Overview of Materials Qualification Needs for Metal Ad

Jom

68, 747-764

DOI: 10.1007/s11837-015-1810-0

Citation Report

#	ARTICLE	IF	CITATIONS
1	When Risks Cannot Be Seen: Regulating Uncertainty in Emerging Technologies. SSRN Electronic Journal, $0, \dots$	0.4	0
4	Strengths and Microstructure of SUS316L Fabricated by Selective Laser Melting. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2016, 80, 772-777.	0.2	4
5	Laser Beam Melting of NdFeB for the production of rare-earth magnets. , 2016, , .		17
6	Role of geometry on properties of additively manufactured Ti-6Al-4V structures fabricated using laser based directed energy deposition. Materials and Design, 2016, 106, 482-494.	3.3	113
7	Metal Additive Manufacturing: A Review of Mechanical Properties. Annual Review of Materials Research, 2016, 46, 151-186.	4.3	1,174
8	Geometry dependence of microstructure and microhardness for selective electron beam-melted Tiâ \in 6Alâ \in 4V parts. Virtual and Physical Prototyping, 2016, 11, 183-191.	5.3	44
9	Direct metal additive manufacturing processes and their sustainable applications for green technology: A review. International Journal of Precision Engineering and Manufacturing - Green Technology, 2016, 3, 381-395.	2.7	188
10	Defect distribution and microstructure heterogeneity effects on fracture resistance and fatigue behavior of EBM Ti–6Al–4V. International Journal of Fatigue, 2017, 94, 263-287.	2.8	191
11	Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification. Jom, 2017, 69, 439-455.	0.9	279
12	High-temperature oxidation behavior of laser-aided additively manufactured NiCrAlY coating. Corrosion Science, 2017, 118, 168-177.	3.0	47
13	Process monitoring and inspection systems in metal additive manufacturing: Status and applications. International Journal of Precision Engineering and Manufacturing - Green Technology, 2017, 4, 235-245.	2.7	145
14	Simulation of metal additive manufacturing microstructures using kinetic Monte Carlo. Computational Materials Science, 2017, 135, 78-89.	1.4	240
15	Microstructure-Informed Cloud Computing for Interoperability of Materials Databases and Computational Models: Microtextured Regions in Ti Alloys. Integrating Materials and Manufacturing Innovation, 2017, 6, 111-126.	1.2	11
16	Qualification of AM parts: Extreme value statistics applied to tomographic measurements. Materials and Design, 2017, 131, 32-48.	3.3	182
17	When risks cannot be seen: Regulating uncertainty in emerging technologies. Research Policy, 2017, 46, 1215-1233.	3.3	84
18	Development of strength-hardness relationships in additively manufactured titanium alloys. Materials Science & Development of Science & Developmen	2.6	81
19	Direct metal writing: Controlling the rheology through microstructure. Applied Physics Letters, 2017, 110, .	1.5	40
20	Process-Structure Linkages Using a Data Science Approach: Application to Simulated Additive Manufacturing Data. Integrating Materials and Manufacturing Innovation, 2017, 6, 54-68.	1.2	89

#	Article	IF	CITATIONS
21	Material issues in additive manufacturing: A review. Journal of Manufacturing Processes, 2017, 25, 185-200.	2.8	632
22	Cluster 1: commercializing additive manufacturing—hurdles in materials characterization and testing. Translational Materials Research, 2017, 4, 044001.	1.2	4
23	An overview of powder granulometry on feedstock and part performance in the selective laser melting process. Additive Manufacturing, 2017, 18, 228-255.	1.7	201
24	Meso-scale defect evaluation of selective laser melting using spatially resolved acoustic spectroscopy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170194.	1.0	13
25	Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Science and Technology of Advanced Materials, 2017, 18, 584-610.	2.8	660
26	Effects of HIP on microstructural heterogeneity, defect distribution and mechanical properties of additively manufactured EBM Ti-48Al-2Cr-2Nb. Journal of Alloys and Compounds, 2017, 729, 1118-1135.	2.8	102
27	Active Control of Microstructure in Powderâ∈Bed Fusion Additive Manufacturing of Ti6Al4V. Advanced Engineering Materials, 2017, 19, 1700333.	1.6	13
28	CAD-Integrated Cost Estimation and Build Orientation Optimization to Support Design for Metal Additive Manufacturing. , 2017, , .		12
29	Influence of Powder Characteristics on Formation of Porosity in Additive Manufacturing of Ti-6Al-4V Components. Journal of Materials Engineering and Performance, 2017, 26, 4138-4147.	1.2	65
30	Additive manufacturing in the context of structural integrity. International Journal of Fatigue, 2017, 94, 168-177.	2.8	162
31	Toward a Digital Thread and Data Package for Metals-Additive Manufacturing. Smart and Sustainable Manufacturing Systems, 2017, 1, 75-99.	0.3	32
32	Challenges in Additive Manufacturing of Space Parts: Powder Feedstock Cross-Contamination and Its Impact on End Products. Materials, 2017, 10, 522.	1.3	34
33	Laser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implants. Applied Sciences (Switzerland), 2017, 7, 657.	1.3	180
34	The effect of different build orientations on the consolidation, tensile and fracture toughness properties of direct metal laser sintering Ti-6Al-4V. Rapid Prototyping Journal, 2018, 24, 276-284.	1.6	23
35	Efficient determination of influence factors in fatigue of additive manufactured metals. Procedia Structural Integrity, 2018, 8, 184-191.	0.3	13
36	Numerical investigation of laser deposited Al-based coatings on Ti-6Al-4V alloy. , 2018, , .		30
37	Understanding grain evolution in additive manufacturing through modeling. Additive Manufacturing, 2018, 21, 255-268.	1.7	88
38	Glass forming ability, flexural strength, and wear properties of additively manufactured Zr-based bulk metallic glasses produced through laser powder bed fusion. Additive Manufacturing, 2018, 21, 312-317.	1.7	56

#	Article	IF	CITATIONS
39	Additive Manufacturing of Metallic Materials: A Review. Journal of Materials Engineering and Performance, 2018, 27, 1-13.	1.2	318
40	In-situ interfacial quality assessment of Ultrasonic Additive Manufacturing components using ultrasonic NDE. NDT and E International, 2018, 93, 117-130.	1.7	24
41	Location specific solidification microstructure control in electron beam melting of Ti-6Al-4V. Additive Manufacturing, 2018, 19, 160-166.	1.7	38
42	Process Evaluation of AISI 4340 Steel Manufactured by Laser Powder Bed Fusion. Journal of Materials Engineering and Performance, 2018, 27, 63-71.	1.2	20
43	Surface Finish Improvement of Additive Manufactured Metal Parts. Engineering Materials, 2018, , 145-164.	0.3	35
44	Particle size characterisation of metals powders for Additive Manufacturing using a microwave sensor. Powder Technology, 2018, 327, 536-543.	2.1	11
45	Modeling of Powder Bed Manufacturing Defects. Journal of Materials Engineering and Performance, 2018, 27, 32-43.	1.2	55
46	Fatigue properties of AlSi10Mg obtained by additive manufacturing: Defect-based modelling and prediction of fatigue strength. Engineering Fracture Mechanics, 2018, 187, 165-189.	2.0	338
47	Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review. Materials and Design, 2018, 139, 565-586.	3.3	913
48	Strengths and Microstructure of SUS316L Fabricated by Selective Laser Melting. Materials Transactions, 2018, 59, 482-487.	0.4	7
49	Differential Performance Signature Qualification for Additively Manufactured Parts., 2018,,.		3
50	Spall fracture in additive manufactured tantalum. Journal of Applied Physics, 2018, 124, .	1.1	40
51	Additive Manufacturing of High-Entropy Alloys: A Review. Entropy, 2018, 20, 937.	1.1	142
52	Structure / Property (Constitutive and Dynamic Strength / Damage) Behavior of Additively Manufactured Tantalum. EPJ Web of Conferences, 2018, 183, 03002.	0.1	0
53	X-Ray Microcomputed Tomography in Additive Manufacturing: A Review of the Current Technology and Applications. 3D Printing and Additive Manufacturing, 2018, 5, 227-247.	1.4	317
54	Standardized X-ray tomography testing of additively manufactured parts: A round robin test. Additive Manufacturing, 2018, 24, 125-136.	1.7	48
55	Polymers Selection for Harsh Environments to Be Processed Using Additive Manufacturing Techniques. IEEE Access, 2018, 6, 29899-29911.	2.6	13
56	Nondestructive evaluation method for standardization of fused filament fabrication based additive manufacturing. Additive Manufacturing, 2018, 24, 154-165.	1.7	7

