Metastable high-entropy dual-phase alloys overcome th

Nature 534, 227-230 DOI: 10.1038/nature17981

Citation Report

#	Article	IF	CITATIONS
1	Lattice Distortions in the FeCoNiCrMn High Entropy Alloy Studied by Theory and Experiment. Entropy, 2016, 18, 321.	1.1	151
2	Mixed-up metals make for stronger, tougher, stretchier alloys. Nature, 2016, 533, 306-307.	13.7	82
3	Superstrength of nanograined steel with nanoscale intermetallic precipitates transformed from shock-compressed martensitic steel. Scientific Reports, 2016, 6, 36810.	1.6	12
4	<i>In situ</i> mechanical characterization of CoCrCuFeNi high-entropy alloy micro/nano-pillars for their size-dependent mechanical behavior. Materials Research Express, 2016, 3, 094002.	0.8	47
5	Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nature Communications, 2016, 7, 13564.	5.8	533
6	The configurational entropy of mixing of metastable random solid solution in complex multicomponent alloys. Journal of Applied Physics, 2016, 120, .	1.1	36
7	Atomic displacement in the CrMnFeCoNi high-entropy alloy – A scaling factor to predict solid solution strengthening. AIP Advances, 2016, 6, .	0.6	183
8	Alloy design for intrinsically ductile refractory high-entropy alloys. Journal of Applied Physics, 2016, 120, .	1.1	271
9	Kinetic ways of tailoring phases in high entropy alloys. Scientific Reports, 2016, 6, 34628.	1.6	29
10	Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Materialia, 2016, 112, 40-52.	3.8	653
11	The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys. Acta Materialia, 2016, 120, 228-239.	3.8	373
12	Structural characterization of island ε-martensitic plate in cobalt. Materials Characterization, 2016, 119, 34-39.	1.9	12
13	The thermodynamic scale of inorganic crystalline metastability. Science Advances, 2016, 2, e1600225.	4.7	565
14	Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Scientific Reports, 2017, 7, 40704.	1.6	279
15	Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys. Applied Physics Letters, 2017, 110, .	1.5	62
16	High-temperature plastic flow of a precipitation-hardened FeCoNiCr high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 686, 34-40.	2.6	69
17	Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics, 2017, 84, 153-157.	1.8	289
18	Solid solution island of the Co-Cr-Fe-Ni high entropy alloy system. Scripta Materialia, 2017, 131, 42-46.	2.6	81

#	Article	IF	CITATIONS
19	Parametric Study of Amorphous High-Entropy Alloys formation from two New Perspectives: Atomic Radius Modification and Crystalline Structure of Alloying Elements. Scientific Reports, 2017, 7, 39917.	1.6	27
20	Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems. Computational Materials Science, 2017, 130, 121-129.	1.4	70
21	Room temperature nanoindentation creep behavior of TiZrHfBeCu(Ni) high entropy bulk metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 174-179.	2.6	56
22	Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability. Nano Letters, 2017, 17, 1569-1574.	4.5	151
23	Deformation mechanisms of Mo alloyed FeCoCrNi high entropy alloy: In situ neutron diffraction. Acta Materialia, 2017, 127, 471-480.	3.8	153
24	Novel Fe36Mn21Cr18Ni15Al10 high entropy alloy with bcc/B2 dual-phase structure. Journal of Alloys and Compounds, 2017, 705, 756-763.	2.8	114
25	Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nature Communications, 2017, 8, 14390.	5.8	344
26	Corrosion of Al CoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corrosion Science, 2017, 119, 33-45.	3.0	535
27	Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Materialia, 2017, 128, 292-303.	3.8	803
28	The tensile properties and serrated flow behavior of a thermomechanically treated CoCrFeNiMn high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 690, 418-426.	2.6	70
29	High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure. Scientific Reports, 2017, 7, 42742.	1.6	116
30	Atomic-scale dynamics of edge dislocations in Ni and concentrated solid solution NiFe alloys. Journal of Alloys and Compounds, 2017, 701, 1003-1008.	2.8	59
31	Reversible deformation-induced martensitic transformation in Al0.6CoCrFeNi high-entropy alloy investigated by in situ synchrotron-based high-energy X-ray diffraction. Acta Materialia, 2017, 128, 12-21.	3.8	93
32	Seaweed eutectic-dendritic solidification pattern in a CoCrFeNiMnPd eutectic high-entropy alloy. Intermetallics, 2017, 85, 74-79.	1.8	55
33	Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature, 2017, 544, 460-464.	13.7	843
34	Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films. International Journal of Plasticity, 2017, 95, 264-277.	4.1	126
35	Interpreting radiation-induced segregation and enhanced radiation tolerance of single-phase concentrated solid-solution alloys from first principles. Materials Letters, 2017, 202, 120-122.	1.3	6
36	The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy. Acta Materialia, 2017, 132, 35-48.	3.8	357

#	Article	IF	CITATIONS
37	Deformation-induced phase transformation of Co20Cr26Fe20Mn20Ni14 high-entropy alloy during high-pressure torsion at 77 K. Materials Letters, 2017, 202, 86-88.	1.3	55
38	Grain refinement and phase transition of commercial pure zirconium processed by cold rolling. Materials Characterization, 2017, 129, 149-155.	1.9	36
39	Structure of the high-entropy alloy Al CrFeCoNi: fcc versus bcc. Journal of Alloys and Compounds, 2017, 715, 454-459.	2.8	87
40	Effect of coherent L12 nanoprecipitates on the tensile behavior of a fcc-based high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 696, 503-510.	2.6	122
41	Hydrogen effects on microstructural evolution and passive film characteristics of a duplex stainless steel. Electrochemistry Communications, 2017, 79, 28-32.	2.3	62
42	Mapping the world of complex concentrated alloys. Acta Materialia, 2017, 135, 177-187.	3.8	271
43	Thermal expansion in FeCrCoNiGa high-entropy alloy from theory and experiment. Applied Physics Letters, 2017, 110, .	1.5	23
44	Revealing the Microstates of Body-Centered-Cubic (BCC) Equiatomic High Entropy Alloys. Journal of Phase Equilibria and Diffusion, 2017, 38, 404-415.	0.5	21
45	Precipitation strengthening of ductile Cr 15 Fe 20 Co 35 Ni 20 Mo 10 alloys. Scripta Materialia, 2017, 137, 88-93.	2.6	157
46	Predicting solid solubility in CoCrFeNiMx (M = 4d transition metal) high-entropy alloys. Journal of Applied Physics, 2017, 121, .	1.1	38
47	Combinatorial exploration of the High Entropy Alloy System Co-Cr-Fe-Mn-Ni. Surface and Coatings Technology, 2017, 325, 174-180.	2.2	43
48	Phaseâ€Transformation Ductilization of Brittle Highâ€Entropy Alloys via Metastability Engineering. Advanced Materials, 2017, 29, 1701678.	11.1	421
49	High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nature Communications, 2017, 8, 15634.	5.8	241
50	Nano-sized precipitation arising from partial substitution of Mo for Cr in FeCo-2V-0.5Cr alloy and its role in creep resistance. Materials Characterization, 2017, 130, 74-80.	1.9	1
51	Polymorphism in a high-entropy alloy. Nature Communications, 2017, 8, 15687.	5.8	192
52	Liquid-phase separation in undercooled CoCrCuFeNi high entropy alloy. Intermetallics, 2017, 86, 110-115.	1.8	30
53	100 years public–private partnership in metallurgical and materials science research. Materials Today, 2017, 20, 335-337.	8.3	0
54	Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations. Applied Surface Science, 2017, 416, 470-481.	3.1	81

#	Article	IF	CITATIONS
55	Preparation and microstructure of CuNiTiZr medium-entropy alloy coatings on TC11 substrate via electrospark – computer numerical control deposition process. Materials Letters, 2017, 197, 143-145.	1.3	13
56	In situ synchrotron high-energy X-ray diffraction study of microscopic deformation behavior of a hard-soft dual phase composite containing phase transforming matrix. Acta Materialia, 2017, 130, 297-309.	3.8	49
57	Secondary phases in AlxCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal. Acta Materialia, 2017, 131, 206-220.	3.8	292
58	A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Materialia, 2017, 131, 323-335.	3.8	474
59	CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al 2 O 3. Intermetallics, 2017, 86, 104-109.	1.8	100
60	Core-shell nanoparticle arrays double the strength of steel. Scientific Reports, 2017, 7, 42547.	1.6	60
61	Atomic-level heterogeneity and defect dynamics in concentrated solid-solution alloys. Current Opinion in Solid State and Materials Science, 2017, 21, 221-237.	5.6	155
62	Overview of hydrogen embrittlement in high-Mn steels. International Journal of Hydrogen Energy, 2017, 42, 12706-12723.	3.8	228
63	The FCC to BCC phase transformation kinetics in an Al0.5CoCrFeNi high entropy alloy. Journal of Alloys and Compounds, 2017, 710, 144-150.	2.8	59
64	Microstructural Modification of Laser-Deposited High-Entropy CrFeCoNiMoWC Alloy by Friction Stir Processing: Nanograin Formation and Deformation Mechanism. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 841-854.	1.1	28
65	Characterizing microstructural evolution in cobalt by ausforming and subsequent annealing treatments. Materials Characterization, 2017, 124, 145-153.	1.9	2
66	Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys. Acta Materialia, 2017, 126, 182-193.	3.8	133
67	Deformation mechanisms in nanotwinned copper by molecular dynamics simulation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 687, 343-351.	2.6	51
68	Harnessing mechanical instabilities at the nanoscale to achieve ultra-low stiffness metals. Nature Communications, 2017, 8, 1137.	5.8	11
69	Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 707, 593-601.	2.6	99
70	Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys. Scientific Reports, 2017, 7, 12293.	1.6	100
71	TEM observation on phase separation and interfaces of laser surface alloyed high-entropy alloy coating. Micron, 2017, 103, 84-89.	1.1	14
72	Grain boundary mediated hydriding phase transformations in individual polycrystalline metal nanoparticles. Nature Communications, 2017, 8, 1084.	5.8	49

#	Article	IF	CITATIONS
73	Phase selection rule for Al-doped CrMnFeCoNi high-entropy alloys from first-principles. Acta Materialia, 2017, 140, 366-374.	3.8	69
74	High dislocation density–induced large ductility in deformed and partitioned steels. Science, 2017, 357, 1029-1032.	6.0	729
75	Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties. Jom, 2017, 69, 2099-2106.	0.9	222
76	Thermal Expansion, Elastic and Magnetic Properties of FeCoNiCu-Based High-Entropy Alloys Using First-Principle Theory. Jom, 2017, 69, 2107-2112.	0.9	36
77	Atomic-scale analysis of early-stage precipitation in Ti(Al,Si)3 alloy. Materials and Design, 2017, 134, 244-249.	3.3	14
78	Severe plastic deformation driven nanostructure and phase evolution in a Al 0.5 CoCrFeMnNi dual phase high entropy alloy. Intermetallics, 2017, 91, 150-157.	1.8	63
79	A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics, 2017, 91, 124-128.	1.8	203
80	Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Scientific Reports, 2017, 7, 9892.	1.6	132
81	Fundamental deformation behavior in high-entropy alloys: An overview. Current Opinion in Solid State and Materials Science, 2017, 21, 252-266.	5.6	258
82	Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Materialia, 2017, 141, 59-66.	3.8	501
83	Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy. Acta Materialia, 2017, 138, 72-82.	3.8	553
84	Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure. Materials and Design, 2017, 133, 122-127.	3.3	342
85	Evaluation of Calphad Approach and Empirical Rules on the Phase Stability of Multi-principal Element Alloys. Journal of Phase Equilibria and Diffusion, 2017, 38, 369-381.	0.5	18
86	Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53. Materials and Design, 2017, 133, 435-443.	3.3	78
87	1 billion tons of nanostructure – segregation engineering enables confined transformation effects at lattice defects in steels. IOP Conference Series: Materials Science and Engineering, 2017, 219, 012006.	0.3	3
88	Phase stability, physical properties and strengthening mechanisms of concentrated solid solution alloys. Current Opinion in Solid State and Materials Science, 2017, 21, 267-284.	5.6	66
89	Nanocrystalline high-entropy alloy (CoCrFeNiAl0.3) thin-film coating by magnetron sputtering. Thin Solid Films, 2017, 638, 383-388.	0.8	128
90	Microstructure and mechanical properties of graphene reinforced Fe50Mn30Co10Cr10 high-entropy alloy composites synthesized by MA and SPS. Applied Physics A: Materials Science and Processing, 2017, 123. 1.	1.1	41

#	Article	IF	CITATIONS
91	Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy. Scientific Reports, 2017, 7, 16167.	1.6	127
92	Microstructures and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 alloys. Materials Characterization, 2017, 134, 194-201.	1.9	44
93	Effects of nanotwins on the mechanical properties of Al x CoCrFeNi high entropy alloy thin films. Scripta Materialia, 2017, 139, 71-76.	2.6	88
94	Design of High-Entropy Alloy: A Perspective from Nonideal Mixing. Jom, 2017, 69, 2092-2098.	0.9	66
95	Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity. Acta Materialia, 2017, 136, 262-270.	3.8	275
96	Stiff, light, strong and ductile: nano-structured High Modulus Steel. Scientific Reports, 2017, 7, 2757.	1.6	40
97	Effects of ε-martensitic transformation on crack tip deformation, plastic damage accumulation, and slip plane cracking associated with low-cycle fatigue crack growth. International Journal of Fatigue, 2017, 103, 533-545.	2.8	27
98	Cooling rate effect on microstructure and mechanical properties of Al x CoCrFeNi high entropy alloys. Materials and Design, 2017, 132, 392-399.	3.3	74
99	Atomic and electronic basis for the serrations of refractory high-entropy alloys. Npj Computational Materials, 2017, 3, .	3.5	64
100	Computationally-driven engineering of sublattice ordering in a hexagonal AlHfScTiZr high entropy alloy. Scientific Reports, 2017, 7, 2209.	1.6	71
101	Sol-gel Autocombustion Synthesis of Nanocrystalline High-entropy Alloys. Scientific Reports, 2017, 7, 3421.	1.6	86
102	Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Materials Research Letters, 2017, 5, 527-532.	4.1	818
103	Local Structure and Short-Range Order in a NiCoCr Solid Solution Alloy. Physical Review Letters, 2017, 118, 205501.	2.9	283
104	Preparation, characterization and properties of multicomponent AlCoCrFeNi2.1 powder by gas atomization method. Journal of Alloys and Compounds, 2017, 721, 609-614.	2.8	50
105	High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Materialia, 2017, 123, 285-294.	3.8	378
106	Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Materialia, 2017, 124, 143-150.	3.8	747
107	Dislocation nucleation during nanoindentation in a body-centered cubic TiZrHfNb high-entropy alloy. Scripta Materialia, 2017, 130, 64-68.	2.6	80
108	The Gaussian distribution of lattice size and atomic level heterogeneity in high entropy alloys. Extreme Mechanics Letters, 2017, 11, 84-88.	2.0	36

#	Article	IF	CITATIONS
109	Combinatorial synthesis of high entropy alloys: Introduction of a novel, single phase, body-centered-cubic FeMnCoCrAl solid solution. Journal of Alloys and Compounds, 2017, 691, 683-689.	2.8	60
110	Cooling rate-dependent microstructure and mechanical properties of Al Si0.2CrFeCoNiCu1â^' high entropy alloys. Journal of Alloys and Compounds, 2017, 694, 61-67.	2.8	42
111	Preparation and microstructure of AlCoCrFeNi high-entropy alloy complex curve coatings. Materials Science and Technology, 2017, 33, 559-566.	0.8	5
112	On strain hardening mechanism in gradient nanostructures. International Journal of Plasticity, 2017, 88, 89-107.	4.1	205
113	Annealing effect on the phase stability and mechanical properties of (FeNiCrMn)(100â^')Co high entropy alloys. Journal of Alloys and Compounds, 2017, 695, 2945-2950.	2.8	65
114	Transformation-induced plasticity in bulk metallic glass composites evidenced by in-situ neutron diffraction. Acta Materialia, 2017, 124, 478-488.	3.8	93
115	Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity. Materials Research Letters, 2017, 5, 110-116.	4.1	153
116	Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy. Journal of Alloys and Compounds, 2017, 693, 394-405.	2.8	171
117	First-principles prediction of high-entropy-alloy stability. Npj Computational Materials, 2017, 3, .	3.5	87
118	Microstructure and Wear Behavior of FeCoCrNiMo0.2 High Entropy Coatings Prepared by Air Plasma Spray and the High Velocity Oxy-Fuel Spray Processes. Coatings, 2017, 7, 151.	1.2	61
119	Investigation of the Microstructure Evolution in a Fe-17Mn-1.5Al-0.3C Steel via In Situ Synchrotron X-ray Diffraction during a Tensile Test. Materials, 2017, 10, 1129.	1.3	32
120	Microstructure, Mechanical and Tribological Properties of Oxide Dispersion Strengthened High-Entropy Alloys. Materials, 2017, 10, 1312.	1.3	52
121	Corrosion-Resistant High-Entropy Alloys: A Review. Metals, 2017, 7, 43.	1.0	569
122	Effects of Different Levels of Boron on Microstructure and Hardness of CoCrFeNiAlxCu0.7Si0.1By High-Entropy Alloy Coatings by Laser Cladding. Coatings, 2017, 7, 7.	1.2	25
123	Phonon broadening in high entropy alloys. Npj Computational Materials, 2017, 3, .	3.5	100
124	Complex Concentrated Alloys Including High Entropy Alloys. , 2017, , 385-405.		2
125	Sintering mechanism of CoCrFeMnNi high-entropy alloy powders. Powder Metallurgy, 2018, 61, 131-138.	0.9	20
126	Effects of nanocrystalline microstructure on the dry sliding wear behavior of a Cu-10â€⁻at% Ag-10â€⁻at% W ternary alloy against stainless steel. Wear, 2018, 402-403, 1-10.	1.5	11

#	Article	IF	CITATIONS
127	Simultaneous Strength-Ductility Enhancement of a Nano-Lamellar AlCoCrFeNi2.1 Eutectic High Entropy Alloy by Cryo-Rolling and Annealing. Scientific Reports, 2018, 8, 3276.	1.6	209
128	Tensile and shear loading of four fcc high-entropy alloys: A first-principles study. Physical Review B, 2018, 97, .	1.1	18
129	Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corrosion Science, 2018, 134, 131-139.	3.0	465
130	Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy. Materials Research Letters, 2018, 6, 236-243.	4.1	164
131	Microstructures and mechanical properties of a welded CoCrFeMnNi high-entropy alloy. Science and Technology of Welding and Joining, 2018, 23, 585-595.	1.5	70
132	Atomic-scale distorted lattice in chemically disordered equimolar complex alloys. Acta Materialia, 2018, 150, 182-194.	3.8	89
133	Phase formation and strengthening mechanisms in a dual-phase nanocrystalline CrMnFeVTi high-entropy alloy with ultrahigh hardness. Journal of Alloys and Compounds, 2018, 744, 552-560.	2.8	37
134	Comparison of the structure and properties of equiatomic and non-equiatomic multicomponent alloys. Materials Science and Technology, 2018, 34, 988-991.	0.8	18
135	Critical stress for twinning nucleation in CrCoNi-based medium and high entropy alloys. Acta Materialia, 2018, 149, 388-396.	3.8	133
136	Microstructure evolution and strengthening mechanism of Al 0.4 CoCu 0.6 NiSi x (x=0–0.2) high entropy alloys prepared by vacuum arc melting and copper injection fast solidification. Vacuum, 2018, 150, 84-95.	1.6	40
137	Negative-pressure polymorphs made by heterostructural alloying. Science Advances, 2018, 4, eaaq1442.	4.7	34
138	Efficient exploration of the High Entropy Alloy composition-phase space. Acta Materialia, 2018, 152, 41-57.	3.8	62
139	Adiabatic shear localization in the CrMnFeCoNi high-entropy alloy. Acta Materialia, 2018, 151, 424-431.	3.8	164
140	Effects of milling time, sintering temperature, Al content on the chemical nature, microhardness and microstructure of mechanochemically synthesized FeCoNiCrMn high entropy alloy. Journal of Alloys and Compounds, 2018, 749, 834-843.	2.8	31
141	A new type of (TiZrNbTaHf)N/MoN nanocomposite coating: Microstructure and properties depending on energy of incident ions. Composites Part B: Engineering, 2018, 146, 132-144.	5.9	60
142	Boron doped ultrastrong and ductile high-entropy alloys. Acta Materialia, 2018, 151, 366-376.	3.8	230
143	Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. NPG Asia Materials, 2018, 10, 127-136.	3.8	385
144	Magnetically-driven phase transformation strengthening in high entropy alloys. Nature Communications, 2018, 9, 1363.	5.8	263

#	Article	IF	CITATIONS
145	Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures. Acta Materialia, 2018, 148, 407-418.	3.8	234
146	Transition in microstructural and mechanical behavior by reduction of sigma-forming element content in a novel high entropy alloy. Materials and Design, 2018, 145, 11-19.	3.3	35
147	Strengthening of Fe40Mn40Co10Cr10 high entropy alloy via Mo/C alloying. Materials Letters, 2018, 219, 85-88.	1.3	40
148	Plastic strain partitioning in dual phase Al13CoCrFeNi high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 720, 238-247.	2.6	32
149	Homogenization of Al CoCrFeNi high-entropy alloys with improved corrosion resistance. Corrosion Science, 2018, 133, 120-131.	3.0	283
150	Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 716, 150-156.	2.6	144
151	Deformation mechanisms and slip-twin interactions in nanotwinned body-centered cubic iron by molecular dynamics simulations. Computational Materials Science, 2018, 147, 34-48.	1.4	14
152	Microstructural evolution and mechanical performance of carbon-containing CoCrFeMnNi-C high entropy alloys. Journal of Alloys and Compounds, 2018, 743, 115-125.	2.8	107
153	Transformation induced softening and plasticity in high entropy alloys. Acta Materialia, 2018, 147, 35-41.	3.8	163
154	In-situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy. Acta Materialia, 2018, 147, 236-246.	3.8	152
155	Gradient microstructure with martensitic transformation for developing a large-size metallic alloy with enhanced mechanical properties. Materials and Design, 2018, 143, 20-26.	3.3	15
156	Microstructure and corrosion properties of the low-density single-phase compositionally complex alloy AlTiVCr. Corrosion Science, 2018, 133, 386-396.	3.0	91
157	Enhancing strength and thermal stability of TWIP steels with a heterogeneous structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 720, 231-237.	2.6	20
158	Design of non-equiatomic medium-entropy alloys. Scientific Reports, 2018, 8, 1236.	1.6	82
159	Science and technology in high-entropy alloys. Science China Materials, 2018, 61, 2-22.	3.5	679
160	Novel high-entropy and medium-entropy stainless steels with enhanced mechanical and anti-corrosion properties. Materials Science and Technology, 2018, 34, 572-579.	0.8	9
161	Energetics analysis of interstitial loops in single-phase concentrated solid-solution alloys. Journal of Nuclear Materials, 2018, 501, 94-103.	1.3	15
162	Structure and hardness of B2 ordered refractory AlNbTiVZr0.5 high entropy alloy after high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 716, 308-315.	2.6	36

#	Article	IF	CITATIONS
163	Delayed damage accumulation by athermal suppression of defect production in concentrated solid solution alloys. Materials Research Letters, 2018, 6, 136-141.	4.1	39
164	Composition evolution of gamma prime nanoparticles in the Ti-doped CoFeCrNi high entropy alloy. Scripta Materialia, 2018, 148, 42-46.	2.6	54
165	Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions. Acta Materialia, 2018, 147, 213-225.	3.8	252
166	Influence of strain on the formation of cold-rolling and grain growth textures of an equiatomic HfZrTiTaNb refractory high entropy alloy. Materials Characterization, 2018, 136, 286-292.	1.9	28
167	Accelerated atomic-scale exploration of phase evolution in compositionally complex materials. Materials Horizons, 2018, 5, 86-92.	6.4	72
168	Abnormal γ″ - ε phase transformation in the CoCrFeNiNb0.25 high entropy alloy. Scripta Materialia, 2018, 146, 281-285.	2.6	43
169	Preparing bulk ultrafine-microstructure high-entropy alloys <i>via</i> direct solidification. Nanoscale, 2018, 10, 1912-1919.	2.8	51
170	Effects of Cobalt on the structure and mechanical behavior of non-equal molar CoxFe50â^'xCr25Ni25 high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 723, 221-228.	2.6	37
171	Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Materialia, 2018, 146, 211-224.	3.8	295
172	In-situ electrochemical-AFM study of localized corrosion of Al CoCrFeNi high-entropy alloys in chloride solution. Applied Surface Science, 2018, 439, 533-544.	3.1	147
173	Phase stability and transformation in a light-weight high-entropy alloy. Acta Materialia, 2018, 146, 280-293.	3.8	131
174	Strengthening of cobalt-free 19Ni3Mo1.5Ti maraging steel through high-density and low lattice misfit nanoscale precipitates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 715, 174-185.	2.6	47
175	High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2018, 279, 19-23.	2.6	192
176	Mechanical response and deformation behavior of Al0.6CoCrFeNi high-entropy alloys upon dynamic loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 727, 208-213.	2.6	84
177	Phase stability of a ductile single-phase BCC Hf0.5Nb0.5Ta0.5Ti1.5Zr refractory high-entropy alloy. Intermetallics, 2018, 98, 79-88.	1.8	56
178	A five-component entropy-stabilized fluorite oxide. Journal of the European Ceramic Society, 2018, 38, 4161-4164.	2.8	251
179	Local nanoscale strain mapping of a metallic glass during <i>in situ</i> testing. Applied Physics Letters, 2018, 112, .	1.5	35
180	Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018, 359, 1489-1494.	6.0	1,065

#	Article	IF	CITATIONS
181	Role of brittle sigma phase in cryogenic-temperature-strength improvement of non-equi-atomic Fe-rich VCrMnFeCoNi high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 724, 403-410.	2.6	49
182	Temperature-dependent phonon spectra of magnetic random solid solutions. Npj Computational Materials, 2018, 4, .	3.5	19
183	Design of high-strength refractory complex solid-solution alloys. Npj Computational Materials, 2018, 4, .	3.5	56
184	On the controllability of phase formation in rapid solidification of high entropy alloys. Journal of Alloys and Compounds, 2018, 748, 679-686.	2.8	27
185	Comparative study of hydrogen embrittlement in stable and metastable high-entropy alloys. Scripta Materialia, 2018, 150, 74-77.	2.6	84
186	Deformation mechanism during high-temperature tensile test in an eutectic high-entropy alloy AlCoCrFeNi2.1. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 724, 148-155.	2.6	90
187	Hydrogen embrittlement of an interstitial equimolar high-entropy alloy. Corrosion Science, 2018, 136, 403-408.	3.0	96
188	Laser beam welding of a CoCrFeNiMn-type high entropy alloy produced by self-propagating high-temperature synthesis. Intermetallics, 2018, 96, 63-71.	1.8	83
189	Nature-Inspired Hierarchical Steels. Scientific Reports, 2018, 8, 5088.	1.6	47
190	High-temperature high-entropy alloys AlxCo15Cr15Ni70-x based on the Al-Ni binary system. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 724, 283-288.	2.6	51
191	Influence of deformation and annealing twinning on the microstructure and texture evolution of face-centered cubic high-entropy alloys. Acta Materialia, 2018, 150, 88-103.	3.8	151
192	Thermo-mechanical response of single-phase face-centered-cubic Al <i>_x</i> CoCrFeNi high-entropy alloy microcrystals. Materials Research Letters, 2018, 6, 300-306.	4.1	15
193	Size dependent plasticity and damage response in multiphase body centered cubic high entropy alloys. Acta Materialia, 2018, 150, 104-116.	3.8	69
194	Influence of compositional inhomogeneity on mechanical behavior of an interstitial dual-phase high-entropy alloy. Materials Chemistry and Physics, 2018, 210, 29-36.	2.0	67
195	Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy. Materials Chemistry and Physics, 2018, 210, 43-48.	2.0	127
196	Precipitation hardening in CoCrFeNi-based high entropy alloys. Materials Chemistry and Physics, 2018, 210, 2-11.	2.0	137
197	A promising new class of plasticine: Metallic plasticine. Journal of Materials Science and Technology, 2018, 34, 344-348.	5.6	13
198	Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility. Acta Materialia, 2018, 144, 129-137.	3.8	268

#	Article	IF	CITATIONS
199	Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi. Acta Materialia, 2018, 144, 107-115.	3.8	187
200	Mechanical properties and microstructure of a Ti-6Al-4V alloy subjected to cold rolling, asymmetric rolling and asymmetric cryorolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 710, 10-16.	2.6	63
201	Equilibrium high entropy alloy phase stability from experiments and thermodynamic modeling. Scripta Materialia, 2018, 146, 5-8.	2.6	83
202	Additively manufactured hierarchical stainless steels with high strength and ductility. Nature Materials, 2018, 17, 63-71.	13.3	1,517
203	Fcc nanostructured TiFeCoNi alloy with multi-scale grains and enhanced plasticity. Scripta Materialia, 2018, 143, 108-112.	2.6	55
204	Formation of soft magnetic high entropy amorphous alloys composites containing in situ solid solution phase. Journal of Magnetism and Magnetic Materials, 2018, 449, 63-67.	1.0	19
205	Effect of carbon addition on the microstructure and mechanical properties of CoCrFeNi high entropy alloy. Science China Technological Sciences, 2018, 61, 117-123.	2.0	79
206	Realizing strength-ductility combination of coarse-grained Al0.2Co1.5CrFeNi1.5Ti0.3 alloy via nano-sized, coherent precipitates. International Journal of Plasticity, 2018, 100, 177-191.	4.1	193
207	On the microstructure and mechanical properties of the AlCoCrCuNi high entropy alloy processed in the semi-solid state. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 709, 139-151.	2.6	21
208	Stacking fault energy of face-centered-cubic high entropy alloys. Intermetallics, 2018, 93, 269-273.	1.8	312
209	Highâ€Entropy Alloys: Potential Candidates for Highâ€Temperature Applications – An Overview. Advanced Engineering Materials, 2018, 20, 1700645.	1.6	270
210	Studies of "sluggish diffusion―effect in Co-Cr-Fe-Mn-Ni, Co-Cr-Fe-Ni and Co-Fe-Mn-Ni high entropy alloys; determination of tracer diffusivities by combinatorial approach. Journal of Alloys and Compounds, 2018, 731, 920-928.	2.8	109
211	First-principles study of the third-order elastic constants and related anharmonic properties in refractory high-entropy alloys. Acta Materialia, 2018, 142, 29-36.	3.8	25
212	Microstructure characterization of CoCrFeNiMnPd eutectic high-entropy alloys. Journal of Alloys and Compounds, 2018, 731, 600-611.	2.8	49
213	Unexpected cyclic stress-strain response of dual-phase high-entropy alloys induced by partial reversibility of deformation. Scripta Materialia, 2018, 143, 63-67.	2.6	66
214	Highâ€Entropy Alloy (HEA) oated Nanolattice Structures and Their Mechanical Properties. Advanced Engineering Materials, 2018, 20, 1700625.	1.6	56
215	Microstructures and thermodynamic properties of high-entropy alloys CoCrCuFeNi. Intermetallics, 2018, 93, 40-46.	1.8	53
216	Alloy design by dislocation engineering. Journal of Materials Science and Technology, 2018, 34, 417-420.	5.6	49

#	Article	IF	CITATIONS
217	Local mechanical properties of Al CoCrCuFeNi high entropy alloy characterized using nanoindentation. Intermetallics, 2018, 93, 85-88.	1.8	54
218	Microstructure and mechanical properties of Al0.7CoCrFeNi high-entropy-alloy prepared by directional solidification. Intermetallics, 2018, 93, 93-100.	1.8	60
219	Dislocation network in additive manufactured steel breaks strength–ductility trade-off. Materials Today, 2018, 21, 354-361.	8.3	640
220	Microstructures and mechanical properties of Nb-alloyed CoCrCuFeNi high-entropy alloys. Journal of Materials Science and Technology, 2018, 34, 365-369.	5.6	78
221	Microstructure, hardness and corrosion resistance of Al2CoCrCuFeNiTix high-entropy alloy coatings prepared by rapid solidification. Journal of Alloys and Compounds, 2018, 735, 359-364.	2.8	80
222	Effect of C content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy. Materials Chemistry and Physics, 2018, 210, 136-145.	2.0	139
223	A new design concept for prevention of hydrogen-induced mechanical degradation: viewpoints of metastability and high entropy. Procedia Structural Integrity, 2018, 13, 292-297.	0.3	8
224	Localized Plasticity and Associated Cracking in Stable and Metastable High-Entropy Alloys Pre-Charged with Hydrogen. Procedia Structural Integrity, 2018, 13, 716-721.	0.3	12
225	Fatigue Crack Growth Behavior and Associated Microstructure in a Metastable High-Entropy Alloy. Procedia Structural Integrity, 2018, 13, 831-836.	0.3	15
226	Advances in understanding atomic-scale deformation of small-sized face-centered cubic metals with in situ transmission electron microscopy. Materials Today Nano, 2018, 2, 58-69.	2.3	10
227	Lattice Distortion and Phase Stability of Pd-Doped NiCoFeCr Solid-Solution Alloys. Entropy, 2018, 20, 900.	1.1	27
228	High-entropy high-hardness metal carbides discovered by entropy descriptors. Nature Communications, 2018, 9, 4980.	5.8	604
229	Coherent Precipitation and Strengthening in Compositionally Complex Alloys: A Review. Entropy, 2018, 20, 878.	1.1	100
230	Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science, 2018, 362, 933-937.	6.0	950
231	Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563, 546-550.	13.7	988
232	Origin of radiation resistance in multi-principal element alloys. Scientific Reports, 2018, 8, 16015.	1.6	41
233	Ultrahigh cryogenic strength and exceptional ductility in ultrafine-grained CoCrFeMnNi high-entropy alloy with fully recrystallized structure. Materials Today Nano, 2018, 4, 46-53.	2.3	136
234	Elemental Phase Partitioning in the γ-γ″ Ni2CoFeCrNb0.15 High Entropy Alloy. Entropy, 2018, 20, 910.	1.1	10

#	Article	IF	CITATIONS
235	A Novel Low-Activation VCrFeTaxWx (x = 0.1, 0.2, 0.3, 0.4, and 1) High-Entropy Alloys with Excellent Heat-Softening Resistance, Entropy, 2018, 20, 951.	1.1	52
236	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:mi>Al</mml:mi> -Doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>Fe</mml:mi> - <mml:math< td=""><td>1.5</td><td>10</td></mml:math<></mml:math 	1.5	10
237	Effect of Annealing on Microstructure and Mechanical Properties of Al0.5CoCrFeMoxNi High-Entropy Alloys. Entropy, 2018, 20, 812.	1.1	14
238	Deformation mechanisms and work-hardening behavior of transformation-induced plasticity high entropy alloys by <i>in -situ</i> neutron diffraction. Materials Research Letters, 2018, 6, 620-626.	4.1	41
239	Engineering heterostructured grains to enhance strength in a single-phase high-entropy alloy with maintained ductility. Materials Research Letters, 2018, 6, 634-640.	4.1	70
240	Production of AlCrNbTaTi High Entropy Alloy via Electro-Deoxidation of Metal Oxides. Journal of the Electrochemical Society, 2018, 165, D574-D579.	1.3	27
241	Interface dominated cooperative nanoprecipitation in interstitial alloys. Nature Communications, 2018, 9, 4017.	5.8	12
242	Unexpected strength–ductility response in an annealed, metastable, high-entropy alloy. Applied Materials Today, 2018, 13, 198-206.	2.3	50
243	High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys. Nature Communications, 2018, 9, 4063.	5.8	399
244	Introductory Chapter: Genome of Material for Combinatorial Design and Prototyping of Alloys. , 0, , .		0
245	Exceptional phase-transformation strengthening of ferrous medium-entropy alloys at cryogenic temperatures. Acta Materialia, 2018, 161, 388-399.	3.8	174
246	The Exceptional Strong Face-centered Cubic Phase and Semi-coherent Phase Boundary in a Eutectic Dual-phase High Entropy Alloy AlCoCrFeNi. Scientific Reports, 2018, 8, 14910.	1.6	39
247	High-Throughput Screening Solar-Thermal Conversion Films in a Pseudobinary (Cr, Fe, V)–(Ta, W) System. ACS Combinatorial Science, 2018, 20, 602-610.	3.8	29
248	A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength. Science Advances, 2018, 4, eaat8712.	4.7	247
249	Strengthening mechanisms in high-entropy alloys: Perspectives for alloy design. Journal of Materials Research, 2018, 33, 2970-2982.	1.2	25
250	A Low-Cost Lightweight Entropic Alloy with High Strength. Journal of Materials Engineering and Performance, 2018, 27, 6648-6656.	1.2	38
251	Predictive multiphase evolution in Al-containing high-entropy alloys. Nature Communications, 2018, 9, 4520.	5.8	107
252	From high-entropy alloys to complex concentrated alloys. Comptes Rendus Physique, 2018, 19, 721-736.	0.3	154

#	Article	IF	CITATIONS
253	Bidirectional Transformation Enables Hierarchical Nanolaminate Dualâ€Phase Highâ€Entropy Alloys. Advanced Materials, 2018, 30, e1804727.	11.1	167
254	Effect of atomic order/disorder on Cr segregation in Ni-Fe alloys. Journal of Applied Physics, 2018, 124,	1.1	4
255	Microstructural evolution and mechanical properties of (Mg,Co,Ni,Cu,Zn)O highâ€entropy ceramics. Journal of the American Ceramic Society, 2019, 102, 2228-2237.	1.9	87
256	Metastability in high-entropy alloys: A review. Journal of Materials Research, 2018, 33, 2924-2937.	1.2	85
257	An overview of modeling the stacking faults in lightweight and high-entropy alloys: Theory and application. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 737, 132-150.	2.6	35
258	Strengthening mechanism in a high-strength carbon-containing powder metallurgical high entropy alloy. Intermetallics, 2018, 102, 58-64.	1.8	37
259	Regain Strain-Hardening in High-Strength Metals by Nanofiller Incorporation at Grain Boundaries. Nano Letters, 2018, 18, 6255-6264.	4.5	74
260	Data-driven design of inorganic materials with the Automatic Flow Framework for Materials Discovery. MRS Bulletin, 2018, 43, 670-675.	1.7	35
261	Strong resistance to hydrogen embrittlement of high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 736, 156-166.	2.6	67
262	Irradiation responses and defect behavior of single-phase concentrated solid solution alloys. Journal of Materials Research, 2018, 33, 3077-3091.	1.2	47
263	Exceptional combination of ultra-high strength and excellent ductility by inevitably generated Mn-segregation in austenitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 737, 69-76.	2.6	12
264	Impact of Chemical Fluctuations on Stacking Fault Energies of CrCoNi and CrMnFeCoNi High Entropy Alloys from First Principles. Entropy, 2018, 20, 655.	1.1	69
265	Lattice distortion in a strong and ductile refractory high-entropy alloy. Acta Materialia, 2018, 160, 158-172.	3.8	325
266	Hard-yet-tough high-vanadium hierarchical composite coating: Microstructure and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 736, 87-99.	2.6	6
267	Deformation and annealing behaviors of as-cast non-equiatomic high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 737, 9-17.	2.6	9
268	Structural and bonding transformation of Al0.67CrCoCuFeNi high-entropy alloys during quenching. Journal of Alloys and Compounds, 2018, 753, 636-641.	2.8	15
269	Fracture resistance of high entropy alloys: A review. Intermetallics, 2018, 99, 69-83.	1.8	149
270	Influence of severe straining and strain rate on the evolution of dislocation structures during micro-/nanoindentation in high entropy lamellar eutectics. International Journal of Plasticity, 2018, 109, 121-136.	4.1	51

#	Article	IF	CITATIONS
271	Microstructure and properties of bulk Al0.5CoCrFeNi high-entropy alloy by cold rolling and subsequent annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 729, 141-148.	2.6	74
272	Phase stability and hydrogen desorption in a quinary equimolar mixture of light-metals borohydrides. International Journal of Hydrogen Energy, 2018, 43, 16793-16803.	3.8	19
273	Design of non-equiatomic high entropy alloys with heterogeneous lamella structure towards strength-ductility synergy. Scripta Materialia, 2018, 154, 78-82.	2.6	67
274	Elastic properties of Al CrMnFeCoNi (0 ≤ ≤5) high-entropy alloys from ab initio theory. Acta Materialia, 2018, 155, 12-22.	3.8	77
275	Strengthening mechanism of gradient nanostructured body-centred cubic iron film: From inverse Hall-Petch to classic Hall-Petch. Computational Materials Science, 2018, 152, 236-242.	1.4	21
276	Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7224-7229.	3.3	338
277	Tuning the defects in face centered cubic high entropy alloy via temperature-dependent stacking fault energy. Scripta Materialia, 2018, 155, 134-138.	2.6	41
278	Uniaxial deformation of face-centered-cubic(Ni)-ordered B2(NiAl) bicrystals: atomistic mechanisms near a Kurdjumov–Sachs interface. Journal of Materials Science, 2018, 53, 5684-5695.	1.7	9
279	Effect of cold-rolling on microstructure, texture and mechanical properties of an equiatomic FeCrCuMnNi high entropy alloy. Materialia, 2018, 1, 175-184.	1.3	49
280	Toward a sustainable materials system. Science, 2018, 360, 1396-1398.	6.0	143
280 281		6.0	143 86
	Toward a sustainable materials system. Science, 2018, 360, 1396-1398. L1 ₂ -strengthened high-entropy alloys for advanced structural applications. Journal of		
281	Toward a sustainable materials system. Science, 2018, 360, 1396-1398. L1 ₂ -strengthened high-entropy alloys for advanced structural applications. Journal of Materials Research, 2018, 33, 2983-2997. Effects of solute-SIA binding energy on defect production behaviors in Fe-based alloys. Journal of	1.2	86
281 282	Toward a sustainable materials system. Science, 2018, 360, 1396-1398. L1 ₂ -strengthened high-entropy alloys for advanced structural applications. Journal of Materials Research, 2018, 33, 2983-2997. Effects of solute-SIA binding energy on defect production behaviors in Fe-based alloys. Journal of Nuclear Materials, 2018, 509, 124-133. High Throughput Discovery and Design of Strong Multicomponent Metallic Solid Solutions.	1.2 1.3	86 6
281 282 283	Toward a sustainable materials system. Science, 2018, 360, 1396-1398. L1 ₂ -strengthened high-entropy alloys for advanced structural applications. Journal of Materials Research, 2018, 33, 2983-2997. Effects of solute-SIA binding energy on defect production behaviors in Fe-based alloys. Journal of Nuclear Materials, 2018, 509, 124-133. High Throughput Discovery and Design of Strong Multicomponent Metallic Solid Solutions. Scientific Reports, 2018, 8, 8600. Eight in one: high-entropy-alloy nanoparticles synthesized by carbothermal shock. Science Bulletin,	1.2 1.3 1.6	86 6 67
281 282 283 283	Toward a sustainable materials system. Science, 2018, 360, 1396-1398. L1 ₂ -strengthened high-entropy alloys for advanced structural applications. Journal of Materials Research, 2018, 33, 2983-2997. Effects of solute-SIA binding energy on defect production behaviors in Fe-based alloys. Journal of Nuclear Materials, 2018, 509, 124-133. High Throughput Discovery and Design of Strong Multicomponent Metallic Solid Solutions. Scientific Reports, 2018, 8, 8600. Eight in one: high-entropy-alloy nanoparticles synthesized by carbothermal shock. Science Bulletin, 2018, 63, 737-738. Third-order elastic constants and anharmonic properties of three fcc high-entropy alloys from	1.2 1.3 1.6 4.3	86 6 67 4
281 282 283 283 284	Toward a sustainable materials system. Science, 2018, 360, 1396-1398. L1 ₂ -strengthened high-entropy alloys for advanced structural applications. Journal of Materials Research, 2018, 33, 2983-2997. Effects of solute-SIA binding energy on defect production behaviors in Fe-based alloys. Journal of Nuclear Materials, 2018, 509, 124-133. High Throughput Discovery and Design of Strong Multicomponent Metallic Solid Solutions. Scientific Reports, 2018, 8, 8600. Eight in one: high-entropy-alloy nanoparticles synthesized by carbothermal shock. Science Bulletin, 2018, 63, 737-738. Third-order elastic constants and anharmonic properties of three fcc high-entropy alloys from first-principles. Journal of Alloys and Compounds, 2018, 764, 906-912. Multicomponent Hf-Nb-Ti-V-Zr nitride coatings by reactive magnetron sputter deposition. Surface and	1.2 1.3 1.6 4.3 2.8	 86 6 67 4 11

#	Article	IF	CITATIONS
289	Synergic strengthening by oxide and coherent precipitate dispersions in high-entropy alloy prepared by powder metallurgy. Scripta Materialia, 2018, 157, 24-29.	2.6	74
290	A Mystery of "Sluggish Diffusion" in High-Entropy Alloys: The Truth or a Myth?. , 0, 17, 69-104.		81
291	Microstructural response of He+ irradiated FeCoNiCrTi0.2 high-entropy alloy. Journal of Nuclear Materials, 2018, 510, 187-192.	1.3	22
292	Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8076-8081.	3.3	137
293	First-principles investigation of the micromechanical properties of fcc-hcp polymorphic high-entropy alloys. Scientific Reports, 2018, 8, 11196.	1.6	28
294	An approach for screening single phase high-entropy alloys using an in-house thermodynamic database. Intermetallics, 2018, 101, 56-63.	1.8	18
295	The search for high entropy alloys: A high-throughput ab-initio approach. Acta Materialia, 2018, 159, 364-383.	3.8	142
296	Enhancement of <001> recrystallization texture in non-equiatomic Fe-Ni-Co-Al-based high entropy alloys by combination of annealing and Cr addition. Journal of Alloys and Compounds, 2018, 768, 277-286.	2.8	18
297	Metastable Intermediates in Amorphous Titanium Oxide: A Hidden Role Leading to Ultra-Stable Photoanode Protection. Nano Letters, 2018, 18, 5335-5342.	4.5	36
298	Strain Rate Sensitivity of a TRIP-Assisted Dual-Phase High-Entropy Alloy. Frontiers in Materials, 2018, 5, .	1.2	43
299	Influence of deformation induced nanoscale twinning and FCC-HCP transformation on hardening and texture development in medium-entropy CrCoNi alloy. Acta Materialia, 2018, 158, 38-52.	3.8	135
300	Extremely high strength and work hardening ability in a metastable high entropy alloy. Scientific Reports, 2018, 8, 9920.	1.6	96
301	Transformation Induced Plasticity Effects of a Non-Equal Molar Co-Cr-Fe-Ni High Entropy Alloy System. Metals, 2018, 8, 369.	1.0	29
302	BCC-FCC interfacial effects on plasticity and strengthening mechanisms in high entropy alloys. Acta Materialia, 2018, 157, 83-95.	3.8	113
303	Combinatorial metallurgical synthesis and processing of high-entropy alloys. Journal of Materials Research, 2018, 33, 3156-3169.	1.2	83
304	Twinning-induced strain hardening in dual-phase FeCoCrNiAl0.5 at room and cryogenic temperature. Scientific Reports, 2018, 8, 10663.	1.6	28
305	Strength enhancement and density reduction by the addition of Al in CrFeMoV based high-entropy alloy fabricated through powder metallurgy. Materials and Design, 2018, 157, 97-104.	3.3	27
306	A review on fundamental of high entropy alloys with promising high–temperature properties. Journal of Alloys and Compounds, 2018, 760, 15-30.	2.8	506

