Simulation of City-wide Replacement of Private Cars w

Procedia Computer Science 83, 237-244 DOI: 10.1016/j.procs.2016.04.121

Citation Report

#	Article	IF	CITATIONS
1	Autonomous Taxicabs in Berlin – A Spatiotemporal Analysis of Service Performance. Transportation Research Procedia, 2016, 19, 176-186.	0.8	63
2	Highlights of Practical Applications of Cyber-Physical Multi-Agent Systems. Communications in Computer and Information Science, 2017, , .	0.4	4
3	Impact assessment of dedicated free-floating carsharing parking. , 2017, , .		1
4	Agent-based simulation of autonomous taxi services with dynamic demand responses. Procedia Computer Science, 2017, 109, 899-904.	1.2	77
6	Potentials of Autonomous Vehicles in a Changing Private Transportation System – a Case Study in the Stuttgart Region. Transportation Research Procedia, 2017, 26, 13-21.	0.8	51
7	Impacts of an Autonomous Carsharing Fleet on Traffic Flow. ATZ Worldwide, 2017, 119, 60-63.	0.1	3
8	Dynamic adaptive policymaking for the sustainable city: The case of automated taxis. International Journal of Transportation Science and Technology, 2017, 6, 1-12.	2.0	35
9	From connected vehicles to a connected, coordinated and automated road transport (C ² ART) system. , 2017, , .		6
10	City-wide shared taxis: A simulation study in Berlin. , 2017, , .		64
11	The impact of private autonomous vehicles on vehicle ownership and unoccupied VMT generation. Transportation Research Part C: Emerging Technologies, 2018, 90, 156-165.	3.9	120
12	CONGESTION EFFECTS OF AUTONOMOUS TAXI FLEETS. Transport, 2018, 33, 971-980.	0.6	50
13	Incorporating within link dynamics in an agent-based computationally faster and scalable queue model. Transportmetrica A: Transport Science, 2018, 14, 520-541.	1.3	12
15	AMoDeus, a Simulation-Based Testbed for Autonomous Mobility-on-Demand Systems. , 2018, , .		37
16	Mobility as a Service Enabled by the Autonomous Driving. Lecture Notes in Computer Science, 2018, , 208-219.	1.0	3
17	Collaborative activity-based ridesharing. Journal of Transport Geography, 2018, 72, 131-138.	2.3	12
18	Unintended Effects of Autonomous Driving: A Study on Mobility Preferences in the Future. Sustainability, 2018, 10, 2404.	1.6	112
19	Dynamic autonomous vehicle fleet operations: Optimization-based strategies to assign AVs to immediate traveler demand requests. Transportation Research Part C: Emerging Technologies, 2018, 92, 278-297.	3.9	187
20	Market Schedule Equilibrium for Multimodal Systems. , 2018, , 139-181.		0

ARTICLE IF CITATIONS # Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and 22 4.7 313 industry risks. Transport Reviews, 2019, 39, 103-128. Demand Estimation for Aerial Vehicles in Urban Settings. IEEE Intelligent Transportation Systems 2.6 Magazine, 2019, 11, 105-116. Implementation of a Potential Field-Based Decision-Making Algorithm on Autonomous Vehicles for 24 2.1 13 Driving in Complex Environments. Sensors, 2019, 19, 3318. Deep decarbonization from electrified autonomous taxi fleets: Life cycle assessment and case study in Austin, TX. Transportation Research, Part D: Transport and Environment, 2019, 73, 130-141. Dynamic demand estimation for an AMoD system in Paris., 2019,,. 26 21 Owning or sharing autonomous vehicles: comparing different ownership and usage scenarios. 2.3 European Transport Research Review, 2019, 11, . Determining an Optimal Fleet Size for a Reliable Shared Automated Vehicle Ride-Sharing Service. 28 1.2 16 Procedia Computer Science, 2019, 151, 878-883. A System of Shared Autonomous Vehicles Combined with Park-And-Ride in Residential Areas. 29 1.6 Sustainability, 2019, 11, 3113. The influence of an autonomous driving car operation on commuters' departure times. Procedia 30 1.2 7 Computer Science, 2019, 151, 85-91. Can autonomous vehicle reduce greenhouse gas emissions? A country-level evaluation. Energy Policy, 4.2 2019, 132, 462-473. Benefits and Costs of Ride-Sharing in Shared Automated Vehicles across Austin, Texas: Opportunities 32 1.0 43 for Congestion Pricing. Transportation Research Record, 2019, 2673, 548-556. Fleet operational policies for automated mobility: A simulation assessment for Zurich. Transportation 101 Research Part C: Émerging Technologies, 2019, 102, 20-31. A survey of models and algorithms for optimizing shared mobility. Transportation Research Part B: 34 2.8 185 Methodological, 2019, 123, 323-346. A Sustainability Interrogation of the Autonomous Vehicle at Its Society-Technology Interface. Bulletin of Science, Technology and Society, 2019, 39, 23-32. 1.1 Quantifying the Benefits of Autonomous On-Demand Ride-Pooling: A Simulation Study for Munich, 26 36 Germany. , 2019, , . An Agent-based Simulation for Shared Automated Electric Vehicles with Vehicle Relocation., 2019,,. Integrating automated vehicles into macroscopic travel demand models. Transportation Research 38 0.8 9 Procedia, 2019, 41, 360-375. Sharing vehicles and sharing rides in real-time: Opportunities for self-driving fleets. Advances in 39 Transport Policy and Planning, 2019, 4, 59-85.