#	ARTICLE	IF	CITATIONS
57	A review of slicing methods for directed energy deposition based additive manufacturing. Rapid Prototyping Journal, 2018, 24, 1012-1025.	1.6	40
58	Standard method for microCT-based additive manufacturing quality control 1: Porosity analysis. MethodsX, 2018, 5, 1102-1110.	0.7	58
59	Structure/property characterization of spallation in wrought and additively manufactured tantalum. AIP Conference Proceedings, 2018 , , .	0.3	6
60	Repercussions of powder contamination on the fatigue life of additive manufactured maraging steel. Additive Manufacturing, 2018, 24, 13-19.	1.7	17
61	The Effect of Oxygen on Phase Equilibria in the Ti-V System: Impacts on the AM Processing of Ti Alloys. Jom, 2018, 70, 1692-1705.	0.9	17
62	Defect analysis and fatigue design basis for Ni-based superalloy 718 manufactured by selective laser melting. International Journal of Fatigue, 2018, 117, 485-495.	2.8	141
63	Machine Learning to Optimize Additive Manufacturing Parameters for Laser Powder Bed Fusion of Inconel 718. Minerals, Metals and Materials Series, 2018, , 595-610.	0.3	43
64	Effects of Post-processing on Microstructure and Mechanical Properties of SLM-Processed IN-718. Minerals, Metals and Materials Series, 2018, , 515-526.	0.3	7
65	Rapid Solidification in Bulk Ti-Nb Alloys by Single-Track Laser Melting. Jom, 2018, 70, 1589-1597.	0.9	30
66	Impact of Powder Variability on the Microstructure and Mechanical Behavior of Selective Laser Melted Alloy 718. Minerals, Metals and Materials Series, 2018, , 89-113.	0.3	10
67	Impact of Defects in Powder Feedstock Materials on Microstructure of 304L and 316L Stainless Steel Produced by Additive Manufacturing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 3637-3650.	1.1	63
68	Predictive model for porosity in powder-bed fusion additive manufacturing at high beam energy regime. Additive Manufacturing, 2018, 22, 817-822.	1.7	54
69	In-situ acoustic signature monitoring in additive manufacturing processes. AIP Conference Proceedings, 2018, , .	0.3	29
70	Multivariate Calibration and Experimental Validation of a 3D Finite Element Thermal Model for Laser Powder Bed Fusion Metal Additive Manufacturing. Integrating Materials and Manufacturing Innovation, 2018, 7, 116-135.	1.2	36
71	Direct numerical simulation of mechanical response in synthetic additively manufactured microstructures. Modelling and Simulation in Materials Science and Engineering, 2018, 26, 055010.	0.8	30
72	Quantification and certification of additive manufacturing materials and processes., 2018,, 181-213.		17
73	In-Process Monitoring of Material Cross-Contamination Defects in Laser Powder Bed Fusion. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2018, 140, .	1.3	54
74	Integrated Computational and Experimental Methods for Additive Manufacturing. Jom, 2018, 70, 1587-1588.	0.9	1

#	ARTICLE	IF	CITATIONS
75	Ambient and High-Temperature Bulk Characterization of Additively Manufactured Ti-6Al-4V Using Neutron Diffraction. Jom, 2018, 70, 1714-1722.	0.9	13
76	LCF behaviour and a comprehensive life prediction model for AlSi10Mg obtained by SLM. International Journal of Fatigue, 2018, 117, 47-62.	2.8	67
77	Influence of defects, surface roughness and HIP on the fatigue strength of Ti-6Al-4V manufactured by additive manufacturing. International Journal of Fatigue, 2018, 117, 163-179.	2.8	337
78	Mechanism of porosity formation and influence on mechanical properties in selective laser melting of Ti-6Al-4V parts. Materials and Design, 2018, 156, 480-493.	3.3	90
79	Additively manufactured tantalum microstructures. Materialia, 2018, 1, 15-24.	1.3	57
80	Energy efficiency contributions and losses during selective laser melting. Journal of Laser Applications, 2018, 30, .	0.8	17
81	Asymmetric Cracking in Mar-M247 Alloy Builds During Electron Beam Powder Bed Fusion Additive Manufacturing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 5065-5079.	1.1	45
82	A Critical Review on Metallic Glasses as Structural Materials for Cardiovascular Stent Applications. Journal of Functional Biomaterials, 2018, 9, 19.	1.8	59
83	Internal Friction Angle of Metal Powders. Metals, 2018, 8, 255.	1.0	18
84	ICME Manufacturability Assessment in Powder Bed Fusion Additive Manufacturing. Jom, 2018, 70, 1677-1685.	0.9	8
85	Phase Fraction and Evolution of Additively Manufactured (AM) 15-5 Stainless Steel and Inconel 625 AM-Bench Artifacts. Integrating Materials and Manufacturing Innovation, 2019, 8, 362-377.	1.2	14
86	The third Sandia fracture challenge: predictions of ductile fracture in additively manufactured metal. International Journal of Fracture, 2019, 218, 5-61.	1.1	62
87	Fatigue crack growth behavior of a selective laser melted AlSi10Mg. Engineering Fracture Mechanics, 2019, 217, 106564.	2.0	38
88	Metal Additive Manufacturing Cycle in Aerospace Industry: A Comprehensive Review. Journal of Manufacturing and Materials Processing, 2019, 3, 52.	1.0	55
89	Do additive manufactured parts deserve better?. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 2146-2154.	1.7	19
90	Cross-Contamination Quantification in Powders for Additive Manufacturing: A Study on Ti-6Al-4V and Maraging Steel. Materials, 2019, 12, 2342.	1.3	6
91	Smooth and notch fatigue behavior of selectively laser melted Inconel 718 with as-built surfaces. International Journal of Fatigue, 2019, 128, 105211.	2.8	29
92	Micro-Macro Relationship between Microstructure, Porosity, Mechanical Properties, and Build Mode Parameters of a Selective-Electron-Beam-Melted Ti-6Al-4V Alloy. Metals, 2019, 9, 786.	1.0	14

