Thermal and visual performance of real and theoretical for office buildings

Solar Energy Materials and Solar Cells 149, 110-120

DOI: 10.1016/j.solmat.2016.01.008

Citation Report

#	Article	IF	CITATIONS
1	Effect of atmospheric transmittance on performance of adaptive SPD-vacuum switchable glazing. Solar Energy Materials and Solar Cells, 2017, 161, 424-431.	3.0	31
2	Infrared Regulating Smart Window Based on Organic Materials. Advanced Energy Materials, 2017, 7, 1602209.	10.2	286
3	Effect of sky clearness index on transmission of evacuated (vacuum) glazing. Renewable Energy, 2017, 105, 160-166.	4.3	40
4	The role of shading devices to improve thermal and visual comfort in existing glazed buildings. Energy Procedia, 2017, 134, 346-355.	1.8	33
5	Thermal and optical characterisation of dynamic shading systems with PCMs through laboratory experimental measurements. Energy and Buildings, 2018, 163, 92-110.	3.1	19
6	Daylight characteristics of a polymer dispersed liquid crystal switchable glazing. Solar Energy Materials and Solar Cells, 2018, 174, 572-576.	3.0	56
7	Simulation tools application for artificial lighting in buildings. Renewable and Sustainable Energy Reviews, 2018, 82, 3007-3026.	8.2	48
8	Evaluation of optical properties and protection factors of a PDLC switchable glazing for low energy building integration. Solar Energy Materials and Solar Cells, 2018, 176, 391-396.	3.0	73
9	Application of Wall and Insulation Materials on Green Building: A Review. Sustainability, 2018, 10, 3331.	1.6	61
10	Elucidating the Crystallite Size Dependence of the Thermochromic Properties of Nanocomposite VO ₂ Thin Films. ACS Omega, 2018, 3, 14280-14293.	1.6	14
12	Thermochromic glazing performance: From component experimental characterisation to whole building performance evaluation. Applied Energy, 2019, 251, 113335.	5.1	37
13	Impact of Low-E Window Films on Energy Consumption and CO2 Emissions of an Existing UK Hotel Building. Sustainability, 2019, 11, 4265.	1.6	27
14	Temperatureâ€Responsive Polymer Wave Plates as Tunable Polarization Converters. Advanced Optical Materials, 2019, 7, 1901103.	3.6	9
15	Thermochromic smart window technologies for building application: A review. Applied Energy, 2019, 255, 113522.	5.1	230
16	Evaluation of Building Energy and Daylight Performance of Electrochromic Glazing for Optimal Control in Three Different Climate Zones. Sustainability, 2019, 11, 287.	1.6	15
17	Research on Annual Thermal Environment of Non-Hvac Building Regulated by Window-to-Wall Ratio in a Chinese City (Chenzhou). Sustainability, 2020, 12, 6637.	1.6	8
18	The Challenge for Building Integration of Highly Transparent Photovoltaics and Photoelectrochromic Devices. Energies, 2020, 13, 1929.	1.6	26
19	Driving issues of large area liquid crystal devices. Liquid Crystals, 2021, 48, 281-294.	0.9	3

#	Article	IF	Citations
20	Building performance of thermochromic glazing. , 2021, , 401-437.		1
21	'Smart' lightâ€reflective windows based on temperature responsive twisted nematic liquid crystal polymers. Journal of Polymer Science, 2021, 59, 1278-1284.	2.0	14
22	Optimization of the thermochromic glazing design for curtain wall buildings based on experimental measurements and dynamic simulation. Solar Energy, 2021, 216, 14-25.	2.9	23
23	Current and future coating technologies for architectural glazing applications. Energy and Buildings, 2021, 244, 111022.	3.1	55
24	Experimental characterisation of a smart glazing with tuneable transparency, light scattering ability and electricity generation function. Applied Energy, 2021, 303, 117521.	5.1	14
25	Energetic Forms of Matter. Advances in Civil and Industrial Engineering Book Series, 2019, , 137-165.	0.2	0
26	Numerical analysis on the thermal performance of PCM-integrated thermochromic glazing systems. Energy and Buildings, 2022, 257, 111734.	3.1	18
27	Design optimization of smart glazing optical properties for office spaces. Applied Energy, 2022, 308, 118411.	5.1	4
28	Impacts of thermo-optical properties on the seasonal operation of thermochromic smart window. Energy Conversion and Management, 2022, 252, 115058.	4.4	12
29	An Innovative Photovoltaic Luminescent Solar Concentrator Window: Energy and Environmental Aspects. Sustainability, 2022, 14, 4292.	1.6	3
30	CFD analysis of environmental impacts on a thermochromic smart window. Energy and Buildings, 2022, 263, 112027.	3.1	5
31	Assessment of the visual, thermal and energy performance of static vs thermochromic double-glazing under different European climates. Building and Environment, 2022, 217, 109115.	3.0	11
32	Design of thermo-chromic glazing windows considering energy consumption and visual comfort for cellular offices. Solar Energy, 2022, 241, 637-649.	2.9	12
33	Regional applicability of thermochromic windows based on dynamic radiation spectrum. Renewable Energy, 2022, 196, 15-27.	4.3	19
34	A novel solar-based human-centered framework to evaluate comfort-energy performance of thermochromic smart windows with advanced optical regulation. Energy and Buildings, 2023, 278, 112638.	3.1	2
35	Examination of energy and visual comfort performance of thermo-chromic coatings for cellular offices. Energy, 2023, 267, 126517.	4.5	1
36	Effect of the material color on optical properties of thermochromic coatings employed in buildings. Case Studies in Thermal Engineering, 2023, 45, 102916.	2.8	2

CITATION REPORT