#	Article	IF	CITATIONS
307	Mechanical properties of a new high entropy alloy with a duplex ultra-fine grained structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 728, 54-62.	2.6	55
308	Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77â€ ⁻ K using in situ neutron diffraction. Acta Materialia, 2018, 154, 79-89.	3.8	207
309	Multinary diamond-like chalcogenides for promising thermoelectric application. Chinese Physics B, 2018, 27, 047206.	0.7	15
310	Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling. Materials, 2018, 11, 53.	1.3	75
311	Continuous and reversible atomic rearrangement in a multifunctional titanium alloy. Materialia, 2018, 2, 1-8.	1.3	20
312	Superconductivity in equimolar Nb-Re-Hf-Zr-Ti high entropy alloy. Journal of Alloys and Compounds, 2018, 769, 1059-1063.	2.8	37
313	Alloying effect on phase stability, elastic and thermodynamic properties of Nb-Ti-V-Zr high entropy alloy. Intermetallics, 2018, 101, 152-164.	1.8	104
314	Hierarchical nanostructure of CrCoNi film underlying its remarkable mechanical strength. Applied Physics Letters, 2018, 113, .	1.5	14
315	Size effects on plasticity in high-entropy alloys. Journal of Materials Research, 2018, 33, 3055-3076.	1.2	37
316	Microstructural damage evolution and arrest in binary Fe–high-Mn alloys with different deformation temperatures. International Journal of Fracture, 2018, 213, 193-206.	1.1	9
317	Phase-transition assisted mechanical behavior of TiZrHfTax high-entropy alloys. Scientific Reports, 2018, 8, 12576.	1.6	6
318	Beating hydrogen with its own weapon: Nano-twin gradients enhance embrittlement resistance of a high-entropy alloy. Materials Today, 2018, 21, 1003-1009.	8.3	127
319	On Lattice Distortion in High Entropy Alloys. Frontiers in Materials, 2018, 5, .	1.2	103
320	Microstructure and tribological performance of Fe50Mn30Co10Cr10 high-entropy alloy based self-lubricating composites. Materials Letters, 2018, 233, 142-145.	1.3	21
321	Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8919-8924.	3.3	495
322	Microstructural Evolution in MgAlLiZnCaY and MgAlLiZnCaCu Multicomponent High Entropy Alloys. Materials Science Forum, 2018, 928, 183-187.	0.3	7
323	Fabrication of ceramics/high-entropy alloys gradient composites by combustion synthesis in ultra-high gravity field. Materials Letters, 2018, 233, 4-7.	1.3	9
324	Breakthrough applications of high-entropy materials. Journal of Materials Research, 2018, 33, 3129-3137.	1.2	139

#	Article	IF	CITATIONS
325	Current and emerging practices of CALPHAD toward the development of high entropy alloys and complex concentrated alloys. Journal of Materials Research, 2018, 33, 2899-2923.	1.2	51
326	Phase transformations in body-centered cubic NbxHfZrTi high-entropy alloys. Materials Characterization, 2018, 142, 443-448.	1.9	39
327	Influence of warm-rolling and annealing temperature on the microstructure and mechanical properties of ductile non-equal molar Co40Cr25Fe10Ni25 high entropy alloys. Materials Chemistry and Physics, 2018, 216, 429-434.	2.0	5
328	Microstructural and mechanical characterization of an equiatomic YGdTbDyHo high entropy alloy with hexagonal close-packed structure. Acta Materialia, 2018, 156, 86-96.	3.8	58
329	Development and exploration of refractory high entropy alloys—A review. Journal of Materials Research, 2018, 33, 3092-3128.	1.2	854
330	Nanomechanical studies of high-entropy alloys. Journal of Materials Research, 2018, 33, 3035-3054.	1.2	27
331	Microstructural Design for Improving Ductility of An Initially Brittle Refractory High Entropy Alloy. Scientific Reports, 2018, 8, 8816.	1.6	138
332	Lattice dynamics and metastability of fcc metals in the hcp structure and the crucial role of spin-orbit coupling in platinum. Physical Review B, 2018, 97, .	1.1	16
333	High-entropy alloys and metallic nanocomposites: Processing challenges, microstructure development and property enhancement. Materials Science and Engineering Reports, 2018, 131, 1-42.	14.8	126
334	The strength-ductility balance of AlO·4CoCu0.6NiTix (xâ‰✿.0) and AlO·4CoCuO·6NiSi0.2Tix (xâ‰❶.5) high entropy alloys by regulating the proportion of Ti and improving the cooling rate. Vacuum, 2018, 155, 270-279.	1.6	9
335	Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy. Materials Research Letters, 2018, 6, 450-455.	4.1	54
336	Phase prediction, microstructure and high hardness of novel light-weight high entropy alloys. Journal of Materials Research and Technology, 2019, 8, 795-803.	2.6	55
337	Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys. Materials Characterization, 2019, 147, 464-511.	1.9	231
338	Phase evolution and stability of nanocrystalline CoCrFeNi and CoCrFeMnNi high entropy alloys. Journal of Alloys and Compounds, 2019, 770, 1004-1015.	2.8	94
339	Effect of Al on structure and mechanical properties of Fe-Mn-Cr-Ni-Al non-equiatomic high entropy alloys with high Fe content. Journal of Alloys and Compounds, 2019, 770, 194-203.	2.8	80
340	Microstructural, mechanical, and corrosion properties of plasma-nitrided CoCrFeMnNi high-entropy alloys. Surface and Coatings Technology, 2019, 376, 52-58.	2.2	43
341	Densification kinetics of boron carbide with medium entropy alloy as a sintering aid during spark plasma sintering. International Journal of Applied Ceramic Technology, 2019, 16, 389-399.	1.1	6
342	New multiphase compositionally complex alloys driven by the high entropy alloy approach. Materials Characterization, 2019, 147, 512-532.	1.9	95

#	Article	IF	CITATIONS
343	Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways. Nature Communications, 2019, 10, 3563.	5.8	330
344	Quantitative analysis of electron channeling contrast of dislocations. Ultramicroscopy, 2019, 206, 112826.	0.8	11
345	In-situ observation of martensitic transformation in an interstitial metastable high-entropy alloy during cathodic hydrogen charging. Scripta Materialia, 2019, 173, 56-60.	2.6	35
346	Ballistic Response of a FCC-B2 Eutectic AlCoCrFeNi2.1 High Entropy Alloy. Journal of Dynamic Behavior of Materials, 2019, 5, 495-503.	1.1	14
347	Interstitial-Free Bake Hardening Realized by Epsilon Martensite Reverse Transformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3985-3991.	1.1	9
348	High strength dual-phase high entropy alloys with a tunable nanolayer thickness. Scripta Materialia, 2019, 173, 149-153.	2.6	37
349	High-Throughput Nanomechanical Screening of Phase-Specific and Temperature-Dependent Hardness in AlxFeCrNiMn High-Entropy Alloys. Jom, 2019, 71, 3368-3377.	0.9	16
350	SLM lattice structures: Properties, performance, applications and challenges. Materials and Design, 2019, 183, 108137.	3.3	689
351	Segregation-driven grain boundary spinodal decomposition as a pathway for phase nucleation in a high-entropy alloy. Acta Materialia, 2019, 178, 1-9.	3.8	102
352	Temperature dependence of the Hall–Petch relationship in CoCrFeMnNi high-entropy alloy. Journal of Alloys and Compounds, 2019, 806, 992-998.	2.8	80
353	Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy. Materials Research Letters, 2019, 7, 453-459.	4.1	129
354	Plastic deformation transition in FeCrCoNiAl <i>_x</i> high-entropy alloys. Materials Research Letters, 2019, 7, 439-445.	4.1	12
355	A novel face-centered-cubic high-entropy alloy strengthened by nanoscale precipitates. Scripta Materialia, 2019, 172, 51-55.	2.6	64
356	Suppressed Growth of (Fe, Cr, Co, Ni, Cu)Sn2 Intermetallic Compound at Interface between Sn-3.0Ag-0.5Cu Solder and FeCoNiCrCu0.5 Substrate during Solid-state Aging. Scientific Reports, 2019, 9, 10210.	1.6	12
357	The enhanced static recrystallization kinetics of a non-equiatomic high entropy alloy through the reverse transformation of strain induced martensite. Journal of Alloys and Compounds, 2019, 806, 1550-1563.	2.8	29
358	Processing–Microstructure Relation of Deformed and Partitioned (D&P) Steels. Metals, 2019, 9, 695.	1.0	5
359	Microstructures and mechanical properties of CoCrFeNiAl0.3 high-entropy alloy thin films by pulsed laser deposition. Applied Surface Science, 2019, 494, 72-79.	3.1	47
360	Microstructure and mechanical properties of Cr-rich Co-Cr-Fe-Ni high entropy alloys designed by valence electron concentration. Materials Chemistry and Physics, 2019, 238, 121897.	2.0	25

#	Article	IF	CITATIONS
361	Enhanced mechanical properties of a large-size metallic alloy through a gradient microstructure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138193.	2.6	7
362	Unavoidable disorder and entropy in multi-component systems. Npj Computational Materials, 2019, 5, .	3.5	61
363	Portevin-Le Chatelier mechanism in face-centered-cubic metallic alloys from low to high entropy. International Journal of Plasticity, 2019, 122, 212-224.	4.1	51
364	Effects of alloying on deformation twinning in high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 763, 138143.	2.6	37
365	Ductile Ti-rich high-entropy alloy controlled by stress induced martensitic transformation and mechanical twinning. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 763, 138147.	2.6	29
366	Carbide precipitation strengthening in fine-grained carbon-doped FeCoCrNiMn high entropy alloy. Journal of Alloys and Compounds, 2019, 803, 491-498.	2.8	82
367	Overcoming the strength-ductility trade-off via the formation of nanoscale Cr-rich precipitates in an ultrafine-grained FCC CrFeNi medium entropy alloy matrix. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 762, 138107.	2.6	50
368	Perspective on hetero-deformation induced (HDI) hardening and back stress. Materials Research Letters, 2019, 7, 393-398.	4.1	638
369	Synergistic effects of WC nanoparticles and MC nanoprecipitates on the mechanical and tribological properties of Fe40Mn40Cr10Co10 medium-entropy alloy. Journal of Materials Research and Technology, 2019, 8, 3550-3564.	2.6	11
370	Hydrogen susceptibility of an interstitial equimolar high-entropy alloy revealed by in-situ electrochemical microcantilever bending test. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 762, 138114.	2.6	21
371	Microstructure, mechanical properties and corrosion resistance of CoCrFeNiW (x = 0, 0.2, 0.5) high entropy alloys. Intermetallics, 2019, 112, 106550.	1.8	51
372	Microstructure and mechanical properties of SiC whisker reinforced CoCrNi medium entropy alloys. Materials Letters, 2019, 254, 77-80.	1.3	19
373	Microstructure, Mechanical Properties, and Corrosion Behavior of MoNbFeCrV, MoNbFeCrTi, and MoNbFeVTi High-Entropy Alloys. Acta Metallurgica Sinica (English Letters), 2019, 32, 1053-1064.	1.5	21
374	High impact toughness of CrCoNi medium-entropy alloy at liquid-helium temperature. Scripta Materialia, 2019, 172, 66-71.	2.6	93
375	Dislocation core structures and Peierls stresses of the high-entropy alloy NiCoFeCrMn and its subsystems. Materials and Design, 2019, 180, 107955.	3.3	26
376	The effects of substitution of Co with Ni on microstructure, mechanical properties, and age hardening of Co1-xCrFeNi1+xTi0.3 high-entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 763, 138181.	2.6	8
377	Heterogeneous banded precipitation of (CoCrNi)93Mo7 medium entropy alloys towards strength–ductility synergy utilizing compositional inhomogeneity. Scripta Materialia, 2019, 172, 144-148.	2.6	69
378	Ab initio vibrational free energies including anharmonicity for multicomponent alloys. Npj Computational Materials, 2019, 5, .	3.5	79

#	Article	IF	CITATIONS
379	Simultaneously enhancing strength and ductility of a high-entropy alloy via gradient hierarchical microstructures. International Journal of Plasticity, 2019, 123, 178-195.	4.1	201
380	Screening of heritage data for improving toughness of creep-resistant martensitic steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 763, 138142.	2.6	12
381	Engineering heterogeneous microstructure by severe warm-rolling for enhancing strength-ductility synergy in eutectic high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138226.	2.6	67
382	The influence of dilute aluminum and molybdenum on stacking fault and twin formation in FeNiCoCr-based high entropy alloys based on density functional theory. Scientific Reports, 2019, 9, 10940.	1.6	16
383	Ultrastrong duplex high-entropy alloy with 2â€GPa cryogenic strength enabled by an accelerated martensitic transformation. Scripta Materialia, 2019, 171, 67-72.	2.6	76
384	Nanoindentation into a high-entropy alloy – An atomistic study. Journal of Alloys and Compounds, 2019, 803, 618-624.	2.8	93
385	Enhanced strength and ductility in a spark plasma sintered CoCrCuO·5NiAl0.5 high-entropy alloy via a double-step ball milling approach for processing powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 762, 138071.	2.6	39
386	High-strength graphene network reinforced copper matrix composites achieved by architecture design and grain structure regulation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 762, 138063.	2.6	26
387	From High-Manganese Steels to Advanced High-Entropy Alloys. Metals, 2019, 9, 726.	1.0	11
388	Influence of precipitation on phase transformation and mechanical properties of Ni-rich NiTiNb alloys. Materials Characterization, 2019, 154, 148-160.	1.9	20
389	Finite temperature magnetic properties of Cr Co Ni100â^'â^' medium entropy alloys from first principles. Scripta Materialia, 2019, 171, 78-82.	2.6	9
390	Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles. RSC Advances, 2019, 9, 18547-18558.	1.7	142
391	Diffusion controlled helium bubble formation resistance of FeCoNiCr high-entropy alloy in the half-melting temperature regime. Journal of Nuclear Materials, 2019, 526, 151747.	1.3	40
392	Neutron irradiation response of a Co-free high entropy alloy. Journal of Nuclear Materials, 2019, 527, 151838.	1.3	64
393	Element Effects on High-Entropy Alloy Vacancy and Heterogeneous Lattice Distortion Subjected to Quasi-equilibrium Heating. Scientific Reports, 2019, 9, 14788.	1.6	27
394	Growth Mechanisms and the Effects of Deposition Parameters on the Structure and Properties of High Entropy Film by Magnetron Sputtering. Materials, 2019, 12, 3008.	1.3	7
395	Sodium nitrate use in out-of-hospital treatment for cardiac arrest (SNOCAT). Resuscitation, 2019, 142, e43.	1.3	1
396	A New Belief Entropy Based on Deng Entropy. Entropy, 2019, 21, 987.	1.1	28

#	Article	IF	CITATIONS
397	Atom probe tomography study of an Fe25Ni25Co25Ti15Al10 high-entropy alloy fabricated by powder metallurgy. Acta Materialia, 2019, 179, 372-382.	3.8	19
398	Phase transformation assisted twinning in a face-centered-cubic FeCrNiCoAl high entropy alloy. Acta Materialia, 2019, 181, 491-500.	3.8	37
399	Microstructure evolution of a novel low-density Ti–Cr–Nb–V refractory high entropy alloy during cold rolling and subsequent annealing. Materials Characterization, 2019, 158, 109980.	1.9	37
400	Mechanical properties and wear resistance of medium entropy Fe40Mn40Cr10Co10/TiC composites. Transactions of Nonferrous Metals Society of China, 2019, 29, 1484-1494.	1.7	14
401	A new Al ₁₄ Co ₂₈ Cr ₂₈ Ni ₃₀ hypoeutectic high entropy alloy with excellent tensile property. Materials Research Express, 2019, 6, 116575.	0.8	1
402	Deformation Behavior of Bulk Metallic Glasses and High Entropy Alloys under Complex Stress Fields: A Review. Entropy, 2019, 21, 54.	1.1	13
403	Microstructural Evolution from Dendrites to Core-Shell Equiaxed Grain Morphology for CoCrFeNiVx High-Entropy Alloys in Metallic Casting Mold. Metals, 2019, 9, 1172.	1.0	11
404	Creep resistance and strain-rate sensitivity of a CoCrFeNiAl _{0.3} high-entropy alloy by nanoindentation. Materials Research Express, 2019, 6, 126508.	0.8	20
405	Effect of Si and C additions on the reaction mechanism and mechanical properties of FeCrNiCu high entropy alloy. Scientific Reports, 2019, 9, 16356.	1.6	8
406	Multiple-Step Melting/Irradiation: A Strategy to Fabricate Thermoplastic Polymers with Improved Mechanical Performance. Polymers, 2019, 11, 1812.	2.0	3
407	Strategies for improving the sustainability of structural metals. Nature, 2019, 575, 64-74.	13.7	301
408	Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity. Nature Communications, 2019, 10, 5099.	5.8	97
409	Hard and superhard nanostructured and nanocomposite coatings. , 2019, , 237-337.		9
410	Phase stability of an high-entropy Al-Cr-Fe-Ni-V alloy with exceptional mechanical properties: First-principles and APT investigations. Computational Materials Science, 2019, 170, 109161.	1.4	15
411	Corrosion Behavior of Selectively Laser Melted CoCrFeMnNi High Entropy Alloy. Metals, 2019, 9, 1029.	1.0	42
412	Microstructure transition and mechanical property variation of Al _{0.6} CoCrFeNi high-entropy alloys prepared under different cooling rates. Materials Research Express, 2019, 6, 1065h4.	0.8	10
413	Microstructure and Texture Evolution During Thermomechanical Processing of Al0.25CoCrFeNi High-Entropy Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 5433-5444.	1.1	8
414	Microstructure and Mechanical Property Evolution during Annealing of a Cold-Rolled Metastable Powder Metallurgy High Entropy Alloy. Entropy, 2019, 21, 833.	1.1	5

		CITATION REF	PORT	
#	Article		IF	CITATIONS
415	Applications of High-Pressure Technology for High-Entropy Alloys: A Review. Metals, 202	19, 9, 867.	1.0	16
416	Evolution of Substructure of a Non-equiatomic FeMnCrCo High Entropy Alloy Deformed Temperature. Metallurgical and Materials Transactions A: Physical Metallurgy and Mater 2019, 50, 5079-5090.	at Ambient ials Science,	1.1	15
417	Phase transformations in reduced-activation duplex alloy Fe52Mn30Cr18 under isother treatment. Fusion Engineering and Design, 2019, 147, 111249.	nal heat	1.0	0
418	Design of High-Performance Broadband Signal Generation Algorithm Based on Memory	,2019,,.		0
419	Effect of Co on the phase stability of CrMnFeCoxNi high entropy alloys following long-d exposures at intermediate temperatures. Intermetallics, 2019, 114, 106582.	uration	1.8	33
420	Microstructural design by severe warm-rolling for tuning mechanical properties of AlCo eutectic high entropy alloy. Intermetallics, 2019, 114, 106601.	CrFeNi2.1	1.8	26
421	On the evolving nature of c/a ratio in a hexagonal close-packed epsilon martensite phas transformative high entropy alloys. Scientific Reports, 2019, 9, 13185.	e in	1.6	40
422	Designing solid solution hardening to retain uniform ductility while quadrupling yield st Acta Materialia, 2019, 179, 107-118.	rength.	3.8	25
423	Formation of fully equiaxed grain microstructure in additively manufactured AlCoCrFeN entropy alloy. Materials and Design, 2019, 184, 108202.	Ti0.5 high	3.3	43
424	Grain-anisotropied high-strength Ni6Cr4WFe9Ti high entropy alloys with outstanding te ductility. Materials Science & Engineering A: Structural Materials: Properties, Micro and Processing, 2019, 767, 138382.	nsile structure	2.6	8
425	A strategy of designing high-entropy alloys with high-temperature shape memory effect Reports, 2019, 9, 13140.	. Scientific	1.6	38
426	Effects of Al and Ti additions on precipitation behavior and mechanical properties of Co35Cr25Fe40-xNix TRIP high entropy alloys. Materials Science & amp; Engineering A: S Materials: Properties, Microstructure and Processing, 2019, 767, 138403.	tructural	2.6	21
427	Development of strong and ductile metastable face-centered cubic single-phase high-er Acta Materialia, 2019, 181, 318-330.	tropy alloys.	3.8	134
428	Dissecting the influence of nanoscale concentration modulation on martensitic transfomultifunctional alloys. Acta Materialia, 2019, 181, 99-109.	mation in	3.8	10
429	An investigation into the dynamic recrystallization behavior of a non-equiatomic high er Materials Science & Engineering A: Structural Materials: Properties, Microstructure Processing, 2019, 768, 138423.		2.6	12
430	Anomalous work hardening behavior of Fe40Mn40Cr10Co10 high entropy alloy single of deformed by twinning and slip. Acta Materialia, 2019, 181, 555-569.	rrystals	3.8	72
431	Achieving high strength and high ductility in Al0.3CoCrNi medium-entropy alloy through hierarchical microstructure. Materialia, 2019, 8, 100442.	1 multi-phase	1.3	47
432	Extraordinary ductility and strain hardening of Cr26Mn20Fe20Co20Ni14 TWIP high-ent cooperative planar slipping and twinning. Materialia, 2019, 8, 100485.	ropy alloy by	1.3	49

#	ARTICLE First-principles and machine learning predictions of elasticity in severely lattice-distorted	IF	CITATIONS
433	high-entropy alloys with experimental validation. Acta Materialia, 2019, 181, 124-138.	3.8	113
434	Direct laser deposited bulk CoCrFeNiNbx high entropy alloys. Intermetallics, 2019, 114, 106592.	1.8	45
435	Design and in-situ characterization of a strong and ductile co-rich multicomponent alloy with transformation induced plasticity. Scripta Materialia, 2019, 173, 70-74.	2.6	17
436	Modulating the prestrain history to optimize strength and ductility in CoCrFeMnNi high-entropy alloy. Scripta Materialia, 2019, 163, 111-115.	2.6	56
437	Overcoming synthetic metastabilities and revealing metal-to-insulator transition & thermistor bi-functionalities for d-band correlation perovskite nickelates. Materials Horizons, 2019, 6, 788-795.	6.4	44
438	The role of oxide interfaces in highly confined electronic and ionic conductors. APL Materials, 2019, 7, 013101.	2.2	13
439	Deformation-driven bidirectional transformation promotes bulk nanostructure formation in a metastable interstitial high entropy alloy. Acta Materialia, 2019, 167, 23-39.	3.8	79
440	To burn or retain crop residues on croplands? An integrated analysis of crop residue management in China. Science of the Total Environment, 2019, 662, 141-150.	3.9	76
441	Nanoparticles-strengthened high-entropy alloys for cryogenic applications showing an exceptional strength-ductility synergy. Scripta Materialia, 2019, 164, 30-35.	2.6	170
442	Boundary micro-cracking in metastable Fe45Mn35Co10Cr10 high-entropy alloys. Acta Materialia, 2019, 168, 76-86.	3.8	72
443	Superior cryogenic tensile properties of ultrafine-grained CoCrNi medium-entropy alloy produced by high-pressure torsion and annealing. Scripta Materialia, 2019, 163, 152-156.	2.6	102
444	Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae. Nature Communications, 2019, 10, 489.	5.8	505
445	Effects of deformation–induced BCC martensitic transformation and twinning on impact toughness and dynamic tensile response in metastable VCrFeCoNi high–entropy alloy. Journal of Alloys and Compounds, 2019, 785, 1056-1067.	2.8	46
446	CoCrFeMnNi high-entropy alloys reinforced with Laves phase by adding Nb and Ti elements. Journal of Materials Research, 2019, 34, 1011-1020.	1.2	46
447	Optimizing mechanical properties of Fe26.7Co26.7Ni26.7Si8.9B11 high entropy alloy by inducing hypoeutectic to quasi-duplex microstructural transition. Scientific Reports, 2019, 9, 360.	1.6	9
448	Deformation behavior of nanocrystalline and ultrafine-grained CoCrCuFeNi high-entropy alloys. Journal of Materials Research, 2019, 34, 720-731.	1.2	14
449	High-throughput solid solution strengthening characterization in high entropy alloys. Acta Materialia, 2019, 167, 1-11.	3.8	81
450	Development and homogeneity of microstructure and texture in a lamellar AlCoCrFeNi _{2.1} eutectic high-entropy alloy severely strained in the warm-deformation regime. Journal of Materials Research, 2019, 34, 687-699.	1.2	21

#	Article	IF	CITATIONS
451	Design of D022 superlattice with superior strengthening effect in high entropy alloys. Acta Materialia, 2019, 167, 275-286.	3.8	172
452	Corrosion behavior of Al2CrFeCo CuNiTi high-entropy alloy coating in alkaline solution and salt solution. Results in Physics, 2019, 12, 1737-1741.	2.0	32
453	Fine-structured CoCrFeNiMn high-entropy alloy matrix composite with 12 wt% TiN particle reinforcements via selective laser melting assisted additive manufacturing. Materials Letters, 2019, 252, 88-91.	1.3	73
454	Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 437-447.	2.6	123
455	Effect of aging on microstructure and property of AlCoCrFeMo0.05Ni2 high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 760, 1-6.	2.6	10
456	Development of a large size FCC high-entropy alloy with excellent mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 761, 138039.	2.6	15
457	Back-stress-induced strengthening and strain hardening in dual-phase steel. Materialia, 2019, 7, 100376.	1.3	46
458	High-entropy alloys. Nature Reviews Materials, 2019, 4, 515-534.	23.3	2,188
459	Microstructure and mechanical properties of Fe CoCrNiMn high-entropy alloys. Journal of Materials Science and Technology, 2019, 35, 2331-2335.	5.6	66
460	Irradiation effects of medium-entropy alloy NiCoCr with and without pre-indentation. Journal of Nuclear Materials, 2019, 524, 60-66.	1.3	25
461	Corrosion mechanism of annealed equiatomic AlCoCrFeNi tri-phase high-entropy alloy in 0.5 M H2SO4 aerated aqueous solution. Corrosion Science, 2019, 157, 462-471.	3.0	89
462	Microstructural Transition of (CuFeMnNi)1â^'xCrx (x = 0-0.25) High-Entropy Alloys. Journal of Materials Engineering and Performance, 2019, 28, 4502-4509.	1.2	9
463	Unusual plastic deformation behavior of nanotwinned Cu/high entropy alloy FeCoCrNi nanolaminates. Nanoscale, 2019, 11, 11340-11350.	2.8	25
464	Solid-solution strengthening in refractory high entropy alloys. Acta Materialia, 2019, 175, 66-81.	3.8	138
465	Combinatorial evaluation of phase formation and magnetic properties of FeMnCoCrAl high entropy alloy thin film library. Scientific Reports, 2019, 9, 7864.	1.6	44
466	High-cycle fatigue and tensile deformation behaviors of coarse-grained equiatomic CoCrFeMnNi high entropy alloy and unexpected hardening behavior during cyclic loading. Intermetallics, 2019, 111, 106486.	1.8	70
467	History of High-Entropy Materials. , 2019, , 1-33.		10
468	Phase transition induced high strength and large ductility of a hot rolled near β Ti-5Al-5Mo-5V-1Cr-1Fe alloy. Scripta Materialia, 2019, 170, 34-37.	2.6	31

#	Article	IF	CITATIONS
469	Ultrafine-grained dual phase Al0.45CoCrFeNi high-entropy alloys. Materials and Design, 2019, 180, 107910.	3.3	64
470	A quick screening approach for design of multi-principal element alloy with solid solution phase. Materials and Design, 2019, 179, 107882.	3.3	14
471	Effect of nano-sized precipitates on the fatigue property of a lamellar structured high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 760, 225-230.	2.6	28
472	Effect of metastability on non-phase-transformation high-entropy alloys. Materials and Design, 2019, 181, 107928.	3.3	9
473	Nanoindentation Creep Behavior of CoCrFeNiMn High-Entropy Alloy under Different High-Pressure Torsion Deformations. Journal of Materials Engineering and Performance, 2019, 28, 2620-2629.	1.2	11
474	Correlation of microdistortions with misfit volumes in High Entropy Alloys. Scripta Materialia, 2019, 168, 119-123.	2.6	32
475	Nanoindentation behavior of high entropy alloys with transformation-induced plasticity. Scientific Reports, 2019, 9, 6639.	1.6	41
476	Revealing hot tearing mechanism for an additively manufactured high-entropy alloy via selective laser melting. Scripta Materialia, 2019, 168, 129-133.	2.6	109
477	Nitrogen Interstitial Alloying of CoCrFeMnNi High Entropy Alloy through Reactive Powder Milling. Entropy, 2019, 21, 363.	1.1	42
478	Engineering atomic-level complexity in high-entropy and complex concentrated alloys. Nature Communications, 2019, 10, 2090.	5.8	182
479	In-situ Mo nanoparticles strengthened CoCrNi medium entropy alloy. Journal of Alloys and Compounds, 2019, 798, 576-586.	2.8	38
480	Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy. Journal of Power Sources, 2019, 430, 104-111.	4.0	164
481	Exceptional combination of soft magnetic and mechanical properties in a heterostructured high-entropy composite. Applied Materials Today, 2019, 15, 590-598.	2.3	31
482	Design, Microstructure and Mechanical Properties of Cast Medium Entropy Aluminium Alloys. Scientific Reports, 2019, 9, 6792.	1.6	33
483	Single-phase high-entropy intermetallic compounds (HEICs): bridging high-entropy alloys and ceramics. Science Bulletin, 2019, 64, 856-864.	4.3	87
484	Two-step rolling and annealing makes nanoscale 316L austenite stainless steel with high ductility. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 391-395.	2.6	10
485	Evolution of Microstructures and Properties in AlxCrFeMn0.8Ni2.1 HEAs. Metals and Materials International, 2019, 25, 1135-1144.	1.8	16
486	Excellent combination of cryogenic-temperature strength and ductility of high-entropy-alloy-cored multi-layered sheet. Journal of Alloys and Compounds, 2019, 797, 465-470.	2.8	15

#	Article	IF	CITATIONS
487	The anisotropy of three-component medium entropy alloys in AlCoCrFeNi system: First-principle studies. Journal of Solid State Chemistry, 2019, 276, 232-237.	1.4	21
488	Prediction of Strength and Ductility in Partially Recrystallized CoCrFeNiTi0.2 High-Entropy Alloy. Entropy, 2019, 21, 389.	1.1	11
489	Defect evolution in Ni and NiCoCr by in situ 2.8†MeV Au irradiation. Journal of Nuclear Materials, 2019, 523, 502-509.	1.3	15
490	Temperature-dependent defect accumulation and evolution in Ni-irradiated NiFe concentrated solid-solution alloy. Journal of Nuclear Materials, 2019, 519, 1-9.	1.3	16
491	First principle study of magnetism and vacancy energetics in a near equimolar NiFeMnCr high entropy alloy. Journal of Applied Physics, 2019, 125, .	1.1	40
492	Effects of strain rate on room- and cryogenic-temperature compressive properties in metastable V10Cr10Fe45Co35 high-entropy alloy. Scientific Reports, 2019, 9, 6163.	1.6	16
493	Nanoporous Quasi-High-Entropy Alloy Microspheres. Metals, 2019, 9, 345.	1.0	11
494	Synergistic effect of Ti and Al on L12-phase design in CoCrFeNi-based high entropy alloys. Intermetallics, 2019, 110, 106476.	1.8	76
495	Effects of heat treatment on the microstructure and properties of cold-forged CoNiFe medium entropy alloy. Intermetallics, 2019, 110, 106477.	1.8	5
496	Hydrogen isotope permeation and retention behavior in the CoCrFeMnNi high-entropy alloy. Journal of Nuclear Materials, 2019, 522, 41-44.	1.3	11
497	The chemical ordering and elasticity in FeCoNiAl1â^'Ti high-entropy alloys. Scripta Materialia, 2019, 168, 5-9.	2.6	27
498	Microstructure and properties of CoCrNi medium-entropy alloy produced by gas atomization and spark plasma sintering. Journal of Materials Research, 2019, 34, 2126-2136.	1.2	33
499	High-Pressure Induced Phase Transitions in High-Entropy Alloys: A Review. Entropy, 2019, 21, 239.	1.1	24
500	Effects of tungsten additions on the microstructure and mechanical properties of CoCrNi medium entropy alloys. Journal of Alloys and Compounds, 2019, 790, 732-743.	2.8	86
501	Solid solution strengthening theories of high-entropy alloys. Materials Characterization, 2019, 151, 310-317.	1.9	104
502	Effects of Boron Content on microstructure and mechanical properties of AlFeCoNiBx High Entropy Alloy Prepared by vacuum arc melting. Vacuum, 2019, 164, 212-218.	1.6	47
503	High Strength and Deformation Mechanisms of Al0.3CoCrFeNi High-Entropy Alloy Thin Films Fabricated by Magnetron Sputtering. Entropy, 2019, 21, 146.	1.1	30
504	Phase transformations of Al-bearing high-entropy alloys AlxCoCrFeNi (x = 0, 0.1, 0.3, 0.75, 1.5) at high pressure. Applied Physics Letters, 2019, 114, .	1.5	13

#	ARTICLE Effects of Ni P coating on mechanical properties of Al0.3CoCrFeNi high-entropy alloys. Materials	lF	Citations
505	Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 752, 152-159.	2.6	17
506	A promising CoFeNi2V0.5Mo0.2 high entropy alloy with exceptional ductility. Scripta Materialia, 2019, 165, 128-133.	2.6	45
507	Physical metallurgy of high-entropy alloys. , 2019, , 31-50.		2
508	Special subgroups of high-entropy alloys. , 2019, , 145-163.		2
509	Shape-preserving machining produces gradient nanolaminate medium entropy alloys with high strain hardening capability. Acta Materialia, 2019, 170, 176-186.	3.8	41
510	Effect of Mn Addition on the Microstructures and Mechanical Properties of CoCrFeNiPd High Entropy Alloy. Entropy, 2019, 21, 288.	1.1	4
511	Localized corrosion behavior of a single-phase non-equimolar high entropy alloy. Electrochimica Acta, 2019, 306, 71-84.	2.6	75
512	Effect of niobium addition in FeCoNiCuNb _x high-entropy alloys. Journal of Materials Research, 2019, 34, 700-708.	1.2	15
513	Influence of synthesis method on microstructure and mechanical behavior of Co-free AlCrFeNi medium-entropy alloy. Intermetallics, 2019, 108, 45-54.	1.8	48
514	Extraordinary Lüders-strain-rate in medium Mn steels. Materialia, 2019, 6, 100288.	1.3	21
515	Atomistic modeling of nanoscale plasticity in high-entropy alloys. Journal of Materials Research, 2019, 34, 1509-1532.	1.2	36
516	A comparative characterization of defect structure in NiCo and NiFe equimolar solid solution alloys under in situ electron irradiation. Scripta Materialia, 2019, 166, 96-101.	2.6	5
517	Effect of FeCoNiCrCu0.5 High-entropy-alloy Substrate on Sn Grain Size in Sn-3.0Ag-0.5Cu Solder. Scientific Reports, 2019, 9, 3658.	1.6	10
518	High-entropy alloys by mechanical alloying: A review. Journal of Materials Research, 2019, 34, 664-686.	1.2	258
519	Microstructural evolution, electrochemical and corrosion properties of Al CoCrFeNiTi high entropy alloys. Materials and Design, 2019, 170, 107698.	3.3	158
520	A Novel Dual-Phase Gradient Material of High-Entropy Alloy Prepared by Spark Plasma Sintering. Minerals, Metals and Materials Series, 2019, , 1263-1270.	0.3	0
521	Effect of heat treatment on mechanical property and microstructure of a powder metallurgy nickel-based superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 754, 29-37.	2.6	30
522	Revealing the microstructural evolution in a high entropy alloy enabled with transformation, twinning and precipitation. Materialia, 2019, 6, 100310.	1.3	16

CITATION REPORT ARTICLE IF CITATIONS Large relrod extension induced by lattice distortion in high entropy alloy. Materials Research 0.8 4 Express, 2019, 6, 066558. Alloy design for mechanical properties: Conquering the length scales. MRS Bulletin, 2019, 44, 257-265. 1.7 Metastability alloy design. MRS Bulletin, 2019, 44, 266-272. 1.7 36 A feasible method for the fabrication of VAlTiCrSi amorphous high entropy alloy film with 3.1 outstanding anti-corrosion property. Applied Surface Science, 2019, 483, 870-874. Strength-ductility synergy of Al0.1CoCrFeNi high-entropy alloys with gradient hierarchical 2.6 48 structures. Scripta Materialia, 2019, 167, 95-100. Design of a Seven-Component Eutectic High-Entropy Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 2594-2598. 1.1 Effect of elemental combination on friction stress and Hall-Petch relationship in face-centered cubic 3.8 173 high / medium entropy alloys. Acta Materialia, 2019, 171, 201-215. Evaluating elastic properties of a body-centered cubic NbHfZrTi high-entropy alloy – A direct 1.8 36 comparison between experiments and ab initio calculations. Intermetallics, 2019, 109, 167-173. Microstructures and mechanical properties of nano carbides reinforced CoCrFeMnNi high entropy 2.8 58 alloys. Journal of Alloys and Compounds, 2019, 792, 170-179. Regulating the strength and ductility of a cold rolled FeCrCoMnNi high-entropy alloy via annealing treatment. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure 2.6 54 and Processing, 2019, 755, 289-294. New ferromagnetic (Fe1/3Co1/3Ni1/3)80(P1/2B1/2)20 high entropy bulk metallic glass with superior 2.8 26 magnetic and mechanical properties. Journal of Alloys and Compounds, 2019, 791, 947-951. The scratch behaviour of AlXCoCrFeNi (x=0.3 and 1.0) high entropy alloys. Wear, 2019, 428-429, 293-301. 1.5 Deviatoric deformation kinetics in high entropy alloy under hydrostatic compression. Journal of 2.8 13 Alloys and Compounds, 2019, 792, 116-121. The enhancement of transformation induced plasticity effect through preferentially oriented 1.8 substructure development in a high entropy alloy. Intérmetallics, 2019, 109, 145-156.

538	Atomic and Solid State Physics, 2019, 383, 2290-2295.	0.9	6
539	Ti2NiCoSnSb - a new half-Heusler type high-entropy alloy showing simultaneous increase in Seebeck coefficient and electrical conductivity for thermoelectric applications. Scientific Reports, 2019, 9, 5331.	1.6	58
540	Gradient Distribution of Microstructures and Mechanical Properties in a FeCoCrNiMo High-Entropy Alloy during Spark Plasma Sintering. Metals, 2019, 9, 351.	1.0	6
541	Overview of metastability and compositional complexity effects for hydrogen-resistant iron alloys: Inverse austenite stability effects. Engineering Fracture Mechanics, 2019, 214, 123-133.	2.0	33

Cooling of Al-Cu-Fe-Cr-Ni high entropy alloy with different size. Physics Letters, Section A: General,

523

524

525

527

529

530

532

534

#	ARTICLE Supposes of a $(7rAl2 + AlN)/Al composite and the influence of particles content and element (1) on the$	IF	Citations
542	Synthesis of a (ZrAl3+AlN)/Al composite and the influence of particles content and element Cu on the microstructure and mechanical properties. Journal of Alloys and Compounds, 2019, 791, 730-738.	2.8	19
543	Nanocalorimetry: Door opened for in situ material characterization under extreme non-equilibrium conditions. Progress in Materials Science, 2019, 104, 53-137.	16.0	44
544	Thermal stability and irradiation response of nanocrystalline CoCrCuFeNi high-entropy alloy. Nanotechnology, 2019, 30, 294004.	1.3	38
545	Intermetallic Phases in High-Entropy Alloys: Statistical Analysis of their Prevalence and Structural Inheritance. Metals, 2019, 9, 247.	1.0	58
546	Effects of phase composition and elemental partitioning on soft magnetic properties of AlFeCoCrMn high entropy alloys. Acta Materialia, 2019, 171, 31-39.	3.8	60
547	Transformation-reinforced high-entropy alloys with superior mechanical properties via tailoring stacking fault energy. Journal of Alloys and Compounds, 2019, 792, 444-455.	2.8	90
548	Nonbasal Slip Systems Enable a Strong and Ductile Hexagonal-Close-Packed High-Entropy Phase. Physical Review Letters, 2019, 122, 075502.	2.9	83
549	Anomalous microstructure and excellent mechanical behaviors of (CoCrFeNi) Cr Al high-entropy alloy induced by Cr and Al addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 752, 63-74.	2.6	25
550	In situ neutron diffraction study of phase stress evolution in a ferrous medium-entropy alloy under low-temperature tensile loading. Scripta Materialia, 2019, 165, 60-63.	2.6	27
551	Synthesis and characterization of hexanary Ti–Zr–V–Cr–Ni–Fe high-entropy Laves phase. Journal of Materials Research, 2019, 34, 807-818.	1.2	31
552	Nearly full-density pressureless sintering of AlCoCrFeNi-based high-entropy alloy powders. Journal of Materials Research, 2019, 34, 777-786.	1.2	12
553	WxNbMoTa Refractory High-Entropy Alloys Fabricated by Laser Cladding Deposition. Materials, 2019, 12, 533.	1.3	47
554	FCC-L12 ordering transformation in equimolar FeCoNiV multi-principal element alloy. Materials and Design, 2019, 168, 107648.	3.3	21
555	Novel Co-rich high performance twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) high-entropy alloys. Scripta Materialia, 2019, 165, 39-43.	2.6	200
556	Deformation mechanisms of mechanically induced phase transformations in iron. Computational Materials Science, 2019, 162, 12-20.	1.4	14
557	FCC to BCC transformation-induced plasticity based on thermodynamic phase stability in novel V10Cr10Fe45CoxNi35â^'x medium-entropy alloys. Scientific Reports, 2019, 9, 2948.	1.6	71
558	Polymorphic Transformation and Magnetic Properties of Rapidly Solidified Fe26.7Co26.7Ni26.7Si8.9B11.0 High-Entropy Alloys. Materials, 2019, 12, 590.	1.3	9
559	Designing High Entropy Alloys with Dual fcc and bcc Solid-Solution Phases: Structures and Mechanical Properties. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 1888-1901.	1.1	33

		CITATION R	EPORT	
#	Article		IF	CITATIONS
560	Development of advanced materials via entropy engineering. Scripta Materialia, 2019,	165, 164-169.	2.6	74
561	Effect of cooling rate on microstructure and mechanical properties of Al _{0.3high-entropy alloy. Materials Research Express, 2019, 6, 056540.}	o>CoCrFeNi	0.8	12
562	High Tensile Ductility and Strength in Dual-phase Bimodal Steel through Stationary Fri Processing. Scientific Reports, 2019, 9, 1972.	ction Stir	1.6	28
563	An optimized random structures generator governed by chemical short-range order fo multi-component solid solutions. Modelling and Simulation in Materials Science and Er 2019, 27, 085007.	r ngineering,	0.8	2
564	Effect of hydrogen-induced surface steps on the nanomechanical behavior of a CoCrFe high-entropy alloy revealed by in-situ electrochemical nanoindentation. Intermetallics, 106605.	:MnNi 2019, 114,	1.8	30
565	Effects of Ta Addition on the Microstructure and Mechanical Properties of CoCu0.5Fe Alloy. Journal of Materials Engineering and Performance, 2019, 28, 7642-7648.	Ni High-Entropy	1.2	21
566	From symmetry to entropy: Crystal entropy difference strongly affects early stage pha transformation. Applied Physics Letters, 2019, 115, .	se	1.5	6
567	Quantification of microstructure in a eutectic high entropy alloy AlCoCrFeNi _{2.1 Conference Series: Materials Science and Engineering, 2019, 580, 012039.}	. IOP	0.3	8
568	Laser Beam Welding of a Low Density Refractory High Entropy Alloy. Metals, 2019, 9,	1351.	1.0	22
569	The Effect of Processing Route on Properties of HfNbTaTiZr High Entropy Alloy. Materia 4022.	als, 2019, 12,	1.3	20
570	Tailoring heterogeneities in high-entropy alloys to promote strength–ductility syner§ Communications, 2019, 10, 5623.	gy. Nature	5.8	289
571	Tuning element distribution, structure and properties by composition in high-entropy a 2019, 574, 223-227.	alloys. Nature,	13.7	874
572	Semiconducting SiGeSn high-entropy alloy: A density functional theory study. Journal o Physics, 2019, 126, 225703.	of Applied	1.1	12
573	Dislocation mechanism based size-dependent crystal plasticity modeling and simulatic nano-grained copper. International Journal of Plasticity, 2019, 113, 52-73.	n of gradient	4.1	125
574	A novel Fe40Mn40Cr10Co10/SiC medium-entropy nanocomposite reinforced by the nanoparticles-woven architectural structures. Journal of Alloys and Compounds, 2019,	772, 272-279.	2.8	22
575	Grouping strategy in eutectic multi-principal-component alloys. Materials Chemistry ar 221, 138-143.	nd Physics, 2019,	2.0	27
576	Characterizing the interactions of edge dislocation dipole in hexagonal close packed T Materials and Design, 2019, 164, 107559.	i-Al alloys.	3.3	8
577	Formation and toughening of metastable phases in TiZrHfAlNb medium entropy alloys Science & Engineering A: Structural Materials: Properties, Microstructure and Pro- 748, 441-452.	. Materials cessing, 2019,	2.6	24

