Interglacials of the last 800,000â€**‰**ars

Reviews of Geophysics 54, 162-219

DOI: 10.1002/2015rg000482

Citation Report

#	Article	IF	CITATIONS
1	Radioactive Waste Under Conditions of Future Ice Ages., 2015,, 345-393.		4
2	Bering Sea surface water conditions during Marine Isotope Stages 12 to 10 at Navarin Canyon (IODP) Tj ETQq1 1	. 0,784314 1.3	rgBT /Overlo
3	Impact of meltwater on high-latitude early Last Interglacial climate. Climate of the Past, 2016, 12, 1919-1932.	1.3	22
4	Interglacial responses of the southern Greenland ice sheet over the last 430,000 years determined using particle-size specific magnetic and isotopic tracers. Earth and Planetary Science Letters, 2016, 454, 225-236.	1.8	37
5	Stratigraphic and Earth System approaches to defining the Anthropocene. Earth's Future, 2016, 4, 324-345.	2.4	162
6	Middle to Late Pleistocene vegetation and climate change in subtropical southern East Africa. Earth and Planetary Science Letters, 2016, 450, 306-316.	1.8	35
7	Nonlinear climate sensitivity and its implications for future greenhouse warming. Science Advances, 2016, 2, e1501923.	4.7	112
8	Regional and global sea-surface temperatures during the last interglaciation. Science, 2017, 355, 276-279.	6.0	157
9	A simple rule to determine which insolation cycles lead to interglacials. Nature, 2017, 542, 427-432.	13.7	108
10	State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling. Science Advances, 2017, 3, e1600446.	4.7	86
11	Assessing ocean alkalinity for carbon sequestration. Reviews of Geophysics, 2017, 55, 636-674.	9.0	216
12	Critical evaluation of climate syntheses to benchmark CMIP6/PMIP4 127 ka Last Interglacial simulations in the high-latitude regions. Quaternary Science Reviews, 2017, 168, 137-150.	1.4	63
13	The response of the Bering Sea Gateway during the Mid-Pleistocene Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485, 974-985.	1.0	12
14	Relative sea-level variability during the late Middle Pleistocene: New evidence from eastern England. Quaternary Science Reviews, 2017, 173, 20-39.	1.4	8
15	The role of heat transfer time scale in the evolution of the subsea permafrost and associated methane hydrates stability zone during glacial cycles. Global and Planetary Change, 2017, 157, 18-25.	1.6	26
16	On the ill-defined notion of the Milankovitch Theory and its influence on the development of the orbital theory of the paleoclimate. Herald of the Russian Academy of Sciences, 2017, 87, 356-369.	0.2	3
17	Middle to Late Pleistocene multi-proxy record of environmental response to climate change from the Vienna Basin, Central Europe (Austria). Quaternary Science Reviews, 2017, 173, 193-210.	1.4	7
18	Sensitivity of the Greenland Ice Sheet to Interglacial Climate Forcing: MIS 5e Versus MIS 11. Paleoceanography, 2017, 32, 1089-1101.	3.0	9

#	ARTICLE	IF	Citations
19	Abrupt climate changes during Termination III in Southern Europe. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10047-10052.	3.3	26
20	Coccolithophore variability across Marine Isotope Stage 11 in the Pacific sector of the Southern Ocean and its potential impact on the carbon cycle. Paleoceanography, 2017, 32, 864-880.	3.0	15
21	Evidence for the early onset of the Ipswichian thermal optimum: palaeoecology of Last Interglacial deposits at Whittlesey, eastern England. Journal of the Geological Society, 2017, 174, 988-1003.	0.9	10
22	History of Czech Vegetation Since the Late Pleistocene. Plant and Vegetation, 2017, , 193-227.	0.6	13
23	Enhanced Arctic Amplification Began at the Mid-Brunhes Event ~400,000 years ago. Scientific Reports, 2017, 7, 14475.	1.6	45
24	Insights into North Atlantic deep water formation during the peak interglacial interval of Marine Isotope Stage 9 (MIS 9). Climate Dynamics, 2017, 49, 3193-3208.	1.7	2
25	Atlantic deep water provenance decoupled from atmospheric CO2 concentration during the lukewarm interglacials. Nature Communications, 2017, 8, 2003.	5.8	16
26	On the meaning of the terms "glaciation―and "interglacial―in the framework of studying paleoclimatic records from the Pleistocene continental and deep-water deposits. Stratigraphy and Geological Correlation, 2017, 25, 659-678.	0.2	0
27	Conceptual Models for Sequence Stratigraphy of Continental Rift Successions. Stratigraphy & Timescales, 2017, , 119-186.	0.2	23
28	Methane Feedbacks to the Global Climate System in a Warmer World. Reviews of Geophysics, 2018, 56, 207-250.	9.0	354
29	The Worldwide Marine Radiocarbon Reservoir Effect: Definitions, Mechanisms, and Prospects. Reviews of Geophysics, 2018, 56, 278-305.	9.0	94
30	Demographic expansion of two Tamarix species along the Yellow River caused by geological events and climate change in the Pleistocene. Scientific Reports, 2018, 8, 60.	1.6	7
31	Climate dynamics during the penultimate glacial period recorded in a speleothem from Kanaan Cave, Lebanon (central Levant). Quaternary Research, 2018, 90, 10-25.	1.0	13
32	Freshwater lake to salt-water sea causing widespread hydrate dissociation in the Black Sea. Nature Communications, 2018, 9, 117.	5.8	56
33	Quaternary landscape evolution of the Helmand Basin, Afghanistan: Insights from staircase terraces, deltas, and paleoshorelines using high-resolution remote sensing analysis. Geomorphology, 2018, 311, 37-50.	1.1	16
34	Historical Biogeography of Delphininae Dolphins and Related Taxa (Artiodactyla: Delphinidae). Journal of Mammalian Evolution, 2018, 25, 241-259.	1.0	13
35	Unraveling the forcings controlling the vegetation and climate of the best orbital analogues for the present interglacial in SW Europe. Climate Dynamics, 2018, 51, 667-686.	1.7	25
36	Comment on " Scrutinizing the carbon cycle and CO 2 residence time in the atmosphere ―by H. Harde. Global and Planetary Change, 2018, 164, 67-71.	1.6	8

