Survey on Unmanned Aerial Vehicle Networks for Civil Viewpoint

IEEE Communications Surveys and Tutorials 18, 2624-2661

DOI: 10.1109/comst.2016.2560343

Citation Report

#	Article	IF	Citations
1	Application-Layer Rate-Adaptive Multicast Video Streaming over 802.11 for Mobile Devices., 2016,,.		3
2	Design and Implementation of Adaptive MAC Framework for UAV Ad Hoc Networks. , 2016, , .		17
3	UAVs Deployment in Disaster Scenarios Based on Global and Local Search Optimization Algorithms. , 2016, , .		10
4	WiFi networks on drones. , 2016, , .		40
5	A relay placement mechanism based on UAV mobility for satisfactory video transmissions., 2017,,.		22
6	Communication links for Unmanned Aircraft Systems in very low level airspace., 2017,,.		4
7	Multi-objective UAV path planning for search and rescue. , 2017, , .		119
8	Predictive routing for dynamic UAV networks. , 2017, , .		30
9	Downlink Coverage Analysis for a Finite 3D Wireless Network of Unmanned Aerial Vehicles. IEEE Transactions on Communications, 2017, , 1-1.	4.9	233
10	On the Placement of UAV Docking Stations for Future Intelligent Transportation Systems. , 2017, , .		27
11	Spatially Adaptive Positioning for Molecular Geometry Inspired Aerial Networks. , 2017, , .		2
12	Safety and degraded mode in civilian applications of unmanned aerial systems. , 2017, , .		4
13	Deployment of an SDN-based UAV network: Controller placement and tradeoff between control overhead and delay., 2017,,.		19
14	Suitability of LTE for drone-to-infrastructure communications in very low level airspace., 2017,,.		13
15	Performance analysis of drone small cells under inter-cell interference., 2017,,.		5
16	Providing wireless coverage in massively crowded events using UAVs. , 2017, , .		14
17	UD-MAC: Delay tolerant multiple access control protocol for unmanned aerial vehicle networks. , 2017, , .		12
18	A deep learning based handover mechanism for UAV networks. , 2017, , .		10

#	Article	IF	CITATIONS
19	Anti-Jamming Power Control Game in Unmanned Aerial Vehicle Networks., 2017,,.		20
20	Coverage, capacity and interference analysis for an aerial base station in different environments. , 2017, , .		26
21	Improving cellular coverage by using UAVS., 2017,,.		0
22	Trust connectivity analysis in overlaid unmanned aerial vehicle networks. , 2017, , .		3
23	Analysis of geometric-stochastic 3D-MIMO air-to-ground channel model. , 2017, , .		3
24	Optimal Deployment Density for Maximum Coverage of Drone Small Cells. , 2017, , .		6
25	Algorithm for energy efficient inter-UAV collision avoidance. , 2017, , .		23
26	Capacity and delay scaling for broadcast transmission in highly mobile wireless networks. , 2017, , .		8
27	IoT's Tiny Steps towards 5G: Telco's Perspective. Symmetry, 2017, 9, 213.	1.1	18
28	One for All, All for One., 2017,,.		3
29	Improving cellular coverage through UAVs. , 2017, , .		4
30	Optimizing the Number of Transmitters and Receivers Per Node for an IoMCT Unmanned Wireless Networking System. IEEE Internet of Things Journal, 2018, 5, 3330-3343.	5.5	O
31	3D Air-X UAV Communications: Challenges and Channel Modeling. Lecture Notes in Computer Science, 2018, , 3-15.	1.0	2
32	UAV-Aided Cooperation for FSO Communication Systems. IEEE Communications Magazine, 2018, 56, 70-75.	4.9	136
33	A survey on unmanned aerial and aquatic vehicle multi-hop networks: Wireless communications, evaluation tools and applications. Computer Communications, 2018, 119, 43-65.	3.1	90
34	MVO-Based 2-D Path Planning Scheme for Providing Quality of Service in UAV Environment. IEEE Internet of Things Journal, 2018, 5, 1698-1707.	5.5	57
35	Optimum Placement of UAV as Relays. IEEE Communications Letters, 2018, 22, 248-251.	2.5	257
36	Effect of non-cooperative vehicles on path connectivity in vehicular networks: A theoretical analysis and UAV-based remedy. Vehicular Communications, 2018, 11, 12-19.	2.7	36

#	Article	IF	CITATIONS
37	The unmanned aerial vehicle routing and trajectory optimisation problem, a taxonomic review. Computers and Industrial Engineering, 2018, 120, 116-128.	3.4	125
38	A study of channel model parameters for aerial base stations at 2.4 GHz in different environments. , 2018, , .		13
39	Massive MIMO for Communications With Drone Swarms. IEEE Transactions on Wireless Communications, 2018, 17, 1604-1629.	6.1	98
40	Multi-subpopulation evolutionary algorithms for coverage deployment of UAV-networks. Ad Hoc Networks, 2018, 68, 16-32.	3.4	55
41	Drone networks: Communications, coordination, and sensing. Ad Hoc Networks, 2018, 68, 1-15.	3.4	257
42	The CUSCUS simulator for distributed networked control systems: Architecture and use-cases. Ad Hoc Networks, 2018, 68, 33-47.	3.4	13
43	A 3D Wideband Geometry-Based Stochastic Model for UAV Air-to-Ground Channels. , 2018, , .		13
44	Trust Function Based Spinal Codes over the Mobile Fading Channel between UAVs. , 2018, , .		2
45	TTW: A Time-Triggered Wireless design for CPS. , 2018, , .		7
46	Trajectory Optimization for Cooperative Dual-Band UAV Swarms. , 2018, , .		16
47	Angle-Encoded Swarm Optimization for UAV Formation Path Planning. , 2018, , .		23
48	Hybrid 3-Way Neighbor Discovery Algorithm in UAV Networks with Directional Antennas. , 2018, , .		1
49	On the Downlink Performance of UAV Communications in Dense Cellular Networks. , 2018, , .		22
50	An Energy Efficient Overlay Cognitive Radio Approach in UAV-Based Communication. , 2018, , .		14
51	UAV Coverage for Downlink in Disasters: Precoding and Multi-hop D2D. , 2018, , .		6
52	A Coalition Formation Game Approach for Efficient Cooperative Multi-UAV Deployment. Applied Sciences (Switzerland), 2018, 8, 2427.	1.3	20
53	Demo: UAV Assisted Adaptive Aerial Internet. , 2018, , .		1
54	UAV Comprehensive Coverage to Users in Urban Environment. , 2018, , .		4

#	Article	IF	CITATIONS
55	Energy-Efficient Resource Allocation in UAV Based MEC System for IoT Devices. , 2018, , .		65
56	Neighbor Discovery for Unmanned Aerial Vehicle Networks. IEEE Access, 2018, 6, 68288-68301.	2.6	19
57	Virtual Forces based UAV Fleet Mobility Models for Air Pollution Monitoring. , 2018, , .		1
58	Autonomous Unmanned Solar Powered HAPS: Impact of Latitudes and Seasons on Power and Communications Coverage. , $2018, , .$		1
59	Space-Time Spectrum Sharing for Unmanned Aerial Vehicle Networks. , 2018, , .		5
60	Network Formation Game for Routing in Unmanned Aerial Vehicle Networks. , 2018, , .		2
61	Max-Min User Throughput in Emergency Situations with a Master-Slave UAV Model. , 2018, , .		1
62	Robust Resource Allocation for UAV Systems with UAV Jittering and User Location Uncertainty. , 2018, , .		22
63	Ecology-Based Resource Allocation for Unmanned Aerial Vehicle Networks. , 2018, , .		1
64	Cooperative Beamforming for UAV-Assisted Cognitive Relay Networks with Partial Channel State Information. , $2018, \ldots$		2
65	An Overview of Collision Avoidance Approaches and Network Architecture of Unmanned Aerial Vehicles (UAVs). International Journal of Engineering and Technology(UAE), 2018, 7, 924.	0.2	8
66	A General Fusion System and Maximal-Ratio Combining Fusion Rule in Unmanned Air Vehicle Network. , 2018, , .		1
67	Trajectory Processes that Preserve Uniformity: A Stochastic Geometry Perspective., 2018,,.		0
68	Experimental Evaluation of Multi-Antenna Receivers for UAV Communication in Live LTE Networks. , 2018, , .		13
69	DFM: A Distributed Flocking Model for UAV Swarm Networks. IEEE Access, 2018, 6, 69141-69150.	2.6	22
70	Tutorial on UAVs: A Blue Sky View onWireless Communication. Journal of Mobile Multimedia, 2018, 14, 395-468.	0.9	30
71	Spectrum Sharing between UAV-based Wireless Mesh Networks and Ground Networks. , 2018, , .		13
72	Understanding UAV Cellular Communications: From Existing Networks to Massive MIMO. IEEE Access, 2018, 6, 67853-67865.	2.6	106

#	ARTICLE	IF	CITATIONS
73	A Certificateless Group Authenticated Key Agreement Protocol for Secure Communication in Untrusted UAV Networks. , 2018, , .		47
74	Cooperative UAV Scheme for Enhancing Video Transmission and Global Network Energy Efficiency. Sensors, 2018, 18, 4155.	2.1	17
75	Considering AODV and OLSR Routing Protocols to Traffic Monitoring Scenario in FANET Formed by Mini-UAVs. , 2018, , .		10
76	About Applying AODV and OLSR Routing Protocols to Relaying Network Scenario in FANET with Mini-UAVs. , $2018, , .$		8
77	Mixer. , 2018, , .		24
78	Coordinated Dense Aerial Traffic with Self-Driving Drones. , 2018, , .		13
79	Path-optimization method for UAV-aided relay broadcast communication system. Physical Communication, 2018, 31, 40-48.	1.2	5
81	Efficient Deployment of Multi-UAVs in Massively Crowded Events. Sensors, 2018, 18, 3640.	2.1	15
82	Energy-efficient multi-UAV coverage deployment in UAV networks: A game-theoretic framework. China Communications, 2018, 15, 194-209.	2.0	170
83	Throughput Maximization in Multi-UAV Enabled Communication Systems With Difference Consideration. IEEE Access, 2018, 6, 55291-55301.	2.6	33
84	Integrated Topology Management in Flying Ad Hoc Networks: Topology Construction and Adjustment. IEEE Access, 2018, 6, 61196-61211.	2.6	47
85	Estimation of Mini-UAVs Network Parameters for Search and Rescue Operation Scenario with Gauss-Markov Mobility Model. , 2018, , .		16
86	Applying Static Mobility Model in Relaying Network Organization in Mini-UAVs Based FANET., 2018,,.		5
87	UAV Motion Planning and Control for Multi-Coverage of 3D Environments. , 2018, , .		2
88	ARIA: Air Pollutants Monitoring Using UAVs. , 2018, , .		27
89	A Beamforming-Aided Full-Diversity Scheme for Low-Altitude Air-to-Ground Communication Systems Operating With Limited Feedback. IEEE Transactions on Communications, 2018, 66, 6602-6613.	4.9	11
90	Communication Architecture for Unmanned Aerial Vehicle System. Lecture Notes in Computer Science, 2018, , 213-225.	1.0	19
91	On Hardness of Connectivity Maintenance Problem in Drone Networks. , 2018, , .		8

#	Article	IF	CITATIONS
92	Precoding Design for Drone Small Cells Cluster Network with Massive MIMO: A Game Theoretical Approach. , 2018, , .		2
93	Renormalization group theory for percolation in time-varying networks. Scientific Reports, 2018, 8, 8011.	1.6	8
94	Simulation-Based Packet Delivery Performance Evaluation with Different Parameters in Flying Ad-Hoc Network (FANET) using AODV and OLSR. Journal of Physics: Conference Series, 2018, 1015, 032178.	0.3	11
95	Adaptive Equalizer Design for Unmanned Aircraft Vehicle Image Transmission over Relay Channels. Wireless Communications and Mobile Computing, 2018, 2018, 1-10.	0.8	0
96	Game Based Energy Cost Optimization for Unmanned Aerial Vehicle Communication Networks. Mathematical Problems in Engineering, 2018, 2018, 1-7.	0.6	1
97	BiPi-TMAC: A Bidirectional-Pipelined TDMA for Reliability and QoS Support in Tactical Unmanned Vehicle Systems. IEEE Access, 2018, 6, 26469-26482.	2.6	2
98	Optimal deployment density for maximum coverage of drone small cells. China Communications, 2018, 15, 25-40.	2.0	26
99	Using drones in a warehouse with minimum energy consumption. , 2018, , .		8
100	SkyHelp., 2018,,.		4
101	Optimization of mobile sensor coverage with UAVs. , 2018, , .		15
102	Spectrum Trading Contract Design for UAV Assisted Offloading in Cellular Networks. , 2018, , .		5
103	Potential Field Based Inter-UAV Collision Avoidance Using Virtual Target Relocation. , 2018, , .		5
104	Supporting UAV Cellular Communications through Massive MIMO. , 2018, , .		29
105	Energy Aware Cluster-Based Routing in Flying Ad-Hoc Networks. Sensors, 2018, 18, 1413.	2.1	113
106	Proactive Eavesdropping Using UAV Systems with Full-Duplex Ground Terminals. , 2018, , .		9
107	Self-organizing flying drones with massive MIMO networking. , 2018, , .		10
108	Optimized flocking of autonomous drones in confined environments. Science Robotics, 2018, 3, .	9.9	304
109	Satisfactory video dissemination on FANETs based on an enhanced UAV relay placement service. Annales Des Telecommunications/Annals of Telecommunications, 2018, 73, 601-612.	1.6	14

#	Article	IF	CITATIONS
110	A Survey of Channel Modeling for UAV Communications. IEEE Communications Surveys and Tutorials, 2018, 20, 2804-2821.	24.8	551
111	UAV Offloading: Spectrum Trading Contract Design for UAV-Assisted Cellular Networks. IEEE Transactions on Wireless Communications, 2018, 17, 6093-6107.	6.1	54
112	Applying AODV and OLSR routing protocols to air-to-air scenario in flying ad hoc networks formed by mini-UAVs. , $2018, $, .		11
113	Simulation and Comparative Analysis of Packet Delivery in Flying Ad Hoc Network (FANET) Using AODV. , 2018, , .		12
114	Accurate 3D Localization for MAV Swarms by UWB and IMU Fusion. , 2018, , .		56
115	Airborne Communication Networks: A Survey. IEEE Journal on Selected Areas in Communications, 2018, 36, 1907-1926.	9.7	216
116	On the Zero-Forcing Receiver Performance for Massive MIMO Drone Communications. , 2018, , .		2
117	Multiple UAVs as Relays: Multi-Hop Single Link Versus Multiple Dual-Hop Links. IEEE Transactions on Wireless Communications, 2018, 17, 6348-6359.	6.1	202
118	A multi-tiered network with aerial and ground coverage. Computer Communications, 2018, 131, 39-42.	3.1	7
119	Secure connectivity analysis in unmanned aerial vehicle networks. Frontiers of Information Technology and Electronic Engineering, 2018, 19, 409-422.	1.5	6
120	Space-Air-Ground Integrated Network: A Survey. IEEE Communications Surveys and Tutorials, 2018, 20, 2714-2741.	24.8	634
121	A distributed PSO-based exploration algorithm for a UAV network assisting a disaster scenario. Future Generation Computer Systems, 2019, 90, 129-148.	4.9	120
122	Airspace map design to implement customer-friendly service on unmanned aerial vehicles. Spatial Information Research, 2019, 27, 87-95.	1.3	3
123	Reliable M2M/IoT data delivery from FANETs via satellite. International Journal of Satellite Communications and Networking, 2019, 37, 331-342.	1.2	4
124	Routing Protocols for Unmanned Aerial Vehicle Networks: A Survey. IEEE Access, 2019, 7, 99694-99720.	2.6	131
125	FANET: Communication, mobility models and security issues. Computer Networks, 2019, 163, 106877.	3.2	139
126	On the Outage Performance of Dual-Hop UAV Relaying with Multiple Sources. , 2019, , .		2
127	A Comprehensive Survey on UAV Communication Channel Modeling. IEEE Access, 2019, 7, 107769-107792.	2.6	223

