Hepatic Reprogramming Factors. Molecular Cell, 2020, 79, 660-676.e8.	4.5	42
90	Integrated Analyses of Mouse Stem Cell Transcriptomes Provide Clues for Stem Cell Maintenance and Transdifferentiation. Frontiers in Genetics, 2020, 11, 563798.	1.1	3
91	Direct reprogramming of mouse fibroblasts into hepatocyte-like cells by polyethyleneimine-modified nanoparticles through epigenetic activation of hepatic transcription factors. Materials Today Chemistry, 2020, 17, 100281.	1.7	4

#	Article	IF	CITATIONS
92	Extensively expanded murineâ€induced hepatic stem cells maintain highâ€efficient hepatic differentiation potential for repopulation of injured livers. Liver International, 2020, 40, 2293-2304.	1.9	6
93	Alternative Cell Sources for Liver Parenchyma Repopulation: Where Do We Stand?. Cells, 2020, 9, 566.	1.8	14
94	The control of conjunctival fibrosis as a paradigm for the prevention of ocular fibrosis-related blindness. "Fibrosis has many friends― Eye, 2020, 34, 2163-2174.	1.1	18
95	Engineering Liver Microtissues for Disease Modeling and Regenerative Medicine. Advanced Functional Materials, 2020, 30, 1909553.	7.8	28
96	Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming. ACS Nano, 2020, 14, 1296-1318.	7.3	39
97	Targeting Hepatic Stellate Cells for the Treatment of Liver Fibrosis by Natural Products: Is It the Dawning of a New Era?. Frontiers in Pharmacology, 2020, 11, 548.	1.6	31
98	Direct cell-fate conversion of somatic cells: Toward regenerative medicine and industries. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2020, 96, 131-158.	1.6	22
99	The combined induction of liver progenitor cells and the suppression of stellate cells by small molecules reverts chronic hepatic dysfunction. Theranostics, 2021, 11, 5539-5552.	4.6	3
100	Repair and Regeneration After Important Visceral Injury. , 2021, , 193-282.		0
101	On the origins and conceptual frameworks of natural plasticity—Lessons from single-cell models in C. elegans. Current Topics in Developmental Biology, 2021, 144, 111-159.	1.0	9
102	Synergistic control of mechanics and microarchitecture of 3D bioactive hydrogel platform to promote the regenerative potential of engineered hepatic tissue. Biomaterials, 2021, 270, 120688.	5.7	11
103	Hepatoprotective effect of Qushihuayu formula on non-alcoholic steatohepatitis induced by MCD diet in rat. Chinese Medicine, 2021, 16, 27.	1.6	9
104	Generation of mature and functional hair cells by co-expression of Gfi1, Pou4f3, and Atoh1 in the postnatal mouse cochlea. Cell Reports, 2021, 35, 109016.	2.9	63
105	Direct conversion of porcine primary fibroblasts into hepatocyte-like cells. Scientific Reports, 2021, 11, 9334.	1.6	4
106	Preclinical Application of Reduced Manipulated Processing Strategy to Collect Transplantable Hepatocytes: A Pilot and Feasibility Study. Journal of Personalized Medicine, 2021, 11, 326.	1.1	1
107	Proteomic profiling of murine biliary-derived hepatic organoids and their capacity for drug disposition, bioactivation and detoxification. Archives of Toxicology, 2021, 95, 2413-2430.	1.9	2
108	Cell and Tissue Therapy for the Treatment of Chronic Liver Disease. Annual Review of Biomedical Engineering, 2021, 23, 517-546.	5.7	9
109	In vivo reprogramming as a new approach to cardiac regenerative therapy. Seminars in Cell and Developmental Biology, 2022, 122, 21-27.	2.3	12

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
110	Perivascular stromal cells: Directors of tissue immune niches. Immunological Reviews, 2021, 302, 10-31.	2.8	14
111	Myofibroblast fate plasticity in tissue repair and fibrosis: Deactivation, apoptosis, senescence and reprogramming. Wound Repair and Regeneration, 2021, 29, 678-691.	1.5	20
112	Cell Fate Reprogramming in the Era of Cancer Immunotherapy. Frontiers in Immunology, 2021, 12, 714822.	2.2	27
113	Fibroblasts: Origins, definitions, and functions in health and disease. Cell, 2021, 184, 3852-3872.	13.5	340
114	Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Advanced Drug Delivery Reviews, 2021, 175, 113831.	6.6	17
115	Direct reprogramming of somatic cells into induced hepatocytes: Cracking the Enigma code. Journal of Hepatology, 2021, 75, 690-705.	1.8	15
116	Stationed or Relocating: The Seesawing EMT/MET Determinants from Embryonic Development to Cancer Metastasis. Biomedicines, 2021, 9, 1265.	1.4	10
117	Reprogramming toward kidney regeneration: New technologies and future promises. , 2022, , 379-394.		0
118	Cellular Basis for Tissue Regeneration: Cellular Dedifferentiation. , 2021, , 57-76.		0
119	Generation of hepatocyte-like cells from human urinary epithelial cells and the role of autophagy during direct reprogramming. Biochemical and Biophysical Research Communications, 2020, 527, 723-729.	1.0	8
120	Direct cell reprogramming: approaches, mechanisms and progress. Nature Reviews Molecular Cell Biology, 2021, 22, 410-424.	16.1	178
122	GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis. Journal of Clinical Investigation, 2017, 127, 1099-1114.	3.9	102
123	Resolution of organ fibrosis. Journal of Clinical Investigation, 2018, 128, 97-107.	3.9	245
124	Homing in on the hepatic scar: recent advances in cell-specific targeting of liver fibrosis. F1000Research, 2016, 5, 1749.	0.8	16
125	Loss-of-function mutations in Zn-finger DNA-binding domain of <i>HNF4A</i> cause aberrant transcriptional regulation in liver cancer. Oncotarget, 2018, 9, 26144-26156.	0.8	17
126	Generated Hepatocyte-Like Cells: A Novel Tool in Regenerative Medicine and Drug Discovery. Cell Journal, 2017, 19, 204-217.	0.2	16
127	Impelling force and current challenges by chemicals in somatic cell reprogramming and expansion beyond hepatocytes. World Journal of Stem Cells, 2019, 11, 650-665.	1.3	4
128	Cellular and Molecular Mechanisms Underlying Liver Fibrosis Regression. Cells, 2021, 10, 2759.	1.8	73

