Structural basis of N6-adenosine methylation by the MI

Nature 534, 575-578 DOI: 10.1038/nature18298

Citation Report

#	Article	IF	CITATIONS
1	m6A modulates neuronal functions and sex determination in Drosophila. Nature, 2016, 540, 242-247.	13.7	453
2	Chemical Proteomic Profiling of Human Methyltransferases. Journal of the American Chemical Society, 2016, 138, 13335-13343.	6.6	79
3	Structures of the m 6 A Methyltransferase Complex: Two Subunits with Distinct but Coordinated Roles. Molecular Cell, 2016, 63, 183-185.	4.5	40
4	Update: Mechanisms Underlying N 6 -Methyladenosine Modification of Eukaryotic mRNA. Trends in Genetics, 2016, 32, 763-773.	2.9	50
6	Human m ⁶ A writers: Two subunits, 2 roles. RNA Biology, 2017, 14, 300-304.	1.5	76
7	Epitranscriptomic regulation of viral replication. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 460-471.	0.9	17
8	Regulatory Role of N ⁶ -methyladenosine (m ⁶ A) Methylation in RNA Processing and Human Diseases. Journal of Cellular Biochemistry, 2017, 118, 2534-2543.	1.2	127
9	Viral Epitranscriptomics. Journal of Virology, 2017, 91, .	1.5	66
10	m 6 A in mRNA: An Ancient Mechanism for Fine-Tuning Gene Expression. Trends in Genetics, 2017, 33, 380-390.	2.9	338
11	Dynamic RNA Modifications in Gene Expression Regulation. Cell, 2017, 169, 1187-1200.	13.5	2,222
12	<i>N</i> ⁶ -methyladenosine is required for the hypoxic stabilization of specific mRNAs. Rna, 2017, 23, 1444-1455.	1.6	92
13	Readers, writers and erasers of N6-methylated adenosine modification. Current Opinion in Structural Biology, 2017, 47, 67-76.	2.6	82
14	The U6 snRNA m 6 A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell, 2017, 169, 824-835.e14.	13.5	756
15	m ⁶ A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes and Development, 2017, 31, 990-1006.	2.7	448
16	The RNA Modification N 6 -methyladenosine and Its Implications in Human Disease. Genomics, Proteomics and Bioinformatics, 2017, 15, 154-163.	3.0	132
17	Transcription Impacts the Efficiency of mRNA Translation via Co-transcriptional N6-adenosine Methylation. Cell, 2017, 169, 326-337.e12.	13.5	372
18	A fly view on the roles and mechanisms of the m ⁶ A mRNA modification and its players. RNA Biology, 2017, 14, 1232-1240.	1.5	56
19	Decoding cyclase-dependent assembly of hapalindole and fischerindole alkaloids. Nature Chemical Biology, 2017, 13, 467-469.	3.9	40

ARTICLE IF CITATIONS # RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature, 2017, 543, 20 13.7 685 573-576. The Major Protein Arginine Methyltransferase in Trypanosoma brucei Functions as an Enzyme-Prozyme Complex. Journal of Biological Chemistry, 2017, 292, 2089-2100. 1.6 Chemical Modifications to RNA: A New Layer of Gene Expression Regulation. ACS Chemical Biology, 22 1.6 134 2017, 12, 316-325. m6A Facilitates eIF4F-Independent mRNA Translation. Molecular Cell, 2017, 68, 504-514.e7. N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3â€2-end 24 6.5 337 processing. Nucleic Acids Research, 2017, 45, 11356-11370. Thiol-linked alkylation of RNA to assess expression dynamics. Nature Methods, 2017, 14, 1198-1204. Regulation of m6A Transcripts by the $3\hat{E}^1\hat{a}^{\dagger}\hat{5}\hat{E}^1$ RNA Helicase YTHDC2 Is Essential for a Successful Meiotic 26 4.5 370 Program in the Mammalian Germline. Molecular Cell, 2017, 68, 374-387.e12. Human METTL16 is a <i>N</i> ⁶ â€methyladenosine (m ⁶ A) methyltransferase that 481 targets preâ€mRNAs and various nonâ€coding RNAs. ÉMBO Reports, 2017, 18, 2004-2014. Roles of RNA methylation by means of N6-methyladenosine (m6A) in human cancers. Cancer Letters, 28 3.2 223 2017, 408, 112-120. Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis. Cell Research, 29 298 2017, 27, 1216-1230. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal 30 15.2 971 hematopoietic and leukemia cells. Nature Médicine, 2017, 23, 1369-1376. Rethinking m⁶A Readers, Writers, and Erasers. Annual Review of Cell and Developmental 833 Biology, 2017, 33, 319-342. Detection of <i>N </i>⁶-methyladenosine based on the methyl-sensitivity of MazF RNA 32 2.2 113 endonuclease. Chemical Communications, 2017, 53, 12930-12933. <i>N</i>⁶-Allyladenosine: A New Small Molecule for RNA Labeling Identified by Mutation 6.6 59 Assay. Journal of the American Chemical Society, 2017, 139, 17213-17216. 5-Methylcytosine RNA Methylation in Arabidopsis Thaliana. Molecular Plant, 2017, 10, 1387-1399. 34 3.9 181 The m6A pathway facilitates sex determination in Drosophila. Nature Communications, 2017, 8, 15737. 5.8 154 m⁶A RNA Modification Determines Cell Fate by Regulating mRNA Degradation. Cellular 36 0.5 31 Reprogramming, 2017, 19, 225-231. Three distinct 3-methylcytidine (m3C) methyltransferases modify tRNA and mRNA in mice and humans. 159 Journal of Biological Chemistry, 2017, 292, 14695-14703.

#	Article	IF	CITATIONS
38	MiR-33a suppresses proliferation of NSCLC cells via targeting METTL3 mRNA. Biochemical and Biophysical Research Communications, 2017, 482, 582-589.	1.0	154
39	S-Adenosylmethionine Synthesis Is Regulated by Selective N6-Adenosine Methylation and mRNA Degradation Involving METTL16 and YTHDC1. Cell Reports, 2017, 21, 3354-3363.	2.9	240
40	The Dark Side of the Epitranscriptome: Chemical Modifications in Long Non-Coding RNAs. International Journal of Molecular Sciences, 2017, 18, 2387.	1.8	101
41	Role of DNA and RNA N6-Adenine Methylation in Regulating Stem Cell Fate. Current Stem Cell Research and Therapy, 2017, 13, 31-38.	0.6	39
42	Deciphering the Epitranscriptome in Cancer. Trends in Cancer, 2018, 4, 207-221.	3.8	39
43	RNA tales $\hat{a} \in $ how embryos read and discard messages from mom. Journal of Cell Science, 2018, 131, .	1.2	30
44	Structural insights into the RNA methyltransferase domain of METTL16. Scientific Reports, 2018, 8, 5311.	1.6	80
45	Towards the structural characterization of the human methyltransferome. Current Opinion in Structural Biology, 2018, 53, 12-21.	2.6	7
46	Distinguishing RNA modifications from noise in epitranscriptome maps. Nature Chemical Biology, 2018, 14, 215-225.	3.9	81
47	Interactions, localization, and phosphorylation of the m ⁶ A generating METTL3–METTL14–WTAP complex. Rna, 2018, 24, 499-512.	1.6	312
48	METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m6A Modification. Cell Stem Cell, 2018, 22, 191-205.e9.	5.2	749
49	N6-methyladenosine RNA modification regulates embryonic neural stem cell self-renewal through histone modifications. Nature Neuroscience, 2018, 21, 195-206.	7.1	317
50	N6-Methyladenosines Modulate A-to-I RNA Editing. Molecular Cell, 2018, 69, 126-135.e6.	4.5	108
51	MeT-DB V2.0: elucidating context-specific functions of N6-methyl-adenosine methyltranscriptome. Nucleic Acids Research, 2018, 46, D281-D287.	6.5	115
52	Mechanism of N6-methyladenosine modification and its emerging role in cancer. , 2018, 189, 173-183.		31
53	Structural Insights into N 6 -methyladenosine (m 6 A) Modification in the Transcriptome. Genomics, Proteomics and Bioinformatics, 2018, 16, 85-98.	3.0	56
54	YTH Domain: A Family of N 6 -methyladenosine (m 6 A) Readers. Genomics, Proteomics and Bioinformatics, 2018, 16, 99-107.	3.0	277
55	RNA epitranscriptomics: Regulation of infection of RNA and DNA viruses by <i>N</i> ⁶ â€methyladenosine (m ⁶ A). Reviews in Medical Virology, 2018, 28, e1983. 	3.9	66

#	Article	IF	CITATIONS
56	Zc3h13 Regulates Nuclear RNA m6A Methylation and Mouse Embryonic Stem Cell Self-Renewal. Molecular Cell, 2018, 69, 1028-1038.e6.	4.5	618
57	Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m ⁶ A machinery component Wtap/Fl(2)d. Genes and Development, 2018, 32, 415-429.	2.7	416
58	Reading m6A in the Transcriptome: m6A-Binding Proteins. Trends in Cell Biology, 2018, 28, 113-127.	3.6	445
59	The emerging role of mRNA methylation in normal and pathological behavior. Genes, Brain and Behavior, 2018, 17, e12428.	1.1	65
60	Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene, 2018, 37, 522-533.	2.6	486
61	Potential link between m 6 A modification and systemic lupus erythematosus. Molecular Immunology, 2018, 93, 55-63.	1.0	68
62	Aberrant expression of enzymes regulating m ⁶ A mRNA methylation: implication in cancer. Cancer Biology and Medicine, 2018, 15, 323.	1.4	86
63	N6-methyladenosine contributes to cellular phenotype in a genetically-defined model of breast cancer progression. Oncotarget, 2018, 9, 31231-31243.	0.8	28
64	N6-Methyladenosine in RNA and DNA: An Epitranscriptomic and Epigenetic Player Implicated in Determination of Stem Cell Fate. Stem Cells International, 2018, 2018, 1-18.	1.2	52
65	Mettl3-mediated m6A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nature Communications, 2018, 9, 4772.	5.8	265
66	DaReUS-Loop: accurate loop modeling using fragments from remote or unrelated proteins. Scientific Reports, 2018, 8, 13673.	1.6	33
67	Structural Basis for Regulation of METTL16, an S-Adenosylmethionine Homeostasis Factor. Molecular Cell, 2018, 71, 1001-1011.e4.	4.5	146
68	Methylation of Structured RNA by the m6A Writer METTL16 Is Essential for Mouse Embryonic Development. Molecular Cell, 2018, 71, 986-1000.e11.	4.5	250
69	The RNA Epitranscriptome of DNA Viruses. Journal of Virology, 2018, 92, .	1.5	31
70	Dawn of Epitranscriptomic Medicine. Circulation Genomic and Precision Medicine, 2018, 11, e001927.	1.6	24
71	Aberrant Regulation of mRNA m6A Modification in Cancer Development. International Journal of Molecular Sciences, 2018, 19, 2515.	1.8	48
72	The Nâ€ŧerminal methyltransferase homologs NRMT1 and NRMT2 exhibit novel regulation of activity through heterotrimer formation. Protein Science, 2018, 27, 1585-1599.	3.1	12
73	Synthesis of SAMâ€Adenosine Conjugates for the Study of m ⁶ Aâ€RNA Methyltransferases. European Journal of Organic Chemistry, 2018, 2018, 4411-4425.	1.2	11

	CITATION	Report	
#	Article	IF	CITATIONS
74	RNA-modifying proteins as anticancer drug targets. Nature Reviews Drug Discovery, 2018, 17, 435-453.	21.5	107
75	Adenosine methylation as a molecular imprint defining the fate of <scp>RNA</scp> . FEBS Letters, 2018, 592, 2845-2859.	1.3	41
76	Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Research, 2018, 28, 616-624.	5.7	1,045
77	N6-Methyladenosine modification: a novel pharmacological target for anti-cancer drug development. Acta Pharmaceutica Sinica B, 2018, 8, 833-843.	5.7	58
78	The m ⁶ A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′–3′ exoribonuclease XRN1. Rna, 2018, 24, 1339-1350.	1.6	171
79	Link Between m6A Modification and Cancers. Frontiers in Bioengineering and Biotechnology, 2018, 6, 89.	2.0	244
80	A fluorescent methylation-switchable probe for highly sensitive analysis of FTO <i>N</i> ⁶ -methyladenosine demethylase activity in cells. Chemical Science, 2018, 9, 7174-7185.	3.7	28
81	METTL3 regulates WTAP protein homeostasis. Cell Death and Disease, 2018, 9, 796.	2.7	108
82	Epitranscriptomics: A New Regulatory Mechanism of Brain Development and Function. Frontiers in Neuroscience, 2018, 12, 85.	1.4	27
83	Mettl3–Mettl14 methyltransferase complex regulates the quiescence of adult hematopoietic stem cells. Cell Research, 2018, 28, 952-954.	5.7	97
84	The Emerging Field of Epitranscriptomics in Neurodevelopmental and Neuronal Disorders. Frontiers in Bioengineering and Biotechnology, 2018, 6, 46.	2.0	83
85	RNA m6A modification and its function in diseases. Frontiers of Medicine, 2018, 12, 481-489.	1.5	181
86	N6-Methyladenosine Role in Acute Myeloid Leukaemia. International Journal of Molecular Sciences, 2018, 19, 2345.	1.8	34
87	m6A mRNA methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer. Nature Cell Biology, 2018, 20, 1074-1083.	4.6	592
88	Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets. Human Molecular Genetics, 2018, 27, 3936-3950.	1.4	129
89	The m6Aâ€epitranscriptomic signature in neurobiology: from neurodevelopment to brain plasticity. Journal of Neurochemistry, 2018, 147, 137-152.	2.1	120
90	The RNA Methyltransferase Complex of WTAP, METTL3, and METTL14 Regulates Mitotic Clonal Expansion in Adipogenesis. Molecular and Cellular Biology, 2018, 38, .	1.1	114
91	Structural basis for eukaryotic mRNA modification. Current Opinion in Structural Biology, 2018, 53, 59-68.	2.6	18