#	Article	IF	CITATIONS
578	Ultrastrong Mediumâ€Entropy Singleâ€Phase Alloys Designed via Severe Lattice Distortion. Advanced Materials, 2019, 31, e1807142.	11.1	301
579	Effect of grain size on the tensile behavior of V10Cr15Mn5Fe35Co10Ni25 high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 744, 610-617.	2.6	51
580	Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Progress in Materials Science, 2019, 102, 296-345.	16.0	634
581	Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure. Acta Materialia, 2019, 165, 444-458.	3.8	336
582	On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions. Journal of Alloys and Compounds, 2019, 781, 734-743.	2.8	80
583	Novel Co-rich high entropy alloys with superior tensile properties. Materials Research Letters, 2019, 7, 82-88.	4.1	139
584	Investigation into Plastic Deformation and Machining-Induced Subsurface Damage of High-Entropy Alloys. Springer Tracts in Mechanical Engineering, 2019, , 23-52.	0.1	1
585	Theory of the energy fluctuation of multicomponent alloys. Scripta Materialia, 2019, 162, 503-506.	2.6	3
586	Microstructure evolution, mechanical properties and strengthening mechanism of refractory high-entropy alloy matrix composites with addition of TaC. Journal of Alloys and Compounds, 2019, 777, 1168-1175.	2.8	52
587	Non-equiatomic FeNiCoAl-based high entropy alloys with multiscale heterogeneous lamella structure for strength and ductility. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 361-371.	2.6	50
588	Compositional design of strong and ductile (tensile) Ti-Zr-Nb-Ta medium entropy alloys (MEAs) using the atomic mismatch approach. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 762-772.	2.6	55
589	Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems. Progress in Materials Science, 2019, 101, 1-45.	16.0	208
590	Multifunctional Nonâ€Equiatomic High Entropy Alloys with Superelastic, High Damping, and Excellent Cryogenic Properties. Advanced Engineering Materials, 2019, 21, 1800941.	1.6	31
591	Superelastic effect in Ti-rich high entropy alloys via stress-induced martensitic transformation. Scripta Materialia, 2019, 162, 112-117.	2.6	39
592	Novel cost-effective Fe-based high entropy alloys with balanced strength and ductility. Materials and Design, 2019, 162, 24-33.	3.3	58
593	Demonstrating the potential of accurate absolute cross-grain stress and orientation correlation using electron backscatter diffraction. Scripta Materialia, 2019, 162, 266-271.	2.6	32
594	High hardness dual-phase high entropy alloy thin films produced by interface alloying. Scripta Materialia, 2019, 162, 281-285.	2.6	80
595	Formation, reverse transformation, and properties of ε-martensite phase in the CoCrFeMnNi high-entropy alloy under high-pressure. Journal of Alloys and Compounds, 2019, 779, 1-6.	2.8	20

#	Article	IF	CITATIONS
596	Strength–ductility balance in an ultrafine-grained non-equiatomic Fe50(CoCrMnNi)50 medium-entropy alloy with a fully recrystallized microstructure. Journal of Alloys and Compounds, 2019, 780, 959-966.	2.8	27
597	Tailoring mechanical behavior of a fine-grained metastable austenitic stainless steel by pre-straining. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 746, 332-340.	2.6	19
598	Abundant polymorphic transitions in the Al0.6CoCrFeNi high-entropy alloy. Materials Today Physics, 2019, 8, 1-9.	2.9	27
599	Effect of low-melting-point sintering aid on densification mechanisms of boron carbide during spark plasma sintering. Scripta Materialia, 2019, 163, 34-39.	2.6	21
600	Improvement of Microstructure and Mechanical Properties of CoCrCuFeNi High-Entropy Alloys By V Addition. Journal of Materials Engineering and Performance, 2019, 28, 1049-1056.	1.2	27
601	Towards behavior by design: A case study on corrugated architectures. Materials and Design, 2019, 166, 107604.	3.3	4
602	Effects of carbon on the microstructures and mechanical properties of FeCoCrNiMn high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 746, 356-362.	2.6	102
603	High temperature, low neutron cross-section high-entropy alloys in the Nb-Ti-V-Zr system. Acta Materialia, 2019, 166, 435-446.	3.8	60
604	Solving the strength-ductility tradeoff in the medium-entropy NiCoCr alloy via interstitial strengthening of carbon. Intermetallics, 2019, 106, 77-87.	1.8	77
605	Diffusion-controlled alloying of single-phase multi-principal transition metal carbides with high toughness and low thermal diffusivity. Applied Physics Letters, 2019, 114, .	1.5	48
606	Microstructure and Mechanical Properties of Al–Co–Cr–Fe–Ni Base High Entropy Alloys Obtained Using Powder Metallurgy. Metals and Materials International, 2019, 25, 930-945.	1.8	50
607	High-entropy oxides 10La2O3-20TiO2-10Nb2O5-20WO3-20ZrO2 amorphous spheres prepared by containerless solidification. Materials Letters, 2019, 244, 167-170.	1.3	37
608	Strength and ductility of CrFeCoNiMo alloy with hierarchical microstructures. International Journal of Plasticity, 2019, 113, 255-268.	4.1	121
609	Recrystallized microstructures and mechanical properties of a C-containing CoCrFeNiMn-type high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 740-741, 201-210.	2.6	52
610	Microstructural Evolution and Deformation Behavior of Ni-Si- and Co-Si-Containing Metastable High Entropy Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 179-190.	1.1	10
611	Tensile yield strength of a single bulk Al0.3CoCrFeNi high entropy alloy can be tuned from 160â€ ⁻ MPa to 1800â€ ⁻ MPa. Scripta Materialia, 2019, 162, 18-23.	2.6	138
612	Ductile-brittle transition of carbon alloyed Fe40Mn40Co10Cr10 high entropy alloys. Materials Letters, 2019, 236, 416-419.	1.3	44
613	Achieving high ductility in the 1.7â€ [−] GPa grade CoCrFeMnNi high-entropy alloy at 77â€ [−] K. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 740-741, 336-341.	2.6	81

#	Article	IF	CITATIONS
614	Interstitial equiatomic CoCrFeMnNi high-entropy alloys: carbon content, microstructure, and compositional homogeneity effects on deformation behavior. Acta Materialia, 2019, 164, 400-412.	3.8	216
615	Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys. International Journal of Plasticity, 2019, 114, 161-173.	4.1	195
616	Helium irradiated cavity formation and defect energetics in Ni-based binary single-phase concentrated solid solution alloys. Acta Materialia, 2019, 164, 283-292.	3.8	44
617	Effect of roughness on general corrosion and pitting of (FeCoCrNi)0.89(WC)0.11 high-entropy alloy composite in 3.5 wt.% NaCl solution. Corrosion Science, 2019, 146, 44-57.	3.0	112
618	Tuning strain-induced γ-to-ε martensitic transformation of biomedical Co–Cr–Mo alloys by introducing parent phase lattice defects. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 523-529.	1.5	25
619	Hierarchical multi-phase microstructural architecture for exceptional strength-ductility combination in a complex concentrated alloy via high-temperature severe plastic deformation. Scripta Materialia, 2019, 162, 38-43.	2.6	30
620	Influence of hydrogen on incipient plasticity in CoCrFeMnNi high-entropy alloy. Scripta Materialia, 2019, 161, 23-27.	2.6	30
621	Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy. Acta Materialia, 2019, 163, 40-54.	3.8	296
622	Origin of strengthening-softening trade-off in gradient nanostructured body-centred cubic alloys. Journal of Alloys and Compounds, 2019, 775, 270-280.	2.8	12
623	Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition. Journal of Materials Science and Technology, 2019, 35, 578-583.	5.6	126
624	Effects of temperature and microstructure on the triblogical properties of CoCrFeNiNbx eutectic high entropy alloys. Journal of Alloys and Compounds, 2019, 775, 1376-1385.	2.8	129
625	Aging phenomenon in low lattice-misfit cobalt-free maraging steel: Microstructural evolution and strengthening behavior. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 739, 445-454.	2.6	37
626	Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures. Science China Materials, 2019, 62, 853-863.	3.5	129
627	Effect of μ-precipitates on the microstructure and mechanical properties of non-equiatomic CoCrFeNiMo medium-entropy alloys. Journal of Alloys and Compounds, 2019, 781, 75-83.	2.8	90
628	Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 744, 137-144.	2.6	166
629	The effect of cooling rate on the microstructure and mechanical properties of NiCoFeCrGa high-entropy alloy. Journal of Materials Science, 2019, 54, 5074-5082.	1.7	6
630	Utilization of brittle σ phase for strengthening and strain hardening in ductile VCrFeNi high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 665-674.	2.6	67
631	Novel metastable engineering in single-phase high-entropy alloy. Materials and Design, 2019, 162, 256-262.	3.3	46

ARTICLE IF CITATIONS Microstructure and mechanical properties of a CoCrFeMnNi high entropy alloy processed by milling 632 2.8 41 and spark plasma sintering. Journal of Alloys and Compounds, 2019, 780, 856-865. Fatigue resistance of nanotwinned high-entropy alloy films. Materials Science & amp; Engineering A: 2.6 Structural Materials: Properties, Microstructure and Processing, 2019, 739, 26-30. Corrosive and tribological behaviors of AlCoCrFeNi-M high entropy alloys under 90†wt. % H2O2 634 3.0 32 solution. Tribology International, 2019, 131, 24-32. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy. Journal of Materials Science and Technology, 2019, 35, 369-373. Thermal stability of Al-Cu-Fe-Cr-Ni high entropy alloy bulk and nanoparticle structure: A molecular dynamics perspective. Chemical Physics, 2019, 517, 126-130. 636 0.9 18 Computation of stability, elasticity and thermodynamics in equiatomic AlCrFeNi medium-entropy alloys. Journal of Materials Science, 2019, 54, 2566-2576. 1.7 Fatigue behavior of CoCrFeMnNi high-entropy alloy under fully reversed cyclic deformation. Journal 638 5.6 108 of Materials Science and Technology, 2019, 35, 334-340. Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: Micromechanism and constitutive modeling. International Journal of Plasticity, 2020, 124, 4.1 163 226-246. On the formation of hierarchical microstructure in a Mo-doped NiCoCr medium-entropy alloy with 640 2.6 75 enhanced strength-ductility synergy. Scripta Materialia, 2020, 175, 1-6. High strength and ductility AlCrFeNiV high entropy alloy with hierarchically heterogeneous 641 microstructure prepared by selective laser melting. Journal of Alloys and Compounds, 2020, 813, 2.8 152196. X-ray photoelectron spectroscopy and electrochemical investigation of the passive behavior of 642 3.189 high-entropy FeCoCrNiMox alloys in sulfuric acid. Applied Surface Science, 2020, 499, 143903. Excellent room temperature ductility of as-cast TRIP high-entropy alloy via Mo and C alloying. Journal of Materials Science, 2020, 55, 2239-2244. Solidification behaviour of undercooled equiatomic FeCuNi alloy. Journal of Alloys and Compounds, 644 2.8 13 2020, 815, 152334. CALPHAD aided design of high entropy alloy to achieve high strength via precipitate strengthening. 645 3.5 Science China Materials, 2020, 63, 288-299 Modeling of alloying effect on elastic properties in BCC Nb-Ti-V-Zr solid solution: From unary to 646 1.4 48 quaternary. Computational Materials Science, 2020, 172, 109289. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K. Acta 647 253 Materialia, 2020, 182, 235-249. Mechanical properties and deformation behavior of dual-phase Al0.6CoCrFeNi high-entropy alloys 648 with heterogeneous structure at room and cryogenic temperatures. Journal of Alloys and 2.8 42 Compounds, 2020, 816, 152663. Robust data-driven approach for predicting the configurational energy of high entropy alloys. 649 3.3 Materials and Design, 2020, 185, 108247.

#	Article	IF	CITATIONS
650	Enhanced surface bombardment resistance of the CoNiCrFeMn high entropy alloy under extreme irradiation flux. Nanotechnology, 2020, 31, 025703.	1.3	13
651	In situ neutron diffraction study of a new type of stress-induced confined martensitic transformation in Fe22Co20Ni19Cr20Mn12Al7 high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 771, 138555.	2.6	15
652	Anomalous Evolution of Strength and Microstructure of Highâ€Entropy Alloy CoCrFeNiMn after Highâ€Pressure Torsion at 300 and 77 K. Advanced Engineering Materials, 2020, 22, 1900752.	1.6	23
653	Tuning nanostructure using thermo-mechanical processing for enhancing mechanical properties of complex intermetallic containing CoCrFeNi2.1Nbx high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 769, 138489.	2.6	34
654	Theory of screw dislocation strengthening in random BCC alloys from dilute to "High-Entropy― alloys. Acta Materialia, 2020, 182, 144-162.	3.8	150
655	Phase evolution, microstructure, and mechanical behaviors of the CrFeNiAlxTiy medium-entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 771, 138566.	2.6	60
656	Structure and Electrochemical Properties of Laser Cladding Al2CoCrCuFeNiTix High-Entropy Alloy Coatings. Metals and Materials International, 2020, 26, 998-1003.	1.8	8
657	Dissimilar Metal Joining of 304 Stainless Steel to SMA490BW Steel Using the Filler Metal Powders with a High-Entropy Design. Metals and Materials International, 2020, 26, 854-866.	1.8	15
658	Effect of Initial Grain Size on Deformation Mechanism during Highâ€Pressure Torsion in V 10 Cr 15 Mn 5 Fe 35 Co 10 Ni 25 Highâ€Entropy Alloy. Advanced Engineering Materials, 2020, 22, 1900587.	1.6	21
659	Effects of annealing temperature on microstructures and tensile properties of a single FCC phase CoCuMnNi high-entropy alloy. Journal of Alloys and Compounds, 2020, 812, 152111.	2.8	37
660	Effects of Mn on the electrochemical corrosion and passivation behavior of CoFeNiMnCr high-entropy alloy system in H2SO4 solution. Journal of Alloys and Compounds, 2020, 819, 152943.	2.8	82
661	Improving mechanical properties of an FCC high-entropy alloy by γ′ and B2 precipitates strengthening. Materials Characterization, 2020, 159, 109989.	1.9	45
662	Multi-component (Al,Cr,Nb,Y,Zr)N thin films by reactive magnetron sputter deposition for increased hardness and corrosion resistance. Thin Solid Films, 2020, 693, 137685.	0.8	41
663	Corrosion resistant nanostructured eutectic high entropy alloy. Corrosion Science, 2020, 164, 108315.	3.0	161
664	Effect of grain size on fatigue cracking at twin boundaries in a CoCrFeMnNi high-entropy alloy. Journal of Materials Science and Technology, 2020, 39, 1-6.	5.6	45
665	Designing high entropy alloy-ceramic eutectic composites of MoNbRe0.5TaW(TiC)x with high compressive strength. Journal of Alloys and Compounds, 2020, 818, 152846.	2.8	28
666	Selective laser melting of dual phase AlCrCuFeNix high entropy alloys: Formability, heterogeneous microstructures and deformation mechanisms. Additive Manufacturing, 2020, 31, 100925.	1.7	34
667	Interplay between single phase solid solution strengthening and multi-phase strengthening in the same high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 771, 138620.	2.6	26

#	Article	IF	CITATIONS
668	Uncovering the eutectics design by machine learning in the Al–Co–Cr–Fe–Ni high entropy system. Acta Materialia, 2020, 182, 278-286.	3.8	143
669	Lattice distortion effect on elastic anisotropy of high entropy alloys. Journal of Alloys and Compounds, 2020, 818, 152876.	2.8	27
670	Fine-tuning of mechanical properties in V10Cr15Mn5Fe35Co10Ni25 high-entropy alloy through high-pressure torsion and annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 771, 138604.	2.6	38
671	Effect of Ni on Microstructure and Mechanical Properties of CrMnFeCoNi High Entropy Alloy. Transactions of the Indian Institute of Metals, 2020, 73, 853-862.	0.7	13
672	Effects of transformation-induced plasticity on the small-scale deformation behavior of single crystalline complex concentrated alloys. Scripta Materialia, 2020, 176, 122-125.	2.6	5
673	Nano-sized Cu clusters in deeply undercooled CoCuFeNiTa high entropy alloy. Scripta Materialia, 2020, 177, 58-64.	2.6	20
674	Enhanced strength and slightly reduced ductility in a high entropy alloy via cold rolling and annealing. Journal of Alloys and Compounds, 2020, 817, 152709.	2.8	27
675	Selective laser melting of CoCrFeNiMn high entropy alloy powder modified with nano-TiN particles for additive manufacturing and strength enhancement: Process, particle behavior and effects. Powder Technology, 2020, 360, 509-521.	2.1	84
676	From high-entropy ceramics to compositionally-complex ceramics: A case study of fluorite oxides. Journal of the European Ceramic Society, 2020, 40, 2120-2129.	2.8	160
677	"Self-sharpening―tungsten high-entropy alloy. Acta Materialia, 2020, 186, 257-266.	3.8	91
678	Superior resistance to hydrogen damage for selective laser melted 316L stainless steel in a proton exchange membrane fuel cell environment. Corrosion Science, 2020, 166, 108425.	3.0	76
679	A new method for preparing high entropy alloys: Electromagnetic pulse treatment and its effects on mechanical and corrosion properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 774, 138916.	2.6	11
680	Extremely hard, α-Mn type high entropy alloy coatings. Scripta Materialia, 2020, 178, 477-482.	2.6	14
681	Reversible dislocation movement, martensitic transformation and nano-twinning during elastic cyclic loading of a metastable high entropy alloy. Acta Materialia, 2020, 185, 474-492.	3.8	48
682	FeMnNiCoCr-based high entropy alloy coatings: Effect of nitrogen additions on microstructural development, mechanical properties and tribological performance. Applied Surface Science, 2020, 507, 145101.	3.1	61
683	Metastable microstructures in the solidification of undercooled high entropy alloys. Journal of Alloys and Compounds, 2020, 821, 153488.	2.8	15
684	Influence of reduction ratio on the microstructural evolution and subsequent mechanical properties of cold-drawn Co10Cr15Fe25Mn10Ni30V10 high entropy alloy wires. Journal of Alloys and Compounds, 2020, 821, 153526.	2.8	12
685	Microstructural characterization of eutectic and near-eutectic AlCoCrFeNi high-entropy alloys. Journal of Alloys and Compounds, 2020, 822, 153558.	2.8	21

#	Article	IF	CITATIONS
686	Effect of phase transformation on densification kinetics and properties of spark plasma sintered Al0.7CoCrFeNi high-entropy alloy. Materials Characterization, 2020, 160, 110098.	1.9	9
687	Tuning the mechanical properties of Fex(CoMoNi)100-x high-entropy alloys via controlled formation of hard μ phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 773, 138881.	2.6	11
688	Investigating the deformation mechanisms of a highly metastable high entropy alloy using in-situ neutron diffraction. Materials Today Communications, 2020, 23, 100858.	0.9	18
689	Friction stir gradient alloying: A novel solid-state high throughput screening technique for high entropy alloys. Materials Today Communications, 2020, 23, 100869.	0.9	14
690	Effect of strong magnetic field on the microstructure and mechanical-magnetic properties of AlCoCrFeNi high-entropy alloy. Journal of Alloys and Compounds, 2020, 820, 153407.	2.8	34
691	Enhancement of strength and ductility by interfacial nano-decoration in carbon nanotube/aluminum matrix composites. Carbon, 2020, 159, 201-212.	5.4	73
692	Elevated temperature microstructure evolution of a medium-entropy CrCoNi superalloy containing Al,Ti. Journal of Alloys and Compounds, 2020, 817, 152777.	2.8	14
693	Gum-like mechanical behavior of a partially ordered Al5Nb24Ti40V5Zr26 high entropy alloy. Intermetallics, 2020, 116, 106652.	1.8	30
694	An as-cast high-entropy alloy with remarkable mechanical properties strengthened by nanometer precipitates. Nanoscale, 2020, 12, 3965-3976.	2.8	49
695	Deactivating deformation twinning in medium-entropy CrCoNi with small additions of aluminum and titanium. Scripta Materialia, 2020, 178, 295-300.	2.6	30
696	Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating. Scripta Materialia, 2020, 178, 382-386.	2.6	162
697	Effect of Cr content on microstructure and properties of Mo0.5VNbTiCrx high-entropy alloys. Journal of Alloys and Compounds, 2020, 818, 153352.	2.8	38
698	Microstructures and mechanical properties of CoCrFeMnNiV high entropy alloy films. Journal of Alloys and Compounds, 2020, 820, 153388.	2.8	52
699	Combined Al and C alloying enables mechanism-oriented design of multi-principal element alloys: Ab initio calculations and experiments. Scripta Materialia, 2020, 178, 366-371.	2.6	18
700	Effects of transformation-induced plasticity (TRIP) on tensile property improvement of Fe45Co30Cr10V10Ni5-xMnx high-entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138809.	2.6	41
701	On the complexity of solid-state diffusion in highly concentrated alloys and the sluggish diffusion core-effect. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2020, 68, 101713.	0.7	17
702	Atomistic simulations of tensile deformation in a CrCoNi medium-entropy alloy with heterogeneous grain structures. Materialia, 2020, 9, 100565.	1.3	36
703	High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Materialia, 2020, 188, 435-474.	3.8	921

#	Article	IF	CITATIONS
704	Coupling effect of undercooling and cooling on Ti–Al–V alloy solidification. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	3
705	Gradient structure design to strengthen carbon interstitial Fe40Mn40Co10Cr10 high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138661.	2.6	44
706	Effect of grain boundary character distribution on soft magnetic property of face-centered cubic FeCoNiAl0.2 medium-entropy alloy. Materials Characterization, 2020, 159, 110028.	1.9	17
707	ω precipitation: Deformation regulator in metastable titanium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138687.	2.6	12
708	Core effect of local atomic configuration and design principles in AlxCoCrFeNi high-entropy alloys. Scripta Materialia, 2020, 178, 181-186.	2.6	29
709	Deformation mechanisms of FeCoCrNiMo0.2 high entropy alloy at 77 and 15ÂK. Scripta Materialia, 2020, 178, 166-170.	2.6	41
710	The role of interstitial carbon atoms on the strain-hardening rate of twinning-induced plasticity steels. Scripta Materialia, 2020, 178, 264-268.	2.6	51
711	Microstructural evolution and mechanical properties of Al0.3CoCrFeNiSix high-entropy alloys containing coherent nanometer-scaled precipitates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138681.	2.6	48
712	Deformation mechanisms and ductile fracture characteristics of a friction stir processed transformative high entropy alloy. Acta Materialia, 2020, 184, 164-178.	3.8	30
713	Micro-mechanical properties of new alternative binders for cemented carbides: CoCrFeNiW high-entropy alloys. Journal of Alloys and Compounds, 2020, 820, 153141.	2.8	19
714	High-strength Al0.2Co1.5CrFeNi1.5Ti high-entropy alloy produced by powder metallurgy and casting: A comparison of microstructures, mechanical and tribological properties. Materials Characterization, 2020, 159, 110046.	1.9	53
715	Generalized Stacking Fault Energy of Al-Doped CrMnFeCoNi High-Entropy Alloy. Nanomaterials, 2020, 10, 59.	1.9	37
716	Effective Surface Nano-Crystallization of Ni2FeCoMo0.5V0.2 Medium Entropy Alloy by Rotationally Accelerated Shot Peening (RASP). Entropy, 2020, 22, 1074.	1.1	9
717	A Multi-Cell Hybrid Approach to Elevate the Energy Absorption of Micro-Lattice Materials. Materials, 2020, 13, 4083.	1.3	27
718	The Origins of High-Entropy Alloy Contamination Induced by Mechanical Alloying and Sintering. Metals, 2020, 10, 1186.	1.0	38
719	Correlation between microstructure and soft magnetic parameters of Fe-Co-Ni-Al medium-entropy alloys with FCC phase and BCC phase. Intermetallics, 2020, 126, 106898.	1.8	9
720	Deformation faulting in a metastable CoCrNiW complex concentrated alloy: A case of negative intrinsic stacking fault energy?. Acta Materialia, 2020, 200, 992-1007.	3.8	45
721	Microstructure and tensile property of a precipitation strengthened high entropy alloy processed by selective laser melting and post heat treatment. Additive Manufacturing, 2020, 36, 101601.	1.7	14

#	Article	IF	CITATIONS
722	Microstructural characteristics and hardness of CoNiTi medium-entropy alloy coating on pure Ti substrate prepared by pulsed laser cladding. Journal of Alloys and Compounds, 2020, 849, 156704.	2.8	39
723	Crystallography, thermodynamics and phase transitions in refractory binary alloys. Acta Materialia, 2020, 200, 171-186.	3.8	24
724	Nano-structure to Laves phase: Reduced Thermal Conductivity from Medium-Entropy AlNbV to High-Entropy AlNbVCrTi Alloys. Materialia, 2020, 14, 100889.	1.3	3
725	Effect of interstitial oxygen and nitrogen on incipient plasticity of NbTiZrHf high-entropy alloys. Acta Materialia, 2020, 199, 413-424.	3.8	52
726	A thermodynamic description of the Al–Cu–Fe–Mn system for an immiscible medium-entropy alloy design. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2020, 71, 101995.	0.7	6
727	In-situ real time observation of martensite transformation in duplex fcc+hcp cobalt based entropic alloys. Materialia, 2020, 14, 100928.	1.3	10
728	A molecular dynamics investigation into deformation mechanism of nanotwinned Cu/high entropy alloy FeCoCrNi nanolaminates. Surface and Coatings Technology, 2020, 401, 126325.	2.2	16
729	Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures. Acta Materialia, 2020, 201, 517-527.	3.8	103
730	Phase transformation - induced strengthening of an additively manufactured multi- principal element CrMnFeCoNi alloy. Materials and Design, 2020, 195, 108999.	3.3	13
731	Microstructural homogenization and substantial improvement in corrosion resistance of mechanically alloyed FeCoCrNiCu high entropy alloys by incorporation of carbon nanotubes. Materialia, 2020, 14, 100917.	1.3	26
732	Synergistic deformation pathways in a TWIP steel at cryogenic temperatures: In situ neutron diffraction. Acta Materialia, 2020, 200, 943-958.	3.8	72
733	Hot Deformation and Dynamic Recrystallization Behavior of CoCrNi and (CoCrNi)94Ti3Al3 Medium Entropy Alloys. Metals, 2020, 10, 1341.	1.0	21
734	Microstructures and mechanical properties of in-situ FeCrNiCu high entropy alloy matrix composites reinforced with NbC particles. Intermetallics, 2020, 127, 106983.	1.8	34
735	High strength-ductility Co23Cr23Ni23Mn31 medium-entropy alloy achieved via defect engineering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 796, 139974.	2.6	18
736	Nb doping in laser-cladded Fe25Co25Ni25(B0.7Si0.3)25 high entropy alloy coatings: Microstructure evolution and wear behavior. Surface and Coatings Technology, 2020, 402, 126321.	2.2	48
737	Development and characterization of novel Ni-rich high-entropy alloys. Journal of Alloys and Compounds, 2020, 846, 156342.	2.8	18
738	Effect of Stacking Fault Energy on Microstructure and Texture Evolution during the Rolling of Non-Equiatomic CrMnFeCoNi High-Entropy Alloys. Crystals, 2020, 10, 607.	1.0	7
739	In situ investigation of the deformation behaviors of Fe20Co30Cr25Ni25 and Fe20Co30Cr30Ni20 high entropy alloys by high-energy X-ray diffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 795, 139936.	2.6	8

#	Article	IF	CITATIONS
740	Hierarchical microstructure strengthening in a single crystal high entropy superalloy. Scientific Reports, 2020, 10, 12163.	1.6	21
741	Engineering transformation pathways in an Al _{0.3} CoFeNi complex concentrated alloy leads to excellent strength–ductility combination. Materials Research Letters, 2020, 8, 399-407.	4.1	12
742	Influence of lattice distortion on stacking fault energies of CoCrFeNi and Al-CoCrFeNi high entropy alloys. Journal of Alloys and Compounds, 2020, 846, 156321.	2.8	49
743	From suppressed void growth to significant void swelling in NiCoFeCr complex concentrated solid-solution alloy. Materialia, 2020, 9, 100603.	1.3	22
744	Cold-workable refractory complex concentrated alloys with tunable microstructure and good room-temperature tensile behavior. Scripta Materialia, 2020, 188, 16-20.	2.6	24
745	Damage in metal forming. CIRP Annals - Manufacturing Technology, 2020, 69, 600-623.	1.7	64
746	Suppression of σ-phase in nanocrystalline CoCrFeMnNiV high entropy alloy by unsolicited contamination during mechanical alloying and spark plasma sintering. Materials Chemistry and Physics, 2020, 255, 123558.	2.0	10
747	Radiation damage tolerance of a novel metastable refractory high entropy alloy V2.5Cr1.2WMoCo0.04. Journal of Nuclear Materials, 2020, 531, 152005.	1.3	48
748	Subtle Variations of the Electronic Structure and Mechanical Properties of High Entropy Alloys With 50% Carbon Composites. Frontiers in Materials, 2020, 7, .	1.2	8
749	Ordered nitrogen complexes overcoming strength–ductility trade-off in an additively manufactured high-entropy alloy. Virtual and Physical Prototyping, 2020, 15, 532-542.	5.3	25
750	Effect of carbon on microstructure and mechanical properties of Fe ₃₆ Mn ₃₆ Ni ₉ Cr ₉ Al ₁₀ high-entropy alloys. Materials Science and Technology, 2020, 36, 1851-1860.	0.8	12
751	Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures. Nature Communications, 2020, 11, 6240.	5.8	226
752	Mechanical properties of CrFeCoNiCu _x (0 ≤i>x ≤0.3) HEAs from first-principles calculations. RSC Advances, 2020, 10, 41324-41331.	1.7	1
753	Investigation of nanotwins in the bimodal-structured Fe22Co22Ni20Cr22Mn14 alloy subjected to high-strain-rate deformation at cryogenic temperatures. Materials Characterization, 2020, 170, 110667.	1.9	11
754	Chemical ordering controlled thermo-elasticity of AlTiVCr1-Nb high-entropy alloys. Acta Materialia, 2020, 199, 53-62.	3.8	20
755	Ultrastrong lightweight compositionally complex steels via dual-nanoprecipitation. Science Advances, 2020, 6, .	4.7	118
756	Near-ideal strength and large compressive deformability of a nano-dual-phase glass-crystal alloy in sub-micron. Scripta Materialia, 2020, 188, 290-295.	2.6	10
757	Element Effects of Mn and Ge on the Tuning of Mechanical Properties of High-Entropy Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5023-5028.	1.1	11

		CITATION REPORT		
#	Article		IF	CITATIONS
758	Searching for high entropy alloys: A machine learning approach. Acta Materialia, 2020, 1	98, 178-222.	3.8	107
759	A new perspective to thermodynamical designing of high entropy bulk metallic glasses (H Physica B: Condensed Matter, 2020, 595, 412350.	IE-BMGs).	1.3	16
760	Searching for New Ferroelectric Materials Using High-Throughput Databases: An Experim Perspective on BiAlO ₃ and BiInO ₃ . Chemistry of Materials, 202	ental 20, 32, 7274-7283.	3.2	16
761	Exceptionally high strain-hardening and ductility due to transformation induced plasticity Ti-rich high-entropy alloys. Scientific Reports, 2020, 10, 13293.	effect in	1.6	29
762	Plastic Forming of Metals at the Nanoscale: Interdiffusion-Induced Bending of Bimetallic Nanowhiskers. ACS Nano, 2020, 14, 11691-11699.		7.3	3
763	Effect of carbon content on microstructure, hardness and wear resistance of CoCrFeMn high-entropy alloys. Journal of Alloys and Compounds, 2020, 847, 156533.	NiCx	2.8	86
764	Microstructurally flexible high entropy alloys: Linkages between alloy design and deforma behavior. Materials and Design, 2020, 194, 108968.	ation	3.3	34
765	In situ strengthening of CrMnFeCoNi high-entropy alloy with Al realized by laser additive manufacturing. Journal of Alloys and Compounds, 2020, 847, 156563.		2.8	26
766	Predicting the Phase Stability of Multicomponent High-Entropy Compounds. Chemistry of 2020, 32, 7507-7515.	of Materials,	3.2	37
767	High-Temperature Oxidation Behaviours of AlCoCrFeNi High-Entropy Alloy at 1073–12 Metals, 2020, 94, 265-281.	73ÂK. Oxidation of	1.0	19
768	Microstructure and mechanical properties of non equiatomic FeCoNiCuMo high entropy Advances in Materials and Processing Technologies, 2020, , 1-14.	systems.	0.8	1
769	Atomic scale characterization of complex stacking faults and their configurations in cold Fe42Mn38Co10Cr10 high-entropy alloy. Acta Materialia, 2020, 199, 649-668.	deformed	3.8	22
770	Formation of nano-phase Co3Fe7 intermetallic and its strengthening in Au80Sn20/CrMn interface. Journal of Alloys and Compounds, 2020, 843, 155924.	FeCoNi solder	2.8	11
771	Size dependency in stacking fault-mediated ultrahard high-entropy alloy thin films. Journa and Compounds, 2020, 844, 156187.	al of Alloys	2.8	13
772	Precipitation-driven metastability engineering of carbon-doped CoCrFeNiMo medium-ent cryogenic temperature. Scripta Materialia, 2020, 188, 140-145.	ropy alloys at	2.6	59
773	Wettability, electron work function and corrosion behavior of CoCrFeMnNi high entropy Surface and Coatings Technology, 2020, 400, 126222.	alloy films.	2.2	27
774	In-situ alloyed, oxide-dispersion-strengthened CoCrFeMnNi high entropy alloy fabricated powder bed fusion. Materials and Design, 2020, 194, 108966.	via laser	3.3	69
775	Microstructural evolution and mechanical properties of non-Cantor AlCuSiZnFe lightweig entropy alloy processed by advanced powder metallurgy. Materials Science & amp; Engine Structural Materials: Properties, Microstructure and Processing, 2020, 797, 140066.	ht high eering A:	2.6	44

#	Article	IF	CITATIONS
776	Thermodynamic route for self-forming 1.5 nm V-Nb-Mo-Ta-W high-entropy alloy barrier layer: Roles of enthalpy and mixing entropy. Acta Materialia, 2020, 199, 107-115.	3.8	14
777	Preparation of TiZrNbTa refractory high-entropy alloy powder by mechanical alloying with liquid process control agents. Intermetallics, 2020, 126, 106900.	1.8	21
778	High-throughput synthesis and corrosion behavior of sputter-deposited nanocrystalline Al (CoCrFeNi)100- combinatorial high-entropy alloys. Materials and Design, 2020, 195, 109018.	3.3	59
779	Microstructure and mechanical properties of (CrCoNi)97Al1.5Ti1.5 medium entropy alloy twisted by free-end-torsion at room and cryogenic temperatures. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 797, 140101.	2.6	10
780	Effect of Cobalt-Content on Mechanical Properties of Non-Equiatomic Co–Cr–Ni Medium Entropy Alloys. Materials Transactions, 2020, 61, 587-595.	0.4	21
781	Novel as-cast AlCrFe2Ni2Ti05 high-entropy alloy with excellent mechanical properties. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 1312-1317.	2.4	14
782	Latticeâ€Distortionâ€Enhanced Yield Strength in a Refractory Highâ€Entropy Alloy. Advanced Materials, 2020, 32, e2004029.	11.1	121
783	Thermal expansion-adjustable carbon-doped FeCoCrNiMn high-entropy alloys for electronic packaging. Journal of Materials Science: Materials in Electronics, 2020, 31, 19366-19380.	1.1	2
784	Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys. Materials Today, 2020, 41, 62-71.	8.3	197
785	A novel stress-induced martensitic transformation in a single-phase refractory high-entropy alloy. Scripta Materialia, 2020, 189, 129-134.	2.6	23
786	Dynamic mechanical responses of the AlO·1CoCrFeNi high entropy alloy at cryogenic temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 797, 140125.	2.6	44
787	Corrosion mechanism of an equimolar AlCoCrFeNi high-entropy alloy additively manufactured by electron beam melting. Npj Materials Degradation, 2020, 4, .	2.6	55
788	First-principles study of phase stability, elastic and thermodynamic properties of AlCrFeNi medium-entropy alloys. International Journal of Modern Physics B, 2020, 34, 2050218.	1.0	5
789	Thermoelectric Properties of CoCrFeNiNbx Eutectic High Entropy Alloys. Crystals, 2020, 10, 762.	1.0	11
790	Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility. Nature Materials, 2020, 19, 1175-1181.	13.3	209
791	On the Factors Governing Austenite Stability: Intrinsic versus Extrinsic. Materials, 2020, 13, 3440.	1.3	43
792	Ultrasonic Cavitation Erosion Behavior of AlCoCrxCuFe High Entropy Alloy Coatings Synthesized by Laser Cladding. Materials, 2020, 13, 4067.	1.3	6
793	Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy. Science Advances, 2020, 6, .	4.7	101

#	Article	IF	CITATIONS
794	Machine Learning Enabled Prediction of Stacking Fault Energies in Concentrated Alloys. Metals, 2020, 10, 1072.	1.0	23
795	Statistics of the NiCoCr medium-entropy alloy: Novel aspects of an old puzzle. Npj Computational Materials, 2020, 6, .	3.5	25
796	Effect of Aging Treatment on Microstructure and Properties of the Fe55(CoCrNi)10(MoV)5C5 Medium-Entropy Alloy. Metals, 2020, 10, 1093.	1.0	0
797	Irradiationâ€Induced Extremes Create Hierarchical Faceâ€/Bodyâ€Centeredâ€Cubic Phases in Nanostructured High Entropy Alloys. Advanced Materials, 2020, 32, 2002652.	11.1	14
798	Striped Non-Uniform Corrosion Behavior of Non-Equiatomic FeMnCoCr High-Entropy Alloy Prepared by Laser Melting Deposition in 0.1 M H2SO4 Solution. Materials, 2020, 13, 5554.	1.3	4
799	Mechanical Performance and Microstructural Evolution of (NiCo)75Cr17Fe8Cx (x = 0~0.83) Medium Entropy Alloys at Room and Cryogenic Temperatures. Metals, 2020, 10, 1646.	1.0	10
800	A brief review of metastable high-entropy alloys with transformation-induced plasticity. Materials Science and Technology, 2020, 36, 1893-1902.	0.8	12
801	Nanoporous High-Entropy Alloy by Liquid Metal Dealloying. Metals, 2020, 10, 1396.	1.0	26
802	A Novel Non-Equiatomic (W35Ta35Mo15Nb15)95Ni5 Refractory High Entropy Alloy with High Density Fabricated by Powder Metallurgical Process. Metals, 2020, 10, 1436.	1.0	6
803	Modulation of the cutoff wavelength in the spectra for solar selective absorbing coating based on high-entropy films. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 1371-1378.	2.4	8
804	Effects of the elemental composition of high-entropy filler metals on the mechanical properties of dissimilar metal joints between stainless steel and low carbon steel. Journal of Materials Research and Technology, 2020, 9, 11453-11463.	2.6	10
805	Electrically Assisted Solid-State Joining of CrMnFeCoNi High-Entropy Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 6142-6148.	1.1	6
806	Oxidation Behavior of Pack-Cemented Refractory High-Entropy Alloy. Jom, 2020, 72, 4594-4603.	0.9	5
807	Microstructure evolution and mechanical properties of a novel CrNbTiZrAlx (0.25Ââ‰ÂxÂâ‰Â1.25) eutectic refractory high-entropy alloy. Materials Letters, 2020, 272, 127869.	1.3	35
808	Towards stronger high-entropy alloy by nanoprecipitation-hardened ultrafine-/nano-grains. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 787, 139474.	2.6	10
809	Cyclic plasticity of an interstitial high-entropy alloy: experiments, crystal plasticity modeling, and simulations. Journal of the Mechanics and Physics of Solids, 2020, 142, 103971.	2.3	50
810	A Short Review on the Effect of Cr on the fcc–hcp Phase Transition in Fe–Mn-Based Alloys. Shape Memory and Superelasticity, 2020, 6, 202-212.	1.1	7
811	Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature, 2020, 581, 283-287.	13.7	672

#	Article	IF	CITATIONS
812	Corrosion Behavior and Passive Film Characterization of Fe ₅₀ Mn ₃₀ Co ₁₀ Cr ₁₀ Dual-Phase High-Entropy Alloy in Sulfuric Acid Solution. Journal of the Electrochemical Society, 2020, 167, 081506.	1.3	24
813	Interstitials in f.c.c. High Entropy Alloys. Metals, 2020, 10, 695.	1.0	41
814	A novel equiaxed eutectic high-entropy alloy with excellent mechanical properties at elevated temperatures. Materials Research Letters, 2020, 8, 373-382.	4.1	34
815	Tensile Properties and Impact Toughness of AlCoxCrFeNi3.1–x (x = 0.4, 1) High-Entropy Alloys. Frontiers in Materials, 2020, 7, .	1.2	11
816	Influence of the Dispersion Hardening with Nanooxides on the Corrosion Resistance of High-Entropy Alloys of the Cr–Fe–Mn–Ni System in Lead Melts. Materials Science, 2020, 55, 529-535.	0.3	2
817	Hall-petch relationship and heterogeneous strength of CrCoNi medium-entropy alloy. Materials Chemistry and Physics, 2020, 251, 123073.	2.0	31
818	Design of Novel Non-equiatomic Cu-Ni-Al-Ti Composite Medium-Entropy Alloys. Journal of Materials Engineering and Performance, 2020, 29, 2898-2908.	1.2	9
819	High-rate superplasticity in an equiatomic medium-entropy VCoNi alloy enabled through dynamic recrystallization of a duplex microstructure of ordered phases. Acta Materialia, 2020, 194, 106-117.	3.8	57
820	Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications. Acta Materialia, 2020, 194, 366-377.	3.8	117
821	High-entropy alloy and amorphous alloy composites fabricated by ultrasonic vibrations. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	18
822	Vacancy-mediated complex phase selection in high entropy alloys. Acta Materialia, 2020, 194, 540-546.	3.8	31
823	Metastability driven hierarchical microstructural engineering: Overview of mechanical properties of metastable complex concentrated alloys. Journal of Alloys and Compounds, 2020, 842, 155625.	2.8	24
824	Strengthening the FeCoCrNiMo0.15 high entropy alloy by a gradient structure. Journal of Alloys and Compounds, 2020, 841, 155688.	2.8	24
825	The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys. Journal of Materials Science and Technology, 2020, 48, 146-155.	5.6	27
826	Comment on the paper "On the formation of hierarchical microstructure in a Mo-doped NiCoCr medium-entropy alloy with enhanced strength-ductility synergy" by J. He, S.Makineni, W.Lu,Y.Shang,Z.Lu,Z.Li,B.Gault, Scripta Mater 175(2020)1-6. Scripta Materialia, 2020, 187, 1-3.	2.6	3
827	A novel supersaturated medium entropy alloy with superior tensile properties and corrosion resistance. Scripta Materialia, 2020, 186, 381-386.	2.6	74
828	Discovery and design of fatigue-resistant high-entropy alloys. Scripta Materialia, 2020, 187, 68-75.	2.6	55
829	Metastability in high entropy alloys. Scripta Materialia, 2020, 186, 392-400.	2.6	58

#	Article	IF	CITATIONS
830	High-temperature age-hardening of a novel cost-effective Fe45Ni25Cr25Mo5 high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 788, 139580.	2.6	17
831	Development of Ti–Zr–Hf–Y–La high-entropy alloys with dual hexagonal-close-packed structure. Scripta Materialia, 2020, 186, 242-246.	2.6	28
832	Probing deformation mechanisms of gradient nanostructured CrCoNi medium entropy alloy. Journal of Materials Science and Technology, 2020, 57, 85-91.	5.6	34
833	Controlling the corrosion behavior of CoNiFe medium entropy alloy by grain boundary engineering. Materials Characterization, 2020, 164, 110323.	1.9	18
834	Boron addition in a non-equiatomic Fe50Mn30Co10Cr10 alloy manufactured by laser cladding: Microstructure and wear abrasive resistance. Applied Surface Science, 2020, 515, 146084.	3.1	39
835	Fine-grain-embedded dislocation-cell structures for high strength and ductility in additively manufactured steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 790, 139736.	2.6	27
836	Strengthening mechanisms in high entropy alloys: Fundamental issues. Scripta Materialia, 2020, 187, 148-156.	2.6	131
837	Preparation of MoNbTaW refractory high entropy alloy powders by pressureless spark plasma sintering: Crystal structure and phase evolution. Intermetallics, 2020, 123, 106832.	1.8	18
838	FCC-to-HCP Phase Transformation in CoCrNix Medium-Entropy Alloys. Acta Metallurgica Sinica (English Letters), 2020, 33, 1151-1158.	1.5	12
839	Soft-Magnetic High-Entropy AlCoFeMnNi Alloys with Dual-Phase Microstructures Induced by Annealing. Acta Metallurgica Sinica (English Letters), 2020, 33, 1124-1134.	1.5	18
840	Segregation of Ni at early stages of radiation damage in NiCoFeCr solid solution alloys. Acta Materialia, 2020, 196, 44-51.	3.8	39
841	Computational and experimental investigation of refractory high entropy alloy Mo15Nb20Re15Ta30W20. Journal of Materials Research and Technology, 2020, 9, 8929-8936.	2.6	39
842	Materials and manufacturing renaissance: Additive manufacturing of high-entropy alloys. Journal of Materials Research, 2020, 35, 1963-1983.	1.2	48
843	Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures. Scripta Materialia, 2020, 187, 250-255.	2.6	59
844	Novel (CoFe2NiV0.5Mo0.2)100â^'xNbx Eutectic High-Entropy Alloys with Excellent Combination of Mechanical and Corrosion Properties. Acta Metallurgica Sinica (English Letters), 2020, 33, 1046-1056.	1.5	28
845	The tension-compression asymmetry of martensite phase transformation in a metastable Fe40Co20Cr20Mn10Ni10 high-entropy alloy. Science China Materials, 2020, 63, 1797-1807.	3.5	17
846	Cryogenic mechanical behaviors of CrMnFeCoNi high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 789, 139579.	2.6	31
847	Novel Co-free high performance TRIP and TWIP medium-entropy alloys at cryogenic temperatures. Journal of Materials Science and Technology, 2020, 57, 153-158.	5.6	50

#	Article	IF	Citations
848	Comparative corrosion behavior of Fe50Mn30Co10Cr10 dual-phase high-entropy alloy and CoCrFeMnNi high-entropy alloy in 3.5Âwt% NaCl solution. Journal of Alloys and Compounds, 2020, 842, 155824.	2.8	63
849	Ductility and strain hardening in gradient and lamellar structured materials. Scripta Materialia, 2020, 186, 321-325.	2.6	110
850	Origin of micrometer-scale dislocation motion during hydrogen desorption. Science Advances, 2020, 6, eaaz1187.	4.7	29
851	Reduction of dislocation, mean free path, and migration barriers using high entropy alloy: insights from the atomistic study of irradiation damage of CoNiCrFeMn. Nanotechnology, 2020, 31, 425701.	1.3	20
852	Designing high entropy superalloys for elevated temperature application. Scripta Materialia, 2020, 187, 177-182.	2.6	52
853	Promising properties and future trend of eutectic high entropy alloys. Scripta Materialia, 2020, 187, 202-209.	2.6	308
854	Tailoring phase transformation strengthening and plasticity of nanostructured high entropy alloys. Nanoscale, 2020, 12, 14135-14149.	2.8	15
855	Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy. Intermetallics, 2020, 124, 106845.	1.8	74
856	Functional properties and promising applications of high entropy alloys. Scripta Materialia, 2020, 187, 188-193.	2.6	163
857	Fundamental electronic structure and multiatomic bonding in 13 biocompatible high-entropy alloys. Npj Computational Materials, 2020, 6, .	3.5	79
858	Mechanical alloying for preparing nanocrystalline high-entropy alloys. , 2020, , 417-429.		0
859	Structural disorder, phase stability and compressibility of refractory body-centered cubic solid-solution alloys. Journal of Alloys and Compounds, 2020, 847, 155970.	2.8	7
860	Designing of Fe-containing (Ti33Zr33Hf33)-(Ni50Cu50) high entropy alloys developed by equiatomic substitution: phase evolution and mechanical properties. Journal of Materials Research and Technology, 2020, 9, 7732-7739.	2.6	16
861	A new guide for improving mechanical properties of non-equiatomic FeCoCrMnNi medium- and high-entropy alloys with ultrasonic nanocrystal surface modification process. Journal of Materials Science and Technology, 2020, 59, 37-43.	5.6	20
862	Strengthening of an Al0.45CoCrFeNi high-entropy alloy via in situ fabricated duplex-structured composites. Journal of Materials Science, 2020, 55, 7894-7909.	1.7	19
863	Carbon and nitrogen co-doping enhances phase stability and mechanical properties of a metastable high-entropy alloy. Journal of Alloys and Compounds, 2020, 831, 154799.	2.8	36
864	Nanostructuring as a route to achieve ultra-strong high- and medium-entropy alloys with high creep resistance. Journal of Alloys and Compounds, 2020, 830, 154656.	2.8	21
865	Enhancement of Impact Toughness Via Tailoring Deformation Compatibility of Constituent Phases in Duplex Q&P Steel with Excellent Strength and Ductility. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 2097-2117.	1.1	19