#	Article	IF	CITATIONS
40	Exploring the mobility and energy implications of shared versus private autonomous vehicles*. , 2019, ,		6
41	Learning to Operate a Fleet of Cars. , 2019, , .		8
42	Impacts of Shared Autonomous Vehicles on the Travelersâ \in $^{\mathrm{M}}$ Mobility. , 2019, , .		19
43	Congestion pricing in a world of self-driving vehicles: An analysis of different strategies in alternative future scenarios. Transportation Research Part C: Emerging Technologies, 2019, 98, 167-185.	3.9	136
44	Current and Future Dynamic Passenger Transport Services—Modeling, Simulation, and Optimization in a Sustainable Transport System. , 2019, , 337-360.		2
45	Dynamic User Equilibrium of Mobility-on-Demand System with Linear Programming Rebalancing Strategy. Transportation Research Record, 2019, 2673, 447-459.	1.0	12
46	Autonomous Vehicles and their Impact on Parking Search. IEEE Intelligent Transportation Systems Magazine, 2019, 11, 19-27.	2.6	33
47	Impacts of automated vehicles on travel behaviour and land use: an international review of modelling studies. Transport Reviews, 2019, 39, 29-49.	4.7	257
48	Does context matter? A comparative study modelling autonomous vehicle impact on travel behaviour for Germany and the USA. Transportation Research, Part A: Policy and Practice, 2019, 122, 146-161.	2.0	47
49	A deep learning algorithm for simulating autonomous driving considering prior knowledge and temporal information. Computer-Aided Civil and Infrastructure Engineering, 2020, 35, 305-321.	6.3	79
50	Planning shared automated vehicle fleets. , 2020, , 151-168.		0
51	Urban air mobility. , 2020, , 267-284.		18
52	A Sequential Clustering Method for the Taxi-Dispatching Problem Considering Traffic Dynamics. IEEE Intelligent Transportation Systems Magazine, 2020, 12, 169-181.	2.6	11
53	The +1 Method: Model-Free Adaptive Repositioning Policies for Robotic Multi-Agent Systems. IEEE Transactions on Network Science and Engineering, 2020, 7, 3171-3184.	4.1	24
54	Shared Autonomous Vehicles in rural public transportation systems. Research in Transportation Economics, 2020, 83, 100925.	2.2	15
55	Spatial impact of automated driving in urban areas. Journal of Simulation, 2020, 14, 295-303.	1.0	13
56	Acceptable Automobility through Automated Driving. Insights into the Requirements for Different Mobility Configurations and an Evaluation of Suitable Use Cases. Sustainability, 2020, 12, 9253.	1.6	3
57	Fleet Sizing for Pooled (Automated) Vehicle Fleets. Transportation Research Record, 2020, 2674, 168-176.	1.0	11