#	Article	IF	CITATIONS
93	Acoustic monitoring of additive manufacturing for damage and process condition determination. AIP Conference Proceedings, 2019, , .	0.3	19
94	Use of an Abrasive Water Cavitating Jet and Peening Process to Improve the Fatigue Strength of Titanium Alloy 6Al-4V Manufactured by the Electron Beam Powder Bed Melting (EBPB) Additive Manufacturing Method. Jom, 2019, 71, 4311-4318.	0.9	44
95	Additive manufacturing: effects of defects. , 2019, , 453-483.		5
96	Assessing printability maps in additive manufacturing of metal alloys. Acta Materialia, 2019, 176, 199-210.	3.8	146
97	Experimental and numerical investigation on compressive fatigue strength of lattice structures of AlSi7Mg manufactured by SLM. International Journal of Fatigue, 2019, 128, 105181.	2.8	54
98	Effect of ultrasonic shot peening on the surface defects of thin struts built by electron beam melting: Consequences on fatigue resistance. Additive Manufacturing, 2019, 28, 821-830.	1.7	20
99	Beyond the Toolpath: Site-Specific Melt Pool Size Control Enables Printing of Extra-Toolpath Geometry in Laser Wire-Based Directed Energy Deposition. Applied Sciences (Switzerland), 2019, 9, 4355.	1.3	10
100	High-temperature materials for structural applications: New perspectives on high-entropy alloys, bulk metallic glasses, and nanomaterials. MRS Bulletin, 2019, 44, 847-853.	1.7	27
101	Additively manufactured CoCrFeNiMn high-entropy alloy via pre-alloyed powder. Materials and Design, 2019, 168, 107576.	3.3	124
102	Design Rules for Additive Manufacturing – Understanding the Fundamental Thermal Phenomena to Reduce Scrap. Procedia Manufacturing, 2019, 33, 375-382.	1.9	8
103	A Review on Binder Jet Additive Manufacturing of 316L Stainless Steel. Journal of Manufacturing and Materials Processing, 2019, 3, 82.	1.0	109
104	Laboratory X-ray tomography for metal additive manufacturing: Round robin test. Additive Manufacturing, 2019, 30, 100837.	1.7	21
105	Parametric analysis to quantify process input influence on the printed densities of binder jetted alumina ceramics. Additive Manufacturing, 2019, 30, 100864.	1.7	17
106	Directed energy deposition and characterization of high-carbon high speed steels. Additive Manufacturing, 2019, 30, 100838.	1.7	12
107	Qualification for metal additive manufacturing. , 2019, , 245-307.		1
108	Geometrical metrology for metal additive manufacturing. CIRP Annals - Manufacturing Technology, 2019, 68, 677-700.	1.7	193
109	Thermal Modeling in Metal Additive Manufacturing Using Graph Theory. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2019, 141, .	1.3	38
110	An experimental study of tensile property variability in selective laser melting. Journal of Manufacturing Processes, 2019, 43, 26-35.	2.8	31

#	Article	IF	CITATIONS
111	Towards predicting differences in fatigue performance of laser powder bed fused Ti-6Al-4V coupons from the same build. International Journal of Fatigue, 2019, 126, 284-296.	2.8	38
112	Direct metal fabrication in rapid prototyping: A review. Journal of Manufacturing Processes, 2019, 42, 167-191.	2.8	85
113	Quality control of AlSi10Mg produced by SLM: Metallography versus CT scans for critical defect size assessment. Additive Manufacturing, 2019, 28, 394-405.	1.7	49
114	LPBF Right the First Timeâ€"the Right Mix Between Modeling and Experiments. Integrating Materials and Manufacturing Innovation, 2019, 8, 194-216.	1.2	17
115	Precision assembly of additively manufactured components using integral kinematic couplings. Precision Engineering, 2019, 60, 104-115.	1.8	6
116	Influence of thermal post treatments on microstructure and oxidation behavior of EB-PBF manufactured Alloy 718. Materials Characterization, 2019, 150, 236-251.	1.9	27
117	Influence of laser processing parameters on porosity in Inconel 718 during additive manufacturing. International Journal of Advanced Manufacturing Technology, 2019, 103, 1497-1507.	1.5	98
118	A new FE post-processor for probabilistic fatigue assessment in the presence of defects and its application to AM parts. International Journal of Fatigue, 2019, 125, 324-341.	2.8	59
119	Qualification and certification of metal additive manufactured hardware for aerospace applications., $2019, 33-66$.		31
120	Nondestructive evaluation of additively manufactured metallic parts. , 2019, , 401-417.		9
121	Status, comparison, and future of the representations of additive manufacturing data. CAD Computer Aided Design, 2019, 111, 44-64.	1.4	55
122	Anisotropic Mechanical Behavior of Additive Manufactured AISI 316L Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 2014-2021.	1.1	47
123	An overview of residual stresses in metal powder bed fusion. Additive Manufacturing, 2019, 27, 131-149.	1.7	228
124	Review: The Impact of Metal Additive Manufacturing on the Aerospace Industry. Metals, 2019, 9, 1286.	1.0	162
125	Structure/Property Behavior of Additively Manufactured (AM) Materials: Opportunities and Challenges. Conference Proceedings of the Society for Experimental Mechanics, 2019, , 1-3.	0.3	0
126	Notch-defect interaction in additively manufactured Inconel 718. International Journal of Fatigue, 2019, 122, 35-45.	2.8	73
127	Microstructure and surface analysis of friction stir processed Ti-6Al-4V plates manufactured by electron beam melting. Journal of Manufacturing Processes, 2019, 37, 392-401.	2.8	26
128	Additive manufacturing of Ti6Al4V alloy: A review. Materials and Design, 2019, 164, 107552.	3.3	1,384

#	Article	IF	CITATIONS
129	Detecting void-induced scatter of fatigue life of selective laser melting-fabricated inconel 718 using miniature specimens. Materials Research Express, 2019, 6, 046549.	0.8	14
130	Technological Innovations in Metals Engineering. Jom, 2019, 71, 651-654.	0.9	0
131	Mechanical feasibility of ABS/HIPS-based multi-material structures primed by low-cost polymer printer. Rapid Prototyping Journal, 2019, 25, 152-161.	1.6	49
132	Towards Qualification of Additively Manufactured Ti6Al4V (ELI) Medical Implants. Jom, 2019, 71, 655-661.	0.9	11
133	Damage modeling of metallic alloys made by additive manufacturing. Materials Science & Damage modeling of metallic alloys made by additive manufacturing. Materials Science & Damage Ma	2.6	23
134	A review on the fatigue behavior of Ti-6Al-4V fabricated by electron beam melting additive manufacturing. International Journal of Fatigue, 2019, 119, 173-184.	2.8	149
135	A deep neural network for classification of melt-pool images in metal additive manufacturing. Journal of Intelligent Manufacturing, 2020, 31, 375-386.	4.4	139
136	Dual-Notch Void Model to Explain the Anisotropic Strengths of 3D Printed Polymers. Journal of Engineering Materials and Technology, Transactions of the ASME, 2020, 142, .	0.8	7
137	ICME Approach to Determining Critical Pore Size of IN718 Produced by Selective Laser Melting. Jom, 2020, 72, 465-474.	0.9	17
138	Review of defects in lattice structures manufactured by powder bed fusion. International Journal of Advanced Manufacturing Technology, 2020, 106, 2649-2668.	1.5	117
139	High cycle fatigue behavior and life prediction for additively manufactured 17-4 PH stainless steel: Effect of sub-surface porosity and surface roughness. Theoretical and Applied Fracture Mechanics, 2020, 106, 102477.	2.1	112
140	Grain structure control during metal 3D printing by high-intensity ultrasound. Nature Communications, 2020, 11, 142.	5.8	416
141	Influence of processing and microstructure on the local and bulk thermal conductivity of selective laser melted 316L stainless steel. Additive Manufacturing, 2020, 32, 100996.	1.7	43
142	On the ballistic perforation resistance of additive manufactured AlSi10Mg aluminium plates. International Journal of Impact Engineering, 2020, 137, 103476.	2.4	37
143	Toward the digital twin of additive manufacturing: Integrating thermal simulations, sensing, and analytics to detect process faults. IISE Transactions, 2020, 52, 1204-1217.	1.6	97
144	Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights. Materials and Design, 2020, 187, 108385.	3.3	354
145	Anisotropic polycrystal plasticity due to microstructural heterogeneity: A multi-scale experimental and numerical study on additively manufactured metallic materials. Acta Materialia, 2020, 185, 340-369.	3.8	64
146	Fatigue strength prediction of laser powder bed fusion processed Inconel 625 specimens with intentionally-seeded porosity: Feasibility study. International Journal of Fatigue, 2020, 132, 105394.	2.8	30