	Сітат	ION REPORT	
#	Article	IF	CITATIONS
129	Introduction to In Vivo Cell Reprogramming Technology. Pancreatic Islet Biology, 2017, , 1-10.	0.1	0
133	Stem cells and regenerative medicine. , 2020, , 281-295.		Ο
134	Direct Conversion of Cell Fate and Induced Endothelial Cells. Circulation Journal, 2021, , .	0.7	0
135	Hepatic microenvironment underlies fibrosis in chronic hepatitis B patients. World Journal of Gastroenterology, 2020, 26, 3917-3928.	1.4	10
136	Early oleate deficiency leads to severe defects in fetal rat liver development. Iranian Journal of Basic Medical Sciences, 2019, 22, 1010-1015.	1.0	2
137	NMDA receptor expression during cell transformation process at early stages of liver cancer in rodent models. American Journal of Physiology - Renal Physiology, 2022, 322, G142-G153.	1.6	3
138	Alleviation of Liver Fibrosis Via Hepatic Stellate Cells Mitochondrial Apoptosis Induced by Metformin. SSRN Electronic Journal, 0, , .	0.4	0
139	TWIST1 expression is associated with high-risk neuroblastoma and promotes primary and metastatic tumor growth. Communications Biology, 2022, 5, 42.	2.0	1
140	Cell reprogramming in liver with potential clinical correlations. Journal of Digestive Diseases, 2022, 23, 13-21.	0.7	2
141	HNF4A Regulates the Proliferation and Tumor Formation of Cervical Cancer Cells through the Wnt/β-Catenin Pathway. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-17.	1.9	5
142	Reprogramming the spleen into a functioning â€~liver' in vivo. Gut, 2022, 71, 2325-2336.	6.1	9
143	Transdifferentiation Meets Next-generation Biotechnologies. StemJournal, 2022, 4, 1-11.	0.8	1
144	Molecular Mechanisms and Potential New Therapeutic Drugs for Liver Fibrosis. Frontiers in Pharmacology, 2022, 13, 787748.	1.6	26
145	Reprogramming cellular identity <i>in vivo</i> . Development (Cambridge), 2022, 149, .	1.2	14
146	Novel integrated workflow allows production and in-depth quality assessment of multifactorial reprogrammed skeletal muscle cells from human stem cells. Cellular and Molecular Life Sciences, 2022, 79, 229.	2.4	3
147	Mitigation of liver fibrosis via hepatic stellate cells mitochondrial apoptosis induced by metformin. International Immunopharmacology, 2022, 108, 108683.	1.7	4
156	Limitations and challenges of direct cell reprogramming in vitro and in vivo Histology and Histopathology, 2022, , 18458.	0.5	2
158	CD73 Aggravates Alcohol-Related Liver Fibrosis by Promoting Autophagy Mediated Activation of Hepatic Stellate Cells Through Ampk/Akt/Mtor Signaling Pathway. SSRN Electronic Journal, 0, , .	0.4	0

		CITATION REPORT		
#	Article		IF	CITATIONS
160	Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell, 2022, 29, 1161-2	180.	5.2	116
161	Direct Reprogramming in Bone and Joint Degenerative Diseases: Applications, Obstacle Directions Current Stem Cell Research and Therapy, 2022, 17, .	es and	0.6	0
162	Preparation of Functional Human Hepatocytes Ex Vivo. Methods in Molecular Biology,	2022, , 269-278.	0.4	1
163	CD73 aggravates alcohol-related liver fibrosis by promoting autophagy mediated active stellate cells through AMPK/AKT/mTOR signaling pathway. International Immunopharm 113, 109229.	ation of hepatic acology, 2022,	1.7	3
164	Targeting HSP47 and HSP70: promising therapeutic approaches in liver fibrosis manag Translational Medicine, 2022, 20, .	ement. Journal of	1.8	10
165	Fibroblast Activation Protein Activates Macrophages and Promotes Parenchymal Liver and Fibrosis. Cellular and Molecular Gastroenterology and Hepatology, 2023, 15, 841-	nflammation 867.	2.3	19
166	Hepatic fibrosis: Targeting peroxisome proliferator-activated receptor alpha from mech medicines. Hepatology, 2023, 78, 1625-1653.	anism to	3.6	2
168	Depletion of <i>Tgfbr2</i> in hepatocytes alleviates liver fibrosis and restores hepatic fibrotic mice. Journal of Digestive Diseases, 2023, 24, 39-50.	unction in	0.7	1
169	Topological data analysis identifies molecular phenotypes of idiopathic pulmonary fibro 2023, 78, 682-689.	osis. Thorax,	2.7	3
170	Fibroblasts: New players in the central nervous system?. Fundamental Research, 2024,	4, 262-266.	1.6	1
173	Stem cells in the management of phospholipase-mediated metabolic disorders. , 2023,	, 3-23.		0