#	Article	IF	CITATIONS
128	Reliability Assessment of Heterogeneous Drone Fleet With Sliding Redundancy. , 2019, , .		5
129	Massive MIMO for Connectivity With Drones: Case Studies and Future Directions. IEEE Access, 2019, 7, 94676-94691.	2.6	27
130	Optimal Decision on Placement of an Auxiliary Aerial Wireless Base Station Using the Artificial Bee Colony Algorithm. , $2019, \ldots$		1
131	Mobile Network-Connected Drones: Field Trials, Simulations, and Design Insights. IEEE Vehicular Technology Magazine, 2019, 14, 115-125.	2.8	79
132	Adaptive Coherent/Non-Coherent Spatial Modulation Aided Unmanned Aircraft Systems. IEEE Wireless Communications, 2019, 26, 170-177.	6.6	34
133	Analyzing Competition and Cooperation Dynamics of the Aerial mmWave Access Market. IEEE Access, 2019, 7, 87192-87211.	2.6	2
134	Dual-Radio Dual-Band Configuration for Flexible Communication in Flying Ad-hoc Network (FANET). , 2019, , .		2
135	A Survey on 5G Millimeter Wave Communications for UAV-Assisted Wireless Networks. IEEE Access, 2019, 7, 117460-117504.	2.6	221
136	Finite-Time Formation of Unmanned Aerial Vehicles with Switching Topologies and Disturbances: An Average Dwell Time Approach. International Journal of Aerospace Engineering, 2019, 2019, 1-12.	0.5	3
137	MAVSec: Securing the MAVLink Protocol for Ardupilot/PX4 Unmanned Aerial Systems. , 2019, , .		43
138	BUS: A Blockchain-Enabled Data Acquisition Scheme With the Assistance of UAV Swarm in Internet of Things. IEEE Access, 2019, 7, 103231-103249.	2.6	69
139	A comprehensive review on recent advancements in routing protocols for flying ad hoc networks. Transactions on Emerging Telecommunications Technologies, 2022, 33, e3688.	2.6	12
140	Review: Using Unmanned Aerial Vehicles (UAVs) as Mobile Sensing Platforms (MSPs) for Disaster Response, Civil Security and Public Safety. Drones, 2019, 3, 59.	2.7	143
141	A Coalitional Game-Theoretic Framework for Cooperative Data Exchange Using Instantly Decodable Network Coding. IEEE Access, 2019, 7, 26752-26765.	2.6	5
142	Design and Deployment of UAV-Aided Post-Disaster Emergency Network. IEEE Access, 2019, 7, 102985-102999.	2.6	72
143	A 3D Non-Stationary Wideband GBSM for Low-Altitude UAV-to-Ground V2V MIMO Channels. IEEE Access, 2019, 7, 70719-70732.	2.6	54
144	The location-allocation problem of drone base stations. Computers and Operations Research, 2019, 111, 155-176.	2.4	14
145	An Experimental Evaluation of LTE-A Throughput for Drones. , 2019, , .		30

#	ARTICLE	IF	Citations
146	Localization and Clustering Based on Swarm Intelligence in UAV Networks for Emergency Communications. IEEE Internet of Things Journal, 2019, 6, 8958-8976.	5.5	174
147	Handover Challenges for Cellular-Connected Drones. , 2019, , .		39
148	Acceleration control of a multi-rotor UAV towards achieving microgravity. Aerospace Systems, 2019, 2, 175-188.	0.7	10
149	Analysis of energy transfer efficiency in UAV-enabled wireless networks. Physical Communication, 2019, 37, 100849.	1.2	10
150	Blockchain-Based Mutual-Healing Group Key Distribution Scheme in Unmanned Aerial Vehicles Ad-Hoc Network. IEEE Transactions on Vehicular Technology, 2019, 68, 11309-11322.	3.9	84
151	Nonlinearity-Based Single-Channel Monopulse Tracking Method for OFDM-Aided UAV A2G Communications. IEEE Access, 2019, 7, 148485-148494.	2.6	10
152	VISIT: Placement of Unmanned Aerial Vehicles for Anisotropic Monitoring Tasks., 2019,,.		7
153	Low Energy Sensor Data Collection using Unmanned Aerial Vehicles. , 2019, , .		4
154	Modeling mmWave Channels in High-Fidelity Simulations of Unmanned Aerial Systems. , 2019, , .		1
155	UAV-Involved Wireless Physical-Layer Secure Communications: Overview and Research Directions. IEEE Wireless Communications, 2019, 26, 32-39.	6.6	79
156	Cooperation Techniques for a Cellular Internet of Unmanned Aerial Vehicles. IEEE Wireless Communications, 2019, 26, 167-173.	6.6	54
157	The Essential Guide to Realizing 5G-Connected UAVs with Massive MIMO. IEEE Communications Magazine, 2019, 57, 84-90.	4.9	64
158	Learn-As-You-Fly: A Distributed Algorithm for Joint 3D Placement and User Association in Multi-UAVs Networks. IEEE Transactions on Wireless Communications, 2019, 18, 5831-5844.	6.1	60
160	Impact of an Interfering Node on Unmanned Aerial Vehicle Communications. IEEE Transactions on Vehicular Technology, 2019, 68, 12150-12163.	3.9	17
161	On the Performance of Low-Altitude UAV-Enabled Secure AF Relaying With Cooperative Jamming and SWIPT. IEEE Access, 2019, 7, 153060-153073.	2.6	56
162	Coverage-Constrained Utility Maximization of UAV. , 2019, , .		3
163	Patrolling a terrain with cooperrative UAVs using Random Walks. , 2019, , .		2
164	A Game Theoretic Approach for Mobility Prediction Clustering in Unmanned Aerial Vehicle Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 9963-9973.	3.9	21

#	ARTICLE	IF	CITATIONS
165	Optimization of Multi-UAV-Aided Wireless Networking Over a Ray-Tracing Channel Model. IEEE Transactions on Wireless Communications, 2019, 18, 4518-4530.	6.1	28
166	Exploiting Land Transport to Improve the UAV's Performances for Longer Mission Coverage in Smart Cities. , 2019, , .		3
167	Breaking the Boundaries of Aerial Networks with Charging Stations. , 2019, , .		31
168	Testing Procedure of Unmanned Aerial Vehicles (UAVs) Trajectory in Automatic Missions. Applied Sciences (Switzerland), 2019, 9, 3488.	1.3	14
169	Performance Analysis of Multi-Hop Broadcast Protocols for Distributed UAV Formation Control Applications. IEEE Access, 2019, 7, 113548-113577.	2.6	6
170	An ICI Suppression Analysis Testbed for Harbor Unmanned Ground Vehicle Deployment. IEEE Access, 2019, 7, 107757-107768.	2.6	3
171	Privacy-Preserving Control of Video Transmissions for Drone-based Intelligent Transportation Systems. , 2019, , .		5
172	Location Optimization and User Association For Unmanned Aerial Vehicles Assisted Mobile Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 10056-10065.	3.9	35
173	Interference Avoidance Position Planning in UAV-Assisted Wireless Communication., 2019,,.		20
174	Energy Efficiency Optimization for UAV-Assisted Backscatter Communications. IEEE Communications Letters, 2019, 23, 2041-2045.	2.5	60
175	Aerial Small Cells Using Coordinated Multiple UAVs: An Energy Efficiency Optimization Perspective. IEEE Access, 2019, 7, 122838-122848.	2.6	17
176	Autonomous Routing and Power Management of Drones in GPS-Denied Environments through Dijkstra Algorithm. , 2019, , .		15
177	Drone Base Station Trajectory Planning for Optimal Resource Scheduling in LTE Sparse M2M Networks. , 2019, , .		1
178	Toward UAV-Based Airborne Computing. IEEE Wireless Communications, 2019, 26, 172-179.	6.6	25
179	Energy-Efficient Non-Orthogonal Multiple Access for UAV Communication System. IEEE Transactions on Vehicular Technology, 2019, 68, 10834-10845.	3.9	41
180	A Self-Organized Approach for Neighboring Message Interaction in UAV Swarms. , 2019, , .		5
181	Joint Resources and Workflow Scheduling in UAV-Enabled Wirelessly-Powered MEC for IoT Systems. IEEE Transactions on Vehicular Technology, 2019, 68, 10187-10200.	3.9	163
182	Risk-Aware Resource Management in Public Safety Networks. Sensors, 2019, 19, 3853.	2.1	7

#	Article	IF	CITATIONS
183	UAV-Assisted RFET: A Novel Framework for Sustainable WSN. IEEE Transactions on Green Communications and Networking, 2019, 3, 1117-1131.	3.5	26
184	Autonomous UAV Cinematography. ACM Computing Surveys, 2020, 52, 1-33.	16.1	35
185	Robust Cellular Communications for Unmanned Aerial Vehicles in Maritime Search and Rescue. , 2019, , .		11
186	A Review on IoT Deep Learning UAV Systems for Autonomous Obstacle Detection and Collision Avoidance. Remote Sensing, 2019, 11, 2144.	1.8	91
187	Capacity of UAV Relaying Networks. IEEE Access, 2019, 7, 27207-27216.	2.6	11
188	Enhancing biologically inspired swarm behavior: Metaheuristics to foster the optimization of UAVs coordination in target search. Computers and Operations Research, 2019, 110, 34-47.	2.4	30
189	Routing in Flying Ad Hoc Networks: Survey, Constraints, and Future Challenge Perspectives. IEEE Access, 2019, 7, 81057-81105.	2.6	168
190	Energy-Efficient Cooperative Secure Transmission in Multi-UAV-Enabled Wireless Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 7761-7775.	3.9	103
191	Future UAV-Based ITS: A Comprehensive Scheduling Framework. IEEE Access, 2019, 7, 75678-75695.	2.6	32
192	PANDA: Placement of Unmanned Aerial Vehicles Achieving 3D Directional Coverage., 2019,,.		12
193	Dynamic Mobility-Aware Interference Avoidance for Aerial Base Stations in Cognitive Radio Networks. , 2019, , .		27
194	Design Challenges of Multi-UAV Systems in Cyber-Physical Applications: A Comprehensive Survey and Future Directions. IEEE Communications Surveys and Tutorials, 2019, 21, 3340-3385.	24.8	167
195	A Safe, Open Source, 4G Connected Self-Flying Plane With 1 Hour Flight Time and All Up Weight (AUW) & lt;300 g: Towards a New Class of Internet Enabled UAVs. IEEE Access, 2019, 7, 67833-67855.	2.6	16
196	The Broadcast Storm Problem in FANETs and the Dynamic Neighborhood-Based Algorithm as a Countermeasure. IEEE Access, 2019, 7, 59737-59757.	2.6	13
197	A Survey of Game Theory in Unmanned Aerial Vehicles Communications. IEEE Communications Surveys and Tutorials, 2019, 21, 3386-3416.	24.8	71
198	Robust sliding-mode formation control and collision avoidance via repulsive vector fields for a group of Quad-Rotors. International Journal of Systems Science, 2019, 50, 1483-1500.	3.7	5
199	Aeronautical \$Ad~Hoc\$ Networking for the Internet-Above-the-Clouds. Proceedings of the IEEE, 2019, 107, 868-911.	16.4	132
200	Feedback control goes wireless. , 2019, , .		34

#	Article	IF	CITATIONS
201	SOAN: Selfâ€organizing aerial networks. Internet Technology Letters, 2019, 2, e104.	1.4	0
202	Efficient and QoS-Aware Drone Coordination for Simultaneous Environment Coverage., 2019,,.		2
203	Location-Aware Network of Drones for Consumer Applications: Supporting Efficient Management Between Multiple Drones. IEEE Consumer Electronics Magazine, 2019, 8, 68-73.	2.3	22
204	Swarm Intelligence-Inspired Autonomous Flocking Control in UAV Networks. IEEE Access, 2019, 7, 61786-61796.	2.6	43
205	Multi-target Motion Parameter Estimation Exploiting Collaborative UAV Network., 2019,,.		11
206	Passive Geolocation with Unmanned Aerial Vehicles using TDOA-AOA Measurement Processing. , 2019, , .		19
207	Optimal Energy Management of UAV-Based Cellular Networks Powered by Solar Panels and Batteries: Formulation and Solutions. IEEE Access, 2019, 7, 53698-53717.	2.6	33
208	Agent-based simulation of unmanned aerial vehicles in civilian applications: A systematic literature review and research directions. Future Generation Computer Systems, 2019, 100, 344-364.	4.9	47
209	Mobility-Aware Multipath Communication for Unmanned Aerial Surveillance Systems. IEEE Transactions on Vehicular Technology, 2019, 68, 6088-6098.	3.9	27
210	Energy-Efficient Computation Offloading for Secure UAV-Edge-Computing Systems. IEEE Transactions on Vehicular Technology, 2019, 68, 6074-6087.	3.9	180
211	DSF-NOMA: UAV-Assisted Emergency Communication Technology in a Heterogeneous Internet of Things. IEEE Internet of Things Journal, 2019, 6, 5508-5519.	5.5	175
212	UDiPP: A Framework for Differential Privacy Preserving Movements of Unmanned Aerial Vehicles in Smart Cities. IEEE Transactions on Vehicular Technology, 2019, 68, 3933-3943.	3.9	34
213	Asynchronous distributed optimization via dual decomposition for delay-constrained flying ad hoc networks. Computer Communications, 2019, 137, 70-80.	3.1	6
214	A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems. IEEE Communications Surveys and Tutorials, 2019, 21, 2334-2360.	24.8	1,602
215	Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges. IEEE Access, 2019, 7, 48572-48634.	2.6	1,221
216	Delay Tolerant Network assisted flying Ad-Hoc network scenario: modeling and analytical perspective. Wireless Networks, 2019, 25, 2675-2695.	2.0	29
217	Operational Effectiveness Evaluation of the Swarming UAVs Combat System Based on a System Dynamics Model. IEEE Access, 2019, 7, 25209-25224.	2.6	28
218	Learning-Based User Association for Dual-UAV Enabled Wireless Networks With D2D Connections. IEEE Access, 2019, 7, 30672-30682.	2.6	15

#	Article	IF	CITATIONS
219	Survey on UAV Cellular Communications: Practical Aspects, Standardization Advancements, Regulation, and Security Challenges. IEEE Communications Surveys and Tutorials, 2019, 21, 3417-3442.	24.8	635
220	Moving Aerial Base Station Networks: A Stochastic Geometry Analysis and Design Perspective. IEEE Transactions on Wireless Communications, 2019, 18, 2977-2988.	6.1	55
221	An integrated framework for the realistic simulation of multi-UAV applications. Computers and Electrical Engineering, 2019, 74, 196-209.	3.0	19
222	Joint 3D Beamforming and Trajectory Design for UAV-Enabled Mobile Relaying System. IEEE Access, 2019, 7, 26488-26496.	2.6	41
223	Efficient data collection and tracking with flying drones. Ad Hoc Networks, 2019, 89, 35-46.	3.4	40
224	A Hybrid Communication Scheme for Efficient and Low-Cost Deployment of Future Flying Ad-Hoc Network (FANET). Drones, 2019, 3, 16.	2.7	89
225	Is 5G Ready for Drones: A Look into Contemporary and Prospective Wireless Networks from a Standardization Perspective. IEEE Wireless Communications, 2019, 26, 18-27.	6.6	88
226	A Novel CQI Feedback Channel for Cellular UAV System. , 2019, , .		4
227	Delay Estimation of UAV Communications Based on Fountain Codes. , 2019, , .		1
228	Route-Aware Handover Enhancement for Drones in Cellular Networks. , 2019, , .		7
229	Downlink Coverage Analysis of an Aerial User in Vertical Heterogeneous Networks. , 2019, , .		9
230	Learning Sensor Placement from Demonstration for UAV networks. , 2019, , .		2
231	Game-Theoretic and Genetic-Based Approach for Cooperative Mission-Oriented Swarms of Drones. , 2019, , .		1
233	Unmanned Aerial Vehicle Hub Detection Using Software-Defined Radio. , 2019, , .		10
234	Satellite Traffic Simulation for RPAS Swarms. , 2019, , .		6
235	Exploiting prospect theory and risk-awareness to protect UAV-assisted network operation. Eurasip Journal on Wireless Communications and Networking, 2019, 2019, .	1.5	19
236	A Game Approach for Distributed Channel Selection in UAV Communication Networks. , 2019, , .		2
237	A Centralized Fusion Model and Capacity Fusion Rule for Unmanned Air Vehicle Network., 2019,,.		1