#	Article	IF	CITATIONS
866	Dynamic recrystallization in AlXCoCrFeNi duplex high entropy alloys. Journal of Alloys and Compounds, 2020, 830, 154720.	2.8	28
867	Microstructure and mechanical properties of Tix(AlCrVNb)100-x light weight multi-principal element alloys. Journal of Alloys and Compounds, 2020, 831, 154742.	2.8	31
868	Influence of N content on structure and mechanical properties of multi-component Al-Cr-Nb-Y-Zr based thin films by reactive magnetron sputtering. Surface and Coatings Technology, 2020, 389, 125614.	2.2	31
869	Thermodynamics-kinetics of twinning/martensitic transformation in Fe50Mn30Co10Cr10 high-entropy alloy during adiabatic shearing. Scripta Materialia, 2020, 181, 115-120.	2.6	22
870	Nanostructured high-entropy materials. Journal of Materials Research, 2020, 35, 1051-1075.	1.2	48
871	Influence of Al content on thermal stability of nanocrystalline AlxCoCrFeNi high entropy alloys at low and intermediate temperatures. Advanced Powder Technology, 2020, 31, 1985-1993.	2.0	37
872	Data-Based Methods for Materials Design and Discovery: Basic Ideas and General Methods. Synthesis Lectures on Materials and Optics, 2020, 1, 1-188.	0.2	6
873	Microstructure and mechanical properties of CoCrFeNiMo high-entropy alloy coatings. Journal of Materials Research and Technology, 2020, 9, 5127-5133.	2.6	33
874	Predictive study of Inconel718 mechanical properties at sub-zero temperatures. Advances in Materials and Processing Technologies, 2020, 6, 233-243.	0.8	1
875	Mechanical and Magnetic Properties of the High-Entropy Alloys for Combinatorial Approaches. Crystals, 2020, 10, 200.	1.0	26
876	Effect of grain size on the strain rate sensitivity of CoCrFeNi high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 782, 139281.	2.6	32
877	Cooperative deformation in high-entropy alloys at ultralow temperatures. Science Advances, 2020, 6, eaax4002.	4.7	157
878	Structural and magnetic properties of FeCoMnCrSi multi-principal alloy. Journal of Materials Research, 2020, 35, 981-989.	1.2	2
879	In-situ visualization of corrosion behavior of Al CoCrFeNi high-entropy alloys during electrochemical polarization. Journal of Alloys and Compounds, 2020, 844, 156014.	2.8	37
880	Friction stir processing of high-entropy alloy reinforced aluminum matrix composites for mechanical properties enhancement. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 792, 139755.	2.6	82
881	Revealing the two-step nucleation and growth mechanism of vanadium carbonitrides in microalloyed steels. Scripta Materialia, 2020, 187, 350-354.	2.6	24
882	Phase Selection, Lattice Distortions, and Mechanical Properties in Highâ€Entropy Alloys. Advanced Engineering Materials, 2020, 22, 2000466.	1.6	59
883	Plasma-Nitriding Properties of CoCrFeMnNi High-Entropy Alloys Produced by Spark Plasma Sintering. Metals, 2020, 10, 761.	1.0	19

#	Article	IF	CITATIONS
884	Competition between thermodynamics, kinetics and growth mode in the early-stage oxidation of an equimolar CoCrFeNi alloy. Acta Materialia, 2020, 196, 651-659.	3.8	35
885	Strain rate dependent shear localization and deformation mechanisms in the CrMnFeCoNi high-entropy alloy with various microstructures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139854.	2.6	31
886	Machine learning assisted multi-objective optimization for materials processing parameters: A case study in Mg alloy. Journal of Alloys and Compounds, 2020, 844, 156159.	2.8	41
887	High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties. Progress in Materials Science, 2022, 123, 100709.	16.0	270
888	Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy. Npj Computational Materials, 2020, 6, .	3.5	111
889	Localized Corrosion Behavior of Non-Equiatomic NiFeCrMnCo Multi-Principal Element Alloys. Electrochimica Acta, 2020, 354, 136749.	2.6	36
890	Effect of lattice distortion on the diffusion behavior of high-entropy alloys. Journal of Alloys and Compounds, 2020, 825, 154099.	2.8	64
891	Enhanced radiation tolerance of the Ni-Co-Cr-Fe high-entropy alloy as revealed from primary damage. Acta Materialia, 2020, 196, 133-143.	3.8	124
892	Effect of C addition on microstructure and mechanical properties of as-cast HEAs (Fe50Mn30Co10Cr10)100-xCx. Materials Chemistry and Physics, 2020, 254, 123501.	2.0	21
893	Thermodynamic analysis of high entropy alloys and their mechanical behavior in high and low-temperature conditions with a microstructural approach - A review. Intermetallics, 2020, 124, 106850.	1.8	36
894	Analysis of damage-tolerance of TRIP-assisted V10Cr10Fe45Co30Ni5 high-entropy alloy at room and cryogenic temperatures. Journal of Alloys and Compounds, 2020, 844, 156090.	2.8	41
895	Improvement of shape memory effect via strengthening austenite by virtue of thermally activated process in FCC-type metastable multicomponent alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139748.	2.6	2
896	Revealing the excellent high-temperature oxidation resistance of a non-equimolar Al1Co25Cr18Fe23Ni23Ta10 compositional complex eutectic alloy. Journal of Alloys and Compounds, 2020, 846, 156265.	2.8	6
897	New FeNiCrMo(P, C, B) high-entropy bulk metallic glasses with unusual thermal stability and corrosion resistance. Journal of Materials Science and Technology, 2020, 43, 32-39.	5.6	45
898	Texture formation in face-centered cubic high-entropy alloys. Journal of Alloys and Compounds, 2020, 826, 154183.	2.8	42
899	A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms. Journal of Materials Science and Technology, 2020, 46, 201-210.	5.6	108
900	Growth kinetics, microhardness and microstructure evolution of undercooled FeCoNiCuSn high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 777, 139022.	2.6	15
901	On the phase transformation and dynamic stress–strain partitioning of ferrous medium-entropy alloy using experimentation and finite element method. Materialia, 2020, 9, 100619.	1.3	18

#	Article	IF	CITATIONS
902	Microstructures and properties of equimolar AlCoCrCuFeNi high-entropy alloy additively manufactured by selective laser melting. Intermetallics, 2020, 120, 106746.	1.8	54
903	Microstructure and mechanical properties variation with Ni content in Al _{0.8} CoCr _{0.6} Fe _{0.7} Ni _x (xÂ=Â1.1, 1.5, 1.8, 2.0) eutectic high-entropy alloy system. Materials Research Express, 2020, 7, 016566.	0.8	10
904	Superior strength-ductility combination of a Co-rich CoCrNiAlTi high-entropy alloy at room and cryogenic temperatures. Materials Research Express, 2020, 7, 034001.	0.8	14
905	Aerosol Synthesis of High Entropy Alloy Nanoparticles. Langmuir, 2020, 36, 1985-1992.	1.6	74
906	A novel ultrafine-grained high entropy alloy with excellent combination of mechanical and soft magnetic properties. Journal of Magnetism and Magnetic Materials, 2020, 502, 166513.	1.0	86
907	Strategy for managing both high strength and large ductility in structural materials–sequential nucleation of different deformation modes based on a concept of plaston. Scripta Materialia, 2020, 181, 35-42.	2.6	55
908	Superior strength-ductility CoCrNi medium-entropy alloy wire. Scripta Materialia, 2020, 181, 19-24.	2.6	62
909	Phases, microstructures and properties of multi-component FeCoNi-based alloys. Materials Science and Technology, 2020, 36, 654-660.	0.8	17
910	High Entropy Alloys: Ready to Set Sail?. Metals, 2020, 10, 194.	1.0	16
911	Achieving exceptional wear resistance in a compositionally complex alloy via tuning the interfacial structure and chemistry. Acta Materialia, 2020, 188, 697-710.	3.8	55
912	Tuning to more compressible phase in TiZrHfNb high entropy alloy by pressure. Applied Physics Letters, 2020, 116, 031901.	1.5	5
913	Nanoscale precipitates as sustainable dislocation sources for enhanced ductility and high strength. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5204-5209.	3.3	87
914	Control of nanoscale precipitation and elimination of intermediate-temperature embrittlement in multicomponent high-entropy alloys. Acta Materialia, 2020, 189, 47-59.	3.8	137
915	Transformation-enhanced strength and ductility in a FeCoCrNiMn dual phase high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 780, 139182.	2.6	48
916	Influence of Cr content on the microstructure and mechanical properties of CrxFeNiCu high entropy alloys. Progress in Natural Science: Materials International, 2020, 30, 239-245.	1.8	27
917	CoNiFeNb0.45 eutectic multi-principal element alloy with excellent mechanical properties and corrosion resistance. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 777, 139026.	2.6	10
918	High entropy alloy FeMnNiCoCr coatings: Enhanced hardness and damage-tolerance through a dual-phase structure and nanotwins. Surface and Coatings Technology, 2020, 385, 125435.	2.2	24
919	Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy. Nature Communications, 2020, 11, 826.	5.8	165

#	Article	IF	CITATIONS
920	Amorphous bands induced by low temperature tension in a non-equiatomic CrMnFeCoNi alloy. Acta Materialia, 2020, 188, 354-365.	3.8	59
921	High-entropy ceramics. Nature Reviews Materials, 2020, 5, 295-309.	23.3	902
922	Nonadditive strengthening functions for cold-worked cubic metals: Experiments and constitutive modeling. International Journal of Plasticity, 2020, 129, 102700.	4.1	38
923	Effect of interstitial carbon on the evolution of early-stage irradiation damage in equi-atomic FeMnNiCoCr high-entropy alloys. Journal of Applied Physics, 2020, 127, .	1.1	24
924	Molecular dynamics simulations of radiation damage generation and dislocation loop evolution in Ni and binary Ni-based alloys. Computational Materials Science, 2020, 177, 109555.	1.4	18
925	Interface dominated deformation mechanisms in two-phase fcc/B2 nanostructures: Nishiyama-Wasserman vs. Kurdjumov-Sachs interfaces. Computational Materials Science, 2020, 177, 109577.	1.4	13
926	Phase stabilities of high entropy alloys. Scripta Materialia, 2020, 179, 40-44.	2.6	51
927	Manganese micro-segregation governed austenite re-reversion and its mechanical effects. Scripta Materialia, 2020, 179, 75-79.	2.6	16
928	Adiabatic Shear Susceptibility of Fe50Mn30Co10Cr10 High-Entropy Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 1771-1780.	1.1	13
929	Effect of heterostructure and hetero-deformation induced hardening on the strength and ductility of brass. Acta Materialia, 2020, 186, 644-655.	3.8	146
930	Effects of Ti and Cu on the Microstructure Evolution of AlCoCrFeNi High-Entropy Alloy During Heat Treatment. Acta Metallurgica Sinica (English Letters), 2020, 33, 1077-1090.	1.5	25
931	Chemical environment and magnetic moment effects on point defect formations in CoCrNi-based concentrated solid-solution alloys. Acta Materialia, 2020, 187, 122-134.	3.8	149
932	Excellent strength-ductility synergy in metastable high entropy alloy by laser powder bed additive manufacturing. Additive Manufacturing, 2020, 32, 101098.	1.7	29
933	Evolution of mechanical properties and corrosion resistance of Al0.6CoFeNiCr0.4 high-entropy alloys at different heat treatment temperature. Materials Chemistry and Physics, 2020, 244, 122700.	2.0	46
934	Atomic structure revolution and excellent performance improvement of composites induced by laser ultrafine-nano technology. Composites Part B: Engineering, 2020, 185, 107792.	5.9	27
935	Unveiling the Electronic Origin for Pressure-Induced Phase Transitions in High-Entropy Alloys. Matter, 2020, 2, 751-763.	5.0	14
936	Constitutive modelling of hot deformation behaviour of a CoCrFeMnNi high-entropy alloy. Science and Technology of Advanced Materials, 2020, 21, 43-55.	2.8	42
937	Annealing-dependent microstructure, magnetic and mechanical properties of high-entropy FeCoNiAl0.5 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 776, 139003.	2.6	21

#	Article	IF	CITATIONS
938	Tunable mechanical property and strain hardening behavior of a single-phase CoFeNi2V0.5Mo0.2 high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 776, 139027.	2.6	16
939	Microstructure, Crystallographic Orientation and Mechanical Property in AlCoCrFeNi2.1 Eutectic High-Entropy Alloy Under Magnetic Field-Assisted Directional Solidification. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 3504-3517.	1.1	27
940	Microstructure, Texture, and Strength Development during High-Pressure Torsion of CrMnFeCoNi High-Entropy Alloy. Crystals, 2020, 10, 336.	1.0	39
941	Chemical complexity, microstructure and martensitic transformation in high entropy shape memory alloys. Intermetallics, 2020, 122, 106792.	1.8	43
942	Effects of annealing temperature and cooling medium on the microstructure and mechanical properties of a novel dual phase high entropy alloy. Materials Characterization, 2020, 163, 110291.	1.9	13
943	Ballistic Impact Response of Al _{0.1} CoCrFeNi Highâ€Entropy Alloy. Advanced Engineering Materials, 2020, 22, 2000124.	1.6	21
944	A new strategy for designing immiscible medium-entropy alloys with excellent tensile properties. Acta Materialia, 2020, 193, 71-82.	3.8	80
945	Control of discontinuous and continuous precipitation of γÊ1-strengthened high-entropy alloys through nanoscale Nb segregation and partitioning. Journal of Alloys and Compounds, 2020, 832, 154903.	2.8	31
946	Atomic deformation mechanism and interface toughening in metastable high entropy alloy. Materials Today, 2020, 37, 64-73.	8.3	48
947	Effect of process parameters on microstructure and mechanical properties of friction stir welded CoCrFeNi high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 782, 139277.	2.6	35
948	An overview of tailoring strain delocalization for strength-ductility synergy. Progress in Materials Science, 2020, 113, 100675.	16.0	238
949	Real-time dissolution of a compositionally complex alloy using inline ICP and correlation with XPS. Npj Materials Degradation, 2020, 4, .	2.6	22
950	Deformation substructural evolution in transformation-induced plasticity high-entropy alloy during cold rolling. Materials Letters, 2020, 272, 127885.	1.3	1
951	Exploring the strength and ductility improvement of Cu–Al alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 786, 139441.	2.6	19
952	Phase evolution and mechanical properties of non-equiatomic Fe–Mn–Ni–Cr–Al–Si–C high entropy steel. Journal of Alloys and Compounds, 2020, 834, 155013.	2.8	30
953	High temperature deformation behavior of dual-phase Al0.6CoCrFeNi high-entropy alloys. Journal of Alloys and Compounds, 2020, 836, 155305.	2.8	23
954	Enhanced strength and ductility synergy in aluminum composite with heterogeneous structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 787, 139431.	2.6	17
955	Designing Rules of Laser-Clad High-Entropy Alloy Coatings with Simple Solid Solution Phases. Acta Metallurgica Sinica (English Letters), 2020, 33, 1064-1076.	1.5	17

#	Article	IF	CITATIONS
956	Mechanical properties and microstructure evolution of CrMnFeCoNi HEA/304 SS dissimilar brazing joints. Journal of Alloys and Compounds, 2020, 829, 154520.	2.8	27
957	Microstructure Evolution and Phase Formation of Fe25Ni25CoxMoy Multi-principal-Component Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 2990-2997.	1.1	10
958	Martensitic transformation and mechanical behavior of a medium-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 786, 139371.	2.6	18
959	Theory of designing the gradient microstructured metals for overcoming strength-ductility trade-off. Scripta Materialia, 2020, 184, 41-45.	2.6	47
960	Microstructural and mechanical behavior of a CoCrFeNiCu4 non-equiatomic high entropy alloy. Journal of Materials Science and Technology, 2021, 60, 35-43.	5.6	36
961	Evolution of Microstructures and Compressive Properties in Al0.5CrFeNi2.1Mn0.8Tix High Entropy Alloys. Metals and Materials International, 2021, 27, 118-126.	1.8	10
962	Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations. Journal of Materials Science and Technology, 2021, 62, 25-33.	5.6	64
963	Corrosion behavior of Al0.4CoCu0.6NiSi0.2Ti0.25 high-entropy alloy coating via 3D printing laser cladding in a sulphur environment. Journal of Materials Science and Technology, 2021, 60, 197-205.	5.6	40
964	Abnormal orientation relation between fcc and hcp structures revealed in a deformed high manganese steel. Journal of Materials Science and Technology, 2021, 60, 156-161.	5.6	14
965	Microstructures and Properties of Highâ€Entropy Materials: Modeling, Simulation, and Experiments. Advanced Engineering Materials, 2021, 23, .	1.6	33
966	Beyond Solid Solution Highâ€Entropy Alloys: Tailoring Magnetic Properties via Spinodal Decomposition. Advanced Functional Materials, 2021, 31, 2007668.	7.8	51
967	A novel Cu-doped high entropy alloy with excellent comprehensive performances for marine application. Journal of Materials Science and Technology, 2021, 69, 48-59.	5.6	75
968	Size-dependent deformation behavior of dual-phase, nanostructured CrCoNi medium-entropy alloy. Science China Materials, 2021, 64, 209-222.	3.5	20
969	Effects of Mn Content on Mechanical Properties of FeCoCrNiMnx (0 â‰â€‰x â‰â€‰0.3) High-Entro First-Principles Study. Acta Metallurgica Sinica (English Letters), 2021, 34, 455-464.	py Alloys:	A ₁₂
970	High-throughput simulation combined machine learning search for optimum elemental composition in medium entropy alloy. Journal of Materials Science and Technology, 2021, 68, 70-75.	5.6	68
971	Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying. Journal of Materials Science and Technology, 2021, 65, 210-215.	5.6	48
972	Tensile deformation behavior and mechanical properties of a bulk cast Al0.9CoFeNi2 eutectic high-entropy alloy. Journal of Materials Science and Technology, 2021, 61, 119-124.	5.6	82
973	Toward expanding the realm of high entropy materials to platinum group metals: A review. Journal of Alloys and Compounds, 2021, 851, 156838.	2.8	52

#	Article	IF	Citations
	Novel Si-added CrCoNi medium entropy alloys achieving the breakthrough of strength-ductility		
974	trade-off. Materials and Design, 2021, 197, 109202.	3.3	106
975	Hetero-deformation-induced strengthening of multi-phase Cu–Fe–Mn medium entropy alloys by dynamic heterostructuring. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 799, 140275.	2.6	12
976	Effects of annealing on hardness, yield strength and dislocation structure in single crystals of the equiatomic Cr-Mn-Fe-Co-Ni high entropy alloy. Scripta Materialia, 2021, 191, 173-178.	2.6	29
977	Tailoring mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via phase transformation. Journal of Materials Science and Technology, 2021, 73, 83-90.	5.6	34
978	Composite of medium entropy alloys synthesized using spark plasma sintering. Scripta Materialia, 2021, 191, 46-51.	2.6	16
979	Effect of off-stoichiometric compositions on microstructures and phase transformation behavior in Ni-Cu-Pd-Ti-Zr-Hf high entropy shape memory alloys. Journal of Alloys and Compounds, 2021, 857, 157467.	2.8	13
980	Elemental partitioning as a route to design precipitation-hardened high entropy alloys. Journal of Materials Science and Technology, 2021, 72, 52-60.	5.6	20
981	Multi-principal-element products enhancing Au–Sn-bonded joints. Journal of Alloys and Compounds, 2021, 852, 157015.	2.8	8
982	Awakening the metastability of an interstitial high entropy alloy via severe deformation. Scripta Materialia, 2021, 191, 96-100.	2.6	24
983	Heterostructured materials: superior properties from hetero-zone interaction. Materials Research Letters, 2021, 9, 1-31.	4.1	505
984	Effects of stress triaxiality and strain rate on the fracture of a CuCrZr alloy. Journal of Nuclear Materials, 2021, 543, 152546. of a cmml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"	1.3	12
985	altimg="si1.svg"> <mml:mrow><mml:mi mathvariant="normal">C</mml:mi><mml:mi mathvariant="normal">o</mml:mi </mml:mrow> -free <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.svg"><mml:mi mathvariant="normal">F<mml:msub><mml:mi< td=""><td>2.8</td><td>35</td></mml:mi<></mml:msub></mml:mi </mml:math 	2.8	35
986	The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr. Journal of Materials Science and Technology, 2021, 68, 16-29.	5.6	14
987	Tunability of the mechanical properties of (Fe50Mn27Ni10Cr13)100-Mo high-entropy alloys via secondary phase control. Journal of Materials Science and Technology, 2021, 73, 210-217.	5.6	26
988	Multicomponent high-entropy Cantor alloys. Progress in Materials Science, 2021, 120, 100754.	16.0	294
989	Phase separation and microhardness of rapidly solidified high-entropy CoCrFeNiCux alloys. Journal of Alloys and Compounds, 2021, 853, 156451.	2.8	18
990	Simultaneously enhanced strength and strain hardening capacity in FeMnCoCr high-entropy alloy via harmonic structure design. Scripta Materialia, 2021, 191, 196-201.	2.6	77
991	Tribological behavior of an AlCoCrFeNi2.1 eutectic high entropy alloy sliding against different counterfaces. Tribology International, 2021, 153, 106599.	3.0	112

ARTICLE IF CITATIONS Nanosecond pulsed laser ablation of Alâ€"Cuâ€"Fe quasicrystalline material: Effects of solvent and 992 2.8 16 fluence. Journal of Alloys and Compounds, 2021, 859, 157871. Alloy design and properties optimization of multi-component alloy based on solidification characteristics. Materials Science & amp; Engineering A: Structural Materials: Properties, 2.6 Microstructure and Processing, 2021, 805, 140576. Sluggish hydrogen diffusion and hydrogen decreasing stacking fault energy in a high-entropy alloy. 994 0.9 11 Materials Today Communications, 2021, 26, 101902. Impact of local chemical order on the structure evolution of dual-phase high-entropy alloy during 995 solidification process. Vacuum, 2021, 184, 109953. Chemical composition dependent local lattice distortions and magnetism in high entropy alloys. 996 1.8 18 Intermetallics, 2021, 129, 107050. High-throughput calculations based on the small set of ordered structures method for non-equimolar high entropy alloys. Computational Materials Science, 2021, 188, 110213. 1.4 In-situ synthesis of nano-lamellar Ni1.5CrCoFe0.5Mo0.1Nbx eutectic high-entropy alloy coatings by 998 laser cladding: Alloy design and microstructure evolution. Surface and Coatings Technology, 2021, 2.2 55 405, 126728. Temperature-dependent helium induced microstructural evolution in equiatomic NiCo and NiFe 000 1.3 concentrated solid solution alloys. Journal of Nuclear Materials, 2021, 545, 152715. On the low-cycle fatigue response of CoCrNiFeMn high entropy alloy with ultra-fine grain structure. 1000 3.8 69 Acta Materialia, 2021, 205, 116540. Breakthrough the strength-ductility trade-off in a high-entropy alloy at room temperature via cold rolling and annealing. Materials Science & amp; Engineering A: Structural Materials: Properties, 2.6 Microstructure and Processing, 2021, 800, 140264. Enhancement of strength and ductility in non-equiatomic CoCrNi medium-entropy alloy at room 1002 temperature via transformation-induced plasticity. Materials Science & amp; Engineering A: Structural 31 2.6 Materials: Properties, Microstructure and Processing, 2021, 804, 140516. Additive manufacturing of high entropy alloys: A practical review. Journal of Materials Science and 5.6 216 Technology, 2021, 77, 131-162. Effects of deformation and annealing on the microstructures and properties of a nonequiatomic Co29Cr29Fe29Ni12.5W0.5 high-entropy alloy. Materials Science & amp; Engineering A: Structural 1004 2.6 9 Materials: Properties, Microstructure and Processing, 2021, 805, 140548. Severe warm-rolling mediated microstructure and texture of equiatomic CoCrFeMnNi high entropy alloy: A comparison with cold-rolling. Intermetallics, 2021, 129, 107029. 1.8 Effect of crystal structure and grain size on corrosion properties of AlCoCrFeNi high entropy alloy. 1006 2.8 65 Journal of Alloys and Compounds, 2021, 863, 158056. Unusual strain-induced martensite and absence of conventional grain refinement in twinning induced plasticity high-entropy alloy processed by high-pressure torsion. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140570. Mechanical properties of FeMnCoCr high entropy alloy alloyed with C/Si at low temperatures. Journal 1008 2.8 19 of Alloys and Compounds, 2021, 859, 157876. Body-centered-cubic martensite and the role on room-temperature tensile properties in Si-added 5.6 SiVCrMnFeCo high-entropy alloys. Journal of Materials Science and Technology, 2021, 76, 222-230.

#	Article	IF	CITATIONS
1010	Ultra-high energy absorption high-entropy alloy syntactic foam. Composites Part B: Engineering, 2021, 207, 108563.	5.9	30
1011	Microstructure and mechanical properties of novel CrCoNi–Al2O3P medium entropy alloy-matrix composites. Intermetallics, 2021, 130, 107057.	1.8	9
1012	Mn Cr0.3Fe0.5Co0.2Ni0.5Al0.3 high entropy alloys for magnetocaloric refrigeration near room temperature. Journal of Materials Science and Technology, 2021, 79, 15-20.	5.6	29
1013	Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys. Journal of Materials Science and Technology, 2021, 80, 217-233.	5.6	250
1014	Characteristics of thermal- and strain-induced ε-martensite in Fe50Mn30Co10Cr10 multi-component alloy: Effect of grain size. Materials Characterization, 2021, 171, 110817.	1.9	9
1015	Microstructure and deformation behavior of two TWIP/TRIP high entropy alloys upon grain refinement. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140661.	2.6	30
1016	A cost-effective Fe-rich compositionally complicated alloy with superior high-temperature oxidation resistance. Corrosion Science, 2021, 180, 109190.	3.0	28
1017	Electrostatic levitation processing and microscopic hardness property of hyperperitectic Ti60Ni40 alloy. Intermetallics, 2021, 130, 106934.	1.8	14
1018	Strategies to increase austenite FCC relative phase stability in High-Mn steels. Journal of Alloys and Compounds, 2021, 854, 156971.	2.8	6
1019	Introducing Laves phase strengthening into an ultrafine-grained equiatomic CrFeNi alloy by niobium addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 806, 140611.	2.6	22
1020	Fast and Highâ€Throughput Synthesis of Medium―and Highâ€Entropy Alloys Using Radio Frequency Inductively Coupled Plasma. Advanced Engineering Materials, 2021, 23, 2001116.	1.6	11
1021	Microstructure evolution and mechanical properties of (CoCrNi)90(AlTiZr)5(CuFeMo)5 multicomponent alloy: A pathway through multicomponent alloys toward new superalloys. Journal of Alloys and Compounds, 2021, 860, 158412.	2.8	38
1022	Microstructure and mechanical behavior of laser aided additive manufactured low carbon interstitial Fe49.5Mn30Co10Cr10C0.5 multicomponent alloy. Journal of Materials Science and Technology, 2021, 77, 38-46.	5.6	18
1023	The evolution of compositional and microstructural heterogeneities in a TaMo0.5ZrTi1.5Al0.1Si0.2 high entropy alloy. Materials Characterization, 2021, 172, 110836.	1.9	21
1024	Microstructure study of cold rolled Al0.32CoCrFeMnNi high-entropy alloy: Interactions between recrystallization and precipitation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140452.	2.6	11
1025	Structure characterization of special boundaries in Fe47Mn30Co10Cr10B3 dual-phase high-entropy alloy. Journal of Alloys and Compounds, 2021, 858, 157642.	2.8	7
1026	Atomic scale understanding of the defects process in concurrent recrystallization and precipitation of Sm-Co-Fe-Cu-Zr alloys. Acta Materialia, 2021, 202, 290-301.	3.8	45
1027	Effects of the phase content on dynamic damage evolution in Fe50Mn30Co10Cr10 high entropy alloy. Journal of Alloys and Compounds, 2021, 851, 156883.	2.8	24

CITATI	ON	Report
ULIAL	ON.	KEPORT
	· · · ·	

#	Article	IF	CITATIONS
1028	Effects of microstructure on the evolution of dynamic damage of Fe50Mn30Co10Cr10 high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 802, 140440.	2.6	14
1029	A TWIP-TRIP quinary high-entropy alloy: Tuning phase stability and microstructure for enhanced mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 801, 140441.	2.6	37
1030	Effect of the grain size on the corrosion behavior of CoCrFeMnNi HEAs in a 0.5 M H2SO4 solution. Journal of Alloys and Compounds, 2021, 858, 157712.	2.8	47
1031	Heterogeneous structure-induced strength-ductility synergy by partial recrystallization during friction stir welding of a high-entropy alloy. Materials and Design, 2021, 197, 109238.	3.3	46
1032	Multi-scale study on the heterogeneous deformation behavior in duplex stainless steel. Journal of Materials Science and Technology, 2021, 72, 180-188.	5.6	30
1033	The influence of columnar to equiaxed transition on deformation behavior of FeCoCrNiMn high entropy alloy fabricated by laser-based directed energy deposition. Additive Manufacturing, 2021, 37, 101660.	1.7	15
1034	Sand corrosion, thermal expansion, and ablation of medium―and highâ€entropy compositionally complex fluorite oxides. Journal of the American Ceramic Society, 2021, 104, 448-462.	1.9	56
1036	High-Entropy Alloys: Balancing Strength and Ductility at Room Temperature. , 2022, , 441-453.		4
1037	The influence of stacking faults on mechanical behavior of advanced materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140696.	2.6	38
1038	Stress Corrosion Cracking of TRIP Fe39Mn20Co20Cr15Si5Al1 (at.%) High Entropy Alloy. Minerals, Metals and Materials Series, 2021, , 742-750.	0.3	1
1039	Research Progress of High Entropy Transition Metal Carbide Ceramics. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 355.	0.6	4
1040	Preparation, structures and properties of tungsten-containing refractory high entropy alloys. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 106201.	0.2	8
1041	Effect of Bimodal Grain Size Distribution on the Strain Hardening Behavior of a Medium-Entropy Alloy. Acta Metallurgica Sinica (English Letters), 2021, 34, 465-475.	1.5	7
1042	Effect of carbon content, deformation and annealing on the structure and properties of interstitial TRIP high-entropy alloys. IOP Conference Series: Materials Science and Engineering, 2021, 1014, 012052.	0.3	3
1043	Corrosion Resistance of High Entropy Alloys. Materials Forming, Machining and Tribology, 2021, , 81-115.	0.7	2
1044	Orientation dependence of dislocation structure in surface grain of pure copper deformed in tension. Acta Materialia, 2021, 203, 116474.	3.8	15
1045	Precipitation Behavior of Carbide and its Effect on the Mechanical Properties of a Novel Fe60Co10Cr10Ni10Mo5V5 Medium-Entropy Alloy. Jom, 2021, 73, 668-678.	0.9	1
1046	Self-toughened high entropy alloy with a body-centred cubic structure. Nanoscale, 2021, 13, 3602-3612.	2.8	8

#	Article	IF	CITATIONS
1047	Diffusion-mediated chemical concentration variation and void evolution in ion-irradiated NiCoFeCr high-entropy alloy. Journal of Materials Research, 2021, 36, 298-310.	1.2	15
1048	Microstructural and hardness evolutions of a cold-rolled cobalt. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140712.	2.6	4
1049	Ultra-high tensile strength via precipitates and enhanced martensite transformation in a FeNiAlC alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 803, 140498.	2.6	3
1050	Preparation of (La0.2Nd0.2Sm0.2Gd0.2Er0.2)2Zr2O7 High-entropy Transparent Ceramics by Vacuum Sintering. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 418.	0.6	2
1052	Increasing shear strength of Au–Sn bonded joint through nano-grained interfacial reaction products. Journal of Materials Science, 2021, 56, 7050-7062.	1.7	5
1053	Designing High Entropy Structure in Thermoelectrics. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 399.	0.6	2
1054	Deformation Behavior of a High-Entropy Al–Co–Cr–Fe–Ni Alloy Fabricated by Means of Wire-Arc Additive Manufacturing. Steel in Translation, 2021, 51, 27-32.	0.1	7
1055	Phase transformation and strengthening mechanisms of nanostructured high-entropy alloys. Nanotechnology Reviews, 2021, 10, 1116-1139.	2.6	19
1056	Stacking Fault Driven Phase Transformation in CrCoNi Medium Entropy Alloy. Nano Letters, 2021, 21, 1419-1426.	4.5	47
1057	Co-introduction of precipitate hardening and TRIP in a TWIP high-entropy alloy using friction stir alloying. Scientific Reports, 2021, 11, 1579.	1.6	8
1058	Research Status of High Entropy Alloying. Metallurgical Engineering, 2021, 08, 9-18.	0.0	0
1059	Structural Evolution and Mechanical and Magnetic Properties of Nonequiatomic CoFe2NiMn0.3Alx (0.25Ââ‰ÂxÂâ‰Â1.00) High-Entropy Alloys. Journal of Materials Engineering and Performance, 2021, 30, 1472-1478.	1.2	6
1060	Novel, Equimolar, Multiphase CoCuNiTiV High-Entropy Alloy: Phase Component, Microstructure, and Compressive Properties. Metals and Materials International, 2021, 27, 2387.	1.8	14
1061	Combinatorial Development of Multicomponent Invar Alloys Via Rapid Alloy Prototyping. SSRN Electronic Journal, 0, , .	0.4	0
1062	Tuning Mechanical Properties of High Entropy Alloys by Electro-Pulsing Method. SSRN Electronic Journal, 0, , .	0.4	0
1063	Deformation behavior of high-entropy alloy system Al – Co – Cr – Fe – Ni achieved by wire-arc additive manufacturing. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2021, 64, 68-74.	0.1	1
1064	Novel Co-Cu-Based Immiscible Medium-Entropy Alloys with Promising Mechanical Properties. Metals, 2021, 11, 238.	1.0	16
1065	Developing novel heterogenous microstructures to balance between strength and ductility without restoration processes in commercial Al alloys. Mechanics of Advanced Materials and Structures, 2022, 29, 2371-2379.	1.5	5

#	Article	IF	CITATIONS
1066	Enhancement of fatigue resistance of additively manufactured 304L SS by unique heterogeneous microstructure. Virtual and Physical Prototyping, 2021, 16, 125-145.	5.3	19
1067	Can experiment determine the stacking fault energy of metastable alloys?. Materials and Design, 2021, 199, 109396.	3.3	51
1068	Effect of Processing Parameters on Mechanical Properties of Deformed and Partitioned (D&P) Medium Mn Steels. Metals, 2021, 11, 356.	1.0	8
1069	Effects of temperature and loading rate on phase stability and deformation mechanism in metastable V10Cr10Co30FexNi50-x high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 804, 140766.	2.6	5
1070	Bainite Transformation and Resultant Tensile Properties of 0.6%C Low Alloyed Steels with Different Prior Austenite Grain Sizes. ISIJ International, 2021, 61, 582-590.	0.6	11
1071	Synthesis and Phase Stability of the High-Entropy Carbide (Ti _{0.2} Zr _{0.2} Nb _{0.2} Ta _{0.2} Mo _{0.2})C under Extreme Conditions. Inorganic Chemistry, 2021, 60, 3807-3813.	1.9	18
1072	Effects of Nb on deformation-induced transformation and mechanical properties of HfNbxTa0.2TiZr high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 805, 140798.	2.6	23
1073	Theoretical Study on Structural Stability and Elastic Properties of Fe25Cr25Ni25TixAl(25-x) Multi-Principal Element Alloys. Materials, 2021, 14, 1040.	1.3	1
1074	Some Unique Aspects of Mechanical Behavior of Metastable Transformative High Entropy Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 889-896.	1.1	17
1075	Nitrogen-induced hardening in an austenitic CrFeMnNi high-entropy alloy (HEA). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 804, 140725.	2.6	37
1076	Corrosion Mechanisms of High-Mn Twinning-Induced Plasticity (TWIP) Steels: A Critical Review. Metals, 2021, 11, 287.	1.0	13
1077	Entropy stabilized multicomponent oxides with diverse functionality – a review. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 142-193.	6.8	24
1078	Fatigue Crack Growth at Different Frequencies and Temperatures in an Fe-based Metastable High-entropy Alloy. ISIJ International, 2021, 61, 641-647.	0.6	7
1079	Achieving high strength-ductility synergy in a hierarchical structured metastable β-titanium alloy using through-transus forging. Journal of Materials Research and Technology, 2021, 11, 1622-1636.	2.6	16
1080	Effect of niobium addition upon microstructure and tensile properties of CrMnFeCoNix high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 809, 140959.	2.6	22
1081	Effects of Al on Precipitation Behavior of Ti-Nb-Ta-Zr Refractory High Entropy Alloys. Metals, 2021, 11, 514.	1.0	11
1082	Fatigue studies of CoCrFeMnNi high entropy alloy films using nanoindentation dynamic mechanical analyses. Surface and Coatings Technology, 2021, 410, 126927.	2.2	10
1083	Accelerated Design of Eutectic High Entropy Alloys by ICME Approach. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 1574-1580.	1.1	19

#	Article	IF	CITATIONS
1084	Effect of phase morphology on microscopic deformation behavior of Mg–Li–Gd dual-phase alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 809, 140871.	2.6	24
1085	Microstructural and electrochemical characterization of the passive film on a 50-kg hot rolled FeCrNiCoMn high entropy alloy. Materials Today Communications, 2021, 26, 101979.	0.9	4
1086	In situ high-entropy solid solution and ceramic particles co-reinforced Ni-based composites with outstanding strength-ductility synergy and good pitting resistance. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 806, 140842.	2.6	7
1087	Interstitial effects on the incipient plasticity and dislocation behavior of a metastable high-entropy alloy: Nanoindentation experiments and statistical modeling. Acta Materialia, 2021, 206, 116633.	3.8	60
1088	Deformation Mechanism in Fe61Mn18Si11Cr10 Medium Entropy Alloy Under Different Strain Rates. Acta Metallurgica Sinica (English Letters), 2021, 34, 1109-1119.	1.5	0
1089	Measurement of Lattice Distortion in NbTaTiV and NbTaTiVZr Using Electron Microscopy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2094-2099.	1.1	2
1090	In situ synchrotron diffraction and modeling of non-equilibrium solidification of a MnFeCoNiCu alloy. Scientific Reports, 2021, 11, 5921.	1.6	12
1091	Achieving superior cryogenic tensile properties in a Ti-doped (Fe40Mn40Co10Cr10)96.7C3.3 high-entropy alloy by recovering deformation twinning. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 808, 140927.	2.6	13
1092	A Novel Softâ€Magnetic B2â€Based Multiprincipalâ€Element Alloy with a Uniform Distribution of Coherent Bodyâ€Centeredâ€Cubic Nanoprecipitates. Advanced Materials, 2021, 33, e2006723.	11.1	46
1093	Chemical-Affinity Disparity and Exclusivity Drive Atomic Segregation, Short-Range Ordering, and Cluster Formation in High-Entropy Alloys. Acta Materialia, 2021, 206, 116638.	3.8	45
1094	Passivation behavior of VAlTiCrSi amorphous high-entropy alloy film with a high corrosion-resistance in artificial sea water. Applied Surface Science, 2021, 542, 148520.	3.1	40
1095	Corrosion of Ni-Fe-Cr-Mo-W-X Multi-Principal Element Alloys. Journal of the Electrochemical Society, 2021, 168, 031513.	1.3	7
1096	Powder characteristics of Al _{0.5} CoCrFeMnNi high-entropy alloys fabricated by gas atomisation method. Powder Metallurgy, 2021, 64, 219-227.	0.9	4
1097	Line profile analysis of synchrotron X-ray diffraction data of iron powder with bimodal microstructural profile parameters. Journal of Applied Crystallography, 2021, 54, 498-512.	1.9	3
1098	High-entropy materials for energy-related applications. IScience, 2021, 24, 102177.	1.9	117
1099	Lightweight Medium Entropy Magnesium Alloy with Exceptional Compressive Strength and Ductility Combination. Journal of Materials Engineering and Performance, 2021, 30, 2422-2432.	1.2	12
1100	Mechanical properties and microstructural characteristics of non-equiatomic high entropy alloy FeMnCoCrC prepared by powder metallurgy. Powder Metallurgy, 2021, 64, 180-184.	0.9	2
1101	Mechanical and thermodynamic data-driven design of Al-Co-Cr-Fe-Ni multi-principal element alloys. Materials Today Communications, 2021, 26, 102096.	0.9	8

#	Article	IF	CITATIONS
1102	Improving the ductility of high-strength multiphase NiAl alloys by introducing multiscale high-entropy phases and martensitic transformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 808, 140949.	2.6	9
1103	Highly Enhanced Thermal Robustness and Photothermal Conversion Efficiency of Solar-Selective Absorbers Enabled by High-Entropy Alloy Nitride MoTaTiCrN Nanofilms. ACS Applied Materials & Interfaces, 2021, 13, 16987-16996.	4.0	26
1104	Enhanced strength in pure Ti via design of alternating coarse- and fine-grain layers. Acta Materialia, 2021, 206, 116627.	3.8	62
1105	Effect of grain size on the low-cycle fatigue behavior of carbon-containing high-entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 810, 140985.	2.6	27
1106	Ultra-strong and strain-hardenable ultrafine-grained medium-entropy alloy via enhanced grain-boundary strengthening. Materials Research Letters, 2021, 9, 315-321.	4.1	38
1107	Experimental and modelling assessment of ductility in a precipitation hardening AlMgScZr alloy. International Journal of Plasticity, 2021, 139, 102971.	4.1	38
1108	Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Materials Science and Engineering Reports, 2021, 144, 100606.	14.8	316
1109	Cryogenic toughness in a low-cost austenitic steel. Communications Materials, 2021, 2, .	2.9	28
1110	Microstructure and Tensile Mechanical Behavior of a Single-Phase Fe35Mn10Cr20Ni35 High-Entropy Alloy. Journal of Materials Engineering and Performance, 2021, 30, 3352-3362.	1.2	13
1111	Heterostructured bulk aluminum with controllable gradient structure: Fabrication strategy and deformation mechanisms. Scripta Materialia, 2021, 196, 113762.	2.6	15
1112	Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy. International Journal of Plasticity, 2021, 139, 102965.	4.1	88
1113	Direct observation of chemical short-range order in a medium-entropy alloy. Nature, 2021, 592, 712-716.	13.7	334
1114	Microstructure Refinement by Low-Temperature Ausforming in an Fe-Based Metastable High-Entropy Alloy. Metals, 2021, 11, 742.	1.0	2
1115	Displacive transformation as pathway to prevent micro-cracks induced by thermal stress in additively manufactured strong and ductile high-entropy alloys. Transactions of Nonferrous Metals Society of China, 2021, 31, 1059-1073.	1.7	18
1116	Quantitative Phase Prediction in Dualâ€Phase Highâ€Entropy Alloys: Computationally Aided Parametric Approach. Physica Status Solidi (B): Basic Research, 2021, 258, 2100106.	0.7	4
1117	Oxidation behavior of gas-atomized AlCoCrFeNi high-entropy alloy powder at 900ï¼41100 °C. Corrosion Science, 2021, 181, 109257.	3.0	31
1118	Twinning induced remarkable strain hardening in a novel Fe50Mn20Cr20Ni10 medium entropy alloy. Journal of Iron and Steel Research International, 2021, 28, 1463-1470.	1.4	5
1119	Fabrication and characterization of CrNbSiTiZr high-entropy alloy films by radio-frequency magnetron sputtering via tuning substrate bias. Surface and Coatings Technology, 2021, 412, 127074.	2.2	17

#	Article	IF	Citations
1120	Plastic deformation mechanism in crystal-glass high entropy alloy composites studied via molecular dynamics simulations. Composites Communications, 2021, 24, 100658.	3.3	22
1121	High entropy alloys – Tunability of deformation mechanisms through integration of compositional and microstructural domains. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 812, 141085.	2.6	75
1122	On the origins of ultra-high hardness and strain gradient plasticity in multi-phase nanocrystalline MoNbTaTiW based refractory high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 812, 141098.	2.6	31
1123	Magnetic, electrical and mechanical properties of Fe40Mn40Co10Cr10 high entropy alloy. Scientific Reports, 2021, 11, 8048.	1.6	11
1124	MICROSTRUCTURE AND MECHANICAL PROPERTIES OF OXIDE DISPERSION STRENGTHENED HIGH-ENTROPY ALLOYS CoCrFeMnNi AND CrFe2MnNi. , 2021, , 87-94.		3
1125	Experimental and theoretical investigations on the phase stability and mechanical properties of Cr7Mn25Co9Ni23Cu36 high-entropy alloy. Acta Materialia, 2021, 208, 116763.	3.8	36
1126	Friction Stir Welding of the Carbon-Doped Dual-Phase High Entropy Alloy. Solid State Phenomena, 0, 316, 364-368.	0.3	1
1127	Strengthening FeCrNiCu high entropy alloys via combining V additions with in-situ TiC particles. Scripta Materialia, 2021, 195, 113724.	2.6	25
1128	High-entropy ceramics: Present status, challenges, and a look forward. Journal of Advanced Ceramics, 2021, 10, 385-441.	8.9	510
1129	Impact of N on the Stacking Fault Energy and Phase Stability of FCC CrMnFeCoNi: An Ab Initio Study. Journal of Phase Equilibria and Diffusion, 2021, 42, 551-560.	0.5	7
1130	High entropy oxides-exploring a paradigm of promising catalysts: A review. Materials and Design, 2021, 202, 109534.	3.3	140
1131	High-entropy materials for catalysis: A new frontier. Science Advances, 2021, 7, .	4.7	294
1132	Towards enhanced strength-ductility synergy via hierarchical design in steels: from the material genome perspective. Science Bulletin, 2021, 66, 958-961.	4.3	16
1133	Effect of Al additions on the microstructures and tensile properties of AlxCoCr3Fe5Ni high entropy alloys. Materials Characterization, 2021, 175, 111091.	1.9	13
1134	A Novel CoFe2NiMn0.3AlCux High-Entropy Alloy with Excellent Magnetic Properties and Good Mechanical Properties. Acta Metallurgica Sinica (English Letters), 2021, 34, 1557-1564.	1.5	14
1135	Influence of tungsten on microstructure evolution and mechanical properties of selected novel FeCoCrMnWx high entropy alloys. Intermetallics, 2021, 132, 107161.	1.8	13
1136	Anisotropic strengthening of nanotwin bundles in heterogeneous nanostructured Cu: Effect of deformation compatibility. Acta Materialia, 2021, 210, 116830.	3.8	23
1137	Machine learning approach to predict new multiphase high entropy alloys. Scripta Materialia, 2021, 197, 113804.	2.6	61