		CITATION REPORT		
#	Article		IF	CITATIONS
92	RNA methylation in nuclear preâ \in mRNA processing. Wiley Interdisciplinary Reviews RNA	., 2018, 9, e1489.	3.2	37
93	Methylation of RNA N6-methyladenosine in modulation of cytokine responses and tume Cytokine, 2019, 118, 35-41.	rigenesis.	1.4	24
94	The Role of Dynamic m ⁶ A <scp>RNA</scp> Methylation in Photobiology. F and Photobiology, 2019, 95, 95-104.	hotochemistry	1.3	31
95	Epigenetics in Neurodevelopment: Emerging Role of Circular RNA. Frontiers in Cellular N 2019, 13, 327.	euroscience,	1.8	60
96	Pancreatic \hat{I}^2 -cell mRNA modification as a marker for type 2 diabetes. Nature Metabolisn	n, 2019, 1, 748-749.	5.1	1
97	Programmable RNA N6-methyladenosine editing by CRISPR-Cas9 conjugates. Nature Ch 2019, 15, 865-871.	emical Biology,	3.9	140
98	Small changes, big implications: The impact of m6A RNA methylation on gene expression and development. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019,	n in pluripotency 1862, 194402.	0.9	37
99	m6A enhances the phase separation potential of mRNA. Nature, 2019, 571, 424-428.		13.7	460
100	Leukemia Stem Cells in Hematologic Malignancies. Advances in Experimental Medicine a 2019, , .	and Biology,	0.8	1
101	The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic 2019, 47, 7719-7733.	Acids Research,	6.5	312
102	Long Noncoding RNA FAM225A Promotes Nasopharyngeal Carcinoma Tumorigenesis ar Acting as ceRNA to Sponge miR-590-3p/miR-1275 and Upregulate ITGB3. Cancer Resear 4612-4626.	nd Metastasis by ch, 2019, 79,	0.4	250
103	Marking RNA: m6A writers, readers, and functions in Arabidopsis. Journal of Molecular C 2019, 11, 899-910.	ell Biology,	1.5	73
104	Detailed modeling of positive selection improves detection of cancer driver genes. Natu Communications, 2019, 10, 3399.	re	5.8	49
105	Sequence-specific m ⁶ A demethylation in RNA by FTO fused to RCas9. Rna,	2019, 25, 1311-1323.	1.6	34
106	Crystal structure of ErmE - 23S rRNA methyltransferase in macrolide resistance. Scientifi 2019, 9, 14607.	c Reports,	1.6	9
107	Flexible Binding of m ⁶ A Reader Protein YTHDC1 to Its Preferred RNA Motif. Chemical Theory and Computation, 2019, 15, 7004-7014.	Journal of	2.3	18
108	The protein complex crystallography beamline (BL19U1) at the Shanghai Synchrotron R Facility. Nuclear Science and Techniques/Hewuli, 2019, 30, 1.	adiation	1.3	131
109	Structure and regulation of ZCCHC4 in m6A-methylation of 28S rRNA. Nature Commun 10, 5042.	ications, 2019,	5.8	72

#	Article	IF	CITATIONS
110	WTAP facilitates progression of hepatocellular carcinoma via m6A-HuR-dependent epigenetic silencing of ETS1. Molecular Cancer, 2019, 18, 127.	7.9	400
111	Epitranscriptomic systems regulate the translation of reactive oxygen species detoxifying and disease linked selenoproteins. Free Radical Biology and Medicine, 2019, 143, 573-593.	1.3	19
112	Reading, writing and erasing mRNA methylation. Nature Reviews Molecular Cell Biology, 2019, 20, 608-624.	16.1	1,403
113	Predict Epitranscriptome Targets and Regulatory Functions of N6-Methyladenosine (m6A) Writers and Erasers. Evolutionary Bioinformatics, 2019, 15, 117693431987129.	0.6	19
114	RNA-modifying enzymes and their function in a chromatin context. Nature Structural and Molecular Biology, 2019, 26, 858-862.	3.6	24
115	Crystal structure of human YTHDC2 YTH domain. Biochemical and Biophysical Research Communications, 2019, 518, 678-684.	1.0	22
116	A Reader-Based Assay for m ⁶ A Writers and Erasers. Analytical Chemistry, 2019, 91, 3078-3084.	3.2	36
117	Epitranscriptomic Signatures in IncRNAs and Their Possible Roles in Cancer. Genes, 2019, 10, 52.	1.0	74
118	Epigenetic Methylations on N6-Adenine and N6-Adenosine with the same Input but Different Output. International Journal of Molecular Sciences, 2019, 20, 2931.	1.8	21
119	Chemical Modifications and Their Role in Long Non-coding RNAs. , 2019, , 35-63.		0
120	mRNA methylation in cell senescence. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1547.	3.2	35
121	METTL3 mediated m6A modification plays an oncogenic role in cutaneous squamous cell carcinoma by regulating ΔNp63. Biochemical and Biophysical Research Communications, 2019, 515, 310-317.	1.0	46
123	Role of identified RNA N6-methyladenosine methylation in liver. Analytical Biochemistry, 2019, 578, 45-50.	1.1	30
124	Charging the code — tRNA modification complexes. Current Opinion in Structural Biology, 2019, 55, 138-146.	2.6	45
124 125	 Charging the code â€" tRNA modification complexes. Current Opinion in Structural Biology, 2019, 55, 138-146. Identification of a DNA N6-Adenine Methyltransferase Complex and Its Impact on Chromatin Organization. Cell, 2019, 177, 1781-1796.e25. 	2.6 13.5	45 81
124 125 126	Charging the code â€" tRNA modification complexes. Current Opinion in Structural Biology, 2019, 55, 138-146. Identification of a DNA N6-Adenine Methyltransferase Complex and Its Impact on Chromatin Organization. Cell, 2019, 177, 1781-1796.e25. Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers. Molecular Cell, 2019, 74, 640-650.	2.6 13.5 4.5	45 81 1,096
124 125 126 127	Charging the code â€" tRNA modification complexes. Current Opinion in Structural Biology, 2019, 55, 138-146. Identification of a DNA N6-Adenine Methyltransferase Complex and Its Impact on Chromatin Organization. Cell, 2019, 177, 1781-1796.e25. Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers. Molecular Cell, 2019, 74, 640-650. N6â€methyladenosine regulatory machinery in plants: composition, function and evolution. Plant Biotechnology Journal, 2019, 17, 1194-1208.	2.6 13.5 4.5 4.1	45 81 1,096 140

ARTICLE IF CITATIONS # Stage-specific requirement for Mettl3-dependent m6A mRNA methylation during haematopoietic stem 129 4.6 172 cell differentiation. Nature Cell Biology, 2019, 21, 700-709. The interactome of a family of potential methyltransferases in HeLa cells. Scientific Reports, 2019, 9, 1.6 6584. 131 The chemical diversity of RNA modifications. Biochemical Journal, 2019, 476, 1227-1245. 1.7 94 N6-Methyladenosine (m6A): A Promising New Molecular Target in Acute Myeloid Leukemia. Frontiers in Oncology, 2019, 9, 251. Bisubstrate analogues as structural tools to investigate m⁶A methyltransferase active 133 1.5 24 sites. RNA Biology, 2019, 16, 798-808. METTL3 promotes the proliferation and mobility of gastric cancer cells. Open Medicine (Poland), 2019, 0.6 14, 25-31. RNA epigenetics and cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 2019, 129, 135 0.9 25 272-280. Functions of RNA N6-methyladenosine modification in cancer progression. Molecular Biology 1.0 Reports, 2019, 46, 2567-2575. Discovery of Small Molecules that Activate RNA Methylation through Cooperative Binding to the 137 2.9 121 METTL3-14-WTAP Complex Active Site. Cell Reports, 2019, 26, 3762-3771.e5. Transcriptomeâ€wide analysis of N6â€methyladenosine uncovers its regulatory role in gene expression in 1.0 38 the lepidopteran <i>Bombyx mori</i>. Insect Molecular Biology, 2019, 28, 703-715. Epitranscriptomic RNA Methylation in Plant Development and Abiotic Stress Responses. Frontiers in 139 1.7 97 Plant Science, 2019, 10, 500. Regulation of Gene Expression by N-methyladenosine in Cancer. Trends in Cell Biology, 2019, 29, 3.6 159 487-499. Tracking RNA structures as RNAs transit through the cell. Nature Structural and Molecular Biology, 141 3.6 3 2019, 26, 256-257. Messenger RNA Modifications in Plants. Trends in Plant Science, 2019, 24, 328-341. 142 4.3 74 Functions of RNA N6-methyladenosine modification in cancer progression. Molecular Biology 143 1.0 18 Reports, 2019, 46, 1383-1391. The role of m6A RNA methylation in cancer. Biomedicine and Pharmacotherapy, 2019, 112, 108613. 144 540 Atlas of quantitativeÂsingle-base-resolution N6-methyl-adenine methylomes. Nature Communications, 145 5.8 145 2019, 10, 5636. Multiple Functions and Mechanisms Underlying the Role of METTL3 in Human Cancers. Frontiers in 146 1.3 Oncology, 2019, 9, 1403.

		CITATION R	EPORT	
#	Article		IF	Citations
147	The m ⁶ A Writer: Rise of a Machine for Growing Tasks. Biochemistry, 2019	9, 58, 363-378.	1.2	117
148	The role of RNA adenosine demethylases in the control of gene expression. Biochimica Acta - Gene Regulatory Mechanisms, 2019, 1862, 343-355.	Et Biophysica	0.9	26
149	The Biology of m6A RNA Methylation in Normal and Malignant Hematopoiesis. Cancer 9, 25-33.	Discovery, 2019,	7.7	122
150	UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research, 2019, 47, D50	D6-D515.	6.5	6,185
151	Steering pluripotency and differentiation with N6-methyladenosine RNA modification. Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 394-402.	Biochimica Et	0.9	13
152	m6A: Widespread regulatory control in virus replication. Biochimica Et Biophysica Acta Regulatory Mechanisms, 2019, 1862, 370-381.	- Gene	0.9	37
153	Cap-specific terminal <i>N</i> ⁶ -methylation of RNA by an RNA polymera methyltransferase. Science, 2019, 363, .	se ll–associated	6.0	262
154	Lysine-Targeted Inhibitors and Chemoproteomic Probes. Annual Review of Biochemistr 365-381.	y, 2019, 88,	5.0	80
155	Mapping <i>N</i> ⁶ â€Methyladenosine (m ⁶ A) in RNA: Estab Remaining Challenges, and Emerging Approaches. Chemistry - A European Journal, 201	lished Methods, 9, 25, 3455-3464.	1.7	18
156	Mechanistic insights into m6A RNA enzymes. Biochimica Et Biophysica Acta - Gene Reg Mechanisms, 2019, 1862, 222-229.	gulatory	0.9	89
157	N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation Biology, 2019, 15, 88-94.	. Nature Chemical	3.9	258
158	Dynamic and reversible RNA <i>N</i> ⁶ â€methyladenosine methylation. V Interdisciplinary Reviews RNA, 2019, 10, e1507.	Viley	3.2	31
159	Solution structure of the RNA recognition domain of METTL3-METTL14 N6-methylader methyltransferase. Protein and Cell, 2019, 10, 272-284.	losine	4.8	99
160	A Mass Spectrometric Assay of METTL3/METTL14 Methyltransferase Activity. SLAS Dis 361-371.	covery, 2020, 25,	1.4	28
161	Reading Chemical Modifications in the Transcriptome. Journal of Molecular Biology, 20 1824-1839.	20, 432,	2.0	18
162	New sights in cancer: Component and function of N6-methyladenosine modification. E Pharmacotherapy, 2020, 122, 109694.	iomedicine and	2.5	20
163	Programmable RNA methylation and demethylation using PUF RNA binding proteins. C Communications, 2020, 56, 1365-1368.	hemical	2.2	23
164	Episo: quantitative estimation of RNA 5-methylcytosine at isoform level by high-throug sequencing of RNA treated with bisulfite. Bioinformatics, 2020, 36, 2033-2039.	hput	1.8	5

