Small Angle X-ray Scattering for Nanoparticle Research

Chemical Reviews 116, 11128-11180 DOI: 10.1021/acs.chemrev.5b00690

Citation Report

#	Article	IF	CITATIONS
12	Colloidal Magnetic Heterostructured Nanocrystals with Asymmetric Topologies: Seeded-Growth Synthetic Routes and Formation Mechanisms. Frontiers in Materials, 2016, 3, .	1.2	35
13	Exploring the zone of anisotropy and broken symmetries in DNA-mediated nanoparticle crystallization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10485-10490.	3.3	61
14	Substantially reinforcing plant oil-based materials via cycloaliphatic epoxy with double bond-bridged structure. Polymer, 2016, 107, 19-28.	1.8	6
15	Introduction: Nanoparticle Chemistry. Chemical Reviews, 2016, 116, 10343-10345.	23.0	131
16	The nature and implications of uniformity in the hierarchical organization of nanomaterials. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11717-11725.	3.3	75
17	<i>In Situ</i> Electron Microscopy Imaging and Quantitative Structural Modulation of Nanoparticle Superlattices. ACS Nano, 2016, 10, 9801-9808.	7.3	49
18	<i>In Situ</i> Evaluation of Calcium Phosphate Nucleation Kinetics and Pathways during Intra- and Extrafibrillar Mineralization of Collagen Matrices. Crystal Growth and Design, 2016, 16, 5359-5366.	1.4	34
19	Heterogeneous Nucleation and Growth of Nanoparticles at Environmental Interfaces. Accounts of Chemical Research, 2016, 49, 1681-1690.	7.6	83
20	Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chemical Reviews, 2016, 116, 11220-11289.	23.0	1,485
21	Intermolecular Structural Change for Thermoswitchable Polymeric Photosensitizer. Journal of the American Chemical Society, 2016, 138, 10734-10737.	6.6	58
22	Exploring Pore Formation of Atomic Layer-Deposited Overlayers by <i>in Situ</i> Small- and Wide-Angle X-ray Scattering. Chemistry of Materials, 2016, 28, 7082-7087.	3.2	21
23	The chemistry of nucleation. CrystEngComm, 2016, 18, 8332-8353.	1.3	95
24	Concerted Growth and Ordering of Cobalt Nanorod Arrays as Revealed by Tandem in Situ SAXS-XAS Studies. Journal of the American Chemical Society, 2016, 138, 8422-8431.	6.6	32
25	Continuous In-Flight Synthesis for On-Demand Delivery of Ligand-Free Colloidal Gold Nanoparticles. Nano Letters, 2017, 17, 1336-1343.	4.5	75
26	Molecular Packing of Amphiphilic Nanosheets Resolved by X-ray Scattering. Journal of Physical Chemistry C, 2017, 121, 1047-1054.	1.5	19
27	The need for a life-cycle based aging paradigm for nanomaterials: importance of real-world test systems to identify realistic particle transformations. Nanotechnology, 2017, 28, 072001.	1.3	49
28	Structure and Dynamics of Bimodal Colloidal Dispersions in a Low-Molecular-Weight Polymer Solution. Langmuir, 2017, 33, 2817-2828.	1.6	7
29	Recent applications of synchrotron radiation and neutrons in the study of soft matter. Crystallography Reviews, 2017, 23, 160-226.	0.4	86

#	Article	IF	CITATIONS
30	Performance on absolute scattering intensity calibration and protein molecular weight determination at BL16B1, a dedicated SAXS beamline at SSRF. Journal of Synchrotron Radiation, 2017, 24, 509-520.	1.0	59
31	Structural and Thermodynamic Properties of Nanoparticle–Protein Complexes: A Combined SAXS and SANS Study. Langmuir, 2017, 33, 2248-2256.	1.6	24
32	Multifunctional Magnetic Nanostructures: Exchange Bias Model and Applications. , 2017, , 225-280.		3
33	<i>SLADS</i> : a parallel code for direct simulations of scattering of large anisotropic dense nanoparticle systems. Journal of Applied Crystallography, 2017, 50, 951-958.	1.9	10
34	Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. Advances in Colloid and Interface Science, 2017, 249, 331-345.	7.0	173
35	Dopant Mediated Assembly of Cu ₂ ZnSnS ₄ Nanorods into Atomically Coupled 2D Sheets in Solution. Nano Letters, 2017, 17, 3421-3428.	4.5	19
36	Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth. Accounts of Chemical Research, 2017, 50, 1248-1257.	7.6	103
37	Quantitative Morphology–Performance Correlations in Organic Solar Cells: Insights from Soft Xâ€Ray Scattering. Advanced Energy Materials, 2017, 7, 1700084.	10.2	123
38	Monodisperse Iron Oxide Nanoparticles by Thermal Decomposition: Elucidating Particle Formation by Second-Resolved in Situ Small-Angle X-ray Scattering. Chemistry of Materials, 2017, 29, 4511-4522.	3.2	102
39	Observing the Overgrowth of a Second Metal on Silver Cubic Seeds in Solution by Surface-Enhanced Raman Scattering. ACS Nano, 2017, 11, 5080-5086.	7.3	34
40	Enhanced MEA Performance for PEMFCs under Low Relative Humidity and Low Oxygen Content Conditions via Catalyst Functionalization. Journal of the Electrochemical Society, 2017, 164, F674-F684.	1.3	14
41	Epitaxy: Programmable Atom Equivalents <i>Versus</i> Atoms. ACS Nano, 2017, 11, 180-185.	7.3	35
42	Assembling and ordering polymer-grafted nanoparticles in three dimensions. Nanoscale, 2017, 9, 8710-8715.	2.8	51
43	Living Nanocrystals. Chemistry of Materials, 2017, 29, 5415-5425.	3.2	32
44	Synthesis and characterization of tungstophosphoric acid-modified mesoporous silica nanoparticles with tuneable diameter and pore size distribution. Journal of Sol-Gel Science and Technology, 2017, 83, 355-364.	1.1	10
45	Nonswellable Injectable Hydrogels Self-Assembled Through Non-Covalent Interactions. ChemistrySelect, 2017, 2, 3009-3013.	0.7	7
46	Tailoring the phase of Li–Al–O nanoparticles by nonaqueous sol–gel chemistry. Journal of Sol-Gel Science and Technology, 2017, 82, 739-747.	1.1	1
47	Tracing the Surfactant-Mediated Nucleation, Growth, and Superpacking of Gold Supercrystals Using Time and Spatially Resolved X-ray Scattering. Langmuir, 2017, 33, 3253-3261.	1.6	15

#	Article	IF	CITATIONS
48	Block-Copolymer-Templated Hierarchical Porous Carbon Nanostructures with Nitrogen-Rich Functional Groups for Molecular Sensing. ACS Applied Materials & Interfaces, 2017, 9, 31235-31244.	4.0	13
49	Scattering properties and internal structure of magnetic filament brushes. Soft Matter, 2017, 13, 2590-2602.	1.2	6
50	Bandgap Inhomogeneity of a PbSe Quantum Dot Ensemble from Two-Dimensional Spectroscopy and Comparison to Size Inhomogeneity from Electron Microscopy. Nano Letters, 2017, 17, 762-771.	4.5	33
51	Coherent diffractive imaging of graphite nanoparticles using a tabletop EUV source. Physical Chemistry Chemical Physics, 2017, 19, 29660-29668.	1.3	4
52	The empirical core-chain model. Journal of Molecular Liquids, 2017, 247, 434-440.	2.3	9
53	The Role of Repulsion in Colloidal Crystal Engineering with DNA. Journal of the American Chemical Society, 2017, 139, 16528-16535.	6.6	31
54	Tethering mesoporous Pd nanoparticles to reduced graphene oxide sheets forms highly efficient electrooxidation catalysts. Journal of Materials Chemistry A, 2017, 5, 21249-21256.	5.2	32
55	Mapping the Atomistic Structure of Graded Core/Shell Colloidal Nanocrystals. Scientific Reports, 2017, 7, 11718.	1.6	10
56	Colloidal nanoparticle size control: experimental and kinetic modeling investigation of the ligand–metal binding role in controlling the nucleation and growth kinetics. Nanoscale, 2017, 9, 13772-13785.	2.8	137
57	Altering DNA-Programmable Colloidal Crystallization Paths by Modulating Particle Repulsion. Nano Letters, 2017, 17, 5126-5132.	4.5	36
58	Solvent diffusion in polymer-embedded hollow nanoparticles studied by in situ small angle X-ray scattering. Physical Chemistry Chemical Physics, 2017, 19, 21663-21671.	1.3	0
59	Structural Investigation of Cesium Lead Halide Perovskites for High-Efficiency Quantum Dot Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2017, 8, 4140-4147.	2.1	35
60	In situ study of spray deposited titania photoanodes for scalable fabrication of solid-state dye-sensitized solar cells. Nano Energy, 2017, 40, 317-326.	8.2	35
61	Ionic liquid accelerates the crystallization of Zr-based metal–organic frameworks. Nature Communications, 2017, 8, 175.	5.8	111
62	Gyroid Structures at Highly Asymmetric Volume Fractions by Blending of ABC Triblock Terpolymer and AB Diblock Copolymer. Macromolecules, 2017, 50, 9008-9014.	2.2	23
63	Structural evaluation of an amyloid fibril model using small-angle x-ray scattering. Physical Biology, 2017, 14, 046001.	0.8	15
64	Materials' Methods: NMR in Battery Research. Chemistry of Materials, 2017, 29, 213-242.	3.2	279
65	Low-Temperature Fabrication of Mesoporous Titania Thin Films. MRS Advances, 2017, 2, 2315-2325.	0.5	5

#	Article	IF	CITATIONS
66	Silver Nanoparticles: Technological Advances, Societal Impacts, and Metrological Challenges. Frontiers in Chemistry, 2017, 5, 6.	1.8	241
67	Boolean approximation of a phase-coded aperture diffraction pattern system for X-ray crystallography. , 2017, , .		0
68	A General Approach to Access Morphologies of Polyoxometalates in Solution by Using SAXS: An Ab Initio Modeling Protocol. Chemistry - A European Journal, 2018, 24, 6639-6644.	1.7	9
69	Soft chemistry of ion-exchangeable layered metal oxides. Chemical Society Reviews, 2018, 47, 2401-2430.	18.7	125
70	The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization. Nature Communications, 2018, 9, 962.	5.8	86
71	Taylor Dispersion of Polydisperse Nanoclusters and Nanoparticles: Modeling, Simulation, and Analysis. Analytical Chemistry, 2018, 90, 4258-4262.	3.2	15
72	Structure and Interaction of Nanoparticle–Protein Complexes. Langmuir, 2018, 34, 5679-5695.	1.6	55
73	Wide-Field Surface Plasmon Resonance Microscopy for In-Situ Characterization of Nanoparticle Suspensions. , 2018, , 61-105.		3
74	Gold Nanofilms at Liquid–Liquid Interfaces: An Emerging Platform for Redox Electrocatalysis, Nanoplasmonic Sensors, and Electrovariable Optics. Chemical Reviews, 2018, 118, 3722-3751.	23.0	113
75	Magnetic Nanocomposites and Their Incorporation into Higher Order Biosynthetic Functional Architectures. ACS Omega, 2018, 3, 503-508.	1.6	6
76	Influence of Nanoparticles Size on XRD Patterns for Small Monodisperse Nanoparticles of Cu ⁰ and TiO ₂ Anatase. Industrial & Engineering Chemistry Research, 2018, 57, 2526-2536.	1.8	78
77	Tailoring nanopore formation in atomic layer deposited ultrathin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	0.9	13
78	Structure and Stability of PEG―and Mixed PEGâ€Layerâ€Coated Nanoparticles at High Particle Concentrations Studied In Situ by Smallâ€Angle Xâ€Ray Scattering. Particle and Particle Systems Characterization, 2018, 35, 1700319.	1.2	17
79	Radiopaque Highly Stiff and Tough Shape Memory Hydrogel Microcoils for Permanent Embolization of Arteries. Advanced Functional Materials, 2018, 28, 1705962.	7.8	107
80	Tuning Precursor Reactivity toward Nanometer-Size Control in Palladium Nanoparticles Studied by in Situ Small Angle X-ray Scattering. Chemistry of Materials, 2018, 30, 1127-1135.	3.2	43
81	Low-Temperature Ionic Conductivity Enhanced by Disrupted Ice Formation in Polyampholyte Hydrogels. Macromolecules, 2018, 51, 2723-2731.	2.2	39
82	Pitfalls and reproducibility of <i>in situ</i> synchrotron powder X-ray diffraction studies of solvothermal nanoparticle formation. Journal of Applied Crystallography, 2018, 51, 526-540.	1.9	26
83	Stimuli Responsive Hierarchical Assembly of P22 Virus-like Particles. Chemistry of Materials, 2018, 30, 2262-2273.	3.2	17