#	Article	IF	Citations
238	Interference Avoidance in UAV-Assisted Networks: Joint 3D Trajectory Design and Power Allocation. , 2019, , .		15
239	Random Label Based Security Authentication Mechanism for Large-Scale UAV Swarm. , 2019, , .		6
240	Mobility-Aware Gradient Routing Algorithm for Flying Ad hoc Networks. , 2019, , .		2
241	Positioning of radio emission sources with unmanned aerial vehicles using TDOA-AOA measurement processing. Journal of Physics: Conference Series, 2019, 1368, 042040.	0.3	3
242	Optimal Sensing Slots Determination for UAV under Correlated Log-normal Shadowing. , 2019, , .		2
243	A Distributed Bi-connectivity Maintenance Mechanism for Flying Ad hoc Network Topology. , 2019, , .		0
244	Space-Time Low Complexity Algorithms for Scheduling a Fleet of UAVs in Smart Cities Using Dimensionality Reduction Approaches. , 2019, , .		4
245	Connectivity-Aware UAV Path Planning with Aerial Coverage Maps. , 2019, , .		14
246	Optimal Altitude of UAV-BS for Minimum Boundary Outage Probability with Imperfect Channel State Information. , $2019, , .$		5
247	Edge-Prior Placement Algorithm for UAV-Mounted Base Stations. , 2019, , .		23
248	UAV Trajectory Design for Obstacle Avoidance Based on Cell-Varying JPS in Smart Cities. , 2019, , .		2
249	IoT System Integrating Unmanned Aerial Vehicles and LoRa Technology: A Performance Evaluation Study. Wireless Communications and Mobile Computing, 2019, 2019, 1-12.	0.8	28
250	3-D Deployment Optimization of UAVs Based on Particle Swarm Algorithm. , 2019, , .		13
251	BUAV: A blockchain based secure UAV-assisted data acquisition scheme in Internet of Things. Journal of Communications and Networks, 2019, 21, 491-502.	1.8	72
252	Task-oriented and Disruption-tolerant Traffic Steering in UAV Networks. , 2019, , .		0
253	Unmanned Aerial Vehicle Waypoint Guidance with Energy Efficient Path Planning in Smart Factory. , 2019, , .		4
254	D2D Communication Underlaying UAV on Multiple Bands in Disaster Area: Stochastic Geometry Analysis. IEEE Access, 2019, 7, 156646-156658.	2.6	23
255	Trajectory Optimization for Physical Layer Secure Buffer-Aided UAV Mobile Relaying. , 2019, , .		4

#	Article	IF	CITATIONS
256	Accessing From the Sky: A Tutorial on UAV Communications for 5G and Beyond. Proceedings of the IEEE, 2019, 107, 2327-2375.	16.4	828
257	Software-defined unmanned aerial vehicles networking for video dissemination services. Ad Hoc Networks, 2019, 83, 68-77.	3.4	46
258	UAV Communications for 5G and Beyond: Recent Advances and Future Trends. IEEE Internet of Things Journal, 2019, 6, 2241-2263.	5.5	864
259	IoT Enabled UAV: Network Architecture and Routing Algorithm. IEEE Internet of Things Journal, 2019, 6, 3727-3742.	5.5	136
260	Cyclical NOMA Based UAV-Enabled Wireless Network. IEEE Access, 2019, 7, 4248-4259.	2.6	41
261	Transceiver Design and Multihop D2D for UAV IoT Coverage in Disasters. IEEE Internet of Things Journal, 2019, 6, 1803-1815.	5 . 5	132
262	Investigation of Antennas Integrated Into Disposable Unmanned Aerial Vehicles. IEEE Transactions on Vehicular Technology, 2019, 68, 604-612.	3.9	24
263	Learning to Communicate in UAV-Aided Wireless Networks: Map-Based Approaches. IEEE Internet of Things Journal, 2019, 6, 1791-1802.	5 . 5	55
264	Secure UAV-to-UAV Systems With Spatially Random UAVs. IEEE Wireless Communications Letters, 2019, 8, 564-567.	3.2	88
265	A Survey on Cluster-Based Routing Protocols for Unmanned Aerial Vehicle Networks. IEEE Access, 2019, 7, 498-516.	2.6	102
266	Drone services: issues in drones for location-based services from human-drone interaction to information processing. Journal of Location Based Services, 2019, 13, 94-127.	1.4	49
267	Incorporating diversity in cloud-computing: a novel paradigm and architecture for enhancing the performance of future cloud radio access networks. Wireless Networks, 2019, 25, 3783-3803.	2.0	14
268	Routing and Scheduling of Unmanned Aerial Vehicles Subject to Cyclic Production Flow Constraints. Advances in Intelligent Systems and Computing, 2019, , 75-86.	0.5	20
269	LAUD: Low-cost on-board Acoustic Understanding utilizing aerial Data ferrying. , 2019, , .		0
270	Classifications and Applications of Physical Layer Security Techniques for Confidentiality: A Comprehensive Survey. IEEE Communications Surveys and Tutorials, 2019, 21, 1773-1828.	24.8	424
271	Dual-Radio Configuration for Flexible Communication in Flocking Micro/Miniature Aerial Vehicles. IEEE Systems Journal, 2019, 13, 2408-2419.	2.9	1
272	Security in networks of unmanned aerial vehicles for surveillance with an agent-based approach inspired by the principles of blockchain. Ad Hoc Networks, 2019, 86, 72-82.	3.4	78
273	Two-Level Transmission Scheme for Cache-Enabled Fog Radio Access Networks. IEEE Transactions on Communications, 2019, 67, 445-456.	4.9	19

#	Article	IF	CITATIONS
274	Finite-Cardinality Single-RF Differential Space-Time Modulation for Improving the Diversity-Throughput Tradeoff. IEEE Transactions on Communications, 2019, 67, 318-335.	4.9	20
275	A data authentication scheme for UAV ad hoc network communication. Journal of Supercomputing, 2020, 76, 4041-4056.	2.4	44
276	Nash network formation among unmanned aerial vehicles. Wireless Networks, 2020, 26, 1781-1793.	2.0	6
277	Cloud–SPHERE: Towards Secure UAV Service Provision. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 97, 249-268.	2.0	7
278	Spatial and Temporal Management of Cellular HetNets with Multiple Solar Powered Drones. IEEE Transactions on Mobile Computing, 2020, 19, 954-968.	3.9	28
279	Live multicast video streaming from drones: an experimental study. Autonomous Robots, 2020, 44, 75-91.	3.2	19
280	Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Computer Communications, 2020, 149, 270-299.	3.1	414
281	Capacity and Delay Scaling for Broadcast Transmission in Highly Mobile Wireless Networks. IEEE Transactions on Mobile Computing, 2020, 19, 1998-2009.	3.9	1
282	Zoning a Service Area of Unmanned Aerial Vehicles for Package Delivery Services. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 97, 719-731.	2.0	33
283	Coverage Optimization with a Dynamic Network of Drone Relays. IEEE Transactions on Mobile Computing, 2020, 19, 2278-2298.	3.9	41
284	Trajectory optimization and resource allocation for UAV-assisted relaying communications. Wireless Networks, 2020, 26, 739-749.	2.0	20
285	GeoUAVs: A new geocast routing protocol for fleet of UAVs. Computer Communications, 2020, 149, 259-269.	3.1	40
286	Analysis of UAV Communications in Cell-Free Massive MIMO Systems. IEEE Open Journal of the Communications Society, 2020, 1, 133-147.	4.4	52
287	RESERVE: An Energy-Efficient Edge Cloud Architecture for Intelligent Multi-UAV. IEEE Transactions on Services Computing, 2022, 15, 819-832.	3.2	6
288	On the new era of urban traffic monitoring with massive drone data: The pNEUMA large-scale field experiment. Transportation Research Part C: Emerging Technologies, 2020, 111, 50-71.	3.9	161
289	Spectrum Sharing Among Rapidly Deployable Small Cells: A Hybrid Multi-Agent Approach. IEEE Transactions on Wireless Communications, 2020, 19, 395-409.	6.1	2
290	Utility-Aware Optimal Resource Allocation Protocol for UAV-Assisted Small Cells With Heterogeneous Coverage Demands. IEEE Transactions on Wireless Communications, 2020, 19, 1221-1236.	6.1	16
291	UAVs assessment in software-defined IoT networks: An overview. Computer Communications, 2020, 150, 519-536.	3.1	63

#	Article	IF	CITATIONS
292	Learning and Uncertainty-Exploited Directional Antenna Control for Robust Long-Distance and Broad-Band Aerial Communication. IEEE Transactions on Vehicular Technology, 2020, 69, 593-606.	3.9	12
293	Survey on Unmanned Aerial Vehicle Networks: A Cyber Physical System Perspective. IEEE Communications Surveys and Tutorials, 2020, 22, 1027-1070.	24.8	119
294	Joint Mission Assignment and Topology Management in the Mission-Critical FANET. IEEE Internet of Things Journal, 2020, 7, 2368-2385.	5 . 5	25
295	Potential Data Link Candidates for Civilian Unmanned Aircraft Systems: A Survey. IEEE Communications Surveys and Tutorials, 2020, 22, 292-319.	24.8	30
296	Routing Schemes in FANETs: A Survey. Sensors, 2020, 20, 38.	2.1	60
297	Cluster-Based Control Plane Messages Management in Software-Defined Flying Ad-Hoc Network. Sensors, 2020, 20, 67.	2.1	13
298	Distributed Congestion Control via Outage Probability Model for Delay-Constrained Flying Ad Hoc Networks. Wireless Communications and Mobile Computing, 2020, 2020, 1-9.	0.8	2
299	An Energy-Balanced Path Planning Algorithm for Multiple Ferrying UAVs Based on GA. International Journal of Aerospace Engineering, 2020, 2020, 1-15.	0.5	1
300	Connectivity considerations for mission planning of a search and rescue drone team. Turkish Journal of Electrical Engineering and Computer Sciences, 2020, 28, 2228-2243.	0.9	1
301	A Generalized Framework Designing Monopulse Tracking of OFDM-aided Aircraft Communication. , 2020, , .		0
302	Effects of Digital Map on the RT-based Channel Model for UAV mmWave Communications. , 2020, , .		16
303	UAVs joint optimization problems and machine learning to improve the 5G and Beyond communication. Computer Networks, 2020, 182, 107478.	3.2	30
304	Overview of Vehicle Optical Wireless Communications. IEEE Access, 2020, 8, 173461-173480.	2.6	8
305	UAV Swarm Intelligence: Recent Advances and Future Trends. IEEE Access, 2020, 8, 183856-183878.	2.6	104
306	3D-Map Assisted UAV Trajectory Design Under Cellular Connectivity Constraints. , 2020, , .		19
307	A survey on recent optimal techniques for securing <scp>unmanned aerial vehicles</scp> applications. Transactions on Emerging Telecommunications Technologies, 2021, 32, e4133.	2.6	55
308	Developing of Low-Cost Air Pollution Sensor—Measurements with the Unmanned Aerial Vehicles in Poland. Sensors, 2020, 20, 3582.	2.1	25
309	Trusted UAV Network Coverage Using Blockchain, Machine Learning, and Auction Mechanisms. IEEE Access, 2020, 8, 118219-118234.	2.6	25

#	Article	IF	CITATIONS
310	The Authentic 3D Mobility Model Based on Spiral Line for Aerial Backbone Network. IEEE Access, 2020, 8, 125592-125609.	2.6	2
311	Interference Avoidance Position Planning in Dual-Hop and Multi-Hop UAV Relay Networks. IEEE Transactions on Wireless Communications, 2020, 19, 7033-7048.	6.1	34
312	Buffer-Aware Scheduling for UAV Relay Networks with Energy Fairness. , 2020, , .		4
313	Proactive Queue Management for Flying Networks. , 2020, , .		2
314	Estimation of UAV to UAV Performance as a Hotspot by Proposed Friss Model on Downlink AF Co-operative NOMA. , 2020, , .		2
315	Enhancing Extensive and Remote LoRa Deployments through MEC-Powered Drone Gateways. Sensors, 2020, 20, 4109.	2.1	11
316	A survey on cellular-connected UAVs: Design challenges, enabling 5G/B5G innovations, and experimental advancements. Computer Networks, 2020, 182, 107451.	3.2	90
317	Communication and networking technologies for UAVs: A survey. Journal of Network and Computer Applications, 2020, 168, 102739.	5.8	149
318	Data Collection of IoT Devices Using an Energy-Constrained UAV. , 2020, , .		15
319	DoA Prediction Based Beamforming with Low Training Overhead for Highly-Mobile UAV Communication with Cellular Networks. Applied Sciences (Switzerland), 2020, 10, 4420.	1.3	3
320	A Comprehensive Review of Applications of Drone Technology in the Mining Industry. Drones, 2020, 4, 34.	2.7	172
321	Performance Analysis for Full-Duplex UAV Legitimate Surveillance System. , 2020, , .		1
322	A Multi-UAVs Communication Network Simulation Platform using OPNET Modeler. , 2020, , .		3
323	A Hybrid Voronoi Tessellation/Genetic Algorithm Approach for the Deployment of Drone-Based Nodes of a Self-Organizing Wireless Sensor Network (WSN) in Unknown and GPS Denied Environments. Drones, 2020, 4, 33.	2.7	14
324	Customized novel routing metrics for wireless mesh-based swarm-of-drones applications. Internet of Things (Netherlands), 2020, 11, 100265.	4.9	8
325	Mapping of Archaeological Sites using UAV Aerial Survey and PPK GNSS Ground Survey Techniques in Central Asia. IOP Conference Series: Earth and Environmental Science, 2020, 540, 012014.	0.2	0
326	Classification of Unmanned Aerial vehicles: A Mirror Review., 2020,,.		2
327	An Overview, Survey, and Challenges in UAVs Communication Network. , 2020, , .		6

#	Article	IF	CITATIONS
328	On 5G Support of Cross-Border UAV Operations. , 2020, , .		8
329	Path optimization for Flying Base Stations in Multi-Cell Networks. , 2020, , .		5
330	Learning-Based Trajectory Optimization for 5G mmWave Uplink UAVs. , 2020, , .		12
331	Machine Learning assisted Handover and Resource Management for Cellular Connected Drones. , 2020, , .		15
332	Efficient Deployment of UAV-powered Sensors for Optimal Coverage and Connectivity. , 2020, , .		11
333	Simplistic Machine Learning-Based Air-to-Ground Path Loss Modeling in an Urban Environment. , 2020, , .		5
334	UAV-Enabled Wireless Power Transfer With Base Station Charging and UAV Power Consumption. IEEE Transactions on Vehicular Technology, 2020, 69, 12883-12896.	3.9	70
335	Image Preprocessing of Obstacle Avoidance for Underground Unmanned Aerial Vehicle Based on Monocular Vision. , 2020, , .		4
336	AOA-based drone localization using wireless sensor-doublets. Physical Communication, 2020, 42, 101160.	1.2	9
337	Toward secure, efficient, and seamless reconfiguration of UAV swarm formations. , 2020, , .		11
338	Joint Resource Optimization for UAV-Enabled Multichannel Internet of Things Based on Intelligent Fog Computing. IEEE Transactions on Network Science and Engineering, 2021, 8, 2814-2824.	4.1	14
339	Enabling Capacity Estimation With Ergodic Interference Power in Cellular-Based Multiple UAV Systems. IEEE Access, 2020, 8, 178539-178551.	2.6	0
340	Collaborative Multi-Robot Search and Rescue: Planning, Coordination, Perception, and Active Vision. IEEE Access, 2020, 8, 191617-191643.	2.6	167
341	An Analysis on Tradable Permit Models for Last-Mile Delivery Drones. IEEE Access, 2020, 8, 186279-186290.	2.6	5
342	A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks. IEEE Access, 2020, 8, 174792-174820.	2.6	192
343	A Novel Double Layered Hybrid Multi-Robot Framework for Guidance and Navigation of Unmanned Surface Vehicles in a Practical Maritime Environment. Journal of Marine Science and Engineering, 2020, 8, 624.	1.2	39
344	Altitude and Power Optimization for Coexisting Aerial and Terrestrial Base Stations. , 2020, , .		2
345	Impacts of Mobility Models on RPL-Based Mobile IoT Infrastructures: An Evaluative Comparison and Survey. IEEE Access, 2020, 8, 167779-167829.	2.6	36

