Phase separation of signaling molecules promotes T cell

Science 352, 595-599 DOI: 10.1126/science.aad9964

Citation Report

#	Article	IF	CITATIONS
1	An electrostatic selection mechanism controls sequential kinase signaling downstream of the T cell receptor. ELife, 2016, 5, .	2.8	85
2	Effect of Spatial Inhomogeneities on the Membrane Surface on Receptor Dimerization and Signal Initiation. Frontiers in Cell and Developmental Biology, 2016, 4, 81.	1.8	6
3	Development of nanoscale structure in LAT-based signaling complexes. Journal of Cell Science, 2016, 129, 4548-4562.	1.2	11
4	Mechanisms and Consequences of Macromolecular Phase Separation. Cell, 2016, 165, 1067-1079.	13.5	272
5	Liquidity in immune cell signaling. Science, 2016, 352, 516-517.	6.0	12
6	Droplet organelles?. EMBO Journal, 2016, 35, 1603-1612.	3.5	272
7	Bottom-Up Biology: Harnessing Engineering to Understand Nature. Developmental Cell, 2016, 38, 587-589.	3.1	7
8	Compartmentalization of the Cell Membrane. Journal of Molecular Biology, 2016, 428, 4739-4748.	2.0	66
9	Regulation of T cell signalling by membrane lipids. Nature Reviews Immunology, 2016, 16, 690-701.	10.6	108
10	Signaling and Polarized Communication Across the T Cell Immunological Synapse. Annual Review of Cell and Developmental Biology, 2016, 32, 303-325.	4.0	117
11	Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5454-63.	3.3	194
12	Polar Positioning of Phase-Separated Liquid Compartments in Cells Regulated by an mRNA Competition Mechanism. Cell, 2016, 166, 1572-1584.e16.	13.5	283
13	Antigen Receptor Nanoclusters: Small Units with Big Functions. Trends in Immunology, 2016, 37, 680-689.	2.9	30
14	Liquid–liquid phase separation in cellular signaling systems. Current Opinion in Structural Biology, 2016, 41, 180-186.	2.6	172
15	Formin-generated actomyosin arcs propel T cell receptor microcluster movement at the immune synapse. Journal of Cell Biology, 2016, 215, 383-399.	2.3	181
16	The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochemical Society Transactions, 2016, 44, 1185-1200.	1.6	323
17	Biomolecular condensates: organizers of cellular biochemistry. Nature Reviews Molecular Cell Biology, 2017, 18, 285-298.	16.1	3,771
18	Synaptic Vesicle Clusters at Synapses: A Distinct Liquid Phase?. Neuron, 2017, 93, 995-1002.	3.8	89

ARTICLE IF CITATIONS # T cell costimulatory receptor CD28 is a primary target for PD-1–mediated inhibition. Science, 2017, 355, 19 6.0 1,229 1428-1433. Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response. Cell, 2017, 168, 13.5 674 1028-1040.e19. A Perspective on the Role of Computational Models in Immunology. Annual Review of Immunology, 21 9.5 40 2017, 35, 403-439. Reconstitution of TCR Signaling Using Supported Lipid Bilayers. Methods in Molecular Biology, 2017, 24 1584, 65-76. Visualizing dynamic microvillar search and stabilization during ligand detection by T cells. Science, 23 6.0 225 2017, 356, . Super-resolution optical microscopy for studying membrane structure and dynamics. Journal of Physics Condensed Matter, 2017, 29, 273001. Membrane-bound organelles versus membrane-less compartments and their control of anabolic 25 0.9 43 pathways in Drosophila. Developmental Biology, 2017, 428, 310-317. To Mix, or To Demix, That Is the Question. Biophysical Journal, 2017, 112, 565-567. 0.2 26 Integrin and cadherin clusters: A robust way to organize adhesions for cell mechanics. BioEssays, 27 1.2 101 2017, 39, 1-12. 2016: Signaling Breakthroughs of the Year. Science Signaling, 2017, 10, . 1.6 Dynamic Scaling Analysis of Molecular Motion within the LAT:Grb2:SOS Protein Network 29 0.2 23 onÂMembranes. Biophysical Journal, 2017, 113, 1807-1813. Irreversible thermodynamics of curved lipid membranes. Physical Review E, 2017, 96, 042409. 30 0.8 Phase separation in biology. Current Biology, 2017, 27, R1097-R1102. $\mathbf{31}$ 1.8 323 There Is an Inclusion for That: Material Properties of Protein Granules Provide a Platform for 3.7 Building Diverse Cellular Functions. Trends in Biochemical Sciences, 2017, 42, 765-776. 1,25(OH) 2 D 3 induces regulatory T cell differentiation by influencing the VDR/PLC- $\hat{1}^{3}$ 1/TGF- $\hat{1}^{2}$ 1/pathway. 33 1.0 59 Molecular Immunology, 2017, 91, 156-164. Liquid phase condensation in cell physiology and disease. Science, 2017, 357, . 2,699 Intrinsically disordered sequences enable modulation of protein phase separation through 35 1.6 288 distributed tyrosine motifs. Journal of Biological Chemistry, 2017, 292, 19110-19120. Local Nucleation of Microtubule Bundles through Tubulin Concentration into a Condensed Tau 278 Phase. Cell Reports, 2017, 20, 2304-2312.

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
37	Illuminating the Cell's Biochemical Activity Architecture. Biochemistry, 2017, 56, 5210-5213.	1.2	10
38	The wisdom of crowds: regulating cell function through condensed states of living matter. Journal of Cell Science, 2017, 130, 2789-2796.	1.2	130
39	Directing reconfigurable DNA nanoarrays. Science, 2017, 357, 352-353.	6.0	5
40	Sterol transporters at membrane contact sites regulate TORC1 and TORC2 signaling. Journal of Cell Biology, 2017, 216, 2679-2689.	2.3	75
41	Allosteric Modulation of Grb2 Recruitment to the Intrinsically Disordered Scaffold Protein, LAT, by Remote Site Phosphorylation. Journal of the American Chemical Society, 2017, 139, 18009-18015.	6.6	27
42	Cytoskeletal control of B cell responses to antigens. Nature Reviews Immunology, 2017, 17, 621-634.	10.6	107
43	Removing the effect of blooming from potential energy measurement by employing total internal reflection microscopy integrated with video microscopy. Journal of Colloid and Interface Science, 2017, 503, 142-149.	5.0	3
44	Computational simulation of forminâ€mediated actin polymerization predicts homologueâ€dependent mechanosensitivity. Cytoskeleton, 2017, 74, 29-39.	1.0	14
45	Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites. ELife, 2017, 6, .	2.8	129
46	The Affinity of Elongated Membrane-Tethered Ligands Determines Potency of T Cell Receptor Triggering. Frontiers in Immunology, 2017, 8, 793.	2.2	28
47	Granulostasis: Protein Quality Control of RNP Granules. Frontiers in Molecular Neuroscience, 2017, 10, 84.	1.4	108
48	Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. ELife, 2017, 6, .	2.8	514
49	Poly(ADP-ribose) mediates asymmetric division of mouse oocyte. Cell Research, 2018, 28, 462-475.	5.7	32
50	Basal condensation of Numb and Pon complex via phase transition during Drosophila neuroblast asymmetric division. Nature Communications, 2018, 9, 737.	5.8	57
51	It Pays To Be in Phase. Biochemistry, 2018, 57, 2520-2529.	1.2	32
52	Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell Research, 2018, 28, 405-415.	5.7	325
53	PI(4,5)P2 determines the threshold of mechanical force–induced B cell activation. Journal of Cell Biology, 2018, 217, 2565-2582.	2.3	22
54	Cooperativity Principles in Self-Assembled Nanomedicine. Chemical Reviews, 2018, 118, 5359-5391.	23.0	129

#	Article	IF	CITATIONS
55	pTRAPs: Transmembrane adaptors in innate immune signaling. Journal of Leukocyte Biology, 2018, 103, 1011-1019.	1.5	9
56	Conformational switching within dynamic oligomers underpins toxic gain-of-function by diabetes-associated amyloid. Nature Communications, 2018, 9, 1312.	5.8	50
57	Controlling compartmentalization by non-membrane-bound organelles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170193.	1.8	132
58	Neuronal Synapses: Microscale Signal Processing Machineries Formed by Phase Separation?. Biochemistry, 2018, 57, 2530-2539.	1.2	13
59	Rab6-dependent retrograde traffic of LAT controls immune synapse formation and T cell activation. Journal of Experimental Medicine, 2018, 215, 1245-1265.	4.2	42
60	Optogenetic Reconstitution for Determining the Form and Function of Membraneless Organelles. Biochemistry, 2018, 57, 2432-2436.	1.2	7
61	Profilin reduces aggregation and phase separation of huntingtin N-terminal fragments by preferentially binding to soluble monomers and oligomers. Journal of Biological Chemistry, 2018, 293, 3734-3746.	1.6	106
62	Robust control of the adaptive immune system. Seminars in Immunology, 2018, 36, 17-27.	2.7	34
63	TCR Signaling: Mechanisms of Initiation and Propagation. Trends in Biochemical Sciences, 2018, 43, 108-123.	3.7	372
64	Cell Biology of T Cell Receptor Expression and Regulation. Annual Review of Immunology, 2018, 36, 103-125.	9.5	194
65	Functional Implications of Intracellular Phase Transitions. Biochemistry, 2018, 57, 2415-2423.	1.2	189
66	Physical principles of intracellular organization via active and passive phase transitions. Reports on Progress in Physics, 2018, 81, 046601.	8.1	319
67	Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chemical Reviews, 2018, 118, 1691-1741.	23.0	577
68	Phosphoâ€regulation of intrinsically disordered proteins for actin assembly and endocytosis. FEBS Journal, 2018, 285, 2762-2784.	2.2	30
69	Protein Partitioning into Ordered Membrane Domains: Insights from Simulations. Biophysical Journal, 2018, 114, 1936-1944.	0.2	63
70	Spatiotemporal Regulation of T Cell Activation. Seibutsu Butsuri, 2018, 58, 005-011.	0.0	0
71	Protein Phase Separation: A New Phase in Cell Biology. Trends in Cell Biology, 2018, 28, 420-435.	3.6	1,439
72	Aurora A activation in mitosis promoted by BuGZ. Journal of Cell Biology, 2018, 217, 107-116.	2.3	31

#	Article	IF	CITATIONS
73	The Next Frontier: Quantitative Biochemistry in Living Cells. Biochemistry, 2018, 57, 47-55.	1.2	10
74	ZAP-70 in Signaling, Biology, and Disease. Annual Review of Immunology, 2018, 36, 127-156.	9.5	105
75	Complex regulatory mechanisms mediated by the interplay of multiple post-translational modifications. Current Opinion in Structural Biology, 2018, 48, 58-67.	2.6	90
76	A Membraneless Organelle Associated with the Endoplasmic Reticulum Enables 3′UTR-Mediated Protein-Protein Interactions. Cell, 2018, 175, 1492-1506.e19.	13.5	255
77	Evolution of weak cooperative interactions for biological specificity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11053-E11060.	3.3	34
78	The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger. Nature Communications, 2018, 9, 5076.	5.8	89
79	Cooperative assembly of a four-molecule signaling complex formed upon T cell antigen receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11914-E11923.	3.3	24
80	T Cells on Engineered Substrates: The Impact of TCR Clustering Is Enhanced by LFA-1 Engagement. Frontiers in Immunology, 2018, 9, 2085.	2.2	13
81	Liquid and Hydrogel Phases of PrPC Linked to Conformation Shifts and Triggered by Alzheimer's Amyloid-β Oligomers. Molecular Cell, 2018, 72, 426-443.e12.	4.5	87
82	Switching protein patterns on membranes. Current Opinion in Colloid and Interface Science, 2018, 38, 100-107.	3.4	3
83	2D Kinetic Analysis of TCR and CD8 Coreceptor for LCMV GP33 Epitopes. Frontiers in Immunology, 2018, 9, 2348.	2.2	24
84	TAOK3 Regulates Canonical TCR Signaling by Preventing Early SHP-1–Mediated Inactivation of LCK. Journal of Immunology, 2018, 201, 3431-3442.	0.4	17
85	Signal Transduction Changes in T-Cells with Aging. , 2018, , 1-27.		0
86	A New Lens for RNA Localization: Liquid-Liquid Phase Separation. Annual Review of Microbiology, 2018, 72, 255-271.	2.9	108
87	Phase Separation in Biology and Disease. Journal of Molecular Biology, 2018, 430, 4603-4606.	2.0	68
88	Reconstitution of immune cell interactions in free-standing membranes. Journal of Cell Science, 2018, 132, .	1.2	25
89	Relation between single-molecule properties and phase behavior of intrinsically disordered proteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9929-9934.	3.3	283
90	Membraneless Compartmentalization Facilitates Enzymatic Cascade Reactions and Reduces Substrate Inhibition. ACS Applied Materials & amp; Interfaces, 2018, 10, 32782-32791.	4.0	78