		CITATION RE	PORT	
#	Article		IF	CITATIONS
84	Supramolecular design of hydrophobic and hydrophilic polymeric nanoparticles. , 2018,	, 181-221.		5
85	Coded aperture design for solving the phase retrieval problem in X-ray crystallography. J Computational and Applied Mathematics, 2018, 338, 111-128.	ournal of	1.1	11
86	Ptychographic Xâ€Ray Imaging of Colloidal Crystals. Small, 2018, 14, 1702575.		5.2	11
87	Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation. Optics Communications, 2018, 410, 707-716.		1.0	12
88	Fabrication of Bimetallic Au–Pd–Au Nanobricks as an Archetype of Robust Nanopla Chemistry of Materials, 2018, 30, 204-213.	smonic Sensors.	3.2	17
89	Comparing sulfidation kinetics of silver nanoparticles in simulated media using direct ar measurement methods. Nanoscale, 2018, 10, 22270-22279.	ıd indirect	2.8	13
90	Reversible hierarchical structure induced by solvation and temperature modulation in ar liquid-based random bottlebrush copolymer. Polymer Chemistry, 2018, 9, 5200-5214.	ı ionic	1.9	7
91	Calculation of Small-Angle Scattering Patterns. , 2018, , .			3
92	1. Size and shape control of metal nanoparticles in millifluidic reactors. , 2018, , 1-48.			0
93	Invisible-ink-assisted pattern and written surface-enhanced Raman scattering substrates chem/biosensing platforms. Green Chemistry, 2018, 20, 5318-5326.	s for versatile	4.6	27
94	Controlled Symmetry Breaking in Colloidal Crystal Engineering with DNA. ACS Nano, 20	19, 13, 1412-1420.	7.3	16
95	Orthorhombic Nanostructured Li ₂ MnSiO ₄ /Al ₂ O Supercapattery Electrode with Efficient Lithiumâ€Ion Migratory Pathway. Batteries and 1, 223-235.	₃ Supercaps, 2018,	2.4	16
96	Lamellar Thickness of Poly(ethylene oxide) Film Crystallized from the Gel State. Macrom 2018, 51, 7745-7755.	olecules,	2.2	8
97	Dielectric Properties for Nanocomposites Comparing Commercial and Synthetic Ni- and Fe ₃ O ₄ -Loaded Polystyrene. ACS Omega, 2018, 3, 12813-128	23.	1.6	14
98	Space- and time-resolved small angle X-ray scattering to probe assembly of silver nanocissuperlattices. Nature Communications, 2018, 9, 4211.	ystal	5.8	26
99	Emergence of Surface Fractals in Cellular Automata. Annalen Der Physik, 2018, 530, 180	00187.	0.9	5
100	Characterisation of particles in solution – a perspective on light scattering and compa technologies. Science and Technology of Advanced Materials, 2018, 19, 732-745.	arative	2.8	180
101	Turning a Luffa Protein into a Self-Assembled Biodegradable Nanoplatform for Multitarg Therapy. ACS Nano, 2018, 12, 11664-11677.	eted Cancer	7.3	40

#	ARTICLE	IF	CITATIONS
102	Scalable Assembly of Crystalline Binary Nanocrystal Superparticles and Their Enhanced Magnetic and Electrochemical Properties. Journal of the American Chemical Society, 2018, 140, 15038-15047.	6.6	77
103	Handbook of Materials Characterization. , 2018, , .		35
104	Mechanical Properties of Architected Nanomaterials Made from Organic–Inorganic Nanocrystals. Jom, 2018, 70, 2205-2217.	0.9	20
105	A methodology to calculate small-angle scattering profiles of macromolecular solutions from molecular simulations in the grand-canonical ensemble. Journal of Chemical Physics, 2018, 149, 084203.	1.2	2
106	Microstructure and Soft Glassy Dynamics of an Aqueous Laponite Dispersion. Langmuir, 2018, 34, 13079-13103.	1.6	78
107	Small-Angle X-Ray Scattering to Analyze the Morphological Properties of Nanoparticulated Systems. , 2018, , 37-75.		7
108	Hydrogen bonding directed co-assembly of polyoxometalates and polymers to core–shell nanoparticles. Materials Chemistry Frontiers, 2018, 2, 2070-2075.	3.2	16
109	Unique p–n Heterostructured Waterâ€Borne Nanoparticles Exhibiting Impressive Chargeâ€Separation Ability. ChemSusChem, 2018, 11, 1628-1638.	3.6	10
110	Magnetic, Structural, and Chemical Properties of Cobalt Nanoparticles Synthesized in Ionic Liquids. Langmuir, 2018, 34, 7086-7095.	1.6	15
111	<i>In Situ</i> X-ray Scattering Guides the Synthesis of Uniform PtSn Nanocrystals. Nano Letters, 2018, 18, 4053-4057.	4.5	43
112	Gram scale synthesis of Fe/FexOy core–shell nanoparticles and their incorporation into matrix-free superparamagnetic nanocomposites. Journal of Materials Research, 2018, 33, 2156-2167.	1.2	10
113	Materials characterization by synchrotron x-ray microprobes and nanoprobes. Reviews of Modern Physics, 2018, 90, .	16.4	93
114	Influence of Tetraalkylammonium Compounds on Photocatalytic and Physical Properties of TiO2. Catalysis Letters, 2018, 148, 2391-2407.	1.4	8
115	Structural testing of polyimide nanocomposite films with SAXS and SVM-PUK. Polymer Testing, 2018, 70, 30-38.	2.3	11
116	Understanding the mechanism of starch digestion mitigation by rice protein and its enzymatic hydrolysates. Food Hydrocolloids, 2018, 84, 473-480.	5.6	122
117	Transformation and Speciation Analysis of Silver Nanoparticles of Dietary Supplement in Simulated Human Gastrointestinal Tract. Environmental Science & Technology, 2018, 52, 8792-8800.	4.6	41
118	Dummy-atom modelling of stacked and helical nanostructures from solution scattering data. IUCrJ, 2018, 5, 390-401.	1.0	10
119	Covalently bonded multimers of Au ₂₅ (SBut) ₁₈ as a conjugated system. Nanoscale, 2018, 10, 12754-12762.	2.8	22

#	Article	IF	CITATIONS
120	Ligand-Mediated Nucleation and Growth of Palladium Metal Nanoparticles. Journal of Visualized Experiments, 2018, , .	0.2	14
121	Colloidal crystal order and structure revealed by tabletop extreme ultraviolet scattering and coherent diffractive imaging. Optics Express, 2018, 26, 11393.	1.7	6
123	Pressure-Stimulated Supercrystal Formation in Nanoparticle Suspensions. Journal of Physical Chemistry Letters, 2018, 9, 4720-4724.	2.1	14
124	Photoperiodic Flower Mimicking Metallic Nanoparticles for Image-Guided Medicine Applications. ACS Applied Materials & amp; Interfaces, 2018, 10, 27570-27577.	4.0	13
125	Unraveling the Structure of Magic-Size (CdSe) ₁₃ Cluster Pairs. Chemistry of Materials, 2018, 30, 5468-5477.	3.2	37
126	Enabling the synthesis of homogeneous or Janus hairy nanoparticles through surface photoactivation. Nanoscale, 2018, 10, 14492-14498.	2.8	13
127	Stability and Mobility of Magnetic Nanoparticles in Biological Environments Determined from Dynamic Magnetic Susceptibility Measurements. Bioconjugate Chemistry, 2018, 29, 2793-2805.	1.8	12
128	Phase Retrieval Algorithm via Nonconvex Minimization Using a Smoothing Function. IEEE Transactions on Signal Processing, 2018, 66, 4574-4584.	3.2	27
129	When Crystals Go Nano – The Role of Advanced Xâ€ray Total Scattering Methods in Nanotechnology. European Journal of Inorganic Chemistry, 2018, 2018, 3789-3803.	1.0	27
130	Synchrotron Xâ€Ray and Neutron Diffraction, Total Scattering, and Smallâ€Angle Scattering Techniques for Rechargeable Battery Research. Small Methods, 2018, 2, 1800064.	4.6	72
131	Capillary electrophoresis and asymmetric flow field-flow fractionation for size-based separation of engineered metallic nanoparticles: AÂcritical comparative review. TrAC - Trends in Analytical Chemistry, 2018, 106, 202-212.	5.8	37
132	Realâ€Time Probing of Nanowire Assembly Kinetics at the Air–Water Interface by Inâ€Situ Synchrotron Xâ€Ray Scattering. Angewandte Chemie, 2018, 130, 8262-8266.	1.6	3
133	Realâ€Time Probing of Nanowire Assembly Kinetics at the Air–Water Interface by Inâ€Situ Synchrotron Xâ€Ray Scattering. Angewandte Chemie - International Edition, 2018, 57, 8130-8134.	7.2	14
134	Small-angle X-ray scattering (SAXS) and nitrogen porosimetry (NP): two novel techniques for the evaluation of urinary stone hardness. International Urology and Nephrology, 2018, 50, 1779-1785.	0.6	3
135	Gallstone-Formation-Inspired Bimetallic Supra-nanostructures for Computed-Tomography-Image-Guided Radiation Therapy. ACS Applied Nano Materials, 2018, 1, 4602-4611.	2.4	10
136	A novel approach for drug targeting. , 2018, , 69-107.		5
137	Size and shape control of metal nanoparticles in millifluidic reactors. Physical Sciences Reviews, 2018, 3, .	0.8	1
138	In Situ Techniques for Probing Kinetics and Mechanism of Hollowing Nanostructures through Direct Chemical Transformations. Small Methods, 2018, 2, 1800165.	4.6	13

		CITATION R	EPORT	
#	Article		IF	CITATIONS
139	Conduction Band Fine Structure in Colloidal HgTe Quantum Dots. ACS Nano, 2018, 12	2, 9397-9404.	7.3	56
140	Nanoparticle Manufacturing – Heterogeneity through Processes to Products. ACS A Materials, 2018, 1, 4358-4385.	oplied Nano	2.4	68
141	Size and Concentration Determination of Colloidal Nanocrystals by Small-Angle X-ray S Chemistry of Materials, 2018, 30, 3952-3962.	Scattering.	3.2	73
142	Characterization techniques for nanoparticles: comparison and complementarity upon nanoparticle properties. Nanoscale, 2018, 10, 12871-12934.	studying	2.8	1,115
143	Physicochemical characterization of nanomaterials: polymorph, composition, wettabili thermal stability. , 2018, , 255-278.	ty, and		29
144	Combining SAXS and XAS To Study the <i>Operando</i> Degradation of Carbon-Supp Pt-Nanoparticle Fuel Cell Catalysts. ACS Catalysis, 2018, 8, 7000-7015.	orted	5.5	58
145	Transformation of engineered nanomaterials through the prism of silver sulfidation. Na Advances, 2019, 1, 241-253.	inoscale	2.2	7
146	Advances in characterizing and understanding the microstructure of cementitious mat and Concrete Research, 2019, 124, 105806.	erials. Cement	4.6	104
147	In Situ Monitoring Mesoscopic Deformation of Nanostructured Porous Titania Films Ca Ingression. ACS Applied Materials & Interfaces, 2019, 11, 32552-32558.	aused by Water	4.0	3
148	Super-resolution Microscopy for Nanomedicine Research. ACS Nano, 2019, 13, 9707-9	712.	7.3	59
149	Insights into the Formation Mechanism of CdSe Nanoplatelets Using in Situ X-ray Scat Letters, 2019, 19, 6466-6474.	tering. Nano	4.5	26
150	Broadband and strong electromagnetic wave absorption of epoxy composites filled wi content of non-covalently modified reduced graphene oxides. Carbon, 2019, 154, 115	th ultralow -124.	5.4	48
151	3D Micromachined Polyimide Mixing Devices for in Situ X-ray Imaging of Solution-Base Copolymer Phase Transitions. Langmuir, 2019, 35, 10435-10445.	d Block	1.6	14
152	<i>Operando</i> X-ray characterization of high surface area iridium oxides to decouple losses for the oxygen evolution reaction. Energy and Environmental Science, 2019, 12	their activity 3038-3052.	15.6	90
153	Measurement Challenges in Dynamic and Nonequilibrium Nanoscale Systems. Analytic 2019, 91, 13324-13336.	al Chemistry,	3.2	6
154	Dynamic Crystallization and Phase Transition in Evaporating Colloidal Droplets. Nano L 8225-8233.	etters, 2019, 19,	4.5	19
155	Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Advanc Delivery Reviews, 2019, 138, 302-325.	ed Drug	6.6	731
156	Small-angle scattering model analysis of cage-like uranyl peroxide nanoparticles. Journa Molecular Liquids, 2019, 296, 111794.	al of	2.3	5

