Individual Neuronal Subtypes Exhibit Diversity in CNS Vesicle Release

Current Biology 26, 1447-1455

DOI: 10.1016/j.cub.2016.03.070

Citation Report

#	Article	IF	CITATIONS
1	Imaging Myelination In Vivo Using Transparent Animal Models. Brain Plasticity, 2016, 2, 3-29.	3.5	25
2	Neuronal Ndrg4 Is Essential for Nodes of Ranvier Organization in Zebrafish. PLoS Genetics, 2016, 12, e1006459.	3 . 5	17
3	Myelination: Both Mindful and Mindless?. Current Biology, 2016, 26, R468-R470.	3.9	0
4	Epigenetic control of oligodendrocyte development: adding new players to old keepers. Current Opinion in Neurobiology, 2016, 39, 133-138.	4.2	49
5	The logistics of myelin biogenesis in the central nervous system. Glia, 2017, 65, 1021-1031.	4.9	69
6	Drug discovery for remyelination and treatment of MS. Glia, 2017, 65, 1565-1589.	4.9	41
7	Advances in myelinating glial cell development. Current Opinion in Neurobiology, 2017, 42, 53-60.	4.2	44
8	Diversity of oligodendrocytes and their progenitors. Current Opinion in Neurobiology, 2017, 47, 73-79.	4.2	55
9	On Myelinated Axon Plasticity and Neuronal Circuit Formation and Function. Journal of Neuroscience, 2017, 37, 10023-10034.	3.6	168
10	Myelin plasticity and behaviour â€" connecting the dots. Current Opinion in Neurobiology, 2017, 47, 86-92.	4.2	78
11	Conditional Deletion of the L-Type Calcium Channel Cav1.2 in NG2-Positive Cells Impairs Remyelination in Mice. Journal of Neuroscience, 2017, 37, 10038-10051.	3.6	44
12	Architecting the myelin landscape. Current Opinion in Neurobiology, 2017, 47, 1-7.	4.2	31
13	A specific GABAergic synapse onto oligodendrocyte precursors does not regulate cortical oligodendrogenesis. Glia, 2017, 65, 1821-1832.	4.9	38
14	Remyelination therapies: a new direction and challenge in multiple sclerosis. Nature Reviews Drug Discovery, 2017, 16, 617-634.	46.4	201
15	Analysis of myelinated axon formation in zebrafish. Methods in Cell Biology, 2017, 138, 383-414.	1.1	24
16	Regeneration of myelin sheaths of normal length and thickness in the zebrafish CNS correlates with growth of axons in caliber. PLoS ONE, 2017, 12, e0178058.	2.5	28
17	Glial Cell Development. , 2017, , .		2
18	Myelination of Neuronal Cell Bodies when Myelin Supply Exceeds Axonal Demand. Current Biology, 2018, 28, 1296-1305.e5.	3.9	38