#	Article	IF	CITATIONS
91	CRIB effector disorder: exquisite function from chaos. Biochemical Society Transactions, 2018, 46, 1289-1302.	1.6	6
92	Organization of Immunological Synapses and Kinapses. , 2018, , 1-37.		1
93	Regulatory mechanisms in T cell receptor signalling. Nature Reviews Immunology, 2018, 18, 485-497.	10.6	371
94	MaxSynBio: Wege zur Synthese einer Zelle aus nicht lebenden Komponenten. Angewandte Chemie, 2018, 130, 13566-13577.	1.6	27
95	Protein Phase Separation Provides Long-Term Memory of Transient Spatial Stimuli. Cell Systems, 2018, 6, 655-663.e5.	2.9	129
06	Sequence-to-Conformation Relationships of Disordered Regions Tethered to Folded Domains of	20	(0)
96	Proteins. Journal of Molecular Biology, 2018, 430, 2403-2421.	2.0	60
97	Pi-Pi contacts are an overlooked protein feature relevant to phase separation. ELife, 2018, 7, .	2.8	571
98	Advances in Understanding Stimulus-Responsive Phase Behavior of Intrinsically Disordered Protein Polymers. Journal of Molecular Biology, 2018, 430, 4619-4635.	2.0	164
	Multiuslance of NDC90 in the outer his stack are is consultable to two sheet entering reisers to bulles and		
99	generate forces. ELife, 2018, 7, .	2.8	67
100	Controllable protein phase separation and modular recruitment to form responsive membraneless organelles. Nature Communications, 2018, 9, 2985.	5.8	274
101	Protein folding and quinary interactions: creating cellular organisation through functional disorder. FEBS Letters, 2018, 592, 3040-3053.	1.3	23
	Fabrication of Multicomponent, Spatially Segregated DNA and Protein-Functionalized Supported		
102	Membrane Microarray. Langmuir, 2018, 34, 9781-9788.	1.6	10
103	Isolation of a Structural Mechanism for Uncoupling T Cell Receptor Signaling from Peptide-MHC Binding. Cell, 2018, 174, 672-687.e27.	13.5	229
	High Affinity Ligande Can Trigger T Coll Pecenter Signaling Without CD45 Segregation Frontiers in		
104	Immunology, 2018, 9, 713.	2.2	18
105	Descing in on the cell quele Cell Division 2018, 12, 1	11	0.0
105		1,1	33
106	MaxSynBio: Avenues Towards Creating Cells from the Bottom Up. Angewandte Chemie - International Edition, 2018, 57, 13382-13392.	7.2	234
	Assembly of Mitotic Structures through Phase Separation, Journal of Molecular Biology, 2018, 430		
107	4762-4772.	2.0	34
108	Who's In and Who's Out—Compositional Control of Biomolecular Condensates. Journal of Molecular Biology, 2018, 430, 4666-4684.	2.0	255

		CITATION REPORT	
#	Article	IF	Citations
109	Immune signalling by supramolecular assemblies. Immunology, 2018, 155, 435-445.	2.0	5
110	Reconstituted Postsynaptic Density as a Molecular Platform for Understanding Synapse Formation and Plasticity. Cell, 2018, 174, 1172-1187.e16.	13.5	294
111	Protein Clusters in Phosphotyrosine Signal Transduction. Journal of Molecular Biology, 2018, 430, 4547-4556.	2.0	32
112	mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding. Cell, 2018, 174, 338-349.e20.	13.5	330
113	Bridging the Gap: Modulatory Roles of the Grb2-Family Adaptor, Gads, in Cellular and Allergic Immune Responses. Frontiers in Immunology, 2019, 10, 1704.	2.2	26
114	Understanding T cell signaling using membrane reconstitution. Immunological Reviews, 2019, 291, 44-56.	2.8	13
115	A PI(4,5)P2â€derived "gasoline engine model―for the sustained B cell receptor activation. Immunological Reviews, 2019, 291, 75-90.	2.8	3
116	The synergic effect of water and biomolecules in intracellular phase separation. Nature Reviews Chemistry, 2019, 3, 552-561.	13.8	58
117	Phase separation and clustering of an ABC transporter in <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16326-16331.	3.3	54
118	Liquid–Liquid Phase Separation in Disease. Annual Review of Genetics, 2019, 53, 171-194.	3.2	553
119	Structural-Size Control of Domain from Nano to Micro: Logical Balancing between Attractive and Repulsive Interactions in Two Dimensions. Langmuir, 2019, 35, 10383-10389.	1.6	12
120	Membrane Organization and Physical Regulation of Lymphocyte Antigen Receptors: A Biophysicist's Perspective. Journal of Membrane Biology, 2019, 252, 397-412.	1.0	15
121	TIRF Microscope Image Sequences of Fluorescent IgE-FcεRI Receptor Complexes inside a FcεRI-Centric Synapse in RBL-2H3 Cells. Data, 2019, 4, 111.	1.2	2
122	PhaSePro: the database of proteins driving liquid–liquid phase separation. Nucleic Acids Research, 2020, 48, D360-D367.	6.5	100
123	Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes and Development, 2019, 33, 1619-1634.	2.7	424
124	Phosphorylation of nephrin induces phase separated domains that move through actomyosin contraction. Molecular Biology of the Cell, 2019, 30, 2996-3012.	0.9	30
125	The Control Centers of Biomolecular Phase Separation: How Membrane Surfaces, PTMs, and Active Processes Regulate Condensation. Molecular Cell, 2019, 76, 295-305.	4.5	223
126	Phase Separation of Zonula Occludens Proteins Drives Formation of Tight Junctions. Cell, 2019, 179, 923-936.e11.	13.5	275

#	Article	IF	Citations
127	Polarisome scaffolder Spa2-mediated macromolecular condensation of Aip5 for actin polymerization. Nature Communications, 2019, 10, 5078.	5.8	34
128	G-quadruplex structures trigger RNA phase separation. Nucleic Acids Research, 2019, 47, 11746-11754.	6.5	67
129	Germ Cell Responses to Stress: The Role of RNP Granules. Frontiers in Cell and Developmental Biology, 2019, 7, 220.	1.8	16
130	Biomolecular condensates in neurodegeneration and cancer. Traffic, 2019, 20, 890-911.	1.3	72
131	Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation. Science, 2019, 365, 825-829.	6.0	240
132	Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications. Journal of Biological Chemistry, 2019, 294, 14823-14835.	1.6	149
133	TAOK3, a Regulator of LCK–SHP-1 Crosstalk during TCR Signaling. Critical Reviews in Immunology, 2019, 39, 59-81.	1.0	4
134	Membrane-Bound Meet Membraneless in Health and Disease. Cells, 2019, 8, 1000.	1.8	19
135	Quantifying Dynamics in Phase-Separated Condensates Using Fluorescence Recovery after Photobleaching. Biophysical Journal, 2019, 117, 1285-1300.	0.2	208
136	Capturing Metabolism-Dependent Solvent Dynamics in the Lumen of a Trafficking Lysosome. ACS Nano, 2019, 13, 1670-1682.	7.3	15
137	Balanced between order and disorder: a new phase in transcription elongation control and beyond. Transcription, 2019, 10, 157-163.	1.7	11
138	Intrinsically disordered proteins in synaptic vesicle trafficking and release. Journal of Biological Chemistry, 2019, 294, 3325-3342.	1.6	56
139	The Interplay of Structural and Cellular Biophysics Controls Clustering of Multivalent Molecules. Biophysical Journal, 2019, 116, 560-572.	0.2	24
140	Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell, 2019, 176, 419-434.	13.5	1,739
141	Thermodynamically driven assemblies and liquid–liquid phase separations in biology. Soft Matter, 2019, 15, 1135-1154.	1.2	77
142	Neuronal ribonucleoprotein granules: Dynamic sensors of localized signals. Traffic, 2019, 20, 639-649.	1.3	59
143	First-generation predictors of biological protein phase separation. Current Opinion in Structural Biology, 2019, 58, 88-96.	2.6	119
144	IDPs and IDRs in biomolecular condensates. , 2019, , 209-255.		13

	CHAHON	REPORT	
#	Article	IF	CITATIONS
145	Solvent-assisted preparation of supported lipid bilayers. Nature Protocols, 2019, 14, 2091-2118.	5.5	70
146	Engineering T-cell activation for immunotherapy by mechanical forces. Current Opinion in Biomedical Engineering, 2019, 10, 134-141.	1.8	7
147	The Structural and Functional Diversity of Intrinsically Disordered Regions in Transmembrane Proteins. Journal of Membrane Biology, 2019, 252, 273-292.	1.0	14
148	Engineered Ribonucleoprotein Granules Inhibit Translation in Protocells. Molecular Cell, 2019, 75, 66-75.e5.	4.5	52
149	Synthetic transcriptional synergy. Science, 2019, 364, 531-532.	6.0	1
150	Embracing Complexity in Health. , 2019, , .		12
151	Self-organization of Plk4 regulates symmetry breaking in centriole duplication. Nature Communications, 2019, 10, 1810.	5.8	52
152	Airway Transmural Pressures in an Airway Tree During Bronchoconstriction in Asthma. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2019, 2, 0110051-110056.	0.3	0
153	Lipid Vesicle-Coated Complex Coacervates. Langmuir, 2019, 35, 7830-7840.	1.6	56
154	The Nuclear Arsenal of Cilia. Developmental Cell, 2019, 49, 161-170.	3.1	27
155	The disordered boundary of the cell: emerging properties of membrane-bound intrinsically disordered proteins. Biomolecular Concepts, 2019, 10, 25-36.	1.0	10
156	CO ₂ â€fixing liquid droplets: Towards a dissection of the microalgal pyrenoid. Traffic, 2019, 20, 380-389.	1.3	30
157	Multiple sources of signal amplification within the B-cell Ras/MAPK pathway. Molecular Biology of the Cell, 2019, 30, 1610-1620.	0.9	9
158	Cellular sensing by phase separation: Using the process, not just the products. Journal of Biological Chemistry, 2019, 294, 7151-7159.	1.6	152
159	Heterochromatin Protein HP1α Gelation Dynamics Revealed by Solid‣tate NMR Spectroscopy. Angewandte Chemie, 2019, 131, 6366-6371.	1.6	10
160	A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS. Science, 2019, 363, 1098-1103.	6.0	268
161	Stoichiometry controls activity of phase-separated clusters of actin signaling proteins. Science, 2019, 363, 1093-1097.	6.0	360
162	Dwelling at membranes promotes decisive signaling. Science, 2019, 363, 1036-1037.	6.0	18