ARTICLE IF CITATIONS # Atomic layer deposition: Catalytic preparation and modification technique for the next generation. 157 6.9 22 Chinese Journal of Catalysis, 2019, 40, 1311-1323. Coexistence of hcp and bct Phases during In Situ Superlattice Assembly from Faceted Colloidal 2.1 Nanocrystals. Journal of Physical Chemistry Letters, 2019, 10, 6331-6338. Microscopic Origins of Caging and Equilibration of Self-Suspended Hairy Nanoparticles. 159 2.2 15 Macromolecules, 2019, 52, 8187-8196. Flower-like gold nanoparticles for enhanced photothermal anticancer therapy by the delivery of pooled siRNA to inhibit heat shock stress response. Journal of Materials Chemistry B, 2019, 7, 586-597. <p>Impact Of Underlying Pulmonary Diseases On Treatment Outcomes In Early-Stage Non-Small Cell Lung Cancer Treated With Definitive Radiotherapy</p>. International Journal of COPD, 2019, 161 0.9 14 Volume 14, 2273-2281. Small-angle X-ray scattering intensity of multiscale models of spheres. Journal of Applied Crystallography, 2019, 52, 1348-1357. 163 Nanoengineering Materials for Biomedical Uses., 2019,,. 2 Aqueous Carbon Quantum Dot-Embedded PC60-PC₆₁BM Nanospheres for Ecological Fluorescent Printing: Contrasting Fluorescence Resonance Energy-Transfer Signals between Watermelon-like and Random Morphologies. Journal of Physical Chemistry Letters, 2019, 10, 6525-6535. 164 2.1 Individually Silicaâ€Embedded Gold Nanorod Superlattice for High Thermal and Solvent Stability and 165 1.9 8 Recyclable SERS Application. Advanced Material's Interfaces, 2019, 6, 1900986. Contrast Variation Small Angle Neutron Scattering Investigation of Micro- and Nano-Sized TATB. 1.3 Materials, 2019, 12, 2606. Phonon-engineered solids constructed from nanocrystals. APL Materials, 2019, 7, 081124. 167 2.2 7 Kinetics and Mechanism of Metal Nanoparticle Growth <i>via</i> Optical Extinction Spectroscopy and 168 Computational Modeling: The Curious Case of Colloidal Gold. ACS Nano, 2019, 13, 11510-11521. Size control over metal–organic framework porous nanocrystals. Chemical Science, 2019, 10, 169 3.7 152 9396-9408. Enzymatic Degradation of DNA Probed by <i>In Situ</i>X-ray Scattering. ACS Nano, 2019, 13, 11382-11391. 170 Synthesis, Detailed Characterization, and Dual Drug Delivery Application of BSA Loaded Aquasomes. 171 2.323 ÁCS Applied Bio Materials, 2019, 2, 4471-4484. Kinetics of pressure-induced nanocrystal superlattice formation. Physical Chemistry Chemical Physics, 2019, 21, 21349-21354. The role of nanoparticle size and ligand coverage in size focusing of colloidal metal nanoparticles. 173 2.261 Nanoscale Advances, 2019, 1, 4052-4066. Revealing the Effects of the Non-solvent on the Ligand Shell of Nanoparticles and Their Crystallization. Journal of the American Chemical Society, 2019, 141, 16651-16662. 174 6.6

#	Article	IF	CITATIONS
175	Promoting Noncovalent Intermolecular Interactions Using a C ₆₀ Core Particle in Aqueous PC60s-Covered Colloids for Ultraefficient Photoinduced Particle Activity. ACS Applied Materials & Interfaces, 2019, 11, 38798-38807.	4.0	3
176	Supraferromagnetic correlations in clusters of magnetic nanoflowers. Applied Physics Letters, 2019, 115, .	1.5	34
177	Best Practices for Characterization of Magnetic Nanoparticles for Biomedical Applications. Analytical Chemistry, 2019, 91, 14159-14169.	3.2	87
178	Insights into Reaction Intermediates to Predict Synthetic Pathways for Shape-Controlled Metal Nanocrystals. Journal of the American Chemical Society, 2019, 141, 16312-16322.	6.6	47
179	On the advancement of polymeric bicontinuous nanospheres toward biomedical applications. Nanoscale Horizons, 2019, 4, 258-272.	4.1	49
180	A highly soluble, crystalline covalent organic framework compatible with device implementation. Chemical Science, 2019, 10, 1023-1028.	3.7	173
181	Design, development and recent experiments of the CIMPLE-PSI device. Nuclear Fusion, 2019, 59, 112008.	1.6	5
182	Seeded growth of gold nanoparticles in aqueous solution of cationic gemini surfactants with different spacer length: influences of molecular and aggregate structures. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	4
183	The structure–property relationship in LAPONITE® materials: from Wigner glasses to strong self-healing hydrogels formed by non-covalent interactions. Soft Matter, 2019, 15, 1278-1289.	1.2	49
184	Understanding the role of co-surfactants in microemulsions on the growth of copper oxalate using SAXS. Physical Chemistry Chemical Physics, 2019, 21, 336-348.	1.3	20
185	What Does Nanoparticle Stability Mean?. Journal of Physical Chemistry C, 2019, 123, 16495-16507.	1.5	214
186	Particle analogs of electrons in colloidal crystals. Science, 2019, 364, 1174-1178.	6.0	91
187	Characterization of Nanoparticles in Dermal Formulations. , 2019, , 199-216.		0
188	Nanoparticle Characterization: What to Measure?. Advanced Materials, 2019, 31, e1901556.	11.1	216
189	Multidimensional Characterization of Mixed Ligand Nanoparticles Using Small Angle Neutron Scattering. Chemistry of Materials, 2019, 31, 6750-6758.	3.2	12
190	Organic–mineral interfacial chemistry drives heterogeneous nucleation of Sr-rich (Ba _{<i>x</i>) Tj ETQq1 the National Academy of Sciences of the United States of America, 2019, 116, 13221-13226.}	1 0.78431 3.3	4 rgBT /Ove 45
191	In Situ Liquid SAXS Studies on the Early Stage of Calcium Carbonate Formation. Particle and Particle Systems Characterization, 2019, 36, 1800482.	1.2	8
192	Time-Resolved Analysis of the Structural Dynamics of Assembling Gold Nanoparticles. ACS Nano, 2019, 13, 6596-6604.	7.3	30

#	Article	IF	CITATIONS
193	Large Scale Solid-state Synthesis of Catalytically Active Fe3O4@M (M = Au, Ag and Au-Ag alloy) Core-shell Nanostructures. Scientific Reports, 2019, 9, 6603.	1.6	29
194	Biological Responses to Nanoscale Particles. Nanoscience and Technology, 2019, , .	1.5	9
195	Nanoparticle Behaviour in Complex Media: Methods for Characterizing Physicochemical Properties, Evaluating Protein Corona Formation, and Implications for Biological Studies. Nanoscience and Technology, 2019, , 101-150.	1.5	8
196	Small-angle scattering by supported nanoparticles: exact results and useful approximations. Journal of Applied Crystallography, 2019, 52, 507-519.	1.9	7
197	In Situ Synchrotron Xâ€ray Characterization Shining Light on the Nucleation and Growth Kinetics of Colloidal Nanoparticles. Angewandte Chemie, 2019, 131, 9083-9091.	1.6	3
198	Monitoring Nanocrystal Selfâ€Assembly in Real Time Using In Situ Smallâ€Angle Xâ€Ray Scattering. Small, 2019, 15, e1900438.	5.2	30
199	Small-angle X-ray scattering study on the orientation of suspended sodium titanate nanofiber induced by applied electric field. Radiation Detection Technology and Methods, 2019, 3, 1.	0.4	3
200	Silicon Nanoparticle Ensembles for Lithium-Ion Batteries Elucidated by Small-Angle Neutron Scattering. ACS Applied Energy Materials, 2019, 2, 3220-3227.	2.5	24
201	Drying of electrically conductive hybrid polymer–gold nanorods studied with in situ microbeam GISAXS. Nanoscale, 2019, 11, 6538-6543.	2.8	11
202	In situ small-angle X-ray scattering environment for studying nanocrystal self-assembly upon controlled solvent evaporation. Review of Scientific Instruments, 2019, 90, 036103.	0.6	6
203	Reentrant phase behavior of nanoparticle solutions probed by small-angle scattering. Current Opinion in Colloid and Interface Science, 2019, 42, 17-32.	3.4	11
204	In Situ Synchrotron Xâ€ray Characterization Shining Light on the Nucleation and Growth Kinetics of Colloidal Nanoparticles. Angewandte Chemie - International Edition, 2019, 58, 8987-8995.	7.2	40
205	A lanthanide-peptide-derived bacterium-like nanotheranostic with high tumor-targeting, -imaging and -killing properties. Biomaterials, 2019, 206, 13-24.	5.7	33
206	Comprehensive characterization of nanostructured lipid carriers using laboratory and synchrotron X-ray scattering and diffraction. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 139, 153-160.	2.0	21
207	Evolution of Interactions in the Protein Solution As Induced by Mono and Multivalent Ions. Biomacromolecules, 2019, 20, 2123-2134.	2.6	25
208	Tuning infrared plasmon resonances in doped metal-oxide nanocrystals through cation-exchange reactions. Nature Communications, 2019, 10, 1394.	5.8	64
209	In-situ aerosol nanoparticle characterization by small angle X-ray scattering at ultra-low volume fraction. Nature Communications, 2019, 10, 1122.	5.8	29
210	Structure and Charge Carrier Dynamics in Colloidal PbS Quantum Dot Solids. Journal of Physical Chemistry Letters, 2019, 10, 2058-2065.	2.1	34

ARTICLE IF CITATIONS # Nanocrystals in Molten Salts and Ionic Liquids: Experimental Observation of Ionic Correlations 211 7.3 48 Extending beyond the Debye Length. ACS Nano, 2019, 13, 5760-5770. Phase-dependent shear-induced order of nanorods in isotropic and nematic wormlike micelle 2.8 solutions. Nanoscale, 2019, 11, 7875-7884. Formation of colloidal alloy semiconductor CdTeSe magic-size clusters at room temperature. Nature 213 5.8 49 Communications, 2019, 10, 1674. Formation and Functioning of Bimetallic Nanocatalysts: The Power of Xâ€ray Probes. Angewandte 214 Chemie - International Edition, 2019, 58, 13220-13230. Formation and Functioning of Bimetallic Nanocatalysts: The Power of Xâ€ray Probes. Angewandte 215 1.6 6 Chemie, 2019, 131, 13354-13364. Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. Journal of Controlled Release, 2019, 299, 31-43. 4.8 Microstructure and electrical properties of polyimide-based composites reinforced by 217 2.2 14 high-aspect-ratio titanium oxide nanowires. Surface and Coatings Technology, 2019, 361, 425-431. Molecular Insights into Water Clusters Formed in Tributylphosphate–Di-(2-ethylhexyl)phosphoric Acid Extractant Systems from Experiments and Molecular Dynamics Simulations. Journal of Physical 1.2 Chemistry B, 2019, 123, 1618-1635. 219 In‧itu/Operando Xâ€ray Characterization of Metal Hydrides. ChemPhysChem, 2019, 20, 1261-1271. 1.0 12 Crystal engineering with DNA. Nature Reviews Materials, 2019, 4, 201-224. 23.3 178 Supercrystallography-Based Decoding of Structure and Driving Force of Nanocrystal Assembly. 221 1.3 10 Materials, 2019, 12, 3771. Revealing inconsistencies in X-ray width methods for nanomaterials. Nanoscale, 2019, 11, 22456-22466. 2.8 Hypoxia-induced biosynthesis of gold nanoparticles in the living brain. Nanoscale, 2019, 11, 19285-19290. 223 2.8 1 Colloidal Crystal "Alloys― Journal of the American Chemical Society, 2019, 141, 20443-20450. 224 6.6 225 In situ capabilities of Small Angle X-ray Scattering. Nanotechnology Reviews, 2019, 8, 352-369. 2.6 14 Preclinical hazard evaluation strategy for nanomedicines. Nanotoxicology, 2019, 13, 73-99. 43 Scattering functions of carved-ellipsoid-shaped particles. Journal of Applied Crystallography, 2019, 52, 227 1.9 3 27-31. Critical In Vitro Characterization Methods of Lipid-Based Formulations for Oral Delivery: a 1.5 Comprehensive Review. AAPS PharmSciTech, 2019, 20, 16.