#	Article	IF	CITATIONS
147	Evolution of cellular dislocation structures and defects in additively manufactured austenitic stainless steel under ion irradiation. Scripta Materialia, 2020, 178, 245-250.	2.6	33
148	Experimental observation of stress formation during selective laser melting using in situ X-ray diffraction. Additive Manufacturing, 2020, 32, 101028.	1.7	18
149	Invited review: Machine learning for materials developments in metals additive manufacturing. Additive Manufacturing, 2020, 36, 101641.	1.7	61
150	Defect structure process maps for laser powder bed fusion additive manufacturing. Additive Manufacturing, 2020, 36, 101552.	1.7	7 5
151	In-Situ Monitoring for Defect Identification in Nickel Alloy Complex Geometries Fabricated by L-PBF Additive Manufacturing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 6528-6545.	1.1	22
152	In situ heat accumulation by geometrical features obstructing heat flux and by reduced inter layer times in laser powder bed fusion of AISI 316L stainless steel. Procedia CIRP, 2020, 94, 155-160.	1.0	22
153	Post-processing and testing-oriented design for additive manufacturing $\hat{a} \in A$ general framework for the development of hybrid AM parts. Procedia CIRP, 2020, 90, 91-96.	1.0	3
154	Fracture behavior of additively manufactured components: A review. Theoretical and Applied Fracture Mechanics, 2020, 109, 102763.	2.1	51
155	Integrated Modeling Tools: Overview. , 2020, , .		1
156	Assessment of grain structure evolution with resonant ultrasound spectroscopy in additively manufactured nickel alloys. Materials Characterization, 2020, 167, 110501.	1.9	25
157	Invited Review Article: Review of the formation and impact of flaws in powder bed fusion additive manufacturing. Additive Manufacturing, 2020, 36, 101457.	1.7	62
158	A comprehensive review: metrology in additive manufacturing and 3D printing technology. Progress in Additive Manufacturing, 2020, 5, 319-353.	2.5	48
159	Metal AM materials and processes. , 2020, , 11-37.		0
160	Comparison between Virgin and Recycled 316L SS and AlSi10Mg Powders Used for Laser Powder Bed Fusion Additive Manufacturing. Metals, 2020, 10, 1625.	1.0	21
161	Influence of Powder Particle Morphology on the Static and Fatigue Properties of Laser Powder Bed-Fused Ti-6Al-4V Components. Journal of Manufacturing and Materials Processing, 2020, 4, 107.	1.0	0
162	Metal additive manufacturing: Technology, metallurgy and modelling. Journal of Manufacturing Processes, 2020, 57, 978-1003.	2.8	179
163	Additive manufacturing of titanium-base alloys with equiaxed microstructures using powder blends. Additive Manufacturing, 2020, 36, 101467.	1.7	10
164	Study of the Effects of Hot Forging on the Additively Manufactured Stainless Steel Preforms. Journal of Manufacturing Processes, 2020, 57, 668-676.	2.8	37

#	Article	IF	Citations
165	Size-dependent stochastic tensile properties in additively manufactured 316L stainless steel. Additive Manufacturing, 2020, 32, 101090.	1.7	33
166	Effects of heat treatment on residual stresses in the laser powder bed fusion of 316L stainless steel: Finite element predictions and neutron diffraction measurements. Journal of Manufacturing Processes, 2020, 57, 641-653.	2.8	33
167	Fatigue Crack Initiation of Metals Fabricated by Additive Manufacturingâ€"A Crystal Plasticity Energy-Based Approach to IN718 Life Prediction. Crystals, 2020, 10, 905.	1.0	10
168	A Fractographic Analysis of Additively Manufactured Ti6Al4V by Electron Beam Melting: Effects of Powder Reuse. Journal of Failure Analysis and Prevention, 2020, 20, 794-803.	0.5	13
170	Reliability of molecular dynamics interatomic potentials for modeling of titanium in additive manufacturing processes. Computational Materials Science, 2020, 184, 109883.	1.4	7
171	Fatigue strength assessment of "as built―AlSi10Mg manufactured by SLM with different build orientations. International Journal of Fatigue, 2020, 139, 105737.	2.8	113
172	Qualification of a Ni–Cu Alloy for the Laser Powder Bed Fusion Process (LPBF): Its Microstructure and Mechanical Properties. Applied Sciences (Switzerland), 2020, 10, 3401.	1.3	16
173	Xâ€ray tomography for the advancement of laser powder bed fusion additive manufacturing. Journal of Microscopy, 2022, 285, 121-130.	0.8	7
174	Selective Laser Melting of Aluminum and Titanium Matrix Composites: Recent Progress and Potential Applications in the Aerospace Industry. Aerospace, 2020, 7, 77.	1.1	67
175	Deformations of Ti-6Al-4V additive-manufacturing-induced isotropic and anisotropic columnar structures: Insitu measurements and underlying mechanisms. Additive Manufacturing, 2020, 35, 101322.	1.7	13
176	Optimal Design for Metal Additive Manufacturing: An Integrated Computational Materials Engineering (ICME) Approach. Jom, 2020, 72, 1092-1104.	0.9	32
177	Material Reuse in Laser Powder Bed Fusion: Side Effects of the Laser—Metal Powder Interaction. Metals, 2020, 10, 341.	1.0	76
178	Process optimization of complex geometries using feed forward control for laser powder bed fusion additive manufacturing. Additive Manufacturing, 2020, 34, 101169.	1.7	46
179	The effects of microporosity in struts of gyroid lattice structures produced by laser powder bed fusion. Materials and Design, 2020, 194, 108899.	3.3	43
180	A laser powder bed fusion system for <i>in situ</i> x-ray diffraction with high-energy synchrotron radiation. Review of Scientific Instruments, 2020, 91, 075104.	0.6	20
181	Killer notches: The effect of as-built surface roughness on fatigue failure in AlSi10Mg produced by laser powder bed fusion. Additive Manufacturing, 2020, 35, 101424.	1.7	44
182	Two-dimensional thermal finite element model of directed energy deposition: Matching melt pool temperature profile with pyrometer measurement. Journal of Manufacturing Processes, 2020, 57, 187-195.	2.8	9
183	Electron beam additive manufacturing of Ti6Al4V: Evolution of powder morphology and part microstructure with powder reuse. Materialia, 2020, 9, 100631.	1.3	49