#	Article	IF	CITATIONS
165	The m6A epitranscriptome: transcriptome plasticity in brain development and function. Nature Reviews Neuroscience, 2020, 21, 36-51.	4.9	195
166	RNA Modifications in Cancer: Functions, Mechanisms, and Therapeutic Implications. Annual Review of Cancer Biology, 2020, 4, 221-240.	2.3	60
167	The Biogenesis and Precise Control of RNA m6A Methylation. Trends in Genetics, 2020, 36, 44-52.	2.9	198
168	Epigenetic Modifications of mRNA and DNA in Plants. Molecular Plant, 2020, 13, 14-30.	3.9	124
169	The Potential Roles of RNA N6-Methyladenosine in Urological Tumors. Frontiers in Cell and Developmental Biology, 2020, 8, 579919.	1.8	18
170	WTAP Function in Sertoli Cells Is Essential for Sustaining the Spermatogonial Stem Cell Niche. Stem Cell Reports, 2020, 15, 968-982.	2.3	27
171	The m6A epitranscriptome opens a new charter in immune system logic. Epigenetics, 2021, 16, 819-837.	1.3	18
172	Regulation of N6-Methyladenosine in the Differentiation of Cancer Stem Cells and Their Fate. Frontiers in Cell and Developmental Biology, 2020, 8, 561703.	1.8	10
173	Multifaceted Functions and Novel Insight Into the Regulatory Role of RNA N6-Methyladenosine Modification in Musculoskeletal Disorders. Frontiers in Cell and Developmental Biology, 2020, 8, 870.	1.8	31
174	METTL3 counteracts premature aging via m6A-dependent stabilization of MIS12 mRNA. Nucleic Acids Research, 2020, 48, 11083-11096.	6.5	99
175	The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases. Genes and Diseases, 2021, 8, 746-758.	1.5	51
176	Comparative epigenetics in animal physiology: An emerging frontier. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2020, 36, 100745.	0.4	6
177	Exosomes from dendritic cells with Mettl3 gene knockdown prevent immune rejection in a mouse cardiac allograft model. Immunogenetics, 2020, 72, 423-430.	1.2	4
178	N6-methyladenosine RNA modification in cancer therapeutic resistance: Current status and perspectives. Biochemical Pharmacology, 2020, 182, 114258.	2.0	43
179	Structural and Virus Regulatory Insights Into Avian N6-Methyladenosine (m6A) Machinery. Frontiers in Cell and Developmental Biology, 2020, 8, 543.	1.8	9
180	Reversible N6-methyladenosine of RNA: The regulatory mechanisms on gene expression and implications in physiology and pathology. Genes and Diseases, 2020, 7, 585-597.	1.5	23
181	N6-methyladenosine as a Novel Regulator of Brain Physiology and Diseases. Current Medical Science, 2020, 40, 401-406.	0.7	3
182	Epitranscriptomic(N6-methyladenosine) Modification of Viral RNA and Virus-Host Interactions. Frontiers in Cellular and Infection Microbiology, 2020, 10, 584283.	1.8	36

#	ARTICLE	IF	CITATIONS
183	METTL7B (methyltransferase-like 7B) identification as a novel biomarker for lung adenocarcinoma. Annals of Translational Medicine, 2020, 8, 1130-1130.	0.7	6
184	Crystal structure of the yeast heterodimeric ADAT2/3 deaminase. BMC Biology, 2020, 18, 189.	1.7	20
185	Emerging roles of N6-methyladenosine (m6A) modification in breast cancer. Cell and Bioscience, 2020, 10, 136.	2.1	20
186	The m6A methylation regulator-based signature for predicting the prognosis of prostate cancer. Future Oncology, 2020, 16, 2421-2432.	1.1	20
187	Reshaping the role of m6A modification in cancer transcriptome: a review. Cancer Cell International, 2020, 20, 353.	1.8	37
188	Prediction of RNA Methylation Status From Gene Expression Data Using Classification and Regression Methods. Evolutionary Bioinformatics, 2020, 16, 117693432091570.	0.6	3
189	Epigenetic Regulation of Endothelial Cell Function by Nucleic Acid Methylation in Cardiac Homeostasis and Disease. Cardiovascular Drugs and Therapy, 2021, 35, 1025-1044.	1.3	7
190	<i>METTL3</i> polymorphisms and Wilms tumor susceptibility in Chinese children: A fiveâ€center case–control study. Journal of Gene Medicine, 2020, 22, e3255.	1.4	14
191	Insight into m ⁶ A methylation from occurrence to functions. Open Biology, 2020, 10, 200091.	1.5	24
192	Dm Ime4 depletion affects permeability barrier and Chic function in Drosophila spermatogenesis. Mechanisms of Development, 2020, 164, 103650.	1.7	3
193	RNA-Binding Proteins as Regulators of Migration, Invasion and Metastasis in Oral Squamous Cell Carcinoma. International Journal of Molecular Sciences, 2020, 21, 6835.	1.8	34
194	m6A RNA Methylation: Ramifications for Gene Expression and Human Health. Molecular Biotechnology, 2020, 62, 467-484.	1.3	40
195	β-catenin represses miR455-3p to stimulate m6A modification of HSF1 mRNA and promote its translation in colorectal cancer. Molecular Cancer, 2020, 19, 129.	7.9	66
196	Roles of METTL3 in cancer: mechanisms and therapeutic targeting. Journal of Hematology and Oncology, 2020, 13, 117.	6.9	269
197	WTAP promotes osteosarcoma tumorigenesis by repressing HMBOX1 expression in an m6A-dependent manner. Cell Death and Disease, 2020, 11, 659.	2.7	85
198	METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-mRNA splicing. Nucleic Acids Research, 2020, 48, 9250-9261.	6.5	60
199	RNA m6A Modification in Cancers: Molecular Mechanisms and Potential Clinical Applications. Innovation(China), 2020, 1, 100066.	5.2	69
200	<scp>RNA</scp> m ⁶ A methylation regulates sorafenib resistance in liver cancer through <scp>FOXO</scp> 3â€mediated autophagy. EMBO Journal, 2020, 39, e103181.	3.5	271

#	Article	IF	CITATIONS
201	The 18S ribosomal <scp>RNA</scp> m ⁶ A methyltransferase Mettl5 is required for normal walking behavior in <i>Drosophila</i> . EMBO Reports, 2020, 21, e49443.	2.0	52
202	The potential role of RNA N6-methyladenosine in Cancer progression. Molecular Cancer, 2020, 19, 88.	7.9	516
203	Dendritic cells with METTL3 gene knockdown exhibit immature properties and prolong allograft survival. Genes and Immunity, 2020, 21, 193-202.	2.2	13
204	Beta class amino methyltransferases from bacteria to humans: evolution and structural consequences. Nucleic Acids Research, 2020, 48, 10034-10044.	6.5	21
205	SUMO1 modification of methyltransferase-like 3 promotes tumor progression via regulating Snail mRNA homeostasis in hepatocellular carcinoma. Theranostics, 2020, 10, 5671-5686.	4.6	94
206	Mechanisms of RNA N6-Methyladenosine in Hepatocellular Carcinoma: From the Perspectives of Etiology. Frontiers in Oncology, 2020, 10, 1105.	1.3	21
207	Deoxycholic acid modulates the progression of gallbladder cancer through N6-methyladenosine-dependent microRNA maturation. Oncogene, 2020, 39, 4983-5000.	2.6	48
208	The functions of N6-methyladenosine modification in IncRNAs. Genes and Diseases, 2020, 7, 598-605.	1.5	64
209	N6-Deoxyadenosine Methylation in Mammalian Mitochondrial DNA. Molecular Cell, 2020, 78, 382-395.e8.	4.5	156
210	METTL7B Is Required for Cancer Cell Proliferation and Tumorigenesis in Non-Small Cell Lung Cancer. Frontiers in Pharmacology, 2020, 11, 178.	1.6	36
211	The roles of m6A RNA modifiers in human cancer. Journal of the Chinese Medical Association, 2020, 83, 221-226.	0.6	28
212	m6A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer. Cancer Cell, 2020, 37, 270-288.	7.7	688
213	Epigenetic modulations of noncoding RNA: a novel dimension of Cancer biology. Molecular Cancer, 2020, 19, 64.	7.9	69
214	Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nature Biotechnology, 2020, 38, 1431-1440.	9.4	173
215	Asymmetric dimerization of adenosine deaminase acting on RNA facilitates substrate recognition. Nucleic Acids Research, 2020, 48, 7958-7972.	6.5	33
216	The emerging roles of N6-methyladenosine RNA methylation in human cancers. Biomarker Research, 2020, 8, 24.	2.8	31
217	Photoactivatable RNA N ⁶ â€Methyladenosine Editing with CRISPR as13. Small, 2020, 16, e1907301.	5.2	52
218	N6-Adenosine Methylation in RNA and a Reduced m3G/TMG Level in Non-Coding RNAs Appear at Microirradiation-Induced DNA Lesions. Cells, 2020, 9, 360.	1.8	36

#	Article	IF	Citations
219	RNA N6-methyladenosine: a promising molecular target in metabolic diseases. Cell and Bioscience, 2020, 10, 19.	2.1	29
220	Enhanced Vitamin C Production Mediated by an ABA-Induced PTP-like Nucleotidase Improves Plant Drought Tolerance in Arabidopsis and Maize. Molecular Plant, 2020, 13, 760-776.	3.9	47
221	N6-Methyladenosine Regulates the Expression and Secretion of TGFβ1 to Affect the Epithelial–Mesenchymal Transition of Cancer Cells. Cells, 2020, 9, 296.	1.8	47
222	m6A mRNA methylation: A pleiotropic regulator of cancer. Gene, 2020, 736, 144415.	1.0	20
223	Introducing selective agrochemical manipulation of gibberellin metabolism into a cereal crop. Nature Plants, 2020, 6, 67-72.	4.7	17
224	m6A-binding proteins: the emerging crucial performers in epigenetics. Journal of Hematology and Oncology, 2020, 13, 35.	6.9	174
225	The RNA modification N6-methyladenosine as a novel regulator of the immune system. Nature Immunology, 2020, 21, 501-512.	7.0	256
226	Mechanistic insights into m6A modification of U6 snRNA by human METTL16. Nucleic Acids Research, 2020, 48, 5157-5168.	6.5	70
227	The rRNA m ⁶ A methyltransferase METTL5 is involved in pluripotency and developmental programs. Genes and Development, 2020, 34, 715-729.	2.7	93
228	Insights into the N ⁶ -methyladenosine mechanism and its functionality: progress and questions. Critical Reviews in Biotechnology, 2020, 40, 639-652.	5.1	15
229	Recent developments of small molecules targeting RNA m6A modulators. European Journal of Medicinal Chemistry, 2020, 196, 112325.	2.6	17
230	m6A-dependent glycolysis enhances colorectal cancer progression. Molecular Cancer, 2020, 19, 72.	7.9	242
231	Epigenetic N6-methyladenosine modification of RNA and DNA regulates cancer. Cancer Biology and Medicine, 2020, 17, 9-19.	1.4	26
232	A functional m ⁶ Aâ€RNA methylation pathway in the oyster <i>Crassostrea gigas</i> assumes epitranscriptomic regulation of lophotrochozoan development. FEBS Journal, 2021, 288, 1696-1711.	2.2	3
233	A birds'â€eye view of the activity and specificity of the <scp>mRNA m⁶A</scp> methyltransferase complex. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1618.	3.2	34
234	Tagâ€Free Internal RNA Labeling and Photocaging Based on mRNA Methyltransferases. Angewandte Chemie - International Edition, 2021, 60, 4098-4103.	7.2	40
235	RNA N6-Methyladenosine Methyltransferase METTL3 Facilitates Colorectal Cancer by Activating the m6A-GLUT1-mTORC1 Axis and Is a Therapeutic Target. Gastroenterology, 2021, 160, 1284-1300.e16.	0.6	161
236	Tagâ€Free Internal RNA Labeling and Photocaging Based on mRNA Methyltransferases. Angewandte Chemie, 2021, 133, 4144-4149.	1.6	11

#	Article	IF	CITATIONS
237	METTL3-Mediated m6A mRNA Methylation Modulates Tooth Root Formation by Affecting NFIC Translation. Journal of Bone and Mineral Research, 2020, 36, 412-423.	3.1	30
238	Factors influencing osteogenic differentiation of human aortic valve interstitial cells. Journal of Thoracic and Cardiovascular Surgery, 2021, 161, e163-e185.	0.4	19
239	Regulation of RNA N ⁶ -methyladenosine modification and its emerging roles in skeletal muscle development. International Journal of Biological Sciences, 2021, 17, 1682-1692.	2.6	25
240	The Impacts of Non-coding RNAs and N6-Methyladenosine on Cancer: Past, Present, and Future. Current Cancer Drug Targets, 2021, 21, 375-385.	0.8	4
241	Epitranscriptomic Signatures in Neural Development and Disease. RNA Technologies, 2021, , 79-120.	0.2	1
242	Multifaceted regulation of translation by the epitranscriptomic modification N ⁶ -methyladenosine. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 137-148.	2.3	11
243	The crosstalk between m ⁶ A RNA methylation and other epigenetic regulators: a novel perspective in epigenetic remodeling. Theranostics, 2021, 11, 4549-4566.	4.6	57
244	RNA m6A Methylation Regulators Subclassify Luminal Subtype in Breast Cancer. Frontiers in Oncology, 2020, 10, 611191.	1.3	8
245	Methyltransferase-like 3 contributes to inflammatory pain by targeting TET1 in YTHDF2-dependent manner. Pain, 2021, 162, 1960-1976.	2.0	35
246	m ⁶ A-RNA Demethylase FTO Inhibitors Impair Self-Renewal in Glioblastoma Stem Cells. ACS Chemical Biology, 2021, 16, 324-333.	1.6	98
247	m ⁶ A deposition is regulated by PRMT1â€mediated arginine methylation of METTL14 in its disordered Câ€ŧerminal region. EMBO Journal, 2021, 40, e106309.	3.5	30
248	Targeted RNA m6A Editing Using Engineered CRISPR-Cas9 Conjugates. Methods in Molecular Biology, 2021, 2298, 399-414.	0.4	3
249	Methylation multiplicity and its clinical values in cancer. Expert Reviews in Molecular Medicine, 2021, 23, e2.	1.6	45
250	Roles of m6A RNA Modification in Normal Development and Disease. RNA Technologies, 2021, , 267-308.	0.2	2
251	Ribonucleotide base-modifying enzymes and diseases. , 2021, , 69-83.		1
252	Fumonisin B1 alters global m6A RNA methylation and epigenetically regulates Keap1-Nrf2 signaling in human hepatoma (HepC2) cells. Archives of Toxicology, 2021, 95, 1367-1378.	1.9	25
253	The role of m6A, m5C and $\hat{\Gamma}$ RNA modifications in cancer: Novel therapeutic opportunities. Molecular Cancer, 2021, 20, 18.	7.9	245
254	Epitranscriptome machinery in Trypanosomatids: New players on the table?. Molecular Microbiology, 2021, 115, 942-958.	1.2	7