#	Article	IF	CITATIONS
229	Dispersion of reduced graphene oxide within thermoplastic starch/poly(lactic acid) blends investigated by small-angle X-ray scattering. Carbohydrate Polymers, 2019, 208, 124-132.	5.1	10
230	Composition–Morphology Correlation in PTB7-Th/PC ₇₁ BM Blend Films for Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 3125-3135.	4.0	30
231	Alleviated Inhibition of Single Enzyme in Confined and Crowded Environment. Journal of Physical Chemistry Letters, 2019, 10, 82-89.	2.1	11
232	Structural properties of sub-nanometer metallic clusters. Journal of Physics Condensed Matter, 2019, 31, 113001.	0.7	35
233	Control of Shell Morphology in p–n Heterostructured Waterâ€Processable Semiconductor Colloids: Toward Extremely Efficient Charge Separation. Small, 2019, 15, e1803563.	5.2	9
234	Communication—Microscopic View of the Ethylene Carbonate Based Lithium-Ion Battery Electrolyte by X-ray Scattering. Journal of the Electrochemical Society, 2019, 166, A47-A49.	1.3	21
235	Reconfigurable nanoscale soft materials. Current Opinion in Solid State and Materials Science, 2019, 23, 41-49.	5.6	14
236	Self-Healing Plasmonic Metal Liquid as a Quantitative Surface-Enhanced Raman Scattering Analyzer in Two-Liquid-Phase Systems. Analytical Chemistry, 2019, 91, 2288-2295.	3.2	25
237	Quantitative Measure of the Size Dispersity in Ultrasmall Fluorescent Organic–Inorganic Hybrid Core–Shell Silica Nanoparticles by Small-Angle X-ray Scattering. Chemistry of Materials, 2019, 31, 643-657.	3.2	18
238	Hollow silica–polyelectrolyte composite nanoparticles for controlled drug delivery. Journal of Materials Science, 2019, 54, 2552-2565.	1.7	37
239	Determination of protein crystallization kinetics by a through-flow small-angle X-ray scattering method. Chemical Engineering Research and Design, 2019, 141, 580-591.	2.7	2
240	Colloidal Crystals of NaYF ₄ Upconversion Nanocrystals Studied by Smallâ€Angle Xâ€Ray Scattering (SAXS). Particle and Particle Systems Characterization, 2019, 36, 1800391.	1.2	7
241	Thermoresponsive Core-Shell Nanoparticles and Their Potential Applications. , 2019, , 145-170.		6
242	Pore structure characterization and gas transport property of the penetrating layer in composite membranes. Separation and Purification Technology, 2019, 211, 252-258.	3.9	12
243	In Situ Probing Multiple‣cale Structures of Energy Materials for Liâ€Ion Batteries. Small Methods, 2020, 4, 1900223.	4.6	39
244	Small angle x-ray scattering (SAXS). , 2020, , 173-183.		2
245	Well-Defined Nanoparticle Electrocatalysts for the Refinement of Theory. Chemical Reviews, 2020, 120, 814-850.	23.0	75
246	An <i>in situ</i> SAXS investigation of the formation of silver nanoparticles and bimetallic silver–gold nanoparticles in controlled wet-chemical reduction synthesis. Nanoscale Advances, 2020, 2, 225-238.	2.2	53

# 247	ARTICLE A guide to supramolecular polymerizations. Polymer Chemistry, 2020, 11, 1083-1110.	lF 1.9	Citations 99
248	Nanocomposite Grafted Stretchable and Conductive Ionic Hydrogels for Use as Soft Electrode in a Wearable Electrocardiogram Monitoring Device. ACS Applied Polymer Materials, 2020, 2, 618-625.	2.0	30
249	Pulsed Electrical Stimulation Enhances Body Fluid Transport for Collagen Biomineralization. ACS Applied Bio Materials, 2020, 3, 902-910.	2.3	7
250	Exciton Coherence Length and Dynamics in Graphene Quantum Dot Assemblies. Journal of Physical Chemistry Letters, 2020, 11, 210-216.	2.1	14
251	Thermally-Induced morphological evolution of spherical silica nanoparticles using in-operando X-ray scattering measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124260.	2.3	7
252	In situ grazing-incidence x-ray scattering study of pulsed-laser deposition of Pt layers. Physical Review B, 2020, 102, .	1.1	2
253	Self-Assembly of Silica Nanoparticles at Water–Hydrocarbon Interfaces: Insights from <i>In Operando</i> Small-Angle X-ray Scattering Measurements and Molecular Dynamics Simulations. Energy & Fuels, 2020, 34, 12545-12555.	2.5	11
254	Hierarchically Porous Carbon Materials from Self-Assembled Block Copolymer/Dopamine Mixtures. Langmuir, 2020, 36, 11754-11764.	1.6	7
255	Preparation of nano-sized Mg-doped copper silicate materials using coal gangue as the raw material and its characterization for CO2 adsorption. Korean Journal of Chemical Engineering, 2020, 37, 1786-1794.	1.2	6
256	Small-angle X-ray scattering as a multifaceted tool for structural characterization of covalent organic frameworks. Journal of Applied Crystallography, 2020, 53, 1376-1386.	1.9	9
257	Graphenised Lithium Iron Phosphate and Lithium Manganese Silicate Hybrid Cathodes: Potentials for Application in Lithiumâ€ion Batteries. Electroanalysis, 2020, 32, 2982-2999.	1.5	9
258	Particle engineering enabled by polyphenol-mediated supramolecular networks. Nature Communications, 2020, 11, 4804.	5.8	65
259	Foldable semi-ladder polymers: novel aggregation behavior and high-performance solution-processed organic light-emitting transistors. Chemical Science, 2020, 11, 11315-11321.	3.7	22
260	Self-assembly of anisotropic nanoparticles into functional superstructures. Chemical Society Reviews, 2020, 49, 6002-6038.	18.7	140
261	Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications. Nanoscale Advances, 2020, 2, 3656-3733.	2.2	100
262	Relevance of formation conditions to the size, morphology and local structure of intrinsic plutonium colloids. Environmental Science: Nano, 2020, 7, 2252-2266.	2.2	13
263	Peering into the Formation of Cerium Oxide Colloidal Particles in Solution by In Situ Small-Angle X-ray Scattering. Langmuir, 2020, 36, 9175-9190.	1.6	10
264	Polymer Functionalization of Mesoporous Silica Nanoparticles Using Controlled Radical Polymerization Techniques. , 0, , .		4

#	Article	IF	CITATIONS
265	Assembly of Linked Nanocrystal Colloids by Reversible Covalent Bonds. Chemistry of Materials, 2020, 32, 10235-10245.	3.2	27
266	Particle Size Distributions from Electron Microscopy Images: Avoiding Pitfalls. Journal of Physical Chemistry A, 2020, 124, 10075-10081.	1.1	11
267	Packing State Management to Realize Dense and Semiconducting Lead Sulfide Nanocrystals Film via a Single-Step Deposition. Cell Reports Physical Science, 2020, 1, 100183.	2.8	11
268	Surface Properties and Porosity of Silica Particles Studied by Wide-Angle Soft X-ray Scattering. Journal of Physical Chemistry C, 2020, 124, 16663-16674.	1.5	4
269	Insights into the multi-scale structure and in vitro digestibility changes of rice starch-oleic acid/linoleic acid complex induced by heat-moisture treatment. Food Research International, 2020, 137, 109612.	2.9	43
270	A molecular understanding of magnesium aluminium silicate – drug, drug – polymer, magnesium aluminium silicate – polymer nanocomposite complex interactions in modulating drug release: Towards zero order release. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 154, 270-282.	2.0	4
271	Application of Synchrotron Radiation X-ray Scattering and Spectroscopy to Soft Matter. Polymers, 2020, 12, 1624.	2.0	14
272	Scattering Form Factor of Block Copolymer Micelles with Corona Chains Discretely Distributed on the Core Surface. Journal of Physical Chemistry B, 2020, 124, 6140-6146.	1.2	4
273	New approach for time-resolved and dynamic investigations on nanoparticles agglomeration. Nano Research, 2020, 13, 2847-2856.	5.8	20
274	Intercalation of Two-dimensional Layered Materials. Chemical Research in Chinese Universities, 2020, 36, 584-596.	1.3	21
275	Three-Dimensional Interconnected Network of Gold Nanostructures for Molecular Sensing via Surface-Enhanced Raman Scattering Spectroscopy. ACS Applied Nano Materials, 2020, 3, 7950-7962.	2.4	11
276	Green synthesis, characteristics and antimicrobial activity of silver nanoparticles mediated by essential oils as reducing agents. Biocatalysis and Agricultural Biotechnology, 2020, 28, 101746.	1.5	26
277	How Do Surface Properties of Nanoparticles Influence Their Diffusion in the Extracellular Matrix? A Model Study in Matrigel Using Polymer-Grafted Nanoparticles. Langmuir, 2020, 36, 10460-10470.	1.6	19
278	From platinum atoms in molecules to colloidal nanoparticles: A review on reduction, nucleation and growth mechanisms. Advances in Colloid and Interface Science, 2020, 286, 102300.	7.0	57
279	Small-angle X-ray scattering studies of emergent polyoxometalates in solution. Journal of Coordination Chemistry, 2020, 73, 2365-2372.	0.8	3
280	Heteroprotein complex coacervation: Focus on experimental strategies to investigate structure formation as a function of intrinsic and external physicochemical parameters for food applications. Advances in Colloid and Interface Science, 2020, 284, 102268.	7.0	20
281	Generalizing small-angle scattering form factors with linear transformations. Journal of Applied Crystallography, 2020, 53, 1387-1391.	1.9	1
282	Supercrystallographic Reconstruction of 3D Nanorod Assembly with Collectively Anisotropic Upconversion Fluorescence. Nano Letters, 2020, 20, 7367-7374.	4.5	17

#	Article	IF	CITATIONS
283	Plasmonic Supercrystals with a Layered Structure Studied by a Combined TEM AXSâ€XCCA Approach. Advanced Materials Interfaces, 2020, 7, 2000919.	1.9	8
284	Restorable Neutralization of Poly(acrylic acid) Binders toward Balanced Processing Properties and Cycling Performance for Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 57932-57940.	4.0	19
285	An Injectable, Electroconductive Hydrogel/Scaffold for Neural Repair and Motion Sensing. Chemistry of Materials, 2020, 32, 10407-10422.	3.2	57
286	Comparative characterisation of non-monodisperse gold nanoparticle populations by X-ray scattering and electron microscopy. Nanoscale, 2020, 12, 12007-12013.	2.8	10
287	Size characterization of core-corona spherical particles using model-free inverse Fourier transform method. Polymer, 2020, 202, 122623.	1.8	2
288	Quantitative Analysis of Nanorod Aggregation and Morphology from Scanning Electron Micrographs Using SEMseg. Journal of Physical Chemistry A, 2020, 124, 5262-5270.	1.1	13
289	Co-precipitation synthesis of stable iron oxide nanoparticles with NaOH: New insights and continuous production via flow chemistry. Chemical Engineering Journal, 2020, 399, 125740.	6.6	88
290	Characterization of the Shape Anisotropy of Superparamagnetic Iron Oxide Nanoparticles during Thermal Decomposition. Materials, 2020, 13, 2018.	1.3	7
291	<scp>SAS</scp> PDF: pair distribution function analysis of nanoparticle assemblies from small-angle scattering data. Journal of Applied Crystallography, 2020, 53, 699-709.	1.9	10
292	Multifunctional nanostructures of Au–Bi ₂ O ₃ fractals for CO ₂ reduction and optical sensing. Journal of Materials Chemistry A, 2020, 8, 11233-11245.	5.2	25
293	Advanced characterization of surface-modified nanoparticles and nanofilled antibacterial dental adhesive resins. Scientific Reports, 2020, 10, 9811.	1.6	16
294	Effects of Extracellular Polymeric Substances on the Formation and Methylation of Mercury Sulfide Nanoparticles. Environmental Science & Technology, 2020, 54, 8061-8071.	4.6	28
295	Combining surface chemistry modification and <i>in situ</i> small-angle scattering characterization to understand and optimize the biological behavior of nanomedicines. Journal of Materials Chemistry B, 2020, 8, 6438-6450.	2.9	4
296	Solvated and Deformed Hairy Metal–Organic Polyhedron. Journal of Physical Chemistry C, 2020, 124, 15656-15662.	1.5	22
297	Interaction among Spherical Polyelectrolyte Brushes in Concentrated Aqueous Solution. Langmuir, 2020, 36, 3104-3110.	1.6	6
298	Nanomaterials in Biofuels Research. Clean Energy Production Technologies, 2020, , .	0.3	9
299	Small-Angle Scattering from Fractals: Differentiating between Various Types of Structures. Symmetry, 2020, 12, 65.	1.1	16
300	Lignin-fatty acid hybrid nanocapsules for scalable thermal energy storage in phase-change materials. Chemical Engineering Journal, 2020, 393, 124711.	6.6	47