		EPORT	
#	Article	IF	CITATIONS
58	Evaluation of Traffic Assignment Models through Simulation. Sustainability, 2020, 12, 5536.	1.6	6
59	Planning Urban Futures for Autonomous and Shared Vehicles: The Role of Planning Support Tools as a Policy Instrument. , 2020, , 75-103.		0
60	Multi-Criteria Decision Making Process in Metropolitan Transport Means Selection Based on the Sharing Mobility Idea. Sustainability, 2020, 12, 7231.	1.6	39
61	Impact of Driverless Vehicles on Urban Environment and Future Mobility. Transportation Research Procedia, 2020, 49, 44-59.	0.8	8
62	AUTONOMOUS SHUTTLES FOR URBAN MOBILITY ON DEMAND APPLICATIONS – ECOSYSTEM DEPENDENT REQUIREMENT ELICITATION. Proceedings of the Design Society DESIGN Conference, 2020, 1, 887-896.	0.8	4
63	Integrating Supply and Demand Perspectives for a Large-Scale Simulation of Shared Autonomous Vehicles. Transportation Research Record, 2020, 2674, 181-192.	1.0	30
64	Quantifying the Efficiency of Ride Sharing. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 5811-5816.	4.7	30
65	Assessing the Sustainability Implications of Autonomous Vehicles: Recommendations for Research Community Practice. Sustainability, 2020, 12, 1902.	1.6	30
66	An empirical discourse on forecasting the use of autonomous vehicles using consumers' preferences. Technological Forecasting and Social Change, 2020, 158, 120130.	6.2	77
67	Spatiotemporal Implications of Population Downscaling: A MATSim Study of Sioux Falls Morning Peak Traffic. Procedia Computer Science, 2020, 170, 720-725.	1.2	4
68	Enhanced Mobility With Connectivity and Automation: A Review of Shared Autonomous Vehicle Systems. IEEE Intelligent Transportation Systems Magazine, 2022, 14, 87-102.	2.6	46
69	Shared autonomous electric vehicle service performance: Assessing the impact of charging infrastructure. Transportation Research, Part D: Transport and Environment, 2020, 81, 102283.	3.2	53
70	Assessing the impacts of automated mobility-on-demand through agent-based simulation: A study of Singapore. Transportation Research, Part A: Policy and Practice, 2020, 138, 367-388.	2.0	33
71	A Predictive Fleet Management Strategy for On-Demand Mobility Services: A Case Study in Munich. Electronics (Switzerland), 2020, 9, 1021.	1.8	6
72	A Repositioning Method for Shared Autonomous Vehicles Operation. Procedia Computer Science, 2020, 170, 791-798.	1.2	6
73	Improved public transportation in rural areas with self-driving cars: A study on the operation of Swiss train lines. Transportation Research, Part A: Policy and Practice, 2020, 134, 35-51.	2.0	19
74	Assessment of the DRT System Based on an Optimal Routing Strategy. Sustainability, 2020, 12, 714.	1.6	8
75	Mobility Internet of Things 2018. EAI/Springer Innovations in Communication and Computing, 2020, , .	0.9	1

#	Article	IF	CITATIONS
76	Simulation of the Daily Activity Plans of Travelers Using the Park-and-Ride System and Autonomous Vehicles: Work and Shopping Trip Purposes. Applied Sciences (Switzerland), 2020, 10, 2912.	1.3	38
77	Towards welfare optimal operation of innovative mobility concepts: External cost pricing in a world of shared autonomous vehicles. Transportation Research, Part A: Policy and Practice, 2020, 136, 48-63.	2.0	23
78	Agent-Based Simulation of Autonomous Vehicles: A Systematic Literature Review. IEEE Access, 2020, 8, 79089-79103.	2.6	45
79	Assessing the effect of different parking pricing policies on DRT demand using multiagent traffic simulation, case study of St. Petersburg. Procedia Computer Science, 2020, 170, 799-806.	1.2	1
80	Autonomous vessels: state of the art and potential opportunities in logistics. International Transactions in Operational Research, 2021, 28, 1706-1739.	1.8	46
81	Relocating shared automated vehicles under parking constraints: assessing the impact of different strategies for on-street parking. Transportation, 2021, 48, 1931-1965.	2.1	25
82	Simulating a transition to autonomous mobility. Simulation Modelling Practice and Theory, 2021, 106, 102175.	2.2	18
83	Population downscaling in multi-agent transportation simulations: A review and case study. Simulation Modelling Practice and Theory, 2021, 108, 102233.	2.2	16
84	Transitioning to a driverless city: Evaluating a hybrid system for autonomous and non-autonomous vehicles. Simulation Modelling Practice and Theory, 2021, 107, 102210.	2.2	21
85	Modelling and analysis of shared autonomous mobility. , 2021, , 259-286.		0
86	Relocation in One-Way Station-Based Car Sharing Systems: Conventional Versus Partly Autonomous Vehicles. Lecture Notes in Logistics, 2021, , 165-178.	0.6	1
87	Integrated Approach for the Assessment of Strategies for the Decarbonization of Urban Traffic. Sustainability, 2021, 13, 839.	1.6	23
88	Data-Driven Intelligent Management of Energy Constrained Autonomous Vehicles in Smart Cities. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2021, , 112-125.	0.2	0
89	Das Robotaxi – eine kritische EinschÃæung. , 2021, , 417-422.		0
90	Performance Evaluation of Station-Based Autonomous On-Demand Car-Sharing Systems. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 7721-7732.	4.7	8
91	Simulation of price, customer behaviour and system impact for a cost-covering automated taxi system in Zurich. Transportation Research Part C: Emerging Technologies, 2021, 123, 102974.	3.9	47
92	The Effects of Mobility as a Service and Autonomous Vehicles on People's Willingness to Own a Car in the Future. Sustainability, 2021, 13, 1962.	1.6	9
93	Multi-objective framework for optimum configuration of human-driven and shared or privately owned autonomous vehicles. International Journal of Sustainable Transportation, 0, , 1-21.	2.1	1