#	ARTICLE	IF	CITATIONS
37	Do climate-driven altitudinal range shifts explain the intraspecific diversification of a narrow ranging montane mammal, Taurus ground squirrels?. Mammal Research, 2018, 63, 197-211.	0.6	11
38	Magnetic stratigraphy of the Danube loess: A composite Titel-Stari Slankamen loess section over the last one million years in Vojvodina, Serbia. Journal of Asian Earth Sciences, 2018, 155, 68-80.	1.0	27
39	Climate-soil model reveals causes of differences between Marine Isotope Stage 5e and 13 paleosols. Geology, 2018, 46, 99-102.	2.0	11
40	Eemian Greenland SMB strongly sensitive to model choice. Climate of the Past, 2018, 14, 1463-1485.	1.3	12
41	Reef Carbonate Productivity During Quaternary Sea Level Oscillations. Geochemistry, Geophysics, Geosystems, 2018, 19, 1148-1164.	1.0	18
42	Trajectories of the Earth System in the Anthropocene. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8252-8259.	3.3	1,832
43	\hat{l} 180 and SST signal decomposition and dynamic of the Pliocene-Pleistocene climate system: new insights on orbital nonlinear behavior vs. long-term trend. Progress in Earth and Planetary Science, 2018, 5, .	1.1	4
44	Distribution and (palaeo)ecological affinities of the main <i>Spiniferites</i> taxa in the mid-high latitudes of the Northern Hemisphere. Palynology, 2018, 42, 182-202.	0.7	16
45	Prolonged Monsoonal Moisture Availability Preconditioned Glaciation of the Tibetan Plateau During the Midâ€Pleistocene Transition. Geophysical Research Letters, 2018, 45, 13,020.	1.5	14
46	The MIS 13 interglacial at Ceprano, Italy, in the context of Middle Pleistocene vegetation changes in southern Europe. Quaternary Science Reviews, 2018, 199, 144-158.	1.4	11
47	The cryptotephra record of the Marine Isotope Stage 12 to 10 interval (460–335 ka) at Tenaghi Philippon, Greece: Exploring chronological markers for the Middle Pleistocene of the Mediterranean region. Quaternary Science Reviews, 2018, 200, 313-333.	1.4	23
48	Large-magnitude Pauzhetka caldera-forming eruption in Kamchatka: Astrochronologic age, composition and tephra dispersal. Journal of Volcanology and Geothermal Research, 2018, 366, 1-12.	0.8	17
49	Evidence for carbon cycling in a large freshwater lake in the Balkans over the last 0.5 million years using the isotopic composition of bulk organic matter. Quaternary Science Reviews, 2018, 202, 154-165.	1.4	12
50	A theory of Pleistocene glacial rhythmicity. Earth System Dynamics, 2018, 9, 1025-1043.	2.7	25
52	Anthropogenic modification of vegetated landscapes in southern China from 6,000 years ago. Nature Geoscience, 2018, 11, 939-943.	5.4	71
53	Deepâ€Water Carbonate Ion Concentrations in the Western Tropical Pacific Since the Midâ€Pleistocene: A Major Perturbation During the Midâ€Brunhes. Journal of Geophysical Research: Oceans, 2018, 123, 6876-6892.	1.0	13
54	Towards a Middle Pleistocene terrestrial climate reconstruction based on herpetofaunal assemblages from the Iberian Peninsula: State of the art and perspectives. Quaternary Science Reviews, 2018, 191, 167-188.	1.4	26
55	Benthic foraminifera from the Carnarvon Ramp reveal variability in Leeuwin Current activity (Western Australia) since the Pliocene. Marine Micropaleontology, 2018, 142, 25-39.	0.5	6