# 1138	ARTICLE A non-equiatomic FeNiCoCr high-entropy alloy with excellent anti-corrosion performance and strength-ductility synergy. Corrosion Science, 2021, 183, 109341.	IF 3.0	Citations
1139	Strain rate sensitive microstructural evolution in a TRIP assisted high entropy alloy: Experiments, microstructure and modeling. Mechanics of Materials, 2021, 156, 103798.	1.7	19
1140	Highly pressurized helium nanobubbles promote stacking-fault-mediated deformation in FeNiCoCr high-entropy alloy. Acta Materialia, 2021, 210, 116843.	3.8	25
1141	Additive manufacturing of TRIP-assisted dual-phases Fe50Mn30Co10Cr10 high-entropy alloy: Microstructure evolution, mechanical properties and deformation mechanisms. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 814,	2.6	31
1142	141264. Influence of Silicon and Manganese on the Mechanical Properties of Additive Manufactured Cu–Al Alloys by Cold Metal Transfer Welding. Metallography, Microstructure, and Analysis, 2021, 10, 314-320.	0.5	0
1143	Plastic deformation mechanism of CoCrxNi medium entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 814, 141181.	2.6	12
1144	Significant transitions of microstructure and mechanical properties in additively manufactured Al–Co–Cr–Fe–Ni high-entropy alloy under heat treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 815, 141257.	2.6	43
1145	Ordering effects on deformation substructures and strain hardening behavior of a CrCoNi based medium entropy alloy. Acta Materialia, 2021, 210, 116829.	3.8	47
1146	Successive strain hardening mechanisms induced by transformation induced plasticity in Fe60Mn20Co10Cr10 high entropy alloys. Journal of Applied Physics, 2021, 129, .	1.1	18
1147	Grain boundary phase transformation in a CrCoNi complex concentrated alloy. Acta Materialia, 2021, 209, 116786.	3.8	34
1148	Mechanical behavior of high-entropy alloys. Progress in Materials Science, 2021, 118, 100777.	16.0	492
1149	Ultralow thermal conductivity and improved ZT of CuInTe2 by high-entropy structure design. Materials Today Physics, 2021, 18, 100394.	2.9	21
1150	A mechanistic perspective on the kinetics of plastic deformation in FCC High Entropy Alloys: Effect of strain, strain rate and temperature. Scripta Materialia, 2021, 197, 113809.	2.6	16
1151	Machine Learning Based Methodology to Predict Point Defect Energies in Multi-Principal Element Alloys. Frontiers in Materials, 2021, 8, .	1.2	19
1152	Temperature-dependent reversed fracture behavior of multilayered TiBw/Ti–Ti(Al) composites. International Journal of Plasticity, 2021, 141, 102998.	4.1	36
1153	Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy. Nature Communications, 2021, 12, 3588.	5.8	102
1154	Microstructural Evolution and Mechanical Properties of Al0.5CoCrFeNi High-Entropy Alloy after Cold Rolling and Annealing Treatments. Journal of Materials Engineering and Performance, 2021, 30, 7817-7825.	1.2	24
1155	Nano-twin-induced exceptionally superior cryogenic mechanical properties of a Ni-based GH3536 (Hastelloy X) superalloy. Materials Today Nano, 2021, 14, 100110.	2.3	24

#	Article	IF	CITATIONS
1156	Remarkable strength of a non-equiatomic Co29Cr29Fe29Ni12.5W0.5 high-entropy alloy at cryogenic temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 818, 141446.	2.6	15
1157	Prediction on Mechanical Properties of Non-Equiatomic High-Entropy Alloy by Atomistic Simulation and Machine Learning. Metals, 2021, 11, 922.	1.0	24
1158	Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys. Materials Today, 2021, 46, 28-34.	8.3	98
1159	Towards strength-ductility synergy in a CrCoNi solid solution alloy via nanotwins. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 816, 141298.	2.6	14
1160	BCC-HCP-FCC Multiple Transformations and $\hat{I}\mu$ Loop in the Fe-Cr-Co-Mn System. Journal of Phase Equilibria and Diffusion, 2021, 42, 735-747.	0.5	0
1161	Structure prediction in high-entropy alloys with machine learning. Applied Physics Letters, 2021, 118, .	1.5	24
1162	Orientation-Dependent Mechanical Responses and Plastic Deformation Mechanisms of FeMnCoCrNi High-entropy Alloy: A Molecular Dynamics Study. Acta Metallurgica Sinica (English Letters), 0, , 1.	1.5	8
1163	Influence of lanthanum on passivity behavior of CrMnFeNi high entropy alloys. Materials Chemistry and Physics, 2021, 265, 124509.	2.0	26
1164	Achieving low wear in a \hat{l} -phase reinforced high-entropy alloy and associated subsurface microstructure evolution. Wear, 2021, 474-475, 203755.	1.5	19
1165	Accelerated and conventional development of magnetic high entropy alloys. Materials Today, 2021, 49, 231-252.	8.3	95
1166	Microstructure and properties of FeCrMnNiCx compositionally complex bulk alloys. Vacuum, 2021, 188, 110181.	1.6	6
1167	Temperature-dependent mechanisms of dislocation–twin boundary interactions in Ni-based equiatomic alloys. Acta Materialia, 2021, 211, 116886.	3.8	28
1168	Understanding the microstructure and mechanical properties of Ta Al0.7CoCrFeNi2.1 eutectic high entropy composites: Multi-scale deformation mechanism analysis. Composites Part B: Engineering, 2021, 214, 108750.	5.9	21
1169	Effect of oxygen pressure on the oxidation behavior of NiCoCr medium-entropy alloy at 800 °C. Corrosion Science, 2021, 185, 109411.	3.0	8
1170	2D Highâ€Entropy Transition Metal Dichalcogenides for Carbon Dioxide Electrocatalysis. Advanced Materials, 2021, 33, e2100347.	11.1	93
1171	Novel high-entropy alloys with high-density ε-D019 and abnormal phase transformation. Scripta Materialia, 2021, 199, 113893.	2.6	14
1172	Segregation engineering in a promising heat-resistant AlCoCrFeMo0.05Ni2 high entropy alloy. Journal of Alloys and Compounds, 2021, 869, 159336.	2.8	5
1173	Atomic mechanism of cyclic healing effect in dual-phase metastable high entropy alloy. Journal of Alloys and Compounds, 2021, 870, 159468.	2.8	3

#	Article	IF	CITATIONS
1174	Effect of the valence electron concentration on the yield strength of Ti–Zr–Nb–V high-entropy alloys. Journal of Alloys and Compounds, 2021, 868, 159190.	2.8	31
1175	Hydrogen induced microstructure evolution and cracking mechanism in a metastable dual-phase high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 819, 141490.	2.6	19
1176	Ab Initio Modeling of fcc Fe-Co-Cr-Ni High Entropy Alloys with Full Composition Range. Journal of Phase Equilibria and Diffusion, 2021, 42, 656-672.	0.5	7
1177	Molecular dynamics simulation and machine learning of mechanical response in non-equiatomic FeCrNiCoMn high-entropy alloy. Journal of Materials Research and Technology, 2021, 13, 2043-2054.	2.6	32
1178	Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy. Nature, 2021, 595, 245-249.	13.7	141
1179	Mechanically Alloyed CoCrFeNiMo0.85 High-Entropy Alloy for Corrosion Resistance Coatings. Materials, 2021, 14, 3802.	1.3	12
1180	Anomalous size effect in micron-scale CoCrNi medium-entropy alloy wire. Scripta Materialia, 2021, 199, 113897.	2.6	20
1181	Fatigue crack growth behavior of the quaternary 3d transition metal high entropy alloy CoCrFeNi. International Journal of Fatigue, 2021, 148, 106232.	2.8	12
1182	Deformation behavior and microstructure evolution of as-cast Ti2ZrMo0.5Nb0.5 high entropy alloy. Journal of Materials Research and Technology, 2021, 13, 2469-2481.	2.6	13
1183	Research on the dislocation differences of CoCrFeMnNi with different local chemical orders during room temperature tensile test. Journal of Alloys and Compounds, 2021, 868, 159215.	2.8	14
1184	Assessing the magnetic order dependent γ-surface of Cr-Co-Ni alloys. Journal of Materials Science and Technology, 2021, 80, 66-74.	5.6	15
1185	Yield strength insensitivity in a dual-phase high entropy alloy after prolonged high temperature annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 820, 141586.	2.6	14
1186	A two-nearest-neighbor structure model and analysis of low-expansion Fe–Ni alloys. Modern Physics Letters B, 0, , 2141009.	1.0	1
1187	Application of atom probe tomography in understanding high entropy alloys: 3D local chemical compositions in atomic scale analysis. Progress in Materials Science, 2022, 123, 100854.	16.0	21
1188	On the Realâ€Time Atomistic Deformation of the CoNiCrFeMn Highâ€Entropy Alloy with Gradient Structures. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100336.	0.8	4
1189	Diffusion Multiples as a Tool to Efficiently Explore the Composition Space of High Entropy Alloys. Journal of Phase Equilibria and Diffusion, 2021, 42, 708-719.	0.5	3
1190	Temperature dependent deformation behavior and stacking fault energy of Fe40Mn40Co10Cr10 alloy. Scripta Materialia, 2021, 199, 113891.	2.6	34
1191	Rapid Fabrication of High-Entropy Ceramic Nanomaterials for Catalytic Reactions. ACS Nano, 2021, 15, 12324-12333.	7.3	44

#	Article	IF	CITATIONS
1192	Temperature- and strain-dependent thermally-activated deformation mechanism of a ferrous medium-entropy alloy. Intermetallics, 2021, 134, 107202.	1.8	10
1193	Y-Hf co-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation and spallation resistance under thermal cycling conditions at 1100 ŰC and 1200 ŰC. Corrosion Science, 2021, 187, 109515.	3.0	14
1194	Mechanical and high-temperature corrosion properties of AlTiCrNiTa high entropy alloy coating prepared by magnetron sputtering for accident-tolerant fuel cladding. Surface and Coatings Technology, 2021, 417, 127228.	2.2	45
1195	Effect of strain on generalized stacking fault energies and plastic deformation modes in fcc-hcp polymorphic high-entropy alloys: A first-principles investigation. Physical Review Materials, 2021, 5, .	0.9	7
1196	Enhancing strength-ductility synergy in a casting non-equiatomic NiCoCr-based high-entropy alloy by Al and Ti combination addition. Scripta Materialia, 2021, 200, 113898.	2.6	53
1197	A carbide-reinforced Re0.5MoNbW(TaC)0.8 eutectic high-entropy composite with outstanding compressive properties. Scripta Materialia, 2021, 200, 113909.	2.6	22
1198	A strategy for enhancing the mechanical property of the precipitation-strengthened medium-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 819, 141390.	2.6	30
1199	Nanotwinned CoCrFeMnNi high entropy alloy films for flexible electronic device applications. Vacuum, 2021, 189, 110249.	1.6	9
1200	Machine learning for alloys. Nature Reviews Materials, 2021, 6, 730-755.	23.3	202
1201	Emergence of machine learning in the development of high entropy alloy and their prospects in advanced engineering applications. Emergent Materials, 2021, 4, 1635-1648.	3.2	21
1202	Effects of tensile temperatures on phase transformations in zirconium by molecular dynamics simulations. Journal of Central South University, 2021, 28, 1932-1945.	1.2	2
1203	Reprint of: Nanocalorimetry: Door opened for in situ material characterization under extreme non-equilibrium conditions. Progress in Materials Science, 2021, 120, 100819.	16.0	1
1204	Recent Development of Flexible and Stretchable Supercapacitors Using Transition Metal Compounds as Electrode Materials. Small, 2021, 17, e2101974.	5.2	19
1205	Simultaneously enhancing the ultimate strength and ductility of high-entropy alloys via short-range ordering. Nature Communications, 2021, 12, 4953.	5.8	116
1206	Ultrastrong medium entropy alloy with simultaneous strength-ductility improvement via heterogeneous nanocrystalline structures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141631.	2.6	16
1207	Excellent strength-ductility combination of multi-layered sheets composed of high-strength V10Cr10Fe50Co30 high entropy alloy and 304 austenitic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141727.	2.6	5
1208	Effect of Ho addition on AC soft magnetic property, microstructure and magnetic domain of FeCoNi(CuAl)0.8Hox (x = 0–0.07) high-entropy alloys. Intermetallics, 2021, 135, 107216.	1.8	8
1209	Direct evidence of the stacking fault-mediated strain hardening phenomenon. Applied Physics Letters, 2021, 119, .	1.5	18

#	Article	IF	CITATIONS
1210	Modeling the work hardening behavior in metastable high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141778.	2.6	11
1211	Hall–Petch and grain growth kinetics of the low stacking fault energy TRIP Cr40Co40Ni20 multi-principal element alloy. Applied Physics Letters, 2021, 119, .	1.5	9
1212	Effect of B4C particles addition on microstructure and mechanical properties of Fe50Mn30Co10Cr10 high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 822, 141642.	2.6	14
1213	Deformation induced hcp nano-lamella and its size effect on the strengthening in a CoCrNi medium-entropy alloy. Journal of Materials Science and Technology, 2021, 82, 122-134.	5.6	43
1214	Enhancement of vacancy diffusion by C and N interstitials in the equiatomic FeMnNiCoCr high entropy alloy. Acta Materialia, 2021, 215, 117093.	3.8	20
1215	Martensitic transformation induced dislocation walls in Fe42Mn38Co10Cr10 high-entropy alloy. Scripta Materialia, 2021, 201, 113929.	2.6	16
1216	Cryogenic mechanical behavior of a TRIP-assisted dual-phase high-entropy alloy. Nano Research, 2022, 15, 4859-4866.	5.8	18
1217	Influences of Thermomechanical Processing by Severe Cold and Warm Rolling on the Microstructure, Texture, and Mechanical Properties of an Equiatomic CoCrNi Medium-Entropy Alloy. Journal of Materials Engineering and Performance, 2021, 30, 8956-8971.	1.2	11
1218	Strength–ductility enhancement in multi-layered sheet with high-entropy alloy and high-Mn twinning-induced plasticity steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 822, 141670.	2.6	4
1219	Tailoring the metastable reversed austenite from metastable Mn-rich carbides. Acta Materialia, 2021, 214, 116986.	3.8	21
1220	Nano dual-phase CuNiTiNbCr high entropy alloy films produced by high-power pulsed magnetron sputtering. Surface and Coatings Technology, 2021, 420, 127325.	2.2	17
1221	A novel as-cast precipitation-strengthened Al0.5V0.1FeCrMnNi0.9 high-entropy alloy with high strength and plasticity. Science China Technological Sciences, 2021, 64, 1920-1926.	2.0	5
1222	On prominent TRIP effect and non-basal slip in a TWIP high entropy alloy during high-pressure torsion processing. Materials Characterization, 2021, 178, 111284.	1.9	12
1223	Compatibility and microstructure evolution of Al-Cr-Fe-Ni high entropy model alloys exposed to oxygen-containing molten lead. Corrosion Science, 2021, 189, 109593.	3.0	18
1224	Additive Manufacturing of High-Entropy Alloys: Microstructural Metastability and Mechanical Behavior. Journal of Phase Equilibria and Diffusion, 2021, 42, 748-771.	0.5	11
1225	Strengthening mechanism of CoCrNiMox high entropy alloys by high-throughput nanoindentation mapping technique. Intermetallics, 2021, 135, 107209.	1.8	24
1226	Microstructure and mechanical properties in TLP joint of FeCoNiTiAl alloy and IC10 superalloy using Mn-Ni-Cr filler. Materials Characterization, 2021, 178, 111292.	1.9	8
1227	Ultrastrong and Ductile Soft Magnetic Highâ€Entropy Alloys via Coherent Ordered Nanoprecipitates. Advanced Materials, 2021, 33, e2102139.	11.1	69

#	Article	IF	CITATIONS
1228	Microstructures and mechanical properties of (CoCrFeMnNi)100-Mo high entropy alloy films. Intermetallics, 2021, 135, 107236.	1.8	13
1229	Effect of strain rate and low temperature on mechanical behaviour and microstructure evolution in twinning-induced plasticity steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141734.	2.6	16
1230	A dual-phase alloy with ultrahigh strength-ductility synergy over a wide temperature range. Science Advances, 2021, 7, .	4.7	61
1231	Anisotropic Nd-Fe ultrafine particles with stable and metastable phases prepared by induction thermal plasma. Journal of Alloys and Compounds, 2021, 873, 159724.	2.8	12
1232	Architecturing materials at mesoscale: some current trends. Materials Research Letters, 2021, 9, 399-421.	4.1	51
1233	Wear and Corrosion Resistance of CoCrFeNiSiMoW Medium-Entropy Alloy Coatings on Q235 Steel. Coatings, 2021, 11, 1053.	1.2	4
1234	Microstructure investigations of Fe50Mn30Co10Cr10 dual–phase high–entropy alloy under Fe ions irradiation. Journal of Nuclear Materials, 2021, 552, 153006.	1.3	10
1235	Producing CrFeCoNiSi-Based High Entropy Alloy by Spark Plasma Sintering. Materials Transactions, 2021, 62, 1231-1238.	0.4	2
1236	Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order. Nature Communications, 2021, 12, 4873.	5.8	138
1237	Dynamic impact behavior and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 824, 141858.	2.6	23
1238	Manipulation of Microstructure and Mechanical Properties in N-Doped CoCrFeMnNi High-Entropy Alloys. Metals, 2021, 11, 1487.	1.0	10
1239	Microstructure and strengthening effects of novel Co-Cr-Fe-Ni-Re multicomponent alloys. Materials Letters, 2021, 298, 129971.	1.3	2
1240	Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature. Journal of Materials Science and Technology, 2021, 86, 158-170.	5.6	48
1241	Introduction to Heterostructured Materials: A Fast Emerging Field. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 4715-4726.	1.1	44
1242	In-situ TiC/Fe0.6MnNi1.4 medium entropy alloy matrix composites with excellent strength-ductility synergy. Ceramics International, 2021, 47, 26319-26326.	2.3	12
1243	Influence of substrate bias and temperature on the crystallization of metallic NbTaTiVZr high-entropy alloy thin films. Surface and Coatings Technology, 2021, 421, 127357.	2.2	20
1244	Enhanced mechanical performance of grain boundary precipitation-hardened high-entropy alloys via a phase transformation at grain boundaries. Journal of Materials Science and Technology, 2021, 86, 271-284.	5.6	24
1245	Microstructure and corrosion behavior of FeCrNiCoMnx (x = 1.0, 0.6, 0.3, 0) high entropy alloys in 0.5 M H2SO4. Corrosion Science, 2021, 190, 109694.	3.0	53

#	Article	IF	CITATIONS
1246	Inverse grain-size-dependent strain rate sensitivity of face-centered cubic high-entropy alloy. Journal of Materials Science and Technology, 2021, 86, 251-259.	5.6	7
1247	Atomic scale modeling of structural phase transformations in AlCrFeMnMo high-entropy alloys during thermal treatments. Journal of Alloys and Compounds, 2021, 876, 160201.	2.8	5
1248	Strength can be controlled by edge dislocations in refractory high-entropy alloys. Nature Communications, 2021, 12, 5474.	5.8	64
1249	Fast mechanical synthesis, structure evolution, and thermal stability of nanostructured CoCrFeNiCu high entropy alloy. Journal of Alloys and Compounds, 2022, 893, 161839.	2.8	16
1250	Precipitation and micromechanical behavior of the coherent ordered nanoprecipitation strengthened Al-Cr-Fe-Ni-V high entropy alloy. Acta Materialia, 2021, 216, 117121. Imath	3.8	51
1251	xmlns:mml="http://www.w3.org/1998/Math/Math/ML" altimg="si2.svg"> <mml:msub><mml:mtext mathvariant="bold">Fe<mml:mn mathvariant="bold">50</mml:mn </mml:mtext </mml:msub> <mml:msub><mml:mi mathvariant="bold">Mn<mml:mn< td=""><td>2.8</td><td>11</td></mml:mn<></mml:mi </mml:msub>	2.8	11
1252	The corrosion behavior and film properties of Al-containing high-entropy alloys in acidic solutions. Applied Surface Science, 2021, 560, 149854.	3.1	58
1253	Friction stir processing of a high entropy alloy Fe42Co10Cr15Mn28Si5 with transformative characteristics: Microstructure and mechanical properties. Materials Today Communications, 2021, 28, 102635.	0.9	4
1254	Optimizing mechanical and magnetic properties of AlCoCrFeNi high-entropy alloy via FCC to BCC phase transformation. Journal of Materials Science and Technology, 2021, 86, 117-126.	5.6	27
1255	A review on the oxidation and wear behavior of the thermally sprayed high-entropy alloys. Materials Today: Proceedings, 2022, 50, 1447-1451.	0.9	14
1256	Martensitic Transformation in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>Fe</mml:mi></mml:mrow><mml Physical Review Letters, 2021, 127, 115704.</mml </mml:msub></mml:mrow></mml:math>	:m2r. 9 w> <n< td=""><td>nmbmi>x</td></n<>	n mb mi>x
1257	A hybrid additively manufactured martensitic-maraging stainless steel with superior strength and corrosion resistance for plastic injection molding dies. Additive Manufacturing, 2021, 45, 102068.	1.7	8
1258	Hetero-deformation-induced (HDI) plasticity induces simultaneous increase in both yield strength and ductility in a Fe50Mn30Co10Cr10 high-entropy alloy. Applied Physics Letters, 2021, 119, 131906.	1.5	5
1259	Microstructure and mechanical properties of FeCoCrNiMo0.1 high-entropy alloy with various annealing treatments. Materials Characterization, 2021, 179, 111313.	1.9	13
1260	Materials Fingerprinting Classification. Computer Physics Communications, 2021, 266, 108019.	3.0	6
1261	Microstructure control and strength improvement of La0.005Al0.17FeCoCrNiMn high entropy alloy by rapid solidification and aging treatment. Journal of Alloys and Compounds, 2021, 874, 159960.	2.8	5
1262	1.7 Gpa tensile strength in ferrous medium entropy alloy via martensite and precipitation. Materials Letters, 2022, 307, 130958.	1.3	7
1263	Phase equilibria, martensitic transformations and deformation behaviors of the subsystem of Cantor alloyâ~'low-cost Fe-Mn-Cr alloys. Materialia, 2021, 20, 101231.	1.3	3

#	Article	IF	CITATIONS
1264	High pressure induced the polymorphism phase transition in the Fe40Mn40Co10Cr10 multi-principal element alloy. Intermetallics, 2021, 136, 107268.	1.8	3
1265	Strengthening of ferrous medium entropy alloys by promoting phase transformation. Intermetallics, 2021, 136, 107265.	1.8	14
1266	Plastic deformation and strengthening mechanism of FCC/HCP nano-laminated dual-phase CoCrFeMnNi high entropy alloy. Nanotechnology, 2021, 32, 505724.	1.3	15
1267	Probing the superconducting ground state of noncentrosymmetric high-entropy alloys using muon-spin rotation and relaxation. Physical Review B, 2021, 104, .	1.1	3
1268	Simultaneous deformation twinning and martensitic transformation in CoCrFeMnNi high entropy alloy at high temperatures. Scripta Materialia, 2021, 202, 113995.	2.6	26
1269	Microstructure and compression properties of a dual-phase FeCoCrMn high-entropy alloy. Advanced Composites and Hybrid Materials, 2022, 5, 1508-1515.	9.9	10
1270	High-entropy stoichiometric perovskite oxides based on valence combinations. Ceramics International, 2021, 47, 24348-24352.	2.3	29
1271	Multi-principal element alloys from the CrCoNi family: outlook and perspectives. Journal of Materials Research and Technology, 2021, 15, 3461-3480.	2.6	29
1272	Structure and phase transformations in gas atomized AlCoCrFeNi high entropy alloy powders. Journal of Alloys and Compounds, 2022, 893, 162060.	2.8	8
1273	Static recrystallized annealing treatment-induced strength-ductility trade-off in cold-rolled Co36Fe36Cr18Ni10 multi-principal alloy. Materials Characterization, 2021, 179, 111254.	1.9	5
1274	Corrosion performance and mechanical properties of FeCrSiNb amorphous equiatomic HEA thin film. Surface and Coatings Technology, 2021, 422, 127486.	2.2	19
1275	Gradient microstructure and interfacial strength of CoCrFeMnNi high-entropy alloy in solid-state ultrasonic welding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 825, 141885.	2.6	13
1276	Kinetic trapping of 3D-printable cyclodextrin-based poly(pseudo)rotaxane networks. CheM, 2021, 7, 2442-2459.	5.8	28
1277	High radiation tolerance of an ultrastrong nanostructured NiCoCr alloy with stable dispersed nanooxides and fine grain structure. Journal of Nuclear Materials, 2021, 557, 153316.	1.3	11
1278	Effect of Thermo-Mechanical Treatment on the Microstructure and Tensile Properties of the Fe-22Cr-5Al-0.1Y Alloy. Materials, 2021, 14, 5696.	1.3	3
1279	Microstructure and optical properties of AgCuAl medium entropy films with nanoparticles induced by pulsed-laser dewetting. Surface and Coatings Technology, 2021, 421, 127427.	2.2	8
1280	Influence of alloying elements (Cu, Ti, Nb) on the microstructure and corrosion behaviour of AlCrFeNi-based high entropy alloys exposed to oxygen-containing molten Pb. Corrosion Science, 2021, 190, 109659.	3.0	24
1281	Yield strength-ductility trade-off breakthrough in Co-free Fe40Mn10Cr25Ni25 high-entropy alloys with partial recrystallization. Materials Today Communications, 2021, 28, 102718.	0.9	10

#	Article	IF	CITATIONS
1282	Effect of rolling and annealing temperature on the mechanical properties of CrMnFeCoNi high-entropy alloy. Materials Chemistry and Physics, 2021, 270, 124830.	2.0	12
1283	Effect of Fe on the Hall-Petch relationship of (CoCrMnNi) Fe medium-and high-entropy alloys. Intermetallics, 2021, 136, 107239.	1.8	17
1284	Microstructure and mechanical properties of a dual phase transformation induced plasticity Fe-Mn-Co-Cr high entropy alloy. Journal of Alloys and Compounds, 2022, 893, 162152.	2.8	9
1285	Generation of increased mechanical properties of Cantor highÂentropy alloy. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2021, 64, 599-605.	0.1	8
1286	Deformation behavior of a Co-Cr-Fe-Ni-Mo medium-entropy alloy at extremely low temperatures. Materials Today, 2021, 50, 55-68.	8.3	51
1287	Cryoforged nanotwinned titanium with ultrahigh strength and ductility. Science, 2021, 373, 1363-1368.	6.0	155
1288	Gradient cell–structured high-entropy alloy with exceptional strength and ductility. Science, 2021, 374, 984-989.	6.0	316
1289	Effects of Al addition on microstructure and mechanical properties of Co-free (Fe40Mn40Ni10Cr10)100â^'xAlx high-entropy alloys. Journal of Alloys and Compounds, 2021, 879, 160342.	2.8	13
1290	Core-shell structure mediated microstructure and mechanical properties of high entropy alloy CoCrFeNi/Al composites. Vacuum, 2021, 192, 110454.	1.6	14
1291	Evolution in microstructure, wear, corrosion, and tribocorrosion behavior of Mo-containing high-entropy alloy coatings fabricated by laser cladding. Corrosion Science, 2021, 191, 109727.	3.0	77
1292	Transformative high entropy alloy conquers the strength-ductility paradigm by massive interface strengthening. Scripta Materialia, 2021, 203, 114070.	2.6	13
1293	Tailoring the strength and ductility of Al0.25CoCrFeNi high entropy alloy through cryo-rolling and annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 141964.	2.6	18
1294	Neural-network model for force prediction in multi-principal-element alloys. Computational Materials Science, 2021, 198, 110693.	1.4	2
1295	Metastable high entropy alloys: An excellent defect tolerant material for additive manufacturing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 142005.	2.6	21
1296	Preparation and characterization of cerium-based conversion coating on a Fe50Mn30Co10Cr10 dual-phase high-entropy alloy. Applied Surface Science, 2021, 562, 150200.	3.1	13
1297	Y-Hf co-doped Al1.1CoCr0.8FeNi high-entropy alloy with excellent oxidation resistance and nanostructure stability at 1200°C. Scripta Materialia, 2021, 203, 114105.	2.6	23
1298	On the room-temperature tensile deformation behavior of a cast dual-phase high-entropy alloy CrFeCoNiAl0.7. Journal of Materials Science and Technology, 2021, 87, 29-38.	5.6	42
1299	Evolution of interfacial character and its influence on strain hardening in dual-phase high entropy alloys at nanoscale. International Journal of Plasticity, 2021, 145, 103081.	4.1	24

#	Article	IF	CITATIONS
1300	Exploring the hydrogen absorption and strengthening behavior in nanocrystalline face-centered cubic high-entropy alloys. Scripta Materialia, 2021, 203, 114069.	2.6	12
1301	Mechanical properties and deformation mechanisms in CoCrFeMnNi high entropy alloys: A molecular dynamics study. Materials Chemistry and Physics, 2021, 271, 124912.	2.0	22
1302	Structure and hardness of in situ synthesized nano-oxide strengthened CoCrFeNi high entropy alloy thin films. Scripta Materialia, 2021, 203, 114044.	2.6	12
1303	Temperature-dependent fatigue response of a Fe44Mn36Co10Cr10 high entropy alloy: A coupled in-situ electron microscopy study and crystal plasticity simulation. International Journal of Fatigue, 2021, 151, 106385.	2.8	11
1304	Kinetic Monte Carlo simulation framework for chemical short-range order formation kinetics in a multi-principal-element alloy. Computational Materials Science, 2021, 198, 110670.	1.4	20
1305	Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping. Journal of Materials Science and Technology, 2021, 87, 184-195.	5.6	50
1306	Multicomponent Ni-rich high-entropy alloy toughened with irregular-shaped precipitates and serrated grain boundaries. Scripta Materialia, 2021, 204, 114066.	2.6	23
1307	Excellent plasticity of C and Mo alloyed TRIP high entropy alloy via rolling and heat treatment. Journal of Materials Research and Technology, 2021, 15, 2145-2151.	2.6	3
1308	Superior phase transformation-assisted mechanical properties of a metastable medium-entropy ferrous alloy with heterogeneous microstructure. Materials Letters, 2021, 302, 130391.	1.3	13
1309	Microstructure and texture of CoCrNi medium entropy alloy (MEA) processed by severe cryo-rolling: A study vis-a-vis cold-rolling. Intermetallics, 2021, 138, 107345.	1.8	15
1310	A comparison of the microstructures and hardness values of non-equiatomic (FeNiCo)-(AlCrSiTi) high entropy alloys having thermal histories related to laser direct metal deposition or vacuum remelting. Journal of Materials Research and Technology, 2021, 15, 696-707.	2.6	6
1311	Inclusion engineering in Co-based duplex entropic alloys. Materials and Design, 2021, 210, 110097.	3.3	14
1312	Mechanical and tribological performance of CoCrNiHf eutectic medium-entropy alloys. Journal of Materials Science and Technology, 2021, 90, 194-204.	5.6	37
1313	Grain size dependent deformation behavior of a metastable Fe40Co20Cr20Mn10Ni10 high-entropy alloy. Journal of Alloys and Compounds, 2021, 883, 160876.	2.8	11
1314	Compositionally graded CoCrFeNiTi high-entropy alloys manufactured by laser powder bed fusion: A combinatorial assessment. Journal of Alloys and Compounds, 2021, 883, 160825.	2.8	21
1315	Novel multi-metal stainless steel (316L)/high-modulus steel (Fe-TiB2) composite with enhanced specific modulus and strength using high-pressure torsion. Materials Letters, 2021, 303, 130510.	1.3	7
1316	First-principles calculation of lattice distortions in four single phase high entropy alloys with experimental validation. Materials and Design, 2021, 209, 110071.	3.3	15
1317	Multiple deformation scheme in direct energy deposited CoCrNi medium entropy alloy at 210K. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 828, 142059.	2.6	18

#	Article	IF	CITATIONS
1318	2.3 GPa cryogenic strength through thermal-induced and deformation-induced body-centered cubic martensite in a novel ferrous medium entropy alloy. Scripta Materialia, 2021, 204, 114157.	2.6	26
1319	A novel atomic movement mechanism of intersection-induced bct-αÂ→Âbcc-α′ martensitic phase transformation. Scripta Materialia, 2021, 204, 114153.	2.6	10
1320	High-temperature air-oxidation of NiCoCrAlx medium-entropy alloys. Corrosion Science, 2021, 192, 109858.	3.0	8
1321	Research status of laser additive manufacturing for metal: a review. Journal of Materials Research and Technology, 2021, 15, 855-884.	2.6	110
1322	High-temperature oxidation of AlCrFeNi-(Mn or Co) high-entropy alloys: Effect of atmosphere and reactive element addition. Corrosion Science, 2021, 192, 109809.	3.0	19
1323	TRIP-assisted compressive ductility in Ti-rich Ti60Mo10V10Cr10Zr10 refractory medium-entropy alloy. International Journal of Refractory Metals and Hard Materials, 2021, 100, 105628. Design, phase equilibria, and coarsening kinetics of a new <mml:math< td=""><td>1.7</td><td>4</td></mml:math<>	1.7	4
1324	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0004.svg"> <mml:mrow><mml:mi mathvariant="bold-italic">l³<mml:mo>/</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant="bold-italic">l³</mml:mi </mml:mrow><mml:mrow><mml:mo accent="true">â€²</mml:mo </mml:mrow></mml:msup></mml:mi </mml:mrow> precipitation-hardened	2.8	8
1325	multi-principal element alloy. Journal of Alloys and Compounds, 2021, 882, 160729. Microstructure formation mechanism and corrosion behavior of FeCrCuTiV two-phase high entropy alloy prepared by different processes. Fusion Engineering and Design, 2021, 172, 112792.	1.0	23
1326	Phase transformation and microstructure evolution in ultrahard carbon-doped AlTiFeCoNi high-entropy alloy by high-pressure torsion. Materials Letters, 2021, 302, 130368.	1.3	28
1327	Effects of NbC content on microstructural evolution and mechanical properties of laser cladded Fe50Mn30Co10Cr10-xNbC composite coatings. Intermetallics, 2021, 138, 107309.	1.8	78
1328	Grain boundary segregation induced precipitation in a non equiatomic nanocrystalline CoCuFeMnNi compositionally complex alloy. Acta Materialia, 2021, 220, 117281.	3.8	18
1329	Composition-dependent slip planarity in mechanically-stable face centered cubic complex concentrated alloys and its mechanical effects. Acta Materialia, 2021, 220, 117314.	3.8	24
1330	Microstructure and corrosion properties of Al2CrFeCo CuNiTi high entropy alloys prepared by additive manufacturing. Journal of Alloys and Compounds, 2021, 887, 161422.	2.8	16
1331	Enhancement in strength and ductility of laser powder bed fused Al–12Si alloy by introducing nanoscale precipitates. Additive Manufacturing Letters, 2021, 1, 100008.	0.9	8
1332	Life cycle strengthening of high-strength steels by nanosecond laser shock. Applied Surface Science, 2021, 569, 151118.	3.1	16
1333	Enhanced creep resistance of Ti30Al25Zr25Nb20 high-entropy alloy at room temperature. Journal of Alloys and Compounds, 2021, 885, 161038.	2.8	24
1334	Dynamic evolution of edge dislocation and its effect on bcc-hcp martensitic transformation in dual-phase high-entropy alloy. Vacuum, 2021, 194, 110581.	1.6	6
1335	C and N doping in high-entropy alloys: A pathway to achieve desired strength-ductility synergy. Applied Materials Today, 2021, 25, 101162.	2.3	19

#	Article	IF	CITATIONS
1336	Effect of fabrication methods on microstructures, mechanical properties and strengthening mechanisms of Fe0.25CrNiAl medium-entropy alloy. Journal of Alloys and Compounds, 2021, 888, 161526.	2.8	14
1337	Effect of nitrogen on microstructure and mechanical properties of the CoCrFeMnNi high-entropy alloy after cold rolling and subsequent annealing. Journal of Alloys and Compounds, 2021, 888, 161452.	2.8	30
1338	Design and deformation characteristics of single-phase Co-Cr-Fe-Ni-V high entropy alloy. Journal of Alloys and Compounds, 2021, 888, 161579.	2.8	9
1339	Ultrahigh hardness in nanostructured dual-phase high-entropy alloy AlCrFeCoNiNb developed by high-pressure torsion. Journal of Alloys and Compounds, 2021, 884, 161101.	2.8	41
1340	Chemical short-range order in Fe50Mn30Co10Cr10 high-entropy alloy. Materials Today Nano, 2021, 16, 100139.	2.3	24
1341	Investigation of phase-transformation path in TiZrHf(VNbTa)x refractory high-entropy alloys and its effect on mechanical property. Journal of Alloys and Compounds, 2021, 886, 161187.	2.8	25
1342	Corrosion resistant and tough multi-principal element Cr-Co-Ni alloys. Journal of Alloys and Compounds, 2021, 884, 161107.	2.8	14
1343	Structural stability and mechanical properties of B2 ordered refractory AlNbTiVZr high entropy alloys. Journal of Alloys and Compounds, 2021, 886, 161289.	2.8	15
1344	High Entropy Alloys: Elastic Parameters and Trends. , 2022, , 427-434.		2
1345	Effects of electromagnetic pulse treatment on spinodal decomposed microstructure, mechanical and corrosion properties of AlCoCrFeNi high entropy alloy. Journal of Alloys and Compounds, 2021, 889, 161676.	2.8	14
1346	Effects of Al and Mn on microstructure, magnetic and mechanical properties of Fe40Co40Ni10M10 (M=Al, Mn) medium entropy alloys. Journal of Alloys and Compounds, 2022, 890, 161779.	2.8	6
1347	Mictomagnetism and suppressed thermal conduction of the prototype high-entropy alloy CrMnFeCoNi. Journal of Materials Science and Technology, 2022, 99, 55-60.	5.6	6
1348	Effects of plasticity-induced martensitic transformation and grain refinement on the evolution of microstructure and mechanical properties of a metastable high entropy alloy. Journal of Alloys and Compounds, 2022, 891, 161871.	2.8	13
1349	Heterogeneous lamella design to tune the mechanical behaviour of a new cost-effective compositionally complicated alloy. Journal of Materials Science and Technology, 2022, 96, 113-125.	5.6	19
1350	A novel NbTaW0.5 (Mo2C)x refractory high-entropy alloy with excellent mechanical properties. Journal of Alloys and Compounds, 2021, 889, 161800.	2.8	21
1351	Multiple deformation mechanisms induced by pre-twinning in CoCrFeNi high entropy alloy. Scripta Materialia, 2022, 207, 114266.	2.6	37
1352	High Entropy Alloys: Welding. , 2022, , 548-557.		1
1353	Metallic Materials for Making Multi-Scaled Metallic Parts and Structures. , 2022, , 19-36.		0

#	Article	IF	CITATIONS
1354	Theoretical and experimental study of phase transformation and twinning behavior in metastable high-entropy alloys. Journal of Materials Science and Technology, 2022, 99, 161-168.	5.6	17
1355	High Entropy Alloys: Advanced Synchrotron X-Ray and Neutron Scattering Studies. , 2022, , 381-392.		1
1356	Crack-resistant σ/FCC interfaces in the Fe40Mn40Co10Cr10 high entropy alloy with the dispersed σ-phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142039.	2.6	35
1357	Stress-induced transformation behavior in near-eutectic (AlNi2)70-Co30Cr medium entropy alloys. Journal of Alloys and Compounds, 2022, 891, 161995.	2.8	9
1358	A strategy to design eutectic high-entropy alloys based on binary eutectics. Journal of Materials Science and Technology, 2022, 103, 152-156.	5.6	13
1359	Prediction of growth velocity of undercooled multicomponent metallic alloys using a machine learning approach. Scripta Materialia, 2022, 207, 114309.	2.6	6
1360	Cyclic Plasticity of CoCrFeMnNi High-Entropy Alloy (HEA): A Molecular Dynamics Simulation. International Journal of Applied Mechanics, 2021, 13, 2150006.	1.3	7
1361	Role of Static Displacements in Stabilizing Body Centered Cubic High Entropy Alloys. Physical Review Letters, 2021, 126, 025501.	2.9	29
1362	Dislocation Source and Pile-up in a Twinning-induced Plasticity Steel at High-Cycle Fatigue. Acta Metallurgica Sinica (English Letters), 2021, 34, 169-173.	1.5	8
1363	Highâ€entropy oxides based on valence combinations: design and practice. Journal of the American Ceramic Society, 2021, 104, 1953-1958.	1.9	50
1364	Development of high entropy alloys: A review. Materials Today: Proceedings, 2021, 43, 502-509.	0.9	46
1365	Effect of Various Aspects on Mechanical Properties of High Entropy Alloys: A Review. Lecture Notes in Mechanical Engineering, 2021, , 297-303.	0.3	Ο
1366	Tensile deformation behavior of twist grain boundaries in CoCrFeMnNi high entropy alloy bicrystals. Scientific Reports, 2021, 11, 428.	1.6	8
1367	Accelerating computational modeling and design of high-entropy alloys. Nature Computational Science, 2021, 1, 54-61.	3.8	44
1368	Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes. Journal of Materials Chemistry A, 2021, 9, 6013-6028.	5.2	105
1369	Gradient Plastic Zone Model in Equiatomic Face-Centered Cubic Alloys. SSRN Electronic Journal, 0, , .	0.4	Ο
1370	Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy. Science Advances, 2021, 7, .	4.7	140
1371	Microstructure and corrosion behavior of FeCrNiMnMo x highâ€entropy alloys fabricated by the laser surface remelting. Materials and Corrosion - Werkstoffe Und Korrosion, 2020, 71, 1747-1754.	0.8	8

#	Article	IF	CITATIONS
1372	Significantly Enhanced Wear Resistance of an Ultrafine-Grained CrFeNi Medium-Entropy Alloy at Elevated Temperatures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 2834-2850.	1.1	12
1373	Thermal Spray High-Entropy Alloy Coatings: A Review. Journal of Thermal Spray Technology, 2020, 29, 857-893.	1.6	162
1374	Chrysanthemum-like high-entropy diboride nanoflowers: A new class of high-entropy nanomaterials. Journal of Advanced Ceramics, 2020, 9, 339-348.	8.9	46
1375	Design of Nickel-Cobalt-Ruthenium multi-principal element alloys. Acta Materialia, 2020, 194, 224-235.	3.8	10
1376	Novel atomic-scale mechanism of incipient plasticity in a chemically complex CrCoNi medium-entropy alloy associated with inhomogeneity in local chemical environment. Acta Materialia, 2020, 194, 283-294.	3.8	101
1377	Aged metastable high-entropy alloys with heterogeneous lamella structure for superior strength-ductility synergy. Acta Materialia, 2020, 199, 602-612.	3.8	72
1378	A scrap-tolerant alloying concept based on high entropy alloys. Acta Materialia, 2020, 200, 735-744.	3.8	21
1379	Excellent combination of strength and ductility of CoCrNi medium entropy alloy fabricated by laser aided additive manufacturing. Additive Manufacturing, 2020, 34, 101202.	1.7	17
1380	A ductile high entropy alloy strengthened by nano sigma phase. Intermetallics, 2020, 122, 106813.	1.8	49
1381	Dual-phase high-entropy ultra-high temperature ceramics. Journal of the European Ceramic Society, 2020, 40, 5037-5050.	2.8	91
1382	Toughening FeMn-based high-entropy alloys via retarding phase transformation. Journal of Materials Science and Technology, 2020, 51, 167-172.	5.6	20
1383	Aging induced segregation and nanoprecipitation in a severely deformed equiatomic high-entropy alloy. Materials Characterization, 2020, 165, 110369.	1.9	12
1384	Nanostructural metallic materials: Structures and mechanical properties. Materials Today, 2020, 38, 114-135.	8.3	150
1385	The effect of strain rate on mechanical properties and microstructure of a metastable FeMnCoCr high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 776, 138982.	2.6	37
1386	Enhanced strength-plasticity combination in an Al–Cu–Mg alloy——atomic scale microstructure regulation and strengthening mechanisms. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 787, 139447.	2.6	35
1387	Tuning δÂ→Âγ transformation types to relieve mechanical property degradation in a Co-free face-centered cubic metastable high-entropy alloy. Materialia, 2020, 11, 100738.	1.3	7
1388	Superelasticity of (TiZrHf)50Ni25Co10Cu15 high entropy shape memory alloy. Scripta Materialia, 2020, 186, 43-47.	2.6	24
1389	First-principles calculation of the effect of Ti content on the structure and properties of TiVNbMo	0.8	18