#	Article	IF	CITATIONS
301	Nanoparticle rearrangement under stress in networks of cellulose nanofibrils using in situ SAXS during tensile testing. Nanoscale, 2020, 12, 6462-6471.	2.8	9
302	Real-Time <i>In Situ</i> Observations Reveal a Double Role for Ascorbic Acid in the Anisotropic Growth of Silver on Gold. Journal of Physical Chemistry Letters, 2020, 11, 2830-2837.	2.1	21
303	Selective Hydrogenation of Biomassâ€Đerived Furfural: Enhanced Catalytic Performance of Pdâ^'Cu Alloy Nanoparticles in Porous Polymer. ChemPlusChem, 2020, 85, 1697-1703.	1.3	13
304	Photonic glass based structural color. APL Photonics, 2020, 5, 060901.	3.0	37
305	Structure–property relationship of assembled nanowire materials. Materials Chemistry Frontiers, 2020, 4, 2881-2903.	3.2	24
306	An effective approach for size characterization and mass quantification of silica nanoparticles in coffee creamer by AF4-ICP-MS. Analytical and Bioanalytical Chemistry, 2020, 412, 5499-5512.	1.9	12
307	Quantitative Structural Analysis of Polystyrene Nanoparticles Using Synchrotron X-ray Scattering and Dynamic Light Scattering. Polymers, 2020, 12, 477.	2.0	6
308	The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials, 2020, 30, 1909062.	7.8	174
309	Later Stage Melting of Isotactic Polypropylene. Macromolecules, 2020, 53, 2136-2144.	2.2	23
310	Synchrotron Scattering Methods for Nanomaterials and Soft Matter Research. Materials, 2020, 13, 752.	1.3	39
311	Protein Corona Composition of Silica Nanoparticles in Complex Media: Nanoparticle Size does not Matter. Nanomaterials, 2020, 10, 240.	1.9	29
312	Studying viruses using solution X-ray scattering. Biophysical Reviews, 2020, 12, 41-48.	1.5	14
313	Asymmetric Composition of Ionic Aggregates and the Origin of High Correlated Transference Number in Water-in-Salt Electrolytes. Journal of Physical Chemistry Letters, 2020, 11, 1276-1281.	2.1	57
314	Synthesis and structural characterization of iron-cementite nanoparticles encapsulated in carbon matrix. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	14
315	Universal Gelation of Metal Oxide Nanocrystals via Depletion Attractions. Nano Letters, 2020, 20, 4007-4013.	4.5	16
316	Watching nanomaterials with X-ray eyes: Probing different length scales by combining scattering with spectroscopy. Progress in Materials Science, 2020, 112, 100667.	16.0	21
317	The characterization of self-assembled nanostructures in whole blood. Analytical Methods, 2020, 12, 2068-2081.	1.3	6
318	Biosignal-responsive polymer nanorods that specifically recognize hydrogen polysulfide (H ₂ S _n) from reactive sulfur species. Polymer Chemistry, 2020, 11, 2781-2785.	1.9	0

#	ARTICLE Correlating inter-particle forces and particle shape to shear-induced aggregation/fragmentation and	IF	CITATIONS
319	rheology for dilute anisotropic particle suspensions: A complementary study via capillary rheometry and in-situ small and ultra-small angle X-ray scattering. Journal of Colloid and Interface Science, 2020, 576, 47-58.	5.0	18
320	Thermodynamic stability condition can judge whether a nanoparticle dispersion can be considered a solution in a single phase. Journal of Colloid and Interface Science, 2020, 575, 472-479.	5.0	8
321	Nanoscale Metal Phosphide Phase Segregation to Bi/P Core/Shell Structure. Reactivity as a Source of Elemental Phosphorus. Chemistry of Materials, 2020, 32, 4213-4222.	3.2	6
322	Prediction of Amphiphilic Cell-Penetrating Peptide Building Blocks from Protein-Derived Amino Acid Sequences for Engineering of Drug Delivery Nanoassemblies. Journal of Physical Chemistry B, 2020, 124, 4069-4078.	1.2	45
323	Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis. Catalysis Today, 2021, 373, 80-97.	2.2	53
324	Multiple Hâ€Bonding Chain Extenderâ€Based Ultrastiff Thermoplastic Polyurethanes with Autonomous Selfâ€Healability, Solventâ€Free Adhesiveness, and AlE Fluorescence. Advanced Functional Materials, 2021, 31, 2006944.	7.8	138
325	Different effects of pectin and l̂º-carrageenan on the multiscale structures and in vitro digestibility of extruded rice starch. Food Hydrocolloids, 2021, 111, 106216.	5.6	35
326	Solvent manipulation of the pre-reduction metal–ligand complex and particle-ligand binding for controlled synthesis of Pd nanoparticles. Nanoscale, 2021, 13, 206-217.	2.8	18
327	Relevant Physicochemical Methods to Functionalize, Purify, and Characterize Surface-Decorated Lipid-Based Nanocarriers. Molecular Pharmaceutics, 2021, 18, 44-64.	2.3	8
328	Insights into the Nanostructure, Solvation, and Dynamics of Liquid Electrolytes through Smallâ€Angle Xâ€Ray Scattering. Advanced Energy Materials, 2021, 11, 2002821.	10.2	37
329	Insights into Growth Kinetics of Colloidal Gold Nanoparticles: In Situ SAXS and UV–Vis Evaluation. Journal of Physical Chemistry C, 2021, 125, 1087-1095.	1.5	23
330	Effects of Geometric Confinement on Caging and Dynamics of Polymer-Tethered Nanoparticle Suspensions. Macromolecules, 2021, 54, 426-439.	2.2	10
331	The persistence of a proxy for cooking emissions in megacities: a kinetic study of the ozonolysis of self-assembled films by simultaneous small and wide angle X-ray scattering (SAXS/WAXS) and Raman microscopy. Faraday Discussions, 2021, 226, 364-381.	1.6	16
332	Advanced analysis of magnetic nanoflower measurements to leverage their use in biomedicine. Nanoscale Advances, 2021, 3, 1633-1645.	2.2	9
333	Cyclic strain enhances the early stage mineral nucleation and the modulus of demineralized bone matrix. Biomaterials Science, 2021, 9, 5907-5916.	2.6	9
334	Strain- and field-induced anisotropy in hybrid elastomers with elongated filler nanoparticles. Soft Matter, 2021, 17, 7565-7584.	1.2	3
335	Analytical Methods for Characterization of Nanomaterial Surfaces. Analytical Chemistry, 2021, 93, 1889-1911.	3.2	36
336	Particle formation mechanisms supported by <i>in situ</i> synchrotron XAFS and SAXS studies: a review of metal, metal-oxide, semiconductor and selected other nanoparticle formation reactions. Materials Advances, 2021, 2, 6532-6568.	2.6	18

#	Article	IF	CITATIONS
337	An unparalleled H-bonding and ion-bonding crosslinked waterborne polyurethane with super toughness and unprecedented fracture energy. Materials Horizons, 2021, 8, 2742-2749.	6.4	69
338	An Insight into Properties and Characterization of Nanostructures. , 2021, , 39-81.		0
339	A multimodal analytical toolkit to resolve correlated reaction pathways: the case of nanoparticle formation in zeolites. Chemical Science, 2021, 12, 13836-13847.	3.7	5
340	Multilayer Diffraction Reveals That Colloidal Superlattices Approach the Structural Perfection of Single Crystals. ACS Nano, 2021, 15, 6243-6256.	7.3	29
341	In situ scattering studies of material formation during wet-chemical syntheses. , 2021, , .		0
342	Time-Resolved Small-Angle X-ray Scattering Studies during Aqueous Emulsion Polymerization. Journal of the American Chemical Society, 2021, 143, 1474-1484.	6.6	30
343	Towards the Translation of Electroconductive Organic Materials for Regeneration of Neural Tissues. SSRN Electronic Journal, 0, , .	0.4	1
344	Molecular-Level Insight into Semiconductor Nanocrystal Surfaces. Journal of the American Chemical Society, 2021, 143, 1251-1266.	6.6	61
345	LaMer's 1950 model of particle formation: a review and critical analysis of its classical nucleation and fluctuation theory basis, of competing models and mechanisms for phase-changes and particle formation, and then of its application to silver halide, semiconductor, metal, and metal-oxide nanoparticles. Materials Advances, 2021, 2, 186-235.	2.6	58
346	Interaction of a bovine serum albumin (BSA) protein with mixed anionic–cationic surfactants and the resultant structure. Soft Matter, 2021, 17, 6972-6984.	1.2	18
347	Nanocarrier-loaded block copolymer dual domain organogels. Polymer, 2021, 214, 123246.	1.8	3
348	Antibiotics functionalization intervened morphological, chemical and electronic modifications in chitosan nanoparticles. Nano Structures Nano Objects, 2021, 25, 100657.	1.9	8
349	Operando XAS/SAXS: Guiding Design of Singleâ€Atom and Subnanocluster Catalysts. Small Methods, 2021, 5, e2001194.	4.6	41
351	Influence of Additives on the <i>In Situ</i> Crystallization Dynamics of Methyl Ammonium Lead Halide Perovskites. ACS Applied Energy Materials, 2021, 4, 1398-1409.	2.5	11
352	Recent advances in small angle x-ray scattering for superlattice study. Applied Physics Reviews, 2021, 8, .	5.5	10
353	In Situ Constructing the Kinetic Roadmap of Octahedral Nanocrystal Assembly Toward Controlled Superlattice Fabrication. Journal of the American Chemical Society, 2021, 143, 4234-4243.	6.6	23
354	Small-angle X-ray scattering as an effective tool to understand the structure and rigidity of the reverse micelles with the variation of surfactant. Journal of Molecular Liquids, 2021, 326, 115302.	2.3	9
355	Reply to: Limitations of the iterative electron density reconstruction algorithm from solution scattering data. Nature Methods, 2021, 18, 246-248.	9.0	5

#	Article	IF	CITATIONS
356	Connecting theory and simulation with experiment for the study of diffusion in nanoporous solids. Adsorption, 2021, 27, 683-760.	1.4	72
357	Modulation of Nanoparticle Diffusion by Surface Ligand Length and Charge: Analysis with Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2021, 125, 4555-4565.	1.2	4
359	Enhancing the performance of lithium oxygen batteries through combining redox mediating salts with a lithium protecting salt. Journal of Power Sources, 2021, 491, 229506.	4.0	15
360	Stabilizing Ptâ€Based Electrocatalysts for Oxygen Reduction Reaction: Fundamental Understanding and Design Strategies. Advanced Materials, 2021, 33, e2006494.	11.1	182
361	Cancer Nanopharmaceuticals: Physicochemical Characterization and In Vitro/In Vivo Applications. Cancers, 2021, 13, 1896.	1.7	15
362	Effect of radiant heat exposure on structure and mechanical properties of thermal protective fabrics. Polymer, 2021, 222, 123634.	1.8	10
363	Physicochemical and Adsorption Characteristics of Divinylbenzene-co-Triethoxyvinylsilane Microspheres as Materials for the Removal of Organic Compounds. Molecules, 2021, 26, 2396.	1.7	7
365	Snapshots into carbon dots formation through a combined spectroscopic approach. Nature Communications, 2021, 12, 2640.	5.8	86
366	Surfactant-free synthesis of size controlled platinum nanoparticles: Insights from in situ studies. Applied Surface Science, 2021, 549, 149263.	3.1	18
367	Nucleation and growth in solution synthesis of nanostructures – From fundamentals to advanced applications. Progress in Materials Science, 2022, 123, 100821.	16.0	55
368	Quantum Dots Based Fluorescent Probe for the Selective Detection of Heavy Metal Ions. Journal of Fluorescence, 2021, 31, 1241-1250.	1.3	22
369	Interplay between Interparticle Potential and Adsorption Structure in Nanoparticle Dispersions with Polymer Addition as Displayed by Small-Angle Scattering. Langmuir, 2021, 37, 7503-7512.	1.6	8
370	Enhanced blue photoluminescence of cobalt-reduced graphene oxide hybrid material and observation of rare plasmonic response by tailoring morphology. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	2
371	Synthesis and Advanced Characterization of Polymer–Protein Core–Shell Nanoparticles. Catalysts, 2021, 11, 730.	1.6	2
372	Liquidâ€ŧoâ€5olid Phase Transitions of Imidazoliumâ€Based Zwitterionic Polymers Induced by Hofmeister Anions. Chemistry - an Asian Journal, 2021, 16, 1897-1900.	1.7	4
373	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	7.3	705
374	Unique Dynamics of Hierarchical Constrained Macromolecular Ligands on Coordination Nanocage Surface Promotes Facile and Precise Assembly of Polymers. Journal of Physical Chemistry Letters, 2021, 12, 5395-5403.	2.1	14
375	Nanoparticle Formation Kinetics, Mechanisms, and Accurate Rate Constants: Examination of a Second-Generation Ir(0)n Particle Formation System by Five Monitoring Methods Plus Initial Mechanism-Enabled Population Balance Modeling. Journal of Physical Chemistry C, 2021, 125, 13449-13476	1.5	6