#	Article	IF	CITATIONS
184	Fatigue performances of chemically etched thin struts built by selective electron beam melting: Experiments and predictions. Materialia, 2020, 9, 100589.	1.3	41
185	Influence of layer-wise fabrication and surface orientation on the notch fatigue behavior of as-built additively manufactured Ti6Al4V. International Journal of Fatigue, 2020, 134, 105483.	2.8	16
186	Microstructure and cyclic deformation behavior of a 3D-printed Ti–6Al–4V alloy. Journal of Alloys and Compounds, 2020, 825, 153971.	2.8	22
187	Revealing relationships between porosity, microstructure and mechanical properties of laser powder bed fusion 316L stainless steel through heat treatment. Materials and Design, 2020, 189, 108481.	3.3	159
188	Hot isostatic pressing in metal additive manufacturing: X-ray tomography reveals details of pore closure. Additive Manufacturing, 2020, 34, 101191.	1.7	71
189	Statistical modelling of microsegregation in laser powder-bed fusion. Philosophical Magazine Letters, 2020, 100, 271-282.	0.5	4
190	A Design for Qualification Framework for the Development of Additive Manufacturing Componentsâ€"A Case Study from the Space Industry. Aerospace, 2020, 7, 25.	1.1	8
191	A simple method for assessing powder spreadability for additive manufacturing. Powder Technology, 2020, 367, 671-679.	2.1	48
192	Mechanistic models for additive manufacturing of metallic components. Progress in Materials Science, 2021, 116, 100703.	16.0	246
193	Influence of porosity on the fatigue life of laser powder bed fusion–produced Ti6Al4V. Material Design and Processing Communications, 2021, 3, e141.	0.5	1
194	Single particle adhesion variability in additive manufacturing powders. Journal of Adhesion, 2021, 97, 19-37.	1.8	1
195	Additive manufacturing of silicon carbide for nuclear applications. Journal of Nuclear Materials, 2021, 543, 152577.	1.3	54
196	Mechanical anisotropy of additively manufactured stainless steel 316L: An experimental and numerical study. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 799, 140154.	2.6	75
197	Build location effect on the single-track pore characteristics formed with the laser powder bed fusion process. Manufacturing Letters, 2021, 28, 6-10.	1.1	5
198	Direct comparison of microstructure-sensitive fatigue crack initiation via crystal plasticity simulations and in situ high-energy X-ray experiments. Materials and Design, 2021, 197, 109216.	3.3	31
199	Efficient manufacturing processes and performance qualification via active learning: Application to a cylindrical plunge grinding platform. Procedia Manufacturing, 2021, 53, 716-725.	1.9	4
200	Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges. Applied Sciences (Switzerland), 2021, 11, 1213.	1.3	240
201	The Surface Quality Improvement Methods for FDM Printed Parts: A Review. Materials Forming, Machining and Tribology, 2021, , 167-194.	0.7	22

#	Article	IF	CITATIONS
202	Computational modelling of process–structure–property–performance relationships in metal additive manufacturing: a review. International Materials Reviews, 2022, 67, 1-46.	9.4	56
203	In Situ Real-Time Monitoring Versus Post NDE for Quality Assurance of Additively Manufactured Metal Parts. , 2021, , 1-37.		0
204	Deep Learning-Based Ultrasonic Testing to Evaluate the Porosity of Additively Manufactured Parts with Rough Surfaces. Metals, $2021,11,290.$	1.0	18
205	Effects of spatial energy distribution-induced porosity on mechanical properties of laser powder bed fusion 316L stainless steel. Additive Manufacturing, 2021, 39, 101875.	1.7	5
206	Powder reuse and its contribution to porosity in additive manufacturing of Ti6Al4V. Materialia, 2021, 15, 100992.	1.3	24
207	Powder characteristics of Al _{0.5} CoCrFeMnNi high-entropy alloys fabricated by gas atomisation method. Powder Metallurgy, 2021, 64, 219-227.	0.9	4
208	Research on Bulk-metallic Glasses and High-entropy Alloys in Peter K. Liaw's Group and with His Colleagues. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2033-2093.	1.1	7
209	Influence of porosity on the thermal, electrical, and mechanical performance of selective laser melted stainless steel. Additive Manufacturing, 2021, 39, 101886.	1.7	6
210	Effects of processing parameters and heat treatment on thermal conductivity of additively manufactured AlSi10Mg by selective laser melting. Materials Characterization, 2021, 173, 110945.	1.9	35
211	Fatigue Behavior of L-PBF Metals: Cost-Effective Characterization via Specimen Miniaturization. Journal of Materials Engineering and Performance, 2021, 30, 5227-5234.	1.2	3
212	End to end process evaluation for additively manufactured liquid rocket engine thrust chambers. Acta Astronautica, 2021, 182, 454-465.	1.7	48
213	Comparative study for microstructural characterisations and properties of Ti-Y powders produced by vacuum induction gas atomization cold crucible process. Powder Metallurgy, 2021, 64, 396-403.	0.9	3
214	Thermal modeling in metal additive manufacturing using graph theory – Application to laser powder bed fusion of a large volume impeller. Additive Manufacturing, 2021, 41, 101956.	1.7	16
215	Qualification pathways for additively manufactured components for nuclear applications. Journal of Nuclear Materials, 2021, 548, 152846.	1.3	18
216	Internal Stress Evolution and Subsurface Phase Transformation in Titanium Parts Manufactured by Laser Powder Bed Fusion—An In Situ Xâ€Ray Diffraction Study. Advanced Engineering Materials, 2021, 23, 2001502.	1.6	11
217	Monitoring of Laser Powder Bed Fusion by Acoustic Emission: Investigation of Single Tracks and Layers. Frontiers in Mechanical Engineering, 2021, 7, .	0.8	12
219	Progress of Metal AM and Certification Pathway. , 0, , 1.		4
220	Part-scale thermal simulation of laser powder bed fusion using graph theory: Effect of thermal history on porosity, microstructure evolution, and recoater crash. Materials and Design, 2021, 204, 109685.	3.3	38

#	Article	IF	CITATIONS
221	Towards the Development of a Multi-Modal Community-Based AM Database. Microscopy and Microanalysis, 2021, 27, 1090-1091.	0.2	2
222	Effects of Post-processing on the Surface Finish, Porosity, Residual Stresses, and Fatigue Performance of Additive Manufactured Metals: A Review. Journal of Materials Engineering and Performance, 2021, 30, 6407-6425.	1.2	81
223	Geometrical defect detection for additive manufacturing with machine learning models. Materials and Design, 2021, 206, 109726.	3.3	56
224	On crown fabrication in prosthetic dentistry of veterinary patients: a review. Advances in Materials and Processing Technologies, 2022, 8, 3494-3513.	0.8	11
225	Microstructure, Corrosion and Mechanical Behavior of 15-5 PH Stainless Steel Processed by Direct Metal Laser Sintering. Journal of Materials Engineering and Performance, 2021, 30, 6924-6937.	1.2	8
226	Uncovering the coupled impact of defect morphology and microstructure on the tensile behavior of Ti-6Al-4V fabricated via laser powder bed fusion. Journal of Materials Processing Technology, 2021, 294, 117113.	3.1	40
227	Automated Testing and Characterization of Additive Manufacturing (ATCAM). Journal of Materials Engineering and Performance, 2021, 30, 6862-6873.	1.2	3
228	Present and Future Sustainability Development of 3D Metal Printing. European Journal of Sustainable Development Research, 2021, 5, em0168.	0.4	1
229	Bayesian Calibration of Multiple Coupled Simulation Models for Metal Additive Manufacturing: A Bayesian Network Approach. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2022, 8, .	0.7	5
230	Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges. Progress in Materials Science, 2021, 121, 100786.	16.0	106
231	The microstructure and mechanical properties of selective electron beam melting manufactured 9–12Cr ferritic/martensitic steel using N- and Ar-atomized powder. Additive Manufacturing, 2021, 45, 102075.	1.7	3
232	Materials challenges in hydrogen-fuelled gas turbines. International Materials Reviews, 2022, 67, 461-486.	9.4	26
233	Towards In-process Prediction of Voids in Laser Powder Bed Fusion. Jom, 2021, 73, 3240-3249.	0.9	2
234	A Comparative Study of Microstructures and Mechanical Behavior of Laser Metal Deposited and Electron Beam Melted Ti-6Al-4V. Journal of Materials Engineering and Performance, 2022, 31, 542-551.	1.2	10
235	Progress and perspectives in laser additive manufacturing of key aeroengine materials. International Journal of Machine Tools and Manufacture, 2021, 170, 103804.	6.2	156
236	Multimodal Registration and Fusion of In Situ and Ex Situ Metal Additive Manufacturing Data. Jom, 2021, 73, 3250-3262.	0.9	6
237	Effect of hot isostatic pressing of laser powder bed fused Inconel 625 with purposely induced defects on the residual porosity and fatigue crack propagation behavior. Additive Manufacturing, 2021, 47, 102324.	1.7	4
238	Demonstration of a laser powder bed fusion combinatorial sample for high-throughput microstructure and indentation characterization. Materials and Design, 2021, 209, 109969.	3.3	5