#	Article	IF	CITATIONS
1390	lsoelectronic substitutions and aluminium alloying in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor. Physical Review Materials, 2018, 2, .	0.9	44
1391	Ta-Nb-Mo-W refractory high-entropy alloys: Anomalous ordering behavior and its intriguing electronic origin. Physical Review Materials, 2018, 2, .	0.9	42
1392	Superconductivity in a new hexagonal high-entropy alloy. Physical Review Materials, 2019, 3, .	0.9	39
1393	Machine-learning model for predicting phase formations of high-entropy alloys. Physical Review Materials, 2019, 3, .	0.9	46
1394	Impact of interstitial C on phase stability and stacking-fault energy of the CrMnFeCoNi high-entropy alloy. Physical Review Materials, 2019, 3, .	0.9	30
1395	Intrinsic ductility of random substitutional alloys from nonlinear elasticity theory. Physical Review Materials, 2019, 3, .	0.9	9
1396	Unveiling the mechanism of abnormal magnetic behavior of FeNiCoMnCu high-entropy alloys through a joint experimental-theoretical study. Physical Review Materials, 2020, 4, .	0.9	18
1397	Role of magnetic ordering for the design of quinary TWIP-TRIP high entropy alloys. Physical Review Materials, 2020, 4, .	0.9	18
1398	Grain boundary energy effect on grain boundary segregation in an equiatomic high-entropy alloy. Physical Review Materials, 2020, 4, .	0.9	44
1399	Unveiling the atomic-scale origins of high damage tolerance of single-crystal high entropy alloys. Physical Review Materials, 2020, 4, .	0.9	11
1400	Diffusion-mediated chemical concentration variation and void evolution in ion-irradiated NiCoFeCr high-entropy alloy. Journal of Materials Research, 2021, 36, 1-13.	1.2	3
1401	Influence of annealing parameters on the mechanical properties of heterogeneous lamella structured 5083 aluminum alloy. Letters on Materials, 2019, 9, 556-560.	0.2	7
1402	Prediction of Face-Centered Cubic Single-Phase Formation for Non-Equiatomic Cr–Mn–Fe–Co–Ni High-Entropy Alloys Using Valence Electron Concentration and Mean-Square Atomic Displacement. Materials Transactions, 2020, 61, 1874-1880.	0.4	13
1403	A Self-Strengthening Epidermis-Like Smart Coating Enabled by Dynamic Iron Sequestration. CCS Chemistry, 2021, 3, 2655-2668.	4.6	6
1404	Structural Characterization of CoCrFeMnNi High Entropy Alloy Oxynitride Thin Film Grown by Sputtering. Korean Journal of Materials Research, 2018, 28, 595-600.	0.1	1
1405	Recent Studies of the Laser Cladding of High Entropy Alloys. Journal of Welding and Joining, 2017, 35, 58-66.	0.6	13
1406	Effect of Aging Treatment on Microstructure and Wear Properties of CoCrFeNiTiNbB _{1.25} High Entropy Alloys Coatings by Laser Cladding. Science of Advanced Materials, 2021, 13, 1280-1288.	0.1	0
1407	Visualizing temperature-dependent phase stability in high entropy alloys. Npj Computational Materials, 2021, 7, .	3.5	11

#	Article	IF	CITATIONS
1408	Highâ€Entropyâ€Alloy Nanoparticles with Enhanced Interband Transitions for Efficient Photothermal Conversion. Angewandte Chemie - International Edition, 2021, 60, 27113-27118.	7.2	56
1409	Corrosion engineering boosting bulk Fe50Mn30Co10Cr10 high-entropy alloy as high-efficient alkaline oxygen evolution reaction electrocatalyst. Journal of Materials Science and Technology, 2022, 109, 267-275.	5.6	32
1410	Nano-scale heterogeneity-driven metastability engineering in ferrous medium-entropy alloy induced by additive manufacturing. Acta Materialia, 2021, 221, 117426.	3.8	58
1411	Tunable Chemical Disorder in Concentrated Alloys: Defect Physics and Radiation Performance. Chemical Reviews, 2022, 122, 789-829.	23.0	47
1412	Experimental validation of negative stacking fault energies in metastable face-centered cubic materials. Applied Physics Letters, 2021, 119, .	1.5	15
1413	Magnetic ordering suppressed phase transformation of a TRIP-HEA during thermal cycling. Applied Physics Letters, 2021, 119, 171906.	1.5	1
1414	Microstructure and Mechanical Properties of Cu-6.5%Al Alloy Deposited by Wire Arc Additive Manufacturing. Metallography, Microstructure, and Analysis, 2021, 10, 634-641.	0.5	4
1415	A molecular dynamics study of the influence of nucleation conditions on the phase selection in Fe50Mn30Cr10Co10 high entropy alloy. Materialia, 2021, 20, 101258.	1.3	2
1416	Interpretation of Dynamic Strain Aging in an Intercritical Annealed Steel by Dislocation Multiplication Induced by Martensitic Transformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 5258-5273.	1.1	1
1417	Nanoprecipitateâ€Strengthened Highâ€Entropy Alloys. Advanced Science, 2021, 8, e2100870.	5.6	97
1418	Orientation-dependent superelasticity of a metastable high-entropy alloy. Applied Physics Letters, 2021, 119, 161908.	1.5	3
1419	First-principles study of Suzuki segregation at stacking faults in disordered face-centered cubic Co-Ni alloys. Acta Materialia, 2021, 221, 117358.	3.8	9
1420	Microstructure and microhardness of dual-phase high-entropy alloy by high-pressure torsion: Twins and stacking faults in FCC and dislocations in BCC. Journal of Alloys and Compounds, 2022, 894, 162413.	2.8	35
1421	Effects of V addition on the mechanical properties at elevated temperatures in a γ''-strengthened NiCoCr-based multi-component alloy. Journal of Materials Science and Technology, 2022, 107, 290-300.	5.6	5
1422	The determining role of carbon addition on mechanical performance of a non-equiatomic high-entropy alloy. Journal of Materials Science and Technology, 2022, 110, 167-177.	5.6	17
1423	Remarkable ductility in metastable refractory high entropy alloys via BCC-FCC/α″ martensitic transformations. Applied Physics Letters, 2021, 119, 151902.	1.5	3
1424	Synthesis of ultrafine dual-phase structure in CrFeCoNiAl0.6 high entropy alloy via solid-state phase transformation during sub-rapid solidification. Journal of Materials Science and Technology, 2022, 113, 253-260.	5.6	19
1425	Highâ€Entropyâ€Alloy Nanoparticles with Enhanced Interband Transitions for Efficient Photothermal Conversion. Angewandte Chemie, 2021, 133, 27319-27324.	1.6	11

#	Article	IF	CITATIONS
1426	Tailoring plasticity mechanisms in compositionally graded hierarchical steels fabricated using additive manufacturing. Scientific Reports, 2021, 11, 20112.	1.6	5
1427	Significantly improving strength and plasticity of Al-based composites by in-situ formed AlCoCrFeNi core–shell structure. Journal of Materials Research and Technology, 2021, 15, 4117-4129.	2.6	14
1428	Temperature-dependent hardening contributions in CrFeCoNi high-entropy alloy. Acta Materialia, 2021, 221, 117371.	3.8	36
1429	Corrosion-resistant Cu-Fe-based immiscible medium-entropy alloy with tri-layer passivation. Corrosion Science, 2021, 193, 109888.	3.0	14
1430	High temperature and short-term oxidation behavior of CoCrCu1.2FeNi high entropy alloy in solid and semi-solid state. Corrosion Science, 2021, 193, 109897.	3.0	13
1431	Search for vacancies in concentrated solid-solution alloys with fcc crystal structure. Physical Review Materials, 2020, 4, .	0.9	5
1432	Microstructure and microhardness of high entropy alloys with Zn addition: AlCoFeNiZn and AlCoFeNiMoTiZn. Advanced Powder Technology, 2021, 32, 4687-4696.	2.0	7
1433	Machine‣earning Microstructure for Inverse Material Design. Advanced Science, 2021, 8, e2101207.	5.6	28
1434	Stacking Fault Energy Determination in Fe-Mn-Al-C Austenitic Steels by X-ray Diffraction. Metals, 2021, 11, 1701.	1.0	15
1435	Probing temperature effects on lattice distortion and oxidation resistance of high-entropy alloys by in situ SR-XRD and XANES. Journal of Materials Research, 2021, 36, 4413-4425.	1.2	4
1436	The Effect of Phase Separation on the Mechanical Behavior of the Co–Cr–Cu–Fe–Ni High-Entropy Alloy. Materials, 2021, 14, 6523.	1.3	5
1437	Enthalpy induced phase partition toward hierarchical, nanostructured high-entropy alloys. Nano Research, 2022, 15, 4893-4901.	5.8	12
1438	Break the strength-ductility trade-off in a transformation-induced plasticity high-entropy alloy reinforced with precipitation strengthening. Journal of Materials Science and Technology, 2022, 108, 125-132.	5.6	32
1439	A high-density non-equiatomic WTaMoNbV high-entropy alloy: Alloying behavior, microstructure and mechanical properties. Journal of Alloys and Compounds, 2022, 894, 162505.	2.8	8
1440	Tensile and compressive plastic deformation behavior of medium-entropy Cr-Co-Ni single crystals from cryogenic to elevated temperatures. International Journal of Plasticity, 2022, 148, 103144.	4.1	39
1441	High deformation ability induced by phase transformation through adjusting Cr content in Co-Fe-Ni-Cr high entropy alloys. Journal of Alloys and Compounds, 2022, 895, 162564.	2.8	14
1442	High-Entropy Ceramics Diborides for Hypersonic Applications. Lecture Notes in Electrical Engineering, 2022, , 247-256.	0.3	1
1443	Friction Stir Welding of a TRIP Fe49Mn30Cr10Co10C1 High Entropy Alloy. Metals, 2021, 11, 66.	1.0	10

#	Article	IF	CITATIONS
1444	Iron-rich High Entropy Alloys. , 2021, , 389-421.		1
1445	Effect of Aluminium Content on Microstrure and Mechanical Properties of Al _x CoFe _{1.9} Ni _{2.1} High Entropy Alloys. Materials Transactions, 2021, 62, .	0.4	3
1446	Achieving dual-phase structure and improved mechanical properties in AlCoCrFeTi0.5 high-entropy alloys by addition of Ni. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142194.	2.6	14
1447	Development of ultrafine grained cobalt-free AlCrFe2Ni2 high entropy alloy with superior mechanical properties by thermo-mechanical processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142190.	2.6	29
1448	Alloying effects on phase stability, mechanical properties, and deformation behavior of CoCrNi-based medium-entropy alloys at low temperatures. Intermetallics, 2022, 140, 107399.	1.8	9
1449	Entropy-driven melting point depression in fcc HEAs. Scripta Materialia, 2022, 208, 114336.	2.6	8
1450	A new strategy for fabrication of unique heterostructured titanium laminates and visually tracking their synchronous evolution of strain partitions versus microstructure. Journal of Materials Science and Technology, 2022, 107, 70-81.	5.6	42
1451	Laser-induced topology optimized amorphous nanostructure and corrosion electrochemistry of supersonically deposited Ni30Cr25Al15Co15Mo5Ti5Y5 HEA coating based on AIMD. Journal of Materials Science and Technology, 2022, 106, 257-269.	5.6	6
1452	High Entropy Alloy machining by EDM and ECM. Procedia CIRP, 2020, 95, 178-182.	1.0	7
1453	Corrosion resistance of nanostructured metals and alloys. , 2020, , 63-87.		2
1454	Effects of Alloying Elements on the Microstructure and Mechanical Properties of Novel α+β Dual-Phase Ti-Nb-Ta-Zr Alloys. SSRN Electronic Journal, 0, , .	0.4	0
1455	Ultra-Grain Refinement of High Entropy Alloys. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2020, 67, 113-120.	0.1	1
1456	Microstructure and Abrasion Resistance of Laser Cladding CoCrFeNiTiNbB _{1.25} High-Entropy Alloys Coatings Treated by Aging. Science of Advanced Materials, 2021, 13, 1479-1487.	0.1	1
1457	Microstructure-dependent phase stability and precipitation kinetics in equiatomic CrMnFeCoNi high-entropy alloy: Role of grain boundaries. Acta Materialia, 2022, 223, 117470.	3.8	20
1458	Design and development of (Ti, Zr, Hf)-Al based medium entropy alloys and high entropy alloys. Materials Chemistry and Physics, 2022, 276, 125409.	2.0	9
1459	A multiscale indentation-based technique to correlate acoustic emission with deformation mechanisms in complex alloys. Materials Characterization, 2021, 182, 111575.	1.9	4
1460	Tuning the microstructure for superb corrosion resistance in eutectic high entropy alloy. Journal of Materials Science and Technology, 2022, 109, 197-208.	5.6	41
1461	On the importance of microstructure information in materials design: PSP vs PP. Acta Materialia, 2022, 223, 117471.	3.8	11

#	Article	IF	CITATIONS
1462	Temperature-dependent universal dislocation structures and transition of plasticity enhancing mechanisms of the Fe40Mn40Co10Cr10 high entropy alloy. International Journal of Plasticity, 2022, 148, 103148.	4.1	30
1463	Ultrastrong and ductile BCC high-entropy alloys with low-density via dislocation regulation and nanoprecipitates. Journal of Materials Science and Technology, 2022, 110, 109-116.	5.6	79
1464	Effects of interstitial C and N on hydrogen embrittlement behavior of non-equiatomic metastable FeMnCoCr high-entropy alloys. Corrosion Science, 2022, 194, 109933.	3.0	16
1465	Effects of Zr addition on lattice strains and electronic structures of NbTaTiV high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142293.	2.6	12
1466	Transformation plasticity in high strength, ductile ultrafine-grained FeMn alloy processed by heavy ausforming. International Journal of Plasticity, 2022, 148, 103151.	4.1	12
1467	Local chemical fluctuation mediated ultra-sluggish martensitic transformation in high-entropy intermetallics. Materials Horizons, 2022, 9, 804-814.	6.4	15
1468	Al2O3 nanoparticle reinforced heterogeneous CrCoNi-matrix composites with improved strength-ductility synergy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142398.	2.6	4
1469	Anomalous precipitate-size-dependent ductility in multicomponent high-entropy alloys with dense nanoscale precipitates. Acta Materialia, 2022, 223, 117480.	3.8	72
1470	Enhanced tensile properties by heterogeneous grain structures and coherent precipitates in a CoCrNi-based medium entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142440.	2.6	18
1471	Atomic-scale evidence of chemical short-range order in CrCoNi medium-entropy alloy. Acta Materialia, 2022, 224, 117490.	3.8	63
1472	Towards stacking fault energy engineering in FCC high entropy alloys. Acta Materialia, 2022, 224, 117472.	3.8	44
1473	Revealing the complexity of high temperature oxide formation in a 38Ni-21Cr-20Fe-13Ru-6Mo-2W (at. %) multi-principal element alloy. Scripta Materialia, 2022, 210, 114419.	2.6	4
1474	Hydrogen-Induced Martensitic Transformation and Twinning in Fe45Mn35Cr10Co10. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 0, , 1.	1.1	3
1475	A new strategy to strength-toughen metals: Tailoring disorder. Theoretical and Applied Mechanics Letters, 2021, 11, 100310.	1.3	2
1476	Effect of martensite on {332} twinning formation in a metastable beta titanium alloy. Journal of Alloys and Compounds, 2022, 895, 162598.	2.8	12
1477	Enhancement in mechanical properties through an FCC-to-HCP phase transformation in an Fe-17.5Mn-10Co-12.5Cr-5Ni-5Si (in at%) medium-entropy alloy. Journal of Alloys and Compounds, 2022, 898, 162765.	2.8	13
1478	Coupled Strengthening Effects by Lattice Distortion, Local Chemical Ordering, and Nanoprecipitates in Materials, 2021, 8, .	1.2	2
1479	Theory of history-dependent multi-layer generalized stacking fault energy— A modeling of the micro-substructure evolution kinetics in chemically ordered medium-entropy alloys. Acta Materialia, 2022, 224, 117504.	3.8	19

#	Article	IF	CITATIONS
1480	Investigation of deformation mechanisms in an advanced FeCrAl alloy using in-situ SEM-EBSD testing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142373.	2.6	14
1481	Surface hardening of high- and medium-entropy alloys by mechanical attrition at room and cryogenic temperatures. Applied Physics Letters, 2021, 119, 201912.	1.5	5
1482	High throughput synthesis enabled exploration of CoCrFeNi-based high entropy alloys. Journal of Materials Science and Technology, 2022, 110, 269-282.	5.6	18
1483	Disentangling diffusion heterogeneity in high-entropy alloys. Acta Materialia, 2022, 224, 117527.	3.8	25
1484	Chemical vapor deposition diamond nucleation and initial growth on TiZrHfNb and TiZrHfNbTa high entropy alloys. Materials Letters, 2022, 309, 131366.	1.3	6
1485	A simultaneously improved strength and ductility on carbide free bainite steel via novel ausrolling and twinning process based on SFE controlling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142442.	2.6	5
1486	Alloy Mining from Superior Eutectic High-Entropy Alloys. SSRN Electronic Journal, 0, , .	0.4	0
1487	Mechanical Behavior of High-Entropy Alloys: A Review. , 2021, , 435-522.		9
1488	Machine Learning and Data Analytics for Design and Manufacturing of High-Entropy Materials Exhibiting Mechanical or Fatigue Properties of Interest. , 2021, , 115-238.		2
1490	Achieving high strength and ductility in nitrogen-doped refractory high-entropy alloys. Materials and Design, 2022, 213, 110356.	3.3	38
1491	Synergetic effect of Si addition on mechanical properties in face-centered-cubic high entropy alloys: a first-principles study. Modelling and Simulation in Materials Science and Engineering, 2022, 30, 024003.	0.8	8
1492	Metalloid substitution elevates simultaneously the strength and ductility of face-centered-cubic high-entropy alloys. Acta Materialia, 2022, 225, 117571.	3.8	64
1493	Plasma-regulated two-dimensional high entropy oxide arrays for synergistic hydrogen evolution: From theoretical prediction to electrocatalytic applications. Journal of Power Sources, 2022, 520, 230873.	4.0	22
1494	High-entropy polymer blends utilizing in situ exchange reaction. Polymer, 2022, 240, 124483.	1.8	5
1495	Machine learning assisted design of FeCoNiCrMn high-entropy alloys with ultra-low hydrogen diffusion coefficients. Acta Materialia, 2022, 224, 117535.	3.8	44
1496	Ultrastrong and ductile transient liquid phase (TLP) bonding joints reinforced by ordered multi-precipitates. Composites Part B: Engineering, 2022, 231, 109568.	5.9	16
1497	Ultrasonic-vibration-enhanced plasticity of an entropic alloy at room temperature. Acta Materialia, 2022, 225, 117569.	3.8	30
1498	Application of machine learning in understanding the irradiation damage mechanism of high-entropy materials. Journal of Nuclear Materials, 2022, 559, 153462.	1.3	18

#	Article	IF	CITATIONS
1499	Benefits of passive element Ti to the resistance of AlCrFeCoNi high-entropy alloy to corrosion and corrosive wear. Wear, 2022, 492-493, 204231.	1.5	16
1500	Toward excellent tensile properties of nitrogen-doped CoCrFeMnNi high-entropy alloy at room and cryogenic temperatures. Journal of Alloys and Compounds, 2022, 897, 163217.	2.8	43
1501	Tailored tensile properties of CoCrNi medium entropy alloy by tuning the elemental distribution. Journal of Alloys and Compounds, 2022, 897, 163171.	2.8	3
1502	Effect of nickel addition on enhancing nano-structuring and suppressing TRIP effect in Fe40Mn40Co10Cr10 high entropy alloy during high-pressure torsion. International Journal of Plasticity, 2022, 150, 103193.	4.1	18
1503	Enhanced wear-resistance of TiZrHfNb refractory high entropy alloys meditated by subsurface instabilities. Materials Letters, 2022, 311, 131612.	1.3	8
1504	Spontaneous passivation of the CoCrFeMnNi high entropy alloy in sulfuric acid solution: The effects of alloyed nitrogen and dissolved oxygen. Corrosion Science, 2022, 196, 110016.	3.0	15
1505	Strengthening by customizing microstructural complexity in nitrogen interstitial CoCrFeMnNi high-entropy alloys. Journal of Alloys and Compounds, 2022, 901, 163483.	2.8	8
1506	Evolution of microstructure homogeneity and mechanical properties in nano-/ultrafine eutectic CoCrFeNiNb (0.45Ââ‰ÂxÂâ‰Â0.65) high entropy alloy ingots and cast rods. Journal of Alloys and Compounds, 2022, 901, 163610.	2.8	15
1507	Forging strength–ductility unity in a high entropy steel. Journal of Materials Science and Technology, 2022, 113, 158-165.	5.6	5
1508	Excellent strength-ductility synergy properties of gradient nano-grained structural CrCoNi medium-entropy alloy. Journal of Materials Science and Technology, 2022, 112, 195-201.	5.6	36
1509	THE USE OF NEGATIVE BIAS POTENTIAL FOR STRUCTURAL ENGINEERING OF VACUUM-ARC NITRIDE COATINGS BASED ON HIGH-ENTROPY ALLOYS. , 2019, , 127-135.		6
1510	Improvement of Shape Memory Effect by Optimizing Thermal and Mechanical <i>γ</i> → <i>Îμ</i> Martensitic Transformation by Hot Rolling. ISIJ International, 2022, 62, 328-334.	0.6	Ο
1511	Additive Manufacturing of High-Entropy Alloys: Microstructural Metastability and Mechanical Properties. , 2021, , 239-286.		1
1512	Molecular Dynamics Study on the Strengthening Mechanisms of Cr-Fe-Co-Ni High-Entropy Alloys Based on the Generalized Stacking Fault Energy. SSRN Electronic Journal, 0, , .	0.4	0
1513	Machine-learning and high-throughput studies for high-entropy materials. Materials Science and Engineering Reports, 2022, 147, 100645.	14.8	44
1514	Enhanced Strength and Ductility by a Core–Shell-Like Distributed Laves Phase in Cr ₁₅ Ti ₂₅ Zr ₂₅ Hf ₂₅ Sc ₁₀ High-Entropy Alloy. SSRN Electronic Journal, 0, , .	0.4	Ο
1515	In situ neutron diffraction unravels deformation mechanisms of a strong and ductile FeCrNi medium entropy alloy. Journal of Materials Science and Technology, 2022, 116, 103-120.	5.6	16
1516	Evolution of microstructure and mechanical properties during annealing of heavily rolled AlCoCrFeNi2.1 eutectic high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142558.	2.6	26

#	Article	IF	CITATIONS
1517	Revealing the tempering embrittlement in a medium entropy alloy containing carbon atoms. AIP Advances, 2022, 12, 015304.	0.6	1
1518	A thermodynamic description for the Co–Cr–Fe–Mn–Ni system. Journal of Materials Science, 2022, 57, 1373-1389.	1.7	14
1519	Microstructural and Mechanical Evaluation of NbMoTiVSix(<i>x </i> = 0, 0.25) Refractory Highâ€Entropy Alloys at High Temperature. Advanced Engineering Materials, 2022, 24, .	1.6	2
1520	Microstructure and texture of severely warm-rolled and annealed coarse-grained CoCrNi medium entropy alloy (MEA): A perspective on the initial grain size effect. Journal of Alloys and Compounds, 2022, 904, 163954.	2.8	8
1521	Proposing the Concept of Plaston and Strategy to Manage Both High Strength and Large Ductility in Advanced Structural Materials, on the Basis of Unique Mechanical Properties of Bulk Nanostructured Metals. , 2022, , 3-34.		2
1522	Recent Progress in Our Understanding of Phase Stability, Atomic Structures and Mechanical and Functional Properties of High-Entropy Alloys. Materials Transactions, 2022, 63, 394-401.	0.4	30
1523	A Focused Review on Engineering Application of Multi-Principal Element Alloy. Frontiers in Materials, 2022, 8, .	1.2	4
1524	Charpy impact behavior and deformation mechanisms of Cr26Mn20Fe20Co20Ni14 high-entropy alloy at ambient and cryogenic temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 837, 142735.	2.6	8
1525	Tribological properties of high-entropy alloys: A review. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 389-403.	2.4	36
1526	Effective Strengthening and Toughening in High Entropy-Alloy by Combining Extrusion Machining and Heat Treatment. SSRN Electronic Journal, 0, , .	0.4	0
1527	Mechanical Properties and Deformation Mechanisms of Heterostructured High-Entropy and Medium-Entropy Alloys: A Review. Frontiers in Materials, 2022, 8, .	1.2	25
1528	Microstructure and Properties of Laser-cladded Fe50Mn30Co10Cr10 High Entropy Alloy Coatings. Journal of Thermal Spray Technology, 0, , 1.	1.6	4
1529	Dislocation re-emission induced staged work hardening in graphene-nanotwin reinforced Cu: A molecular dynamics simulation study. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2022, 236, 989-998.	0.7	1
1530	Atomistic insights of a chemical complexity effect on the irradiation resistance of high entropy alloys. Materials Advances, 2022, 3, 1680-1686.	2.6	14
1531	Strengthening and dynamic recrystallization mediated by Si-alloying in a refractory high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 832, 142480.	2.6	16
1532	Unusual He-ion irradiation strengthening and inverse layer thickness-dependent strain rate sensitivity in transformable high-entropy alloy/metal nanolaminates: A comparison of Fe50Mn30Co10Cr10/Cu vs Fe50Mn30Co10Ni10/Cu. Journal of Materials Science and Technology, 2022, 116, 199-213.	5.6	7
1533	Effect of Co on phase stability and mechanical behavior of CoxCrFeNiMnAl0.3 high entropy alloys with micro/nano hierarchical structure. Materials and Design, 2022, 215, 110442.	3.3	18
1534	Phase classification of multi-principal element alloys via interpretable machine learning. Npj Computational Materials, 2022, 8, .	3.5	30

#	Article	IF	CITATIONS
1535	Structure motif of chemical short-range order in a medium-entropy alloy. Materials Research Letters, 2022, 10, 149-155.	4.1	23
1536	Heterogeneous precipitation strengthened non-equiatomic NiCoFeAlTi medium entropy alloy with excellent mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 834, 142617.	2.6	15
1537	Cantor-derived medium-entropy alloys: bridging the gap between traditional metallic and high-entropy alloys. Journal of Materials Research and Technology, 2022, 17, 1868-1895.	2.6	44
1538	Microstructural Evolution of Co35Cr25Fe30Ni10 TRIP Complex Concentrated Alloy with the Addition of Minor Cu and Its Effect on Mechanical Properties. Acta Metallurgica Sinica (English Letters), 0, , 1.	1.5	0
1539	Air plasma sprayed high-entropy AlCoCrFeNiY coating with excellent oxidation and spallation resistance under cyclic oxidation at 1050–1150ÂðC. Corrosion Science, 2022, 198, 110151.	3.0	11
1540	Effects of thermal aging on mechanical properties and microstructures of an interstitial high entropy alloy with ultrasonic surface mechanical attrition treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 838, 142755.	2.6	9
1541	Thermo-elastic behavior of hexagonal Sc-Ti-Zr-Hf high-entropy alloys. Journal Physics D: Applied Physics, O, , .	1.3	0
1542	Unveiling the interplay of deformation mechanisms in a metastable high entropy alloy with tuned composition using synchrotron X-ray diffraction. Materials Today Communications, 2022, 30, 103155.	0.9	0
1543	Outstanding cryogenic strength-ductility properties of a cold-rolled medium-entropy TRIP Fe65(CoNi)25Cr9A·5C0.5 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 836, 142720.	2.6	16
1544	Study on self-lubricating properties of AlCoCrFeNi2.1 eutectic high entropy alloy with electrochemical boronizing. Surface and Coatings Technology, 2022, 433, 128082.	2.2	17
1545	Combinatorial development of multicomponent Invar alloys via rapid alloy prototyping. Materialia, 2022, 21, 101326.	1.3	5
1546	Microstructural evolution and strain hardening behavior of a novel two-stage warm rolled ultra-high strength medium Mn steel with heterogeneous structures. International Journal of Plasticity, 2022, 151, 103212.	4.1	36
1547	Dislocation emission and propagation under a nano-indenter in a model high entropy alloy. Computational Materials Science, 2022, 205, 111218.	1.4	24
1548	Radiation-assisted chemical short-range order formation in high-entropy alloys. Scripta Materialia, 2022, 212, 114547.	2.6	24
1549	On the enhanced hardening ability and plasticity mechanisms in a novel Mn-added CoCrNi medium entropy alloy during high-pressure torsion. Journal of Alloys and Compounds, 2022, 904, 163941.	2.8	12
1550	Influence of tantalum composition on mechanical behavior and deformation mechanisms of TiZrHfTax high entropy alloys. Journal of Alloys and Compounds, 2022, 903, 163796.	2.8	12
1551	Tuning mechanical properties of high entropy alloys by electro-pulsing method. Journal of Alloys and Compounds, 2022, 902, 163684.	2.8	1
1552	Single-phase rare-earth high-entropy zirconates with superior thermal and mechanical properties. Journal of the European Ceramic Society, 2022, 42, 2391-2399.	2.8	49

ARTICLE IF CITATIONS Interface-affected mechanical properties and strengthening mechanisms in heterogeneous high 1553 2.8 2 entropy alloy nanolaminates. Journal of Alloys and Compounds, 2022, 903, 163915. Molecular dynamics simulation of radiation defect evolution mechanism of NiFe-graphene 1554 3.1 nanocomposite. Applied Surface Science, 2022, 584, 152503. Micro/nano-mechanical behaviors of individual FCC, BCC and FCC/BCC interphase in a high-entropy 1555 5.6 22 alloy. Journal of Materials Science and Technology, 2022, 114, 102-110. Stress-controlled fatigue of HfNbTaTiZr high-entropy alloy and associated deformation and fracture mechanisms. Journal of Materials Science and Technology, 2022, 114, 191-205. Origin of superior low-cycle fatigue resistance of an interstitial metastable high-entropy alloy. 1557 5.6 10 Journal of Materials Science and Technology, 2022, 115, 115-128. Microstructure and Enhanced Tensile Properties of AlCo <sub>x</sub>CrFeNi High Entropy Alloys with High Co Content Fabricated By Laser Melting Deposition. SSRN Electronic 0.4 Journal, 0, , . Metalâ&"Tannin Coordination Assembly Route to Nanostructured High-Entropy Oxide Perovskites with 1559 3.2 14 Abundant Defects. Chemistry of Materials, 2022, 34, 1746-1755. Enhanced strength-ductility synergy via novel bifunctional nano-precipitates in a high-entropy alloy. International Journal of Plasticity, 2022, 153, 103235. 4.1 56 1561 A highly distorted ultraelastic chemically complex Elinvar alloy. Nature, 2022, 602, 251-257. 13.7 75 General synthesis of high-entropy alloy and ceramic nanoparticles in nanoseconds. , 2022, 1, 138-146. Deformation characteristics of nanolayered dual-phase CrCoNi medium-entropy alloy nanowires. 1563 0 0.9 Materials Today Communications, 2022, 31, 103273. Microstructural Evolution and Mechanical Properties of Non-Equiatomic (CoNi)74.66Cr17Fe8C0.34 1564 1.3 High-Entropy Alloy. Materials, 2022, 15, 1312. Higher Damping Capacities in Gradient Nanograined Metals. Nano Letters, 2022, 22, 1491-1496. 1565 4.5 7 Molecular dynamics study on the strengthening mechanisms of Cr–Fe–Co–Ni high-entropy alloys 2.8 based on the generalized stacking fault energy. Journal of Alloys and Compounds, 2022, 905, 164137 Enhanced antibacterial behavior of a novel Cu-bearing high-entropy alloy. Journal of Materials 1567 33 5.6 Science and Technology, 2022, 117, 158-166. Microstructure of and mechanical properties of an as-cast fine-grain dual-phase Fe-based high entropy 1568 alloy formed via solid-state phase transformation. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 838, 142779. Fabrication of amorphous and high-entropy biphasic composites using high-frequency ultrasonic 1569 1.55 vibration. Journal of Non-Crystalline Solids, 2022, 582, 121458. Excellent tensile properties induced by heterogeneous grain structure and dual nanoprecipitates in 1570 high entropy alloys. Materials Characterization, 2022, 186, 111779.

#	Article	IF	CITATIONS
1571	Deformation mechanisms of TRIP–TWIP medium-entropy alloys via molecular dynamics simulations. International Journal of Mechanical Sciences, 2022, 219, 107098.	3.6	27
1572	Microstructure and mechanical properties of novel Si-added CrFeNi medium-entropy alloy prepared via vacuum arc-melting. Journal of Alloys and Compounds, 2022, 904, 164136.	2.8	14
1573	Understanding the nature of passivation film formed during corrosion of Fe39Mn20Co20Cr15Si5Al1 high entropy alloy in 3.5Âwt% NaCl solution. Journal of Alloys and Compounds, 2022, 904, 164100.	2.8	17
1574	Achieving gradient heterogeneous structure in Mg alloy for excellent strength-ductility synergy. Journal of Magnesium and Alloys, 2023, 11, 2392-2403.	5.5	20
1575	High-Temperature Oxidation Behavior of AlxCoCrFeNiM (M = Cu, Ti, V) High-Entropy Alloys. Physical Mesomechanics, 2021, 24, 653-662.	1.0	12
1576	Chemically complex intermetallic alloys: A new frontier for innovative structural materials. Materials Today, 2022, 52, 161-174.	8.3	29
1577	Effect of Phase Interface on Stretch-Flangeability of Metastable Ferrous Medium-Entropy Alloys. SSRN Electronic Journal, 0, , .	0.4	0
1578	Mn Content Optimum on Microstructures and Mechanical Behavior of Fe-Based Medium Entropy Alloys. SSRN Electronic Journal, 0, , .	0.4	1
1579	Chemical Ordering Effect on the Radiation Resistance of a Conicrfemn High-Entropy Alloy. SSRN Electronic Journal, 0, , .	0.4	0
1580	Phase Evolution, Microstructure, and Mechanical Behaviors of Fe3cr2conialx Multi-Principal Elements Alloys. SSRN Electronic Journal, 0, , .	0.4	0
1581	Microstructure and Mechanical Properties of In-Situ Tic Particles Reinforced Femnnico High Entropy Alloy Matrix Composites. SSRN Electronic Journal, 0, , .	0.4	0
1582	Synergistic Enhancement of Strength and Ductility of Maraging Steel Via Nanometer-Scaled Microstructures. SSRN Electronic Journal, 0, , .	0.4	0
1583	Surface segregation in the AgAuCuPdPt high entropy alloy: insights from molecular simulations. Molecular Systems Design and Engineering, 2022, 7, 878-888.	1.7	6
1584	Unique Work Hardening Rate of a Heterogeneous Structured High Purity TiÂSubjected to Laser Surface Treatment. SSRN Electronic Journal, 0, , .	0.4	0
1585	Boronizing of CoCrFeMnNi High-Entropy Alloys Using Spark Plasma Sintering. Journal of Manufacturing and Materials Processing, 2022, 6, 29.	1.0	11
1586	Chemical medium-range order in a medium-entropy alloy. Nature Communications, 2022, 13, 1021.	5.8	46
1587	Fracture properties of high-entropy alloys. MRS Bulletin, 2022, 47, 176-185.	1.7	11
1588	Uniaxial mechanical properties of face-centered cubic single- and multiphase high-entropy alloys. MRS Bulletin, 2022, 47, 168-174.	1.7	15

#	Article	IF	CITATIONS
1589	Two-Dimensional High-Entropy Metal Phosphorus Trichalcogenides for Enhanced Hydrogen Evolution Reaction. ACS Nano, 2022, 16, 3593-3603.	7.3	77
1590	Microstructural Features and Mechanical Behaviors of Al0.5Cr0.8CoFeNi2.5V0.2 High-Entropy Alloys Fabricated by Selective Laser Melting Technique. Acta Metallurgica Sinica (English Letters), 2022, 35, 1591-1606.	1.5	6
1591	High-Entropy Laminate Metal Carbide (MAX Phase) and Its Two-Dimensional Derivative MXene. Chemistry of Materials, 2022, 34, 2098-2106.	3.2	60
1592	Effect of aging treatment on microstructure and wear resistance of CoCrFeNiTiNbB1.25 high entropy alloy coatings by laser cladding. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	1
1593	Unveiling the role of glassy nanodomains in strength and plasticity of crystal–glass nanocomposites via atomistic simulation. Journal of Applied Physics, 2022, 131, .	1.1	3
1594	A self-driving laboratory advances the Pareto front for material properties. Nature Communications, 2022, 13, 995.	5.8	55
1595	The dual role of martensitic transformation in fatigue crack growth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	25
1596	Nano-amorphous—crystalline dual-phase design of Al80Li5Mg5Zn5Cu5 multicomponent alloy. Science China Materials, 0, , 1.	3.5	5
1597	Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering. Materials Today, 2022, 54, 83-89.	8.3	72
1598	A Novel Series of Fe8.25CoCrNiMnNb0.1Mox Multi-Component Alloys with Excellent Combined Strength and Ductility. Journal of Materials Engineering and Performance, 2022, 31, 5374-5381.	1.2	1
1599	Fishtail effect and the vortex phase diagram of high-entropy alloy superconductor. Applied Physics Letters, 2022, 120, .	1.5	7
1600	Strengthening of CoNiFeV0.5Mo0.2 Medium Entropy Alloy Wire Rods with Loading-Unloading Cycles. Materials, 2022, 15, 1493.	1.3	0
1601	Microstructure and Properties of Additively Manufactured AlCoCr0.75Cu0.5FeNi Multicomponent Alloy: Controlling Magnetic Properties by Laser Powder Bed Fusion via Spinodal Decomposition. Materials, 2022, 15, 1801.	1.3	1
1602	Corrosion Resistance of AlxCoCrFeNiM (M = Ti, V, Si, Mn, Cu) High Entropy Alloys in NaCl and H2SO4 Solutions. Metals, 2022, 12, 352.	1.0	9
1603	Nanomaterials by severe plastic deformation: review of historical developments and recent advances. Materials Research Letters, 2022, 10, 163-256.	4.1	215
1604	Effect of Ti/Al Ratio on the Elemental Partitioning in the Face-Centered Cubic-Based γ-γ′ Dual-Phase High Entropy Alloy Studied by Atom Probe Tomography. Frontiers in Materials, 2022, 9, .	1.2	0
1605	Improving Mechanical Properties of a Forged High-Manganese Alloy by Regulating Carbon Content and Carbide Precipitation. Metals, 2022, 12, 473.	1.0	1
1606	Microstructure and sliding wear behavior of (AlCoCrFeNi)1-x(WC)x. Ceramics International, 2022, 48, 19399-19411.	2.3	13

#	Article	IF	CITATIONS
1607	Boron based new high entropy alloy superconductor Mo _{0.11} W _{0.11} V _{0.11} Re _{0.34} B _{0.33} . Superconductor Science and Technology, 2022, 35, 074002.	1.8	7
1608	High-entropy materials. MRS Bulletin, 2022, 47, 145-150.	1.7	22
1609	Deformation Behaviors of an Additive-Manufactured Ni32Co30Cr10Fe10Al18 Eutectic High Entropy Alloy at Ambient and Elevated Temperatures. Acta Metallurgica Sinica (English Letters), 2022, 35, 1607-1616.	1.5	4
1610	Metastable high entropy alloys. Applied Physics Letters, 2022, 120, .	1.5	3
1611	Phase transformation-induced strengthening and multistage strain hardening in double-gradient-structured high-entropy alloys. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	3
1612	High-entropy alloys: a review of mechanical properties and deformation mechanisms at cryogenic temperatures. Journal of Materials Science, 2022, 57, 6573-6606.	1.7	40
1613	Microstructural evolution of Al _{0.25} CoCrFeNiCu and Al _{0.45} CoCrFeNiSi _{0.45} high-entropy alloys during laser cladding. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 0, , 146442072210842.	0.7	1
1614	High-entropy-alloy nanoparticles with 21 ultra-mixed elements for efficient photothermal conversion. National Science Review, 2022, 9, .	4.6	31
1615	Tailoring microstructures of CoCrFeNiNb0.25 hypoeutectic high-entropy alloy by hot deformation. Rare Metals, 2022, 41, 2028-2037.	3.6	9
1616	Influence of Co Content on Cracking Behavior and Wear Resistance of WCp-Reinforced FeCrMnCox HEAs Fabricated by the Laser Cladding Method. Frontiers in Materials, 2022, 9, .	1.2	2
1617	How atoms of polycrystalline Nb20.6Mo21.7Ta15.6W21.1V21.0 refractory high-entropy alloys rearrange during the melting process. Scientific Reports, 2022, 12, 5183.	1.6	5
1618	Microstructures and Mechanical Properties of FeNiCrMnAl High-Entropy Alloys. Journal of Materials Engineering and Performance, 2022, 31, 7820-7829.	1.2	3
1619	Role of chemical disorder on radiation-induced defect production and damage evolution in NiFeCoCr. Journal of Nuclear Materials, 2022, 565, 153689.	1.3	3
1620	Design and Fabrication of a 5Ti5Zr5Nb1Sn Highâ€Entropy Alloy as Metallic Biomedical Material. Advanced Engineering Materials, 2022, 24, .	1.6	1
1621	Microstructure tuning enables synergistic improvements in strength and ductility of wire-arc additive manufactured commercial Al-Zn-Mg-Cu alloys. Virtual and Physical Prototyping, 2022, 17, 649-661.	5.3	12
1622	Compositionally complex coherent precipitation-strengthened high-entropy alloys: a critical review. Rare Metals, 2022, 41, 2002-2015.	3.6	9
1623	In-Situ Observation of FCC→HCP Transformation-Induced Plasticity Behavior During Dynamic Deformation of CoCrNi Multi-principal Element Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 1821-1830.	1.1	4
1624	The Contribution of Various Plasticity Mechanisms to the Deformation Behavior of Gradient Nanograined FeNi Alloy. Metals, 2022, 12, 573.	1.0	4

#	Article	IF	CITATIONS
1625	Microstructures and Properties of the Low-Density Al15Zr40Ti28Nb12M(Cr, Mo, Si)5 High-Entropy Alloys. Metals, 2022, 12, 496.	1.0	16
1626	Enhanced Electromagnetic-Wave Absorbing Performances and Corrosion Resistance via Tuning Ti Contents in FeCoNiCuTi _{<i>x</i>} High-Entropy Alloys. ACS Applied Materials & Interfaces, 2022, 14, 12375-12384.	4.0	38
1627	Dynamic tension and constitutive model in Fe40Mn20Cr20Ni20 high-entropy alloys with a heterogeneous structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 839, 142837.	2.6	24
1628	In-situ synthesized age-hardenable high-entropy composites with superior wear resistance. Composites Part B: Engineering, 2022, 235, 109795.	5.9	19
1629	Work hardening in metastable high entropy alloys: a modified five-parameter model. Journal of Materials Research and Technology, 2022, 18, 3358-3372.	2.6	10
1630	Dynamic properties of FeCrMnNi, a high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142906.	2.6	15
1631	Multiple minor elements improve strength-ductility synergy of a high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142901.	2.6	11
1632	Martensitic twinning transformation mechanism in a metastable IVB element-based body-centered cubic high-entropy alloy with high strength and high work hardening rate. Journal of Materials Science and Technology, 2022, 124, 217-231.	5.6	5
1633	Synergistic enhancement of strength and ductility of cobalt-free maraging steel via nanometer-scaled microstructures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 842, 143099.	2.6	19
1634	Effects of Fe atoms on hardening of a nickel matrix: Nanoindentation experiments and atom-scale numerical modeling. Materials and Design, 2022, 217, 110639.	3.3	25
1635	Atomistic simulations of the deformation behavior of an Nb nanowire embedded in a NiTi shape memory alloy. Acta Materialia, 2022, 228, 117764.	3.8	5
1636	Enhancing strength via nano-lattice defects in La0.008Al0.08FeCoCrNiMn high-entropy alloy produced by rapid solidification, cold rolling and annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 839, 142860.	2.6	1
1637	Gradient-structured high-entropy alloy with improved combination of strength and hydrogen embrittlement resistance. Corrosion Science, 2022, 200, 110253.	3.0	26
1638	Characterization of deformation substructure evolution in metastable Fe49Mn30Co10Cr10B1 interstitial high entropy alloy. Intermetallics, 2022, 144, 107508.	1.8	4
1639	Phase formation prediction of high-entropy alloys: a deep learning study. Journal of Materials Research and Technology, 2022, 18, 800-809.	2.6	29
1640	Designing structures with combined gradients of grain size and precipitation in high entropy alloys for simultaneous improvement of strength and ductility. Acta Materialia, 2022, 230, 117847.	3.8	74
1641	First-principles calculations to investigate elastic and thermodynamic properties of FeAlNixCrMn quinternary alloys. Journal of Materials Research and Technology, 2022, 18, 1322-1332.	2.6	7
1642	Mechanical behavior of thin CoCrFeNi high-entropy alloy sheet under laser shock peening. Intermetallics, 2022, 144, 107529.	1.8	11

#	Article	IF	CITATIONS
1643	Effects of Ti addition on structural evolution and tensile properties of Co-free CrFeNi multi-principle element alloys. Intermetallics, 2022, 144, 107525.	1.8	9
1644	Size effects and plastic deformation mechanisms in single-crystalline CoCrFeNi micro/nanopillars. Journal of the Mechanics and Physics of Solids, 2022, 162, 104853.	2.3	27
1645	Phase transformation via atomic-scale periodic interfacial energy. Materials Today Physics, 2022, 24, 100668.	2.9	0
1646	Effective strengthening and toughening in high entropy-alloy by combining extrusion machining and heat treatment. Scripta Materialia, 2022, 213, 114630.	2.6	13
1647	Pairwise dilatational strain as a parametric model describing potential secondary phase formation and high-angle grain misorientation in as-cast high-entropy alloys. Intermetallics, 2022, 144, 107462.	1.8	0
1648	Re-examination of the effect of reducing annealing twin boundary density on the shape memory effect in Fe-Mn-Si-based alloys. Journal of Alloys and Compounds, 2022, 907, 164505.	2.8	6
1649	A combinatorial assessment of microstructure and mechanical properties in AlCrCuFeNi2Vx concentrated alloys. Journal of Alloys and Compounds, 2022, 906, 164304.	2.8	3
1650	A comparative study of microstructures and nanomechanical properties of additively manufactured and commercial metallic stents. Materials Today Communications, 2022, 31, 103372.	0.9	5
1651	A lightweight refractory complex concentrated alloy with high strength and uniform ductility. Applied Materials Today, 2022, 27, 101429.	2.3	7
1652	Heterostructured alloys with enhanced strength-ductility synergy through laser-cladding. Scripta Materialia, 2022, 215, 114732.	2.6	23
1653	Machine learning-enabled framework for the prediction of mechanical properties in new high entropy alloys. Journal of Alloys and Compounds, 2022, 908, 164578.	2.8	20
1654	Theoretical modeling of toughening mechanisms in the CrMnFeCoNi high-entropy alloy at room temperature. International Journal of Plasticity, 2022, 154, 103304.	4.1	9
1655	Strengthening CrFeCoNiMn0.75Cu0.25 high entropy alloy via laser shock peening. International Journal of Plasticity, 2022, 154, 103296.	4.1	60
1656	The nucleation mechanism of martensite and its interaction with dislocation dipoles in dual-phase high-entropy alloys. Journal of Alloys and Compounds, 2022, 909, 164685.	2.8	5
1657	A feasible route to produce 1.1 GPa ferritic-based low-Mn lightweight steels with ductility of 47%. Journal of Materials Science and Technology, 2022, 117, 225-237.	5.6	10
1658	Unveiling the precipitation behavior and mechanical properties of Co-free Ni47-Fe30Cr12Mn8Al Ti3 high-entropy alloys. Journal of Materials Science and Technology, 2022, 118, 25-34.	5.6	27
1659	Chemical-element-distribution-mediated deformation partitioning and its control mechanical behavior in high-entropy alloys. Journal of Materials Science and Technology, 2022, 120, 99-107.	5.6	7
1660	Microstructure evolution and formation mechanism of CoCrCu1.2FeNi high entropy alloy during the whole process of semiâ€solid billet preparation. Journal of Materials Science and Technology, 2022, 120, 172-185.	5.6	19