#	Article	IF	CITATIONS
56	Paleoclimatic and paleoceanographic records through Marine Isotope Stage 19†at the Chiba composite section, central Japan: A key reference for the Early–Middle Pleistocene Subseries boundary. Quaternary Science Reviews, 2018, 191, 406-430.	1.4	37
57	Response of the carbon cycle in an intermediate complexity model to the different climate configurations of the last nineÂinterglacials. Climate of the Past, 2018, 14, 239-253.	1.3	10
58	Calcareous plankton and the mid-Brunhes climate variability in the Alboran Sea (ODP Site 977). Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 508, 91-106.	1.0	16
59	Lack of evidence for a substantial sea-level fluctuation within the Last Interglacial. Nature Geoscience, 2018, 11, 627-634.	5.4	47
60	Glacial Inception in Marine Isotope Stage 19: An Orbital Analog for a Natural Holocene Climate. Scientific Reports, 2018, 8, 10213.	1.6	12
61	A 450-kyr planktonic foraminiferal assemblage record of IODP site U1352 and its implications for the migration of the subtropical front in the south-west Pacific. Marine Micropaleontology, 2018, 141, 31-41.	0.5	1
62	Centennial-scale vegetation dynamics and climate variability in SE Europe during Marine Isotope Stage 11 based on a pollen record from Lake Ohrid. Quaternary Science Reviews, 2018, 190, 20-38.	1.4	25
63	The Evolutionary-Genetic Basis of Structural-Cenotic Diversity of Modern Vegetation in Prebaikalia. Geography and Natural Resources, 2018, 39, 46-54.	0.1	2
64	Linking Glacialâ€Interglacial States to Multiple Equilibria of Climate. Geophysical Research Letters, 2018, 45, 9160-9170.	1.5	24
65	A 1 Ma sea surface temperature record from the North Atlantic and its implications for the early human occupation of Britain. Quaternary Research, 2018, 90, 406-417.	1.0	7
66	The Effect of Obliquityâ€Driven Changes on Paleoclimate Sensitivity During the Late Pleistocene. Geophysical Research Letters, 2018, 45, 6661-6671.	1.5	9
67	Drainage network reorganization affecting the Nene and Welland catchments of eastern England as a result of a late Middle Pleistocene glacial advance. Depositional Record, 2018, 4, 177-201.	0.8	2
68	Ice Complex formation on Bol'shoy Lyakhovsky Island (New Siberian Archipelago, East Siberian Arctic) since about 200 ka. Quaternary Research, 2019, 92, 530-548.	1.0	26
69	Late Quaternary nearshore molluscan patterns from Patagonia: Windows to southern southwestern Atlantic-Southern Ocean palaeoclimate and biodiversity changes?. Global and Planetary Change, 2019, 181, 102990.	1.6	6
70	Challenges and research priorities to understand interactions between climate, ice sheets and global mean sea level during past interglacials. Quaternary Science Reviews, 2019, 219, 308-311.	1.4	12
71	Effects of atmospheric CO ₂ variability of the past 800 kyr on the biomes of southeast Africa. Climate of the Past, 2019, 15, 1083-1097.	1.3	22
72	The hematite–goethite enhancement model of loess and an â€~irregular' case from Paks, Hungary. Journal of Quaternary Science, 2019, 34, 299-308.	1.1	3
73	Temperature and moisture variability in the eastern Mediterranean region during Marine Isotope Stages 11–10 based on biomarker analysis of the Tenaghi Philippon peat deposit. Quaternary Science Reviews, 2019, 225, 105977.	1.4	8