		CITATION RE	PORT	
#	Article		IF	Citations
255	Relaxed initiation pausing of ribosomes drives oncogenic translation. Science Advance	s, 2021, 7, .	4.7	7
256	Post-transcriptional regulation by the exosome complex is required for cell survival and development via repression of P53 signaling. Development (Cambridge), 2021, 148, .	forebrain	1.2	14
257	Methyladenosine Modification in RNAs: Classification and Roles in Gastrointestinal Car Frontiers in Oncology, 2020, 10, 586789.	icers.	1.3	14
258	m6A-Mediated Upregulation of LINC00857 Promotes Pancreatic Cancer Tumorigenesi miR-150-5p/E2F3 Axis. Frontiers in Oncology, 2021, 11, 629947.	s by Regulating the	1.3	24
260	N6-methyladenosine RNA modification suppresses antiviral innate sensing pathways v double-stranded RNA. Nature Communications, 2021, 12, 1582.	a reshaping	5.8	65
261	The Important Role of N6-methyladenosine RNA Modification in Non-Small Cell Lung C 2021, 12, 440.	ancer. Genes,	1.0	14
262	METTL3-mediated m6A modification regulates cell cycle progression of dental pulp ste Cell Research and Therapy, 2021, 12, 159.	m cells. Stem	2.4	24
263	RNA methylation in hematological malignancies and its interactions with other epigen modifications. Leukemia, 2021, 35, 1243-1257.	etic	3.3	19
264	The Dynamic m ⁶ A Epitranscriptome in Glioma Stem Cell Plasticity and Fu	nction. , 0, , .		0
266	Roles of RNA Methylation on Tumor Immunity and Clinical Implications. Frontiers in Im 12, 641507.	munology, 2021,	2.2	83
267	METTL3 Regulates Ossification of the Posterior Longitudinal Ligament via the IncRNA XIST/miR-302a-3p/USP8 Axis. Frontiers in Cell and Developmental Biology, 2021, 9, 62	9895.	1.8	17
268	Gene Expression Profile and Prognostic Value of m6A RNA Methylation Regulators in H Carcinoma. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 85-101.	lepatocellular	1.8	6
269	ATP-Independent Initiation during Cap-Independent Translation of m6A-Modified mRN. Journal of Molecular Sciences, 2021, 22, 3662.	A. International	1.8	3
270	Epigenetic regulations in mammalian spermatogenesis: RNA-m6A modification and be Molecular Life Sciences, 2021, 78, 4893-4905.	vond. Cellular and	2.4	31
271	The RNA helicase DDX5 promotes viral infection via regulating N6-methyladenosine leven DHX58 and NFκB transcripts to dampen antiviral innate immunity. PLoS Pathogens, 20	vels on the 021, 17, e1009530.	2.1	31
272	m6A-independent genome-wide METTL3 and METTL14 redistribution drives the senesc secretory phenotype. Nature Cell Biology, 2021, 23, 355-365.	ence-associated	4.6	71
273	Pathogen-inducible OsMPKK10.2-OsMPK6 cascade phosphorylates the Raf-like kinase its scaffold function to promote rice disease resistance. Molecular Plant, 2021, 14, 620	OsEDR1 and inhibits D-632.	3.9	39
274	N6-Methyladenosine Regulators Are Involved in the Progression of and Have Clinical In Cancer. Medical Science Monitor, 2021, 27, e929615.	ipact on Breast	0.5	3

ARTICLE IF CITATIONS # Transcriptome-wide study revealed m6A regulation of embryonic muscle development in Dingan goose 275 1.2 23 (Anser cygnoides orientalis). BMC Genomics, 2021, 22, 270. RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications 276 1.0 in Human Diseases. Genes, 2021, 12, 627. 278 Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature, 2021, 593, 597-601. 13.7 531 The Biological Function, Mechanism, and Clinical Significance of m6A RNA Modifications in Head and 279 1.8 Neck Carcinoma: A Systematic Review. Frontiers in Cell and Developmental Biology, 2021, 9, 683254. Role of RNA N6-Methyladenosine Modification in Male Infertility and Genital System Tumors. Frontiers 280 1.8 11 in Cell and Developmental Biology, 2021, 9, 676364. Functions of RNA N6-methyladenosine modification in acute myeloid leukemia. Biomarker Research, 2.8 2021, 9, 36. A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Research, 2021, 282 6.5 190 49, 7239-7255. The Role of RNA Modifications and RNA-modifying Proteins in Cancer Therapy and Drug Resistance. 0.8 Current Cancer Drug Targets, 2021, 21, 326-352 m6A Modification in Mammalian Nervous System Development, Functions, Disorders, and Injuries. 284 1.8 10 Frontiers in Cell and Developmental Biology, 2021, 9, 679662. m6A RNA methylation of major satellite repeat transcripts facilitates chromatin association and 6.5 RNA:DNA hybrid formation in mouse heterochromatin. Nucleic Acids Research, 2021, 49, 5568-5587. Systematic expression analysis of m 6 A RNA methyltransferases in clear cell renal cell carcinoma. BJUI 286 0.7 8 Compass, 2021, 2, 402-411. m6A regulators are associated with osteosarcoma metastasis and have prognostic significance. 0.4 Medicine (United States), 2021, 100, e25952. Elucidating the Functions of Non-Coding RNAs from the Perspective of RNA Modifications. Non-coding 288 1.3 8 RNA, 2021, 7, 31. Regulatory Role of N6-methyladenosine (m6A) Modification in Osteosarcoma. Frontiers in Oncology, 2021, 11, 683768. 1.3 mTORC1 promotes cell growth via m6A-dependent mRNA degradation. Molecular Cell, 2021, 81, 290 50 4.5 2064-2075.e8. N⁶â€methyladenosine Steers RNA Metabolism and Regulation in Cancer. Cancer 24 Communications, 2021, 41, 538-559. Division of labor in epitranscriptomics: What have we learnt from the structures of eukaryotic and viral multimeric <scp>RNA</scp> methyltransferases?. Wiley Interdisciplinary Reviews RNA, 2022, 13, 292 3.25 e1673. Emerging Role of m6 A Methylome in Brain Development: Implications for Neurological Disorders and 293 1.8 Potential Treatment. Frontiers in Cell and Developmental Biology, 2021, 9, 656849.

#	Article	IF	CITATIONS
294	Comprehensive profiling analysis of the N6-methyladenosine-modified circular RNA transcriptome in cultured cells infected with Marek's disease virus. Scientific Reports, 2021, 11, 11084.	1.6	8
295	The m6A-epitranscriptome in brain plasticity, learning and memory. Seminars in Cell and Developmental Biology, 2022, 125, 110-121.	2.3	15
296	RNA modifications in hematopoietic malignancies: a new research frontier. Blood, 2021, 138, 637-648.	0.6	24
297	From A to m6A: The Emerging Viral Epitranscriptome. Viruses, 2021, 13, 1049.	1.5	34
298	Dual effects of N6-methyladenosine on cancer progression and immunotherapy. Molecular Therapy - Nucleic Acids, 2021, 24, 25-39.	2.3	20
299	The METTL3-m6A Epitranscriptome: Dynamic Regulator of Epithelial Development, Differentiation, and Cancer. Genes, 2021, 12, 1019.	1.0	15
300	M6A "Writer―Gene METTL14: A Favorable Prognostic Biomarker and Correlated With Immune Infiltrates in Rectal Cancer. Frontiers in Oncology, 2021, 11, 615296.	1.3	15
301	Methyl CpG binding protein 2 promotes colorectal cancer metastasis by regulating N ⁶ â€methyladenosine methylation through methyltransferaseâ€like 14. Cancer Science, 2021, 112, 3243-3254.	1.7	26
302	m ⁶ A modification of HSATIII IncRNAs regulates temperatureâ€dependent splicing. EMBO Journal, 2021, 40, e107976.	3.5	36
303	Hakai is required for stabilization of core components of the m6A mRNA methylation machinery. Nature Communications, 2021, 12, 3778.	5.8	77
304	Arginine methylation of METTL14 promotes RNA N6-methyladenosine modification and endoderm differentiation of mouse embryonic stem cells. Nature Communications, 2021, 12, 3780.	5.8	34
305	Long Non-Coding RNA Epigenetics. International Journal of Molecular Sciences, 2021, 22, 6166.	1.8	23
306	Acute depletion of METTL3 implicates <i>N</i> ⁶ -methyladenosine in alternative intron/exon inclusion in the nascent transcriptome. Genome Research, 2021, 31, 1395-1408.	2.4	37
307	Targeting the m ⁶ A RNA modification pathway blocks SARS-CoV-2 and HCoV-OC43 replication. Genes and Development, 2021, 35, 1005-1019.	2.7	70
308	The OsIME4 gene identified as a key to meiosis initiation by RNA inÂsitu hybridization. Plant Biology, 2021, 23, 861-873.	1.8	2
309	N6-methyladenosine RNA modification regulates strawberry fruit ripening in an ABA-dependent manner. Genome Biology, 2021, 22, 168.	3.8	72
310	METTL14 promotes tumorigenesis by regulating lncRNA OIP5-AS1/miR-98/ADAMTS8 signaling in papillary thyroid cancer. Cell Death and Disease, 2021, 12, 617.	2.7	29
311	Chromatin and transcriptional regulation by reversible RNA methylation. Current Opinion in Cell Biology, 2021, 70, 109-115.	2.6	44

#	Article	IF	CITATIONS
313	Interactions between m6A modification and miRNAs in malignant tumors. Cell Death and Disease, 2021, 12, 598.	2.7	52
314	HIV Replication Is Increased by RNA Methylation METTL3/METTL14/WTAP Complex Activators. ACS Omega, 2021, 6, 15957-15963.	1.6	13
315	Role of m6A in osteoporosis, arthritis and osteosarcoma (Review). Experimental and Therapeutic Medicine, 2021, 22, 926.	0.8	16
316	Regulation of telomere homeostasis and genomic stability in cancer by <i>N</i> ⁶ -adenosine methylation (m ⁶ A). Science Advances, 2021, 7, .	4.7	18
317	<scp>RNA</scp> methyltransferase <scp>METTL16</scp> : Targets and function. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1681.	3.2	47
318	RNA methylation in mammalian development and cancer. Cell Biology and Toxicology, 2021, 37, 811-831.	2.4	47
319	Alteration of N6-Methyladenosine RNA Profiles in Cisplatin-Induced Acute Kidney Injury in Mice. Frontiers in Molecular Biosciences, 2021, 8, 654465.	1.6	13
320	Role of m6A methylation in occurrence and progression of digestive system malignancies. World Chinese Journal of Digestology, 2021, 29, 747-757.	0.0	0
321	m6A Modification: A Double-Edged Sword in Tumor Development. Frontiers in Oncology, 2021, 11, 679367.	1.3	41
322	METTL3 Inhibitors for Epitranscriptomic Modulation of Cellular Processes. ChemMedChem, 2021, 16, 3035-3043.	1.6	87
323	Distinct roles of Fto and Mettl3 in controlling development of the cerebral cortex through transcriptional and translational regulations. Cell Death and Disease, 2021, 12, 700.	2.7	15
324	A Lightâ€Controllable Chemical Modulation of m 6 A RNA Methylation. Angewandte Chemie, 2021, 133, 18264-18269.	1.6	5
325	N6-methyladenosine methyltransferases: functions, regulation, and clinical potential. Journal of Hematology and Oncology, 2021, 14, 117.	6.9	105
326	Changes in N6-Methyladenosine Modification Modulate Diabetic Cardiomyopathy by Reducing Myocardial Fibrosis and Myocyte Hypertrophy. Frontiers in Cell and Developmental Biology, 2021, 9, 702579.	1.8	26
327	N6-Methyladenosine Modification and Its Regulation of Respiratory Viruses. Frontiers in Cell and Developmental Biology, 2021, 9, 699997.	1.8	2
328	A plant-like mechanism coupling m6A reading to polyadenylation safeguards transcriptome integrity and developmental gene partitioning in Toxoplasma. ELife, 2021, 10, .	2.8	19
329	A Light ontrollable Chemical Modulation of m ⁶ A RNA Methylation. Angewandte Chemie - International Edition, 2021, 60, 18116-18121.	7.2	23
330	m6A modification of RNA and its role in cancer, with a special focus on lung cancer. Genomics, 2021, 113, 2860-2869.	1.3	19