#	Article	IF	CITATIONS
346	Precoder Design for mmWave UAV Communications with Physical Layer Security. , 2020, , .		9
347	Connecting Disjoint Nodes Through a UAV-Based Wireless Network for Bridging Communication Using IEEE 802.11 Protocols. Eurasip Journal on Wireless Communications and Networking, 2020, 2020, .	1.5	11
348	Autonomous UAV-aided Mesh Wireless Networks. , 2020, , .		10
349	Protect Your Sky: A Survey of Counter Unmanned Aerial Vehicle Systems. IEEE Access, 2020, 8, 168671-168710.	2.6	69
350	Cooperative Internet of UAVs: Distributed Trajectory Design by Multi-Agent Deep Reinforcement Learning. IEEE Transactions on Communications, 2020, 68, 6807-6821.	4.9	99
351	Antenna Tracking Techniques for Long Range Air-to-Ground Communication Systems Using a Monopulse Method. IEEE Access, 2020, 8, 166442-166449.	2.6	7
352	Resource Allocation in Full-Duplex UAV Enabled Multismall Cell Networks. IEEE Transactions on Mobile Computing, 2022, 21, 1049-1060.	3.9	11
353	Study of noncontact current sensor for brushless motor to enhance the unmanned aerial vehicle performance. AIP Conference Proceedings, 2020, , .	0.3	O
354	Invulnerability optimization of UAV formation based on super wires adding strategy. Chaos, Solitons and Fractals, 2020, 140, 110185.	2.5	7
355	Simulation of Navigation and Flight Control Systems Traffic for UAS/RPAS. , 2020, , .		0
356	Outage Performance of Multi-Antenna Mobile UAV-Assisted NOMA Relay Systems Over Nakagami- <i>m</i> Fading Channels. IEEE Access, 2020, 8, 215033-215043.	2.6	27
357	Localization Enhanced Mobile Networks. , 0, , .		O
358	A Review on Communications Perspective of Flying Ad-Hoc Networks: Key Enabling Wireless Technologies, Applications, Challenges and Open Research Topics. Drones, 2020, 4, 65.	2.7	68
359	RGIM: An Integrated Approach to Improve QoS in AODV, DSR and DSDV Routing Protocols for FANETS Using the Chain Mobility Model. Computer Journal, 2020, 63, 1500-1512.	1.5	12
360	Achieving High UAV Uplink Throughput by Using Beamforming on Board. IEEE Access, 2020, 8, 82528-82538.	2.6	13
361	Robust Non-Orthogonal Multiple Access for Aerial and Ground Users. IEEE Transactions on Wireless Communications, 2020, 19, 4793-4805.	6.1	21
362	Aerial Load Transportation with Multiple Quadrotors Based on a Kinematic Controller and a Neural SMC Dynamic Compensation. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 100, 519-530.	2.0	26
363	SIDR: A Swarm Intelligence-Based Damage-Resilient Mechanism for UAV Swarm Networks. IEEE Access, 2020, 8, 77089-77105.	2.6	20

#	Article	IF	CITATIONS
364	Passive Geolocation with Unmanned Aerial Vehicles using AOA Measurement Processing., 2020,,.		2
365	Energy-Aware Management in Multi-UAV Deployments: Modelling and Strategies. Sensors, 2020, 20, 2791.	2.1	11
366	Distributed Joint Power, Association and Flight Control for Massive-MIMO Self-Organizing Flying Drones. IEEE/ACM Transactions on Networking, 2020, 28, 1491-1505.	2.6	19
367	A cost-efficient elastic UAV relay network construction method with guaranteed QoS. Ad Hoc Networks, 2020, 107, 102219.	3.4	15
368	On the Application of Machine Learning to the Design of UAV-Based 5G Radio Access Networks. Electronics (Switzerland), 2020, 9, 689.	1.8	37
369	UAV assistance paradigm: State-of-the-art in applications and challenges. Journal of Network and Computer Applications, 2020, 166, 102706.	5.8	228
370	Tracking visitors in crowded spaces using zenith images: Drones and time-lapse. Tourism Management Perspectives, 2020, 35, 100680.	3.2	16
371	MAC protocols for unmanned aerial vehicle ecosystems: Review and challenges. Computer Communications, 2020, 160, 443-463.	3.1	15
372	On the Secrecy of UAV Systems With Linear Trajectory. IEEE Transactions on Wireless Communications, 2020, 19, 6277-6288.	6.1	20
373	Comprehensive survey of UAVs communication networks. Computer Standards and Interfaces, 2020, 72, 103451.	3.8	87
374	UAV-to-Ground Communications: Channel Modeling and UAV Selection. IEEE Transactions on Communications, 2020, 68, 5135-5144.	4.9	120
375	Improving PHY-Security of UAV-Enabled Transmission With Wireless Energy Harvesting: Robust Trajectory Design and Communications Resource Allocation. IEEE Transactions on Vehicular Technology, 2020, 69, 8586-8600.	3.9	35
376	Softwarization of UAV Networks: A Survey of Applications and Future Trends. IEEE Access, 2020, 8, 98073-98125.	2.6	127
377	UAV Secure Downlink NOMA Transmissions: A Secure Users Oriented Perspective. IEEE Transactions on Communications, 2020, 68, 5732-5746.	4.9	26
378	Routing Protocols for UAV-Aided Wireless Sensor Networks. Applied Sciences (Switzerland), 2020, 10, 4077.	1.3	33
379	Wireless Communications Challenges to Flying Ad Hoc Networks (FANET). , 0, , .		17
380	Robust Trajectory and Transmit Power Optimization for Secure UAV-Enabled Cognitive Radio Networks. IEEE Transactions on Communications, 2020, 68, 4022-4034.	4.9	56
381	Performance Analysis of UAV-aided RF Energy Transfer. , 2020, , .		2

#	Article	IF	Citations
382	Routing in Flying Ad Hoc Networks: A Comprehensive Survey. IEEE Communications Surveys and Tutorials, 2020, 22, 1071-1120.	24.8	202
383	An Improved Potential Game Theory Based Method for Multi-UAV Cooperative Search. IEEE Access, 2020, 8, 47787-47796.	2.6	31
384	Placement of Unmanned Aerial Vehicles for Directional Coverage in 3D Space. IEEE/ACM Transactions on Networking, 2020, 28, 888-901.	2.6	24
385	Energy Efficiency optimization for UAV Swarm-Enabled Aerial Small Cell Networks. , 2020, , .		1
386	Complex Field Network Coding for Multi-Source Multi-Relay Single-Destination UAV Cooperative Surveillance Networks. Sensors, 2020, 20, 1542.	2.1	9
387	A Reinforcement Learning Approach for Fair User Coverage Using UAV Mounted Base Stations Under Energy Constraints. IEEE Open Journal of Vehicular Technology, 2020, 1, 67-81.	3.4	33
388	Joint Design and Performance Analysis of a Full-Duplex UAV Legitimate Surveillance System. Electronics (Switzerland), 2020, 9, 407.	1.8	8
389	Aerial and underwater drone communication: potentials and vulnerabilities. , 2020, , 1-26.		7
390	Measuring UAV Propeller Length using Micro-Doppler Signatures. , 2020, , .		8
391	An Energy Efficient Design of Computation Offloading Enabled by UAV. Sensors, 2020, 20, 3363.	2.1	8
392	Toward Swarm Coordination: Topology-Aware Inter-UAV Routing Optimization. IEEE Transactions on Vehicular Technology, 2020, 69, 10177-10187.	3.9	62
393	Multi-objective drone path planning for search and rescue with quality-of-service requirements. Autonomous Robots, 2020, 44, 1183-1198.	3.2	50
394	Optimization of bits allocation and path planning with trajectory constraint in UAV-enabled mobile edge computing system. Chinese Journal of Aeronautics, 2020, 33, 2716-2727.	2.8	5
395	Multi-UAV-Enabled Load-Balance Mobile-Edge Computing for IoT Networks. IEEE Internet of Things Journal, 2020, 7, 6898-6908.	5. 5	206
397	Trajectory Optimization for Cellular-Enabled UAV With Connectivity Outage Constraint. IEEE Access, 2020, 8, 29205-29218.	2.6	18
398	A Switching Method to Event-Triggered Output Feedback Control for Unmanned Aerial Vehicles Over Cognitive Radio Networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 7530-7541.	5.9	15
399	The Novel Mobility Models Based on Spiral Line for Aerial Backbone Networks. IEEE Access, 2020, 8, 11297-11314.	2.6	7
400	Monitoring in Near-Real Time for Amateur UAVs Using the AIS. IEEE Access, 2020, 8, 33380-33390.	2.6	7

#	Article	IF	CITATIONS
401	A compilation of UAV applications for precision agriculture. Computer Networks, 2020, 172, 107148.	3.2	445
402	Joint Unmanned Aerial Vehicle (UAV) Deployment and Power Control for Internet of Things Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 4367-4378.	3.9	55
403	Energy-Saving UAV-Assisted Multiuser Communications With Massive MIMO Hybrid Beamforming. IEEE Communications Letters, 2020, 24, 1100-1104.	2.5	22
404	UAV-Enabled Reliable Mobile Relaying Based on Downlink NOMA. IEEE Access, 2020, 8, 25237-25248.	2.6	29
405	Efficient Deployment of Small Cell Base Stations Mounted on Unmanned Aerial Vehicles for the Internet of Things Infrastructure. IEEE Sensors Journal, 2020, 20, 7460-7471.	2.4	24
406	Cognition in UAV-Aided 5G and Beyond Communications: A Survey. IEEE Transactions on Cognitive Communications and Networking, 2020, 6, 872-891.	4.9	144
407	Multiuser MISO UAV Communications in Uncertain Environments With No-Fly Zones: Robust Trajectory and Resource Allocation Design. IEEE Transactions on Communications, 2020, 68, 3153-3172.	4.9	111
408	Acoustic Source Localization From Multirotor UAVs. IEEE Transactions on Industrial Electronics, 2020, 67, 8618-8628.	5.2	29
409	Cell-Edge User Offloading via Flying UAV in Non-Uniform Heterogeneous Cellular Networks. IEEE Transactions on Wireless Communications, 2020, 19, 2411-2426.	6.1	31
410	Self-Organizing Slot Access for Neighboring Cooperation in UAV Swarms. IEEE Transactions on Wireless Communications, 2020, 19, 2800-2812.	6.1	23
411	Information Distribution in Multi-Robot Systems: Utility-Based Evaluation Model. Sensors, 2020, 20, 710.	2.1	9
412	LoPoFly: Location and Positioning Optimization for Flying Networks. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 100, 711-728.	2.0	1
413	An Autonomous Spectrum Management Scheme for Unmanned Aerial Vehicle Networks in Disaster Relief Operations. IEEE Access, 2020, 8, 58064-58079.	2.6	34
414	Reinforcement Learning for a Cellular Internet of UAVs: Protocol Design, Trajectory Control, and Resource Management. IEEE Wireless Communications, 2020, 27, 116-123.	6.6	66
415	Edge Computing Resource Allocation for Dynamic Networks: The DRUID-NET Vision and Perspective. Sensors, 2020, 20, 2191.	2.1	26
416	Dynamic Path Planning of the UAV Avoiding Static and Moving Obstacles. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 99, 909-931.	2.0	22
417	Routing Protocols for Unmanned Aerial Vehicle-Aided Vehicular Ad Hoc Networks: A Survey. IEEE Access, 2020, 8, 77535-77560.	2.6	78
418	Vehicle communication network in intelligent transportation system based on Internet of Things. Computer Communications, 2020, 160, 799-806.	3.1	76

#	Article	IF	Citations
419	Distributed Drone Traffic Coordination Using Triggered Communication. Unmanned Systems, 2020, 08, 1-20.	2.7	12
420	ANFIS controller design based on pigeon-inspired optimization to control an UAV trajectory tracking task. Iran Journal of Computer Science, 2021, 4, 1-16.	1.8	5
421	Structural and modal analysis of hybrid low altitude self-sustainable surveillance drone technology frame. Materials Today: Proceedings, 2021, 37, 409-418.	0.9	6
422	Identifying hazardous obstructions within an intersection using unmanned aerial data analysis. International Journal of Transportation Science and Technology, 2021, 10, 34-48.	2.0	8
423	Nonorthogonal Multiple Access With Orthogonal Time–Frequency Space Signal Transmission. IEEE Systems Journal, 2021, 15, 383-394.	2.9	23
424	Autonomous trajectory tracking of a quadrotor UAV using ANFIS controller based on Gaussian pigeon-inspired optimization. CEAS Aeronautical Journal, 2021, 12, 69-83.	0.9	2
425	Dynamic Resource Allocation in UAV-Enabled mmWave Communication Networks. IEEE Internet of Things Journal, 2021, 8, 9920-9933.	5.5	20
426	Internet of Flying Things (IoFT): A Survey. Computer Communications, 2021, 165, 53-74.	3.1	53
427	Intelligent dynamic service pricing strategy for multi-user vehicle-aided MEC networks. Future Generation Computer Systems, 2021, 114, 15-22.	4.9	13
428	Unmanned Aerial Vehicle-Aided 5G NR for Enhanced Network in Urban Scenarios. International Journal of Wireless Information Networks, 2021, 28, 104-115.	1.8	2
429	Private blockchain-based access control mechanism for unauthorized UAV detection and mitigation in Internet of Drones environment. Computer Communications, 2021, 166, 91-109.	3.1	67
431	Wireless Robotic Components for Autonomous Vehicles. Robotica, 2021, 39, 1202-1215.	1.3	1
432	Skeleton-Based Swarm Routing (SSR): Intelligent Smooth Routing for Dynamic UAV Networks. IEEE Access, 2021, 9, 1286-1303.	2.6	16
433	Wireless Control for Smart Manufacturing: Recent Approaches and Open Challenges. Proceedings of the IEEE, 2021, 109, 441-467.	16.4	33
434	UAV-Aided Data Collection for Information Freshness in Wireless Sensor Networks. IEEE Transactions on Wireless Communications, 2021, 20, 2368-2382.	6.1	77
435	Optimal UAV-Aided RFET System Design in Presence of Hovering Inaccuracy. IEEE Transactions on Communications, 2021, 69, 558-572.	4.9	8
436	A Novel Nonstationary 6G UAV-to-Ground Wireless Channel Model With 3-D Arbitrary Trajectory Changes. IEEE Internet of Things Journal, 2021, 8, 9865-9877.	5.5	67
437	Formation-Control Stability and Communication Capacity of Multiagent Systems: A Joint Analysis. IEEE Transactions on Control of Network Systems, 2021, 8, 917-927.	2.4	4

#	Article	IF	CITATIONS
438	Blockchain-Enabled Trustworthy Group Communications in UAV Networks. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 4118-4130.	4.7	40
439	Three-Dimensional-Map-Based Trajectory Design in UAV-Aided Wireless Localization Systems. IEEE Internet of Things Journal, 2021, 8, 9894-9904.	5.5	17
440	Wideband Printed Half Bow-Tie Antenna Array Based on a Quad-Mode Reconfigurable Feeding Network for UAV Communications. IEEE Open Journal of Antennas and Propagation, 2021, 2, 238-248.	2.5	8
441	Drone Application in Smart Cities: The General Overview of Security Vulnerabilities and Countermeasures for Data Communication. Studies in Systems, Decision and Control, 2021, , 185-210.	0.8	28
442	Chase or Wait: Dynamic UAV Deployment to Learn and Catch Time-Varying User Activities. IEEE Transactions on Mobile Computing, 2021, , 1-1.	3.9	23
443	Joint Design of Fronthaul and Access Links in Massive MIMO Multi-UAV-Enabled CRANs. IEEE Wireless Communications Letters, 2021, 10, 2355-2359.	3.2	8
444	Resource Optimization for UAV-Enabled Multichannel Internet of Things. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2021, , 82-92.	0.2	0
445	An assessment of a unmanned aerial vehicleâ€based broadcast scenario assuming random terrestrial user locations. IET Optoelectronics, 2021, 15, 121-130.	1.8	3
446	Coalitional Dynamic Graph Game for Aeronautical <i>Ad Hoc</i> Network Formation. IEEE Internet of Things Journal, 2022, 9, 5773-5784.	5.5	3
447	Joint Range Estimation Using Single Carrier Burst Signals for Networked UAVs. IEEE Access, 2021, 9, 42533-42542.	2.6	4
448	On Connectivity-Aware Distributed Mobility Models for Area Coverage in Drone Networks. Lecture Notes on Data Engineering and Communications Technologies, 2021, , 369-380.	0.5	3
449	Reliability Analysis of FD-Enabled Multi-UAV Systems With Short-Packet Communication. IEEE Transactions on Vehicular Technology, 2021, 70, 12191-12196.	3.9	14
450	Building Agile and Resilient UAV Networks Based on SDN and Blockchain. IEEE Network, 2021, 35, 57-63.	4.9	28
451	Methods of Information Processing of Relative Motion in the Flying Groups of UAV. International Journal of Software Science and Computational Intelligence, 2021, 13, 90-108.	1.8	4
452	Adaptive Estimation Algorithm for Correcting Low-Cost MEMS-SINS Errors of Unmanned Vehicles under the Conditions of Abnormal Measurements. Sensors, 2021, 21, 623.	2.1	3
453	Communications and Robotics Simulation in UAVs: A Case Study on Aerial Synthetic Aperture Antennas. IEEE Communications Magazine, 2021, 59, 22-27.	4.9	2
454	MPC-Based UAV Navigation for Simultaneous Solar-Energy Harvesting and Two-Way Communications. IEEE Journal on Selected Areas in Communications, 2021, 39, 3459-3474.	9.7	18
455	Cloud-Based Drone Management System in Smart Cities. Studies in Systems, Decision and Control, 2021, , 211-230.	0.8	9