#	Article	IF	CITATIONS
239	Metal additive manufacturing in aerospace: A review. Materials and Design, 2021, 209, 110008.	3.3	743
240	Bayesian inference of elastic constants and texture coefficients in additively manufactured cobalt-nickel superalloys using resonant ultrasound spectroscopy. Acta Materialia, 2021, 220, 117287.	3.8	15
241	Influence of post-processing on very high cycle fatigue resistance of Inconel 718 obtained with laser powder bed fusion. International Journal of Fatigue, 2021, 153, 106510.	2.8	15
242	Toward qualification of additively manufactured metal parts: Tensile and fatigue properties of selective laser melted Inconel 718 evaluated using miniature specimens. Journal of Materials Science and Technology, 2022, 97, 239-253.	5.6	20
243	Additive Manufacturing of Titanium Alloys. , 2022, , 256-274.		5
244	Defects in Electron Beam Melted Ti-6Al-4V: Fatigue Life Prediction Using Experimental Data and Extreme Value Statistics. Materials, 2021, 14, 640.	1.3	14
245	Assessing laser powder bed fusion system geometric errors through artifact-based methods. Procedia Manufacturing, 2021, 53, 395-406.	1.9	7
246	Nonlinear ultrasonic technique for the characterization of microstructure in additive materials. Journal of the Acoustical Society of America, 2021, 149, 158-166.	0.5	16
247	Utilization of 3D Printed Materials in Expendable Pattern Casting Process. Minerals, Metals and Materials Series, 2020, , 338-344.	0.3	1
248	Structure/property (constitutive and spallation response) of additively manufactured 316L stainless steel. Acta Materialia, 2017, 138, 140-149.	3.8	170
249	Deep Convolutional Neural Networks as a Rapid Screening Tool for Complex Additively Manufactured Structures. Additive Manufacturing, 2020, 35, 101217.	1.7	17
250	3D printing technologies: techniques, materials, and post-processing. Current Opinion in Chemical Engineering, 2020, 28, 134-143.	3.8	154
251	Directional and notch effects on the fatigue behavior of as-built DMLS Ti6Al4V. International Journal of Fatigue, 2018, 106, 124-131.	2.8	53
252	Is It Time for the Maritime Industry to Embrace 3d Printed Spare Parts?. TransNav, 2018, 12, 557-564.	0.3	15
253	An Efficient Test Method for the Quantification of Technology-Dependent Factors Affecting the Fatigue Behavior of Metallic Additive Manufacturing Components., 2020,, 484-506.		3
254	Performance Signature Qualification for Additively Manufactured Parts under Conditions Emulating In-Service Loading., 2020,, 550-572.		1
255	Metal Additive Manufacturing Defect Formation and Nondestructive Evaluation Detectability. , 2020, , 1-50.		13
256	Effect of Powder Recycling in Laser-based Powder Bed Fusion of Ti-6Al-4V. Manufacturing Technology, 2019, 19, 190-196.	0.2	25

#	Article	IF	CITATIONS
257	Computer Engineering and Design of Cast Parts for Internal Combustion Engine Crankcase. Žurnal inženernih Nauk, 2019, 6, e24-e30.	0.4	7
258	Tribological Properties of Additive Manufactured Materials for Energy Applications: A Review. Processes, 2021, 9, 31.	1.3	26
259	Tensile Properties and Deformation of AISI 316L Additively Manufactured with Various Energy Densities. Materials, 2021, 14, 5809.	1.3	19
260	Fatigue of laser powder bed fusion processed 17-4 stainless steel using prior process exposed powder feedstock. Journal of Manufacturing Processes, 2021, 71, 515-527.	2.8	4
261	Exploiting lack of fusion defects for microstructural engineering in additive manufacturing. Additive Manufacturing, 2021, 48, 102399.	1.7	10
262	Nondestructive Evaluation of Additively Manufactured Metallic Parts. , 2018, , 544-552.		1
263	In-Process Monitoring of Material Cross-Contamination in Laser Powder Bed Fusion. , 2018, , .		2
264	State-of-the-Art Review and Roadmap. Advanced Structured Materials, 2020, , 1-56.	0.3	1
265	A Comparison of Stress Corrosion Cracking Susceptibility in Additively Manufactured Ti-6Al-4V for Biomedical Applications., 2020,, 423-436.		1
266	NDE-Based Quality Assurance of Metal Additively Manufactured Aerospace Parts at NASA, JAXA, and ESA. , 2020, , 92-129.		3
268	Design Considerations for Lightweighting with Ductile Iron Castings. , 0, , .		0
269	STUDY OF THE PROPERTIES A FRAGMENT OF THE HYDRAULIC CIRCUIT OF THE SPACECRAFT, OBTAINED BY MEANS OF ADDITIVE TECHNOLOGIES. Spravochnik Inzhenernyi Zhurnal, 2020, , 11-19.	0.7	0
270	Materials, Application Status and Development Trends of Additive Manufacturing Technology. Materials Transactions, 2020, 61, 1191-1199.	0.4	2
271	Resonant Ultrasound Applied to Additively Manufactured Alloys. , 2021, , .		1
272	Biomechanics of Additively Manufactured Metallic Scaffoldsâ€"A Review. Materials, 2021, 14, 6833.	1.3	7
273	Joining dissimilar metal of Ti and CoCrMo using directed energy deposition. Journal of Materials Science and Technology, 2021, 111, 99-99.	5. 6	0
274	An Investigation into the Definition and Qualification of Form of Lattice Structures. Jom, $0,$, 1 .	0.9	0
275	Effects of digital fringe projection operational parameters on detecting powder bed defects in additive manufacturing. Additive Manufacturing, 2021, 48, 102454.	1.7	2