#	Article	IF	CITATIONS
331	Cross-Talk between Oxidative Stress and m6A RNA Methylation in Cancer. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-26.	1.9	26
332	RNA modifications in cardiovascular diseases, the potential therapeutic targets. Life Sciences, 2021, 278, 119565.	2.0	37
333	Transcriptome programs involved in the development and structure of the cerebellum. Cellular and Molecular Life Sciences, 2021, 78, 6431-6451.	2.4	9
334	Inhibition of METTL3/m6A/ <i>miR126</i> promotes the migration and invasion of endometrial stromal cells in endometriosis. Biology of Reproduction, 2021, 105, 1221-1233.	1.2	30
335	Demethylase FTO activity analysis based on methyl sensitive enzyme MazF and hybridization chain reaction. Sensors and Actuators B: Chemical, 2021, 341, 129983.	4.0	14
336	The detection and functions of RNA modification m6A based on m6A writers and erasers. Journal of Biological Chemistry, 2021, 297, 100973.	1.6	43
337	N6-Methyladenosine in Cancer Immunotherapy: An Undervalued Therapeutic Target. Frontiers in Immunology, 2021, 12, 697026.	2.2	14
338	RNA m6A Modification Plays a Key Role in Maintaining Stem Cell Function in Normal and Malignant Hematopoiesis. Frontiers in Cell and Developmental Biology, 2021, 9, 710964.	1.8	5
339	Human umbilical cord mesenchymal stem cells deliver exogenous miR-26a-5p via exosomes to inhibit nucleus pulposus cell pyroptosis through METTL14/NLRP3. Molecular Medicine, 2021, 27, 91.	1.9	44
340	<i>m6A-express</i> : uncovering complex and condition-specific m6A regulation of gene expression. Nucleic Acids Research, 2021, 49, e116-e116.	6.5	24
341	N6 -Methyladenosine Modification in Chronic Stress Response Due to Social Hierarchy Positioning of Mice. Frontiers in Cell and Developmental Biology, 2021, 9, 705986.	1.8	3
342	1,4,9-Triazaspiro[5.5]undecan-2-one Derivatives as Potent and Selective METTL3 Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 12738-12760.	2.9	55
343	METTL3-mediated RNA m6A Hypermethylation Promotes Tumorigenesis and GH Secretion of Pituitary Somatotroph Adenomas. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 136-149.	1.8	8
344	N6-Methyladenosine RNA Modification: An Emerging Immunotherapeutic Approach to Turning Up Cold Tumors. Frontiers in Cell and Developmental Biology, 2021, 9, 736298.	1.8	7
345	Knockdown of IncRNA NUTM2A‑AS1 inhibits lung adenocarcinoma cell viability by regulating the miR‑590‑5p/METTL3 axis. Oncology Letters, 2021, 22, 798.	0.8	9
346	The Role of m6A Ribonucleic Acid Modification in the Occurrence of Atherosclerosis. Frontiers in Genetics, 2021, 12, 733871.	1.1	16
348	Evolution of Methyltransferase-Like (METTL) Proteins in Metazoa: A Complex Gene Family Involved in Epitranscriptomic Regulation and Other Epigenetic Processes. Molecular Biology and Evolution, 2021, 38, 5309-5327.	3.5	21
349	Methyltransferaseâ€like 3â€induced N6â€methyladenosine upregulation promotes oral squamous cell carcinoma by through p38. Oral Diseases, 2023, 29, 639-648.	1.5	8

#	Article	IF	CITATIONS
350	The Latest Research Progress of m6A Modification and Its Writers, Erasers, Readers in Infertility: A Review. Frontiers in Cell and Developmental Biology, 2021, 9, 681238.	1.8	3
351	Comparative Phylogenomic Analysis Reveals Evolutionary Genomic Changes and Novel Toxin Families in Endophytic <i>Liberibacter</i> Pathogens. Microbiology Spectrum, 2021, 9, e0050921.	1.2	6
352	RNA <i>N</i> ⁶ â€methyladenosine modification in the lethal teamwork of cancer stem cells and the tumor immune microenvironment: Current landscape and therapeutic potential. Clinical and Translational Medicine, 2021, 11, e525.	1.7	18
353	Degradation of WTAP blocks antiviral responses by reducing the m ⁶ A levels of IRF3 and IFNAR1 mRNA. EMBO Reports, 2021, 22, e52101.	2.0	24
354	Erasing m6A-dependent transcription signature of stress-sensitive genes triggers antidepressant actions. Neurobiology of Stress, 2021, 15, 100390.	1.9	15
355	Relevance of N6-methyladenosine regulators for transcriptome: Implications for development and the cardiovascular system. Journal of Molecular and Cellular Cardiology, 2021, 160, 56-70.	0.9	9
356	The RNA m6A writer METTL14 in cancers: Roles, structures, and applications. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188609.	3.3	58
357	METTL3 induces PLX4032 resistance in melanoma by promoting m6A-dependent EGFR translation. Cancer Letters, 2021, 522, 44-56.	3.2	32
358	Advances in mRNA 5-methylcytosine modifications: Detection, effectors, biological functions, and clinical relevance. Molecular Therapy - Nucleic Acids, 2021, 26, 575-593.	2.3	37
359	The Complex Roles and Therapeutic Implications of m6A Modifications in Breast Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 615071.	1.8	9
360	The functional roles, cross-talk and clinical implications of m6A modification and circRNA in hepatocellular carcinoma. International Journal of Biological Sciences, 2021, 17, 3059-3079.	2.6	24
361	Epitranscriptomics and Diseases. RNA Technologies, 2021, , 121-140.	0.2	0
362	RNA m6A Modification: The Mediator Between Cellular Stresses and Biological Effects. RNA Technologies, 2021, , 353-390.	0.2	1
363	Metabolic Control of m6A RNA Modification. Metabolites, 2021, 11, 80.	1.3	24
364	Diet-Dependent Metabolic Regulation of DNA Double-Strand Break Repair in Cancer: More Choices on the Menu. Cancer Prevention Research, 2021, 14, 403-414.	0.7	2
365	YTHDF2 Suppresses Notch Signaling through Post-transcriptional Regulation on Notch1. International Journal of Biological Sciences, 2021, 17, 3776-3785.	2.6	7
366	m ⁶ A RNA methylation: from mechanisms to therapeutic potential. EMBO Journal, 2021, 40, e105977.	3.5	316
367		1.2	62

#	Article	IF	CITATIONS
368	RNA N 6-Methyladenosine Modification in Normal and Malignant Hematopoiesis. Advances in Experimental Medicine and Biology, 2019, 1143, 75-93.	0.8	35
369	DNA N6-methyladenine in metazoans: functional epigenetic mark or bystander?. Nature Structural and Molecular Biology, 2017, 24, 503-506.	3.6	73
374	Interaction between N6-methyladenosine (m6A) modification and noncoding RNAs in cancer. Molecular Cancer, 2020, 19, 94.	7.9	168
375	A mark of disease: how mRNA modifications shape genetic and acquired pathologies. Rna, 2021, 27, 367-389.	1.6	24
376	Research Progress of N6-Methyladenosine in the Cardiovascular System. Medical Science Monitor, 2020, 26, e921742.	0.5	9
377	RNA N6-Adenosine Methylation (m6A) Steers Epitranscriptomic Control of Herpesvirus Replication. Inflammation and Cell Signaling, 0, 4, .	1.6	13
378	RNA secondary structure dependence in METTL3–METTL14 mRNA methylation is modulated by the N-terminal domain of METTL3. Biological Chemistry, 2020, 402, 89-98.	1.2	21
379	Exploring diagnostic m6A regulators in endometriosis. Aging, 2020, 12, 25916-25938.	1.4	45
380	Clustering Count-based RNA Methylation Data Using a Nonparametric Generative Model. Current Bioinformatics, 2018, 14, 11-23.	0.7	13
381	N6‑methyladenine RNA modification and cancer (Review). Oncology Letters, 2020, 20, 1504-1512.	0.8	25
382	Structural insights into the molecular mechanism of the m6A writer complex. ELife, 2016, 5, .	2.8	386
383	Role of methyltransferase-like enzyme 3 and methyltransferase-like enzyme 14 in urological cancers. PeerJ, 2020, 8, e9589.	0.9	17
384	N6-methyladenosine regulates ATM expression and downstream signaling. Journal of Cancer, 2021, 12, 7041-7051.	1.2	3
386	Role of N6-Methyladenosine (m6A) Methylation Regulators in Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 755206.	1.3	16
387	N6-methyladenosine RNA modification and its interaction with regulatory non-coding RNAs in colorectal cancer. RNA Biology, 2021, 18, 551-561.	1.5	7
388	Knockdown of METTL14 suppresses the malignant progression of non‑small cell lung cancer by reducing Twist expression. Oncology Letters, 2021, 22, 847.	0.8	15
390	Transient N-6-Methyladensosine Transcriptome Sequencing Reveals a Regulatory Role of m6A in Splicing Efficiency. SSRN Electronic Journal, 0, , .	0.4	0
394	Functions and Dynamics of Methylation in Eukaryotic mRNA. RNA Technologies, 2019, , 333-351.	0.2	0

	CITATION REF	PORT	
#	Article	IF	CITATIONS
395	The Role of mRNA m6A in Regulation of Gene Expression. RNA Technologies, 2019, , 353-376.	0.2	0
397	Molecular mechanism of methyltransferase-like protein family: Relationship with gastric cancer. World Chinese Journal of Digestology, 2020, 28, 428-434.	0.0	0
398	METTL14 gene polymorphisms influence hepatoblastoma predisposition in Chinese children: Evidences from a seven-center case-control study. Gene, 2022, 809, 146050.	1.0	5
399	m6A Modification in Non-Coding RNA: The Role in Cancer Drug Resistance. Frontiers in Oncology, 2021, 11, 746789.	1.3	10
400	The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. Molecular Therapy - Nucleic Acids, 2021, 26, 1270-1279.	2.3	43
403	RNA N-adenosine methylation (mA) steers epitranscriptomic control of herpesvirus replication. Inflammation and Cell Signaling, 2017, 4, .	1.6	15
404	METTL3 plays multiple functions in biological processes. American Journal of Cancer Research, 2020, 10, 1631-1646.	1.4	31
405	RNA m6A methylation regulators in ovarian cancer. Cancer Cell International, 2021, 21, 609.	1.8	27
406	Epitranscriptomics of cardiovascular diseases (Review). International Journal of Molecular Medicine, 2021, 49, .	1.8	9
407	Dynamic m6A-ncRNAs association and their impact on cancer pathogenesis, immune regulation and therapeutic response. Genes and Diseases, 2023, 10, 135-150.	1.5	5
408	METTL3-Dependent Glycolysis Regulates Dental Pulp Stem Cell Differentiation. Journal of Dental Research, 2022, 101, 580-589.	2.5	17
409	Balancing of mitochondrial translation through METTL8-mediated m3C modification of mitochondrial tRNAs. Molecular Cell, 2021, 81, 4810-4825.e12.	4.5	44
410	Novel insights into the interaction between N6-methyladenosine modification and circular RNA. Molecular Therapy - Nucleic Acids, 2022, 27, 824-837.	2.3	19
411	METTL14-mediated Lnc-LSG1 m6A modification inhibits clear cell renal cell carcinoma metastasis via regulating ESRP2 ubiquitination. Molecular Therapy - Nucleic Acids, 2022, 27, 547-561.	2.3	31
412	Insights into N6-methyladenosine and programmed cell death in cancer. Molecular Cancer, 2022, 21, 32.	7.9	81
413	Dynamic regulation and functions of mRNA m6A modification. Cancer Cell International, 2022, 22, 48.	1.8	63
414	N6‑methyladenosine upregulates miR‑181d‑5p in exosomes derived from cancer‑associated fibroblasts to inhibit 5‑FU sensitivity by targeting NCALD in colorectal cancer. International Journal of Oncology, 2022, 60, .) 1.4	35
415	Analysis of N6-Methyladenosine Methylome in Adenocarcinoma of Esophagogastric Junction. Frontiers in Genetics, 2021, 12, 787800.	1.1	1