#	Article	IF	CITATIONS
74	Significant pedogenic and palaeoenvironmental changes during the early Middle Pleistocene in Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 534, 109335.	1.0	8
75	Ocean-atmosphere interconnections from the last interglacial to the early glacial: An integration of marine and cave records in the Iberian region. Quaternary Science Reviews, 2019, 226, 106037.	1.4	13
76	Interglacial Paleoclimate in the Arctic. Paleoceanography and Paleoclimatology, 2019, 34, 1959-1979.	1.3	16
77	Global travertine deposition modulated by oscillations in climate. Journal of Quaternary Science, 2019, 34, 558-568.	1.1	11
78	Local and Regional Indian Summer Monsoon Precipitation Dynamics During Termination II and the Last Interglacial. Geophysical Research Letters, 2019, 46, 12454-12463.	1.5	15
79	Climate cycles in the southern Levant and their global climatic connections. Quaternary Science Reviews, 2019, 221, 105881.	1.4	12
80	A Highâ€Resolution Speleothem Record of Marine Isotope Stage 11 as a Natural Analog to Holocene Asian Summer Monsoon Variations. Geophysical Research Letters, 2019, 46, 9949-9957.	1.5	12
81	The penultimate deglaciation: protocol for Paleoclimate Modelling Intercomparison Project (PMIP) phase 4 transient numerical simulations between 140 and 127 ka, version 1.0. Geoscientific Model Development, 2019, 12, 3649-3685.	1.3	26
82	The relevance of mid-Holocene Arctic warming to the future. Climate of the Past, 2019, 15, 1375-1394.	1.3	11
83	Stratigraphic Occurrences of Sub-Polar Planktic Foraminifera in Pleistocene Sediments on the Lomonosov Ridge, Arctic Ocean. Frontiers in Earth Science, 2019, 7, .	0.8	12
84	Eccentricity-induced expansions of Brazilian coastal upwelling zones. Global and Planetary Change, 2019, 179, 33-42.	1.6	12
85	Introduction to Coastal Groundwater Systems. , 2019, , 1-18.		2
86	Governing Equations for Variable-Density Flow., 2019,, 19-46.		0
87	Analytical Solutions for a Steady Freshwater–Saltwater Interface. , 2019, , 47-72.		0
88	Groundwater Tidal Dynamics., 2019,, 73-103.		0
89	Hydrogeochemistry of Coastal Aquifer Systems. , 2019, , 104-158.		0
90	Seawater Intrusion. , 2019, , 159-186.		0
91	Submarine Groundwater Discharge. , 2019, , 187-214.		0

#	Article	IF	Citations
92	Coastal Palaeo-Hydrogeology. , 2019, , 215-254.		1
93	Impact of Land Reclamation on Coastal Groundwater Systems. , 2019, , 255-282.		0
94	Sea Level Change and Coastal Aquifers. , 2019, , 283-297.		0
95	Tide-Induced Airflow in Unsaturated Zones. , 2019, , 298-313.		O
96	Coastal Aquifer Management and Seawater Intrusion Control. , 2019, , 314-348.		0
99	Slowdown in Antarctic mass loss from solid Earth and sea-level feedbacks. Science, 2019, 364, .	6.0	56
100	Palaeoenvironmental and palaeohydrological variability of mountain areas in the central Mediterranean region: A 190 ka-long chronicle from the independently dated Fucino palaeolake record (central Italy). Quaternary Science Reviews, 2019, 210, 190-210.	1.4	22
101	Terrestrial plant microfossils in palaeoenvironmental studies, pollen, microcharcoal and phytolith. Towards a comprehensive understanding of vegetation, fire and climate changes over the past one million years. Revue De Micropaleontologie, 2019, 63, 1-35.	0.8	17
103	A formal Anthropocene is compatible with but distinct from its diachronous anthropogenic counterparts: a response to W.F. Ruddiman's †three flaws in defining a formal Anthropocene'. Progress in Physical Geography, 2019, 43, 319-333.	1.4	28
104	Variable effects of climate change on carbon balance in northern ecosystems. IOP Conference Series: Earth and Environmental Science, 2019, 226, 012023.	0.2	2
105	Calcareous Nannofossil Response to Climate Variability During the Middle Pleistocene Transition in the Northwest Pacific Ocean (Ocean Drilling Program Leg 198 Site 1209). Paleoceanography and Paleoclimatology, 2019, 34, 600-615.	1.3	2
106	Unveiling the anatomy of Termination 3 using water and air isotopes in the Dome C ice core, East Antarctica. Quaternary Science Reviews, 2019, 211, 156-165.	1.4	5
107	Impact of the last interglacial climate change on ecosystems and Neanderthals behavior at Baume Moula-Guercy, ArdÃ"che, France. Journal of Archaeological Science, 2019, 104, 114-124.	1.2	22
108	Characterizing the Eemian-Weichselian transition in northwestern Europe with three multiproxy speleothem archives from the Belgian Han-sur-Lesse and Remouchamps cave systems. Quaternary Science Reviews, 2019, 208, 21-37.	1.4	9
109	Contributions of Quaternary botany to modern ecology and biogeography. Plant Ecology and Diversity, 2019, 12, 189-385.	1.0	103
110	Central American climate and microrefugia: A view from the last interglacial. Quaternary Science Reviews, 2019, 205, 224-233.	1.4	14
111	Pollen analysis and tephrochronology of a MIS 13 lacustrine succession from Eastern Sabatini Volcanic District (RignanoÂFlaminio,Âcentral Italy). Quaternary Science Reviews, 2019, 204, 78-93.	1.4	10
112	Clumped isotope paleotemperatures from MIS 5 soil carbonates in southern Hungary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 518, 72-81.	1.0	14