#	Article	IF	CITATIONS
163	Heterochromatin Protein HP1α Gelation Dynamics Revealed by Solid‣tate NMR Spectroscopy. Angewandte Chemie - International Edition, 2019, 58, 6300-6305.	7.2	44
164	T Cell Receptor (TCR)-Induced PLC-γ1 Sumoylation via PIASxβ and PIAS3 SUMO E3 Ligases Regulates the Microcluster Assembly and Physiological Function of PLC-γ1. Frontiers in Immunology, 2019, 10, 314.	2.2	11
165	Emergent functions of proteins in non-stoichiometric supramolecular assemblies. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 970-979.	1.1	49
166	Matter over mind: Liquid phase separation and neurodegeneration. Journal of Biological Chemistry, 2019, 294, 7160-7168.	1.6	176
167	Protocol for analyzing protein liquid–liquid phase separation. Biophysics Reports, 2019, 5, 1-9.	0.2	63
168	Minimal Reconstitution of Membranous Web Induced by a Vesicle–Peptide Sol–Gel Transition. Biomacromolecules, 2019, 20, 1709-1718.	2.6	4
169	Lipid Raft Phase Modulation by Membrane-Anchored Proteins with Inherent Phase Separation Properties. ACS Omega, 2019, 4, 6551-6559.	1.6	40
170	Influenza A virus ribonucleoproteins form liquid organelles at endoplasmic reticulum exit sites. Nature Communications, 2019, 10, 1629.	5.8	122
171	Understanding the Dynamics of T-Cell Activation in Health and Disease Through the Lens of Computational Modeling. JCO Clinical Cancer Informatics, 2019, 3, 1-8.	1.0	27
172	Cytoskeletal and Actinâ€Based Polymerization Motors and Their Role in Minimal Cell Design. Advanced Biology, 2019, 3, 1800311.	3.0	7
173	Regulation of Transmembrane Signaling by Phase Separation. Annual Review of Biophysics, 2019, 48, 465-494.	4.5	213
174	Mechanism of DNAâ€Induced Phase Separation for Transcriptional Repressor VRN1. Angewandte Chemie, 2019, 131, 4912-4916.	1.6	13
175	More from less – bottom-up reconstitution of cell biology. Journal of Cell Science, 2019, 132, .	1.2	61
176	Directed Growth of Biomimetic Microcompartments. Advanced Biology, 2019, 3, e1800314.	3.0	25
177	Mechanism of DNAâ€Induced Phase Separation for Transcriptional Repressor VRN1. Angewandte Chemie - International Edition, 2019, 58, 4858-4862.	7.2	69
178	Liquid-liquid phase transitions and amyloid aggregation in proteins related to cancer and neurodegenerative diseases. Advances in Protein Chemistry and Structural Biology, 2019, 118, 289-331.	1.0	50
179	How T Cells Do the $\hat{a} \in \hat{\infty}$ Search for the Needle in the Haystack $\hat{a} \in \hat{\bullet}$ Frontiers in Physics, 2019, 7, .	1.0	8
180	Localization of BCR-ABL to Stress Granules Contributes to Its Oncogenic Function. Cell Structure and Function, 2019, 44, 195-204.	0.5	10

#	Article	IF	CITATIONS
181	LASSI: A lattice model for simulating phase transitions of multivalent proteins. PLoS Computational Biology, 2019, 15, e1007028.	1.5	261
182	Order by chance: origins and benefits of stochasticity in immune cell fate control. Current Opinion in Systems Biology, 2019, 18, 95-103.	1.3	9
183	Geometrical reorganization of Dectin-1 and TLR2 on single phagosomes alters their synergistic immune signaling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25106-25114.	3.3	20
184	Probing and engineering liquid-phase organelles. Nature Biotechnology, 2019, 37, 1435-1445.	9.4	225
185	3′ UTRs Regulate Protein Functions by Providing a Nurturing Niche during Protein Synthesis. Cold Spring Harbor Symposia on Quantitative Biology, 2019, 84, 95-104.	2.0	8
186	Friend or foe—Post-translational modifications as regulators of phase separation and RNP granule dynamics. Journal of Biological Chemistry, 2019, 294, 7137-7150.	1.6	275
187	A bright future: optogenetics to dissect the spatiotemporal control of cell behavior. Current Opinion in Chemical Biology, 2019, 48, 106-113.	2.8	77
188	Phase separation as a mechanism for assembling dynamic postsynaptic density signalling complexes. Current Opinion in Neurobiology, 2019, 57, 1-8.	2.0	59
189	<i>In vitro</i> reconstitution of the bacterial cytoskeleton: expected and unexpected new insights. Microbial Biotechnology, 2019, 12, 74-76.	2.0	1
190	TCR microclusters form spatially segregated domains and sequentially assemble in calcium-dependent kinetic steps. Nature Communications, 2019, 10, 277.	5.8	64
191	Membrane Mechanics in Living Cells. Developmental Cell, 2019, 48, 15-16.	3.1	19
192	Mapping the stochastic sequence of individual ligand-receptor binding events to cellular activation: T cells act on the rare events. Science Signaling, 2019, 12, .	1.6	70
193	The Interdependent Activation of Son-of-Sevenless and Ras. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a031534.	2.9	46
194	Generalizing Gillespie's Direct Method to Enable Network-Free Simulations. Bulletin of Mathematical Biology, 2019, 81, 2822-2848.	0.9	15
195	Protein aggregation in cell biology: An aggregomics perspective of health and disease. Seminars in Cell and Developmental Biology, 2020, 99, 40-54.	2.3	36
196	TCR–pMHC bond conformation controls TCR ligand discrimination. Cellular and Molecular Immunology, 2020, 17, 203-217.	4.8	25
197	PhaSepDB: a database of liquid–liquid phase separation related proteins. Nucleic Acids Research, 2020, 48, D354-D359.	6.5	157
198	It is all about the process(ing): P-body granules and the regulation of signal transduction. Current Genetics, 2020, 66, 73-77.	0.8	19

#	Article	IF	CITATIONS
199	ALS and FTD: Where RNA metabolism meets protein quality control. Seminars in Cell and Developmental Biology, 2020, 99, 183-192.	2.3	39
200	Principles and Applications of Biological Membrane Organization. Annual Review of Biophysics, 2020, 49, 19-39.	4.5	24
201	Building an apical domain in the early mouse embryo: Lessons, challenges and perspectives. Current Opinion in Cell Biology, 2020, 62, 144-149.	2.6	12
202	Intercellular Receptor–Ligand Binding and Thermal Fluctuations Facilitate Receptor Aggregation in Adhering Membranes. Nano Letters, 2020, 20, 722-728.	4.5	21
203	Direct visualization of degradation microcompartments at the ER membrane. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1069-1080.	3.3	68
204	Membrane receptor activation mechanisms and transmembrane peptide tools to elucidate them. Journal of Biological Chemistry, 2020, 295, 1792-1814.	1.6	47
205	Mechanisms for Active Regulation of Biomolecular Condensates. Trends in Cell Biology, 2020, 30, 4-14.	3.6	127
206	An Inorganic Biopolymer Polyphosphate Controls Positively Charged Protein Phase Transitions. Angewandte Chemie - International Edition, 2020, 59, 2679-2683.	7.2	21
207	An Inorganic Biopolymer Polyphosphate Controls Positively Charged Protein Phase Transitions. Angewandte Chemie, 2020, 132, 2701-2705.	1.6	4
208	Molecular structure in biomolecular condensates. Current Opinion in Structural Biology, 2020, 60, 17-26.	2.6	91
209	NMR Experiments for Studies of Dilute and Condensed Protein Phases: Application to the Phase-Separating Protein CAPRIN1. Journal of the American Chemical Society, 2020, 142, 2471-2489.	6.6	49
210	Surfing on Membrane Waves: Microvilli, Curved Membranes, and Immune Signaling. Frontiers in Immunology, 2020, 11, 2187.	2.2	41
211	Structural analysis of SARS-CoV-2 genome and predictions of the human interactome. Nucleic Acids Research, 2020, 48, 11270-11283.	6.5	73
212	Phase Separation in Cell Division. Molecular Cell, 2020, 80, 9-20.	4.5	56
213	Head-to-Tail Polymerization in the Assembly of Biomolecular Condensates. Cell, 2020, 182, 799-811.	13.5	56
214	Cell–cell interfaces as specialized compartments directing cell function. Nature Reviews Molecular Cell Biology, 2020, 21, 750-764.	16.1	60
215	Aggregation of a double hydrophilic block glycopolymer: the effect of block polymer ratio. Journal of Materials Chemistry B, 2020, 8, 10101-10107.	2.9	13
216	Adaptable antibody Nanoworms designed for non-Hodgkin lymphoma. Biomaterials, 2020, 262, 120338.	5.7	9

#	Article	IF	CITATIONS
217	Review: F-Actin remodelling during plant signal transduction via biomolecular assembly. Plant Science, 2020, 301, 110663.	1.7	4
218	Visualizing Molecular Architectures of Cellular Condensates: Hints of Complex Coacervation Scenarios. Developmental Cell, 2020, 55, 97-107.	3.1	15
219	Phase Separation in Germ Cells and Development. Developmental Cell, 2020, 55, 4-17.	3.1	52
220	Phase Separation and Neurodegenerative Diseases: A Disturbance in the Force. Developmental Cell, 2020, 55, 45-68.	3.1	234
221	Structural Modifications Controlling Membrane Raft Partitioning and Curvature in Human and Viral Proteins. Journal of Physical Chemistry B, 2020, 124, 7574-7585.	1.2	11
222	Designer protein assemblies with tunable phase diagrams in living cells. Nature Chemical Biology, 2020, 16, 939-945.	3.9	68
223	The Speckled Protein (SP) Family: Immunity's Chromatin Readers. Trends in Immunology, 2020, 41, 572-585.	2.9	56
224	Biomolecular Condensates in the Nucleus. Trends in Biochemical Sciences, 2020, 45, 961-977.	3.7	259
225	Inositol Polyphosphate Multikinase Inhibits Liquid-Liquid Phase Separation of TFEB to Negatively Regulate Autophagy Activity. Developmental Cell, 2020, 55, 588-602.e7.	3.1	38
226	Rewired signaling network in T cells expressing the chimeric antigen receptor (<scp>CAR</scp>). EMBO Journal, 2020, 39, e104730.	3.5	37
227	Pathophysiological implications of RNP granules in frontotemporal dementia and ALS. Neurochemistry International, 2020, 140, 104819.	1.9	5
228	The epigenomics of sarcoma. Nature Reviews Cancer, 2020, 20, 608-623.	12.8	121
229	T Cell Membrane Heterogeneity Aids Antigen Recognition and T Cell Activation. Frontiers in Cell and Developmental Biology, 2020, 8, 609.	1.8	13
230	Liquid-Liquid Phase Separation in Neuronal Development and Synaptic Signaling. Developmental Cell, 2020, 55, 18-29.	3.1	77
231	Phase Separation in Membrane Biology: The Interplay between Membrane-Bound Organelles and Membraneless Condensates. Developmental Cell, 2020, 55, 30-44.	3.1	176
232	Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scandinavian Journal of Immunology, 2020, 92, e12951.	1.3	10
233	Phase separation drives decision making in cell division. Journal of Biological Chemistry, 2020, 295, 13419-13431.	1.6	41
234	Coreceptors and TCR Signaling – the Strong and the Weak of It. Frontiers in Cell and Developmental Biology, 2020, 8, 597627.	1.8	31

ARTICLE IF CITATIONS # Protein phase separation: A novel therapy for cancer?. British Journal of Pharmacology, 2020, 177, 235 2.7 13 5008-5030. Phase Separation of a PKA Regulatory Subunit Controls cAMP Compartmentation and Oncogenic Signaling. Cell, 2020, 182, 1531-1544.e15. 13.5 237 Structure and Functions of Sidekicks. Frontiers in Molecular Neuroscience, 2020, 13, 139. 7 1.4 Identification of synthetic inhibitors for the DNA binding of intrinsically disordered circadian clock 238 2.2 transcription factors. Chemical Communications, 2020, 56, 11203-11206. Complex Interactions Between Membrane-Bound Organelles, Biomolecular Condensates and the 239 1.8 32 Cytoskeleton. Frontiers in Cell and Developmental Biology, 2020, 8, 618733. Regulations of T Cell Activation by Membrane and Cytoskeleton. Membranes, 2020, 10, 443. 1.4 Phase Separation as a Missing Mechanism for Interpretation of Disease Mutations. Cell, 2020, 183, 241 13.5 147 1742-1756. A small sustained increase in NOD1 abundance promotes ligand-independent inflammatory and 1.6 oncogene transcriptional responses. Science Signaling, 2020, 13, . RNA phase separation–mediated direction of molecular trafficking under conditions of molecular 243 12 1.5 crowding. Biophysical Reviews, 2020, 12, 669-676. DDX3X Sits at the Crossroads of Liquid–Liquid and Prionoid Phase Transitions Arbitrating Life and 244 Death Cell Fate Decisions in Stressed Cells. DNA and Cell Biology, 2020, 39, 1091-1095. Tuning shape and internal structure of protein droplets<i>via</i>biopolymer filaments. Soft Matter, 245 22 1.2 2020, 16, 5659-5668. Physical Constraints and Forces Involved in Phagocytosis. Frontiers in Immunology, 2020, 11, 1097. 2.2 246 Unraveling the molecular interactions involved in phase separation of glucocorticoid receptor. BMC 247 1.7 45 Biology, 2020, 18, 59. Synergistic factors control kinase–phosphatase organizationÂin B-cells engaged with supported bilayers. Molecular Biology of the Cell, 2020, 31, 667-682. 248 Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. 249 2.3164 Science China Life Sciences, 2020, 63, 953-985. Phase behaviour and structure of a model biomolecular condensate. Soft Matter, 2020, 16, 6413-6423. 1.2 Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in 251 1.6 19 Macromolecularly Crowded Protocells. Angewandte Chemie, 2020, 132, 11121-11129. Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells. Angewandte Chemie - International Edition, 2020, 59, 11028-11036.