#	Article	IF	CITATIONS
1661	Folded graphene reinforced nanocomposites with superior strength and toughness: A molecular dynamics study. Journal of Materials Science and Technology, 2022, 120, 196-204.	5.6	22
1662	Structural Phase Variations in High-Entropy Alloy upon Pulsed Electron Beam Irradiation. Steel in Translation, 2021, 51, 788-794.	0.1	1
1663	The Temperature Dependence of Deformation Behaviors in High-Entropy Alloys: A Review. Metals, 2021, 11, 2005.	1.0	10
1664	Temperature-Controlled Dual-Beam Optical Trap for Single Particle Studies of Organic Aerosol. Journal of Physical Chemistry A, 2022, 126, 109-118.	1.1	8
1665	High entropy alloy synthesis, characterisation, manufacturing & potential applications: a review. Materials and Manufacturing Processes, 2022, 37, 1085-1109.	2.7	19
1666	A dimensionless number for high-throughput design of multi-principal element alloys in directed energy deposition. Applied Physics Letters, 2021, 119, .	1.5	4
1667	Tuning mechanical metastability in FeMnCo medium entropy alloys and a peek into deformable hexagonal close-packed martensite. Applied Physics Letters, 2021, 119, 261905.	1.5	3
1668	Structural phase variations in high-entropy alloy at irradiation by pulsed electron beam. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2021, 64, 846-854.	0.1	0
1669	The Evolution of Intermetallic Compounds in High-Entropy Alloys: From the Secondary Phase to the Main Phase. Metals, 2021, 11, 2054.	1.0	15
1670	Atomistic simulations of deformation mechanism of fcc/bcc dual-phase high-entropy alloy multilayers. Journal of Applied Physics, 2021, 130, 244301.	1.1	3
1671	Effects of Transient Thermal Shock on the Microstructure and Mechanical Properties of CoCrFeNiMn High-Entropy Alloy Coatings. Frontiers in Materials, 2021, 8, .	1.2	1
1672	Decoupling between Shockley partials and stacking faults strengthens multiprincipal element alloys. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
1673	Effect of Al addition on the microstructures and deformation behaviors of non-equiatomic FeMnCoCr metastable high entropy alloys. Applied Physics Letters, 2021, 119, .	1.5	5
1674	Effects of Nb Addition on Microstructures and Mechanical Properties of Nbx-CoCrFeMnNi High Entropy Alloy Films. Coatings, 2021, 11, 1539.	1.2	12
1675	Enhancing the magnetocaloric response of high-entropy metallic-glass by microstructural control. Science China Materials, 2022, 65, 1134-1142.	3.5	24
1676	Entropy driven synthesis of new materials. , 0, 1, 1-3.		4
1677	Efficient machine-learning model for fast assessment of elastic properties of high-entropy alloys. Acta Materialia, 2022, 232, 117924.	3.8	39
1678	The effect of interstitial carbon atoms on defect evolution in high entropy alloys under helium irradiation. Acta Materialia, 2022, 233, 117955.	3.8	26

#	Article	IF	Citations
1679	Effects of carbon and molybdenum on the nanostructural evolution and strength/ductility trade-off in Fe40Mn40Co10Cr10 high-entropy alloys. Journal of Alloys and Compounds, 2022, 911, 165108.	2.8	27
1680	Effect of Heat Treatment on Microstructure and Mechanical Properties of Direct Energy Deposited AlCoCrFeNi2.1. Journal of Thermal Spray Technology, 2022, 31, 1634-1648.	1.6	2
1681	Exceptional Phase-Transformation Strengthening of Fe50Mn20Cr20Ni10 Medium-Entropy Alloys at Cryogenic Temperature. Metals, 2022, 12, 643.	1.0	0
1682	Ni-Nb-Zr metastable phases formation, a thermodynamic and chemical approach Ecletica Quimica, 2022, 47, 97-102.	0.2	0
1683	Unveiling the grain boundary-related effects on the incipient plasticity and dislocation behavior in nanocrystalline CrCoNi medium-entropy alloy. Journal of Materials Science and Technology, 2022, 127, 98-107.	5.6	9
1684	Dynamically reversible shear transformations in a CrMnFeCoNi high-entropy alloy at cryogenic temperature. Acta Materialia, 2022, 232, 117937.	3.8	24
1685	Sustaining strength-ductility synergy of SLM Fe50Mn30Co10Cr10 metastable high-entropy alloy by Si addition. Intermetallics, 2022, 145, 107565.	1.8	23
1686	Microstructure and unusually strong recrystallization texture of the FCC phase of a cost-effective high-strength dual-phase AlCrFe2Ni2 high entropy alloy. Intermetallics, 2022, 145, 107559.	1.8	10
1687	Regulation of strength and ductility of single-phase twinning-induced plasticity high-entropy alloys. Scripta Materialia, 2022, 216, 114738.	2.6	24
1688	Twin mechanical metamaterials inspired by nano-twin metals: Experimental investigations. Composite Structures, 2022, 291, 115580.	3.1	5
1689	cardiGAN: A generative adversarial network model for design and discovery of multi principal element alloys. Journal of Materials Science and Technology, 2022, 125, 81-96.	5.6	13
1691	Nanoalloy libraries from laser-induced thermionic emission reduction. Science Advances, 2022, 8, eabm6541.	4.7	11
1692	Enhanced Strength and Ductility by a Core–Shell-Like Distributed Laves Phase in Cr15ti25zr25hf25sc10 High-Entropy Alloy. SSRN Electronic Journal, 0, , .	0.4	0
1693	Simultaneous Strength-Plasticity Enhancement of Dual-Phase Light-Weight Medium Entropy Alloy. SSRN Electronic Journal, 0, , .	0.4	0
1694	Deformation behavior of FeNi nanofilms with a gradient grain structure during uniaxial compression. AIP Conference Proceedings, 2022, , .	0.3	0
1695	Interstitial-Oxygen Induced and Magnetically Driven Hcp-to-Fcc Transformation in Cocrfenio High-Entropy Alloy: A First-Principles Study. SSRN Electronic Journal, 0, , .	0.4	0
1696	Core-Shell Structure in Cocrcutiv High-Entropy Alloy and its Effect on Compressive Property. SSRN Electronic Journal, 0, , .	0.4	0
1697	Mechanical Behavior of High-Entropy Alloys—Questions and Answers. , 2022, , 21-47.		О

#	Article	IF	CITATIONS
1698	High-Entropy Alloys. , 2022, , 1-19.		1
1699	Reverse Transformation in [110]-Oriented Face-Centered-Cubic Single Crystals Studied by Atomic Simulations. Acta Metallurgica Sinica (English Letters), 2022, 35, 1631-1640.	1.5	2
1700	Phase Stability in High-Entropy Alloys: The Role of Configurational Entropy. Jom, 2022, 74, 4154-4161.	0.9	2
1701	Deformation mechanisms in crystalline-amorphous high-entropy composite multilayers. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 848, 143144.	2.6	11
1702	Crystal structure and microwave dielectric properties of (Mg0.2Ni0.2Zn0.2Co0.2Mn0.2)2SiO4 - A novel high-entropy ceramic. Ceramics International, 2022, 48, 23307-23313.	2.3	15
1703	Effect of Nb Content on Microstructure and Mechanical Properties of Mo0.25V0.25Ti1.5Zr0.5Nbx High-Entropy Alloys. Acta Metallurgica Sinica (English Letters), 2022, 35, 1641-1652.	1.5	4
1704	Shock compression and spallation damage of high-entropy alloy Al0.1CoCrFeNi. Journal of Materials Science and Technology, 2022, 128, 1-9.	5.6	31
1705	Effect of high-current pulsed electron beam treatment on defect substructure of the high-entropy alloy of Co – Cr – Fe – Mn – Ni system. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2022, 65, 254-260.	0.1	0
1706	Effects of hydrogen charging and deformation on tensile properties of a multi-component alloy for nuclear applications. Tungsten, 2022, 4, 212-218.	2.0	7
1707	(FeMnNi)84(AlTi)16 High-Entropy Alloy: Correlation of Microstructure, Strengthening Mechanisms and Hardness at Various Conditions (As-Cast, Solution Treated, Aged). Metallography, Microstructure, and Analysis, 0, , 1.	0.5	1
1708	Interrupted in-situ EBSD study of crystallographic characteristics and deformation micro-mechanism in TiZrHfNb refractory high entropy alloys during uniaxial tensile deformation. Materials Characterization, 2022, 189, 111960.	1.9	6
1709	Phase Prediction of High-Entropy Alloys by Integrating Criterion and Machine Learning Recommendation Method. Materials, 2022, 15, 3321.	1.3	3
1710	Machine learning discovery of a new cobalt free multi-principal-element alloy with excellent mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 845, 143198.	2.6	16
1711	Enhancing the hardness and damage-tolerance of CoCrNiAlTi coatings through dual-phase and nanotwinned structures. Surface and Coatings Technology, 2022, 440, 128479.	2.2	2
1712	High-strength titanium alloys for aerospace engineering applications: A review on melting-forging process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 845, 143260.	2.6	181
1713	Hydrogen-assisted failure in partially recrystallized carbon alloyed equiatomic CoCrFeMnNi high-entropy alloy. Corrosion Science, 2022, 203, 110357.	3.0	8
1714	Hierarchical precipitates, sequential deformation-induced phase transformation, and enhanced back stress strengthening of the micro-alloyed high entropy alloy. Acta Materialia, 2022, 233, 117974.	3.8	32
1715	High-temperature deformation behavior and processing maps of a novel AlNbTi3VZr1.5 refractory high entropy alloy. Journal of Alloys and Compounds, 2022, 912, 165220.	2.8	15

#	Article	IF	Citations
1716	The B2 phase-driven microstructural heterogeneities and twinning enable ultrahigh cryogenic strength and large ductility in NiCoCr-based medium-entropy alloy. Acta Materialia, 2022, 233, 117981.	3.8	59
1717	Towards ultrastrong and ductile medium-entropy alloy through dual-phase ultrafine-grained architecture. Journal of Materials Science and Technology, 2022, 126, 228-236.	5.6	15
1718	Development and Property Tuning of Refractory High-Entropy Alloys: A Review. Acta Metallurgica Sinica (English Letters), 2022, 35, 1231-1265.	1.5	21
1719	Enhancing the shear strength of the Au–Ge solder joint via forming a ductile face-centered cubic solid solution layer at the interface. Journal of Materials Research and Technology, 2022, 19, 605-616.	2.6	1
1720	Anisotropy study of the microstructure and properties of AlCoCrFeNi2.1 eutectic high entropy alloy additively manufactured by selective laser melting. Journal of Materials Science and Technology, 2022, 129, 228-239.	5.6	27
1721	Ultrahigh strength induced by multiple heterostructures in a FeMnCoCrN high-entropy alloy fabricated by powder metallurgy technique. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 846, 143304.	2.6	8
1722	Orientation Dependent Twinning Behavior in a Twinning-induced Plasticity Steel Investigated by Nanoindentation. Metals and Materials International, 0, , .	1.8	1
1723	Effect of Electromagnetic Pulses on the Microstructure and Abrasive Gas Wear Resistance of Al0.25CoCrFeNiV High Entropy Alloy. Coatings, 2022, 12, 688.	1.2	3
1724	Atomic scale structure dominated FCC and B2 responses to He ion irradiation in eutectic high-entropy alloy AlCoCrFeNi2.1. Journal of Materials Science and Technology, 2022, 129, 87-95.	5.6	13
1725	B2-precipitation induced optimization of grain boundary character distribution in an Al0.3CoCrFeNi high-entropy alloy. Journal of Alloys and Compounds, 2022, 918, 165587.	2.8	4
1726	Interstitial carbon content effect on the microstructure and mechanical properties of additively manufactured NiCoCr medium-entropy alloy. Journal of Alloys and Compounds, 2022, 918, 165601.	2.8	4
1727	Shortâ€Range Diffusion Enables General Synthesis of Mediumâ€Entropy Alloy Aerogels. Advanced Materials, 2022, 34, .	11.1	74
1728	Potential TRIP/TWIP coupled effects in equiatomic CrCoNi medium-entropy alloy. Acta Materialia, 2022, 234, 118049.	3.8	25
1729	Refinement strengthening, second phase strengthening and spinodal microstructure-induced strength-ductility trade-off in a high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 847, 143343.	2.6	20
1730	Microstructure evolution and deformation behavior during stretching of a compositionally inhomogeneous TWIP-TRIP cantor-like alloy by laser powder deposition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 847, 143319.	2.6	50
1731	Atomic-scale insight into interaction mechanism between extended dislocation and amorphous phase in high entropy alloys. Journal of Non-Crystalline Solids, 2022, 590, 121695.	1.5	4
1732	Revealing the crucial role of rough energy landscape on self-diffusion in high-entropy alloys based on machine learning and kinetic Monte Carlo. Acta Materialia, 2022, 234, 118051.	3.8	17
1733	Quantitative Analyses of Hetero-Deformation Induced Strengthening in Bimodal Grain Structure. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1734	Microstructure Deformation Mechanism of Cobalt-Free Maraging Steel: In-Situ Synchronous X-Ray Diffraction Study. SSRN Electronic Journal, 0, , .	0.4	0
1735	Predicting New Single/Multiphase Structure High Entropy Alloys by Pattern Recognition Network. SSRN Electronic Journal, 0, , .	0.4	0
1736	First-Principle Calculation of Effect of Cu Content on the Mechanical Properties of High Entropy Alloy AlFeTiCrZnCux. Modern Physics, 2022, 12, 86-95.	0.1	0
1737	Elucidating the Origination of Annealing-Induced Hardening in an Equiatomic Medium-Entropy Alloy. SSRN Electronic Journal, 0, , .	0.4	0
1738	First-Principle Calculation of the Effect of Ti Content on the Mechanical Properties of High Entropy Alloy AlFeTi _x CrZnCu. Advances in Condensed Matter Physics, 2022, 11, 28-37.	0.1	1
1739	Understanding Orientation-Dependent Plasticity in Laser Beam Powder Bed Fusion Stainless Steel Through Crystal Plasticity Modelling. SSRN Electronic Journal, 0, , .	0.4	0
1740	On the dual-stage partial recrystallization and the corresponding mechanical response of the Cantor alloy. Journal of Alloys and Compounds, 2022, 918, 165651.	2.8	4
1741	Microstructural Characterization and Tribological Properties of Atmospheric Plasma Sprayed High Entropy Alloy Coatings. Journal of Thermal Spray Technology, 2022, 31, 1956-1974.	1.6	6
1742	Atomic investigations on the tension–compression asymmetry of Al _x FeNiCrCu (xÂ=Â0.5, 1.0,) Tj	ETQq0 0 () rgBT /Overl
1743	Femtosecond X-ray Laser Reveals Intact Sea–Island Structures of Metastable Solid-State Electrolytes for Batteries. Nano Letters, 2022, 22, 4603-4607.	4.5	2
1744	Constitutive equation and microstructure analysis of Al _{0.6} CoCrFeNi high entropy alloy during hot deformation. Philosophical Magazine, 2022, 102, 1684-1707.	0.7	3
1744 1745		0.7 2.8	3
	during hot deformation. Philosophical Magazine, 2022, 102, 1684-1707. Complex dynamic restoration processes leading to a high degree of deformability in a dual-phase		
1745	during hot deformation. Philosophical Magazine, 2022, 102, 1684-1707. Complex dynamic restoration processes leading to a high degree of deformability in a dual-phase Al0.5CoCrFeNi high entropy alloy. Journal of Alloys and Compounds, 2022, 918, 165583.	2.8	5
1745 1746	 during hot deformation. Philosophical Magazine, 2022, 102, 1684-1707. Complex dynamic restoration processes leading to a high degree of deformability in a dual-phase Al0.5CoCrFeNi high entropy alloy. Journal of Alloys and Compounds, 2022, 918, 165583. High Entropy Alloys: Laboratory to Industrial Attempt. International Journal of Metalcasting, 0, , . Heterostructuring an equiatomic CoNiFe medium-entropy alloy for enhanced yield strength and 	2.8 1.5	5
1745 1746 1747	 during hot deformation. Philosophical Magazine, 2022, 102, 1684-1707. Complex dynamic restoration processes leading to a high degree of deformability in a dual-phase Al0.5CoCrFeNi high entropy alloy. Journal of Alloys and Compounds, 2022, 918, 165583. High Entropy Alloys: Laboratory to Industrial Attempt. International Journal of Metalcasting, 0, , . Heterostructuring an equiatomic CoNiFe medium-entropy alloy for enhanced yield strength and ductility synergy. Rare Metals, 2022, 41, 2894-2905. Infrared radiation and thermal cyclic performance of a high-entropy rare-earth hexaaluminate 	2.8 1.5 3.6	5 1 3
1745 1746 1747 1748	during hot deformation. Philosophical Magazine, 2022, 102, 1684-1707. Complex dynamic restoration processes leading to a high degree of deformability in a dual-phase Al0.5CoCrFeNi high entropy alloy. Journal of Alloys and Compounds, 2022, 918, 165583. High Entropy Alloys: Laboratory to Industrial Attempt. International Journal of Metalcasting, 0, , . Heterostructuring an equiatomic CoNiFe medium-entropy alloy for enhanced yield strength and ductility synergy. Rare Metals, 2022, 41, 2894-2905. Infrared radiation and thermal cyclic performance of a high-entropy rare-earth hexaaluminate coating prepared by atmospheric plasma spraying. Ceramics International, 2022, 48, 26003-26012. Some Distinct Features of Transformative High Entropy Alloys for Metal Additive Manufacturing.	2.8 1.5 3.6 2.3	5 1 3 5

#	Article	IF	CITATIONS
1752	Atomistic insights on the deformation mechanisms of Cox(CrNi)100-x multicomponent alloys: The effect of Co content. Computational Materials Science, 2022, 211, 111559.	1.4	8
1753	Microstructure and enhanced tensile properties of AlCo CrFeNi high entropy alloys with high Co content fabricated by laser melting deposition. Journal of Alloys and Compounds, 2022, 917, 165403.	2.8	11
1754	Enhanced Strength and Ductility by a Core–Shell-Like Distributed Laves Phase in Cr15ti25zr25hf25sc10 High-Entropy Alloy. SSRN Electronic Journal, 0, , .	0.4	0
1755	Reassessment of Mobility Parameters for Cantor High Entropy Alloys Through an Automated Procedure. SSRN Electronic Journal, 0, , .	0.4	Ο
1756	Corrosion Behaviors and Mechanism of Crfeni2 Based High-Entropy Alloys. SSRN Electronic Journal, 0, , .	0.4	0
1757	In Situ Investigation of Deformation Mechanisms Induced by Boron Nitride Nanotubes and Nanointerphases in Ti–6Al–4V Alloy. Advanced Engineering Materials, 2022, 24, .	1.6	4
1758	Simultaneous Twinning and Microband-Induced Plasticity of a Compositionally Complex Alloy with Interstitial Carbon at Cryogenic Temperatures. , 2023, 1, 60-71.		1
1759	Microstructures and Deformation Mechanisms of FCC-Phase High-Entropy Alloys. , 0, , .		0
1760	Unusual deformation-induced martensitic transformation in Fe-Co-Ni-Cr-Mn high entropy alloy thin films. Journal of Alloys and Compounds, 2022, 920, 165959.	2.8	1
1761	Cost-Effective Fe-Rich High-Entropy Alloys: A Brief Review. , 0, , .		0
1762	Flexible polarization configuration in high-entropy piezoelectrics with high performance. Acta Materialia, 2022, 236, 118115.	3.8	21
1763	Manipulating the microstructure of Cu from direct current electrodeposition without additives to overcome the strength-ductility trade-off. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 849, 143499.	2.6	5
1764	Microstructural evolution and mechanical characterization of a WC-reinforced CoCrFeNi HEA matrix composite. Scientific Reports, 2022, 12, .	1.6	16
1765	Recent progress in the CoCrNi alloy system. Materialia, 2022, 24, 101476.	1.3	18
1766	Microstructure, mechanical properties, corrosion and wear behavior of high-entropy alloy AlCoCrFeNix (\$\$x > 0\$\$the) and medium-entropy alloy (\$\$x = 0\$\$). Journal of Materials Science, 2022, 57, 11949-11968.	1.7	18
1767	Heterogeneous lattice strain strengthening in severely distorted crystalline solids. Proceedings of the United States of America, 2022, 119, .	3.3	27
1768	Material machine learning for alloys: Applications, challenges and perspectives. Journal of Alloys and Compounds, 2022, 921, 165984.	2.8	39
1769	Effect of neodymium and yttrium addition on microstructure and DC soft magnetic property of dual-phase FeCoNi(CuAl)0.8 high-entropy alloy. Journal of Rare Earths, 2023, 41, 1562-1567.	2.5	3

#	Article	IF	CITATIONS
1770	Simultaneous enhancement of strength and ductility via microband formation and nanotwinning in an L12-strengthened alloy. Fundamental Research, 2024, 4, 147-157.	1.6	8
1771	Microstructures and deformation mechanisms of the medium-entropy alloy (NiCoCr)76(Ni6AlTi)3. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 849, 143449.	2.6	8
1772	Development of a high strength Zr/Sc/Hf-modified Al-Mn-Mg alloy using Laser Powder Bed Fusion: Design of a heterogeneous microstructure incorporating synergistic multiple strengthening mechanisms. Additive Manufacturing, 2022, 57, 102967.	1.7	7
1773	Rapid alloy design from superior eutectic high-entropy alloys. Scripta Materialia, 2022, 219, 114875.	2.6	20
1774	Tribological performance of a TiZrNbMo0.6 refractory high entropy alloy at elevated temperatures. Journal of Alloys and Compounds, 2022, 920, 165915.	2.8	16
1775	Assisting Excellent Strength-Ductility BalanceÂBy Engineering Stacking Faults in V0.5cr0.5coni Medium-Entropy Alloy. SSRN Electronic Journal, 0, , .	0.4	0
1776	High Entropy Alloys for Extreme Load-Bearing Applications. , 0, 1, .		2
1777	On Cyclic Plasticity of Nanostructured Dual-Phase Cocrfenial High-Entropy Alloy: An Atomistic Study. SSRN Electronic Journal, 0, , .	0.4	0
1778	Nitrogen-Induced Phase Separation in Equiatomic FeNiCo Medium Entropy Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 3216-3223.	1.1	3
1779	Distilling physical origins of hardness in multi-principal element alloys directly from ensemble neural network models. Npj Computational Materials, 2022, 8, .	3.5	14
1780	Realizing superior strength-ductility combination in dual-phase AlFeCoNiV high-entropy alloy through composition and microstructure design. Materials Research Letters, 2022, 10, 736-743.	4.1	15
1781	Effects of carbon addition on microstructure and mechanical properties of Fe50Mn30Co10Cr10 high-entropy alloy prepared by powder metallurgy. Journal of Materials Research and Technology, 2022, 20, 73-87.	2.6	18
1782	The Importance of Structure and Corrosion Resistance of Steels/Alloys. Coatings, 2022, 12, 997.	1.2	0
1783	High entropy alloy strengthening modelling. Modelling and Simulation in Materials Science and Engineering, 2022, 30, 063001.	0.8	7
1784	Ratcheting behavior of non-equiatomic TRIP dual-phase high entropy alloy. Materialia, 2022, 24, 101512.	1.3	5
1785	Superb strength-ductility synergy in a medium-entropy CoCrNi alloy via reinforced TRIP effect. Journal of Materials Research and Technology, 2022, , .	2.6	2
1786	Heterogeneous fiberous structured Mg-Zn-Zr alloy with superior strength-ductility synergy. Journal of Materials Science and Technology, 2023, 134, 67-80.	5.6	32
1787	Structure, Mechanical Properties, and Corrosion Resistance of the CrCuFeNiMo0.3 High-Entropy Alloy Prepared by Powder Metallurgy. Powder Metallurgy and Metal Ceramics, 0, , .	0.4	Ο

#	Article	IF	CITATIONS
1788	Highâ€entropy alloy catalysts: From bulk to nano toward highly efficient carbon and nitrogen catalysis. , 2022, 4, 731-761.		45
1789	Experimental and numerical study on the dynamic shear banding mechanism of HfNbZrTi high entropy alloy. Science China Technological Sciences, 2022, 65, 1808-1818.	2.0	3
1790	Corrosion Behavior of Alx(CrFeNi)1â^'x HEA under Simulated PWR Primary Water. Materials, 2022, 15, 4975.	1.3	1
1791	Microstructure and mechanical properties of NixFeCoCrAl high-entropy alloys. Materials Today Communications, 2022, 32, 103919.	0.9	0
1792	Microstructural evolution and mechanical behavior of additive manufactured 17-4ÂPH steel with a periodic layer structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 849, 143527.	2.6	4
1793	High temperature tensile properties of as-cast and forged CrMnFeCoNi high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 850, 143570.	2.6	19
1794	Predicting path-dependent diffusion barrier spectra in vast compositional space of multi-principal element alloys via convolutional neural networks. Acta Materialia, 2022, 237, 118159.	3.8	12
1795	Deep learning-based heterogeneous strategy for customizing responses of lattice structures. International Journal of Mechanical Sciences, 2022, 229, 107531.	3.6	26
1796	Effect of grain substructure refinement on tensile mechanical behavior of L21-strengthened Al-Cr-Fe-Ni-Ti-Mo high-entropy alloy. Scripta Materialia, 2022, 219, 114889.	2.6	4
1797	Interactions between screw dislocation and twin boundary in high-entropy alloy: A molecular dynamic study. Computational Materials Science, 2022, 213, 111626.	1.4	9
1798	Overcoming high-temperature strength-ductility trade-off by combination deformation twinning of C11b and D022 superlattices in a Ni-Cr-W/Mo-based superalloy. Scripta Materialia, 2022, 220, 114931.	2.6	3
1799	Phase prediction and effect of intrinsic residual strain on phase stability in high-entropy alloys with machine learning. Journal of Alloys and Compounds, 2022, 921, 166149.	2.8	26
1800	Strength and ductility synergy in a laminated Cu/Cu-6Al alloy with graded interfacial region. Journal of Alloys and Compounds, 2022, 921, 166102.	2.8	7
1801	Synchronous enhancement of the strength and ductility in a metastable \hat{l}^2 -Ti alloy by a new refined \hat{l}_\pm phase mechanism. Journal of Alloys and Compounds, 2022, 922, 166227.	2.8	3
1802	Exploring V-Fe-Co-Ni-Al and V-Fe-Co-Ni-Cu high entropy alloys for magnetocaloric applications. Journal of Alloys and Compounds, 2022, 921, 166040.	2.8	5
1803	Core-shell-like structure in CoCrCuTiV high-entropy alloy and its effect on compressive property. Journal of Alloys and Compounds, 2022, 922, 166246.	2.8	3
1804	A metastable Ti–Zr–Nb–Al multi-principal-element alloy with high tensile strength and ductility. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 851, 143646.	2.6	7
1805	Toward tunable microstructure and mechanical properties in additively manufactured CoCrFeMnNi high entropy alloy. Journal of Alloys and Compounds, 2022, 924, 166513.	2.8	5

#	Article	IF	CITATIONS
1806	Ratcheting-induced twinning/de-twinning behaviors in a 316LN austenitic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 851, 143648.	2.6	7
1807	Phase transition in medium entropy alloy CoCrNi under quasi-isentropic compression. International Journal of Plasticity, 2022, 157, 103389.	4.1	27
1808	The effect of Co substitutions for Ni on microstructure, mechanical properties and corrosion resistance of Fe50Mn25Cr15Ni10 medium-entropy alloy. Intermetallics, 2022, 149, 107654.	1.8	5
1809	Simultaneous strength-plasticity enhancement of dual-phase light-weight medium entropy alloy. Journal of Alloys and Compounds, 2022, 923, 166406.	2.8	1
1810	Excellent strength-ductility combination in Co36Cr15Fe18Ni18Al8Ti4Mo1 multi-principal element alloys by dual-morphology B2 precipitates strengthening. Journal of Materials Science and Technology, 2023, 134, 60-66.	5.6	9
1811	Temperature Dependence of the Tensile and Thermal Fatigue Cracking Properties of Laser-Deposited Cobalt-Based Coatings for Brake Disc Application. SSRN Electronic Journal, 0, , .	0.4	0
1812	Alå•金化å⁻¹æ—Co马æ°ä¼2"æ—¶æ•^钢微è§,ç»"æž"ä¸ŽåŠ›å¦æ€§èƒ½çš"影哕 Zhongguo Kexue Jishu Ke	ex 0∉ Scien	ti o Sinica Te
1813	Improved Wear Resistance of a Heterogeneous CoCrNi Medium-Entropy Alloy at Cryogenic Temperature. Tribology Letters, 2022, 70, .	1.2	4
1814	Vacancy Energetics and Diffusivities in the Equiatomic Multielement Nb-Mo-Ta-W Alloy. Materials, 2022, 15, 5468.	1.3	10

1815	The origin of jerky dislocation motion in high-entropy alloys. Nature Communications, 2022, 13, .	5.8	28
1816	Porous NiTiNb alloys with superior strength and ductility induced by modulating eutectic microregion. Acta Materialia, 2022, 239, 118295.	3.8	7
1817	Designing against phase and property heterogeneities in additively manufactured titanium alloys. Nature Communications, 2022, 13, .	5.8	34
1818	Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni–Co–Fe medium-entropy alloy. Chinese Physics B, 2022, 31, 126102.	0.7	2
1819	Configurational Entropy Effects on Glass Transition in Metallic Glasses. Journal of Physical Chemistry Letters, 2022, 13, 7889-7897.	2.1	3
1820	Phase Volume Fraction-Dependent Strengthening in a Nano-Laminated Dual-Phase High-Entropy Alloy. ACS Omega, 0, , .	1.6	2
1821	Corrosion Resistance and Catalytic Activity toward the Oxygen Reduction Reaction of CoCrFe <i>_x</i> Ni (0 ≤i>x ≤0.7) Thin Films. ACS Applied Energy Materials, 2022, 5, 10838-10848.	2.5	6
1822	A mechanically strong and ductile soft magnet with extremely low coercivity. Nature, 2022, 608, 310-316.	13.7	89
1823	Exploring the deformation behavior of nanotwinned Al–Zr alloy via <i>in situ</i> compression. Journal of Applied Physics, 2022, 132, .	1.1	6

#	Article	IF	CITATIONS
1824	Achieving thermally stable nanoparticles in chemically complex alloys via controllable sluggish lattice diffusion. Nature Communications, 2022, 13, .	5.8	38
1825	Atomic level simulations of the phase stability and stacking fault energy of FeCoCrMnSi high entropy alloy. Modelling and Simulation in Materials Science and Engineering, 2022, 30, 075002.	0.8	9
1826	MoSe ₂ –VSe ₂ –NbSe ₂ Ternary Alloy Nanosheets to Boost Electrocatalytic Hydrogen Evolution Reaction. Advanced Materials, 2022, 34, .	11.1	24
1827	Ultrastrong and stress corrosion cracking-resistant martensitic steels. Acta Materialia, 2022, 239, 118291.	3.8	6
1828	Machine learning guided phase formation prediction of high entropy alloys. Materials Today Communications, 2022, 32, 104146.	0.9	5
1829	Breaking the Property Trade-Offs by Using Entropic Conceptions. , 0, , .		1
1830	The Competition Between Deformation Twinning and Dislocation Slip in Deformed Face-Centered Cubic Metals. Jom, 2022, 74, 3799-3810.	0.9	3
1831	High-strength AlCoCrFeNi2.1 eutectic high entropy alloy with ultrafine lamella structure via additive manufacturing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 854, 143816.	2.6	17
1832	Synergistic effect of precipitation strengthening and multi-heterostructure on the improvement of strength and ductility in NbC-reinforced FeMnCoCr high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 853, 143679.	2.6	7
1833	Effect of phase interface on stretch-flangeability of metastable ferrous medium-entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 852, 143683.	2.6	2
1834	Evolution of shape memory effect with aging time during aging after pre-strain in Fe–Mn–Si–Cr–Ni–C shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 852, 143675.	2.6	8
1835	Understanding orientation-dependent plasticity in laser beam powder bed fusion stainless steel through crystal plasticity modelling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 852, 143682.	2.6	6
1836	Effect of high temperature heat treatment on microstructure and properties of FeCoCrNiAl high-entropy alloy laser cladding layer. Materials Characterization, 2022, 191, 112137.	1.9	10
1837	Corrosion behavior of Al-containing CoNiV alloys. Corrosion Science, 2022, 207, 110567.	3.0	4
1838	Stacking fault induced hardening and grain size effect in nanocrystalline CoNiCrFeMn high-entropy alloy. Extreme Mechanics Letters, 2022, 56, 101875.	2.0	14
1839	Polytypic omega/omega-like transformation in a refractory high-entropy alloy. Acta Materialia, 2022, 238, 118207.	3.8	8
1840	Corrosion behaviors and mechanism of CrFeNi2 based high-entropy alloys. Corrosion Science, 2022, 207, 110562.	3.0	21
1841	Atomistic mechanism for whole-field distortion of the substitutional solid solutions. Materials and Design, 2022, 222, 111057.	3.3	2

#	Article	IF	CITATIONS
1842	Tribological behavior of CoCrFeNiMn high-entropy alloy against 304, Al2O3 and Si3N4 counterparts. Wear, 2022, 508-509, 204471.	1.5	8
1843	bccÂ→Âhcp phase transition significantly enhancing the wear resistance of metastable refractory high-entropy alloy. Scripta Materialia, 2022, 221, 114966.	2.6	7
1844	A CoCrFeNiMnSi high entropy alloy showing a good combination of shape memory effect and mechanical properties. Journal of Alloys and Compounds, 2022, 926, 166803.	2.8	6
1845	Microstructures and properties of AlCrFeNiMnx high-entropy alloy coatings fabricated by laser cladding on a copper substrate. Journal of Alloys and Compounds, 2022, 926, 166778.	2.8	15
1846	Phase transitions in additively manufactured high-entropy alloy <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si13.svg"><mml:mrow><mml:msub><mml:mtext>Cr</mml:mtext><mml:mn>10</mml:mn>induced by high. Scripta Materialia, 2022, 221, 114955.</mml:msub></mml:mrow></mml:math 	> 2.6 ≺mml:ms	uD>≺mml:n
1847	Surface heterostructuring of laser-clad 316L stainless steel through texture-driven deformation twinning. Scripta Materialia, 2022, 221, 114989.	2.6	13
1848	Crystallographic evidences for twin-assisted eutectic growth in undercooled Ni-18.7 at.%Sn eutectic melts. Journal of Materials Science and Technology, 2023, 135, 65-79.	5.6	3
1849	Dynamic mechanical properties, deformation and damage mechanisms of eutectic high-entropy alloy AlCoCrFeNi21 under plate impact. Journal of Materials Science and Technology, 2023, 134, 178-188.	5.6	24
1850	Ultrastrong and ductile (CoCrNi)94Ti3Al3 medium-entropy alloys via introducing multi-scale heterogeneous structures. Journal of Materials Science and Technology, 2023, 135, 241-249.	5.6	25
1851	Perpendicular magnetic anisotropy in a sputter deposited nanocrystalline high entropy alloy thin film. Journal of Alloys and Compounds, 2023, 930, 167337.	2.8	8
1852	Microstructure and Mechanical Properties of Ni-Based Complex Concentrated Alloys under Radiation Environment. Crystals, 2022, 12, 1322.	1.0	2
1853	Impact tension behavior of heavy-drawn nanocrystalline CoCrNi medium entropy alloy wire. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 856, 144041.	2.6	7
1854	Eutectoid lamellar structure strengthened ultra-strong Al13Fe29Co29Ni29 high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 856, 143934.	2.6	2
1855	Tune a highly ductile AlCrFe2Ni4 alloy by Ti addition for desired high mechanical strength. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 856, 143910.	2.6	15
1856	High entropy steel processed through mechanical alloying and spark plasma sintering: Alloying behaviour, thermal stability and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 856, 144029.	2.6	9
1857	Improving anti-corrosion properties of CoCrFeMnNi high entropy alloy by introducing Si into nonmetallic inclusions. Corrosion Science, 2022, 208, 110616.	3.0	13
1858	Atomic origins of the plastic deformation micro-mechanisms of γ/γ' FeCoNiAlTi high-entropy alloys. International Journal of Plasticity, 2022, 158, 103439.	4.1	8
1859	Mechanical behaviors of equiatomic and near-equiatomic face-centered-cubic phase high-entropy alloys probed using in situ neutron diffraction. International Journal of Plasticity, 2022, 158, 103417.	4.1	24

#	Article	IF	CITATIONS
1860	Orientation dependence of dislocation structure in surface grain of pure aluminium deformed in tension. Materials Characterization, 2022, 193, 112298.	1.9	0
1861	A perspective on investigating transition metal high-entropy alloys for high-temperature applications. Acta Materialia, 2022, 240, 118313.	3.8	14
1862	Chemical ordering effect on the radiation resistance of a CoNiCrFeMn high-entropy alloy. Computational Materials Science, 2022, 214, 111764.	1.4	7
1863	High corrosion resistance duplex fccÂ+Âhcp cobalt based entropic alloys: An experimental and theoretical investigation. Materials and Design, 2022, 223, 111166.	3.3	7
1864	Microstructure and corrosion investigation of FeCoCrNiMo0,5(MnAl)0,3 high entropy alloy produced by 316ÅL stainless steel scrap. Materials Today Communications, 2022, 33, 104360.	0.9	4
1865	Effect of short-range ordering and grain boundary segregation on shear deformation of CoCrFeNi high-entropy alloys with Al addition. Computational Materials Science, 2022, 215, 111762.	1.4	20
1866	Effect of atomic size mismatch and chemical complexity on the local lattice distortion of BCC solid solution alloys. Materials Today Communications, 2022, 33, 104367.	0.9	0
1867	Hydrogen-induced phase boundary Cr-segregation in high-entropy alloy AlCoCrFeNi2.1. Materialia, 2022, 26, 101556.	1.3	3
1868	Development of a non-equimolar AlCrCuFeNi high-entropy alloy and its corrosive response to marine environment under different temperatures and chloride concentrations. Journal of Alloys and Compounds, 2022, 928, 167112.	2.8	15
1869	Accelerated emergence of CoNi-based medium-entropy alloys with emphasis on their mechanical properties. Current Opinion in Solid State and Materials Science, 2022, 26, 101032.	5.6	17
1870	Segregation kinetics of immiscible alloying elements for understanding phase separation in multicomponent alloys. Scripta Materialia, 2023, 222, 115060.	2.6	1
1871	Manipulation of precipitation and mechanical properties of precipitation-strengthened medium-entropy alloy. Scripta Materialia, 2023, 222, 115057.	2.6	15
1872	Phase reversion-induced heterogeneous structure in a ferrous medium-entropy alloy via cryorolling and annealing. Scripta Materialia, 2023, 222, 115004.	2.6	19
1873	Machine learning for high-entropy alloys: Progress, challenges and opportunities. Progress in Materials Science, 2023, 131, 101018.	16.0	54
1874	Heterostructured materials. Progress in Materials Science, 2023, 131, 101019.	16.0	264
1875	Cooperative effect of Cr and Al elements on passivation enhancement of eutectic high-entropy alloy AlCoCrFeNi2.1 with precipitates. Journal of Materials Science and Technology, 2023, 136, 97-108.	5.6	37
1876	Multi-Objective Learning. Synthesis Lectures on Materials and Optics, 2020, , 117-134.	0.2	0
1877	The Status of Bulk Metallic Class and High Entropy Alloys Research. , 2022, , 233-278.		0

#	Article	IF	CITATIONS
1878	Fatigue of High-Entropy Alloys. , 2022, , .		0
1879	In-Situ Synchrotron X-Ray Diffraction Study on Stress-Induced Martensite Transformation in Maraging Steel with High Strength and Good Ductility. SSRN Electronic Journal, 0, , .	0.4	Ο
1880	Mechanical Properties of Complex Concentrated Alloys: Implications for Structural Integrity. , 2023, , 209-239.		2
1881	Enhanced Strength and Ductility by a Core–Shell-Like Distributed Laves Phase in Cr15 Ti25zr25hf25sc10 High-Entropy Alloy. SSRN Electronic Journal, 0, , .	0.4	0
1882	Critical Review of Limitations of Equiatomic Composition Alloying Strategy of Complex Concentrated Alloys. , 2023, , 122-135.		2
1883	Enhancement in Impact Toughness of Cocrfemnni High-Entropy Alloy Via Nitrogen Addition. SSRN Electronic Journal, 0, , .	0.4	0
1884	A Perspective on Investigating Transition Metal High-Entropy Alloys for High-Temperature Applications. SSRN Electronic Journal, 0, , .	0.4	0
1885	Role of Strain Rate in Phase Stability and Deformation Mechanism of Non-Equiatomic Fe38-Xmn30co15cr15ni2gdx High-Entropy Alloy. SSRN Electronic Journal, 0, , .	0.4	0
1886	The Short-Term Splitting and Long-Term Stability of Cuboidal Nano-Particles in Ni44co22cr22al6nb6 Multi-Principal Element Alloy. SSRN Electronic Journal, 0, , .	0.4	0
1887	Face-Centered Cubic High-Entropy Alloys. Materials Horizons, 2022, , 35-52.	0.3	0
1888	High Entropy Steel Processed Through Mechanical Alloying and Spark Plasma Sintering: Alloying Behaviour, Thermal Stability, and Mechanical Properties. SSRN Electronic Journal, 0, , .	0.4	0
1889	Critical Review of Factors Hindering Scalability of Complex Concentrated Alloys. , 2023, , 103-121.		2
1890	In-Situ Synchrotron X-Ray Diffraction Study on Stress-Induced Martensite Transformation in Maraging Steel with High Strength and Good Ductility. SSRN Electronic Journal, 0, , .	0.4	0
1891	Influence of Electron Beam Treatment on the Defect Substructure of a High-Entropy Co–Cr–Fe–Mn–Ni Alloy. Steel in Translation, 2022, 52, 375-379.	0.1	2
1892	High entropy alloy coatings for biomedical applications: A review. , 2023, 1, 100009.		4
1893	Effect of Weldability on Metallurgical, Mechanical, and Corrosion Behaviour of High Entropy Alloy_A Review. Lecture Notes in Mechanical Engineering, 2023, , 151-161.	0.3	Ο
1894	A Nanomechanical Testing Framework Yielding Front&Rear-Sided, High-Resolution, Microstructure-Correlated SEM-DIC Strain Fields. Experimental Mechanics, 2022, 62, 1625-1646.	1.1	9
1895	Improved Plasticity of Fe25Co25Ni25(Si0.3B0.7)25 High Entropy Bulk Metallic Glass through the Addition of Cu. Acta Metallurgica Sinica (English Letters), 2023, 36, 417-425.	1.5	2

#	Article	IF	CITATIONS
1896	Advances of machining techniques for gradient structures in multi-principal-element alloys. Rare Metals, 2022, 41, 4015-4026.	3.6	7
1897	Research on the dielectric energy storage characteristics of the [(Bi0.5Na0.5)0.2Ba0.2Sr0.2Ca0.2Mg0.2]TiO3 equal ratio high-entropy ceramics. Journal of Materials Science: Materials in Electronics, 2022, 33, 23792-23805.	1.1	6
1898	Grain size-dependent phase-specific deformation mechanisms of the Fe50Mn30Co10Cr10 high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 854, 143867.	2.6	4
1899	Remarkable Enhanced Mechanical Properties of TiAlCrNbV Medium-Entropy Alloy with Zr Additions. Materials, 2022, 15, 6324.	1.3	1
1900	A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites. Nature Communications, 2022, 13, .	5.8	22
1901	Pressure Engineering Promising Transparent Oxides with Large Conductivity Enhancement and Strong Thermal Stability. Advanced Science, 0, , 2202973.	5.6	1
1902	A cluster-plus-glue-atom composition design approach designated for multi-principal element alloys. Rare Metals, 2022, 41, 3839-3849.	3.6	0
1903	Non-Hookean large elastic deformation in bulk crystalline metals. Nature Communications, 2022, 13, .	5.8	8
1904	Medium-Entropy Nitride ZrNbMo-W-N Nanofilm-Based Substrate-Independent Selective Solar Absorber by a Cosputtering Method. ACS Applied Energy Materials, 2022, 5, 11517-11525.	2.5	3
1905	Work hardening behavior of hot-rolled metastable Fe ₅₀ Co ₂₅ Ni ₁₀ Al ₅ Ti ₅ Mo ₅ medium-entropy alloy: in situ neutron diffraction analysis. Science and Technology of Advanced Materials. 2022, 23, 579-586.	2.8	6
1906	Effect of Nitrogen Doping on the Structure and Mechanical Properties of the Fe40Mn40Cr10Co10 High-Entropy Alloy. Metals, 2022, 12, 1599.	1.0	6
1907	Phase transformation mediated anomalous plasticity of titanium under severe loading conditions. International Journal of Mechanical Sciences, 2023, 237, 107799.	3.6	3
1908	Review on magnetocaloric high-entropy alloys: Design and analysis methods. Journal of Materials Research, 2023, 38, 37-51.	1.2	22
1909	Deformation Behavior of Two-Phase Gradient Nanograined Fe95Ni5 Alloys under Different Types of Loading. Metals, 2022, 12, 1492.	1.0	1
1910	Design metastability in high-entropy alloys by tailoring unstable fault energies. Science Advances, 2022, 8, .	4.7	14
1911	Integrating machine learning with mechanistic models for predicting the yield strength of high entropy alloys. Journal of Applied Physics, 2022, 132, .	1.1	12
1912	Solid Solution Strengthening in High-Entropy Alloys. , 0, , .		2
1913	Robust spin glass state with exceptional thermal stability in a chemically complex alloy. Physical Review Materials, 2022, 6, .	0.9	1