# 94	ARTICLE Urban transportation at an inflection point: An analysis of potential influencing factors. Transportation Research, Part D: Transport and Environment, 2021, 92, 102733.	IF 3.2	CITATIONS
95	Regulating mobility-on-demand services: Tri-level model and Bayesian optimization solution approach. Transportation Research Part C: Emerging Technologies, 2021, 125, 103075.	3.9	26
96	Simulation of Potential Use Cases for Shared Mobility Services in the City of Ann Arbor. Transportation Research Record, 2021, 2675, 848-860.	1.0	1
97	Assessing the Access to Jobs by Shared Autonomous Vehicles in Marysville, Ohio: Modeling, Simulating and Validating. SAE International Journal of Advances and Current Practices in Mobility, 0, 3, 2509-2515.	2.0	3
98	Autonomous vehicle adoption: use phase environmental implications. Environmental Research Letters, 2021, 16, 064010.	2.2	9
99	Simulation-Based Assessment of Parking Constraints for Automated Mobility on Demand: A Case Study of Zurich. Vehicles, 2021, 3, 272-286.	1.7	2
100	How will the introduction of automated vehicles impact private car ownership?. Case Studies on Transport Policy, 2021, 9, 578-589.	1.1	6
101	Determining service provider and transport system related effects of ridesourcing services by simulation within the travel demand model mobiTopp. European Transport Research Review, 2021, 13, .	2.3	6
102	Maximum-stability dispatch policy for shared autonomous vehicles. Transportation Research Part B: Methodological, 2021, 148, 132-151.	2.8	20
103	The Influence of Introducing Autonomous Vehicles on Conventional Transport Modes and Travel Time. Energies, 2021, 14, 4163.	1.6	19
104	Dynamic Ride-Hailing with Electric Vehicles. Transportation Science, 2022, 56, 775-794.	2.6	33
105	Impacts of Automated Mobility-on-Demand on traffic dynamics, energy and emissions: A case study of Singapore. Simulation Modelling Practice and Theory, 2021, 110, 102327.	2.2	13
106	Impact of Autonomous Vehicles on the Physical Infrastructure: Changes and Challenges. Designs, 2021, 5, 40.	1.3	27
107	Simulation-based design and analysis of on-demand mobility services. Transportation Research, Part A: Policy and Practice, 2021, 149, 170-205.	2.0	5
108	Economic and socioeconomic assessment of replacing conventional public transit with demand responsive transit services in low-to-medium density areas. Transportation Research, Part A: Policy and Practice, 2021, 150, 317-334.	2.0	13
109	Shared Low-Speed Autonomous Vehicle System for Suburban Residential Areas. Sustainability, 2021, 13, 8638.	1.6	2
110	A real-time dispatching strategy for shared automated electric vehicles with performance guarantees. Transportation Research, Part E: Logistics and Transportation Review, 2021, 152, 102392.	3.7	21
111	Electrification of Urban Waste Collection: Introducing a Simulation-Based Methodology for Technical Feasibility, Impact and Cost Analysis. World Electric Vehicle Journal, 2021, 12, 122.	1.6	6