#	Article	IF	CITATIONS
416	YTHDC1 regulates distinct post-integration steps of HIV-1 replication and is important for viral infectivity. Retrovirology, 2022, 19, 4.	0.9	8
417	The Interaction Between N6-Methyladenosine Modification and Non-Coding RNAs in Gastrointestinal Tract Cancers. Frontiers in Oncology, 2021, 11, 784127.	1.3	7
418	RNA binding to human METTL3-METTL14 restricts N6-deoxyadenosine methylation of DNA in vitro. ELife, 2022, 11, .	2.8	11
419	The role of regulators of RNA m6A methylation in lung cancer. Genes and Diseases, 2023, 10, 495-504.	1.5	5
421	Discovery of substituted indole derivatives as allosteric inhibitors of <scp>m⁶Aâ€RNA</scp> methyltransferase, <scp>METTL3</scp> â€14 complex. Drug Development Research, 2022, , .	1.4	9
422	The N6-Methyladenosine Modification and Its Role in mRNA Metabolism and Gastrointestinal Tract Disease. Frontiers in Surgery, 2022, 9, 819335.	0.6	4
423	FIONA1 is an RNA N6-methyladenosine methyltransferase affecting Arabidopsis photomorphogenesis and flowering. Genome Biology, 2022, 23, 40.	3.8	43
424	Roles and drug development of METTL3 (methyltransferase-like 3) in anti-tumor therapy. European Journal of Medicinal Chemistry, 2022, 230, 114118.	2.6	31
425	Functions, mechanisms, and therapeutic implications of METTL14 in human cancer. Journal of Hematology and Oncology, 2022, 15, 13.	6.9	34
426	Diagnostic, Therapeutic, and Prognostic Value of the m6A Writer Complex in Hepatocellular Carcinoma. Frontiers in Cell and Developmental Biology, 2022, 10, 822011.	1.8	11
427	METTL16 exerts an m6A-independent function to facilitate translation and tumorigenesis. Nature Cell Biology, 2022, 24, 205-216.	4.6	143
428	YTHDF3 modulates hematopoietic stem cells by recognizing RNA m ⁶ A modification on <i>Ccnd1</i> . Haematologica, 2022, 107, 2381-2394.	1.7	10
429	Comprehensive analysis of N6-methyladenosine regulators with the tumor immune landscape and correlation between the insulin-like growth factor 2 mRNA-binding protein 3 and programmed death ligand 1 in bladder cancer. Cancer Cell International, 2022, 22, 72.	1.8	8
430	Dynamic assembly of the mRNA m6A methyltransferase complex is regulated by METTL3 phase separation. PLoS Biology, 2022, 20, e3001535.	2.6	22
431	GR-mediated transcriptional regulation of m6A metabolic genes contributes to diet-induced fatty liver in hens. Journal of Animal Science and Biotechnology, 2021, 12, 117.	2.1	11
432	mA methyltransferase METTL3 promotes oral squamous cell carcinoma progression through enhancement of IGF2BP2-mediated SLC7A11 mRNA stability. American Journal of Cancer Research, 2021, 11, 5282-5298.	1.4	0
433	The role of Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) as m ⁶ A readers in cancer. International Journal of Biological Sciences, 2022, 18, 2744-2758.	2.6	30
434	TBK1-METTL3 axis facilitates antiviral immunity. Cell Reports, 2022, 38, 110373.	2.9	24

#	Article	IF	CITATIONS
435	m ⁶ Aâ€mediated regulation of crop development and stress responses. Plant Biotechnology Journal, 2022, 20, 1447-1455.	4.1	31
436	Global N6-Methyladenosine Profiling Revealed the Tissue-Specific Epitranscriptomic Regulation of Rice Responses to Salt Stress. International Journal of Molecular Sciences, 2022, 23, 2091.	1.8	11
437	The Role of Epigenetic Modifications in Human Cancers and the Use of Natural Compounds as Epidrugs: Mechanistic Pathways and Pharmacodynamic Actions. Biomolecules, 2022, 12, 367.	1.8	38
438	Targeted Manipulation of Cellular RNA m ⁶ A Methylation at the Single-Base Level. ACS Chemical Biology, 2022, 17, 854-863.	1.6	4
439	Global Landscape of m6A Methylation of Differently Expressed Genes in Muscle Tissue of Liaoyu White Cattle and Simmental Cattle. Frontiers in Cell and Developmental Biology, 2022, 10, 840513.	1.8	8
440	RNA N6-Methyladenosine Modifications and Its Roles in Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2022, 16, 820378.	1.8	8
441	Emerging Roles and Mechanism of m6A Methylation in Cardiometabolic Diseases. Cells, 2022, 11, 1101.	1.8	19
444	Loss of Wtap results in cerebellar ataxia and degeneration of Purkinje cells. Journal of Genetics and Genomics, 2022, 49, 847-858.	1.7	5
445	Lactylation-driven METTL3-mediated RNA m6A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Molecular Cell, 2022, 82, 1660-1677.e10.	4.5	185
446	Dynamic control of chromatin-associated m6A methylation regulates nascent RNA synthesis. Molecular Cell, 2022, 82, 1156-1168.e7.	4.5	69
447	Eltrombopag as an Allosteric Inhibitor of the METTL3-14 Complex Affecting the m6A Methylation of RNA in Acute Myeloid Leukemia Cells. Pharmaceuticals, 2022, 15, 440.	1.7	24
448	Mettl14-Mediated m6A Modification Is Essential for Germinal Center B Cell Response. Journal of Immunology, 2022, 208, 1924-1936.	0.4	18
449	The Status and Prospects of Epigenetics in the Treatment of Lymphoma. Frontiers in Oncology, 2022, 12, 874645.	1.3	7
450	The crucial roles of m6A RNA modifications in cutaneous cancers: Implications in pathogenesis, metastasis, drug resistance, and targeted therapies. Genes and Diseases, 2022, , .	1.5	Ο
451	RNA-binding proteins in regulating mRNA stability and translation: roles and mechanisms in cancer. Seminars in Cancer Biology, 2022, 86, 664-677.	4.3	29
452	The Emerging Role of N6-Methyladenosine RNA Methylation as Regulators in Cancer Therapy and Drug Resistance. Frontiers in Pharmacology, 2022, 13, 873030.	1.6	8
453	Analysis of the function and mechanism of DIRAS1 in osteosarcoma. Tissue and Cell, 2022, 76, 101794.	1.0	6
454	The roles of N6-methyladenosine methylation in the regulation of bone development, bone remodeling and osteoporosis. , 2022, 238, 108174.		23

#	Article	IF	CITATIONS
455	m6A Methylation Regulates Osteoblastic Differentiation and Bone Remodeling. Frontiers in Cell and Developmental Biology, 2021, 9, 783322.	1.8	43
456	RNA N6â€methyladenosine in nonocular and ocular disease. Journal of Cellular Physiology, 2022, 237, 1686-1710.	2.0	4
458	<scp>RNA</scp> nucleotide methylation: 2021 update. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1691.	3.2	39
459	Insights into roles of METTL14 in tumors. Cell Proliferation, 2022, 55, e13168.	2.4	21
460	Research development and potential therapeutic value of m6A modification in occurrence and progression of colorectal tumors. World Chinese Journal of Digestology, 2021, 29, 1373-1381.	0.0	0
461	N6-Methyladenosine RNA Modification in the Tumor Immune Microenvironment: Novel Implications for Immunotherapy. Frontiers in Immunology, 2021, 12, 773570.	2.2	22
462	Novel Insights Into the Multifaceted Functions of RNA n6-Methyladenosine Modification in Degenerative Musculoskeletal Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 766020.	1.8	13
463	Increased METTL3-mediated m6A methylation inhibits embryo implantation by repressing HOXA10 expression in recurrent implantation failure. Reproductive Biology and Endocrinology, 2021, 19, 187.	1.4	13
464	Emerging role of m6A methylation modification in ovarian cancer. Cancer Cell International, 2021, 21, 663.	1.8	9
465	Recognition of G-quadruplex RNA by a crucial RNA methyltransferase component, METTL14. Nucleic Acids Research, 2022, 50, 449-457.	6.5	21
466	Inducible and reversible RNA N6-methyladenosine editing. Nature Communications, 2022, 13, 1958.	5.8	21
467	Chemical biology and medicinal chemistry of RNA methyltransferases. Nucleic Acids Research, 2022, 50, 4216-4245.	6.5	9
475	METTL3 promotes cell cycle progression via m ⁶ A/YTHDF1-dependent regulation of <i>CDC25B</i> translation. International Journal of Biological Sciences, 2022, 18, 3223-3236.	2.6	23
476	The Role of RNA Methyltransferase METTL3 in Normal and Malignant Hematopoiesis. Frontiers in Oncology, 2022, 12, 873903.	1.3	11
477	Discovery of METTL3 Small Molecule Inhibitors by Virtual Screening of Natural Products. Frontiers in Pharmacology, 2022, 13, 878135.	1.6	18
478	Structural and functional characterization of <scp>TrmM</scp> in <scp> m ⁶ A </scp> modification of bacterial <scp>tRNA</scp> . Protein Science, 2022, 31, e4319.	3.1	2
479	Role of main RNA modifications in cancer: N6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduction and Targeted Therapy, 2022, 7, 142.	7.1	62
480	The emerging roles of N6-methyladenosine (m6A)-modified long non-coding RNAs in human cancers. Cell Death Discovery, 2022, 8, 255.	2.0	5

#	Article	IF	CITATIONS
481	N6-methyladenosine-modified TRAF1 promotes sunitinib resistance by regulating apoptosis and angiogenesis in a METTL14-dependent manner in renal cell carcinoma. Molecular Cancer, 2022, 21, 111.	7.9	36
483	N6-Methyladenosine dynamic changes and differential methylation in wheat grain development. Planta, 2022, 255, 125.	1.6	2
484	METTL3-mediated m6A RNA methylation regulates dorsal lingual epithelium homeostasis. International Journal of Oral Science, 2022, 14, 26.	3.6	6
485	Identification of epitranscriptomic methylation marker genes in Arabidopsis and their expression profiling in response to developmental, anatomical, and environmental modulations. Current Plant Biology, 2022, , 100247.	2.3	3
486	Deep learning modeling m6A deposition reveals the importance of downstream cis-element sequences. Nature Communications, 2022, 13, 2720.	5.8	12
487	DDX5/METTL3-METTL14/YTHDF2 Axis Regulates Replication of Influenza A Virus. Microbiology Spectrum, 2022, 10, e0109822.	1.2	11
488	Structural and functional specificity of H3K36 methylation. Epigenetics and Chromatin, 2022, 15, 17.	1.8	20
489	The importance of N6-methyladenosine modification in tumor immunity and immunotherapy. Experimental Hematology and Oncology, 2022, 11, 30.	2.0	8
491	The Progression of N6-methyladenosine Study and Its Role in Neuropsychiatric Disorders. International Journal of Molecular Sciences, 2022, 23, 5922.	1.8	6
492	The impact of RNA modifications on the biology of DNA virus infection. European Journal of Cell Biology, 2022, 101, 151239.	1.6	5
493	DARS-AS1 recruits METTL3/METTL14 to bind and enhance DARS mRNA m ⁶ A modification and translation for cytoprotective autophagy in cervical cancer. RNA Biology, 2022, 19, 751-763.	1.5	11
494	<scp>SvSTL1</scp> in the large subunit family of ribonucleotide reductases plays a major role in chloroplast development of <i>Setaria Viridis</i> . Plant Journal, 0, , .	2.8	2
495	Emerging Role of Epitranscriptomics in Diabetes Mellitus and Its Complications. Frontiers in Endocrinology, 2022, 13, .	1.5	11
496	Mettl3 downregulation in germinal vesicle oocytes inhibits mRNA decay and the first polar body extrusion during maturation. Biology of Reproduction, 2022, 107, 765-778.	1.2	3
497	The genomic landscape of cholangiocarcinoma reveals the disruption of post-transcriptional modifiers. Nature Communications, 2022, 13, .	5.8	17
498	One Stone, Two Birds: N6-Methyladenosine RNA Modification in Leukemia Stem Cells and the Tumor Immune Microenvironment in Acute Myeloid Leukemia. Frontiers in Immunology, 0, 13, .	2.2	1
501	N6-methyladenosine modification of the Aedes aegypti transcriptome and its alteration upon dengue virus infection in Aag2 cell line. Communications Biology, 2022, 5, .	2.0	5
502	Hidden codes in mRNA: Control of gene expression by m6A. Molecular Cell, 2022, 82, 2236-2251.	4.5	102