#	Article	IF	CITATIONS
1914	Microstructure and texture of heavily cold-rolled and annealed extremely low stacking fault energy Cr26Mn20Fe20Co20Ni14 high entropy alloy: Comparative insights. Journal of Alloys and Compounds, 2023, 930, 167418.	2.8	6
1915	Mechanical properties of a two-phase high-entropy Fe50Mn30Co10Cr10 alloy down to ultralow temperatures. Low Temperature Physics, 2022, 48, 845-852.	0.2	2
1916	Mn content optimum on microstructures and mechanical behavior of Fe-based medium entropy alloys. Materials and Design, 2022, 223, 111241.	3.3	5
1917	Temperature dependence of the tensile and thermal fatigue cracking properties of laser-deposited cobalt-based coatings for brake disc application. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 858, 144135.	2.6	3
1918	Design of oxygen-doped TiZrHfNbTa refractory high entropy alloys with enhanced strength and ductility. Materials and Design, 2022, 223, 111239.	3.3	10
1919	A Hall–Petch study of the high toughness Cr40Co30Ni30 multi-principal element alloy. Journal of Materials Research, 2023, 38, 215-227.	1.2	2
1920	Synergism between coherent precipitation strengthening and FCC-HCP type transformation-induced plasticity. Materials and Design, 2022, 223, 111212. In the second strength of the secon	3.3	3
1921	xmlns:mml="http://www.w3.org/1998/Math/Math/ML"altimg="si65.svg" display="inline" id="d1e4119"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> Cr <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si66.svg" display="inline"</mml:math 	3.0	22
1922	Effect of carbon upon mechanical properties and deformation mechanisms of TWIP and TRIP-assisted high entropy alloys. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 857, 144126.	2.6	7
1923	Role of strain rate in phase stability and deformation mechanism of non-equiatomic Fe38-xMn30Co15Cr15Ni2Gdx high-entropy alloy. Materials Characterization, 2022, 194, 112356.	1.9	3
1924	Determination of peak ordering in the CrCoNi medium-entropy alloy via nanoindentation. Acta Materialia, 2022, 241, 118380.	3.8	26
1925	A comparison of the mechanical and corrosion behavior of Fe49.5Mn25Cr15Ni10C0.5 medium-entropy alloy with its subsystems steels. Intermetallics, 2022, 151, 107736.	1.8	2
1926	Excellent room-temperature tensile ductility in as-cast Ti37V15Nb22Hf23W3 refractory high entropy alloys. Intermetallics, 2022, 151, 107735.	1.8	23
1927	Coupling precipitation strengthening and transformation induced plasticity to produce a superior combination of strength and ductility in a high entropy alloy. Journal of Alloys and Compounds, 2022, 929, 167356.	2.8	3
1928	Si-addition contributes to overcoming the strength-ductility trade-off in high-entropy alloys. International Journal of Plasticity, 2022, 159, 103443.	4.1	37
1929	Microstructure and mechanical properties of in-situ TiC particle-reinforced Fe1.2MnCo0.8 medium-entropy alloy matrix composites. Materials Today Communications, 2022, 33, 104420.	0.9	1
1930	Accurate <i>ab initio</i> modeling of solid solution strengthening in high entropy alloys. Physical Review Materials, 2022, 6, .	0.9	2
1931	Formation mechanism of hierarchical twins in the CoCrNi medium entropy alloy. Journal of Materials Science and Technology, 2023, 140, 19-32.	5.6	20

#	Article	IF	CITATIONS
1932	Effect of High-Pressure Torsion on the Microstructure and Magnetic Properties of Nanocrystalline CoCrFeNiGax (x = 0.5, 1.0) High Entropy Alloys. Materials, 2022, 15, 7214.	1.3	3
1933	Al0.25CoCrFeNiV High Entropy Alloy Coating Deposited by Laser Cladding on Stainless Steel. Materials, 2022, 15, 7058.	1.3	4
1934	Versatile Medium Entropy Ti-Based Bulk Metallic Glass Composites. Materials, 2022, 15, 7304.	1.3	0
1935	Strain Rate and Temperature Effects on Hydrogen Embrittlement of Stable and Metastable High-Entropy Alloys. Physical Mesomechanics, 2022, 25, 385-392.	1.0	1
1937	Recent Advances in W-Containing Refractory High-Entropy Alloys—An Overview. Entropy, 2022, 24, 1553.	1.1	15
1938	An Odyssey from High Entropy Alloys to Complex Concentrated Alloys. Indian Institute of Metals Series, 2023, , 159-180.	0.2	1
1939	Microstructure and Wear Resistance of FeCuNiTiAl High-Entropy Alloy Coating on Ti6Al4V Substrate Fabricated by Laser Metal Deposition. Lubricants, 2022, 10, 263.	1.2	4
1940	Edge-dislocation-induced ultrahigh elevated-temperature strength of HfMoNbTaW refractory high-entropy alloys. Science and Technology of Advanced Materials, 2022, 23, 642-654.	2.8	7
1941	Comprehensive study on structure, shielding properties of Ga-In-Sn-Bi-Zn alloys: potential use for low energy radiation. Physica Scripta, 2022, 97, 115302.	1.2	1
1942	Microstructural evolution and solidification behavior of (CoCrNi) _{100â^'<i>x</i>} Nb _{ <i>x</i>} medium-entropy-alloys. International Journal of Materials Research, 2022, 113, 984-991.	0.1	2
1943	Hierarchical nano-martensite-engineered a low-cost ultra-strong and ductile titanium alloy. Nature Communications, 2022, 13, .	5.8	19
1944	Phase and polarization modulation in two-dimensional In ₂ Se ₃ via in situ transmission electron microscopy. Science Advances, 2022, 8, .	4.7	18
1945	Effects of V Addition on Microstructural Evolution and Mechanical Properties of AlCrFe2Ni2 High-Entropy Alloys. Acta Metallurgica Sinica (English Letters), 2023, 36, 391-404.	1.5	2
1946	Crystal Plasticity Model Analysis of the Effect of Short-Range Order on Strength-Plasticity of Medium Entropy Alloys. Metals, 2022, 12, 1757.	1.0	1
1947	Effects of heterogeneous ultrafine grain and strain rate on mechanical properties of CoCrNi medium entropy alloy. Journal of Alloys and Compounds, 2022, , 167791.	2.8	5
1948	Low activation V–Fe–Cr–Mn high-entropy alloys with exceptional strength. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 860, 144243.	2.6	4
1949	Elucidating the Origination of Annealingâ€Induced Hardening in an Equiatomic Mediumâ€Entropy Alloy. Advanced Engineering Materials, 2023, 25, .	1.6	1
1950	Effect of Precipitation Behavior on Mechanical Properties of a Nb-Containing CoCrNi-Based High-Entropy Alloy. Metals and Materials International, 2023, 29, 674-692.	1.8	7

#	Article	IF	CITATIONS
1951	Fatigue Behavior and Mechanisms of High-Entropy Alloys. , 2023, 1, 4-24.		1
1952	High-Speed Tensile Deformation Behavior of a Metastable 18Cr–6Ni–0.2N–0.1C Steel. ISIJ International, 2022, 62, 2054-2060.	0.6	0
1953	Steels for rail axles - an overview. Critical Reviews in Solid State and Materials Sciences, 0, , 1-31.	6.8	3
1954	Homogeneous α-precipitation and enhanced plasticity in Ti–6Cr–5Mo–5V–4Al high-strength metastable titanium alloy with heterogenous β-structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 858, 144180.	2.6	8
1955	An experimentally driven high-throughput approach to design refractory high-entropy alloys. Materials and Design, 2022, 223, 111259.	3.3	3
1956	A novel high-entropy alloy with multi-strengthening mechanisms: Activation of TRIP effect in C-doped high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 859, 144220.	2.6	6
1957	Achieving metal-like malleability and ductility in Ag2Te1-S inorganic thermoelectric semiconductors with high mobility. Innovation(China), 2022, 3, 100341.	5.2	10
1958	High-ductility aluminium alloys including small sub-grains with wide low angle boundary. Journal of Alloys and Compounds, 2023, 934, 167868.	2.8	4
1959	Microstructure and mechanical properties of bioinspired laminated CoCrFeNiMn high entropy alloy matrix composites reinforced with graphene. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 859, 144198.	2.6	10
1960	Interstitial-driven local chemical order enables ultrastrong face-centered cubic multicomponent alloys. Acta Materialia, 2023, 243, 118495.	3.8	17
1961	Tailored rapid annealing to obtain heterostructured ultra-high-strength lightweight Ti-rich medium-entropy alloys. Results in Materials, 2022, 16, 100342.	0.9	0
1962	Unusual phase transformation and novel hardening mechanisms upon impact loading in a medium entropy alloy with dual heterogeneous structure. Intermetallics, 2022, 151, 107747.	1.8	4
1963	Enhancement in impact toughness of CoCrFeMnNi high-entropy alloy via nitrogen addition. Journal of Alloys and Compounds, 2023, 932, 167615.	2.8	8
1964	Effects of deformation-induced martensitic transformation on quasi-static and dynamic compressive properties of metastable SiVCrMnFeCo high-entropy alloys. Journal of Alloys and Compounds, 2023, 931, 167543.	2.8	1
1965	Enhanced strength and ductility by a core-shell-like distributed Laves phase in Cr15Ti25Zr25Hf25Sc10 high-entropy alloy. Intermetallics, 2023, 152, 107753.	1.8	1
1966	Microstructure and mechanical properties of TiZrVMnCu high entropy alloy by addition of Er element. Materials Letters, 2023, 330, 133322.	1.3	1
1967	Circumventing strength-ductility paradox in high entropy alloys through deformation processing. Journal of Alloys and Compounds, 2023, 933, 167750.	2.8	1
1968	Microstructural design via spinodal-mediated phase transformation pathways in high-entropy alloys (HEAs) using phase-field modelling. Acta Materialia, 2023, 243, 118438.	3.8	5

#	Article	IF	CITATIONS
1969	Mechanical property regulation of transformation induced plasticity (TRIP) multi-principal element alloys through multi-phase microstructural design. Intermetallics, 2023, 152, 107754.	1.8	1
1970	Ductilizing Ti19Zr19Hf19Nb19TM5Be19 (TM = Fe, Co, Ni and Cu) high-entropy bulk metallic glass composites via in-situ precipitated refractory high-entropy alloy dendrites. Intermetallics, 2023, 152, 107755.	1.8	2
1971	Machine learning prediction of the mechanical properties of refractory multicomponent alloys based on a dataset of phase and first principles simulation. , 0, 1, .		0
1972	Solidification segregation-driven microstructural evolution of trace yttrium-alloyed TaMoNbZrTiAl refractory high entropy alloys. Materials Characterization, 2022, 194, 112495.	1.9	4
1973	Ultrahigh-temperature melt printing of multi-principal element alloys. Nature Communications, 2022, 13, .	5.8	5
1974	Accelerating matrix/boundary precipitations to explore high-strength and high-ductile Co34Cr32Ni27Al3.5Ti3.5 multicomponent alloys through hot extrusion and annealing. Journal of Materials Science and Technology, 2023, 143, 62-83.	5.6	10
1975	Mechanically derived short-range order and its impact on the multi-principal-element alloys. Nature Communications, 2022, 13, .	5.8	28
1976	Compositional undulation induced strain hardening and delocalization in multi-principal element alloys. International Journal of Mechanical Sciences, 2023, 241, 107931.	3.6	4
1977	Gradient plastic zone model in equiatomic face-centered cubic alloys. Journal of Materials Science, 0, ,	1.7	0
1978	Microstructure Evolution and Mechanical Properties of Ultra-Fine Grain AlCrFe2Ni2Wx High-Entropy Alloys. Metals and Materials International, 2023, 29, 1614-1624.	1.8	3
1979	Effect of temperature on the tribocorrosion and high-temperature tribological behaviour of strong amorphization AlCrNiTiV high entropy alloy film in a multifactor environment. Ceramics International, 2023, 49, 6880-6890.	2.3	3
1980	Roomâ€Temperature Superformability in Novel Asâ€Cast Highâ€Entropy Alloy During Compressive Loading. Advanced Engineering Materials, 2023, 25, .	1.6	0
1981	Grain refinement and abnormal peritectic solidification in W NbTiZr high-entropy alloys. Materials and Design, 2022, 224, 111381.	3.3	6
1982	Explainable artificial intelligence approach for yield strength prediction in as-cast multi-principal element alloys. Materialia, 2022, 26, 101628.	1.3	3
1983	Impact of different Cr contents on microstructural evolution and mechanical behaviour of CoCrxCuFeMnNiV high-entropy alloys. Journal of Materials Research and Technology, 2022, 21, 4577-4590.	2.6	8
1984	High Entropy Approach to Engineer Strongly Correlated Functionalities in Manganites. Advanced Materials, 2023, 35, .	11.1	14
1985	Comparative Measurements and Analysis of the Electrical Properties of Nanocomposites TixZr1â^'xC+α-Cy (0.0 ≤ ≤1.0). Materials, 2022, 15, 7908.	1.3	2
1986	Monitoring the effect of alloying elements segregation in Fe Mn Ni Al high Entropy alloy. Journal of Physics: Conference Series, 2022, 2368, 012010.	0.3	1

#	Article	IF	Citations
1987	Investigation of Nb equi effect on high-entropy iron-based alloy Fe–1.5Ti–1.5Cr–1.5Al–1.5Si–XNb syst Applied Physics A: Materials Science and Processing, 2022, 128, .	em. 1.1	0
1988	Hetero-deformation-induced strengthening behavior of as-annealed Co30Cr30Fe18Ni18Mo4 high entropy alloy by metastable σ phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 860, 144296.	2.6	11
1989	Enhanced strength-ductility synergy in a Ta-doped CoCrNi medium-entropy alloy with a dual heterogeneous structure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 860, 144293.	2.6	12
1990	A comparative investigation of shock response in high entropy Cantor alloys by MEAM and LJ type potentials. Materials Today Communications, 2022, 33, 104843.	0.9	1
1991	Hetero-deformation induced (HDI) strengthening in directed energy deposited SS316L: A nanoindentation-based investigation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 860, 144280.	2.6	7
1992	Reassessment of mobility parameters for Cantor High Entropy Alloys through an automated procedure. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2022, 79, 102498.	0.7	3
1993	Medium/Highâ€Entropy Amalgamated Core/Shell Nanoplate Achieves Efficient Formic Acid Catalysis for Direct Formic Acid Fuel Cell. Angewandte Chemie, 0, , .	1.6	2
1994	Medium/Highâ€Entropy Amalgamated Core/Shell Nanoplate Achieves Efficient Formic Acid Catalysis for Direct Formic Acid Fuel Cell. Angewandte Chemie - International Edition, 2023, 62, .	7.2	35
1995	Design of metastable complex-concentrated alloys through composition tailoring. Materials and Design, 2022, 224, 111391.	3.3	3
1996	Ultra-strong heavy-drawn eutectic high entropy alloy wire. Acta Materialia, 2023, 243, 118515.	3.8	18
1997	Inherent and multiple strain hardening imparting synergistic ultrahigh strength and ductility in a low stacking faulted heterogeneous high-entropy alloy. Acta Materialia, 2023, 243, 118516.	3.8	30
1998	Enhanced fatigue resistance of a face-centered-cubic single-phase Al0.3CoCrFeNi high-entropy alloy through planar deformation characteristic. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 862, 144499.	2.6	9
1999	High Entropy Materials: Basic Concepts. Materials Horizons, 2022, , 27-46.	0.3	3
2000	Structural Properties. Materials Horizons, 2022, , 195-257.	0.3	0
2001	Microstructure and mechanical properties of SiCp/Al composite fabricated by concurrent wire-powder feeding laser deposition. Journal of Materials Research and Technology, 2023, 22, 66-79.	2.6	5
2002	Combination of annealing and laser shock peening for tailoring microstructure and mechanical properties of laser directed energy deposited CrMnFeCoNi high-entropy alloy. Additive Manufacturing, 2023, 61, 103345.	1.7	3
2003	Unusual work hardening rate of a 3D gradient high purity Ti fabricated by laser surface treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 862, 144417.	2.6	2
2004	Heavy ion irradiation effects on CrFeMnNi and AlCrFeMnNi high entropy alloys. Journal of Nuclear Materials, 2023, 574, 154163.	1.3	7

#	Article	IF	CITATIONS
2005	Creep properties and deformation mechanisms of a Ni2Co1Fe1V0.5Mo0.2 medium-entropy alloy. Acta Materialia, 2023, 245, 118590.	3.8	11
2006	A remarkable toughening high-entropy-alloy wire with a bionic bamboo fiber heterogeneous structure. Scripta Materialia, 2023, 226, 115234.	2.6	11
2007	Taylor impact of high-entropy alloy Al0.1CoCrFeNi: Dynamic severe plastic deformation and bulk gradient structure. Journal of Alloys and Compounds, 2023, 936, 168261.	2.8	9
2008	Microstructure and mechanical property of Al56-Co24Cr20Ni eutectic high-entropy alloys with an ordered FCC/BCT phase structure. Journal of Alloys and Compounds, 2023, 936, 168194.	2.8	8
2009	/> <mml:mrow><mml:mn>2</mml:mn></mml:mrow> superconductors.	1.9	1
2010	Journal of Physics and Chemistry of Solids, 2023, 174, 111154. Twin boundary spacing and loading direction dependent tensile deformation of nano-twinned Al10(CrCoFeNi)90 high-entropy alloy: An atomic study. International Journal of Mechanical Sciences, 2023, 242, 108026.	3.6	8
2011	Structural responses of heterogeneous nanocrystalline/amorphous laminated alloy under irradiation. Materialia, 2023, 27, 101653.	1.3	0
2012	Ultrastrong interstitially-strengthened chemically complex martensite via tuning phase stability. Scripta Materialia, 2023, 226, 115257.	2.6	1
2013	An inverse Hall-Petch behavior and improving toughness in translucent nanocrystalline high-entropy zirconate ceramic. Journal of the European Ceramic Society, 2023, 43, 1746-1750.	2.8	5
2014	Enhanced mechanical properties of a carbon and nitrogen co-doped interstitial high-entropy alloy via tuning ultrafine-grained microstructures. Journal of Materials Science and Technology, 2023, 144, 128-137.	5.6	10
2015	Effect of interstitial carbon and nitrogen on corrosion of FeCoCrNi multi-principal element alloys made by selective laser melting. Journal of Materials Science and Technology, 2023, 148, 52-63.	5.6	7
2016	Phase Transformation Induced by High Pressure Torsion in the High-Entropy Alloy CrMnFeCoNi. Materials, 2022, 15, 8407.	1.3	3
2017	Ballistic impact response of Fe40Mn20Cr20Ni20 high-entropy alloys. Journal of Applied Physics, 2022, 132, .	1.1	10
2018	The universality of strength and plastic deformation in FCC concentrated solid solution (CSS) alloys at room and cryogenic temperatures. Applied Physics Letters, 2022, 121, .	1.5	3
2019	A novel D0 ₂₂ precipitation-hardened Ni _{2.1} CoCrFe _{0.5} Nb _{0.2} high entropy alloy with outstanding tensile properties by additive manufacturing. Virtual and Physical Prototyping, 2023, 18, .	5.3	5
2020	Correlation between grain size variation and hydrogen embrittlement in a cost-effective Fe40Mn40Ni10Cr10 austenitic medium entropy alloy. International Journal of Hydrogen Energy, 2023, 48, 5708-5717.	3.8	3
2021	Short-range order and phase stability of CrCoNi explored with machine learning potentials. Physical Review Materials, 2022, 6, .	0.9	6
2022	Effect of loading orientation on plasticity in nano-laminated CoNiCrFeMn dual-phase high-entropy alloy: a molecular dynamics study. Modelling and Simulation in Materials Science and Engineering, 2023, 31, 015005.	0.8	4

#	Article	IF	CITATIONS
2023	Achieving high energy storage properties in perovskite oxide via high-entropy design. Ceramics International, 2023, 49, 12214-12223.	2.3	37
2024	Effects of lattice distortion and chemical short-range order on creep behavior of medium-entropy alloy CoCrNi. Mechanics of Materials, 2023, 177, 104549.	1.7	5
2026	Revealing the nano-grained microstructure and mechanical properties of electrochemical boronized AlCoCrFeNi2.1 eutectic high entropy alloy. Journal of Alloys and Compounds, 2023, 938, 168515.	2.8	3
2027	Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin. Science, 2022, 378, 978-983.	6.0	100
2028	Chemical short-range orders in high-/medium-entropy alloys. Journal of Materials Science and Technology, 2023, 147, 189-196.	5.6	15
2029	Structural Features, Mechanical Properties, and Strengthening Behavior of SiC-Doped FeNiCoCr High-Entropy Alloys. Journal of Materials Engineering and Performance, 0, , .	1.2	1
2030	Metastable CrMnNi steels processed by laser powder bed fusion: experimental assessment of elementary mechanisms contributing to microstructure, properties and residual stress. Scientific Reports, 2022, 12, .	1.6	8
2031	Theory of transformation-mediated twinning. , 2023, 2, .		6
2032	Strengthening Modulus and Softening Strength of Nanoporous Gold in Multiaxial Tension: Insights from Molecular Dynamics. Nanomaterials, 2022, 12, 4381.	1.9	1
2033	Enhancement of Strength and Plasticity by Nanoprecipitation Strengthening and Stacking Fault Deformation in a High Entropy Alloy. , 2023, 1, 143-164.		0
2034	Influence of chemistry and structure on interfacial segregation in NbMoTaW with high-throughput atomistic simulations. Journal of Applied Physics, 2022, 132, .	1.1	5
2035	Laser additive manufacturing of laminated bulk metallic glass composite with desired strength-ductility combination. Journal of Materials Science and Technology, 2023, 147, 68-76.	5.6	8
2036	Evaluation of the Corrosion, Microstructural and Mechanical Characteristics of Cu-Al-Zn-Sn High Entropy Alloys. Materials Science Forum, 0, 1076, 45-62.	0.3	0
2037	Effect of Multi-Pass Friction Stir Processing on Microstructure and Mechanical Properties of a Metastable Dual-Phase High Entropy Alloy. Lubricants, 2023, 11, 2.	1.2	4
2038	Application of HTS in Material Preparation and New Devices. Nanostructure Science and Technology, 2023, , 145-192.	0.1	0
2039	Rapid Design, Microstructures, and Properties of Low-Cost Co-Free Al-Cr-Fe-Ni Eutectic Medium Entropy Alloys. Materials, 2023, 16, 56.	1.3	5
2040	Superior strength–ductility combination in Al alloys via dislocation gradient structure. Materials Research Letters, 2023, 11, 347-353.	4.1	6
2041	Doubled strength and ductility via maraging effect and dynamic precipitate transformation in ultrastrong medium-entropy alloy. Nature Communications, 2023, 14, .	5.8	13

#	Article	IF	CITATIONS
2042	Origin of {332}Â<113> twinning and twin-twin intersections in a shock load metastable β Ti-12Mo alloy. Materials Characterization, 2023, 197, 112674.	1.9	4
2043	Strong and ductile medium manganese steel processed by low-temperature partitioning. Materials Science and Technology, 2023, 39, 1214-1222.	0.8	0
2044	Achieving strength-ductility balance in a casting non-equiatomic FeCoNi based medium-entropy alloy via Al and Ti combination addition. Journal of Materials Research and Technology, 2023, 23, 627-636.	2.6	7
2045	Laser Annealingâ€Induced Phase Transformation Behaviors of High Entropy Metal Alloy, Oxide, and Nitride Nanoparticle Combinations. Advanced Functional Materials, 2023, 33, .	7.8	2
2046	Microstructures and mechanical behavior of non-equiatomic Co29Cr29Fe29Ni13-V high-entropy alloys at room and cryogenic temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 865, 144611.	2.6	4
2047	Effect of Mo addition on the microstructural evolution and mechanical properties of Fe–Ni–Cr–Mn–Al–Ti high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 864, 144579.	2.6	6
2048	Origin of hard magnetism in Fe-Co-Ni-Al-Ti-Cu high-entropy alloy: Chemical shape anisotropy. Acta Materialia, 2023, 246, 118702.	3.8	7
2049	Inhibiting GNPs breakage during ball milling for a balanced strength-ductility match in GNPs/Al composites. Composites Part A: Applied Science and Manufacturing, 2023, 166, 107410.	3.8	4
2050	Improved mechanical properties of Co-free high-entropy Cantor alloy: A first-principles study. Results in Materials, 2023, 17, 100364.	0.9	2
2051	The phase stability at intermediate-temperature and mechanical behavior of the dual-phase AlCoCr0.5FexNi2.5 high entropy alloys. Materials Chemistry and Physics, 2023, 297, 127314.	2.0	1
2052	Dual precipitate simultaneous enhancement of tensile and fatigue strength in (FeCoNi)86Al7Ti7 high-entropy alloy fabricated using selective laser melting. Journal of Materials Science and Technology, 2023, 148, 90-104.	5.6	9
2053	Hydrogen-substituted graphdiyne-assisted ultrafast sparking synthesis of metastable nanomaterials. Nature Nanotechnology, 2023, 18, 153-159.	15.6	21
2054	Local chemical ordering coordinated thermal stability of nanograined high-entropy alloys. Rare Metals, 2023, 42, 1645-1655.	3.6	7
2055	Powder bed fusion processes: main classes of alloys, current status, and technological trends. , 2023, , 1-104.		1
2056	Composition-Tuned (MoWV)Se ₂ Ternary Alloy Nanosheets as Excellent Hydrogen Evolution Reaction Electrocatalysts. ACS Nano, 2023, 17, 2968-2979.	7.3	15
2057	In Situ Design of Highâ€Performance Dualâ€Phase GeSe Thermoelectrics by Tailoring Chemical Bonds. Advanced Functional Materials, 2023, 33, .	7.8	9
2058	The effect of Ti and Zr content on the structure, mechanics and energy-release characteristics of Ti–Zr–Ta alloys. Defence Technology, 2024, 31, 343-350.	2.1	2
2059	Plasticity Improvement in a Co-Rich Co40Fe25Cr20Ni15 High-Entropy Alloy via Al Alloying. Materials, 2023, 16, 1149.	1.3	3

#	Article	IF	CITATIONS
2060	Atomic-scale insight into interaction mechanism between screw dislocation and HCP phase in high-entropy alloy. Journal of Applied Physics, 2023, 133, .	1.1	2
2061	Laboratory innovations for sustainable energy technologies and science. , 0, 1, .		1
2062	Dataset for Fracture and Impact Toughness of High-Entropy Alloys. Scientific Data, 2023, 10, .	2.4	3
2063	How Can We Overcome the Strength–Ductility Tradeoff in Light Alloys and Related Composites?. Materials, 2023, 16, 934.	1.3	1
2064	Short-Term Splitting and Long-Term Stability of Cuboidal Nanoparticles in Ni44Co22Cr22Al6Nb6 Multi-Principal Element Alloy. Acta Metallurgica Sinica (English Letters), 2023, 36, 999-1006.	1.5	4
2065	Dislocation behavior in initial stage of plastic deformation for CoCrNi medium entropy alloy. Journal of Alloys and Compounds, 2023, 943, 169057.	2.8	3
2066	Understanding the microstructure refinement and mechanical strengthening of dual-phase high entropy alloy during ultrasonic shot peening. Materials and Design, 2023, 227, 111771.	3.3	6
2067	Phase predictions via thermodynamic parameter (Ω) vs enthalpy mix (\$\$Delta {H}_{mathrm{mix}})\$\$ for (Cr–Fe–Ni–Ti–Nb) high-entropy alloy. International Journal on Interactive Design and Manufacturing, 0, , .	1.3	0
2068	Excellent strength-ductility synergy and corrosion resistance in a metastable high entropy alloy via heterogeneous structure design. Journal of Alloys and Compounds, 2023, 941, 168979.	2.8	9
2069	Microstructures, Mechanical and High-Temperature Tribological Properties of Dual-Phase Fe50Mn30Co10Cr10 High-Entropy Alloy Fabricated by Laser Metal Deposition. Jom, 0, , .	0.9	0
2070	Dislocation mediated dynamic tension-compression asymmetry of a Ni2CoFeV0.5Mo0.2 medium entropy alloy. Journal of Materials Science and Technology, 2023, 159, 204-218.	5.6	6
2071	High-density nanoprecipitates and phase reversion via maraging enable ultrastrong yet strain-hardenable medium-entropy alloy. Acta Materialia, 2023, 248, 118810.	3.8	17
2072	Enhanced strength-ductility synergy of medium-entropy alloys via multiple level gradient structures. International Journal of Plasticity, 2023, 164, 103592.	4.1	14
2073	Trace B doping Fe50Mn30Co10Cr10 high entropy alloy: Mechanical response and multi-microstructure evolution under TWIP and TRIP effects. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 873, 145037.	2.6	5
2074	Multi-principal element alloys with High-density nanotwinned 9R phase. Materials and Design, 2023, 229, 111925.	3.3	2
2075	Microwave-synthesized Bismuth oxide/Activated Carbon felt composite as electrode for ultra-high supercapacitors performance. International Journal of Electrochemical Science, 2023, 18, 100128.	0.5	2
2076	The optimum grain size for strength-ductility combination in metals. International Journal of Plasticity, 2023, 164, 103574.	4.1	20
2077	Microstructure and mechanical behavior of additively manufactured CoCrFeMnNi high-entropy alloys: Laser directed energy deposition versus powder bed fusion. Acta Materialia, 2023, 250, 118884.	3.8	17

# 2078	ARTICLE Highly robust and flexible micro-supercapacitors based on medium-entropy carbide nanowires toward sub-ambient temperature operation. Journal of Power Sources, 2023, 568, 232986.	IF 4.0	CITATIONS
2079	Tuning the mechanical properties of powder bed fusion printed CoCrFeNiMn high-entropy alloys by annealing and hot isostatic pressing. Journal of Alloys and Compounds, 2023, 946, 169376.	2.8	3
2080	Additive manufacturing of interstitial-strengthened high entropy alloy: Scanning strategy dependent anisotropic mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 872, 144978.	2.6	6
2081	In situ synthesis of N-containing CoCrFeNi high entropy alloys with enhanced properties fabricated by selective laser melting. Materials and Design, 2023, 229, 111891.	3.3	6
2082	A novel strategy for architecting low interfacial energy transition phase to enhance thermal stability in a high-entropy alloy. Journal of Alloys and Compounds, 2023, 947, 169570.	2.8	0
2083	Favorable property integration in high entropy alloys via dissimilar friction stir welding: A case study using Al0.3CoCrFeNi and Fe38.5Co20Mn20Cr15Si5Cu1.5 HEAs. Materials Today Communications, 2023, 35, 105822.	0.9	1
2084	Sluggish dendrite growth in undercooled Fe-Co-Ni-Si multi-principal element intermetallics. Journal of Alloys and Compounds, 2023, 946, 169310.	2.8	2
2085	Multistage strain-hardening behavior of ultrastrong and ductile lightweight refractory complex-concentrated alloys. Journal of Materials Science and Technology, 2023, 149, 73-87.	5.6	10
2086	VNbCrMo refractory high-entropy alloy for nuclear applications. International Journal of Refractory Metals and Hard Materials, 2023, 113, 106200.	1.7	6
2087	Experimental and theoretical investigation of high-entropy-alloy/support as a catalyst for reduction reactions. Journal of Energy Chemistry, 2023, 81, 132-142.	7.1	22
2088	A review on the dynamic-mechanical behaviors of high-entropy alloys. Progress in Materials Science, 2023, 135, 101090.	16.0	59
2089	Excellent strength-ductility combination of Cr26Mn20Fe20Co20Ni14 high-entropy alloy at cryogenic temperatures. Journal of Materials Science and Technology, 2023, 154, 166-177.	5.6	11
2090	CALPHAD aided mechanical properties screening in full composition space of NbC-TiC-VC-ZrC ultra-high temperature ceramics. International Journal of Refractory Metals and Hard Materials, 2023, 113, 106191.	1.7	3
2091	Directly cast fibrous heterostructured FeNi0.9Cr0.5Al0.4 high entropy alloy with low-cost and remarkable tensile properties. Scripta Materialia, 2023, 230, 115421.	2.6	11
2092	Superior dynamic shear properties by structures with dual gradients in medium entropy alloys. Journal of Materials Science and Technology, 2023, 153, 166-180.	5.6	6
2093	Shock compression and spall damage of dendritic high-entropy alloy CoCrFeNiCu. Journal of Alloys and Compounds, 2023, 947, 169650.	2.8	2
2094	Analysis of microstructure evolution and deformation mechanism of nano-oxides Al2O3 dispersion strengthened copper alloy during compression at room temperature. Journal of Alloys and Compounds, 2023, 949, 169837.	2.8	2
2095	Light-weight refractory high-entropy alloys: A comprehensive review. Journal of Materials Science and Technology, 2023, 151, 41-65.	5.6	34

#	Article	IF	CITATIONS
2096	Deformation mechanism of a strong and ductile maraging steel investigated using in-situ X-ray synchrotron diffraction. International Journal of Plasticity, 2023, 165, 103612.	4.1	2
2097	Corrosion behaviour of friction stir processed, metastable, dual-phase, Fe49.5Mn30Co10Cr10C0.5, multi-principal element alloy. Journal of Alloys and Compounds, 2023, 952, 169967.	2.8	1
2098	Semi-solid thixotropic behavior and microstructure evolution of cold deformed CoCrCu1.2FeNi high-entropy alloy. Materials Characterization, 2023, 201, 112926.	1.9	2
2099	Atomistic simulations of martensitic transformation processes for metastable FeMnCoCr high-entropy alloy. Science China Technological Sciences, 2023, 66, 998-1006.	2.0	5
2100	Development of high strength high plasticity refractory high entropy alloy based on Mo element optimization and advanced forming process. International Journal of Refractory Metals and Hard Materials, 2023, 112, 106163.	1.7	9
2101	Study on martensitic transformation twinning in ductile metastable body-centered-cubic high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 872, 144966.	2.6	1
2102	Formation of chemical short-range orders of two kinds and the co-existence with medium-range orders in an equiatomic VFeCoNi alloy. Intermetallics, 2023, 158, 107896.	1.8	1
2103	Influence of V and Al in enhancing the strength and ductility of Co-rich high-entropy alloys. Journal of Alloys and Compounds, 2023, 948, 169745.	2.8	2
2104	Effect of warm-rolling on microstructure and superior mechanical properties of a cost-effective AlCrFe2Ni2 high entropy alloy. Journal of Alloys and Compounds, 2023, 948, 169783.	2.8	3
2105	Micromechanical origin for the wide range of strength-ductility trade-off in metastable high entropy alloysâ€. Scripta Materialia, 2023, 231, 115439.	2.6	5
2106	Characterization of chemical short-range order in VCoNi medium-entropy alloy processed by spark plasma sintering. Scripta Materialia, 2023, 231, 115463.	2.6	3
2107	Strengthening and toughening bulk Ni2CoFeV0.5 medium-entropy alloy via thermo-mechanical treatment. Journal of Materials Science and Technology, 2023, 151, 19-29.	5.6	9
2108	SLM Fe50Mn30Co10Cr10 metastable high entropy alloy with Al-Ti addition: Synergizing strength and ductility. Journal of Alloys and Compounds, 2023, 941, 168830.	2.8	7
2109	Dual-effects of carbon doping on the recrystallization kinetics of the Cantor alloy during mid-temperature annealing. Intermetallics, 2023, 155, 107828.	1.8	2
2110	Advancing strength and counteracting embrittlement by displacive transformation in heterogeneous high-entropy alloys containing sigma phase. Acta Materialia, 2023, 246, 118717.	3.8	21
2111	CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy. Acta Materialia, 2023, 246, 118728.	3.8	48
2112	Heterogeneous-structure-induced ultrahigh strength and ductility in a metastable dual-phase Fe60Cr15Ni16Al9 medium entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 867, 144710.	2.6	9
2113	A physics-based machine-learning approach for modeling the temperature-dependent yield strengths of medium- or high-entropy alloys. Applied Materials Today, 2023, 31, 101747.	2.3	1

#	Article	IF	CITATIONS
2114	Microstructure evolution and mechanical properties in a gas tungsten arc welded Fe42Mn28Co10Cr15Si5 metastable high entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 867, 144722.	2.6	39
2115	The effect of Si addition on the structure and mechanical properties of equiatomic CoCrFeMnNi high entropy alloy by experiment and simulation. Materialia, 2023, 27, 101707.	1.3	5
2116	Dislocation mechanisms in strengthening and softening of nanotwinned materials. Journal of Applied Physics, 2023, 133, .	1.1	1
2117	Tuning microstructure and mechanical and wear resistance of ZrNbTiMo refractory high-entropy alloy films via sputtering power. Frontiers in Materials, 0, 10, .	1.2	2
2118	The evolution of deformation twinning microstructures in random face-centered cubic solid solutions. Journal of Applied Physics, 2023, 133, .	1.1	2
2119	Tuning Elinvar effect in severely distorted single-phase high entropy alloys. Journal of Applied Physics, 2023, 133, .	1.1	2
2120	Bauschinger effect in Gd micro-alloying metastable high-entropy alloy. Materials Science and Technology, 2023, 39, 1443-1451.	0.8	0
2121	A novel alloy design for non-equiatomic high-entropy alloy (Cr–Fe–Ni–Ti–Nb): predicting entropy mix and enthalpy mix. International Journal on Interactive Design and Manufacturing, 0, , .	1.3	0
2122	Microstructure and Properties of an FeCoCrAlCu HEA Coating Synthesized via the Induction Remelting Method. Coatings, 2023, 13, 399.	1.2	1
2123	Pt-induced atomic-level tailoring towards paracrystalline high-entropy alloy. Nature Communications, 2023, 14, .	5.8	9
2124	Elastic–Plastic Fracture Toughness of Wrought Dual-Phase Non-equiatomic High-Entropy Alloy (HEA) for Structural Applications. Transactions of the Indian Institute of Metals, 2023, 76, 1741-1750.	0.7	2
2125	Tailoring microstructure of Ni2CoFe medium-entropy alloy to achieve optimal comprehensive mechanical properties. Journal of Materials Research and Technology, 2023, 23, 4258-4267.	2.6	3
2126	Understanding the microstructure evolution characteristics and mechanical properties of an AlCoCrFeNi2.1 high entropy alloy fabricated by laser energy deposition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 869, 144795.	2.6	1
2127	A new lightweight Al2.7TiVCrCu high entropy alloy with excellent strength and toughness after homogenization treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 869, 144779.	2.6	5
2129	Transportation of dislocation plasticity in a dual-phase TiMo alloy. Scientific Reports, 2023, 13, .	1.6	0
2130	Microstructural design and deformation behavior of a TRIP/TWIP tri-phase heterogeneous high-entropy alloy. Intermetallics, 2023, 156, 107854.	1.8	5
2132	Viewing high entropy alloys through glasses: Linkages between solid solution and glass phases in multicomponent alloys. Physical Review Materials, 2023, 7, .	0.9	2
2133	Grain growth and Hall–Petch relationship in Ti37V15Nb22Hf23W3 refractory high-entropy alloys. Journal of Materials Research, 2023, 38, 1719-1729.	1.2	1

#	Article	IF	CITATIONS
2134	Precipitate-mediated metastability of a hetero-structured ferrous high-entropy alloy with superior strain hardening ability. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 870, 144853.	2.6	3
2135	Effect of Annealing on Microstructure Evolution and Tensile Behavior of Hot-Rolled FeMnCoCrAl High-Entropy Alloy. Journal of Materials Engineering and Performance, 2024, 33, 841-853.	1.2	0
2136	A novel high-entropy alloy with exceptional strength and elongation via bimodal grains and lamellar nano-precipitates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 870, 144851.	2.6	5
2137	Quantum machine-learning phase prediction of high-entropy alloys. Materials Today, 2023, 63, 18-31.	8.3	5
2138	Combining Machine Learning and Molecular Dynamics to Predict Mechanical Properties and Microstructural Evolution of FeNiCrCoCu High-Entropy Alloys. Nanomaterials, 2023, 13, 968.	1.9	1
2139	Geometrical parameter (Ë") design approach of single phase high-entropy alloy for turbine blades. International Journal on Interactive Design and Manufacturing, 0, , .	1.3	0
2140	Trifunctional nanoprecipitates ductilize and toughen a strong laminated metastable titanium alloy. Nature Communications, 2023, 14, .	5.8	22
2141	Preparation of medium-entropy alloy coating using GMAW cladding with MoFe ₃ TiNiCu cable-type welding wire. Materials Science and Technology, 2023, 39, 1827-1834.	0.8	0
2142	Effects of Working Temperature on Microstructure and Hardness of Ti-6Al-4V Alloy Subjected to Asymmetrical Rolling. Journal of Materials Engineering and Performance, 2024, 33, 1218-1228.	1.2	2
2143	Microstructure and Wear Behavior of Al0.25CoCrFeNiSi0.6 High-Entropy Alloy Coating Deposited on Stainless Steel by Detonation Spraying. Journal of Thermal Spray Technology, 2023, 32, 1220-1229.	1.6	3
2144	Microstructure and properties of a novel cost-effective FeNi-based eutectic high entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 870, 144919.	2.6	5
2145	Chemical Inhomogeneity from the Atomic to the Macroscale in Multi-Principal Element Alloys: A Review of Mechanical Properties and Deformation Mechanisms. Metals, 2023, 13, 594.	1.0	0
2146	Laser shock peening strengthens additively manufactured high-entropy alloy through novel surface grain rotation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 871, 144886.	2.6	3
2147	High entropy nanomaterials for energy storage and catalysis applications. Frontiers in Energy Research, 0, 11, .	1.2	2
2148	Improving machine learning based phase and hardness prediction of high-entropy alloys by using Gaussian noise augmented data. Computational Materials Science, 2023, 223, 112140.	1.4	7
2149	A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance. Energy Storage Materials, 2023, 58, 287-298.	9.5	20
2150	Effect of Annealing and Hot Isostatic Pressing on the Structure and Hydrogen Embrittlement Resistance of Powder-Bed Fusion-Printed CoCrFeNiMn High-Entropy Alloys. Metals, 2023, 13, 630.	1.0	0
2151	Phase prediction and experimental realisation of a new high entropy alloy using machine learning. Scientific Reports, 2023, 13, .	1.6	6

#	Article	IF	CITATIONS
2152	Additive manufacturing of VCoNi medium-entropy alloy: Microstructure evolution and mechanical properties. Additive Manufacturing, 2023, 68, 103522.	1.7	0
2153	Microstructural Evolution of Shear Localization in High-Speed Cutting of CoCrFeMnNi High-Entropy Alloy. Metals, 2023, 13, 647.	1.0	2
2154	Effects of Welding Speeds on Microstructures and Properties of a CoCrNiSi _{0.2} Medium Entropy Alloy in Electron Beam Weld Joints. Journal of Physics: Conference Series, 2023, 2459, 012017.	0.3	0
2155	Synergic Combination of Strength and Ductility through Both Grain Refinement and Precipitation in Al _{0.3} CoCrNi Mediumâ€Entropy Alloy. Advanced Engineering Materials, 2023, 25, .	1.6	2
2156	Effect of Cold Rolling on the Microstructure Evolution, Mechanical, and Corrosion Properties of AlCoCrFeNi2.4 High-Entropy Alloy. Journal of Materials Engineering and Performance, 2024, 33, 1685-1692.	1.2	1
2157	Accelerating the design of compositionally complex materials via physics-informed artificial intelligence. Nature Computational Science, 2023, 3, 198-209.	3.8	16
2158	Disorder-order transition in multiprincipal element alloy: A free energy perspective. Physical Review Materials, 2023, 7, .	0.9	0
2159	Eutectic MoNbTa(WC)x Composites with Excellent Elevated Temperature Strength. Metals, 2023, 13, 687.	1.0	1
2160	The astonishing effect of Si addition on low-cycle fatigue life in a metastable high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 880, 144985.	2.6	1
2161	Ab initio study of tungsten-based alloys under fusion power-plant conditions. Journal of Nuclear Materials, 2023, 581, 154422.	1.3	0
2162	Achieving Good Strength–Plasticity Compatibility in Cu Composites via Carbon Nanotubeâ€Induced Heterogeneous Bimodal Structure. Advanced Engineering Materials, 2023, 25, .	1.6	1
2163	Strength–ductility balance optimization of Fe2NiCr0.5Cu0.2Al0.3Ti0.1 multicomponent alloy via doping trace amounts of boron. Journal of Materials Science, 0, , .	1.7	0
2164	On the low-cycle fatigue behavior of a multi-phase high entropy alloy with enhanced plasticity. International Journal of Fatigue, 2023, 173, 107678.	2.8	5
2165	Special hot working plastic deformation behavior and microstructure evolution mechanism of single-phase BCC structure AlFeCoNiMo0.2 high-entropy alloy. Journal of Alloys and Compounds, 2023, 955, 170149.	2.8	2
2166	Lattice distortion in FCC HEAs and its effect on mechanical properties: Critical analysis and way forward. Journal of Applied Physics, 2023, 133, .	1.1	6
2167	Hydrogen Embrittlement of CrCoNi Medium-Entropy Alloy with Millimeter-Scale Grain Size: An In Situ Hydrogen Charging Study. Entropy, 2023, 25, 673.	1.1	3
2168	Making a coherent L12-nano-precipitates-reinforced Ni-based alloy ultrastrong and ductile by constructing dual heterogeneous structures. Intermetallics, 2023, 159, 107914.	1.8	4
2169	Mechanical Behavior of a Medium-Entropy Fe65(CoNi)25Cr9.5C0.5 Alloy Produced by Selective Laser Melting. Materials, 2023, 16, 3193.	1.3	0

#	Article	IF	CITATIONS
2170	The role of cryogenic pre-strain on the hydrogen embrittlement of FeNiCoCrMn high-entropy alloys. Corrosion Science, 2023, 218, 111197.	3.0	2
2171	Universal Maximum Strength of Solid Metals and Alloys. Physical Review Letters, 2023, 130, .	2.9	6
2206	High-entropy ceramic coatings. , 2023, , 87-101.		0
2227	Fundamentals of heterostructured materials. , 2023, , 51-106.		0
2314	Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling. Chemical Society Reviews, 2023, 52, 7389-7460.	18.7	9
2322	Quinary RuRhPdPtAu high-entropy alloy as an efficient electrocatalyst for the hydrogen evolution reaction. Chemical Communications, 2023, 59, 12863-12866.	2.2	2
2411	High-Entropy Alloys: A Critical Review of Aqueous Corrosion Behavior and Mechanisms. , 2023, 1, 195-259.		0
2414	Accelerating the prediction of stable materials with machine learning. Nature Computational Science, 2023, 3, 934-945.	3.8	1
2431	Sub-Ãngstrom-scale structural variations in high-entropy oxides. Nanoscale, 0, , .	2.8	0
2435	A Review of High-Temperature Toughness Improvement Strategies for Medium Entropy Alloys. Journal of Materials Engineering and Performance, 2024, 33, 2051-2063.	1.2	0
2478	A Brief Perspective on the Status and Future Prospects of Eutectic High-Entropy Alloys. , 0, , .		0
2495	Research and prospect of novel WC-HEA cemented carbide. International Journal of Advanced Manufacturing Technology, 0, , .	1.5	0
2518	Short-Range Ordering Engineering. Topics in Mining, Metallurgy and Materials Engineering, 2024, , 147-174.	1.4	0
2519	High Strength Steels. Topics in Mining, Metallurgy and Materials Engineering, 2024, , 31-60.	1.4	0
2538	Recent Progress on Metal Hydride and High Entropy Materials as Emerging Electrocatalysts for Energy Storage and Conversion. , 0, , .		0
2560	The rise of high-entropy battery materials. Nature Communications, 2024, 15, .	5.8	0
2572	AFLOW for Alloys. Journal of Phase Equilibria and Diffusion, 0, , .	0.5	0