#	Article	IF	CITATIONS
456	Air 100 UAV for Law and Enforcement Applications. ITM Web of Conferences, 2021, 37, 01010.	0.4	1
457	Fast, Reliable, and Secure Drone Communication: A Comprehensive Survey. IEEE Communications Surveys and Tutorials, 2021, 23, 2802-2832.	24.8	84
458	Design and Analysis of Lightweight Authentication Protocol for Securing IoD. IEEE Access, 2021, 9, 69287-69306.	2.6	30
459	Multi-UAV Full-Duplex Communication Systems for Joint Video Transmission and Flight Control. , 2021, , .		6
460	Emulating UAV Motion by Utilizing Robotic Arm for mmWave Wireless Channel Characterization. IEEE Transactions on Antennas and Propagation, 2021, 69, 6691-6701.	3.1	8
461	Data Collection Maximization in IoT-Sensor Networks via an Energy-Constrained UAV. IEEE Transactions on Mobile Computing, 2023, 22, 159-174.	3.9	38
462	An Uplink Throughput Optimization Scheme for UAV-Enabled Urban Emergency Communications. IEEE Internet of Things Journal, 2022, 9, 4291-4302.	5.5	28
463	Learning-Based Computation Offloading Approaches in UAVs-Assisted Edge Computing. IEEE Transactions on Vehicular Technology, 2021, 70, 928-944.	3.9	60
464	Nonlinear EH-Based UAV-Assisted FD IoT Networks: Infinite and Finite Blocklength Analysis. IEEE Internet of Things Journal, 2021, 8, 17655-17668.	5.5	17
465	Characterizing the UAV-to-Machine UWB Radio Channel in Smart Factories. IEEE Access, 2021, 9, 76542-76550.	2.6	5
466	Study of Self-Organizing Coordination for Multi-UAV Systems. Advances in Wireless Technologies and Telecommunication Book Series, 2021, , 56-69.	0.3	0
467	Reconfigurable Intelligent Surface Aided Multi-User Communications: State-of-the-Art Techniques and Open Issues. IEEE Access, 2021, 9, 118584-118605.	2.6	31
468	User Grouping and Energy Harvesting in UAV-NOMA System With AF/DF Relaying. IEEE Transactions on Vehicular Technology, 2021, 70, 11855-11868.	3.9	39
469	UAV Adaptive Path-planning and Data Ferrying for Acoustic Event-based Learning and Classification. , 2021, , .		0
470	System Performance Analysis for an Energy Harvesting IoT System Using a DF/AF UAV-Enabled Relay with Downlink NOMA under Nakagami-m Fading. Sensors, 2021, 21, 285.	2.1	15
471	Artificial Intelligence Techniques in Smart Cities Surveillance Using UAVs: A Survey. Studies in Computational Intelligence, 2021, , 329-353.	0.7	8
472	Dynamic Spectrum Management with Network Function Virtualization for UAV Communication. Journal of Intelligent and Robotic Systems: Theory and Applications, 2021, 101, 1.	2.0	4
473	A survey of prototype and experiment for UAV communications. Science China Information Sciences, 2021, 64, 1.	2.7	42

#	Article	IF	CITATIONS
474	Medium Access Control Protocols for Flying Ad Hoc Networks: A Review. IEEE Sensors Journal, 2021, 21, 4097-4121.	2.4	35
475	A Survey on Unmanned Aerial Vehicles-Assisted Internet of Things: A Service-Oriented Classification. Wireless Personal Communications, 2021, 119, 1541-1575.	1.8	23
476	High-Resolution Image Transmission from UAV to Ground Station for Search and Rescue Missions Planning. Applied Sciences (Switzerland), 2021, 11, 2105.	1.3	7
477	Future FANET with application and enabling techniques: Anatomization and sustainability issues. Computer Science Review, 2021, 39, 100359.	10.2	87
478	A Hybrid Unmanned Arieal Vehicle With A Rover For Disaster Rescue Management Operation. IOP Conference Series: Materials Science and Engineering, 2021, 1057, 012088.	0.3	1
479	Multi-UAV Enabled Data Collection with Efficient Joint Adaptive Interference Management and Trajectory Design. Electronics (Switzerland), 2021, 10, 547.	1.8	8
480	Metaheuristicâ€based optimal 3D positioning of UAVs forming aerial mesh network to provide emergency communication services. IET Communications, 2021, 15, 1297-1314.	1.5	3
481	A survey on unmanned aerial vehicle relaying networks. IET Communications, 2021, 15, 1262-1272.	1.5	29
482	Time Efficient Unmanned Aircraft Systems Deployment in Disaster Scenarios Using Clustering Methods and a Set Cover Approach. Electronics (Switzerland), 2021, 10, 422.	1.8	2
483	A Comprehensive Survey on Current Literature, Standards, Applications and Projects of Self-Organizing Aerial Ad Hoc Network (AANET) in Smart Cities. Current Chinese Computer Science, 2021, 1, .	0.5	0
484	Air-to-Ground Channel Characterization for Low-Height UAVs in Realistic Network Deployments. IEEE Transactions on Antennas and Propagation, 2021, 69, 992-1006.	3.1	35
485	A large-scale clustering and 3D trajectory optimization approach for UAV swarms. Science China Information Sciences, 2021, 64, 1.	2.7	11
486	Downlink Coverage and Rate Analysis of an Aerial User in Vertical Heterogeneous Networks (VHetNets). IEEE Transactions on Wireless Communications, 2021, 20, 1501-1516.	6.1	33
487	Unmanned Aerial Vehicle Operating Mode Classification Using Deep Residual Learning Feature Extraction. Aerospace, 2021, 8, 79.	1.1	12
488	Application of NOMA for cellular-connected UAVs: opportunities and challenges. Science China Information Sciences, 2021, 64, 1.	2.7	10
489	Placement Optimization of Multiple UAV Base Stations., 2021,,.		6
490	A distributed faultâ€tolerant mechanism for missionâ€oriented unmanned aerial vehicle swarms. International Journal of Communication Systems, 2021, 34, e4789.	1.6	5
491	Distributed and Collaborative Localization for Swarming UAVs. IEEE Internet of Things Journal, 2021, 8, 5062-5074.	5.5	39

#	Article	IF	Citations
492	Key wireless communication technologies to support traffic management systems of unmanned aerial vehicles for civil application (review of foreign literature). NauÄnyj Vestnik MGTU GA, 2021, 24, 70-92.	0.1	1
493	Gas Sensing System using An Unmanned Aerial Vehicle. , 2021, , .		3
494	A Simulated Annealing Algorithm and Grid Map-Based UAV Coverage Path Planning Method for 3D Reconstruction. Electronics (Switzerland), 2021, 10, 853.	1.8	46
495	The Realistic 3D Group Mobility Model Based on Spiral Line for Aerial Backbone Network. IEEE Transactions on Vehicular Technology, 2021, 70, 3817-3830.	3.9	3
496	Geometry-Based MPC Tracking and Modeling Algorithm for Time-Varying UAV Channels. IEEE Transactions on Wireless Communications, 2021, 20, 2700-2715.	6.1	12
497	Collaborative Trajectory Optimization for Outage-aware Cellular-Enabled UAVs. , 2021, , .		7
498	UAVâ€based framework for effective data analysis of forest fire detection using 5G networks: An effective approach towards smart cities solutions. International Journal of Communication Systems, 0, , e4826.	1.6	20
499	Drone Swarms as Networked Control Systems by Integration of Networking and Computing. Sensors, 2021, 21, 2642.	2.1	34
500	UTM-Chain: Blockchain-Based Secure Unmanned Traffic Management for Internet of Drones. Sensors, 2021, 21, 3049.	2.1	45
501	Video Quality and Latency for UAV Teleoperation over LTE: A Study with ns3., 2021, , .		7
502	Traffic-aware Gateway Placement for High-capacity Flying Networks., 2021,,.		5
503	Research on VSLAM of UAV in Coal Mine Based on ROS. , 2021, , .		0
504	A review on applications of rotary-wing unmanned aerial vehicle charging stations. International Journal of Advanced Robotic Systems, 2021, 18, 172988142110158.	1.3	21
506	Multidrone Systems: More Than the Sum of the Parts. Computer, 2021, 54, 34-43.	1.2	12
507	Experimental investigation on motor noise reduction of Unmanned Aerial Vehicles. Applied Acoustics, 2021, 176, 107873.	1.7	9
508	Experimental UAV Data Traffic Modeling and Network Performance Analysis. , 2021, , .		13
509	A Random Label and Lightweight Hash-Based Security Authentication Mechanism for a UAV Swarm. Wireless Communications and Mobile Computing, 2021, 2021, 1-17.	0.8	3
510	Re-configuration of UAV Relays in 6G Networks. , 2021, , .		1

#	Article	IF	CITATIONS
511	Outage performance of UAV-assisted AF relaying with hardware impairments. Physical Communication, 2021, 46, 101334.	1.2	5
512	Modeling, Design and Manufacturing of Delta-Wing UAV. , 2021, , .		0
513	İHA Bataryasının Şarj Pedi ile Dengeli Şarj Edilmesi ve Gerçek Zamanlı İzleme Sistemi. Bilecik Şeyh E Üniversitesi Fen Bilimleri Dergisi, 0, , .	debali 0.1	0
514	Power Allocation for Fingerprint-Based PHY-Layer Authentication with mmWave UAV Networks. , 2021, , .		4
515	Performance Analysis in UAV-enabled Relay with NOMA under Nakagami-m Fading Considering Adaptive Power Splitting. , 2021, , .		6
516	Joint Access Selection and Bandwidth Allocation Methods: Evolutionary Game., 2021,,.		1
517	3-D Dynamic UAV Base Station Location Problem. INFORMS Journal on Computing, 2021, 33, 839-860.	1.0	4
518	HorizonUAM: Safety and Security Considerations for Urban Air Mobility., 2021, , .		8
519	A novel improved artificial bee colony and blockchain-based secure clustering routing scheme for FANET. China Communications, 2021, 18, 103-116.	2.0	19
521	Recorp: Receiver-oriented Policies for Industrial Wireless Networks. ACM Transactions on Sensor Networks, 2021, 17, 1-32.	2.3	3
522	Force Simulation Analysis of Underground Quadrotor UAV Based on Virtual Laboratory Technology. , 2021, , .		2
523	Efficient and Secured Swarm Pattern Multi-UAV Communication. IEEE Transactions on Vehicular Technology, 2021, 70, 7050-7058.	3.9	33
524	Evaluating the Quality of Experience Performance Metric for UAV-Based Networks. Sensors, 2021, 21, 5689.	2.1	2
525	Softwarized Industrial Deterministic Networking Based on Unmanned Aerial Vehicles. IEEE Transactions on Industrial Informatics, 2021, 17, 5635-5644.	7.2	9
526	Vehicular intelligence in 6G: Networking, communications, and computing. Vehicular Communications, 2022, 33, 100399.	2.7	36
527	Spherical Fuzzy Inference Systems (S-FIS) to Control UAVs' Communication Technologies. Studies in Systems, Decision and Control, 2022, , 459-496.	0.8	1
528	Maturity Levels of Public Safety Applications using Unmanned Aerial Systems: a Review. Journal of Intelligent and Robotic Systems: Theory and Applications, 2021, 103, 16.	2.0	11
529	Extremely Low-Profile Monopolar Microstrip Antenna with Wide Bandwidth. Sensors, 2021, 21, 5295.	2.1	2

#	Article	IF	CITATIONS
530	A Study On Antenna Polarization Plane for UL/DL Drone Access Network. , 2021, , .		2
531	Unmanned Aerial Vehicles for the Future: Classification, Challenges, and Opportunities. , 2021, , .		2
532	The Optimal and the Greedy: Drone Association and Positioning Schemes for Internet of UAVs. IEEE Internet of Things Journal, 2021, 8, 14066-14079.	5.5	20
533	UAV-Based Intelligent Transportation System for Emergency Reporting in Coverage Holes of Wireless Networks. Sensors, 2021, 21, 6371.	2.1	2
534	An EKF based overlapping coalition formation game for cooperative wireless network navigation. IET Communications, 2021, 15, 2407-2424.	1.5	4
535	Geographic Position based Hopless Opportunistic Routing for UAV networks. Ad Hoc Networks, 2021, 120, 102560.	3.4	10
536	Flocking Control Algorithms Based on the Diffusion Model for Unmanned Aerial Vehicle Systems. IEEE Transactions on Green Communications and Networking, 2021, 5, 1271-1282.	3.5	6
537	Design of a broadband blade and DRA hybrid antenna with hemi-spherical coverage for wireless communications of UAV swarms. AEU - International Journal of Electronics and Communications, 2021, 140, 153930.	1.7	4
538	Empirical Low-Altitude Air-to-Ground Spatial Channel Characterization for Cellular Networks Connectivity. IEEE Journal on Selected Areas in Communications, 2021, 39, 2975-2991.	9.7	12
539	Performance analysis of SSK modulation for UAVs communication. Vehicular Communications, 2021, 31, 100375.	2.7	3
540	A Comprehensive Overview on 5G-and-Beyond Networks With UAVs: From Communications to Sensing and Intelligence. IEEE Journal on Selected Areas in Communications, 2021, 39, 2912-2945.	9.7	202
541	DroneCOCoNet: Learning-based edge computation offloading and control networking for drone video analytics. Future Generation Computer Systems, 2021, 125, 247-262.	4.9	19
542	Towards Design of an Efficient Sensing Data Acquisition Scheme for UAVs-Assisted Wireless Sensor Networks. International Journal of Swarm Intelligence Research, 2022, 13, 1-27.	0.5	4
543	Failure and Communication in a Synchronized Multi-drone System. Lecture Notes in Computer Science, 2021, , 413-425.	1.0	0
544	Efficient UAV Communications: Recent Trends and Challenges. Computers, Materials and Continua, 2021, 67, 463-476.	1.5	7
545	Object Detection in Surveillance Using Deep Learning Methods: A Comparative Analysis. Lecture Notes in Networks and Systems, 2021, , 677-689.	0.5	2
546	CLAN: A Robust Control Link for Aerial Mesh Networks in Contested Environments. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2021, , 25-36.	0.2	0
547	A Survey of Wireless Networks for Future Aerial Communications (FACOM). IEEE Communications Surveys and Tutorials, 2021, 23, 2833-2884.	24.8	48

#	Article	IF	Citations
548	Development of System for Registration and Monitoring of UAVs Using 5G Cellular Networks. Lecture Notes on Data Engineering and Communications Technologies, 2021, , 183-203.	0.5	0
549	The Energy-Aware Multi-UAV Dispatch and Handoff Algorithm for Maximizing the Event Communication Time in Disasters. Applied Sciences (Switzerland), 2021, 11, 1054.	1.3	1
550	Joint Computation Offloading, Channel Access and Scheduling Optimization in UAV Swarms: A Game-Theoretic Learning Approach. IEEE Open Journal of the Computer Society, 2021, 2, 308-320.	5 . 2	15
551	Blockchain-Empowered Trusted Networking for Unmanned Aerial Vehicles in the B5G Era. IEEE Network, 2021, 35, 72-77.	4.9	17
552	Autonomous Navigation for Drone Swarms in GPS-Denied Environments Using Structured Learning. IFIP Advances in Information and Communication Technology, 2020, , 219-231.	0.5	12
553	Communication and Coordination for Drone Networks. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2017, , 79-91.	0.2	37
554	A Survey on Network Architectures and Applications for Nanosat and UAV Swarms. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2018, , 75-85.	0.2	4
555	Approach to UAV Swarm Control and Collision-Free Reconfiguration. Smart Innovation, Systems and Technologies, 2021, , 81-92.	0.5	5
556	A New Research Model for Higher Risk ACTIVITES Applied to the Use of Small Unmanned Aircraft for Data Gathering Operations. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 100, 1617-1634.	2.0	4
557	PARTH: A two-stage lightweight mutual authentication protocol for UAV surveillance networks. Computer Communications, 2020, 160, 81-90.	3.1	7 5
558	Wireless Sensor Networks and Multi-UAV systems for natural disaster management. Computer Networks, 2017, 124, 72-86.	3.2	330
559	Addressing spectrum efficiency through hybrid-duplex UAV communications: Challenges and opportunities. Vehicular Communications, 2020, 24, 100235.	2.7	5
560	Robust secondâ€order finiteâ€time formation control of heterogeneous multiâ€agent systems on directed communication graphs. IET Control Theory and Applications, 2020, 14, 816-823.	1.2	19
561	Experimental evaluation of beamforming on UAVs in cellular systems. , 2020, , .		7
562	Delay Optimization with FCFS Queuing Model in Mobile Edge Computing-Assisted UAV Swarms: A Game-Theoretic Learning Approach. , 2020, , .		4
563	Sparsity-based collaborative sensing in a scalable wireless network. , 2019, , .		3
564	Extending IEEE 802.11s Mesh Routing for 3-D Mobile Drone Applications in ns-3., 2020, , .		4
565	First experiments with a 5G-Connected drone. , 2020, , .		22