		CITATION REPO	RT	
#	Article	IF		CITATIONS
503	Structural basis for MTA1c-mediated DNA N6-adenine methylation. Nature Communications, 202	2, 13, . 5.	.8	2
504	Mechanisms and Strategies for Determining m ⁶ A RNA Modification Sites by Natural Engineered m ⁶ A Effector Proteins. Chemistry - an Asian Journal, 2022, 17, .	and 1.	7	3
505	m6A in the Signal Transduction Network. Molecules and Cells, 2022, 45, 435-443.	1.	0	20
506	Deletion of Mettl3 at the Pro-B Stage Marginally Affects B Cell Development and Profibrogenic Activity of B Cells in Liver Fibrosis. Journal of Immunology Research, 2022, 2022, 1-17.	0	.9	3
507	Mettl14-mediated m6A modification is essential for visual function and retinal photoreceptor survival. BMC Biology, 2022, 20, .	1.	7	10
508	In silico design of novel SAM analogs as potential inhibitors against N2G966 16s rRNA methyltransferase (RsmD). Letters in Drug Design and Discovery, 2022, 19, .	0	.4	0
509	Crosstalk Between Histone and m6A Modifications and Emerging Roles of m6A RNA Methylation Frontiers in Genetics, 0, 13, .	1.	1	4
510	Novel insights into m ⁶ A modification of coding and non-coding RNAs in tumor biolo From molecular mechanisms to therapeutic significance. International Journal of Biological Science 2022, 18, 4432-4451.	gy: es, 2	.6	13
511	m6A Methylation in Cardiovascular Diseases: From Mechanisms to Therapeutic Potential. Frontie Genetics, 0, 13, .	rs in 1.	1	11
512	Methyladenosine Modification in RNAs: From Regulatory Roles to Therapeutic Implications in Car Cancers, 2022, 14, 3195.	cer. 1.	7	8
513	The Alteration of m6A Modification at the Transcriptome-Wide Level in Human Villi During Spontaneous Abortion in the First Trimester. Frontiers in Genetics, 0, 13, .	1.	1	2
514	The methyltransferase METTL3 promotes tumorigenesis via mediating HHLA2 mRNA m6A modific human renal cell carcinoma. Journal of Translational Medicine, 2022, 20, .	ation in 1.	8	18
515	Emerging Roles of Long Noncoding RNAs in Breast Cancer Epigenetics and Epitranscriptomics. Frontiers in Cell and Developmental Biology, 0, 10, .	1.	8	2
516	The role of N6-methyladenosine-modified non-coding RNAs in the pathological process of human cancer. Cell Death Discovery, 2022, 8, .	2	.0	9
517	METTL14-mediated epitranscriptome modification of MN1 mRNA promote tumorigenicity and all-trans-retinoic acid resistance in osteosarcoma. EBioMedicine, 2022, 82, 104142.	2.	.7	19
518	PLAA suppresses ovarian cancer metastasis via METTL3-mediated m6A modification of TRPC3 mR Oncogene, 2022, 41, 4145-4158.	NA. 2	.6	14
519	The Emerging Role of RNA N6-Methyladenosine Modification in Pancreatic Cancer. Frontiers in Oncology, 0, 12, .	1.	3	2
520	RNA m6A modification: Mapping methods, roles, and mechanisms in acute myeloid leukemia. Blc Science, 2022, 4, 116-124.	od	.4	2

#	Article	IF	CITATIONS
521	Alternative splicing of METTL3 explains apparently METTL3-independent m6A modifications in mRNA. PLoS Biology, 2022, 20, e3001683.	2.6	31
522	Alphaherpesvirus US3 protein-mediated inhibition of the m6A mRNA methyltransferase complex. Cell Reports, 2022, 40, 111107.	2.9	10
523	Multifaceted Roles of the N6-Methyladenosine RNA Methyltransferase METTL3 in Cancer and Immune Microenvironment. Biomolecules, 2022, 12, 1042.	1.8	5
524	Rational Design and Optimization of m ⁶ A-RNA Demethylase FTO Inhibitors as Anticancer Agents. Journal of Medicinal Chemistry, 2022, 65, 10920-10937.	2.9	23
525	Interaction between N6-methyladenosine and autophagy in the regulation of bone and tissue degeneration. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	1
527	The role, mechanism, and application of RNA methyltransferase METTL14 in gastrointestinal cancer. Molecular Cancer, 2022, 21, .	7.9	15
528	Mettl3-mediated mRNA m6A modification controls postnatal liver development by modulating the transcription factor Hnf4a. Nature Communications, 2022, 13, .	5.8	20
529	The role of N6-methyladenosine methylation in environmental exposure-induced health damage. Environmental Science and Pollution Research, 2022, 29, 69153-69175.	2.7	5
530	The <i>S. cerevisiae</i> m6A-reader Pho92 promotes timely meiotic recombination by controlling key methylated transcripts. Nucleic Acids Research, 2023, 51, 517-535.	6.5	10
531	Research progress of m6A regulation during animal growth and development. Molecular and Cellular Probes, 2022, 65, 101851.	0.9	1
532	Dysregulation and implications of N6-methyladenosine modification in renal cell carcinoma. Current Urology, 2023, 17, 45-51.	0.4	1
533	Regulatory role of RNA N6-methyladenosine modifications during skeletal muscle development. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	7
534	Mettl14-driven senescence-associated secretory phenotype facilitates somatic cell reprogramming. Stem Cell Reports, 2022, 17, 1799-1809.	2.3	4
535	CMTr mediated 2°-O-ribose methylation status of cap adjacent-nucleotides across animals. Rna, 0, , rna.079317.122.	1.6	2
536	RNA nucleoprotein complexes in biological systems. Proceedings of the Indian National Science Academy, 0, , .	0.5	0
537	RNA binding protein RBM46 regulates mitotic-to-meiotic transition in spermatogenesis. Science Advances, 2022, 8, .	4.7	9
538	Implications of m6A methylation and microbiota interaction in non-small cell lung cancer: From basics to therapeutics. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	6
539	Functional Characterization of Two RNA Methyltransferase Genes METTL3 and METTL14 Uncovers the Roles of m6A in Mediating Adaptation of Plutella xylostella to Host Plants. International Journal of Molecular Sciences, 2022, 23, 10013.	1.8	2

#	Article	IF	CITATIONS
540	Role of <scp>m6A</scp> RNA methylation in the development of hepatitis B virusâ€associated hepatocellular carcinoma. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 2039-2050.	1.4	3
541	E6E7 regulates the HK2 expression in cervical cancer via GSK3β/FTO signal. Archives of Biochemistry and Biophysics, 2022, 729, 109389.	1.4	4
542	RNA methylation in immune cells. Advances in Immunology, 2022, , 39-94.	1.1	4
543	Targeting N6-methyladenosine RNA modification combined with immune checkpoint Inhibitors: A new approach for cancer therapy. Computational and Structural Biotechnology Journal, 2022, 20, 5150-5161.	1.9	5
544	METTL16 Promotes Translation and Lung Tumorigenesis by Sequestering Cytoplasmic eIF4E2. SSRN Electronic Journal, 0, , .	0.4	0
546	RNA m6A modification in liver biology and its implication in hepatic diseases and carcinogenesis. American Journal of Physiology - Cell Physiology, 2022, 323, C1190-C1205.	2.1	8
547	Exploration of N6-Methyladenosine Profiles of mRNAs and the Function of METTL3 in Atherosclerosis. Cells, 2022, 11, 2980.	1.8	5
548	Integrative Analysis of N6-Methyladenosine-Related Enhancer RNAs Identifies Distinct Prognosis and Tumor Immune Micro-Environment Patterns in Head and Neck Squamous Cell Carcinoma. Cancers, 2022, 14, 4657.	1.7	2
549	N6-methyladenosine in hematological malignancies: a concise review. Current Opinion in Hematology, 0, Publish Ahead of Print, .	1.2	0
550	FTO promotes liver inflammation by suppressing m6A mRNA methylation of IL-17RA. Frontiers in Oncology, 0, 12, .	1.3	12
551	Cryo-EM structures of human m6A writer complexes. Cell Research, 2022, 32, 982-994.	5.7	40
552	A programmable system to methylate and demethylate N6-methyladenosine (m6A) on specific RNA transcripts in mammalian cells. Journal of Biological Chemistry, 2022, 298, 102525.	1.6	6
553	RNA modifications: importance in immune cell biology and related diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	74
554	The role of RNA modification in hepatocellular carcinoma. Frontiers in Pharmacology, 0, 13, .	1.6	6
555	Novel Roles of RNA m6A Methylation Regulators in the Occurrence of Alzheimer's Disease and the Subtype Classification. International Journal of Molecular Sciences, 2022, 23, 10766.	1.8	3
556	N6-methyladenosine modification: A potential regulatory mechanism in spinal cord injury. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	5
557	WTAP mediated the N6-methyladenosine modification of PDK4 to regulate the malignant behaviors of colorectal cancer cells in vitro and in vivo. Current Medicinal Chemistry, 2022, 29, .	1.2	0
558	Formation and removal of 1, <i>N</i> 6-dimethyladenosine in mammalian transfer RNA. Nucleic Acids Research, 2022, 50, 9858-9872.	6.5	15

#	Article	IF	CITATIONS
559	Increased expression of METTL3 in pancreatic cancer tissues associates with poor survival of the patients. World Journal of Surgical Oncology, 2022, 20, .	0.8	7
560	Structural insights into molecular mechanism for N6-adenosine methylation by MT-A70 family methyltransferase METTL4. Nature Communications, 2022, 13, .	5.8	18
561	Targeting RNA N6-methyladenosine modification: a precise weapon in overcoming tumor immune escape. Molecular Cancer, 2022, 21, .	7.9	15
562	Role of m6A RNA Methylation in Thyroid Cancer Cell Lines. International Journal of Molecular Sciences, 2022, 23, 11516.	1.8	6
564	The RNA m6A writer WTAP in diseases: structure, roles, and mechanisms. Cell Death and Disease, 2022, 13, .	2.7	28
565	Research progress of m ⁶ A methylation in prostate cancer. Asian Journal of Andrology, 2022, .	0.8	2
566	METTL3 mediates chemoresistance by enhancing AML homing and engraftment via ITGA4. Leukemia, 2022, 36, 2586-2595.	3.3	17
567	Knockdown of METTL16 disrupts learning and memory by reducing the stability of MAT2A mRNA. Cell Death Discovery, 2022, 8, .	2.0	3
568	Novel insight into the functions of N ⁶ â€ʿmethyladenosine modified lncRNAs in cancers (Review). International Journal of Oncology, 2022, 61, .	1.4	6
569	METTL3/m6A/IFIT2 regulates proliferation, invasion and immunity in esophageal squamous cell carcinoma. Frontiers in Pharmacology, 0, 13, .	1.6	11
571	The characteristics of mRNA m6A methylomes in allopolyploid <i>Brassica napus</i> and its diploid progenitors. Horticulture Research, 2023, 10, .	2.9	2
572	<scp>N6</scp> â€methyladenosine functions and its role in skin cancer. Experimental Dermatology, 0, , .	1.4	2
574	Methyltransferase like 3-mediated N6-methylatidin methylation inhibits vascular smooth muscle cells phenotype switching via promoting phosphatidylinositol 3-kinase mRNA decay. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	4
575	N6-methyladenosine RNA modification promotes viral genomic RNA stability and infection. Nature Communications, 2022, 13, .	5.8	18
576	Modulation of gene expression by YTH domain family (YTHDF) proteins in human physiology and pathology. Journal of Cellular Physiology, 2023, 238, 5-31.	2.0	5
577	Critical functions of N6-adenosine methylation of mRNAs in T cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2023, 1870, 119380.	1.9	1
578	Involvement of METTL3 in arsenite-induced skin lesions by targeting the SOCS3/STAT3/Krt signaling pathway. Environmental Pollution, 2023, 316, 120634.	3.7	3
579	Roles of m ⁶ A modification in oral cancer (Review). International Journal of Oncology, 2022, 62, .	1.4	2

#	Article	IF	CITATIONS
580	Comparative Genomics and Functional Studies of Putative m6A Methyltransferase (METTL) Genes in Cotton. International Journal of Molecular Sciences, 2022, 23, 14111.	1.8	2
581	Exploring the role of m6A modification in cancer. Proteomics, 2023, 23, .	1.3	4
582	METTL14 is required for exercise-induced cardiac hypertrophy and protects against myocardial ischemia-reperfusion injury. Nature Communications, 2022, 13, .	5.8	24
583	METTL3-mediated long non-coding RNA MIR99AHG methylation targets miR-4660 to promote bone marrow mesenchymal stem cell osteogenic differentiation. Cell Cycle, 2023, 22, 476-493.	1.3	7
584	Al-empowered integrative structural characterization of m6A methyltransferase complex. Cell Research, 2022, 32, 1124-1127.	5.7	9
586	m6A readers, writers, erasers, and the m6A epitranscriptome in breast cancer. Journal of Molecular Endocrinology, 2023, 70, .	1.1	13
587	N6-methyladenosine modification governs liver glycogenesis by stabilizing the glycogen synthase 2 mRNA. Nature Communications, 2022, 13, .	5.8	7
588	Infection phaseâ€dependent dynamics of the viral and host N6â€methyladenosine epitranscriptome in the lifecycle of an oncogenic virus in vivo. Journal of Medical Virology, 2023, 95, .	2.5	3
589	Rational design of novel nucleoside analogues reveals potent antiviral agents for EV71. European Journal of Medicinal Chemistry, 2023, 246, 114942.	2.6	3
591	N6-methyladenosine Modification of Noncoding RNAs: Mechanisms and Clinical Applications in Cancer. Diagnostics, 2022, 12, 2996.	1.3	1
592	Biological roles of the RNA m6A modification and its implications in cancer. Experimental and Molecular Medicine, 2022, 54, 1822-1832.	3.2	10
593	A common transcriptional mechanism involving R-loop and RNA abasic site regulates an enhancer RNA of <i>APOE</i> . Nucleic Acids Research, 2022, 50, 12497-12514.	6.5	9
594	m6A-SAC-seq for quantitative whole transcriptome m6A profiling. Nature Protocols, 2023, 18, 626-657.	5.5	11
595	Novel insights into the N6-methyladenosine RNA modification and phytochemical intervention in lipid metabolism. Toxicology and Applied Pharmacology, 2022, 457, 116323.	1.3	0
596	The Role of the m6A RNA Methyltransferase METTL16 in Gene Expression and SAM Homeostasis. Genes, 2022, 13, 2312.	1.0	0
597	m6A epitranscriptomic modification regulates neural progenitor-to-glial cell transition in the retina. ELife, 0, 11, .	2.8	4
598	Stage-specific requirement for METTL3-dependent m6A modification during dental pulp stem cell differentiation. Journal of Translational Medicine, 2022, 20, .	1.8	3
599	Amentoflavone and methyl hesperidin, novel lead molecules targeting epitranscriptomic modulator in acute myeloid leukemia: in silico drug screening and molecular dynamics simulation approach. Journal of Molecular Modeling, 2023, 29, .	0.8	11