		CITATION REPORT	
#	Article	IF	CITATIONS
253	pH-Controlled Coacervate–Membrane Interactions within Liposomes. ACS Nano, 2020, 14, 44	187-4498. 7.3	94
254	Liquid-liquid phase separation drives skin barrier formation. Science, 2020, 367, .	6.0	141
255	Multivalent nephrin/Nck interactions define a threshold for clustering and tyrosine-dependent nephrin endocytosis. Journal of Cell Science, 2020, 133, .	1.2	11
256	"lf you please… draw me a cell― Insights from immune cells. Journal of Cell Science, 2020), 133, . 1.2	1
257	Liquid-liquid phase separation and extracellular multivalent interactions in the tale of galectin-3. Nature Communications, 2020, 11, 1229.	5.8	66
258	Nuclear body phase separation drives telomere clustering in ALT cancer cells. Molecular Biology the Cell, 2020, 31, 2048-2056.	of 0.9	79
259	A guide to regulation of the formation of biomolecular condensates. FEBS Journal, 2020, 287, 1924-1935.	2.2	48
260	Self-organizing pattern of subpleural alveolar ducts. Scientific Reports, 2020, 10, 3185.	1.6	5
261	Tripartite phase separation of two signal effectors with vesicles priming B cell responsiveness. Nature Communications, 2020, 11, 848.	5.8	27
262	Phase separation of TPX2 enhances and spatially coordinates microtubule nucleation. Nature Communications, 2020, 11, 270.	5.8	131
263	Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions. Annual Revol of Biophysics, 2020, 49, 107-133.	view 4.5	544
264	T-Cell Receptor Signaling. Methods in Molecular Biology, 2020, , .	0.4	3
265	Higher-order assemblies in innate immune and inflammatory signaling: A general principle in cel biology. Current Opinion in Cell Biology, 2020, 63, 194-203.	2.6	24
266	The regulation of Yorkie, YAP and TAZ: new insights into the Hippo pathway. Development (Can 2020, 147, .	nbridge), 1.2	50
267	A framework for understanding the functions of biomolecular condensates across scales. Natur Reviews Molecular Cell Biology, 2021, 22, 215-235.	2 16.1	450
268	Enzymatic Reactions inside Biological Condensates. Journal of Molecular Biology, 2021, 433, 16	6624. 2.0	50
269	Model membrane systems to reconstitute immune cell signaling. FEBS Journal, 2021, 288, 1070)-1090. 2.2	25
270	ITSN1 regulates SAM68 solubility through SH3 domain interactions with SAM68 proline-rich mc Cellular and Molecular Life Sciences, 2021, 78, 1745-1763.	tifs. 2.4	7

#	Article	IF	CITATIONS
271	Lights up on organelles: Optogenetic tools to control subcellular structure and organization. WIREs Mechanisms of Disease, 2021, 13, e1500.	1.5	13
272	Enzymatic control over coacervation. Methods in Enzymology, 2021, 646, 353-389.	0.4	13
273	Analysis of biomolecular condensates and protein phase separation with microfluidic technology. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118823.	1.9	33
274	Phosphofructokinase relocalizes into subcellular compartments with liquid-like properties inÂvivo. Biophysical Journal, 2021, 120, 1170-1186.	0.2	39
275	Hyperosmotic phase separation: Condensates beyond inclusions, granules and organelles. Journal of Biological Chemistry, 2021, 296, 100044.	1.6	31
276	The emergence of phase separation as an organizing principle in bacteria. Biophysical Journal, 2021, 120, 1123-1138.	0.2	108
277	Separate signaling events control TCR downregulation and T cell activation in primary human T cells. Immunity, Inflammation and Disease, 2021, 9, 223-238.	1.3	10
278	Real-Time Study of Protein Phase Separation with Spatiotemporal Analysis of Single-Nanoparticle Trajectories. ACS Nano, 2021, 15, 539-549.	7.3	18
279	Coupled membrane lipid miscibility and phosphotyrosine-driven protein condensation phase transitions. Biophysical Journal, 2021, 120, 1257-1265.	0.2	49
280	Systems biology approaches to macromolecules: the role of dynamic protein assemblies in information processing. Current Opinion in Structural Biology, 2021, 67, 61-68.	2.6	2
281	The dynamics of the nuclear environment and their impact on gene function. Journal of Biochemistry, 2021, 169, 259-264.	0.9	3
282	Proteome-scale analysis of phase-separated proteins in immunofluorescence images. Briefings in Bioinformatics, 2021, 22, .	3.2	17
283	Capturing protein droplets: label-free visualization and detection of protein liquid–liquid phase separation with an aggregation-induced emission fluorogen. Chemical Communications, 2021, 57, 3805-3808.	2.2	16
284	Dynamic behavior of liquid droplets with enzyme compartmentalization triggered by sequential glycolytic enzyme reactions. Chemical Communications, 2021, 57, 12544-12547.	2.2	15
285	Liquid-liquid phase separation of light-inducible transcription factors increases transcription activation in mammalian cells and mice. Science Advances, 2021, 7, .	4.7	73
286	Polarisome assembly mediates actin remodeling during polarized yeast and fungal growth. Journal of Cell Science, 2021, 134, .	1.2	11
287	Biophysical underpinnings regarding the formation and the regulation of biomolecular condensates. Journal of the Korean Physical Society, 2021, 78, 393-400.	0.3	1
288	Interplay between cooperativity of intercellular receptor–ligand binding and coalescence of nanoscale lipid clusters in adhering membranes. Soft Matter, 2021, 17, 1912-1920.	1.2	19

#	Article	IF	CITATIONS
289	Microclusters as T Cell Signaling Hubs: Structure, Kinetics, and Regulation. Frontiers in Cell and Developmental Biology, 2020, 8, 608530.	1.8	6
290	T cell receptor–dependent S-acylation of ZAP-70 controls activation of T cells. Journal of Biological Chemistry, 2021, 296, 100311.	1.6	15
291	Liquid droplets of protein LAF1 provide a vehicle to regulate storage of the signaling protein K-Ras4B and its transport to the lipid membrane. Physical Chemistry Chemical Physics, 2021, 23, 5370-5375.	1.3	5
292	Structure–Function Properties in Disordered Condensates. Journal of Physical Chemistry B, 2021, 125, 467-476.	1.2	34
293	Concepts No Membrane, No Problem: Cellular Organization by Biomolecular Condensates. , 2021, , 113-133.		0
295	Interactions between Phase-Separated Liquids and Membrane Surfaces. Applied Sciences (Switzerland), 2021, 11, 1288.	1.3	19
296	Fundamental Challenges and Outlook in Simulating Liquid–Liquid Phase Separation of Intrinsically Disordered Proteins. Journal of Physical Chemistry Letters, 2021, 12, 1644-1656.	2.1	20
297	Computational resources for identifying and describing proteins driving liquid–liquid phase separation. Briefings in Bioinformatics, 2021, 22, .	3.2	40
298	Interplay of folded domains and the disordered low-complexity domain in mediating hnRNPA1 phase separation. Nucleic Acids Research, 2021, 49, 2931-2945.	6.5	81
301	Valency and Binding Affinity Variations Can Regulate the Multilayered Organization of Protein Condensates with Many Components. Biomolecules, 2021, 11, 278.	1.8	53
302	Biomolecular Condensates and Cancer. Cancer Cell, 2021, 39, 174-192.	7.7	157
305	Computational Screening of Phase-separating Proteins. Genomics, Proteomics and Bioinformatics, 2021, 19, 13-24.	3.0	36
306	Membrane-associated phase separation: organization and function emerge from a two-dimensional milieu. Journal of Molecular Cell Biology, 2021, 13, 319-324.	1.5	37
307	Liquid Biomolecular Condensates and Viral Lifecycles: Review and Perspectives. Viruses, 2021, 13, 366.	1.5	78
309	New Insights into the Functions of Nucleic Acids Controlled by Cellular Microenvironments. Topics in Current Chemistry, 2021, 379, 17.	3.0	15
310	USP42 drives nuclear speckle mRNA splicing via directing dynamic phase separation to promote tumorigenesis. Cell Death and Differentiation, 2021, 28, 2482-2498.	5.0	26
311	Integration of Data from Liquid–Liquid Phase Separation Databases Highlights Concentration and Dosage Sensitivity of LLPS Drivers. International Journal of Molecular Sciences, 2021, 22, 3017.	1.8	29
312	Raf promotes dimerization of the Ras G-domain with increased allosteric connections. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	39

	Charlow R		
# 313	ARTICLE DNA-driven condensation assembles the meiotic DNA break machinery. Nature, 2021, 592, 144-149.	IF 13.7	Citations
314	Liquid–Liquid Phase Separation As the Second Step of Complex Coacervation. Journal of Physical Chemistry B, 2021, 125, 3023-3031.	1.2	16
315	Ligand effects on phase separation of multivalent macromolecules. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	95
316	A self-organized synthetic morphogenic liposome responds with shape changes to local light cues. Nature Communications, 2021, 12, 1548.	5.8	9
317	A modular tool to query and inducibly disrupt biomolecular condensates. Nature Communications, 2021, 12, 1809.	5.8	9
318	Formin nanoclustering-mediated actin assembly during plant flagellin and DSF signaling. Cell Reports, 2021, 34, 108884.	2.9	25
319	LncRNAs: Architectural Scaffolds or More Potential Roles in Phase Separation. Frontiers in Genetics, 2021, 12, 626234.	1.1	29
320	Aberrant phase separation and cancer. FEBS Journal, 2022, 289, 17-39.	2.2	42
322	Adapting T Cell Receptor Ligand Discrimination Capability via LAT. Frontiers in Immunology, 2021, 12, 673196.	2.2	14
323	Protein self-assembly: A new frontier in cell signaling. Current Opinion in Cell Biology, 2021, 69, 62-69.	2.6	6
324	Regulation of biomolecular condensate dynamics by signaling. Current Opinion in Cell Biology, 2021, 69, 111-119.	2.6	14
326	Suppression of human T cell activation by derivatives of glycerol monolaurate. Scientific Reports, 2021, 11, 8943.	1.6	7
328	Interplay Between Receptor-Ligand Binding and Lipid Domain Formation Depends on the Mobility of Ligands in Cell-Substrate Adhesion. Frontiers in Molecular Biosciences, 2021, 8, 655662.	1.6	9
329	Mechanics of a molecular mousetrap—nucleation-limited innate immune signaling. Biophysical Journal, 2021, 120, 1150-1160.	0.2	9
330	Studying phase separation in confinement. Current Opinion in Colloid and Interface Science, 2021, 52, 101419.	3.4	18
331	PLC \hat{i}^31 promotes phase separation of T cell signaling components. Journal of Cell Biology, 2021, 220, .	2.3	30
332	Phase Separation during Germline Development. Trends in Cell Biology, 2021, 31, 254-268.	3.6	41
333	Spatiotemporal organization of coacervate microdroplets. Current Opinion in Colloid and Interface Science, 2021, 52, 101420.	3.4	21