#	Article	IF	CITATIONS
112	Compartmental model and fleet-size management for shared mobility systems with for-hire vehicles. Transportation Research Part C: Emerging Technologies, 2021, 129, 103236.	3.9	1
113	Optimal fleet size for a shared demand-responsive transport system with human-driven vs automated vehicles: A total cost minimization approach. Transportation Research, Part A: Policy and Practice, 2021, 151, 52-80.	2.0	10
114	Assessment of Social Acceptance for Autonomous Vehicles in Southeastern Poland. Energies, 2021, 14, 5778.	1.6	16
115	On the Interaction Between Autonomous Mobility on Demand Systems and Power Distribution Networks—An Optimal Power Flow Approach. IEEE Transactions on Control of Network Systems, 2021, 8, 1163-1176.	2.4	17
116	A systematic review of agent-based models for autonomous vehicles in urban mobility and logistics: Possibilities for integrated simulation models. Computers, Environment and Urban Systems, 2021, 89, 101686.	3.3	29
117	A system of shared autonomous vehicles for Chicago: Understanding the effects of geofencing the service. Journal of Transport and Land Use, 2021, 14, 933-948.	0.7	12
118	Shared autonomous electric vehicle fleets with vehicle-to-grid capability: Economic viability and environmental co-benefits. Applied Energy, 2021, 302, 117500.	5.1	16
119	Exploring the Financial Implications of Operating a Shared Autonomous Electric Vehicle Fleet in Zurich. Journal of Urban Mobility, 2021, 1, 100001.	1.2	2
121	The impact of trip density on the fleet size and pooling rate of ride-hailing services: A simulation study. Procedia Computer Science, 2021, 184, 674-679.	1.2	18
122	Agent-based simulation of city-wide autonomous ride-pooling and the impact on traffic noise. Transportation Research, Part D: Transport and Environment, 2021, 90, 102673.	3.2	36
123	Autonomous Vehicles and Transportation Modeling. , 2021, , 557-563.		0
124	Towards a Testbed for Dynamic Vehicle Routing Algorithms. Communications in Computer and Information Science, 2017, , 69-79.	0.4	23
125	BikeSharing-System der 5. Generation. , 2019, , 189-202.		3
126	Emerging transportation technologies and implications for traffic-related emissions, air pollution exposure, and health. , 2020, , 511-530.		1
127	Knowledge for policy-making in times of uncertainty: the case of autonomous vehicle model results. Transport Reviews, 2021, 41, 478-498.	4.7	8
128	A review of Ride-Matching strategies for Ridesourcing and other similar services. Transport Reviews, 2021, 41, 578-599.	4.7	8
130	Shared Autonomous Vehicles: Potentials for a Sustainable Mobility and Risks of Unintended Effects. , 0, , .		5
131	Identifying the combined effect of shared autonomous vehicles and congestion pricing on regional job accessibility. Journal of Transport and Land Use, 2020, 13, 273-297.	0.7	14