#	Article	IF	CITATIONS
376	Symmetry-breaking in double gyroid block copolymer films by non-affine distortion. Applied Materials Today, 2021, 23, 101006.	2.3	11
377	Microchemical Engineering in a 3D Ordered Channel Enhances Electrocatalysis. Journal of the American Chemical Society, 2021, 143, 12600-12608.	6.6	25
378	Machine Learning Enhanced Computational Reverse Engineering Analysis for Scattering Experiments (CREASE) to Determine Structures in Amphiphilic Polymer Solutions. ACS Polymers Au, 2021, 1, 153-164.	1.7	18
379	Spatial correlation of embedded nanowires probed by X-ray off-Bragg scattering of the host matrix. Journal of Applied Crystallography, 2021, 54, 1173-1178.	1.9	0
380	Towards the translation of electroconductive organic materials for regeneration of neural tissues. Acta Biomaterialia, 2022, 139, 22-42.	4.1	31
381	Real-Time X-ray Scattering Discovers Rich Phase Behavior in PbS Nanocrystal Superlattices during <i>In Situ</i> Assembly. Chemistry of Materials, 2021, 33, 6553-6563.	3.2	8
382	Matrix Manipulation of Directlyâ€Synthesized PbS Quantum Dot Inks Enabled by Coordination Engineering. Advanced Functional Materials, 2021, 31, 2104457.	7.8	24
383	Computational Reverse-Engineering Analysis for Scattering Experiments of Assembled Binary Mixture of Nanoparticles. ACS Materials Au, 2021, 1, 140-156.	2.6	9
384	Evaluation of the supramolecular structure of drug delivery carriers using synchrotron X-ray scattering. Polymer Journal, 2021, 53, 1335-1344.	1.3	5
386	Starch-based food matrices containing protein: Recent understanding of morphology, structure, and properties. Trends in Food Science and Technology, 2021, 114, 212-231.	7.8	80
387	Dependence of the Nanoscale Composite Morphology of Fe3O4 Nanoparticle-Infused Lysozyme Amyloid Fibrils on Timing of Infusion: A Combined SAXS and AFM Study. Molecules, 2021, 26, 4864.	1.7	2
388	Recent Notable Approaches to Study Selfâ€Assembly of Nanoparticles with Xâ€Ray Scattering and Electron Microscopy. Particle and Particle Systems Characterization, 2021, 38, 2100087.	1.2	23
389	Key Parameters to Tailor Hollow Silica Nanospheres for a Type I Porous Liquid Synthesis: Optimized Structure and Accessibility. Nanomaterials, 2021, 11, 2307.	1.9	6
390	Hybrid Nanoparticles as an Efficient Porphyrin Delivery System for Cancer Cells to Enhance Photodynamic Therapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 679128.	2.0	10
391	Imaging Mueller matrix ellipsometry with sub-micron resolution based on back focal plane scanning. Optics Express, 2021, 29, 32712.	1.7	20
392	Microstructure and Electrical Properties of Fluorene Polyester Based Nanocomposite Dielectrics. Polymers, 2021, 13, 3053.	2.0	7
393	Ureasil–Polyether–CoFe2O4 Nanocomposites: Coupling a Drug Delivery System and Magnetic Hyperthermia. ACS Applied Polymer Materials, 0, , .	2.0	3
394	Decoupling the degradation factors of Ni-rich NMC/Li metal batteries using concentrated electrolytes. Energy Storage Materials, 2021, 41, 222-229.	9.5	16

		CITATION REPORT	
#	Article	IF	CITATIONS
395	Mapping and distribution of speciation changes of metals from nanoparticles in environmental matrices using synchrotron radiation techniques. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100491.	1.7	4
396	Hydrophilization of magnetic nanoparticles with an amphiphilic polymer revisited: Roles of nanoparticle capping density and polymer structure. Applied Surface Science, 2021, 570, 151171.	3.1	8
397	Interrogating the relationship between the microstructure of amphiphilic poly(ethylene) Tj ETQq0 C Journal of Colloid and Interface Science, 2022, 606, 1140-1152.	0 rgBT /Overlock 10 5.0	Tf 50 667 Td (g 5
398	Progress in Multidimensional Particle Characterization. KONA Powder and Particle Journal, 2022, 39 3-28.), 0.9	12
399	The five shades of oleylamine in a morphological transition of spherical cobalt nanospheres to nanorods. Nanoscale, 2021, 13, 11289-11297.	2.8	1
400	Shear-free mixing to achieve accurate temporospatial nanoscale kinetics through scanning-SAXS: ion-induced phase transition of dispersed cellulose nanocrystals. Lab on A Chip, 2021, 21, 1084-109	95. ^{3.1}	6
401	Silica hairy nanoparticles: a promising material for self-assembling processes. Soft Matter, 2021, 17 9434-9446.	, <u>1.2</u>	7
402	Electron-Equivalent Valency through Molecularly Well-Defined Multivalent DNA. Journal of the American Chemical Society, 2021, 143, 1752-1757.	6.6	13
403	Microscopic Understanding of the Ionic Networks of "Water-in-Salt―Electrolytes. Energy Mate Advances, 2021, 2021, .	rial 4.7	20
404	Ultrasonically assisted conversion of uranium trioxide into uranium(<scp>vi</scp>) intrinsic colloids. Dalton Transactions, 2021, 50, 11498-11511.	1.6	5
405	Liquidâ€Phase Transmission Electron Microscopy for Studying Colloidal Inorganic Nanoparticles. Advanced Materials, 2018, 30, 1703316.	11.1	77
407	Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots. Nature Communications, 2017, 8, 15467.	5.8	87
408	Characterization of Nanoparticles: Advances. RSC Catalysis Series, 2019, , 37-83.	0.1	2
409	Multivalent ion-induced re-entrant transition of carboxylated cellulose nanofibrils and its influence on nanomaterials' properties. Nanoscale, 2020, 12, 15652-15662.	2.8	28
410	Healing X-ray scattering images. IUCrJ, 2017, 4, 455-465.	1.0	9
411	Carbon Anode Materials for Rechargeable Alkali Metal Ion Batteries and in-situ Characterization Techniques. Frontiers in Chemistry, 2020, 8, 607504.	1.8	25
412	Metrology of convex-shaped nanoparticles <i>via</i> soft classification machine learning of TEM images. Nanoscale Advances, 2021, 3, 6956-6964.	2.2	6
413	Nanoparticle Superlattices through Template-Encoded DNA Dendrimers. Journal of the American Chemical Society, 2021, 143, 17170-17179.	6.6	12

#	Article	IF	CITATIONS
414	Anomalous small-angle X-ray scattering for materials chemistry. Trends in Chemistry, 2021, 3, 1045-1060.	4.4	4
415	Neither Sphere nor Cube—Analyzing the Particle Shape Using Small-Angle Scattering and the Superball Model. Journal of Physical Chemistry C, 2021, 125, 23356-23363.	1.5	7
416	Small-angle X-ray and neutron scattering. Nature Reviews Methods Primers, 2021, 1, .	11.8	77
417	Biophysical characterisation of SMALPs. Biochemical Society Transactions, 2021, 49, 2037-2050.	1.6	2
418	Zeta Potential and Colloidal Stability Predictions for Inorganic Nanoparticle Dispersions: Effects of Experimental Conditions and Electrokinetic Models on the Interpretation of Results. Langmuir, 2021, 37, 13379-13389.	1.6	88
419	Smart PMMA‑cerium oxide anticorrosive coatings: Effect of ceria content on structure and electrochemical properties. Progress in Organic Coatings, 2021, 161, 106548.	1.9	5
420	Advanced Surface Characterization Techniques in Nano- and Biomaterials. , 2019, , 35-55.		0
421	Reversible rearrangement of magnetic nanoparticles in solution studied using time-resolved SAXS method. Journal of Synchrotron Radiation, 2019, 26, 1294-1301.	1.0	2
422	Comparing the backfilling of mesoporous titania thin films with hole conductors of different sizes sharing the same mass density. IUCrJ, 2020, 7, 268-275.	1.0	2
423	Dielectric Fluids for Power Transformers with Special Emphasis on Biodegradable Nanofluids. Nanomaterials, 2021, 11, 2885.	1.9	27
424	Synchrotron SAXS/WAXS and TEM studies of zinc doped natural hydroxyapatite nanoparticles and their evaluation on osteogenic differentiation of human mesenchymal stem cells. Materials Chemistry and Physics, 2022, 276, 125346.	2.0	3
425	Nanomaterial Synthesis and Mechanism for Enzyme Immobilization. Clean Energy Production Technologies, 2020, , 161-190.	0.3	0
426	Nanopharmaceuticals: Synthesis, Characterization, and Challenges. Environmental Chemistry for A Sustainable World, 2020, , 81-138.	0.3	0
427	Insights into the multi-scale structure of wheat starch following acylation: Physicochemical properties and digestion characteristics. Food Hydrocolloids, 2022, 124, 107347.	5.6	23
428	Reversible assembly of silica nanoparticles at water–hydrocarbon interfaces controlled by SDS surfactant. Nanoscale, 2021, 14, 127-139.	2.8	6
429	Nuclear Magnetic Resonance Cryoporometry Study of Solid–Liquid Equilibria in Interconnected Spherical Nanocages. Journal of Physical Chemistry C, 2021, 125, 26916-26926.	1.5	4
430	Inâ€situ Investigations on Gold Nanoparticles Stabilization Mechanisms in Biological Environments Containing HSA. Advanced Functional Materials, 2022, 32, 2110253.	7.8	8
431	Chemical Kinetics of Nanoparticles in the Emulsion State during Phase-Transfer Synthesis. Journal of Physical Chemistry C, 2021, 125, 26157-26166.	1.5	0

#	Article	IF	CITATIONS
432	Structural Analysis of Molecular Materials Using the Pair Distribution Function. Chemical Reviews, 2022, 122, 1208-1272.	23.0	105
433	Unraveling agglomeration and deagglomeration in aqueous colloidal dispersions of very small tin dioxide nanoparticles. Journal of Colloid and Interface Science, 2022, 608, 2681-2693.	5.0	5
434	Clustering in ferronematics—The effect of magnetic collective ordering. IScience, 2021, 24, 103493.	1.9	3
435	Characterization of 1D Mesoporous Inorganic Nanomaterials. Springer Series in Materials Science, 2022, , 9-17.	0.4	0
436	Size-induced amorphous structure in tungsten oxide nanoparticles. Nanoscale, 2021, 13, 20144-20156.	2.8	11
437	Potential of Iron Oxide Nanoparticles as Drug Delivery Vehicle. Topics in Mining, Metallurgy and Materials Engineering, 2021, , 101-128.	1.4	1
438	Microstructure evolution during cooling and reheating of the physical gel composed of SEBS copolymer and crystallizable paraffin. Polymer, 2022, 239, 124442.	1.8	2
439	Covalently integrated silica nanoparticles in poly(ethylene glycol)-based acrylate resins: thermomechanical, swelling, and morphological behavior. Soft Matter, 2022, , .	1.2	4
440	High performance piezoelectric polymer film with aligned electroactive phase nanofibrils achieved by melt stretching of slightly crosslinked poly(vinylidene fluoride) for sensor applications. Chemical Engineering Journal, 2022, 433, 134475.	6.6	11
441	On the growth of the soft and hard protein corona of mesoporous silica particles with varying morphology. Journal of Colloid and Interface Science, 2022, 612, 467-478.	5.0	6
442	Clustering in Ferronematics - The Effect of Magnetic Collective Ordering. SSRN Electronic Journal, 0, ,	0.4	0
443	High-Brilliance Ultranarrow-Band X Rays via Electron Radiation in Colliding Laser Pulses. Physical Review Letters, 2022, 128, 024801.	2.9	5
444	Soft matter crystallography—Complex, diverse, and new crystal structures in condensed materials on the mesoscale. Journal of Applied Physics, 2022, 131, .	1.1	5
445	Development of Nanocrystalline Graphite from Lignin Sources. ACS Sustainable Chemistry and Engineering, 2022, 10, 1786-1794.	3.2	6
446	Synthesis and Characterization of Mesoporous Silica Nanoparticles Loaded with Pt Catalysts. Catalysts, 2022, 12, 183.	1.6	8
447	Study on the three-stage growth of silica nanoparticles prepared by the drop-by-drop precipitation method. Powder Technology, 2022, 397, 117115.	2.1	2
448	The tin(<scp>ii</scp>) precursor is an active site to determine the crystal framework in CsSnI ₃ perovskite. Journal of Materials Chemistry A, 2022, 10, 4782-4790.	5.2	1
449	The emergence of valency in colloidal crystals through electron equivalents. Nature Materials, 2022, 21, 580-587.	13.3	37