#	Article	IF	Citations
19	Evidence for Myelin Sheath Remodeling in the CNS Revealed by InÂVivo Imaging. Current Biology, 2018, 28, 549-559.e3.	3.9	90
20	Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner. Nature Communications, 2018, 9, 306.	12.8	241
21	Purinergic signaling in oligodendrocyte development and function. Journal of Neurochemistry, 2018, 145, 6-18.	3.9	23
22	<scp>E</scp> phrinâ€xscp>A1â€xscp>EphA4 signaling negatively regulates myelination in the central nervous system. Glia, 2018, 66, 934-950.	4.9	49
23	Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nature Neuroscience, 2018, 21, 696-706.	14.8	389
24	Axonal Regulation of Central Nervous System Myelination: Structure and Function. Neuroscientist, 2018, 24, 7-21.	3.5	32
25	Intrinsic and adaptive myelination—A sequential mechanism for smart wiring in the brain. Developmental Neurobiology, 2018, 78, 68-79.	3.0	111
26	Neuroglial interactions underpinning myelin plasticity. Developmental Neurobiology, 2018, 78, 93-107.	3.0	28
27	Oligodendrocyte–Neuron Interactions: Impact on Myelination and Brain Function. Neurochemical Research, 2018, 43, 190-194.	3.3	15
28	Myelin plasticity, neural activity, and traumatic neural injury. Developmental Neurobiology, 2018, 78, 108-122.	3.0	14
29	Widespread transcriptional alternations in oligodendrocytes in the adult mouse brain following chronic stress. Developmental Neurobiology, 2018, 78, 152-162.	3.0	54
30	Ca2+ activity signatures of myelin sheath formation and growth in vivo. Nature Neuroscience, 2018, 21, 19-23.	14.8	151
31	Regulation of developing myelin sheath elongation by oligodendrocyte calcium transients in vivo. Nature Neuroscience, 2018, 21, 24-28.	14.8	138
32	Myelination and mTOR. Clia, 2018, 66, 693-707.	4.9	123
33	Axo-myelinic neurotransmission: a novel mode of cell signalling in the central nervous system. Nature Reviews Neuroscience, 2018, 19, 49-58.	10.2	100
34	Myelin Dynamics Throughout Life: An Ever-Changing Landscape?. Frontiers in Cellular Neuroscience, 2018, 12, 424.	3.7	121
35	White Matter Plasticity Keeps the Brain in Tune: Axons Conduct While Glia Wrap. Frontiers in Cellular Neuroscience, 2018, 12, 428.	3.7	49
36	Length of myelin internodes of individual oligodendrocytes is controlled by microenvironment influenced by normal and inputâ€deprived axonal activities in sensory deprived mouse models. Glia, 2018, 66, 2514-2525.	4.9	15

#	ARTICLE	IF	CITATIONS
37	Motor Exit Point (MEP) Glia: Novel Myelinating Glia That Bridge CNS and PNS Myelin. Frontiers in Cellular Neuroscience, 2018, 12, 333.	3.7	21
38	Development of an Embryonic Zebrafish Oligodendrocyte–Neuron Mixed Coculture System. Zebrafish, 2018, 15, 586-596.	1.1	8
39	The Rules of Attraction in Central Nervous System Myelination. Frontiers in Cellular Neuroscience, 2018, 12, 367.	3.7	32
40	Transcriptional Convergence of Oligodendrocyte Lineage Progenitors during Development. Developmental Cell, 2018, 46, 504-517.e7.	7.0	199
41	Oligodendrogliopathy in neurodegenerative diseases with abnormal protein aggregates: The forgotten partner. Progress in Neurobiology, 2018, 169, 24-54.	5.7	49
42	Neuronal input triggers Ca ²⁺ influx through AMPA receptors and voltageâ€gated Ca ²⁺ channels in oligodendrocytes. Glia, 2019, 67, 1922-1932.	4.9	16
43	Two adhesive systems cooperatively regulate axon ensheathment and myelin growth in the CNS. Nature Communications, 2019, 10, 4794.	12.8	45
44	Demyelination and shrinkage of axons in the retinal nerve fiber layer in chickens developing deprivation myopia. Experimental Eye Research, 2019, 188, 107783.	2.6	10
45	Oligodendrocytes express synaptic proteins that modulate myelin sheath formation. Nature Communications, 2019, 10, 4125.	12.8	81
46	The Golgi Outpost Protein TPPP Nucleates Microtubules and Is Critical for Myelination. Cell, 2019, 179, 132-146.e14.	28.9	84
47	Myelinated axon physiology and regulation of neural circuit function. Glia, 2019, 67, 2050-2062.	4.9	79
48	Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiological Reviews, 2019, 99, 1381-1431.	28.8	336
49	Axoglial interactions in myelin plasticity: Evaluating the relationship between neuronal activity and oligodendrocyte dynamics. Glia, 2019, 67, 2038-2049.	4.9	52
50	Uncovering the biology of myelin with optical imaging of the live brain. Glia, 2019, 67, 2008-2019.	4.9	19
51	Lowâ€intensity transcranial magnetic stimulation promotes the survival and maturation of newborn oligodendrocytes in the adult mouse brain. Clia, 2019, 67, 1462-1477.	4.9	55
52	In Vitro Generation and Electrophysiological Characterization of OPCs and Oligodendrocytes from Human Pluripotent Stem Cells. Methods in Molecular Biology, 2019, 1936, 65-77.	0.9	2
53	Glutamate versus GABA in neuron–oligodendroglia communication. Glia, 2019, 67, 2092-2106.	4.9	44
55	Manipulating Neuronal Activity in the Developing Zebrafish Spinal Cord to Investigate Adaptive Myelination. Methods in Molecular Biology, 2019, 1936, 211-225.	0.9	1