#	Article	IF	Citations
334	The STING phase-separator suppresses innate immune signalling. Nature Cell Biology, 2021, 23, 330-340.	4.6	96
335	Higher-order assemblies in immune signaling: supramolecular complexes and phase separation. Protein and Cell, 2021, 12, 680-694.	4.8	24
336	Pyrenoids: CO2-fixing phase separated liquid organelles. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118949.	1.9	51
337	Diffusion of LLPS Droplets Consisting of Poly(PR) Dipeptide Repeats and RNA on Chemically Modified Glass Surface. Langmuir, 2021, 37, 5635-5641.	1.6	11
339	Intrinsically Disordered Proteins as Regulators of Transient Biological Processes and as Untapped Drug Targets. Molecules, 2021, 26, 2118.	1.7	13
340	Mechanisms and regulation underlying membraneless organelle plasticity control. Journal of Molecular Cell Biology, 2021, 13, 239-258.	1.5	14
341	Paradigm shift: the primary function of the "Adiponectin Receptors―is to regulate cell membrane composition. Lipids in Health and Disease, 2021, 20, 43.	1.2	20
343	A Data-Driven Hydrophobicity Scale for Predicting Liquid–Liquid Phase Separation of Proteins. Journal of Physical Chemistry B, 2021, 125, 4046-4056.	1.2	71
344	Biomolecular condensates in membrane receptor signaling. Current Opinion in Cell Biology, 2021, 69, 48-54.	2.6	33
345	The role of liquid–liquid phase separation in regulating enzyme activity. Current Opinion in Cell Biology, 2021, 69, 70-79.	2.6	95
346	DNAâ€binding domain as the minimal region driving RNAâ€dependent liquid–liquid phase separation of androgen receptor. Protein Science, 2021, 30, 1380-1392.	3.1	21
347	Galectin-3 N-terminal tail prolines modulate cell activity and glycan-mediated oligomerization/phase separation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	3.3	24
348	Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules. Cell, 2021, 184, 2649-2664.e18.	13.5	102
349	Recent Developments in the Field of Intrinsically Disordered Proteins: Intrinsic Disorder–Based Emergence in Cellular Biology in Light of the Physiological and Pathological Liquid–Liquid Phase Transitions. Annual Review of Biophysics, 2021, 50, 135-156.	4.5	57
350	The cytoskeleton in phagocytosis and macropinocytosis. Current Biology, 2021, 31, R619-R632.	1.8	79
351	Mechanistic dissection of increased enzymatic rate in a phase-separated compartment. Nature Chemical Biology, 2021, 17, 693-702.	3.9	149
352	The role of sigma 1 receptor in organization of endoplasmic reticulum signaling microdomains. ELife, 2021, 10, .	2.8	40
353	Determination of the molecular reach of the protein tyrosine phosphatase SHP-1. Biophysical Journal, 2021, 120, 2054-2066.	0.2	10

#	Article	IF	CITATIONS
356	Designer Condensates: A Toolkit for the Biomolecular Architect. Journal of Molecular Biology, 2021, 433, 166837.	2.0	39
357	Higher-order organization of biomolecular condensates. Open Biology, 2021, 11, 210137.	1.5	96
358	Intracellular artificial supramolecules based on de novo designed Y15 peptides. Nature Communications, 2021, 12, 3412.	5.8	9
359	Promoters and Antagonists of Phagocytosis: A Plastic and Tunable Response. Annual Review of Cell and Developmental Biology, 2021, 37, 89-114.	4.0	10
360	Accessory proteins of the RAS-MAPK pathway: moving from the side line to the front line. Communications Biology, 2021, 4, 696.	2.0	32
361	Positive feedback between the TÂcell kinase Zap70 and its substrate LAT acts as a clustering-dependent signaling switch. Cell Reports, 2021, 35, 109280.	2.9	9
362	Ca2+-dependent protein acyltransferase DHHC21 controls activation of CD4+ T cells. Journal of Cell Science, 2022, 135, .	1.2	7
363	Generic nature of the condensed states of proteins. Nature Cell Biology, 2021, 23, 587-594.	4.6	94
364	Biological Phase Separation and Biomolecular Condensates in Plants. Annual Review of Plant Biology, 2021, 72, 17-46.	8.6	53
365	Molecular-scale spatio-chemical control of the activating-inhibitory signal integration in NK cells. Science Advances, 2021, 7, .	4.7	9
366	Polyphasic linkage and the impact of ligand binding on the regulation of biomolecular condensates. Biophysics Reviews, 2021, 2, 021302.	1.0	40
367	Interaction hot spots for phase separation revealed by NMR studies of a CAPRIN1 condensed phase. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	40
368	Protein phase separation and its role in chromatin organization and diseases. Biomedicine and Pharmacotherapy, 2021, 138, 111520.	2.5	9
369	A Liquid-Liquid Phase Separation-Related Gene Signature as Prognostic Biomarker for Epithelial Ovarian Cancer. Frontiers in Oncology, 2021, 11, 671892.	1.3	10
370	Mechanistic Inferences From Analysis of Measurements of Protein Phase Transitions in Live Cells. Journal of Molecular Biology, 2021, 433, 166848.	2.0	20
371	Emerging Roles of Liquid–Liquid Phase Separation in Cancer: From Protein Aggregation to Immune-Associated Signaling. Frontiers in Cell and Developmental Biology, 2021, 9, 631486.	1.8	48
372	Labelâ€Free Quantitative Analysis of Coacervates via 3D Phase Imaging. Advanced Optical Materials, 2021, 9, 2100697.	3.6	8
373	Liquid–Liquid Phase Separation in Biology: Specific Stoichiometric Molecular Interactions vs Promiscuous Interactions Mediated by Disordered Sequences. Biochemistry, 2021, 60, 2397-2406.	1.2	28

#	Article	IF	CITATIONS
374	Phase Separation of MAGI2-Mediated Complex Underlies Formation of Slit Diaphragm Complex in Glomerular Filtration Barrier. Journal of the American Society of Nephrology: JASN, 2021, 32, 1946-1960.	3.0	3
375	Roles of Phase Separation for Cellular Redox Maintenance. Frontiers in Genetics, 2021, 12, 691946.	1.1	12
376	Size conservation emerges spontaneously in biomolecular condensates formed by scaffolds and surfactant clients. Scientific Reports, 2021, 11, 15241.	1.6	33
377	Induction and Monitoring of DNA Phase Separation in Living Cells by a Light-Switching Ruthenium Complex. Journal of the American Chemical Society, 2021, 143, 11370-11381.	6.6	19
378	Roles of non-canonical structures of nucleic acids in cancer and neurodegenerative diseases. Nucleic Acids Research, 2021, 49, 7839-7855.	6.5	47
379	Phase separation in immune signalling. Nature Reviews Immunology, 2022, 22, 188-199.	10.6	87
380	The <scp>RNA</scp> regulatory programs that govern lymphocyte development and function. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1683.	3.2	8
381	Building protein networks in synthetic systems from the bottom-up. Biotechnology Advances, 2021, 49, 107753.	6.0	9
382	The solubility product extends the buffering concept to heterotypic biomolecular condensates. ELife, 2021, 10, .	2.8	21
383	Small-molecule modulators of INAVA cytosolic condensate and cell–cell junction assemblies. Journal of Cell Biology, 2021, 220, .	2.3	4
384	Xanthomonas effector XopR hijacks host actin cytoskeleton via complex coacervation. Nature Communications, 2021, 12, 4064.	5.8	34
385	How Hierarchical Interactions Make Membraneless Organelles Tick Like Clockwork. Trends in Biochemical Sciences, 2021, 46, 525-534.	3.7	35
386	Biomolecular Condensates and Their Links to Cancer Progression. Trends in Biochemical Sciences, 2021, 46, 535-549.	3.7	51
387	Intracellular wetting mediates contacts between liquid compartments and membrane-bound organelles. Journal of Cell Biology, 2021, 220, .	2.3	30
388	Phospholipid Membrane Formation Templated by Coacervate Droplets. Langmuir, 2021, 37, 10366-10375.	1.6	37
389	Modulating α-Synuclein Liquid–Liquid Phase Separation. Biochemistry, 2021, 60, 3676-3696.	1.2	67
390	C. elegans colony formation as a condensation phenomenon. Nature Communications, 2021, 12, 4947.	5.8	7
391	Liquid–liquid phase separation in human health and diseases. Signal Transduction and Targeted Therapy, 2021, 6, 290.	7.1	231

#	Article	IF	CITATIONS
392	Shaping synthetic cells through cytoskeleton-condensate-membrane interactions. Current Opinion in Colloid and Interface Science, 2021, 54, 101459.	3.4	15
393	Probing the effect of clustering on EphA2 receptor signaling efficiency by subcellular control of ligand-receptor mobility. ELife, 2021, 10, .	2.8	22
394	Finding functions of phase separation in the presynapse. Current Opinion in Neurobiology, 2021, 69, 178-184.	2.0	4
395	Lipid-based and protein-based interactions synergize transmembrane signaling stimulated by antigen clustering of IgE receptors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
397	The nucleolus from a liquid droplet perspective. Journal of Biochemistry, 2021, 170, 153-162.	0.9	14
398	Phase separation in plants: New insights into cellular compartmentalization. Journal of Integrative Plant Biology, 2021, 63, 1835-1855.	4.1	24
399	Comparative analysis of TCR and CAR signaling informs CAR designs with superior antigen sensitivity and in vivo function. Science Signaling, 2021, 14, .	1.6	67
400	Phase separation of Epstein-Barr virus EBNA2 protein reorganizes chromatin topology for epigenetic regulation. Communications Biology, 2021, 4, 967.	2.0	16
401	Utility of TPP-manufactured biophysical restrictions to probe multiscale cellular dynamics. Bio-Design and Manufacturing, 2021, 4, 776-789.	3.9	3
402	Cracking the Skin Barrier: Liquid-Liquid Phase Separation Shines under the Skin. JID Innovations, 2021, 1, 100036.	1.2	9
403	Salt dependent phase behavior of intrinsically disordered proteins from a coarse-grained model with explicit water and ions. Journal of Chemical Physics, 2021, 155, 125103.	1.2	29
404	Liquid–Liquid Phase Separation at the Plasma Membrane–Cytosol Interface: Common Players in Adhesion, Motility, and Synaptic Function. Journal of Molecular Biology, 2022, 434, 167228.	2.0	16
405	Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants, 2021, 10, 1483.	2.2	22
406	Dual film-like organelles enable spatial separation of orthogonal eukaryotic translation. Cell, 2021, 184, 4886-4903.e21.	13.5	28
407	RNA modulates physiological and neuropathological protein phase transitions. Neuron, 2021, 109, 2663-2681.	3.8	39
408	Surface tension and viscosity of protein condensates quantified by micropipette aspiration. Biophysical Reports, 2021, 1, 100011.	0.7	32
409	PSPC1 regulates CHK1 phosphorylation through phase separation and participates in mouse oocyte maturation. Acta Biochimica Et Biophysica Sinica, 2021, 53, 1527-1537.	0.9	7
410	Phase separation vs aggregation behavior for model disordered proteins. Journal of Chemical Physics, 2021, 155, 125101.	1.2	46

#	Article	IF	CITATIONS
411	Mechanistic insights into central spindle assembly mediated by the centralspindlin complex. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	4
413	Phospholipid exchange shows insulin receptor activity is supported by both the propensity to form wide bilayers and ordered raft domains. Journal of Biological Chemistry, 2021, 297, 101010.	1.6	12
414	Liquid–liquid phase separation: a principal organizer of the cell's biochemical activity architecture. Trends in Pharmacological Sciences, 2021, 42, 845-856.	4.0	28
415	Programmable DNA-augmented hydrogels for controlled activation of human lymphocytes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 37, 102442.	1.7	7
416	Characterization of mechanisms positioning costimulatory complexes in immune synapses. IScience, 2021, 24, 103100.	1.9	2
417	Surface densities prewet a near-critical membrane. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
418	Biomolecular condensates at sites of DNA damage: More than just a phase. DNA Repair, 2021, 106, 103179.	1.3	51
419	Supported lipid bilayer coatings: Fabrication, bioconjugation, and diagnostic applications. Applied Materials Today, 2021, 25, 101183.	2.3	13
420	Physics of compartmentalization: How phase separation and signaling shape membrane and organelle identity. Computational and Structural Biotechnology Journal, 2021, 19, 3225-3233.	1.9	9
421	Observation of liquid–liquid phase separation of ataxin-3 and quantitative evaluation of its concentration in a single droplet using Raman microscopy. Chemical Science, 2021, 12, 7411-7418.	3.7	35
422	1,6-Hexanediol, commonly used to dissolve liquid–liquid phase separated condensates, directly impairs kinase and phosphatase activities. Journal of Biological Chemistry, 2021, 296, 100260.	1.6	84
423	DNA nanotechnology provides an avenue for the construction of programmable dynamic molecular systems. Biophysics and Physicobiology, 2021, 18, 116-126.	0.5	2
424	Charge-driven condensation of RNA and proteins suggests broad role of phase separation in cytoplasmic environments. ELife, 2021, 10, .	2.8	38
425	Nanopore-mediated protein delivery enabling three-color single-molecule tracking in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
426	Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nature Reviews Molecular Cell Biology, 2021, 22, 196-213.	16.1	535
428	Imaging Chimeric Antigen Receptor (CAR) Activation. Methods in Molecular Biology, 2020, 2111, 153-160.	0.4	2
429	Phase Separation of Disease-Associated SHP2 Mutants Underlies MAPK Hyperactivation. Cell, 2020, 183, 490-502.e18.	13.5	123
430	Making the Case for Disordered Proteins and Biomolecular Condensates in Bacteria. Trends in Biochemical Sciences, 2020, 45, 668-680.	3.7	70