#	ARTICLE	IF	CITATIONS
113	Surface-ocean dynamics during eccentricity minima: a comparison between interglacial Marine Isotope Stage (MIS) 1 and MIS 11 on the Iberian Margin. Global and Planetary Change, 2019, 172, 242-255.	1.6	10
114	Fluvial terrace formation and controls in the Lower River Danube, SE Romania. Quaternary International, 2019, 504, 5-23.	0.7	6
115	A geological record of multiple Pleistocene tsunami inundations in an oceanic island: The case of Maio, Cape Verde. Sedimentology, 2020, 67, 1529-1552.	1.6	32
116	Experiencing new perspectives in the application of reflectance spectroscopy in loess research. Quaternary International, 2020, 552, 36-49.	0.7	6
117	Using Late Pleistocene sea surface temperature reconstructions to constrain future greenhouse warming. Earth and Planetary Science Letters, 2020, 530, 115911.	1.8	8
118	Diversity and peculiarities of soil formation in eolian landscapes – Insights from the mineral magnetic records. Earth and Planetary Science Letters, 2020, 531, 115956.	1.8	11
119	Reconstruction of sea-surface temperatures in the Canary Islands during Marine Isotope Stage 11. Quaternary Research, 2020, 94, 195-209.	1.0	5
120	The capacity of northern peatlands for long-term carbon sequestration. Biogeosciences, 2020, 17, 47-54.	1.3	23
121	A multi-proxy study on polygenetic middle-to late pleistocene paleosols in the HévÃzgyörk loess-paleosol sequence (Hungary). Quaternary International, 2020, 552, 25-35.	0.7	6
122	Response of heterogeneous rainfall variability in East Asia to Hadley circulation reorganization during the late Quaternary. Quaternary Science Reviews, 2020, 247, 106562.	1.4	14
123	Uncertainty in temperature and sea level datasets for the Pleistocene glacial cycles: Implications for thermal state of the subsea sediments. Global and Planetary Change, 2020, 192, 103249.	1.6	13
124	A new perspective of the Alboran Upwelling System reconstruction during the Marine Isotope Stage 11: A high-resolution coccolithophore record. Quaternary Science Reviews, 2020, 245, 106520.	1.4	13
125	The chronology of hominin fossils from the Altai Mountains, Siberia: An alternative view. Journal of Human Evolution, 2020, 146, 102834.	1.3	4
126	Reconstructing Western Boundary Current Stability in the North Atlantic Ocean for the Past 700 Kyr From Globorotalia truncatulinoides Coiling Ratios. Paleoceanography and Paleoclimatology, 2020, 35, e2020PA003958.	1.3	4
127	Adding another piece to the southern African Cercopithecus monkey phylogeography puzzle. African Zoology, 2020, 55, 351-362.	0.2	2
128	A contribution towards the palynostratigraphical classification of the Middle Pleistocene in Central Europe: The pollen record of the Neualbenreuth Maar, northeastern Bavaria (Germany). Quaternary Science Reviews, 2020, 250, 106681.	1.4	7
129	Interglacials of the Quaternary defined by northern hemispheric land ice distribution outside of Greenland. Nature Communications, 2020, 11, 5124.	5.8	9
130	Closely related species show species-specific environmental responses and different spatial conservation needs: Prionailurus cats in the Indian subcontinent. Scientific Reports, 2020, 10, 18705.	1.6	11

#	Article	IF	Citations
131	Two-stage mid-Brunhes climate transition and mid-Pleistocene human diversification. Earth-Science Reviews, 2020, 210, 103354.	4.0	35
132	Millennial climate oscillations controlled the structure and evolution of Termination II. Scientific Reports, 2020, 10, 14912.	1.6	3
133	Global River Discharge and Floods in the Warmer Climate of the Last Interglacial. Geophysical Research Letters, 2020, 47, e2020GL089375.	1.5	18
134	The Correlation Between Impact Crater Ages and Chronostratigraphic Boundary Dates. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	0
135	Regional impacts of climate change and its relevance to human evolution. Evolutionary Human Sciences, 2020, 2, .	0.9	14
136	Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years. Science Advances, 2020, 6, eaay6193.	4.7	74
137	Orbital and sea-level changes regulate the iron-associated sediment supplies from Papua New Guinea to the equatorial Pacific. Quaternary Science Reviews, 2020, 239, 106361.	1.4	14
138	Long-term climate evolution based on ice core records. , 2020, , 3-25.		0
139	Antarctic air bubbles and the long-term ice core record of CO2 and other greenhouse gases. , 2020, , 27-50.		0
140	Antarctic Circumpolar Current Dynamics at the Pacific Entrance to the Drake Passage Over the Past 1.3 Million Years. Paleoceanography and Paleoclimatology, 2020, 35, e2019PA003773.	1.3	23
141	Eco-environmental changes in the Chinese Loess Plateau during low-eccentricity interglacial Marine Isotope Stage 19. Science China Earth Sciences, 2020, 63, 1408-1421.	2.3	4
142	Phylogeography of the insular populations of common octopus, Octopus vulgaris Cuvier, 1797, in the Atlantic Macaronesia. PLoS ONE, 2020, 15, e0230294.	1.1	8
143	Interglacial instability of North Atlantic Deep Water ventilation. Science, 2020, 367, 1485-1489.	6.0	36
144	Persistent influence of obliquity on ice age terminations since the Middle Pleistocene transition. Science, 2020, 367, 1235-1239.	6.0	48
145	Long-term winter/summer warming trends during the Holocene revealed by α-cellulose δ180/δ13C records from an alpine peat core from central Asia. Quaternary Science Reviews, 2020, 232, 106217.	1.4	44
146	Climate swings in the northern Red Sea over the last 150,000 years from $\hat{l}\mu Nd$ and Mg/Ca of marine sediments. Quaternary Science Reviews, 2020, 231, 106205.	1.4	11
147	The emergence and evolution of Earth System Science. Nature Reviews Earth & Environment, 2020, 1, 54-63.	12.2	213
148	Records of the Mid-Brunhes Event in Chinese loess-paleosol sequences. Palaeogeography, Palaeoecology, 2020, 543, 109596.	1.0	4