#	Article	IF	CITATIONS
56	Oligodendrocyte Neurofascin Independently Regulates Both Myelin Targeting and Sheath Growth in the CNS. Developmental Cell, 2019, 51, 730-744.e6.	7.0	35
57	Activityâ€dependent central nervous system myelination throughout life. Journal of Neurochemistry, 2019, 148, 447-461.	3.9	37
58	High-Frequency Microdomain Ca2+ Transients and Waves during Early Myelin Internode Remodeling. Cell Reports, 2019, 26, 182-191.e5.	6.4	50
59	Animal models of multiple sclerosis: From rodents to zebrafish. Multiple Sclerosis Journal, 2019, 25, 306-324.	3.0	95
60	The oligodendrocyte growth cone and its actin cytoskeleton: A fundamental element for progenitor cell migration and CNS myelination. Glia, 2020, 68, 1329-1346.	4.9	34
61	Glutamate Transporters: Expression and Function in Oligodendrocytes. Neurochemical Research, 2020, 45, 551-560.	3.3	20
62	Myelin plasticity in adulthood and aging. Neuroscience Letters, 2020, 715, 134645.	2.1	33
63	Revisiting remyelination: Towards a consensus on the regeneration of CNS myelin. Seminars in Cell and Developmental Biology, 2021, 116, 3-9.	5.0	82
64	Remyelination in multiple sclerosis: from basic science to clinical translation. Lancet Neurology, The, 2020, 19, 678-688.	10.2	193
65	The bright and the dark side of myelin plasticity: Neuron-glial interactions in health and disease. Seminars in Cell and Developmental Biology, 2021, 116, 10-15.	5.0	10
66	Reactive oligodendrocyte progenitor cells (re-)myelinate the regenerating zebrafish spinal cord. Development (Cambridge), 2020, 147, .	2.5	13
67	Individual neuronal subtypes control initial myelin sheath growth and stabilization. Neural Development, 2020, 15, 12.	2.4	8
68	Event-Based Computation for Touch Localization Based on Precise Spike Timing. Frontiers in Neuroscience, 2020, 14, 420.	2.8	9
69	Plasticity in oligodendrocyte lineage progression: An OPC puzzle on our nerves. European Journal of Neuroscience, 2021, 54, 5747-5761.	2.6	4
70	Unraveling Myelin Plasticity. Frontiers in Cellular Neuroscience, 2020, 14, 156.	3.7	32
71	Neuronâ \in "glial interactions and neurotransmitter signaling to cells of the oligodendrocyte lineage. , 2020, , 891-918.		3
72	Myelin Plasticity and Repair: Neuro-Glial Choir Sets the Tuning. Frontiers in Cellular Neuroscience, 2020, 14, 42.	3.7	23
73	Neuron-oligodendroglia interactions: Activity-dependent regulation of cellular signaling. Neuroscience Letters, 2020, 727, 134916.	2.1	28

