Evaluation of AASHTO T 324 Hamburg-Wheel Track De-

Construction and Building Materials 114, 248-260 DOI: 10.1016/j.conbuildmat.2016.03.171

Citation Report

#	Article	IF	CITATIONS
1	Significance of initial rutting in prediction of rutting development and characterization of asphalt mixtures. Construction and Building Materials, 2017, 153, 157-164.	3.2	11
2	Systematic comparison of two-stage analytical rutting models of asphalt mixtures. Construction and Building Materials, 2017, 153, 716-727.	3.2	3
3	A review on solutions for improving rutting resistance of asphalt pavement and test methods. Construction and Building Materials, 2018, 168, 893-905.	3.2	158
4	Comparison and relationship between indices for the characterization of the moisture resistance of asphalt–aggregate systems. Construction and Building Materials, 2018, 168, 580-589.	3.2	21
5	Analysis of Measured Mechanical Response Law of Asphalt Pavement on Roller Compacted Concrete Base Based on Strain Sensor System. IOP Conference Series: Materials Science and Engineering, 2018, 452, 022157.	0.3	1
6	Rutting and fatigue performance of asphalt mixtures containing amorphous carbon as filler and binder modifier. Construction and Building Materials, 2018, 188, 905-914.	3.2	50
7	More Practical Wheel Tracking Test for Rutting Resistance of Asphalt Mixtures. Transportation Research Record, 2019, 2673, 508-518.	1.0	4
8	The performance of asphalt mixtures modified with lignin fiber and glass fiber: A review. Construction and Building Materials, 2019, 209, 377-387.	3.2	92
9	Influence of Bitumen Modification and Gradation on Performance Characteristics of Asphalt Pavements. Journal of the Institution of Engineers (India): Series A, 2019, 100, 407-416.	0.6	7
10	Asphalt Surface Structure Combination Design Based on the Dynamic Stability of Asphalt Surface Course and Asphalt Mixture. , 2019, , .		0
11	Correlating the HWTT laboratory test data to field rutting performance of in-service highway sections. Construction and Building Materials, 2020, 236, 117552.	3.2	35
12	Establishing Indicators and an Analytic Method for Moisture Susceptibility and Rutting Resistance Evaluation Using a Hamburg Wheel Tracking Test. Materials, 2020, 13, 3269.	1.3	8
13	Performance-based assessment of rutting resistance of asphalt mixes designed for hot climate regions. International Journal of Pavement Engineering, 2020, , 1-12.	2.2	2
14	Effect of Gradation Variability on Volume Parameter and Key Performances of HMA. Frontiers in Materials, 2021, 7, .	1.2	8
15	Characterization of the fatigue behavior of asphalt mixture under full support using a Wheel-tracking Device. Construction and Building Materials, 2021, 277, 122326.	3.2	7
16	Evaluation of different analysis approaches for Hamburg Wheel-Tracking testing (HWTT) data. Construction and Building Materials, 2021, 280, 122420.	3.2	7
17	Laboratory Assessment of Epoxy Asphalt Mixture Incorporating Tire Rubber Waste. Wasit Journal of Engineering Sciences, 2021, 9, 1-10.	0.1	0
18	Development of a Balanced Mix Design Method in Oregon to Improve Long-Term Pavement Performance. Transportation Research Record, 2021, 2675, 1121-1137.	1.0	6

#	Article	IF	CITATIONS
19	Comparative study on permanent deformation in asphalt mixtures from indirect tensile strength testing and laboratory wheel tracking. Construction and Building Materials, 2021, 305, 124736.	3.2	13
20	Rutting Prediction Model for Semirigid Base Asphalt Pavement Based on Hamburg Wheel Tracking Test. International Journal of Geomechanics, 2021, 21, 04021215.	1.3	12
21	Rutting Trajectory Measurement of Curved Ramps Using 3d Line Scanning Laser System and Binocular Stereo Vision System. SSRN Electronic Journal, 0, , .	0.4	0
22	Evaluation of Rutting and Fatigue Behavior of Modified Asphalt Binders with Nanocomposite Phase Change Materials. International Journal of Pavement Research and Technology, 2023, 16, 678-692.	1.3	3
23	A systematic review of the utilization of waste materials as aggregate replacement in stone matrix asphalt mixes. Environmental Science and Pollution Research, 2022, 29, 35557-35582.	2.7	11
24	Laboratory Performance Evaluation of a Waterborne Epoxy-Modified Asphalt Mixture with Styrene-Butadiene Rubber for Cold Patching Applications. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	5
25	Simple Robust Method for Analyzing Hamburg Wheel Tracking Test Data. Transportation Research Record, 2022, 2676, 231-250.	1.0	1
26	Evaluation of lab performance of stamp sand and acrylonitrile styrene acrylate waste composites without asphalt as road surface materials. Construction and Building Materials, 2022, 338, 127569.	3.2	22
27	Investigating the Properties of Asphalt Mixes Containing Recycled Polyethylene Terephthalate Fiber. IOP Conference Series: Earth and Environmental Science, 2022, 1022, 012039.	0.2	0
28	Investigation of waste quartz sand as filler in hot-mix asphalt. Construction and Building Materials, 2022, 342, 128004.	3.2	4
29	Studi Banding Metode Bina Marga dan Aashto untuk Perencanaan Perkerasan Kaku. Jurnal Konstruksi, 2021, 19, 98-108.	0.0	0
30	Correlating the Asphalt-Binder MSCR Test Results to the HMA HWTT and Field Rutting Performance. Journal of Transportation Engineering Part B: Pavements, 2022, 148, .	0.8	14
31	Comparing Different HWTT Analysis Methods for Asphalt Mixes Containing RAP and Correlating with MIST-TSR. Advances in Civil Engineering Materials, 2022, 11, 410-437.	0.2	0
32	Laboratory Evaluation of Dynamic Characteristics of a New High-Modulus Asphalt Mixture. Sustainability, 2022, 14, 11838.	1.6	3
33	Properties of Modified Warm-Mix Asphalt Mixtures Containing Different Percentages of Reclaimed Asphalt Pavement. Energies, 2022, 15, 7813.	1.6	2
34	Laboratory Wheel Tracking of Asphalt with Rubber Tires or Rubber Hoses. Transportation Research Record, 2023, 2677, 534-553.	1.0	1
35	Validation of California Test Method 389 Hamburg Wheel Track Test Using Rubberized Hot Mix Asphalt-Gap Graded for Asphalt Pavement. , 2022, , .		0

CITATION REPORT