#	Article	IF	CITATIONS
600	Coronatine promotes maize water uptake by directly binding to the aquaporin ZmPIP2;5 and enhancing its activity. Journal of Integrative Plant Biology, 2023, 65, 703-720.	4.1	7
601	Interplay between <scp>m⁶A</scp> epitranscriptome and epigenome in cancer: current knowledge and therapeutic perspectives. International Journal of Cancer, 2023, 153, 464-475.	2.3	6
602	Analysis approaches for the identification and prediction of <i>N</i> ⁶ -methyladenosine sites. Epigenetics, 2023, 18, .	1.3	2
603	<scp>METTL3</scp> protects <scp>METTL14</scp> from <scp>STUB1</scp> â€mediated degradation to maintain <scp>m⁶A</scp> homeostasis. EMBO Reports, 2023, 24, .	2.0	16
604	Clinical and molecular significance of the RNA m6A methyltransferase complex in prostate cancer. Frontiers in Genetics, 0, 13, .	1.1	6
605	WTAP-mediated m6A modification on circCMTM3 inhibits hepatocellular carcinoma ferroptosis by recruiting IGF2BP1 to increase PARK7 stability. Digestive and Liver Disease, 2023, 55, 967-981.	0.4	11
606	Elucidating the Kinetic Mechanism of Human METTL16. Biochemistry, 2023, 62, 494-506.	1.2	6
607	Prognostic Values of METTL3 and Its Roles in Tumor Immune Microenvironment in Pan-Cancer. Journal of Clinical Medicine, 2023, 12, 155.	1.0	0
608	Epigenetics Analysis Using Artificial Intelligence in the Era of Precision Oncology. , 2023, , 117-137.		0
609	The potential role of N6-methyladenosine modification of LncRNAs in contributing to the pathogenesis of chronic glomerulonephritis. Inflammation Research, 2023, 72, 623-638.	1.6	7
610	USP1/UAF1-Stabilized METTL3 Promotes Reactive Astrogliosis and Improves Functional Recovery after Spinal Cord Injury through m ⁶ A Modification of YAP1 mRNA. Journal of Neuroscience, 2023, 43, 1456-1474.	1.7	7
611	METTL3 from Target Validation to the First Small-Molecule Inhibitors: A Medicinal Chemistry Journey. Journal of Medicinal Chemistry, 2023, 66, 1654-1677.	2.9	14
614	Current Insights into m6A RNA Methylation and Its Emerging Role in Plant Circadian Clock. Plants, 2023, 12, 624.	1.6	1
615	METTL14 is a chromatin regulator independent of its RNA <i>N 6</i> -methyladenosine methyltransferase activity. Protein and Cell, 2023, 14, 683-697.	4.8	13
616	METTL3 depletion contributes to tumour progression and drug resistance via N6 methyladenosine-dependent mechanism in HR+HER2—breast cancer. Breast Cancer Research, 2023, 25, .	2.2	3
617	RNA N6-methyladenosine modification in female reproductive biology and pathophysiology. Cell Communication and Signaling, 2023, 21, .	2.7	3
618	<scp>N6</scp> â€methyladenosine <scp>RNA</scp> modification regulates cotton drought response in a Ca ²⁺ and <scp>ABA</scp> â€dependent manner. Plant Biotechnology Journal, 2023, 21, 1270-1285.	4.1	6
619	METTL3-mediated m6A methylation regulates granulosa cells autophagy during follicular atresia in pig ovaries. Theriogenology, 2023, 201, 83-94.	0.9	2

#	Article	IF	CITATIONS
620	An Update of Epigenetic Drugs for the Treatment of Cancers and Brain Diseases: A Comprehensive Review. Genes, 2023, 14, 873.	1.0	18
621	METTL3 activates PERK-elF2α dependent coelomocyte apoptosis by targeting the endoplasmic reticulum degradation-related protein SEL1L in echinoderms. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2023, 1866, 194927.	0.9	0
622	N6-methyladenosine RNA modification in PD-1/PD-L1: Novel implications for immunotherapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2023, 1878, 188873.	3.3	3
623	Chinese Ecliptae herba (Eclipta prostrata (L.) L.) extract and its component wedelolactone enhances osteoblastogenesis of bone marrow mesenchymal stem cells via targeting METTL3-mediated m6A RNA methylation. Journal of Ethnopharmacology, 2023, 312, 116433.	2.0	3
624	m6A-mediated nonhomologous end joining (NHEJ) pathway regulates senescence in Brachionus plicatilis (Rotifera). Archives of Gerontology and Geriatrics, 2023, 111, 104994.	1.4	0
625	The potential role of m6A modifications on immune cells and immunotherapy. Biomedicine and Pharmacotherapy, 2023, 160, 114343.	2.5	5
626	Structural insights into DNA N6-adenine methylation by the MTA1 complex. Cell Discovery, 2023, 9, .	3.1	1
627	The development of small molecules targeting methyltransferase-like 3. Drug Discovery Today, 2023, 28, 103513.	3.2	5
628	Metal Exposure Promotes Colorectal Tumorigenesis via the Aberrant <i>N</i> ⁶ -Methyladenosine Modification of <i>ATP13A3</i> . Environmental Science & Technology, 2023, 57, 2864-2876.	4.6	8
629	The Emerging Role of m6A Modification in Endocrine Cancer. Cancers, 2023, 15, 1033.	1.7	0
631	Transcriptomeâ€wide highâ€throughput m ⁶ A sequencing of differential <scp>m⁶A</scp> methylation patterns in the decidual tissues from <scp>RSA</scp> patients. FASEB Journal, 2023, 37, .	0.2	3
632	Structure of the <i>Caenorhabditis elegans</i> m6A methyltransferase METT10 that regulates SAM homeostasis. Nucleic Acids Research, 2023, 51, 2434-2446.	6.5	6
633	<scp>METTL14</scp> modulates glycolysis to inhibit colorectal tumorigenesis in p53â€wildâ€ŧype cells. EMBO Reports, 2023, 24, .	2.0	7
634	Emerging role of interaction between m6A and main ncRNAs in gastrointestinal (GI) cancers. Frontiers in Immunology, 0, 14, .	2.2	0
635	m6A Modification—Association with Oxidative Stress and Implications on Eye Diseases. Antioxidants, 2023, 12, 510.	2.2	2
637	Overview of m6A and circRNAs in human cancers. Journal of Cancer Research and Clinical Oncology, 2023, 149, 6769-6784.	1.2	3
638	RBM15 suppresses hepatic insulin sensitivity of offspring of gestational diabetes mellitus mice via m6A-mediated regulation of CLDN4. Molecular Medicine, 2023, 29, .	1.9	7
639	The Comprehensive Analysis of N6-Methyadenosine Writer METTL3 and METTL14 in Gastric Cancer. Journal of Oncology, 2023, 2023, 1-13.	0.6	2

#	ARTICLE	IF	CITATIONS
640	Targeting RNA N6-methyladenosine to synergize with immune checkpoint therapy. Molecular Cancer, 2023, 22, .	7.9	9
641	METTL16 promotes translation and lung tumorigenesis by sequestering cytoplasmic eIF4E2. Cell Reports, 2023, 42, 112150.	2.9	7
642	N6-methyladenosine (m6A) as a regulator of carcinogenesis and drug resistance by targeting epithelial-mesenchymal transition and cancer stem cells. Heliyon, 2023, 9, e14001.	1.4	2
643	RNA m6A-Regulated circ-ZNF609 Suppression Ameliorates Doxorubicin-Induced Cardiotoxicity byÂUpregulatingÂFTO. JACC Basic To Translational Science, 2023, 8, 677-698.	1.9	5
644	The Role of m6A Modifications in B-Cell Development and B-Cell-Related Diseases. International Journal of Molecular Sciences, 2023, 24, 4721.	1.8	0
645	Opposing regulation of the Nα-trimethylase METTL11A by its family members METTL11B and METTL13. Journal of Biological Chemistry, 2023, 299, 104588.	1.6	4
646	The effects of N6-methyladenosine RNA methylation on the nervous system. Molecular and Cellular Biochemistry, 2023, 478, 2657-2669.	1.4	4
647	The role of RNA methyltransferase METTL3 in gynecologic cancers: Results and mechanisms. Frontiers in Pharmacology, 0, 14, .	1.6	3
648	Vir1p, the yeast homolog of virilizer, is required for mRNA m6A methylation and meiosis. Genetics, 2023, 224, .	1.2	8
649	METTL3 promotes chemoresistance in small cell lung cancer by inducing mitophagy. Journal of Experimental and Clinical Cancer Research, 2023, 42, .	3.5	22
651	<i> N ⁶ </i> ―Methyladenosine defines a new checkpoint in γδT cell development. BioEssays, 2023, 45, .	1.2	0
652	Epitranscriptomics in metabolic disease. Nature Metabolism, 2023, 5, 370-384.	5.1	8
653	The role of m6A RNA methylation in autoimmune diseases: Novel therapeutic opportunities. Genes and Diseases, 2023, , .	1.5	1
654	Epitranscriptic regulation of <i>HRAS</i> by <i>N</i> ⁶ -methyladenosine drives tumor progression. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	1
655	m6A epitranscriptomic regulation of tissue homeostasis during primate aging. Nature Aging, 2023, 3, 705-721.	5.3	16
657	The novel putative methyltransferase METTL7A as one prognostic biomarker potentially associated with immune infiltration in human renal cancer. Heliyon, 2023, 9, e15371.	1.4	1
658	METTL3 enhances dentinogenesis differentiation of dental pulp stem cells via increasing GDF6 and STC1 mRNA stability. BMC Oral Health, 2023, 23, .	0.8	2
659	The Regulatory Network of METTL3 in the Nervous System: Diagnostic Biomarkers and Therapeutic Targets. Biomolecules, 2023, 13, 664.	1.8	6

#	Article	IF	CITATIONS
661	Functions of N6-methyladenosine in cancer metabolism: from mechanism to targeted therapy. Biomarker Research, 2023, 11, .	2.8	3
662	The Proteins of mRNA Modification: Writers, Readers, and Erasers. Annual Review of Biochemistry, 2023, 92, 145-173.	5.0	21
663	Role of m6A methylation in retinal diseases. Experimental Eye Research, 2023, 231, 109489.	1.2	2
664	m6A modification on the fate of colorectal cancer: functions and mechanisms of cell proliferation and tumorigenesis. Frontiers in Oncology, 0, 13, .	1.3	4
671	The interplay betweenÂN6-methyladenosine andÂprecancerous liver disease: molecular functions andÂmechanisms. Discover Oncology, 2023, 14, .	0.8	1
673	Novel mechanisms for gene regulation: Chemical tags on RNA molecules. , 2023, , 193-206.		0
687	The roles and implications of RNA m6A modification in cancer. Nature Reviews Clinical Oncology, 2023, 20, 507-526.	12.5	34
699	The therapeutic targets of N6-methyladenosine (m6A) modifications on tumor radioresistance. Discover Oncology, 2023, 14, .	0.8	1
729	Cofactor-Receptor Interaction-Based Pharmacophore Design for Development of Novel Inhibitors: A Case Study Against Tuberculosis. , 2023, , 377-398.		0
744	RNA modification in cardiovascular disease: implications for therapeutic interventions. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	0
750	Epitranscriptomic modifications in mesenchymal stem cell differentiation: advances, mechanistic insights, and beyond. Cell Death and Differentiation, 2024, 31, 9-27.	5.0	1
759	The molecular basis of translation initiation and its regulation in eukaryotes. Nature Reviews Molecular Cell Biology, 2024, 25, 168-186.	16.1	5
764	RNA Modifications in Hematologic Malignancies. Cancer Treatment and Research, 2023, , 181-207.	0.2	0
765	Advances in brain epitranscriptomics research and translational opportunities. Molecular Psychiatry, 0, , .	4.1	0
770	Recent Advances of RNA m6A Modifications in Cancer Immunoediting and Immunotherapy. Cancer Treatment and Research, 2023, , 49-94.	0.2	0
771	RNA Modifications in Cancer Metabolism and Tumor Microenvironment. Cancer Treatment and Research, 2023, , 3-24.	0.2	0
776	RNA modification-mediated mRNA translation regulation in liver cancer: mechanisms and clinical perspectives. Nature Reviews Gastroenterology and Hepatology, 2024, 21, 267-281.	8.2	0
782	N6-Methyladenosine RNA Modification in Normal and Malignant Hematopoiesis. Advances in Experimental Medicine and Biology, 2023, , 105-123.	0.8	0

#	Article	IF	CITATIONS
787	Ubiquitination and deubiquitination in the regulation of N6-methyladenosine functional molecules. Journal of Molecular Medicine, 2024, 102, 337-351.	1.7	0
790	RNA N6-methyladenosine modifications in urological cancers: from mechanism to application. Nature Reviews Urology, 0, , .	1.9	0