#	Article	IF	Citations
74	The roles of neuron-NG2 glia synapses in promoting oligodendrocyte development and remyelination. Cell and Tissue Research, 2020, 381, 43-53.	2.9	14
75	Microglia phagocytose myelin sheaths to modify developmental myelination. Nature Neuroscience, 2020, 23, 1055-1066.	14.8	179
76	Mathematically modeling action potentials in myelinated neurons to examine the role of myelin, ion channel density, and myelinated lengths on conduction. IOP Conference Series: Earth and Environmental Science, 0, 657, 012114.	0.3	0
79	Building a (w)rapport between neurons and oligodendroglia: Reciprocal interactions underlying adaptive myelination. Neuron, 2021, 109, 1258-1273.	8.1	34
80	Glial Cells Promote Myelin Formation and Elimination. Frontiers in Cell and Developmental Biology, 2021, 9, 661486.	3.7	20
81	Glutamate Signaling via the AMPAR Subunit GluR4 Regulates Oligodendrocyte Progenitor Cell Migration in the Developing Spinal Cord. Journal of Neuroscience, 2021, 41, 5353-5371.	3.6	15
82	iPSC-derived myelinoids to study myelin biology of humans. Developmental Cell, 2021, 56, 1346-1358.e6.	7.0	34
85	Life-long oligodendrocyte development and plasticity. Seminars in Cell and Developmental Biology, 2021, 116, 25-37.	5.0	35
86	CNS Hypomyelination Disrupts Axonal Conduction and Behavior in Larval Zebrafish. Journal of Neuroscience, 2021, 41, 9099-9111.	3.6	10
87	Myelination induces axonal hotspots of synaptic vesicle fusion that promote sheath growth. Current Biology, 2021, 31, 3743-3754.e5.	3.9	32
88	Experience-dependent myelination following stress is mediated by the neuropeptide dynorphin. Neuron, 2021, 109, 3619-3632.e5.	8.1	28
89	The Akt-mTOR Pathway Drives Myelin Sheath Growth by Regulating Cap-Dependent Translation. Journal of Neuroscience, 2021, 41, 8532-8544.	3 . 6	13
90	Effect of modulating glutamate signaling on myelinating oligodendrocytes and their developmentâ€"A study in the zebrafish model. Journal of Neuroscience Research, 2021, 99, 2774-2792.	2.9	4
91	Microglia phagocytose oligodendrocyte progenitor cells and synapses during early postnatal development: implications for white versus gray matter maturation. FEBS Journal, 2022, 289, 2110-2127.	4.7	16
92	Extrinsic Factors Driving Oligodendrocyte Lineage Cell Progression in CNS Development and Injury. Neurochemical Research, 2020, 45, 630-642.	3.3	23
93	Myelin dynamics: protecting and shaping neuronal functions. Current Opinion in Neurobiology, 2017, 47, 104-112.	4.2	156
97	Oligodendroglia: metabolic supporters of neurons. Journal of Clinical Investigation, 2017, 127, 3271-3280.	8.2	229
98	Oligodendrocyte Development in the Absence of Their Target Axons In Vivo. PLoS ONE, 2016, 11, e0164432.	2.5	30

#	ARTICLE	IF	CITATIONS
99	Genetic Control of Myelin Plasticity after Chronic Psychosocial Stress. ENeuro, 2018, 5, ENEURO.0166-18.2018.	1.9	48
100	NG2 glial cells integrate synaptic input in global and dendritic calcium signals. ELife, 2016, 5, .	6.0	62
101	Signalling through AMPA receptors on oligodendrocyte precursors promotes myelination by enhancing oligodendrocyte survival. ELife, 2017, 6, .	6.0	111
102	Endothelin signalling mediates experience-dependent myelination in the CNS. ELife, 2019, 8, .	6.0	64
106	Periods of synchronized myelin changes shape brain function and plasticity. Nature Neuroscience, 2021, 24, 1508-1521.	14.8	64
107	Novel Toolboxes for the Investigation of Activity-Dependent Myelination in the Central Nervous System. Frontiers in Cellular Neuroscience, 2021, 15, 769809.	3.7	2
109	Oligodendrocyte Development and Implication in Perinatal White Matter Injury. Frontiers in Cellular Neuroscience, 2021, 15, 764486.	3.7	21
110	BDNF-TrkB Signaling in Lifelong Central Nervous System Myelination and Myelin Repair. , 2021, , 1-28.		0
111	Insights Into Central Nervous System Glial Cell Formation and Function From Zebrafish. Frontiers in Cell and Developmental Biology, 2021, 9, 754606.	3.7	5
112	Myelin: A gatekeeper of activity-dependent circuit plasticity?. Science, 2021, 374, eaba6905.	12.6	65
114	Clusters of neuronal neurofascin prefigure the position of a subset of nodes of Ranvier along individual central nervous system axons inâvivo. Cell Reports, 2022, 38, 110366.	6.4	7
118	A paradigm shift: Bioengineering meets mechanobiology towards overcoming remyelination failure. Biomaterials, 2022, 283, 121427.	11.4	6
120	The Larval Zebrafish Vestibular System Is a Promising Model to Understand the Role of Myelin in Neural Circuits. Frontiers in Neuroscience, 2022, 16, .	2.8	3
122	Deletion of the Sodium-Dependent Glutamate Transporter GLT-1 in Maturing Oligodendrocytes Attenuates Myelination of Callosal Axons During a Postnatal Phase of Central Nervous System Development. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	2
123	A Subset of Oligodendrocyte Lineage Cells Interact With the Developing Dorsal Root Entry Zone During Its Genesis. Frontiers in Cellular Neuroscience, $0, 16, \ldots$	3.7	1
124	Endogenous clues promoting remyelination in multiple sclerosis. Current Opinion in Neurology, 2022, 35, 307-312.	3.6	3
125	Monosynaptic targets of utricular afferents in the larval zebrafish. Frontiers in Neurology, 0, 13, .	2.4	9
126	Organization of the gravity-sensing system in zebrafish. Nature Communications, 2022, 13, .	12.8	23