#	ARTICLE	IF	CITATIONS
149	Last Interglacial sea surface warming during the sea-level highstand in the Canary Islands: Implications for the Canary Current and the upwelling off African coast. Quaternary Science Reviews, 2020, 234, 106246.	1.4	7
150	Carbon 13 Isotopes Reveal Limited Ocean Circulation Changes Between Interglacials of the Last 800Âka. Paleoceanography and Paleoclimatology, 2020, 35, e2019PA003776.	1.3	5
151	Nuclear phylogeography of the temperate tree species Chiranthodendron pentadactylon (Malvaceae): Quaternary relicts in Mesoamerican cloud forests. BMC Evolutionary Biology, 2020, 20, 44.	3.2	6
152	Significant influence of Northern Hemisphere high latitude climate on appeared precession rhythm of East Asian summer monsoon after Mid-Brunhes Transition interglacials recorded in the Chinese loess. Catena, 2021, 197, 105002.	2.2	14
153	Upper Pleistocene parabolic ridges (i.e. †chevrons†m) from the Bahamas: Storm†wave sediments or aeolian deposits? A quantitative approach. Sedimentology, 2021, 68, 1255-1288.	1.6	4
154	High-resolution late Middle Pleistocene paleoclimatic record from the GalerÃa Complex, Atapuerca archaeological site, Spain - An environmental magnetic approach. Quaternary Science Reviews, 2021, 251, 106721.	1.4	5
155	Understanding glacial cycles: A multivariate disequilibrium approach. Quaternary Science Reviews, 2021, 251, 106694.	1.4	2
156	Historical Evidence for Anthropogenic Climate Change and Climate Modeling Basics. Springer Hydrogeology, 2021, , 47-70.	0.1	0
157	A Paleo-perspective on Ecosystem Collapse in Boreal North America. Ecological Studies, 2021, , 101-129.	0.4	4
158	Dimensions of climate change and its consequences on ecosystem functioning., 2021, , 109-149.		2
159	An overview of the potential impacts of global climate change on water resources., 2021,, 99-120.		5
160	Radioactive waste under conditions of future ice ages. , 2021, , 323-375.		3
161	Antarctic icebergs reorganize ocean circulation during Pleistocene glacials. Nature, 2021, 589, 236-241.	13.7	28
162	Lower oceanic & Lower oceanic	1.3	3
163	Land-sea correlations in the Eastern Mediterranean region over the past c. 800 kyr based on macro- and cryptotephras from ODP Site 964 (Ionian Basin). Quaternary Science Reviews, 2021, 255, 106811.	1.4	7
164	Speleothem record of mild and wet mid-Pleistocene climate in northeast Greenland. Science Advances, 2021, 7, .	4.7	8
165	The hidden landscape: Evidence that seaâ€level change shaped the present population genomic patterns of marginal marine species. Molecular Ecology, 2021, 30, 1357-1360.	2.0	2
166	The hidden diversity of the endemic Arctic sponges (Porifera). Journal of Natural History, 2021, 55, 571-596.	0.2	3