#	Article	IF	CITATIONS
132	Application of MCDA/MCDM methods for an integrated urban public transportation system – case study, city of Cracow. Archives of Transport, 2018, 46, 71-84.	0.4	31
133	Relief Aircraft Dispatch Strategies Based on Different Levels of Information Sharing Systems. Aerospace, 2021, 8, 306.	1.1	0
134	Impacts of shared autonomous vehicles: Tradeoff between parking demand reduction and congestion increase. Transportation Research Interdisciplinary Perspectives, 2021, 12, 100482.	1.6	3
135	Mobility Oriented Development (MOD): Public-Private Partnership in Urban Parking and Traffic Management with the Use of Autonomous Automobiles, Car-Sharing, Ridesharing Modes of Transport and Mobility as a Service (MaaS). Ecoproduction, 2017, , 207-220.	0.8	1
136	Exploring System Characteristics of Autonomous Mobility On-Demand Systems Under Varying Travel Demand Patterns. , 2019, , 299-315.		1
137	Investigation of the Potential of Multi-Agent Traffic Simulations to Find Good Arrangement of Taxies. Transactions of the Japanese Society for Artificial Intelligence, 2019, 34, C-IA2_1-9.	0.1	0
138	Skill rebound. , 2020, , .		9
139	Model-based Evaluations Combining Autonomous Cars and a Large-scale Passenger Drone Service: The Bavarian Case Study. , 2020, , .		2
140	Impacts of vehicle automation in public revenues and transport equity. Economic challenges and policy paths for Buenos Aires. Research in Transportation Business and Management, 2022, 42, 100566.	1.6	2
141	Raumwirksamkeit des individuellen hoch- und vollautomatisierten Verkehrs. Studien Zur Mobilitäs- Und Verkehrsforschung, 2020, , 101-120.	0.0	2
142	Assess the Performance of Electric Autonomous Taxi System Using a Data-Driven Simulation Model. , 0,		0
143	An open data-driven approach for travel demand synthesis: an application to São Paulo. Regional Studies, Regional Science, 2021, 8, 371-386.	0.7	7
144	SCCS: Smart Cloud Commuting System With Shared Autonomous Vehicles. IEEE Transactions on Big Data, 2022, 8, 1301-1311.	4.4	1
145	Real-Time Autonomous Taxi Service: AnÂAgent-Based Simulation. Smart Innovation, Systems and Technologies, 2020, , 199-207.	O.5	5
146	Electric Car-Sharing as a Solution Supporting the Development of Electromobility and an Element of the Travel Chain. Advances in Logistics, Operations, and Management Science Book Series, 2020, , 211-229.	0.3	0
147	How Millennials Will Use Autonomous Vehicles: An Interview Study. EAI/Springer Innovations in Communication and Computing, 2020, , 471-484.	0.9	0
148	An ALNS algorithm for the static dial-a-ride problem with ride and waiting time minimization. OR Spectrum, 2022, 44, 87-119.	2.1	10
149	Analysis and Control of Autonomous Mobility-on-Demand Systems. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 633-658.	7.5	34

#	Article	IF	CITATIONS
150	Matching and routing for shared autonomous vehicles in congestible network. Transportation Research, Part E: Logistics and Transportation Review, 2021, 156, 102513.	3.7	12
151	Autonomous Vehicle Evaluation: A Comprehensive Survey on Modeling and Simulation Approaches. IEEE Access, 2021, 9, 151531-151566.	2.6	22
152	A Systematic Review of Macro/Mesoscopic Agent-based Models for Assessing Vehicle Automation within Mobility Networks. , 2020, , .		0
153	Taxi Dispatch and AEV Management in AEV Taxi Services. , 2021, , .		0
154	Accelerating agent-based demand-responsive transport simulations with GPUs. Future Generation Computer Systems, 2022, 131, 43-58.	4.9	1
155	System Optimization of Shared Mobility in Suburban Contexts. Sustainability, 2022, 14, 876.	1.6	1
156	Encouraging the Sustainable Adoption of Autonomous Vehicles for Public Transport in Belgium: Citizen Acceptance, Business Models, and Policy Aspects. Sustainability, 2022, 14, 921.	1.6	9
157	Transportation policies for connected and automated mobility in smart cities. , 2022, , 97-116.		2
158	Relocation planning with partly autonomous vehicles in car sharing systems. Transportation Research Procedia, 2022, 62, 213-220.	0.8	3
159	Intelligent Shared Mobility Systems: A Survey on Whole System Design Requirements, Challenges and Future Direction. IEEE Access, 2022, 10, 35302-35320.	2.6	6
160	EVALUATION OF THE IMPACTS OF AUTONOMOUS VEHICLES ON THE MOBILITY OF USER GROUPS BY USING AGENT-BASED SIMULATION. Transport, 2022, 37, 1-16.	0.6	3
161	Agent-based models for simulating e-scooter sharing services: A review and a qualitative assessment. International Journal of Transportation Science and Technology, 2023, 12, 71-85.	2.0	10
162	Exploring the implications of autonomous vehicles: a comprehensive review. Innovative Infrastructure Solutions, 2022, 7, 1.	1.1	41
163	Dynamic ride-sharing impacts of greater trip demand and aggregation at stops in shared autonomous vehicle systems. Transportation Research, Part A: Policy and Practice, 2022, 160, 114-125.	2.0	10
164	Simulation-based investigation of transport scenarios for Hamburg. Procedia Computer Science, 2022, 201, 587-593.	1.2	3
165	A Simulation Assessment of Autonomous Mobility on Demand in the City of Edinburgh. Procedia Computer Science, 2022, 201, 273-280.	1.2	0
166	Synergies between repositioning and charging strategies for shared autonomous electric vehicle fleets. Transportation Research, Part D: Transport and Environment, 2022, 108, 103314.	3.2	11
167	Pre-study and insights to a sequential MATSim-SUMO tool-coupling to deduce 24h driving profiles for SAEVs. , 0, 1, 93-112.		0