#	ARTICLE	IF	CITATIONS
127	Motor learning drives dynamic patterns of intermittent myelination on learning-activated axons. Nature Neuroscience, 2022, 25, 1300-1313.	14.8	27
128	Humanized zebrafish as a tractable tool for inÂvivo evaluation of pro-myelinating drugs. Cell Chemical Biology, 2022, 29, 1541-1555.e7.	5.2	4
129	Heterogeneity and regulation of oligodendrocyte morphology. Frontiers in Cell and Developmental Biology, $0,10,1$	3.7	4
130	Using fluorescent indicators for inÂvivo quantification of spontaneous or evoked motor neuron presynaptic activity in transgenic zebrafish. STAR Protocols, 2022, 3, 101766.	1.2	0
131	Characterizing spontaneous Ca2+local transients in OPCs using computational modeling. Biophysical Journal, 2022, , .	0.5	3
132	Unmyelinated sensory neurons use Neuregulin signals to promote myelination of interneurons in the CNS. Cell Reports, 2022, 41, 111669.	6.4	3
135	BDNF-TrkB Signaling in Lifelong Central Nervous System Myelination and Myelin Repair., 2022,, 95-122.		0
136	Oligodendrocyte death initiates synchronous remyelination to restore cortical myelin patterns in mice. Nature Neuroscience, 2023, 26, 555-569.	14.8	13
137	pOpsicle: An all-optical reporter system for synaptic vesicle recycling combining pH-sensitive fluorescent proteins with optogenetic manipulation of neuronal activity. Frontiers in Cellular Neuroscience, 0, 17, .	3.7	1
138	Early myelination involves the dynamic and repetitive ensheathment of axons which resolves through a low and consistent stabilization rate. ELife, $0,12,.$	6.0	2
140	Deficits in neural encoding of speech in preterm infants. Developmental Cognitive Neuroscience, 2023, 61, 101259.	4.0	0
141	Oligodendrocyte calcium signaling promotes actin-dependent myelin sheath extension. Nature Communications, 2024, $15, \ldots$	12.8	0
142	Development of myelination and axon diameter for fast and precise action potential conductance. Glia, 2024, 72, 794-808.	4.9	1
143	Synaptic input and Ca2+ activity in zebrafish oligodendrocyte precursor cells contribute to myelin sheath formation. Nature Neuroscience, 2024, 27, 219-231.	14.8	0
145	Glia trigger endocytic clearance of axonal proteins to promote rodent myelination. Developmental Cell, 2024, 59, 627-644.e10.	7.0	0
147	Nanoscale myelinogenesis image in developing brain via super-resolution nanoscopy by near-infrared emissive curcumin-BODIPY derivatives. Journal of Nanobiotechnology, 2024, 22, .	9.1	0