#	Article	IF	CITATIONS
450	Synthesis of In _{1–<i>x</i>} Ga _{<i>x</i>} P Quantum Dots in Lewis Basic Molten Salts: The Effects of Surface Chemistry, Reaction Conditions, and Molten Salt Composition. Journal of Physical Chemistry C, 2022, 126, 1564-1580.	1.5	5
451	Using small-angle scattering to guide functional magnetic nanoparticle design. Nanoscale Advances, 2022, 4, 1026-1059.	2.2	32
452	Classical and Nonclassical Nucleation and Growth Mechanisms for Nanoparticle Formation. Annual Review of Physical Chemistry, 2022, 73, 453-477.	4.8	32
453	Understanding Synthesis and Structural Variation of Nanomaterials Through In Situ/Operando XAS and SAXS. Small, 2022, 18, e2106017.	5.2	18
454	Small-Angle X-ray Scattering Analysis of Colloidal Crystals and Replica Materials Made from l-Arginine-Stabilized Silica Nanoparticles. ACS Applied Materials & Interfaces, 2022, , .	4.0	1
455	Persistent nucleation and size dependent attachment kinetics produce monodisperse PbS nanocrystals. Chemical Science, 2022, 13, 4977-4983.	3.7	12
456	On the mineralization of nanocellulose to produce functional hybrid materials. Journal of Materials Chemistry A, 2022, 10, 9248-9276.	5.2	7
457	Techniques for structural and morphological characterization of polymer blends. , 2022, , 139-177.		0
458	Gold Nanoprobes Exploring the Ice Structure in the Aqueous Dispersion of Poly(Ethylene) Tj ETQq0 0 0 rgBT /Over	rlock 10 Ti 1.6	f 50 422 Td
459	General Expression for the Size-Dependent Optical Properties of Quantum Dots. Nano Letters, 2022, 22, 1778-1785.	4.5	30
460	Understanding the risks of mercury sulfide nanoparticles in the environment: Formation, presence, and environmental behaviors. Journal of Environmental Sciences, 2022, 119, 78-92.	3.2	9
461	Characterization of the Internal Pores of LLMâ€105 with Different Particle Sizes Using Contrast Variation Small Angle Xâ€Ray Scattering. Propellants, Explosives, Pyrotechnics, 2022, 47, .	1.0	5

460	Understanding the risks of mercury sulfide nanoparticles in the environment: Formation, presence, and environmental behaviors. Journal of Environmental Sciences, 2022, 119, 78-92.	3.2	9
461	Characterization of the Internal Pores of LLMâ€105 with Different Particle Sizes Using Contrast Variation Small Angle Xâ€Ray Scattering. Propellants, Explosives, Pyrotechnics, 2022, 47, .	1.0	5
462	Efficient solution of particle shape functions for the analysis of powder total scattering data. Journal of Applied Crystallography, 2022, 55, 329-339.	1.9	2
463	Enhanced Stability of the Metal–Organic Framework MIL-101(Cr) by Embedding Pd Nanoparticles for Densification through Compression. ACS Applied Nano Materials, 2022, 5, 4196-4203.	2.4	5
464	Threeâ€Level Hierarchical 3D Network Formation and Structure Elucidation of Wet Hydrogel of Tunableâ€Highâ€Strength Nanocomposites. Macromolecular Materials and Engineering, 2022, 307, .	1.7	2
465	Unexpected role of metal halides in a chalcogenide glass network. Materials and Design, 2022, 216, 110547.	3.3	1
466	In Situ Nanofluid Dispersion Monitoring by Liquid–Solid Triboelectric Nanogenerator Based on Tuning the Structure of the Electric Double Layer. Advanced Functional Materials, 2022, 32, .	7.8	14
467	Parameterless detection of liquid–liquid interfaces with sub-micron resolution in single-molecule localization microscopy. Journal of Colloid and Interface Science, 2022, 620, 356-364.	5.0	1

#	Article	IF	CITATIONS
468	A review of optical methods for ultrasensitive detection and characterization of nanoparticles in liquid media with a focus on the wide field surface plasmon microscopy. Analytica Chimica Acta, 2022, 1204, 339633.	2.6	17
469	Chemically-invariant percolation in silver thioarsenate glasses and two ion-transport regimes over 5 orders of magnitude in Ag content. Journal of Non-Crystalline Solids, 2022, 584, 121513.	1.5	Ο
470	Understanding fluorine-free electrolytes via small-angle X-ray scattering. Journal of Energy Chemistry, 2022, 70, 340-346.	7.1	10
471	From Stochastic Selfâ€Assembly of Nanoparticles to Nanostructured (Photo)Electrocatalysts for Renewable Powerâ€ŧoâ€X Applications via Scalable Flame Synthesis. Advanced Functional Materials, 2022, 32, .	7.8	12
472	Binary Superlattices of Gold Nanoparticles in Two Dimensions. Journal of Physical Chemistry Letters, 2022, 13, 3424-3430.	2.1	8
473	Elucidating the Atomic Structures of the Gel Layer Formed during Aluminoborosilicate Glass Dissolution: An Integrated Experimental and Simulation Study. Journal of Physical Chemistry C, 2022, 126, 7999-8015.	1.5	4
474	Fabrication of Ultrafine, Highly Ordered Nanostructures Using Carbohydrate-Inorganic Hybrid Block Copolymers. Nanomaterials, 2022, 12, 1653.	1.9	2
475	<i>Model2SAS</i> : software for small-angle scattering data calculation from custom shapes. Journal of Applied Crystallography, 2022, 55, 663-668.	1.9	2
476	Size characterization of nanomaterials in environmental and biological matrices through non-electron microscopic techniques. Science of the Total Environment, 2022, 835, 155399.	3.9	3
477	Current Methods and Prospects for Analysis and Characterization of Nanomaterials in the Environment. Environmental Science & amp; Technology, 2022, 56, 7426-7447.	4.6	19
478	Emergent properties in supercrystals of atomically precise nanoclusters and colloidal nanocrystals. Chemical Communications, 2022, 58, 6998-7017.	2.2	6
479	Robust approaches for model-free small-angle scattering data analysis. Journal of Applied Crystallography, 2022, 55, 586-591.	1.9	4
480	<i>SAXSDOG</i> : open software for real-time azimuthal integration of 2D scattering images. Journal of Applied Crystallography, 2022, 55, 677-685.	1.9	14
481	Room-Temperature Evolution of Ternary CdTeS Magic-Size Clusters Exhibiting Sharp Absorption Peaking at 381 nm. Journal of Physical Chemistry Letters, 2022, 13, 4941-4948.	2.1	5
482	Diffraction from Nanocrystal Superlattices. Nanomaterials, 2022, 12, 1781.	1.9	0
483	Some Future Perspectives in Ambient Pressure X-ray Spectroscopies: Atmospheric Pressure, Spatially Resolved and Multi-modal Experiments. ACS Symposium Series, 0, , 333-358.	0.5	1
484	Hyperconverged autonomous organic reaction infrastructure (HAORI) driven by SpecSNN, for low dielectric constant polymer research. , 0, , .		1
485	Current Status and Challenges of Analytical Methods for Evaluation of Size and Surface Modification of Nanoparticle-Based Drug Formulations. AAPS PharmSciTech, 2022, 23, .	1.5	25

#	Article	IF	CITATIONS
486	Importance of Monitoring the Synthesis of Lightâ€Interacting Nanoparticles – A Review on In Situ, Ex Situ, and Online Timeâ€Resolved Studies. Advanced Optical Materials, 2022, 10, .	3.6	4
487	Mesoscale clusters of organic solutes in solution and their role in crystal nucleation. CrystEngComm, 2022, 24, 5182-5193.	1.3	6
488	In vitro evaluation and spectroscopic characterization of nanomaterials for theranostic applications. , 2022, , 73-102.		0
490	Anomalous Selfâ€Optimizing Microporous Grapheneâ€Based Lithiumâ€ion Battery Anode from Laser Activation of Small Organic Molecules. Small Methods, 0, , 2200280.	4.6	2
491	Applying the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) to characterize the society–agriculture–forest system: the case of Huayopata, Cuzco (Peru). Environment, Development and Sustainability, 0, , .	2.7	2
492	Structure and Evolution of Quasiâ€Solidâ€State Hybrid Electrolytes Formed Inside Electrochemical Cells. Advanced Materials, 2022, 34, .	11.1	30
493	Application of the Tikhonov Regularization Method in Problems of Ellipsometic Porometry of Low-K Dielectrics. Russian Microelectronics, 2022, 51, 199-209.	0.1	3
494	Computational Reverse-Engineering Analysis for Scattering Experiments (CREASE) with Machine Learning Enhancement to Determine Structure of Nanoparticle Mixtures and Solutions. ACS Central Science, 2022, 8, 996-1007.	5.3	19
495	Tools shaping drug discovery and development. Biophysics Reviews, 2022, 3, .	1.0	3
496	Applications of Spectroscopic Techniques for Characterization of Polymer Nanocomposite: A Review. Journal of Inorganic and Organometallic Polymers and Materials, 0, , .	1.9	3
497	Multistep Crystallization of Dynamic Nanoparticle Superlattices in Nonaqueous Solutions. Journal of the American Chemical Society, 2022, 144, 14915-14922.	6.6	9
500	Charge-driven arrested phase-separation of polyelectrolyte-gold nanoparticle assemblies leading to plasmonic oligomers. Journal of Colloid and Interface Science, 2023, 630, 355-364.	5.0	1
501	Highly Orientated Perovskite Quantum Dot Solids for Efficient Solar Cells. Advanced Materials, 2022, 34, .	11.1	28
502	Self-organization and tunable characteristic lengths of two-dimensional hexagonal superlattices of nanowires directly grown on substrates. Nano Research, 2023, 16, 1606-1613.	5.8	1
503	Sn-based atokite alloy nanocatalyst for high-power dimethyl ether fueled low-temperature polymer electrolyte fuel cell. Journal of Power Sources, 2022, 544, 231882.	4.0	7
504	Peptide Sequence Determines Structural Sensitivity to Supramolecular Polymerization Pathways and Bioactivity. Journal of the American Chemical Society, 2022, 144, 16512-16523.	6.6	16
505	Mitochondria-targeted liposome-enveloped covalent organic framework co-delivery system for enhanced tumor therapy. Microporous and Mesoporous Materials, 2022, 344, 112198.	2.2	4
506	Modulation of drug binding ability and augmented enzymatic activity of lysozyme stabilized in presence of surface-active ionic liquids. Journal of Molecular Liquids, 2022, 367, 120356.	2.3	2

#	Article	IF	CITATIONS
507	Controlling the rotation modes of hematite nanospindles using dynamic magnetic fields. Nanoscale Advances, 2022, 4, 4535-4541.	2.2	0
508	Melt-Stretched Poly(Vinylidene Fluoride)/Zinc Oxide Nanocomposite Films with Enhanced Piezoelectricity by Stress Concentration in Active Piezoelectric Domains for Wearable Electronics. SSRN Electronic Journal, 0, , .	0.4	0
509	Insight into nanocrystal synthesis: from precursor decomposition to combustion. RSC Advances, 2022, 12, 24374-24389.	1.7	10
510	High-Performance Post-Treatment-Free Pedot Based Thermoelectric with the Establishment of Long-Range Ordered Conductive Paths. SSRN Electronic Journal, 0, , .	0.4	0
511	Turning things around: from cationic/anionic complexation-induced nanoemulsion instability to toughened water-resistant waterborne polyurethanes. Journal of Materials Chemistry A, 2022, 10, 18408-18421.	5.2	5
512	A combined TEM and SAXS study of the growth and self-assembly of ultrathin Pt nanowires. Nanotechnology, 2022, 33, 475602.	1.3	0
513	Multiple experimental studies of pore structure and mineral grain sizes of the Woodford shale in southern Oklahoma, USA. Frontiers in Earth Science, 0, 10, .	0.8	1
514	Structural Insights into Cellulose-Coated Oil in Water Emulsions. Langmuir, 2022, 38, 11171-11179.	1.6	3
515	Reticular chemistry for improving the activity of biocatalysts: Synthesis strategies and advanced characterization techniques. Chem Catalysis, 2022, 2, 2515-2551.	2.9	7
516	Assembly, Properties, and Application of Ordered Group II–VI and IV–VI Colloidal Semiconductor Nanoparticle Films. Advanced Materials Interfaces, 2022, 9, 2201039.	1.9	1
517	Machine learning-accelerated small-angle X-ray scattering analysis of disordered two- and three-phase materials. Frontiers in Materials, 0, 9, .	1.2	3
518	Characterization of Soft Materials by Synchrotron Radiation X-ray Based Scattering and Spectroscopic Techniques. Bunseki Kagaku, 2022, 71, 461-469.	0.1	0
519	Solution-Processed Inorganic Thermoelectric Materials: Opportunities and Challenges. Chemistry of Materials, 2022, 34, 8471-8489.	3.2	12
520	An artificial intelligence enabled chemical synthesis robot for exploration and optimization of nanomaterials. Science Advances, 2022, 8, .	4.7	41
521	Promoted liquid-liquid phase separation of PEO/PS blends with very low LiTFSI fraction. Polymer, 2022, 260, 125307.	1.8	4
522	Seeking regularity from irregularity: unveiling the synthesis–nanomorphology relationships of heterogeneous nanomaterials using unsupervised machine learning. Nanoscale, 2022, 14, 16479-16489.	2.8	5
523	Apex Hydrogen Bonds in Dendron Assembly Modulate Close-packed Mesocrystal Structures. Nanoscale, 0, , .	2.8	3
524	Deciphering the quaternary structure of PEDOT:PSS aqueous dispersion with small-angle scattering. Polymer, 2022, 261, 125415.	1.8	5