#	Article	IF	CITATIONS
431	Dynamin regulates the dynamics and mechanical strength of the actin cytoskeleton as a multifilament actin-bundling protein. Nature Cell Biology, 2020, 22, 674-688.	4.6	70
432	CHAPTER 4. Designing Enzyme-responsive Biomaterials. RSC Soft Matter, 2020, , 76-125.	0.2	2
433	Intrinsically disordered proteins and membranes: a marriage of convenience for cell signalling?. Biochemical Society Transactions, 2020, 48, 2669-2689.	1.6	36
434	Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. Emerging Topics in Life Sciences, 2020, 4, 307-329.	1.1	159
435	Drops and fibers — how biomolecular condensates and cytoskeletal filaments influence each other. Emerging Topics in Life Sciences, 2020, 4, 247-261.	1.1	54
436	Therapeutics—how to treat phase separation-associated diseases. Emerging Topics in Life Sciences, 2020, 4, 331-342.	1.1	65
437	Membraneless organelles: phasing out of equilibrium. Emerging Topics in Life Sciences, 2020, 4, 343-354.	1.1	48
465	Chimeric antigen receptor signaling: Functional consequences and design implications. Science Advances, 2020, 6, eaaz3223.	4.7	81
466	Sequence determinants of protein phase behavior from a coarse-grained model. PLoS Computational Biology, 2018, 14, e1005941.	1.5	427
467	Overproduction of Sch9 leads to its aggregation and cell elongation in Saccharomyces cerevisiae. PLoS ONE, 2018, 13, e0193726.	1.1	2
468	Kinase-Mediated RAS Signaling Via Membraneless Cytoplasmic Protein Granules. SSRN Electronic Journal, 0, , .	0.4	2
469	Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes. ELife, 2017, 6, .	2.8	186
470	Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. ELife, 2017, 6, .	2.8	206
471	Localizing order to boost signaling. ELife, 2017, 6, .	2.8	13
472	A composition-dependent molecular clutch between T cell signaling condensates and actin. ELife, 2019, 8, .	2.8	86
473	Transient protein accumulation at the center of the T cell antigen-presenting cell interface drives efficient IL-2 secretion. ELife, 2019, 8, .	2.8	7
474	Stable Pom1 clusters form a glucose-modulated concentration gradient that regulates mitotic entry. ELife, 2019, 8, .	2.8	16
475	A new class of disordered elements controls DNA replication through initiator self-assembly. ELife, 2019, 8, .	2.8	92

#	Article	IF	CITATIONS
476	A viral fusogen hijacks the actin cytoskeleton to drive cell-cell fusion. ELife, 2020, 9, .	2.8	30
477	A quantitative inventory of yeast P body proteins reveals principles of composition and specificity. ELife, 2020, 9, .	2.8	90
478	Protein phase separation and its role in tumorigenesis. ELife, 2020, 9, .	2.8	63
479	Intrinsic disorder in integral membrane proteins. Progress in Molecular Biology and Translational Science, 2021, 183, 101-134.	0.9	1
480	A guide-tag system controlling client enrichment into Y15 peptide-based granules for an in-cell protein recruitment assay. Chemical Communications, 2021, 57, 11338-11341.	2.2	4
482	Distinctive Network Topology of Phase-Separated Proteins in Human Interactome. Journal of Molecular Biology, 2022, 434, 167292.	2.0	3
483	Phase separation of Nur77 mediates celastrol-induced mitophagy by promoting the liquidity of p62/SQSTM1 condensates. Nature Communications, 2021, 12, 5989.	5.8	40
484	Thermodynamics of wetting, prewetting and surface phase transitions with surface binding. New Journal of Physics, 2021, 23, 123003.	1.2	18
485	Incorporation and Assembly of a Light-Emitting Enzymatic Reaction into Model Protein Condensates. Biochemistry, 2021, 60, 3137-3151.	1.2	6
486	RAG2 abolishes RAG1 aggregation to facilitate V(D)J recombination. Cell Reports, 2021, 37, 109824.	2.9	14
487	Beta turn propensity and a model polymer scaling exponent identify intrinsically disordered phase-separating proteins. Journal of Biological Chemistry, 2021, 297, 101343.	1.6	17
491	Phase separation drives RNA virus-induced activation of the NLRP6 inflammasome. Cell, 2021, 184, 5759-5774.e20.	13.5	97
492	Liquid-liquid phase separation: Orchestrating cell signaling through time and space. Molecular Cell, 2021, 81, 4137-4146.	4.5	74
493	Fâ€domain valency determines outcome of signaling through the angiopoietin pathway. EMBO Reports, 2021, 22, e53471.	2.0	12
494	Role of actin cytoskeleton at multiple levels of T cell activation. AIMS Molecular Science, 2016, 3, 585-596.	0.3	0
501	Local Nucleation of Microtubule Bundles Through Tubulin Concentration Into a Condensed Tau Phase. SSRN Electronic Journal, 0, , .	0.4	0
508	Phase Separation of Zonula Occludens Proteins Drives Formation of Tight Junctions. SSRN Electronic Journal, 0, , .	0.4	0
509	A Puzzling Question: How Can Different Phenotypes Possibly Have Indistinguishable Disease Symptoms?. , 2019, , 59-67.		0

	CITATION	N REPORT	
# 512	ARTICLE Signal Transduction Changes in T Cells with Aging. , 2019, , 1111-1137.	IF	CITATIONS
519	Biological Condensates. Materials and Methods, 0, 9, .	0.0	0
527	Super-resolution Imaging of the T cell Central Supramolecular Signaling Cluster Using Stimulated Emission Depletion Microscopy. Bio-protocol, 2020, 10, e3806.	0.2	1
533	The Eukaryotic Linear Motif resource: 2022 release. Nucleic Acids Research, 2022, 50, D497-D508.	6.5	144
535	Protein phase separation in cell death and survival. , 2022, , 175-195.		0
536	Regulation of liquid–liquid phase separation with focus on post-translational modifications. Chemical Communications, 2021, 57, 13275-13287.	2.2	49
537	Membrane nanodomains modulate formin condensation for actin remodeling in Arabidopsis innate immune responses. Plant Cell, 2022, 34, 374-394.	3.1	31
538	â€~RNA modulation of transport properties and stability in phase-separated condensates. Biophysical Journal, 2021, 120, 5169-5186.	0.2	38
544	Role of liquid-liquid phase separation in cell physiology and diseases. World Chinese Journal of Digestology, 2020, 28, 884-890.	0.0	0
546	What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?. Rna, 2022, 28, 36-47.	1.6	23
547	Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates. Journal of Molecular Biology, 2021, 434, 167348.	2.0	2
548	YTHDF1 promotes mRNA degradation via YTHDF1â€AGO2 interaction and phase separation. Cell Proliferation, 2022, 55, e13157.	2.4	36
549	Advances in the phase separation-organized membraneless organelles in cells: a narrative review. Translational Cancer Research, 2021, 10, 4929-4946.	0.4	2
551	Expanding the Disorder-Function Paradigm in the C-Terminal Tails of Erbbs. Biomolecules, 2021, 11, 1690.	1.8	2
552	A teamwork promotion of formin-mediated actin nucleation by Bud6 and Aip5 in <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2022, 33, mbcE21060285.	0.9	2
553	Exploiting T cell signaling to optimize engineered T cell therapies. Trends in Cancer, 2022, 8, 123-134.	3.8	13
554	ZMYND8 mediated liquid condensates spatiotemporally decommission the latent super-enhancers during macrophage polarization. Nature Communications, 2021, 12, 6535.	5.8	13
555	Understanding How Coacervates Drive Reversible Small Molecule Reactions to Promote Molecular Complexity. Langmuir, 2021, 37, 14323-14335.	1.6	10

#	Article	IF	CITATIONS
556	Determinants for intrinsically disordered protein recruitment into phase-separated protein condensates. Chemical Science, 2022, 13, 522-530.	3.7	14
557	Phase separation of FG-nucleoporins in nuclear pore complexes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119205.	1.9	26
558	Polyvalent design in the cGAS-STING pathway. Seminars in Immunology, 2021, 56, 101580.	2.7	8
559	A working model for condensate RNA-binding proteins as matchmakers for protein complex assembly. Rna, 2022, 28, 76-87.	1.6	22
560	Systems-level conservation of the proximal TCR signaling network of mice and humans. Journal of Experimental Medicine, 2022, 219, .	4.2	6
561	Matrin3: Disorder and ALS Pathogenesis. Frontiers in Molecular Biosciences, 2021, 8, 794646.	1.6	10
562	Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates. Nano Letters, 2022, 22, 612-621.	4.5	49
563	Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules, 2022, 27, 705.	1.7	14
564	Synergistic phase separation of two pathways promotes integrin clustering and nascent adhesion formation. ELife, 2022, 11, .	2.8	44
567	Rich Phase Separation Behavior of Biomolecules. Molecules and Cells, 2022, 45, 6-15.	1.0	12
568	Cellular Structures Controlling T Cell Signaling in Time and Space. , 2022, , .		0
569	The interplay between membrane topology and mechanical forces in regulating T cell receptor activity. Communications Biology, 2022, 5, 40.	2.0	39
570	Surface tension and super-stoichiometric surface enrichment in two-component biomolecular condensates. IScience, 2022, 25, 103852.	1.9	14
571	RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins. PLoS Computational Biology, 2022, 18, e1009810.	1.5	25
573	On the role of phase separation in the biogenesis of membraneless compartments. EMBO Journal, 2022, 41, e109952.	3.5	100
574	A high-throughput method for exploring the parameter space of protein liquid-liquid phase separation. Cell Reports Physical Science, 2022, 3, 100764.	2.8	5
575	Phase separation drives tumor pathogenesis and evolution: all roads lead to Rome. Oncogene, 2022, 41, 1527-1535.	2.6	3
579	Liquid–liquid phase separation drives cellular function and dysfunction in cancer. Nature Reviews Cancer, 2022, 22, 239-252.	12.8	115