#	Article	IF	CITATIONS
167	Stepwise coupling between Chinese loess deposition and global temperature since the early Pleistocene tested by a multiple-state model. Quaternary International, 2021, , .	0.7	5
168	Sea Surface Temperatures in the Indian Subâ€Antarctic Southern Ocean for the Last Four Interglacial Periods. Geophysical Research Letters, 2021, 48, e2020GL090994.	1.5	7
169	Increasing Pleistocene permafrost persistence and carbon cycle conundrums inferred from Canadian speleothems. Science Advances, 2021, 7, .	4.7	7
170	Snapshots of mean ocean temperature over the last 700 000Âyears using noble gases in the EPICA Dome C ice core. Climate of the Past, 2021, 17, 843-867.	1.3	11
171	Record of Neotectonics and Deep Crustal Fluid Circulation Along the Santa Fe Fault Zone in Travertine Deposits of the Lucero Uplift, New Mexico, USA. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009454.	1.0	1
172	Using past interglacial temperature maxima to explore transgressions in modern Maldivian coral and Amphistegina bleaching thresholds. Scientific Reports, 2021, 11, 10267.	1.6	1
173	Coupled climate-ice sheet modelling of MIS-13 reveals a sensitive Cordilleran Ice Sheet. Global and Planetary Change, 2021, 200, 103474.	1.6	2
174	Magnetic susceptibility in the European Loess Belt: New and existing models of magnetic enhancement in loess. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 569, 110329.	1.0	11
175	Monsoon and Tropical Climate Forcing on the Physicochemical and Thermocline Characteristics of the Maldives Inner Sea: Insights From Marine Isotope Stages 1–2 and 10–13. Paleoceanography and Paleoclimatology, 2021, 36, e2020PA004105.	1.3	4
176	Summer warmth of the past six interglacials on Greenland. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	6
177	A new rhinoceros clade from the Pleistocene of Asia sheds light on mammal dispersals to the Philippines. Zoological Journal of the Linnean Society, 2022, 194, 416-430.	1.0	25
178	Multiproxy record of suborbital-scale climate changes in the Algero-Balearic Basin during late MIS 20 - Termination IX. Quaternary Science Reviews, 2021, 260, 106916.	1.4	6
179	James Croll and geological archives: testing astronomical theories of ice ages. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 0, , 1-12.	0.3	2
180	On the Cause of the Midâ€Pleistocene Transition. Reviews of Geophysics, 2021, 59, e2020RG000727.	9.0	39
181	A multimethod dating study of ancient permafrost, Batagay megaslump, east Siberia. Quaternary Research, 2022, 105, 1-22.	1.0	24
182	Denisovans, Neanderthals, and Early Modern Humans: A Review of the Pleistocene Hominin Fossils from the Altai Mountains (Southern Siberia). Journal of Archaeological Research, 0, , 1.	1.4	2
183	Phylogenetics and phylogeography of red deer mtDNA lineages during the last 50 000 years in Eurasia. Zoological Journal of the Linnean Society, 2022, 194, 431-456.	1.0	23
184	Comparative phylogeography uncovers evolutionary past of Holarctic dragonflies. PeerJ, 2021, 9, e11338.	0.9	5

#	Article	IF	CITATIONS
185	A Last Interglacial speleothem record from the Sieben Hengste cave system (Switzerland): Implications for alpine paleovegetation. Quaternary Science Reviews, 2021, 262, 106974.	1.4	9
186	YÃ⅓ksek ÇözÃ⅓nürlürlżklü CCSM4 Model Verilerine Göre Son Buzul Maksimumunda (SBM) TÃ⅓rkiyeâ€ Holdridge Ekolojik Bölgeleri ve Günümüz İklim Şartlarıyla Karşılaştırılması. Coğrafi Bilimlo 19, 331-367.	™nin eo ⊡ ergisi,	2 021,
187	Precise timing of MIS 7 substages from the Austrian Alps. Climate of the Past, 2021, 17, 1443-1454.	1.3	10
188	Similarities among glacials and interglacials in the LR04 benthic oxygen isotope stack over the last 1.014Âmillion years revealed by cluster analysis and a DTW algorithm. Global and Planetary Change, 2021, 202, 103521.	1.6	4
189	Insolation triggered abrupt weakening of Atlantic circulation at the end of interglacials. Science, 2021, 373, 1035-1040.	6.0	34
190	A statistics-based reconstruction of high-resolution global terrestrial climate for the last 800,000 years. Scientific Data, 2021, 8, 228.	2.4	21
191	Chronology of the Mediterranean seaâ€level highstand during the Last Interglacial: a critical review of the U/Thâ€dated deposits. Journal of Quaternary Science, 2021, 36, 1174-1189.	1.1	9
192	High-resolution palaeoenvironmental reconstruction at Zmajevac (Croatia) over the last three glacial/interglacial cycles. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 576, 110504.	1.0	10
200	Complex patterns of schist tor exposure and surface uplift, Otago (New Zealand). Geomorphology, 2021, 389, 107849.	1.1	4
201	High-sedimentation-rate loess records: A new window into understanding orbital- and millennial-scale monsoon variability. Earth-Science Reviews, 2021, 220, 103731.	4.0	24
206	A sedimentological record of fluvial-aeolian interactions and climate variability in the hyperarid northern Namib Desert, Namibia. South African Journal of Geology, 2021, 124, 575-610.	0.6	4
208	Review of the Early–Middle Pleistocene boundary and Marine Isotope Stage 19. Progress in Earth and Planetary Science, 2021, 8, 50.	1.1	11
213	Quantitative impact of astronomical and sun-related cycles on the Pleistocene climate system from Antarctica records. Quaternary Science Advances, 2021, 4, 100037.	1.1	3
214	Southern Ocean sea surface temperature synthesis: Part 2. Penultimate glacial and last interglacial. Quaternary Science Reviews, 2021, 271, 107190.	1.4	6
215	Terrestrial Biological Proxies of Climate Change. , 2021, , 328-347.		0
216	Comprehensive characterization of elevated coastal platforms in the north Iberian margin: A new template to quantify uplift rates and tectonic patterns. Geomorphology, 2020, 364, 107242.	1.1	16
217	Monsoon rainfall and contrasting source rocks influenced sediment composition of peninsular basins along the east coast of India (western Bay of Bengal). Marine and Petroleum Geology, 2020, 118, 104433.	1.5	10
219	Overkill, glacial history, and the extinction of North America's Ice Age megafauna. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28555-28563.	3.3	52