#	Article	IF	Citations
566	Telecommunication Networks in Disaster Management: A Review. Journal of Communications, 2019, , 432-447.	1.3	2
567	Reliability Analysis of Power and Communication Network in Drone Monitoring System. IEICE Transactions on Communications, 2019, E102.B, 1991-1997.	0.4	15
568	RPAS Satellite Communication Channel Based on IEEE 802.11b Standard. Transport and Aerospace Engineering, 2019, 7, 32-40.	0.8	4
569	RPAS Satellite Communication Channel Based on Long-Term Evolution (LTE) Standard. Transport and Aerospace Engineering, 2020, 8, 1-14.	0.8	5
570	Internet of Drones-Enabled Smart Cities. Advances in Computer and Electrical Engineering Book Series, 2020, , 107-133.	0.2	1
571	Performance Investigation of Topology-Based Routing Protocols in Flying Ad-Hoc Networks Using NS-2. Advances in Computational Intelligence and Robotics Book Series, 2020, , 243-267.	0.4	9
572	UAV Assisted 5G Het-Net: A Highly Supportive Technology for 5G NR Network Enhancement. EAI Endorsed Transactions on Internet of Things, 2020, 6, 166003.	0.9	6
573	Machine Learning Methods for UAV Flocks Management-A Survey. IEEE Access, 2021, 9, 139146-139175.	2.6	11
574	A review of artificial intelligence applied to path planning in UAV swarms. Neural Computing and Applications, 2022, 34, 153-170.	3.2	44
575	A Multi-broker Cloud Architecture for the Purpose of Large Scale Sensing Applications Development. Lecture Notes in Computer Science, 2017, , 141-153.	1.0	0
576	Wireless Multi-Hop Networks. Springer Briefs in Electrical and Computer Engineering, 2017, , 5-17.	0.3	0
577	A Novel and Efficient Algorithm for three-dimensional Coverage and Deployment of Aerial Robots in Vector Spaces. Journal of Geospatial Information Technology, 2018, 6, 15-43.	0.2	0
578	FANET Topology Reconfiguration Adaptive to Environmental Changes. The Journal of Korean Institute of Communications and Information Sciences, 2019, 44, 117-120.	0.0	0
579	Wireless Robotics Networks for Search and Rescue in Underground Mines. Advances in Computer and Electrical Engineering Book Series, 2019, , 286-309.	0.2	5
580	An Adaptive Neural Network State Estimator for Quadrotor Unmanned Air Vehicle. International Journal of Advanced Computer Science and Applications, 2019, 10, .	0.5	0
581	Geographical Considerations for Implementing Autonomous Unmanned Solar-HAPS for Communications Area Coverage. Data Science: JoCAI, 2019, 3, 1-18.	0.1	1
582	Quadcoptor Monitoring. International Journal of Scientific Research in Computer Science Engineering and Information Technology, 2019, , 895-903.	0.2	0
583	A Routing Metric for Inter-flow Interference-aware Flying Multi-hop Networks. , 2019, , .		2

#	Article	IF	CITATIONS
584	Leveraging Connectivity for Coverage in Drone Networks for Target Detection. Balkan Journal of Electrical and Computer Engineering, $0, \dots$	0.4	1
585	A Brief Overview of Waveforms for UAV Air-to-Ground Communication Systems. , 2019, , .		2
586	A Multiband Biconical Log-periodic Antenna for Swarm Communications. Cihan University-Erbil Scientific Journal, 2019, 3, 85-91.	0.2	0
587	Aerial Surveyor Robot for Nanosat Imaging Payload Design. Learning and Analytics in Intelligent Systems, 2020, , 234-249.	0.5	0
588	A novel routing metric for IEEE 802.11s-based swarm-of-drones applications. , 2019, , .		1
589	Throughput-aware Flying Communication Relay Network for Disaster Area Search and Rescue. , 2019, , .		1
590	UAV Assisted Cellular Communications. Wireless Networks, 2020, , 61-100.	0.3	4
591	Intelligent Channel Utilization Discovery in Drone to Drone Networks for Smart Cities. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 3-18.	0.2	1
592	Joint Trajectory and Power Design for Secure UAV-Enabled Multicasting. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2020, E103.A, 860-864.	0.2	0
593	Relay Selection for CoMP-NOMA Transmission in Satellite and UAV Cooperative Networks., 2020,,.		2
594	GTSS-UC: a Game Theoretic approach for Services' Selection in UAV Clouds. , 2021, , .		3
595	LECAR: Location Estimation-Based Congestion-Aware Routing Protocol for Sparsely Deployed Energy-Efficient UAVs. Sensors, 2021, 21, 7192.	2.1	3
596	Boost Precision Agriculture with Unmanned Aerial Vehicle Remote Sensing and Edge Intelligence: A Survey. Remote Sensing, 2021, 13, 4387.	1.8	58
597	Solving the Multiple Traveling Salesperson Problem on Regular Grids in Linear Time. Operations Research Proceedings: Papers of the Annual Meeting = VortrÅge Der Jahrestagung / DGOR, 2020, , 215-221.	0.1	0
598	Deployment of Unmanned Aerial Vehicles for Anisotropic Monitoring Tasks. IEEE Transactions on Mobile Computing, 2022, 21, 495-513.	3.9	7
600	Incentivizing Resource Cooperation for Blockchain Empowered Wireless Power Transfer in UAV Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 15828-15841.	3.9	19
601	Joint Computation Offloading and Variable-width Channel Access Optimization in UAV Swarms. , 2020, , .		9
602	Study and Assembly of Quadrotor UAV for the Inspection of the Cellular Networks Relays. Lecture Notes in Networks and Systems, 2021, , 659-668.	0.5	3

#	Article	lF	CITATIONS
603	Technology of Intellectual Control of Unmanned Aerial Vehicles Monitoring in the Airspace Using 5G Cellular Networks. Cybernetics and Computer Engineering, 2020, 2020, 44-56.	0.5	0
604	A lightweight identity authentication scheme for UAV and road base stations. , 2020, , .		4
605	QMPS: Q-learning based Message Prioritizing and Scheduling Algorithm for Flying Ad hoc Networks. , 2020, , .		0
606	Leveraging the Technology of Unmanned Aerial Vehicles for Developing Countries. SAIEE Africa Research Journal, 2020, 111, 139-148.	1.1	2
607	On power adaptation schemes in aerial-terrestrial communications., 2022, 120, 103257.		2
608	The Use of UAVs to Save People in the Mountains: Tasks, Problems, Perspective. ITM Web of Conferences, 2020, 35, 04018.	0.4	1
609	Leveraging Unmanned Aerial Vehicles in Mining Industry: Research Opportunities and Challenges. Unmanned System Technologies, 2020, , 107-132.	0.9	4
610	UAV-Based Smart Environmental Monitoring. Advances in Electronic Government, Digital Divide, and Regional Development Book Series, 2020, , 317-335.	0.2	2
611	From the early days of 962 unmanned aerial vehicles (UAVs) to their integration into wireless networks. Military Technical Courier, 2021, 69, 941-962.	0.3	1
612	Design and PoC Implementation of Mmwave-Based Offloading-Enabled UAV Surveillance System. IEEE Open Journal of Vehicular Technology, 2021, 2, 436-447.	3.4	4
613	Optimum Deployment of UAV Relaying with Mobile Ground User System., 2021,,.		0
614	ä,€ç\$é¢åŧæ—人机智能通信的信æ•̄物ç†èžå•̂框架. Scientia Sinica Informationis, 2021, , .	0.2	0
615	Flying Mobile Edge Computing towards 5G and beyond: An Overview on current use cases and challenges. , 2020, , .		3
616	Joint resource allocation for dynamic cellularâ€enabled UAVs communication. IET Communications, 2020, 14, 3161-3168.	1.5	4
617	Performance analysis of UAV-enabled backscatter wireless communication network., 2020,,.		1
618	Land Base and Digital Elevation Model Creation Using Unmanned Aerial Vehicle. Lecture Notes in Civil Engineering, 2021, , 165-184.	0.3	0
619	Architecture for Secure UAV Systems. , 2020, , .		1
620	Joint optimisation of UAV grouping and energy consumption in MECâ€enabled UAV communication networks. IET Communications, 2020, 14, 2723-2730.	1.5	10

#	Article	IF	CITATIONS
621	Unmanned Aerial Vehicles Routing Formation Using Fisheye State Routing for Flying Ad-hoc Networks. , 2020, , .		12
622	Blockchain-Enabled Electrical Fault Inspection and Secure Transmission in 5G Smart Grids. IEEE Journal on Selected Topics in Signal Processing, 2022, 16, 82-96.	7.3	12
623	A Survey on Space-Air-Ground-Sea Integrated Network Security in 6G. IEEE Communications Surveys and Tutorials, 2022, 24, 53-87.	24.8	140
624	Towards a robust FANET: Distributed node importance estimation-based connectivity maintenance for UAV swarms. Ad Hoc Networks, 2022, 125, 102734.	3.4	11
625	Improving Ergodic Capacity of Imperfect IoT System Relying on UAV and NOMA., 2021,,.		0
626	Mission Specific Quadrotor Reliability Analysis Framework. , 2021, , .		0
627	Dynamic collision avoidance for cooperative fixed-wing UAV swarm based on normalized artificial potential field optimization. Journal of Central South University, 2021, 28, 3159-3172.	1.2	11
628	Optimal Trajectory Learning for UAV-Mounted Mobile Base Stations using RL and Greedy Algorithms. , 2021, , .		8
629	UAV-aided Secure NOMA Transmission via Trajectory and Resource Optimization. , 2021, , .		1
630	Research on Explosion-Proof and Sealing Performance of Underground UAV in Coal Mine., 2021,,.		0
631	A Collision Avoidance Strategy For Multirrotor UAVs Based On Artificial Potential Fields., 2021,,.		3
632	Design and Simulation of Smart Communication System for Unmanned Arial Vehicles. International Journal of Computers and Communications, 2021, 15, 89-94.	0.2	0
633	An Extended Methodology for Sizing Solar Unmanned Aerial Vehicles: Theory and Development of a Python Framework for Design Assist. Sensors, 2021, 21, 7541.	2.1	1
634	Closing Connectivity Gap: An Overview of Mobile Coverage Solutions for Not-Spots in Rural Zones. Sensors, 2021, 21, 8037.	2.1	11
635	UAV Placement and Trajectory Design Optimization: A Survey. Wireless Personal Communications, 2022, 124, 2191-2210.	1.8	9
637	A Literature Survey of Unmanned Aerial Vehicle Usage for Civil Applications. Journal of Aerospace Technology and Management, 0, 13, .	0.3	31
638	Detection, Identification, and Direction of Arrival Estimation of Drone FHSS Signals With Uniform Linear Antenna Array. IEEE Access, 2021, 9, 152057-152069.	2.6	4
639	3D Trajectory Optimization for Energy-Efficient UAV Communication: A Control Design Perspective. IEEE Transactions on Wireless Communications, 2022, 21, 4579-4593.	6.1	55

#	Article	IF	CITATIONS
640	A Survey on Spectrum Management for Unmanned Aerial Vehicles (UAVs). IEEE Access, 2022, 10, 11443-11499.	2.6	29
641	Joint Trajectory and Resource Optimization for UAV-Aided Two-Way Relay Networks. IEEE Transactions on Vehicular Technology, 2022, 71, 639-652.	3.9	18
642	Detection and Blind Channel Estimation for UAV-Aided Wireless Sensor Networks in Smart Cities Under Mobile Jamming Attack. IEEE Internet of Things Journal, 2022, 9, 11932-11950.	5. 5	13
643	UAV caching in 6G networks: A Survey on models, techniques, and applications. Physical Communication, 2022, 51, 101532.	1.2	20
644	Trajectory Tracking based on Adaptive Weights Receding Horizon Control by Differential Drive Robot. , 2020, , .		1
645	Performance Analysis of Unsupervised Deployment in Drone-Cell Swarms under JT-CoMP., 2020,,.		0
646	Efficient Fuzzy based UAV Positioning in IoT Environment Data Collection. , 2020, , .		4
647	Multiple UAV based Spatio-Temporal Task Assignment using Fast Elitist Multi Objective Evolutionary Approaches. , 2020, , .		1
648	Distributed control of multi-UAV networks with ranging-based estimation in presence of jamming attacks. , 2020, , .		0
649	Path Planning Under MIMO Network Constraints for Throughput Enhancement in Multi-robot Data Aggregation Tasks. , 2020, , .		2
650	A Self-deployment Algorithm for Flying Ad Hoc Networks (FANETs) towards Low Probability of Detection Coverage in Directional Antennas. , 2020, , .		0
651	Edge-Cloud Architectures Using UAVs Dedicated To Industrial IoT Monitoring And Control Applications. , 2020, , .		3
652	Energy-Awareness Dynamic Trajectory Planning for UAV-Enabled Data Collection in mMTC Networks. , 2020, , .		3
653	An Equivalent Dynamic Test System for Immunity Characterization of the UAV Positioning Module Using Bulk Current Injection Method. IEEE Letters on EMC Practice and Applications, 2020, 2, 161-164.	0.7	10
654	Connectivity and Safety Analysis of Large Scale UAV Swarms: Based on Flight Scheduling., 2021,,.		3
655	Efficient multi-UAV Relay Nodes Placement Scheme in Wireless Networks. , 2021, , .		1
656	Aerial Base Station Assisted Cellular Communication: Performance and Trade-Off. IEEE Transactions on Network Science and Engineering, 2021, 8, 2765-2779.	4.1	5
657	Utilizing Ground Nodes with Multi-Hop Capabilities to Extend the Range of UAV-BSs. , 2021, , .		1

#	Article	IF	CITATIONS
658	Distributed Spatial Modulation for Unmanned Aerial Vehicle-Base Station to Ground Cooperative Communication. , $2021, \ldots$		0
659	Analysis of Multiple Antenna Techniques for Unmanned Aerial Vehicle (UAV) Communication. Smart Innovation, Systems and Technologies, 2022, , 347-357.	0.5	8
660	Dynamic Aerial Wireless Power Transfer Optimization. IEEE Transactions on Vehicular Technology, 2022, 71, 4010-4022.	3.9	7
661	ICRA: An Intelligent Clustering Routing Approach for UAV Ad Hoc Networks. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 2447-2460.	4.7	28
662	Analysis on security-related concerns of unmanned aerial vehicle: attacks, limitations, and recommendations. Mathematical Biosciences and Engineering, 2022, 19, 2641-2670.	1.0	20
663	When IEEE 802.11 and 5G Meet Time-Sensitive Networking. IEEE Open Journal of the Industrial Electronics Society, 2022, 3, 14-36.	4.8	29
664	Minimizing Mission Completion Time of UAVs by Jointly Optimizing the Flight and Data Collection Trajectory in UAV-Enabled WSNs. IEEE Internet of Things Journal, 2022, 9, 13498-13510.	5. 5	18
665	Full-Duplex Aerial Communication System for Multiple UAVs with Directional Antennas., 2022,,.		4
666	UAV-Assisted RIS for Future Wireless Communications: A Survey on Optimization and Performance Analysis. IEEE Access, 2022, 10, 16320-16336.	2.6	32
667	Robust discreteâ€time fractionalâ€order control for an unmanned aerial vehicle based on disturbance observer. International Journal of Robust and Nonlinear Control, 2022, 32, 4665-4682.	2.1	6
668	Positioning aerial relays to maintain connectivity during drone team missions. Ad Hoc Networks, 2022, 128, 102800.	3.4	9
669	Development of a small and transportable de-icing/anti-icing drone-mounted system. Part 1: System design., 2022, 10, 155-177.		6
671	Ground Experiment of Full-Duplex Multi-UAV System Enabled by Directional Antennas., 2022,,.		1
672	Finite Block Length Analysis of RIS-Assisted UAV-Based Multiuser IoT Communication System With Non-Linear EH. IEEE Transactions on Communications, 2022, 70, 3542-3557.	4.9	21
673	Joint Trajectory and Power Optimization for Jamming-Aided NOMA-UAV Secure Networks. IEEE Systems Journal, 2023, 17, 732-743.	2.9	9
674	Evaluations of UAV-enabled FSO Communications in the Arctic. , 2022, , .		1
677	Printed Dipole Antenna Array With Reconfigurable Feeding Network for Wide Elevation Angle of U2X Communications. IEEE Access, 2022, 10, 39193-39203.	2.6	2
678	Optimal Tuning Based Linear Active Disturbance Rejection Control Applied to a Quadcopter. , 2022, , .		1