ARTICLE IF CITATIONS High-performance post-treatment-free PEDOT based thermoelectric with the establishment of 525 6.6 5 long-range ordered conductive paths. Chemical Engineering Journal, 2023, 454, 140047. One-dimensional semiconducting hierarchical nanostructures., 2022,,. Chapter 17. Study on the Behaviour and Toxicology of Nanomaterials by Synchrotron Radiation 527 0.2 0 Technology. Chemistry in the Environment, 2022, , 414-449. Peptidyl Virusâ€Like Nanovesicles as Reconfigurable "Trojan Horse―for Targeted siRNA Delivery and Synergistic Inhibition of Cancer Cells. Small, 2023, 19, . Brownian dynamics simulations of hard rods in external fields and with contact interactions. 529 0.8 8 Physical Review E, 2022, 106, . Controlling morphology and microstructure of conjugated polymers via solution-state aggregation. Progress in Polymer Science, 2023, 136, 101626. 11.8 Time-Resolved Small-Angle X-ray Scattering Studies during the Aqueous Emulsion Polymerization of 531 2.2 4 Methyl Methacrylate. Macromolecules, 0, , . A versatile chemical vapor synthesis reactor for $\langle i \rangle$ in situ $\langle i \rangle$ x-ray scattering and spectroscopy. 0.6 Review of Scientific Instruments, 2022, 93, . Formation of calcium phosphate nanoparticles in the presence of carboxylate molecules: a 534 1.3 1 time-resolved <i>in situ</i> synchrotron SAXS and WAXS study. CrystEngComm, 2023, 25, 550-559. Removing starch granule-associated surface lipids affects structure of heat-moisture treated 5.1 hull-less barley starch. Carbohydrate Polymers, 2023, 303, 120477. Practical and theoretical aspects of synchrotron small-angle X-ray scattering experiment on 536 1 colloidal solutions., 2021, ,. Solid-phase ripening of hexanitrostilbene (HNS) nanoparticles: Effects of temperature and solvent 537 1.3 vapour. Energetic Materials Frontiers, 2022, 3, 240-247. Lamellar and Hexagonal Assemblies of PEG-Grafted Silver Nanoparticles: Implications for Plasmonics 538 2.4 2 and Photonics. ACS Applied Nano Materials, 2022, 5, 17556-17564. Tuning the Phytoglycogen Size and Aggregate Structure with Solvent Quality: Influence of Water–Ethanol Mixtures Revealed by X-ray and Light Scattering Techniques. Biomacromolecules, 0, , . 2.6 Using small angle x-ray scattering to examine the aggregation mechanism in silica nanoparticle-based 540 1.2 5 ambigels for improved optical clarity. Journal of Chemical Physics, 2023, 158, . Circularly Polarized Luminescence from Atomically Precise Gold Nanoclusters Helically Assembled by 541 Liquidâ€Crystal Template. Advanced Optical Matérials, 2023, 11, . Dynamic Assembly of Polymer-Tethered Gold Nanoparticles into a 2D Superlattice at the Air–Liquid 542 Interface: Influence of the Polymer Structure and Solvent Vapor. Macromolecules, 2022, 55, 2.24 10960-10969. Melt-stretched poly(vinylidene fluoride)/zinc oxide nanocomposite films with enhanced 543 piezoelectricity by stress concentrations in piezoelectric domains for wearable electronics. Chemical 6.6 Engineering Journal, 2023, 455, 140771.

#	Article	IF	CITATIONS
544	Operando X-ray Absorption Spectroscopy Study of SnO ₂ Nanoparticles for Electrochemical Reduction of CO ₂ to Formate. ACS Applied Materials & Interfaces, 2022, 14, 55636-55643.	4.0	3
545	Multicomponent nanoparticle superlattices. , 2023, , 298-323.		1
546	How to Characterize the Protein Structure and Polymer Conformation in Proteinâ€Polymer Conjugates – a Perspective. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	4
547	Cellulose Nanocrystals' Role in Critical Mineral Beneficiation: Dual Aggregate-Dispersant Behavior Supports Environmentally Benign Nickel Processing. ACS Sustainable Chemistry and Engineering, 2023, 11, 1294-1304.	3.2	5
548	Nano-scale pore distribution characterisation of coal using small angle X-ray scattering. Particuology, 2023, 81, 73-85.	2.0	4
549	Extended qâ€range Xâ€ray Scattering Reveals Highâ€Resolution Structural Details of Biomacromolecules in Aqueous Solutions. Chemistry - A European Journal, 0, , .	1.7	0
550	Fast calculation of scattering patterns using hypergeometric function algorithms. Scientific Reports, 2023, 13, .	1.6	3
551	Growth of Smart Microgels in a Flow Reactor Scrutinized by In-Line SAXS. Langmuir, 2023, 39, 1084-1092.	1.6	2
552	A Review on Low-Dimensional Nanomaterials: Nanofabrication, Characterization and Applications. Nanomaterials, 2023, 13, 160.	1.9	17
553	Direct Correlation between Short-Range Vibrational Spectral Diffusion and Localized Ion-Cage Dynamics of Water-in-Salt Electrolytes. Journal of Physical Chemistry B, 2023, 127, 236-248.	1.2	1
554	Techniques for structural and morphological characterization of polymer composites. , 2023, , 69-107.		1
555	Ultrasonically controlled synthesis of UO _{2+<i>x</i>} colloidal nanoparticles. Dalton Transactions, 2023, 52, 2135-2144.	1.6	1
556	Machine learning in nanomaterial electron microscopy data analysis. , 2023, , 279-305.		1
557	Exceptionally Stable Dimers and Trimers of Au ₂₅ Clusters Linked with a Bidentate Dithiol: Synthesis, Structure and Chirality Study. Angewandte Chemie, 2023, 135, .	1.6	0
558	Electrostatic Interaction on Liquid–Liquid Phase Separation at Low Salt Fraction Revealed by Scattering Techniques. Macromolecules, 2023, 56, 2818-2830.	2.2	0
559	Modelling the 3D Structure of PEDOT:PSS Supramolecular Assembly in Aqueous Dispersion Based on SAXS with Synchrotron Light. Chinese Journal of Polymer Science (English Edition), 0, , .	2.0	0
560	Absorption of essential oils in Laponite: Stability enhancement and structural characteristics. Applied Clay Science, 2023, 238, 106936.	2.6	1
561	Dual charge-accepting engineering modified AgIn5S8/CdS quantum dots for efficient photocatalytic hydrogen evolution overall H2S splitting. Applied Catalysis B: Environmental, 2023, 332, 122747.	10.8	14

#	Article	IF	CITATIONS
562	A review on nanoparticles: characteristics, synthesis, applications, and challenges. Frontiers in Microbiology, 0, 14, .	1.5	48
563	Polarized neutron scattering study of hollow Fe3O4 submicron spherical particles. Journal of Magnetism and Magnetic Materials, 2023, 569, 170410.	1.0	1
564	Small-angle X-ray scattering intensity of multiscale models of spheroids. Journal of Applied Crystallography, 2023, 56, 237-246.	1.9	0
565	Exceptionally Stable Dimers and Trimers of Au ₂₅ Clusters Linked with a Bidentate Dithiol: Synthesis, Structure and Chirality Study. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
566	Bioactive self-healing hydrogel based on tannic acid modified gold nano-crosslinker as an injectable brain implant for treating Parkinson's disease. Biomaterials Research, 2023, 27, .	3.2	10
567	The low-cyclic fatigue response and its dependence of specific surface area for open-cell nanoporous Cu. Journal of Applied Physics, 2023, 133, .	1.1	1
568	Twoâ€scale computational homogenization of calcified hydrogels. Mathematical Methods in the Applied Sciences, 0, , .	1.2	0
569	Tunable Ordered Nanostructured Phases by Co-assembly of Amphiphilic Polyoxometalates and Pluronic Block Copolymers. Nano Letters, 2023, 23, 1645-1651.	4.5	3
570	Computational Reverse-Engineering Analysis for Scattering Experiments for Form Factor and Structure Factor Determination (" <i>P</i> (<i>q</i>) and <i>S</i> (<i>q</i>) CREASEâ€). Jacs Au, 2023, 3, 889-904.	3.6	11
571	Nano-Voids in Ultrafine Explosive Particles: Characterization and Effects on Thermal Stability. Langmuir, 2023, 39, 3391-3399.	1.6	5
572	Electrocapacitive Deionization: Mechanisms, Electrodes, and Cell Designs. Advanced Functional Materials, 2023, 33, .	7.8	31
573	Research Progress on the Synthesis of Nitrogen-Containing Compounds with Cyanamide as a Building Block. Chinese Journal of Organic Chemistry, 2023, 43, 436.	0.6	0
574	Design and Characterization of Smart Supramolecular Nanomaterials and their Biohybrids. , 2023, , 1-15.		0
575	Cancer-targeted fucoidan‑iron oxide nanoparticles for synergistic chemotherapy/chemodynamic theranostics through amplification of P-selectin and oxidative stress. International Journal of Biological Macromolecules, 2023, 235, 123821.	3.6	8
576	<i>In Situ</i> and <i>Operando</i> Characterizations of Metal Halide Perovskite and Solar Cells: Insights from Lab-Sized Devices to Upscaling Processes. Chemical Reviews, 2023, 123, 3160-3236.	23.0	15
577	Influence of the emulsifier on nanostructure and clinical application of liquid crystalline emulsions. Scientific Reports, 2023, 13, .	1.6	2
578	Strong and Sustainable Supramolecular Nanofiber Assembling in Acoustic Flow Field. Advanced Functional Materials, 2023, 33, .	7.8	4
579	Interrogating Encapsulated Protein Structure within Metal–Organic Frameworks at Elevated Temperature. Journal of the American Chemical Society, 2023, 145, 7323-7330.	6.6	11

#	Article	IF	CITATIONS
580	Performance of small- and wide-angle x-ray scattering beamline at Indus-2 synchrotron. Review of Scientific Instruments, 2023, 94, .	0.6	3
581	Crystal packing driven comparable thermal expansion of a biimidazole-based energetic material. Journal of Thermal Analysis and Calorimetry, 2023, 148, 4001-4014.	2.0	2
582	Accurate Sizing of Nanoparticles Using a High-Throughput Charge Detection Mass Spectrometer without Energy Selection. ACS Nano, 2023, 17, 7765-7774.	7.3	7
583	Hybrid Silver-Containing Materials Based on Various Forms of Bacterial Cellulose: Synthesis, Structure, and Biological Activity. International Journal of Molecular Sciences, 2023, 24, 7667.	1.8	3
587	Ternary Ionic-Liquid-Based Electrolyte Enables Efficient Electro-reduction of CO ₂ over Bulk Metal Electrodes. Journal of the American Chemical Society, 2023, 145, 11512-11517.	6.6	13
610	Characterization of nanomaterials. , 2023, , 37-61.		0
611	Review on iron nanoparticles for cancer theranostics: synthesis, modification, characterization and applications. Journal of Nanoparticle Research, 2023, 25, .	0.8	0
613	Characterization techniques. , 2024, , 9-47.		0
614	Nanomaterial transport and transformation in soil–plant systems: role of rhizosphere chemistry. , 2023, , 355-375.		1
634	Machine learning for analysis of experimental scattering and spectroscopy data in materials chemistry. Chemical Science, 2023, 14, 14003-14019.	3.7	3
654	Atomic and Close-to-Atomic Scale Manufacturing: The Fundamental Technology of Manufacturing III. Lecture Notes in Mechanical Engineering, 2024, , 315-360.	0.3	0
655	Characterization techniques of functionalized magnetic nanosystems. , 2024, , 115-139.		0