#	Article	IF	CITATIONS
276	Securing cyber-physical additive manufacturing systems by in-situ process authentication using streamline video analysis. Journal of Manufacturing Systems, 2022, 62, 429-440.	7.6	19
277	Correlating in-situ sensor data to defect locations and part quality for additively manufactured parts using machine learning. Journal of Materials Processing Technology, 2022, 302, 117476.	3.1	25
278	Properties and applications of additively manufactured metallic cellular materials: A review. Progress in Materials Science, 2022, 125, 100918.	16.0	164
280	Contributions of intra-build design parameters to mechanical properties in electron beam additive manufacturing of Ti6Al4V. Materials Today Communications, 2022, 30, 103190.	0.9	3
281	Defects and anomalies in powder bed fusion metal additive manufacturing. Current Opinion in Solid State and Materials Science, 2022, 26, 100974.	5.6	157
282	Extreme variation in fatigue: Fatigue life prediction and dependence on build volume location in laser powder bed fusion of 17-4 stainless steel. International Journal of Fatigue, 2022, 158, 106737.	2.8	9
283	In Situ Real-Time Monitoring Versus Post NDE for Quality Assurance of Additively Manufactured Metal Parts., 2022,, 697-733.		1
284	Process and feedstock driven microstructure for laser powder bed fusion of 316L stainless steel. Materialia, 2022, 21, 101356.	1.3	8
285	A review on qualification and certification for metal additive manufacturing. Virtual and Physical Prototyping, 2022, 17, 382-405.	5.3	62
286	Review: Multi-principal element alloys by additive manufacturing. Journal of Materials Science, 2022, 57, 9903-9935.	1.7	11
287	Process Parameters Optimisation for Mitigating Residual Stress in Dual-Laser Beam Powder Bed Fusion Additive Manufacturing. Metals, 2022, 12, 420.	1.0	7
288	Effect of Porosity on Dynamic Response of Additive Manufacturing Ti-6Al-4V Alloys. Micromachines, 2022, 13, 408.	1.4	14
289	On the anisotropy in room-temperature mechanical properties of laser powder bed fusion processed Ti6Al4V-ELI alloy for aerospace applications. Journal of Materials Science, 2022, 57, 9599-9618.	1.7	6
290	Mechanical responses of additively manufactured MoSiBTiC alloy under tensile and compressive loadings. Materials Science & Description (2014) and Processing, 2022, 839, 142848.	2.6	1
291	Monitoring and prediction of porosity in laser powder bed fusion using physics-informed meltpool signatures and machine learning. Journal of Materials Processing Technology, 2022, 304, 117550.	3.1	31
292	The role of mechanical testing in additive manufacturing: review. Material Science, Engineering and Applications, 2021, 1, 21-31.	0.3	3
293	Robust Metal Additive Manufacturing Process Selection and Development for Aerospace Components. Journal of Materials Engineering and Performance, 2022, 31, 6013-6044.	1.2	58
294	Hybrid microstructure-defect printability map in laser powder bed fusion additive manufacturing. Computational Materials Science, 2022, 209, 111401.	1.4	5

#	Article	IF	Citations
295	A digital twin hierarchy for metal additive manufacturing. Computers in Industry, 2022, 140, 103667.	5.7	34
297	Selection and preparation strategies of Mg-alloys and other biodegradable materials for orthopaedic applications: A review. Materials Today Communications, 2022, 31, 103658.	0.9	10
298	Using machine learning to predict dimensions and qualify diverse part designs across multiple additive machines and materials. Additive Manufacturing, 2022, 55, 102848.	1.7	7
299	Selective Laser Melting of CuSn10: Simulation of Mechanical Properties, Microstructure, and Residual Stresses. Materials, 2022, 15, 3902.	1.3	4
300	Material selection for metal additive manufacturing process. Materials Today: Proceedings, 2022, , .	0.9	6
301	Additive Manufacturing for Aerospace from Inception to Certification. Journal of Nanomaterials, 2022, 2022, 1-18.	1.5	17
302	In-situ synchrotron X-ray analysis of metal Additive Manufacturing: Current state, opportunities and challenges. Materials and Design, 2022, 219, 110790.	3.3	23
303	On the use of X-ray microtomography to control artificial defect geometries produced by metal additive manufacturing. Nondestructive Testing and Evaluation, 2022, 37, 611-630.	1.1	6
304	Automated Process Planning for Embossing and Functionally Grading Materials via Site-Specific Control in Large-Format Metal-Based Additive Manufacturing. Materials, 2022, 15, 4152.	1.3	1
305	Surface integrity of hybrid CM247LC/Inconel 718 components produced by laser-directed energy deposition. International Journal of Advanced Manufacturing Technology, 2022, 121, 4961-4980.	1.5	3
306	Multi phenomena melt pool sensor data fusion for enhanced process monitoring of laser powder bed fusion additive manufacturing. Materials and Design, 2022, 221, 110919.	3.3	14
307	Metal Additive Manufacturing Processes and Selection. , 2022, , 49-186.		1
308	A review on metal additive manufacturing for intricately shaped aerospace components. CIRP Journal of Manufacturing Science and Technology, 2022, 39, 18-36.	2.3	67
309	Predictive process mapping for laser powder bed fusion: A review of existing analytical solutions. Current Opinion in Solid State and Materials Science, 2022, 26, 101024.	5.6	17
310	Microstructural Black Swans. IOP Conference Series: Materials Science and Engineering, 2022, 1249, 012004.	0.3	1
312	Prediction of recoater crash in laser powder bed fusion additive manufacturing using graph theory thermomechanical modeling. Progress in Additive Manufacturing, 2023, 8, 355-380.	2.5	8
313	A Recent Trend on Additive Manufacturing Sustainability with Supply Chain Management Concept, Multicriteria Decision Making Techniques. Advances in Materials Science and Engineering, 2022, 2022, 1-12.	1.0	3
314	Uncovering the deformation pathways of additive manufactured Ti-6Al-4V with engineered duplex microstructure. Materialia, 2022, 25, 101545.	1.3	2

#	Article	IF	CITATIONS
315	Laser powder bed fusion: a state-of-the-art review of the technology, materials, properties & Defects, and numerical modelling. Journal of Materials Research and Technology, 2022, 20, 2109-2172.	2.6	98
316	Material Aspects of Additively Manufactured Medical Devices. , 2022, , 1-14.		0
317	The effects of post-processing on the local fracture toughness properties of electron beam powder bed fusion Ti-6Al-4V alloy. Engineering Fracture Mechanics, 2022, 273, 108697.	2.0	2
318	Single crystal elastic constants of additively manufactured components determined by resonant ultrasound spectroscopy. Materials Characterization, 2022, 192, 112244.	1.9	8
319	Additive manufacturing: process and microstructure., 2022,, 165-192.		0
320	Thermo-mechanical simulations of powder bed fusion processes: accuracy and efficiency. Advanced Modeling and Simulation in Engineering Sciences, 2022, 9, .	0.7	7
321	Simplified Prediction of Melt Pool Shape in Metal Additive Manufacturing Using Maraging Steel. International Journal of Automation Technology, 2022, 16, 609-614.	0.5	1
322	Ontology Network-Based In-Situ Sensor Selection for Quality Management in Metal Additive Manufacturing. Journal of Computing and Information Science in Engineering, 2022, 22, .	1.7	5
323	Coordinated effect of microstructure and defect on fatigue accumulation in dual-phase Ti-6Al-4V: Quantitative characterization. International Journal of Fatigue, 2023, 167, 107305.	2.8	4
324	A method for the preparation of spherical titanium powder for additive manufacturing. Powder Technology, 2022, 411, 117927.	2.1	3
325	Microstructural engineering of a dual-phase Ti-Al-V-Fe alloy via in situ alloying during laser powder bed fusion. Additive Manufacturing, 2022, 59, 103173.	1.7	8
326	Additive manufacturing of metallic glasses and high-entropy alloys: Significance, unsettled issues, and future directions. Journal of Materials Science and Technology, 2023, 140, 79-120.	5.6	27
327	The Impact of Plastic Deformation on the Microstructure and Tensile Strength of Haynes 282 Nickel Superalloy Produced by DMLS and Casting. Materials, 2022, 15, 7545.	1.3	6
328	Particle Migration in Large Cross-Section Ceramic On-Demand Extrusion Components. Journal of the European Ceramic Society, 2022, , .	2.8	0
329	Open challenges in tensile testing of additively manufactured polymers: A literature survey and a case study in fused filament fabrication. Polymer Testing, 2023, 117, 107859.	2.3	18
330	Static assessment of flawed thin AlSi10Mg parts produced by Laser Powder Bed Fusion. Materials and Design, 2022, 224, 111292.	3.3	1
331	The Trajectory of Additively Manufactured Titanium Alloys with Superior Mechanical Properties and Engineered Microstructures. Additive Manufacturing, 2022, 60, 103245.	1.7	4
332	A systematic investigation on the minimum tensile strengths and size effects of 3D printing polymers. Polymer Testing, 2023, 117, 107845.	2.3	9