#	ARTICLE	IF	Citations
679	Spectrum Sharing between Directional-Antenna-Equipped UAV System and Terrestrial Systems. , 2022, , .		1
680	Internet of UAV Mounted RFID for Various Applications Using LoRa Technology: A Comprehensive Survey. Lecture Notes in Electrical Engineering, 2022, , 369-380.	0.3	2
681	Impact of Routing Techniques and Mobility Models on Flying Ad Hoc Networks. Studies in Computational Intelligence, 2022, , 111-129.	0.7	4
682	Drone-Based Weed Detection Architectures Using Deep Learning Algorithms and Real-Time Analytics. Algorithms for Intelligent Systems, 2022, , 15-33.	0.5	0
683	Joint Optimization of Trajectory and Resource Allocation in Secure UAV Relaying Communications for Internet of Things. IEEE Internet of Things Journal, 2022, 9, 16284-16296.	5.5	31
684	User Coverage Maximization for a UAV-mounted Base Station Using Reinforcement Learning and Greedy Methods., 2022,,.		2
685	A novel unmanned aerial vehicleâ€sink enabled mobility model for military operations in sparse flying adâ€hoc network. Transactions on Emerging Telecommunications Technologies, 2022, 33, .	2.6	4
686	Optimal UAV Formation Tracking Control with Dynamic Leading Velocity and Network-Induced Delays. Entropy, 2022, 24, 305.	1.1	4
687	Energy-Efficient UAV Movement Control for Fair Communication Coverage: A Deep Reinforcement Learning Approach. Sensors, 2022, 22, 1919.	2.1	14
688	Scaling beyond Bandwidth Limitations: Wireless Control with Stability Guarantees under Overload. ACM Transactions on Cyber-Physical Systems, 2022, 6, 1-30.	1.9	1
689	Trustâ€oriented peered customized mechanism for malicious nodes isolation for flying ad hoc networks. Transactions on Emerging Telecommunications Technologies, 0, , .	2.6	5
690	Formation control of unmanned aerial vehicle swarms: A comprehensive review. Asian Journal of Control, 2023, 25, 570-593.	1.9	23
691	UAVs assisted Network Partition Detection and Connectivity Restoration in Wireless Sensor and Actor Networks. Ad Hoc Networks, 2022, 130, 102823.	3.4	10
692	Task assignment algorithms for unmanned aerial vehicle networks: A comprehensive survey. Vehicular Communications, 2022, 35, 100469.	2.7	16
693	Collaborative Direction-of-Arrival Estimation Exploiting One-Bit Cross-Correlations., 2021,,.		2
694	An optimization of DPoS for swarm intelligence. , 2021, , .		0
696	Design of IP Satellite Communication for Real Time UAV Telemetry Case: Japan – Indonesia Link. , 2021, , .		1
698	Accelerating Power Grid Monitoring with Flying Robots and Artificial Intelligence. IEEE Communications Standards Magazine, 2021, 5, 48-54.	3.6	12

#	Article	IF	CITATIONS
699	Stochastic strategies for patrolling a terrain with a synchronized multi-robot system. European Journal of Operational Research, 2022, 301, 1099-1116.	3.5	4
700	Anti-jamming strategy based on game theory in single-channel UAV communication network. , 2021, , .		2
701	Reinforcement Learning Method for Autonomous UAVs Monitoring an Uncertain Target., 2021, , .		4
704	Learning Based Model Predictive Control for Quadcopters with Dual Gaussian Process., 2021,,.		2
705	Provably Secure Session Key Agreement Protocol for Unmanned Aerial Vehicles Packet Exchanges. , 2021, , .		6
706	Control of Attitude Dynamics of an Unmanned Aerial Vehicle with Reinforcement Learning Algorithms. European Journal of Science and Technology, 0, , .	0.5	O
707	Optimal Control Design of Dynamical Tracking for Connected and Automated Vehicles. , 2021, , .		0
708	Error Performance Analysis of Distributed Spatial Modulation System with UAV Relays., 2021,,.		0
709	Joint Energy and Performance Aware Relay Positioning in Flying Networks. IEEE Access, 2022, 10, 43848-43864.	2.6	5
710	A Mutual Authentication and Cross Verification Protocol for Securing Internet-of-Drones (IoD). Computers, Materials and Continua, 2022, 72, 5845-5869.	1.5	6
711	Joint Optimization on Trajectory, Transmission and Time for Effective Data Acquisition in UAV-Enabled loT. IEEE Transactions on Vehicular Technology, 2022, 71, 7371-7384.	3.9	6
712	A Survey on Applications of Unmanned Aerial Vehicles (UAVs). Lecture Notes in Electrical Engineering, 2022, , 95-110.	0.3	2
713	Non-Terrestrial Networks for UAVs: Base Station Service Provisioning Schemes With Antenna Tilt. IEEE Access, 2022, 10, 41537-41550.	2.6	1
714	Rate-Splitting Multiple Access for UAV-Based RIS-Enabled Interference-Limited Vehicular Communication System. IEEE Transactions on Intelligent Vehicles, 2023, 8, 936-948.	9.4	26
715	Emerging UAV technology for disaster detection, mitigation, response, and preparedness. Journal of Field Robotics, 2022, 39, 905-955.	3.2	28
716	HP-DF SSK Method for UAVs Communication in Cooperative Multi-Hop Rician Networks. IEEE Transactions on Vehicular Technology, 2022, 71, 8474-8486.	3.9	1
717	Placement and Resource Allocation of Wireless-Powered Multiantenna UAV for Energy-Efficient Multiuser NOMA. IEEE Transactions on Wireless Communications, 2022, 21, 8757-8771.	6.1	5
718	Performance and User Association Optimization for UAV Relay-Assisted mm-Wave Massive MIMO Systems. IEEE Access, 2022, 10, 49611-49624.	2.6	11

#	Article	IF	CITATIONS
719	What Will the Future of UAV Cellular Communications Be? A Flight From 5G to 6G. IEEE Communications Surveys and Tutorials, 2022, 24, 1304-1335.	24.8	94
720	Promising Modern Steerable Parachute for Unmanned Aircraft Systems. Lecture Notes on Data Engineering and Communications Technologies, 2022, , 431-439.	0.5	1
721	Joint Resource Allocation on Slot, Space and Power Towards Concurrent Transmissions in UAV Ad Hoc Networks. IEEE Transactions on Wireless Communications, 2022, 21, 8698-8712.	6.1	8
722	Ultraviolet-Based UAV Swarm Communications: Potentials and Challenges. IEEE Wireless Communications, 2022, 29, 84-90.	6.6	6
723	Internet of Drones: Routing Algorithms, Techniques and Challenges. Mathematics, 2022, 10, 1488.	1.1	14
724	A tutorial on Al-powered 3D deployment of drone base stations: State of the art, applications and challenges. Vehicular Communications, 2022, 36, 100474.	2.7	13
725	Shooting Utility Maximization in UAV-Assisted Wireless Camera Sensor Networks. Sensors, 2022, 22, 3685.	2.1	3
726	Energy efficiency maximization for buffer-aided multi-UAV relaying communications. Journal of Systems Engineering and Electronics, 2022, 33, 312-321.	1.1	4
727	A Multiple Access Method For Integrated Sensing and Communication Enabled UAV Ad Hoc Network. , 2022, , .		2
728	High-resolution ISAR imaging based on photonic receiving for high-accuracy automatic target recognition. Optics Express, 2022, 30, 20580.	1.7	3
729	Geometric control for trajectoryâ€tracking of a quadrotor UAV with suspended load. IET Control Theory and Applications, 2022, 16, 1271-1281.	1.2	4
730	Aerial Monitorizationâ€"A Vector for Ensuring the Agroecosystems Sustainability. Sustainability, 2022, 14, 6011.	1.6	1
731	Error Performance of Magic Square Based Generalized SM for UAV Communication., 2021,,.		0
732	A Survey on the Convergence of Edge Computing and Al for UAVs: Opportunities and Challenges. IEEE Internet of Things Journal, 2022, 9, 15435-15459.	5.5	92
733	Deep Learning-Based Joint Communication and Sensing for 6G Cellular-Connected UAVs. , 2022, , .		4
734	Equalization Techniques for Unmanned Aerial Vehicles Communication Based on Early Termination of Iteration., 2022,,.		0
735	Flying through the secure fog: A complete study on UAVâ€Fog in heterogeneous networks. International Journal of Communication Systems, 2022, 35, .	1.6	8
736	On the Placement and Sustainability of Drone FSO Backhaul Relays. IEEE Wireless Communications Letters, 2022, 11, 1723-1727.	3.2	5

#	Article	IF	CITATIONS
737	Problems and Prospects of Flying Rotor Drones Particularly Quadcopters. Týrkiye Insansız Hava Araçları Dergisi:, 2022, 4, 1-7.	0.3	3
738	A ferry mobility based direction and timeâ€aware greedy delayâ€tolerant routing (FMâ€DTâ€GDR) protocol for sparse flying adâ€hoc network. Transactions on Emerging Telecommunications Technologies, 2022, 33, .	2.6	5
739	Adaptive Network Formation and Trajectory Optimization for Multi-UAV-Assisted Wireless Data Offloading. , 2021, , .		2
740	Outage Probability and Throughput of Mobile Multiantenna UAV-Assisted FD-NOMA Relay System With Imperfect CSI. IEEE Systems Journal, 2023, 17, 1477-1488.	2.9	4
741	Localization in Unprecedentedly Crowded Airspace for UAVs and SUAVs. IEEE Access, 2022, 10, 65206-65220.	2.6	0
742	Outage Probability of Aerial Base Station NOMA MIMO Wireless Communication With RF Energy Harvesting. IEEE Internet of Things Journal, 2022, 9, 22874-22886.	5 . 5	16
743	Navigation for UAV Pairâ€Supported Relaying in Unknown IoT Systems with Deep Reinforcement Learning. Chinese Journal of Electronics, 2022, 31, 416-429.	0.7	2
744	UAV Computing-Assisted Search and Rescue Mission Framework for Disaster and Harsh Environment Mitigation. Drones, 2022, 6, 154.	2.7	67
745	Multi-Source Markovian Model for Video Streaming in Flying Ad hoc Networks. , 2022, , .		0
746	Dynamic positioning of UAVs to improve network coverage in VANETs. Vehicular Communications, 2022, 36, 100498.	2.7	7
747	ABNT: Adaptive beaconing and neighbor timeout for geographical routing in UAV networks. Peer-to-Peer Networking and Applications, 2022, 15, 2079-2100.	2.6	3
748	Adaptive sliding mode-based active disturbance rejection control for a quadcopter. Transactions of the Institute of Measurement and Control, 2022, 44, 3176-3190.	1.1	2
749	Energy efficient shortâ€packetâ€communication in UAVâ€assisted cognitive network. IET Communications, 0,	1.5	0
750	Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones, 2022, 6, 147.	2.7	179
751	TaskPOI Priority-Based Energy Balanced Multi-UAVs Cooperative Trajectory Planning Algorithm in 6G Networks. IEEE Transactions on Green Communications and Networking, 2023, 7, 1052-1065.	3.5	3
754	Design of Intelligent Flight Platform for High-Rise Fire Fighting and Rescue. , 2022, , .		O
756	Systemic Performance Analysis on Zoning for Unmanned Aerial Vehicle-Based Service Delivery. Drones, 2022, 6, 157.	2.7	2
757	Optimizing Task Offloading Energy in Multi-User Multi-UAV-Enabled Mobile Edge-Cloud Computing Systems. Applied Sciences (Switzerland), 2022, 12, 6566.	1.3	16

#	ARTICLE	IF	Citations
758	Application of Unmanned Aerial Technologies for Inspecting Pavement and Bridge Infrastructure Assets Conditions. Transportation Research Record, 0, , 036119812211052.	1.0	2
759	Internet of Low-Altitude UAVs (IoLoUA): a methodical modeling on integration of Internet of "Things― with "UAV―possibilities and tests. Artificial Intelligence Review, 2023, 56, 2279-2324.	9.7	8
760	A survey on the role of UAVs in the communication process: A technological perspective. Computer Communications, 2022, 194, 86-123.	3.1	10
761	How to stay well clear in corridors and swarms: Detect-and-avoid ranges for geovectoring concepts. , 2022, , .		4
762	Development of a small and transportable de-icing/anti-icing drone-mounted system. Part 2: Prototype testing and proof of concept., 0,,.		1
763	Drone technology and performance of retail logistics. Journal of Sustainable Development of Transport and Logistics, 2022, 7, 73-81.	0.3	2
764	Software-Defined Networking for Flying Ad-hoc Network Security: A Survey. , 2022, , .		0
765	Weighted Naive Bayes Approach for Imbalanced Indoor Positioning System Using UWB. , 2022, , .		8
766	Simulation Analysis of a Wideband Antenna on a Drone. , 2022, , .		1
767	Aerial Coverage Analysis for Mobile Network Operator: A Comparison Model of Simulation and UAV Based Measurement in the Different Altitudes. , 2022, , .		1
768	Review of Protocol Stack Development of Flying Ad-hoc Networks for Disaster Monitoring Applications. Archives of Computational Methods in Engineering, 2023, 30, 37-68.	6.0	4
769	A Continuum Approach for Collaborative Task Processing in UAV MEC Networks. , 2022, , .		1
770	Existence and practice of gaming: thoughts on the development of multi-agent system gaming. Frontiers of Information Technology and Electronic Engineering, 2022, 23, 995-1001.	1.5	1
771	Cyber Threats and Cybersecurity Reassessed in UAV-assisted Cyber Physical Systems. , 2022, , .		4
772	Survey on UAV Deployment and Trajectory in Wireless Communication Networks: Applications and Challenges. Information (Switzerland), 2022, 13, 389.	1.7	13
773	Investigation on Unmanned Aerial Vehicle (UAV): An Overview. IRO Journal on Sustainable Wireless Systems, 2022, 4, 130-148.	1.4	9
774	Physical-Layer Secure Precoding for UAV Communications with Full-Duplex Jamming. , 2022, , .		0
775	Search and Rescue in a Maze-like Environment with Ant and Dijkstra Algorithms. Drones, 2022, 6, 273.	2.7	9

#	Article	IF	CITATIONS
776	The Mysterio framework for developing cooperative Multi-UAV Systems. , 2022, , .		0
777	User Pairing and Power Allocation for UAV-NOMA Systems Based on Multi-Armed Bandit Framework. IEEE Transactions on Vehicular Technology, 2022, 71, 13017-13029.	3.9	6
778	Unmanned Aerial Vehicle Communications for Civil Applications: A Review. IEEE Access, 2022, 10, 102492-102531.	2.6	22
779	Resource Allocation for the Backhaul of NOMA-Based Cellular UAV Network. IEEE Transactions on Vehicular Technology, 2022, 71, 11889-11899.	3.9	0
780	Learning-Based Beam Alignment for Uplink mmWave UAVs. IEEE Transactions on Wireless Communications, 2023, 22, 1779-1793.	6.1	2
781	A Semidefinite Relaxation Solution for Time Delay and Doppler Shift Localization Considering Sensor Location Errors and Its Bias Reduction Scheme. IEEE Internet of Things Journal, 2022, 9, 24890-24902.	5.5	1
782	An Onboard Magnetic Integration-Based WPT System for UAV Misalignment-Tolerant Charging With Constant Current Output. IEEE Transactions on Transportation Electrification, 2023, 9, 1973-1984.	5. 3	15
783	Safeguarding autonomous systems: emerging approaches, assumptions and metrics - a systematic literature review. IFAC-PapersOnLine, 2022, 55, 743-754.	0.5	0
784	Electromagnetic Compatibility Analysis of Quadcopter UAVs Using the Equivalent Circuit Approach. IEEE Open Journal of Antennas and Propagation, 2022, 3, 1090-1101.	2.5	2
785	Outage Performance Analysis of UAV-assisted Dual-Hop Cooperative Network under Distortions and Interferences., 2022,,.		4
786	Design and Implementation of an Amphibious Unmanned Aerial Vehicle System for Agriculture Applications. Advances in Computational Intelligence and Robotics Book Series, 2022, , 61-100.	0.4	0
787	UAV-assisted 5G Networks for Optimised Coverage Under Dynamic Traffic Load., 2022,,.		3
788	Handover Management for Drones in Future Mobile Networksâ€"A Survey. Sensors, 2022, 22, 6424.	2.1	5
789	Cell-Free Massive MIMO with UAV Access Points: UAV Location Optimization. , 2022, , .		5
790	Information-Seeking in Localization and Mission Planning of Multi-Agent Systems. , 2022, , .		0
791	A novel approach for securing data against adversary attacks in UAV embedded HetNet using identity based authentication scheme. IET Intelligent Transport Systems, 2023, 17, 2171-2189.	1.7	3
792	Unmanned aerial vehicles: Applications, techniques, and challenges as aerial base stations. International Journal of Distributed Sensor Networks, 2022, 18, 155013292211239.	1.3	6
793	Path Planning for UAV Communication Networks: Related Technologies, Solutions, and Opportunities. ACM Computing Surveys, 2023, 55, 1-37.	16.1	6