#	Article	IF	CITATIONS
580	Phase separation of the mammalian prion protein: Physiological and pathological perspectives. Journal of Neurochemistry, 2023, 166, 58-75.	2.1	6
581	InÂvitro reconstitution reveals cooperative mechanisms of adapter protein-mediated activation of phospholipase C-γ1 in T cells. Journal of Biological Chemistry, 2022, 298, 101680.	1.6	5
582	Molecular determinants of phase separation for Drosophila DNA replication licensing factors. ELife, 2021, 10, .	2.8	11
583	Capillary flow experiments for thermodynamic and kinetic characterization of protein liquid-liquid phase separation. Nature Communications, 2021, 12, 7289.	5.8	27
585	Nck adaptors at a glance. Journal of Cell Science, 2021, 134, .	1.2	11
586	Overexpression of the microtubule-binding protein CLIP-170 induces a +TIP network superstructure consistent with a biomolecular condensate. PLoS ONE, 2021, 16, e0260401.	1.1	14
587	The T cell receptor displays lateral signal propagation involving non-engaged receptors. Nanoscale, 2022, 14, 3513-3526.	2.8	3
588	Dephosphorylation accelerates the dissociation of ZAP70 from the T cell receptor. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
589	Driving Chromatin Organisation through N6-methyladenosine Modification of RNA: What Do We Know and What Lies Ahead?. Genes, 2022, 13, 340.	1.0	6
590	Dilute phase oligomerization can oppose phase separation and modulate material properties of a ribonucleoprotein condensate. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120799119.	3.3	53
592	Receptor tyrosine kinases regulate signal transduction through a liquid-liquid phase separated state. Molecular Cell, 2022, 82, 1089-1106.e12.	4.5	38
593	Phase separation on cell surface facilitates bFGF signal transduction with heparan sulphate. Nature Communications, 2022, 13, 1112.	5.8	17
595	In unity, there is strength: Phase separation controls receptor tyrosine kinase signal transduction. Molecular Cell, 2022, 82, 1081-1083.	4.5	0
596	Material properties of phase-separated TFEB condensates regulate the autophagy-lysosome pathway. Journal of Cell Biology, 2022, 221, .	2.3	17
597	Modulation of amyloid precursor protein cleavage by Î ³ -secretase activating protein through phase separation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122292119.	3.3	5
599	Biophysics of endocytic vesicle formation: A focus on liquid–liquid phase separation. Current Opinion in Cell Biology, 2022, 75, 102068.	2.6	8
600	Liquid–Liquid Phase Separation in Cancer Signaling, Metabolism and Anticancer Therapy. Cancers, 2022, 14, 1830.	1.7	9
601	Essence determines phenomenon: Assaying the material properties of biological condensates. Journal of Biological Chemistry, 2022, 298, 101782.	1.6	29

#	Article	IF	CITATIONS
602	Membrane Cargo Density-Dependent Interaction between Protein and Lipid Domains on the Giant Unilamellar Vesicles. Langmuir, 2022, 38, 4702-4712.	1.6	7
606	Microenvironment-mediated cancer dormancy: Insights from metastability theory. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
609	Coupling Bulk Phase Separation of Disordered Proteins to Membrane Domain Formation in Molecular Simulations on a Bespoke Compute Fabric. Membranes, 2022, 12, 17.	1.4	7
612	Liquid–liquid phase separation as an organizing principle of intracellular space: overview of the evolution of the cell compartmentalization concept. Cellular and Molecular Life Sciences, 2022, 79, 251.	2.4	42
613	Membrane surfaces regulate assembly of ribonucleoprotein condensates. Nature Cell Biology, 2022, 24, 461-470.	4.6	68
623	Myosin 1D and the branched actin network control the condensation of p62 bodies. Cell Research, 2022, 32, 659-669.	5.7	12
624	Heptanol-mediated phase separation determines phase preference of molecules in live cell membranes. Journal of Lipid Research, 2022, 63, 100220.	2.0	3
625	Ectopic biomolecular phase transitions: fusion proteins in cancer pathologies. Trends in Cell Biology, 2022, 32, 681-695.	3.6	18
626	A two-component protein condensate of the EGFR cytoplasmic tail and Grb2 regulates Ras activation by SOS at the membrane. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2122531119.	3.3	33
628	SRC homology 3 domains: multifaceted binding modules. Trends in Biochemical Sciences, 2022, 47, 772-784.	3.7	11
629	Phase Separation: "The Master Key―to Deciphering the Physiological and Pathological Functions of Cells. Advanced Biology, 2022, , 2200006.	1.4	6
630	Hsp70 exhibits a liquid-liquid phase separation ability and chaperones condensed FUS against amyloid aggregation. IScience, 2022, 25, 104356.	1.9	14
631	Multivalent interactions essential for lentiviral integrase function. Nature Communications, 2022, 13, 2416.	5.8	12
632	Evolution of α-synuclein conformation ensemble toward amyloid fibril via liquid-liquid phase separation (LLPS) as investigated by dynamic nuclear polarization-enhanced solid-state MAS NMR. Neurochemistry International, 2022, 157, 105345.	1.9	10
633	Macrophage mitochondrial fission improves cancer cell phagocytosis induced by therapeutic antibodies and is impaired by glutamine competition. Nature Cancer, 2022, 3, 453-470.	5.7	21
634	The Molecular and Functional Interaction Between Membrane-Bound Organelles and Membrane-Less Condensates. Frontiers in Cell and Developmental Biology, 2022, 10, 896305.	1.8	4
635	Controlling cluster size in 2D phase-separating binary mixtures with specific interactions. Journal of Chemical Physics, 2022, 156, .	1.2	5
636	Interactions between Membraneless Condensates and Membranous Organelles at the Presynapse: A Phase Separation View of Synaptic Vesicle Cycle. Journal of Molecular Biology, 2023, 435, 167629.	2.0	8

#	Article	IF	CITATIONS
638	A General Strategy for the Design and Evaluation of Heterobifunctional Tools: Applications to Protein Localization and Phase Separation. ChemBioChem, 2022, 23, .	1.3	2
639	Ser392 phosphorylation modulated a switch between p53 and transcriptional condensates. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2022, 1865, 194827.	0.9	9
640	Patterned Substrate of Mobile and Immobile Ligands to Probe EphA2 Receptor Clustering. Bio-protocol, 2022, 12, .	0.2	0
642	Evolution and Singleâ€Droplet Analysis of Fuelâ€Driven Compartments by Dropletâ€Based Microfluidics. Angewandte Chemie, 2022, 134, .	1.6	6
643	Evolution and Singleâ€Droplet Analysis of Fuelâ€Driven Compartments by Dropletâ€Based Microfluidics. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
644	A conceptual framework for understanding phase separation and addressing open questions and challenges. Molecular Cell, 2022, 82, 2201-2214.	4.5	233
646	<scp>ALS</scp> â€linked <scp>KIF5A ΔExon27</scp> mutant causes neuronal toxicity through gainâ€ofâ€function. EMBO Reports, 2022, 23, .	2.0	25
647	Screening membraneless organelle participants with machine-learning models that integrate multimodal features. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	34
648	The intrinsically disordered region from PP2C phosphatases functions as a conserved CO2 sensor. Nature Cell Biology, 2022, 24, 1029-1037.	4.6	20
649	Biomolecular condensates in epithelial junctions. Current Opinion in Cell Biology, 2022, 77, 102089.	2.6	9
650	Phase separation of insulin receptor substrate 1 drives the formation of insulin/IGF-1 signalosomes. Cell Discovery, 2022, 8, .	3.1	13
651	Learning the chemical grammar of biomolecular condensates. Nature Chemical Biology, 2022, 18, 1298-1306.	3.9	56
652	Phase-separating RNA-binding proteins form heterogeneous distributions of clusters in subsaturated solutions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	107
654	The relative binding position of Nck and Grb2 adaptors impacts actin-based motility of Vaccinia virus. ELife, 0, 11, .	2.8	4
655	Liquid–liquid phase separation in tumor biology. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	52
656	Mechanisms of phase-separation-mediated cGAS activation revealed by dcFCCS. , 2022, 1, .		5
657	Self-construction of actin networks through phase separation–induced abLIM1 condensates. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
658	Genetic variation associated with condensate dysregulation in disease. Developmental Cell, 2022, 57, 1776-1788.e8.	3.1	41

#	Article	IF	CITATIONS
659	Molecular condensation and mechanoregulation of plant class I formin, an integrinâ€like actin nucleator. FEBS Journal, 2023, 290, 3336-3354.	2.2	3
660	Reconstitution of Phase-Separated Signaling Clusters and Actin Polymerization on Supported Lipid Bilayers. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
661	Endocytosis of Coacervates into Liposomes. Journal of the American Chemical Society, 2022, 144, 13451-13455.	6.6	38
663	Biomolecular Condensation: A New Phase in Cancer Research. Cancer Discovery, 2022, 12, 2031-2043.	7.7	3
664	Microfluidic Printing-Based Method for the Multifactorial Study of Cell-Free Protein Networks. Analytical Chemistry, 2022, 94, 11038-11046.	3.2	0
666	Modulating biomolecular condensates: a novel approach to drug discovery. Nature Reviews Drug Discovery, 2022, 21, 841-862.	21.5	88
667	A condensate dynamic instability orchestrates actomyosin cortex activation. Nature, 2022, 609, 597-604.	13.7	21
669	LncRNAs divide and rule: The master regulators of phase separation. Frontiers in Genetics, 0, 13, .	1.1	10
670	Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics. Trends in Pharmacological Sciences, 2022, 43, 820-837.	4.0	26
671	An Interpretable Machine-Learning Algorithm to Predict Disordered Protein Phase Separation Based on Biophysical Interactions. Biomolecules, 2022, 12, 1131.	1.8	20
673	Tau liquid–liquid phase separation: At the crossroads of tau physiology and tauopathy. Journal of Cellular Physiology, 0, , .	2.0	4
675	Phase separation in epigenetics and cancer stem cells. Frontiers in Oncology, 0, 12, .	1.3	3
676	Intercellular Receptor-ligand Binding: Effect of Protein-membrane Interaction. Journal of Molecular Biology, 2022, , 167787.	2.0	13
677	Multivalent interactions between molecular components involved in fast endophilin mediated endocytosis drive protein phase separation. Nature Communications, 2022, 13, .	5.8	18
679	Aberrant liquid-liquid phase separation and amyloid aggregation of proteins related to neurodegenerative diseases. International Journal of Biological Macromolecules, 2022, 220, 703-720.	3.6	15
680	Ligand-independent receptor clustering modulates transmembrane signaling: a new paradigm. Trends in Biochemical Sciences, 2023, 48, 156-171.	3.7	6
681	The T-Cell Receptor Signalosome. , 2022, , .		0
682	Phase separation in Cancer: From the Impacts and Mechanisms to Treatment potentials. International Journal of Biological Sciences, 2022, 18, 5103-5122.	2.6	18

#	ARTICLE	IF	CITATIONS
683	Protein conformation and biomolecular condensates. Current Research in Structural Biology, 2022, 4, 285-307.	1.1	13
684	Microfluidics for multiscale studies of biomolecular condensates. Lab on A Chip, 2022, 23, 9-24.	3.1	4
685	Nonequilibrium Physics of Molecules and Cells. Graduate Texts in Physics, 2022, , 1-59.	0.1	0
686	Fast and Accurate Prediction of Membrane-Less Organelle Constituents by Landscaping Protein-Protein Interaction Network with Liquid-Liquid Phase Separation Propensities. SSRN Electronic Journal, 0, , .	0.4	0
687	Plasma membrane shaping by protein phase separation. , 2023, , 139-158.		0
688	Capillary forces generated by biomolecular condensates. Nature, 2022, 609, 255-264.	13.7	92
691	Phase separation in immune regulation and immune-related diseases. Journal of Molecular Medicine, 2022, 100, 1427-1440.	1.7	3
692	Protein condensation diseases: therapeutic opportunities. Nature Communications, 2022, 13, .	5.8	38
693	Biomaterial design inspired by membraneless organelles. Matter, 2022, 5, 2787-2812.	5.0	19
694	Progressive enhancement of kinetic proofreading in T cell antigen discrimination from receptor activation to DAG generation. ELife, 0, 11, .	2.8	11
696	Emerging Implications of Phase Separation in Cancer. Advanced Science, 2022, 9, .	5.6	9
697	Liquid–Liquid Phase Separation of Biomacromolecules and Its Roles in Metabolic Diseases. Cells, 2022, 11, 3023.	1.8	5
698	Biological colloids: Unique properties of membraneless organelles in the cell. Advances in Colloid and Interface Science, 2022, 310, 102777.	7.0	6
699	Nucleic acid–protein condensates in innate immune signaling. EMBO Journal, 2023, 42, .	3.5	7
700	PhaSepDB in 2022: annotating phase separation-related proteins with droplet states, co-phase separation partners and other experimental information. Nucleic Acids Research, 2023, 51, D460-D465.	6.5	19
701	The path to condensates—19th Wiley Prize in Biomedical Sciences laureates share their discovery stories. Natural Sciences, 2022, 2, .	1.0	0
702	Computational modeling implicates protein scaffolding in p38 regulation of Akt. Journal of Theoretical Biology, 2022, 555, 111294.	0.8	2
703	Liquid-liquid phase separation: A new perspective to understanding aging and pathogenesis. BioScience Trends, 2022, 16, 359-362.	1.1	3