#	Article	IF	CITATIONS
333	In Situ Ultrasonic Testing for Wire Arc Additive Manufacturing Applications. Machines, 2022, 10, 1069.	1.2	3
334	Feedforward control of thermal history in laser powder bed fusion: Toward physics-based optimization of processing parameters. Materials and Design, 2022, 224, 111351.	3.3	9
335	Efficient computational framework for image-based micromechanical analysis of additively manufactured Ti-6Al-4V alloy. Additive Manufacturing, 2022, 60, 103269.	1.7	2
336	Comparative study on process-structure-property relationships of TiC/Ti6Al4V and Ti6Al4V by selective laser melting. International Journal of Mechanical Sciences, 2023, 241, 107963.	3.6	14
337	Observation of spatter-induced stochastic lack-of-fusion in laser powder bed fusion using in situ process monitoring. Additive Manufacturing, 2023, 61, 103298.	1.7	6
338	Development of laser powder bed fusion scalmalloy assisted by integrated computational materials engineering. Materials Today: Proceedings, 2022, 70, 718-721.	0.9	0
339	Unique Device Identification Based Linkage of Hierarchically Accessible Data Domains in Prospective Surgical Hospital Data Ecosystems (Preprint). JMIR Medical Informatics, 0, , .	1.3	0
340	Structural Performance of Additively Manufactured Cylinder Liner—A Numerical Study. Energies, 2022, 15, 8926.	1.6	3
341	A new data-driven framework for prediction of molten pool evolution and lack of fusion defects in multi-track multi-layer laser powder bed fusion processes. International Journal of Advanced Manufacturing Technology, 0, , .	1.5	1
342	Broadband infrared confocal imaging for applications in additive manufacturing. Review of Scientific Instruments, 2022, 93, 123702.	0.6	0
343	Characterization and single track analysis of a metal-ceramic composite laser cladding over Ti6Al4V alloy. Applied Surface Science Advances, 2022, 12, 100342.	2.9	4
344	Characterization of Filigree Additively Manufactured NiTi Structures Using Micro Tomography and Micromechanical Testing for Metamaterial Material Models. Materials, 2023, 16, 676.	1.3	1
345	In-situ quality assurance for electron-based additive manufacturing by electron optical observation. Progress in Additive Manufacturing, 2023, 8, 55-60.	2.5	1
346	Direct ink writing to fabricate porous acetabular cups from titanium alloy. Bio-Design and Manufacturing, 2023, 6, 121-135.	3.9	5
347	Standards for metal additive manufacturing: Quality and quality control procedures., 2023,, 3-24.		0
348	Additive Manufacturing Metrology. , 2023, , 1-16.		0
349	On 3D printing assisted fabrication of dental crowns for veterinary patients., 2023,, 281-292.		0
350	Metrological Assessments in Additive Manufacturing. , 2023, , 1-12.		0

#	Article	IF	CITATIONS
351	Emerging Functional Metals in Additive Manufacturing. Advanced Engineering Materials, 2023, 25, .	1.6	1
352	Challenges and recent progress on the application of rapid sand casting for part production: a review. International Journal of Advanced Manufacturing Technology, 2023, 126, 891-906.	1.5	3
353	On the process of designing material qualification type specimens manufactured using laser powder bed fusion. Materials and Design, 2023, 229, 111893.	3.3	1
354	Tensile strength prediction in directed energy deposition through physics-informed machine learning and Shapley additive explanations. Journal of Materials Processing Technology, 2023, 315, 117908.	3.1	5
355	Additive Manufacturing in the Context of Repeatability and Reliability. Journal of Materials Engineering and Performance, 2023, 32, 6589-6609.	1.2	6
356	Nondestructive Assessment of Quality Characteristics of As-Built Additive Manufacturing Aeronautical AlSi10Mg and Inspection of Offset. 3D Printing and Additive Manufacturing, 0, , .	1.4	0
357	Towards material and process agnostic features for the classification of pore types in metal additive manufacturing. Materials and Design, 2023, 227, 111757.	3.3	2
358	Powder bed monitoring via digital image analysis in additive manufacturing. Journal of Intelligent Manufacturing, 2024, 35, 991-1011.	4.4	2
359	Effect of freezing range on reducing casting defects through 3D sand-printed mold designs. International Journal of Advanced Manufacturing Technology, 2023, 126, 569-581.	1.5	0
360	Vapour polishing of fused deposition modelling (FDM) parts: a critical review of different techniques, and subsequent surface finish and mechanical properties of the post-processed 3D-printed parts. Progress in Additive Manufacturing, 2023, 8, 1161-1178.	2.5	8
361	Imaging Microstructure on Optically Rough Surfaces Using Spatially Resolved Acoustic Spectroscopy. Applied Sciences (Switzerland), 2023, 13, 3424.	1.3	1
362	Selection of materials in metal additive manufacturing via three-way decision-making. International Journal of Advanced Manufacturing Technology, 2023, 126, 1293-1302.	1.5	5
363	Estimating microstructural feature distributions from image data using a Bayesian framework. Journal of Microscopy, 2023, 290, 137-152.	0.8	1
364	Effect of Size, Location, and Aspect Ratio of Internal Pores on Failure Behavior of Laser Powder Bed Fusion Ti-6Al-4V. Jom, 2023, 75, 1953-1963.	0.9	1
365	A Short Review on the Corrosion Behaviour of Wire and Arc Additive Manufactured Materials. Metals, 2023, 13, 641.	1.0	29
366	Microstructural Heterogeneity and Anisotropy Control of Additive Manufactured Ti-6Al-4V Alloy for Aircraft Components. Jom, 2023, 75, 1695-1709.	0.9	1
367	Characterization of the Anisotropic Behaviour of Inconel 718 Parts Manufactured by Wire Arc Additive Manufacturing. Minerals, Metals and Materials Series, 2023, , 789-806.	0.3	0
368	Femtosecond Laser Shock Peening Residual Stress and Fatigue Life of Additive Manufactured AlSi10Mg. Jom, 2023, 75, 1964-1974.	0.9	2

#	Article	IF	CITATIONS
369	Remarkable enhancement in thermal conductivity of stainless-steel leveraging metal composite via laser powder bed fusion: 316L-Cu composite. Additive Manufacturing, 2023, 70, 103576.	1.7	1
378	Process Defects in Metal Additive Manufacturing. , 2023, , 30-52.		0
383	Acoustic-Based In-Situ Monitoring of Additive Manufacturing Fabrication: A Review., 2023,,.		1
387	Additive Manufacturing Metrology. , 2023, , 1165-1180.		0
388	Metrological Assessments in Additive Manufacturing. , 2023, , 1181-1192.		0
406	Additive Manufacturing in Electronics and Functional Devices. , 2023, , 515-525.		0
408	X-Ray—Radiography and Computed Tomography in Additive Manufacturing. , 2023, , 324-332.		0
409	Structure-Properties Relationships in Metal Additive Manufacturing. , 2023, , 23-29.		0
411	Application of Machine Learning to Monitor Metal Powder-Bed Fusion Additive Manufacturing Processes., 2023,, 360-373.		0
412	Effects of Process-Induced Defects on Fatigue Properties of Laser Powder Bed Fusion Metallic Materials. , 2023, , 235-244.		0
417	Introduction to metal additive manufacturing and unique aspects relating to fatigue., 2024,, 5-22.		0
418	Artificial intelligence for materials damage diagnostics and prognostics. , 2024, , 265-306.		0