#	Article	IF	CITATIONS
794	Ultra-Reliable Low-Latency Communications: Unmanned Aerial Vehicles Assisted Systems. Information (Switzerland), 2022, 13, 430.	1.7	5
795	Feature-Based Generalized Gaussian Distribution Method for NLoS Detection in Ultra-Wideband (UWB) Indoor Positioning System. IEEE Sensors Journal, 2022, 22, 18726-18739.	2.4	27
796	Energy-Efficient UAV Communications: A Generalized Propulsion Energy Consumption Model. IEEE Wireless Communications Letters, 2022, 11, 2150-2154.	3.2	13
797	Swarm of UAVs for Network Management in 6G: A Technical Review. IEEE Transactions on Network and Service Management, 2023, 20, 741-761.	3.2	46
798	Research on Intelligent Access of Space-Air-Ground Integrated Network. Lecture Notes in Electrical Engineering, 2022, , 66-79.	0.3	0
799	Unmanned Aerial Vehicle (UAV) manipulation assisted by Augmented Reality (AR): The case of a drone. IFAC-PapersOnLine, 2022, 55, 983-988.	0.5	5
800	loDSCF: A Store-Carry-Forward Routing Protocol for joint Bus Networks and Internet of Drones. , 2022, , .		2
801	Flying Ad hoc Networks Routing Constraints and Challenge Perspectives. Advances in Wireless Technologies and Telecommunication Book Series, 2022, , 13-42.	0.3	0
802	Physical layer aspects of terahertz-enabled UAV communications: Challenges and opportunities. Vehicular Communications, 2022, 38, 100540.	2.7	3
803	A Survey on Integrated Sensing, Communication, and Computing Networks for Smart Oceans. Journal of Sensor and Actuator Networks, 2022, 11, 70.	2.3	3
804	Packet Losses in SAGIN with Artificial Intelligence. International Journal of Wireless Information Networks, 0, , .	1.8	0
805	Unmanned Aerial Vehicle Cellular Communication Operating in Non-terrestrial Networks. Unmanned System Technologies, 2023, , 225-251.	0.9	0
806	Historical Perspectives and Introduction to UAV Cellular Communications. Unmanned System Technologies, 2023, , 1-23.	0.9	0
807	A Review of Collaborative Air-Ground Robots Research. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 106, .	2.0	6
808	Evolution and Significance of Unmanned Aerial Vehicles. Unmanned System Technologies, 2023, , 287-311.	0.9	0
809	Comprehensive Review of UAV Detection, Security, and Communication Advancements to Prevent Threats. Drones, 2022, 6, 284.	2.7	31
810	Optimized Path Planning Strategy to Enhance Security under Swarm of Unmanned Aerial Vehicles. Drones, 2022, 6, 336.	2.7	3
811	Air-to-ground path loss prediction using ray tracing and measurement data jointly driven DNN. Computer Communications, 2022, 196, 268-276.	3.1	4

#	Article	IF	CITATIONS
812	Traffic-aware gateway placement and queue management in flying networks. Ad Hoc Networks, 2023, 138, 103000.	3.4	2
813	Joint or decoupled optimization: Multi-UAV path planning for search and rescue. Ad Hoc Networks, 2023, 138, 103018.	3.4	9
814	How Far Two UAVs Should be Subject to Communication Uncertainties. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 429-445.	4.7	6
815	An Optimization Framework for Active Physical-Layer Authentication. IEEE Transactions on Mobile Computing, 2022, , 1-16.	3.9	0
816	Throughput of Hybrid UAV Networks With Scale-Free Topology. IEEE Transactions on Communications, 2022, 70, 7941-7956.	4.9	2
817	Outage and Throughput Analysis of UAV-Assisted NOMA Relay Systems With Indoor and Outdoor Users. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59, 2633-2647.	2.6	3
818	Optimal Coverage-Aware Hovering UAV Height. , 2021, , .		0
819	Obstacle-aware On-demand 5G Network using a Mobile Robotic Platform. , 2022, , .		0
820	A STUDY OF REAL-TIME RECOGNITION OF UNMANNED AERIAL VEHICLES IN OUTDOOR AREAS BASED ON A RANDOM FOREST ALGORITHM. Aviation, 2022, 26, 169-175.	0.7	0
821	Collision-free formation tracking control for multiple quadrotors under switching directed topologies: Theory and experiment. Aerospace Science and Technology, 2022, 131, 108007.	2.5	4
822	Federated reinforcement learning approach for detecting uncertain deceptive target using autonomous dual UAV system. Information Processing and Management, 2023, 60, 103149.	5.4	7
823	Semantic Communications for Future Internet: Fundamentals, Applications, and Challenges. IEEE Communications Surveys and Tutorials, 2023, 25, 213-250.	24.8	43
824	Impacts of Wireless on Robot Control: The Network Hardware-in-the-Loop Simulation Framework and Real-Life Comparisons. IEEE Transactions on Industrial Informatics, 2023, 19, 9255-9265.	7.2	3
825	Unmanned-Aerial-Vehicle-Assisted Wireless Networks: Advancements, Challenges, and Solutions. IEEE Internet of Things Journal, 2023, 10, 4117-4147.	5.5	9
826	VIO-UWB-Based Collaborative Localization and Dense Scene Reconstruction within Heterogeneous Multi-Robot Systems. , 2022, , .		12
827	Analysis of UAVs' Coverage Efficiency in Flight and Static Mode. , 2022, , .		0
828	Performance Improvement of a Micro Permanent Magnet Motor. , 2022, , .		0
829	UWB Role Allocation with Distributed Ledger Technologies for Scalable Relative Localization in Multi-Robot Systems., 2022,,.		5

#	Article	IF	Citations
830	GROWS., 2022,,.		1
831	Quadrotor-Type UAVs Assembly and Its Application to Audit Telecommunications Relays., 0,,.		0
832	Sensorless and Coordination-Free Lane Switching on a Drone Road Segmentâ€"A Simulation Study. Drones, 2022, 6, 411.	2.7	1
833	Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends. Intelligent Service Robotics, 0, , .	1.6	41
834	Aol-Sensitive Data Collection in Multi-UAV-Assisted Wireless Sensor Networks. IEEE Transactions on Wireless Communications, 2023, 22, 5185-5197.	6.1	13
835	Civilian UAV Deployment Framework in Qatar. Drones, 2023, 7, 46.	2.7	4
836	Comparative Study of Double-Stator Vernier Machines with Different Interior Permanent-Magnet Arrangements for Unmanned Aerial Vehicles. , 2022, , .		0
837	Sparse Measurement Data Driven Air-to-Ground Path Loss Prediction over Vegetation Area., 2022,,.		0
838	Unmanned Aerial Vehicle Assisted Healthcare Resource Allocation in Disasters. , 2022, , .		0
839	A Review of Indoor UAV-based Tracking Systems: Classification, Status, and Challenges. , 2022, , .		3
840	Automatic collaborative water surface coverage and cleaning strategy of UAV and USVs. Digital Communications and Networks, 2022, , .	2.7	3
841	Drone Localization Through Non-Ideal Angle-Of-Arrival Measurements. , 2022, , .		0
842	Experiments on Drone-to-Drone Communication with Wi-Fi, LTE-A, and 5G., 2022, , .		2
843	Multi-user Detection and Data Association for LoRa-based UAV IoT Networks. , 2022, , .		0
844	Resource Allocation and UAVs Placement in Cell-free Wireless Networks. , 2022, , .		0
845	Multi-UAV Formation Control WithÂTime-Varying Nash Equilibrium. Lecture Notes in Electrical Engineering, 2023, , 3577-3586.	0.3	0
846	A Novel 3D Beam Domain Channel Model for UAV Massive MIMO Communications. IEEE Transactions on Wireless Communications, 2023, 22, 5431-5445.	6.1	2
847	Self-Evolving Integrated Vertical Heterogeneous Networks. IEEE Open Journal of the Communications Society, 2023, 4, 552-580.	4.4	2

#	Article	IF	CITATIONS
848	An optimal deployment method of heterogeneous sensors for multi-agent collaborative detection tasks. Aerospace Systems, 2023, 6, 249-257.	0.7	1
849	A Survey on Unmanned Aerial Vehicle Swarm Communication and Navigation. Lecture Notes in Electrical Engineering, 2023, , 2386-2393.	0.3	0
850	On the Outage Performance of Drones-Aided Cooperative D2D communications systems. , 2022, , .		0
851	Power Management of Drones. Lecture Notes in Civil Engineering, 2023, , 555-569.	0.3	0
852	Power Allocation for Uplink Communications of Massive Cellular-Connected UAVs. IEEE Transactions on Vehicular Technology, 2023, 72, 8797-8811.	3.9	0
853	Managing Sets of Flying Base Stations Using Energy Efficient 3D Trajectory Planning in Cellular Networks. IEEE Sensors Journal, 2023, 23, 10983-10997.	2.4	2
854	PPUP-GAN: A GAN-based privacy-protecting method for aerial photography. Future Generation Computer Systems, 2023, 145, 284-292.	4.9	1
855	3D-O-RAN: Dynamic Data Driven Open Radio Access Network Systems. , 2022, , .		0
856	Research on Information Freshness of UAV-assisted IoT Networks Based on DDQN., 2022,,.		0
857	Allocation of edge computing tasks for UAV-aided target tracking. Computer Communications, 2023, 201, 123-130.	3.1	0
858	A survey on security and privacy issues of UAVs. Computer Networks, 2023, 224, 109626.	3.2	25
859	Autonomous control of multiple quadrotors for collisionâ€free navigation. IET Control Theory and Applications, 2023, 17, 868-895.	1.2	3
860	A comprehensive survey on security, privacy issues and emerging defence technologies for UAVs. Journal of Network and Computer Applications, 2023, 213, 103607.	5.8	18
861	Towards Large-Scale Relative Localization in Multi-Robot Systems with Dynamic UWB Role Allocation. , 2022, , .		6
862	Joint Information-Theoretic Secrecy and Covertness for UAV-Assisted Wireless Transmission With Finite Blocklength. IEEE Transactions on Vehicular Technology, 2023, 72, 10187-10199.	3.9	0
863	Experiment of Multi-UAV Full-Duplex System Equipped with Directional Antennas. , 2023, , .		0
864	A bibliometric review of geospatial analyses and artificial intelligence literature in agriculture. Geo Journal, 2023, 88, 343-360.	1.7	2
865	Communication and Control in Collaborative UAVs: Recent Advances and Future Trends. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 5719-5739.	4.7	11

#	Article	IF	Citations
866	A Survey on Energy Optimization Techniques in UAV-Based Cellular Networks: From Conventional to Machine Learning Approaches. Drones, 2023, 7, 214.	2.7	15
867	Cloud service selection in IoFT-enabled Multi-access Edge Computing: a Game Theoretic approach. Annales Des Telecommunications/Annals of Telecommunications, 0, , .	1.6	1
868	Hardware Selection Approach For Custom UAVs. , 2022, , .		O
869	Bayesian Optimization Enhanced Deep Reinforcement Learning for Trajectory Planning and Network Formation in Multi-UAV Networks. IEEE Transactions on Vehicular Technology, 2023, 72, 10933-10948.	3.9	6
870	Data Verification in the Agent, Combining Blockchain and Quantum Keys by Means of Multiple-Valued Logic. Applied System Innovation, 2023, 6, 51.	2.7	2
871	A Survey on the Design Aspects and Opportunities in Age-Aware UAV-Aided Data Collection for Sensor Networks and Internet of Things Applications. Drones, 2023, 7, 260.	2.7	8
872	Stackelberg-Game-Based Intelligent Offloading Incentive Mechanism for a Multi-UAV-Assisted Mobile-Edge Computing System. IEEE Internet of Things Journal, 2023, 10, 15679-15689.	5.5	1
873	Timely Data Collection for UAV-Based IoT Networks: A Deep Reinforcement Learning Approach. IEEE Sensors Journal, 2023, 23, 12295-12308.	2.4	3
888	Applications ofÂUAVs inÂSearch andÂRescue. , 2023, , 169-200.		1
895	The Study of Cluster-Based Energy-Efficient Algorithms of Flying Ad-Hoc Networks. Lecture Notes in Networks and Systems, 2023, , 1 -12.	0.5	0
897	Drone Base Stations Transmission Power Control andÂLocalization. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2023, , 356-377.	0.2	0
898	Investigating the applicability of LTE-M for Network Identification of Unmanned Aerial Systems in U-Space. , 2023, , .		0
909	On Learning Data-Driven Models For In-Flight Drone Battery Discharge Estimation From Real Data. , 2023, , .		0
910	Route Planning of Fixed-Wing Unmanned Aerial Vehicles for Maritime Communication Coverage., 2023,		0
917	Spectral Efficiency of Multi-Pair mMIMO-NOMA UAV-Relaying with Low-Resolution ADCs/DACs., 2023,,.		0
918	Drone cybersecurity issues, solutions, trend insights and future perspectives: a survey. Neural Computing and Applications, 2023, 35, 23063-23101.	3.2	6
925	Experimental Validation of Networked Aerial IoUT Solutions: Testbeds and Measurements. Internet of Things, 2023, , 173-199.	1.3	0
928	Integrated crack monitoring approach in buildings using drone and IoT. AIP Conference Proceedings, 2023, , .	0.3	0

#	Article	IF	CITATIONS
936	Joint Offloading with Fixed-Site and UAV-Mounted Edge Servers Based on Particle Swarm Optimization. , 2023, , .		0
937	Benchmarking UWB-Based Infrastructure-Free Positioning and Multi-Robot Relative Localization: Dataset and Characterization., 2023,,.		1
940	Impact of Adaptive Velocity based Hello Intervals in UAS to Sustainability., 2023,,.		0
947	Multi-UAV Path Planning Under Radar Threats. , 2023, , .		1
950	Simulated Evaluation of Navigation System for Multi-quadrotor Coordination in Search and Rescue. Lecture Notes in Electrical Engineering, 2023, , 135-145.	0.3	0
953	Hybrid Network-based Belief Reliability Fast Analysis for UAV Swarms. , 2023, , .		0
956	A State-of-the-Art Literature Review on Drone Optimization. Women in Engineering and Science, 2024, , 107-128.	0.2	0
957	Practical Measurements on ESPAR Antenna for UAV based Long Range Communications., 2023,,.		O
958	Path Planning and Optimization of a UAV-Based Relay Communication System with Co-channel Interference. Lecture Notes in Mechanical Engineering, 2024, , 241-252.	0.3	0
959	An Overview of Drones Communication, Application and Challenge in 5G Network. , 2023, , .		0
960	Hybrid Multi-Agent Deep Reinforcement Learning for Active-IRS-Based Rate Maximization Over 6G UAV Mobile Wireless Networks., 2023,,.		0
961	Maintaining Connectivity for Multi-UAV Multi-Target Search Using Reinforcement Learning. , 2023, , .		O
963	Computing offloading policy for training effectiveness of space-air-ground integrated network., 2023,,.		0
969	Autonomous Cargo Drone with Collision Avoidance and Warehouse Management IoT., 2023,,.		0
972	Converging Blockchain andÂDeep Learning inÂUAV Network Defense Strategy: Ensuring Data Security During Flight. Lecture Notes in Computer Science, 2024, , 156-171.	1.0	1
978	Addresses the Security Issues and Safety in Cyber-Physical Systems of Drones. Advances in Information Security, Privacy, and Ethics Book Series, 2024, , 381-404.	0.4	0
979	Classification and Source Location Indication of Jamming Attacks Targeting UAVs via Multi-output Multiclass Machine Learning Modeling. , 2024, , .		0
981	Enhancing network performance through novel design of hello intervals in automated airborne vehicle. AIP Conference Proceedings, 2024, , .	0.3	0

Article IF Citations