#	Article	IF	CITATIONS
704	Recent advances in the activation and regulation of the cGAS-STING pathway. Advances in Immunology, 2022, , 55-102.	1.1	7
706	An Optogenetic Toolkit for the Control of Phase Separation in Living Cells. Methods in Molecular Biology, 2023, , 383-394.	0.4	3
707	The Macrophage-Associated LncRNA <i>MALR</i> Facilitates ILF3 Liquid–Liquid Phase Separation to Promote HIF1α Signaling in Esophageal Cancer. Cancer Research, 2023, 83, 1476-1489.	0.4	10
708	Chemical Kinetics and Mass Action in Coexisting Phases. Journal of the American Chemical Society, 2022, 144, 19294-19304.	6.6	24
709	Dynamic <i>in Situ</i> Confinement Triggers Ligand-Free Neuropeptide Receptor Signaling. Nano Letters, 2022, 22, 8363-8371.	4.5	1
710	Quantifying Coexistence Concentrations in Multi-Component Phase-Separating Systems Using Analytical HPLC. Biomolecules, 2022, 12, 1480.	1.8	9
711	Scaffold proteins as dynamic integrators of biological processes. Journal of Biological Chemistry, 2022, 298, 102628.	1.6	11
712	Multiphase coalescence mediates Hippo pathway activation. Cell, 2022, 185, 4376-4393.e18.	13.5	28
713	Native Planar Asymmetric Suspended Membrane for Singleâ€Molecule Investigations: Plasma Membrane on a Chip. Small, 2022, 18, .	5.2	8
714	Kinetic frustration by limited bond availability controls the LAT protein condensation phase transition on membranes. Science Advances, 2022, 8, .	4.7	8
715	Compartmentalizing and sculpting nanovesicles by phase-separated aqueous nanodroplets. RSC Advances, 2022, 12, 32035-32045.	1.7	2
716	Intrinsically disordered regions: a platform for regulated assembly of biomolecular condensates. , 2023, , 397-430.		2
717	Multiphase complex droplets. , 2023, , 173-204.		1
718	Interactions and interplay of MLOs with classical membrane-bound organelles. , 2023, , 375-395.		1
719	LLPS and regulation of transmembrane signaling. , 2023, , 447-460.		0
720	Emerging roles of liquid–liquid phase separation and membraneless organelles in cancer progression. , 2023, , 651-662.		0
721	Bioâ€inspired functional coacervates. Aggregate, 2022, 3, .	5.2	10
722	Active Microrheology of Protein Condensates Using Colloidal Probe-AFM. Journal of Colloid and Interface Science, 2022, , .	5.0	4

#	Article	IF	CITATIONS
723	Phase separation drives the formation of biomolecular condensates in the immune system. Frontiers in Immunology, 0, 13, .	2.2	3
724	Drops in the cell ocean: new roles for non-coding RNAs in liquid–liquid phase separation. Genome Instability & Disease, 0, , .	0.5	1
725	Gathering on the cell surface. Nature Chemical Biology, 0, , .	3.9	0
727	Programming cell-surface signaling by phase-separation-controlled compartmentalization. Nature Chemical Biology, 2022, 18, 1351-1360.	3.9	7
728	Disordered protein networks as mechanistic drivers of membrane remodeling and endocytosis. , 2023, , 427-454.		3
729	BY-kinases: Protein tyrosine kinases like no other. Journal of Biological Chemistry, 2023, 299, 102737.	1.6	2
730	Mapping the Constrained Coding Regions in the Human Genome to Their Corresponding Proteins. Journal of Molecular Biology, 2023, 435, 167892.	2.0	0
731	Synthetic Protocell as Efficient Bioreactor: Enzymatic Superactivity and Ultrasensitive Glucose Sensing in Urine. ACS Applied Materials & Interfaces, 2022, 14, 53462-53474.	4.0	9
732	Identification of molecular subtypes based on liquid–liquid phase separation and cross-talk with immunological phenotype in bladder cancer. Frontiers in Immunology, 0, 13, .	2.2	2
733	On Non-ideal Chemical-Reaction Networks and Phase Separation. Journal of Statistical Physics, 2023, 190, .	0.5	1
734	HDAC1/3-dependent moderate liquid–liquid phase separation of YY1 promotes METTL3 expression and AML cell proliferation. Cell Death and Disease, 2022, 13, .	2.7	10
735	Joining Forces for Cancer Treatment: From "TCR versus CAR―to "TCR and CAR― International Journal of Molecular Sciences, 2022, 23, 14563.	1.8	6
738	Intrinsically disordered regions that drive phase separation form a robustly distinct protein class. Journal of Biological Chemistry, 2023, 299, 102801.	1.6	15
739	Protein Phase Separation: New Insights into Carcinogenesis. Cancers, 2022, 14, 5971.	1.7	0
740	Intracellular phase separation of globular proteins facilitated by short cationic peptides. Nature Communications, 2022, 13, .	5.8	5
741	Kinase regulation by liquid–liquid phase separation. Trends in Cell Biology, 2023, 33, 649-666.	3.6	16
742	Sequence determinants and solution conditions underlying liquid to solid phase transition. American Journal of Physiology - Cell Physiology, 2023, 324, C236-C246.	2.1	1
744	Discrete LAT condensates encode antigen information from single pMHC:TCR binding events. Nature	5.8	11

# 747	ARTICLE The dynamic clustering of insulin receptor underlies its signaling and is disrupted in insulin resistance. Nature Communications, 2022, 13	IF 5.8	CITATIONS
749	DIAPH3 condensates formed by liquid-liquid phase separation act as a regulatory hub for stress-induced actin cytoskeleton remodeling. Cell Reports, 2023, 42, 111986.	2.9	3
751	Dynamic regulation of RAS and RAS signaling. Biochemical Journal, 2023, 480, 1-23.	1.7	16
752	Membrane reshaping by protein condensates. Biochimica Et Biophysica Acta - Biomembranes, 2023, 1865, 184121.	1.4	6
753	Liquid-liquid Phase Separation in Viral Function. Journal of Molecular Biology, 2023, 435, 167955.	2.0	7
754	Construction of multiphasic membraneless organelles towards spontaneous spatial segregation and directional flow of biochemical reactions. Chemical Science, 2023, 14, 801-811.	3.7	11
755	The Role of Phase-Separated Condensates in Fusion Oncoprotein–Driven Cancers. Annual Review of Cancer Biology, 2023, 7, 73-91.	2.3	10
756	A call to order: Examining structured domains in biomolecular condensates. Journal of Magnetic Resonance, 2023, 346, 107318.	1.2	3
757	How to drink like a liposome. Nature Reviews Chemistry, 2023, 7, 5-6.	13.8	9
758	Real-time detection of T cell activation by visualizing TCR nanoclusters with a cholesterol derived aggregation-induced emission probe. European Journal of Medicinal Chemistry, 2023, 247, 115073.	2.6	1
759	Condensate biology of synaptic vesicle clusters. Trends in Neurosciences, 2023, 46, 293-306.	4.2	22
761	Linear ubiquitination induces NEMO phase separation to activate NF-κB signaling. Life Science Alliance, 2023, 6, e202201607.	1.3	14
762	Thermodynamic origins of two-component multiphase condensates of proteins. Chemical Science, 2023, 14, 1820-1836.	3.7	12
763	A hybrid positive unlabeled learning framework for uncovering scaffolds across human proteome by measuring the propensity to drive phase separation. Briefings in Bioinformatics, 0, , .	3.2	0
764	Biomolecular condensation involving the cytoskeleton. Brain Research Bulletin, 2023, 194, 105-117.	1.4	7
766	Phase separation enhances probability of receptor signalling and drug targeting. Trends in Biochemical Sciences, 2023, 48, 428-436.	3.7	7
767	Phase Separation in Biology and Disease; Current Perspectives and Open Questions. Journal of Molecular Biology, 2023, 435, 167971.	2.0	13
768	Liquid-liquid phase separation of protein tau: An emerging process in Alzheimer's disease pathogenesis. Neurobiology of Disease, 2023, 178, 106011.	2.1	6

#	Article	IF	CITATIONS
769	Intracellular Organization of Proteins and Nucleic Acids via Biomolecular Condensates in Human Health and Diseases. Biochem, 2023, 3, 31-46.	0.5	0
770	The Role of Liquid–Liquid Phase Separation in Actin Polymerization. International Journal of Molecular Sciences, 2023, 24, 3281.	1.8	6
771	Spatially non-uniform condensates emerge from dynamically arrested phase separation. Nature Communications, 2023, 14, .	5.8	16
774	How cells sense and integrate information from different sources. WIREs Mechanisms of Disease, 2023, 15, .	1.5	2
775	Two-dimensional measurements of receptor-ligand interactions. Frontiers in Molecular Biosciences, 0, 10, .	1.6	2
776	Liquid-liquid phase separation in hair cell stereocilia development and maintenance. Computational and Structural Biotechnology Journal, 2023, 21, 1738-1745.	1.9	1
777	Highly Charged Proteins and Their Repulsive Interactions Antagonize Biomolecular Condensation. Jacs Au, 2023, 3, 834-848.	3.6	12
778	Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. MedComm, 2023, 4, .	3.1	3
780	Phase Transitions of Associative Biomacromolecules. Chemical Reviews, 2023, 123, 8945-8987.	23.0	68
781	Refractile bodies of Eimeria tenella are proteinaceous membrane-less organelles that undergo dynamic changes during infection. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	0
782	The formation and function of plant metabolons. Plant Journal, 2023, 114, 1080-1092.	2.8	9
783	Comparison of Biomolecular Condensate Localization and Protein Phase Separation Predictors. Biomolecules, 2023, 13, 527.	1.8	1
784	Mapping the SLP76 interactome in T cells lacking each of the GRB2-family adaptors reveals molecular plasticity of the TCR signaling pathway. Frontiers in Immunology, 0, 14, .	2.2	2
786	A central chaperone-like role for 14-3-3 proteins in human cells. Molecular Cell, 2023, 83, 974-993.e15.	4.5	16
787	Reversible protein assemblies in the proteostasis network in health and disease. Frontiers in Molecular Biosciences, 0, 10, .	1.6	3
789	Oleic Acid Dissolves cGAS–DNA Phase Separation to Inhibit Immune Surveillance. Advanced Science, 0, , 2206820.	5.6	2
792	Quantitative reconstitution of yeast RNA processing bodies. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	14
793	Neuronal biomolecular condensates and their implications in neurodegenerative diseases. Frontiers in Aging Neuroscience, 0, 15, .	1.7	1

	Charlow Re	FURI	
#	Article	IF	Citations
795	Biomolecular Liquid–Liquid Phase Separation for Biotechnology. BioTech, 2023, 12, 26.	1.3	2
796	Sensitive and selective polymer condensation at membrane surface driven by positive co-operativity. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	3
799	1,6-Hexanediol regulates angiogenesis via suppression of cyclin A1-mediated endothelial function. BMC Biology, 2023, 21, .	1.7	5
800	Phase Separation in cGAS TING Signaling: Cytosolic DNA Sensing and Regulatory Functions. ChemBioChem, 2023, 24, .	1.3	2
801	Membrane curvature sensing by model biomolecular condensates. Soft Matter, 2023, 19, 3723-3732.	1.2	4
815	Fluorogenic methodology for visualization of phase separation in chemical biology. Organic and Biomolecular Chemistry, 2023, 21, 5140-5149.	1.5	0
834	Single-Molecule Imaging of Enzymatic Reactions on DNA Origami. Methods in Molecular Biology, 2023, , 131-145.	0.4	0
860	Protein nanocondensates: the next frontier. Biophysical Reviews, 0, , .	1.5	1
868	Biomolecular condensates in kidney physiology and disease. Nature Reviews Nephrology, 0, , .	4.1	1
875	Biomolecular Condensation of SH2 Domain-Containing Proteins on Membranes. Methods in Molecular Biology, 2023, , 371-379.	0.4	0
901	SMALL-MOLECULE INTERACTIONS WITH BIOMOLECULAR CONDENSATES. Medicinal Chemistry Reviews, 0, , 419-443.	0.1	0
911	Liquid–liquid phase separation in Alzheimer's disease. Journal of Molecular Medicine, 2024, 102, 167-181. 	1.7	0

Ίτλτιωνι Ρι