#	Article	IF	CITATIONS
168	Impact of New Mobility Solutions on Travel Behaviour and Its Incorporation into Travel Demand Models. Journal of Advanced Transportation, 2022, 2022, 1-24.	0.9	6
169	Demand Exploration of Automated Mobility On-Demand Services Using an Innovative Simulation Tool. IEEE Open Journal of Intelligent Transportation Systems, 2022, 3, 580-591.	2.6	5
170	Cities in the Era of Autonomous Vehicles: A Comparison Between Conventional Vehicles and Autonomous Vehicles. Advances in Science, Technology and Innovation, 2022, , 95-108.	0.2	10
171	Smart cities, urban mobility and autonomous vehicles: How different cities needs different sustainable investment strategies. Technological Forecasting and Social Change, 2022, 184, 121857.	6.2	22
172	Assessment of Personal Rapid Transit System Configurations Regarding Efficiency and Service Quality. Future Transportation, 2022, 2, 734-752.	1.3	1
173	An Integrated Personalized Incentive Scheme for Shared Autonomous Vehicles. SSRN Electronic Journal, 0, , .	0.4	0
174	Addressing spatial service provision equity for pooled rideâ€hailing services through rebalancing. IET Intelligent Transport Systems, 2023, 17, 547-556.	1.7	1
175	Implementing a Ride-sharing Algorithm in the German National Transport Model (DEMO). Transportation Research Record, 0, , 036119812211270.	1.0	0
176	Shaping future low-carbon energy and transportation systems: Digital technologies and applications. , 2022, 1, 285-305.		17
177	Assessing service characteristics of an automated transit on-demand service. Journal of Urban Mobility, 2023, 3, 100038.	1.2	2
178	Large-scale online ridesharing: the effect of assignment optimality on system performance. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2024, 28, 189-210.	2.6	2
179	Equilibrium analysis of trip demand for autonomous taxi services in Nagoya, Japan. Transportation Research, Part A: Policy and Practice, 2022, 166, 476-498.	2.0	0
180	Modeling and Simulation of Shared Electric Automated and Connected Mobility Systems with Autonomous Repositioning: Performance Evaluation and Deployment. Sustainability, 2023, 15, 881.	1.6	2
181	Fostering synergy between transit and Autonomous Mobility-on-Demand systems: A dynamic modeling approach for the morning commute problem. Transportation Research, Part A: Policy and Practice, 2023, 170, 103638.	2.0	0
182	The impact of dispatching logic on the efficiency of Urban Air Mobility operations. Journal of Air Transport Management, 2023, 108, 102372.	2.4	2
183	Examining the effects of Automated Mobility-on-Demand services on public transport systems using an agent-based simulation approach. Transportation Research, Part A: Policy and Practice, 2023, 169, 103583.	2.0	4
184	An Evaluation of Agent-Based Models for Simulating E-Scooter Sharing Services in Urban Areas. Lecture Notes in Intelligent Transportation and Infrastructure, 2023, , 959-976.	0.3	0
185	Curb Allocation and Pick-Up Drop-Off Aggregation for a Shared Autonomous Vehicle Fleet. International Regional Science Review, 2024, 47, 131-158.	1.0	1

#	Article	IF	CITATIONS
186	Policy and Strategy Evaluation of Ridesharing Autonomous Vehicle Operation: A London Case Study. Transportation Research Record, 0, , 036119812311601.	1.0	0
187	Optimization of demand-responsive transport: The rolling horizon approach. Procedia Computer Science, 2023, 220, 145-153.	1.2	0
188	Simulation of Shared Autonomous Vehicles Operations with Relocation Considering External Traffic: Case Study of Brussels. Procedia Computer Science, 2023, 220, 686-691.	1.2	0
199	Repositioning Fleet Vehicles: A Learning Pipeline. Lecture Notes in Computer Science, 2023, , 301-317.	1.0	0