#	Article	IF	Citations
220	Bases de données des paléotempératures de l'océan de surface issues des proxies géochimiques analysés sur les sédiments marins : implications pour les comparaisons modÃ⁺les-données. Quaternaire, 2017, , 201-216.	0.1	6
221	Sea surface temperature in the Indian sector of the Southern Ocean over the Late Glacial and Holocene. Climate of the Past, 2020, 16, 1451-1467.	1.3	12
222	Coccolithophore productivity at the western Iberian Margin during the Middle Pleistocene (310–455 ka) – evidence from coccolith Srâ•Ca data. Climate of the Past, 2020, 16, 2017-2037.	1.3	7
223	Simulating Marine Isotope Stage 7 with a coupled climate–ice sheet model. Climate of the Past, 2020, 16, 2183-2201.	1.3	10
224	A global mean sea surface temperature dataset for the Last Interglacial (129–116 ka) and contribution of thermal expansion to sea level change. Earth System Science Data, 2020, 12, 3341-3356.	3.7	26
225	A 1â€Million‥ear Record of Environmental Change in the Central Mediterranean Sea From Organic Molecular Proxies. Paleoceanography and Paleoclimatology, 2021, 36, e2021PA004289.	1.3	3
226	Cosmogenic nuclide exposure age scatter records glacial history and processes in McMurdo Sound, Antarctica. Geochronology, 2021, 3, 505-523.	1.0	2
227	Nature of the beast? Complex drivers of prey choice, competition and resilience in Pleistocene wolves (Canis lupus L., 1754). Quaternary Science Reviews, 2021, 272, 107212.	1.4	3
230	Geç Kuvaterner Buzul Buzullararası Döngülerinin Anadolu'nun Biyolojik Çeşitliliği Üzerine Etkileri. Türkiye Jeoloji Bülteni / Geological Bulletin of Turkey, 0, , .	0.0	3
231	When Past and Present Collide. , 2018, , 104-118.		1
232	Sequenzstratigraphie., 2019, , 559-673.		0
233	Cryptic diversity among Yazoo Darters (Percidae: <i>Etheostoma raneyi</i>) in disjunct watersheds of northern Mississippi. PeerJ, 2020, 8, e9014.	0.9	3
234	Controls on Terrigenous Detritus Deposition and Oceanography Changes in the Central Okhotsk Sea Over the Past 1550Âka. Frontiers in Earth Science, 2021, 9, .	0.8	1
235	Potential drivers of disparity in early Middle Pleistocene interglacial climate response over Eurasia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 585, 110719.	1.0	O
236	The palaeoenvironment of the important Middle Pleistocene hominin site at Boxgrove (West Sussex,) Tj ETQq0 0 C) rgBT /Ov	eflock 10 Tf
237	Climate and the Evolution of the Ocean: The Paleoceanographic Data. Frontiers in Earth Sciences, 2021, , 225-254.	0.1	1
238	Definition of the Last Glacial Cycle marine stages and chronology. , 2022, , 171-173.		1
240	Drivers of the evolution and amplitude of African Humid Periods. Communications Earth $\&$ Environment, 2021, 2, .	2.6	15

#	Article	IF	CITATIONS
241	Interglacial Antarctic–Southern Ocean climate decoupling due to moisture source area shifts. Nature Geoscience, 2021, 14, 918-923.	5.4	12
243	Continuous vegetation record of the Greater Cape Floristic Region (South Africa) covering the past 300 000 years (IODP U1479). Climate of the Past, 2022, 18, 1-21.	1.3	12
244	Machine learning approach reveals strong link between obliquity amplitude increase and the Mid-Brunhes transition. Quaternary Science Reviews, 2022, 277, 107344.	1.4	5
246	The early lithic productions of Island Southeast Asia: Traditions or convergences?. Anthropologie, 2022, 126, 102997.	0.1	2
247	Deciphering the variations and mechanisms of the westerly jets across the Northern Hemisphere during the Last Interglacial based on PMIP4 models. Climate Dynamics, 2022, 58, 3279-3295.	1.7	2
248	Variations in export production, lithogenic sediment transport and iron fertilization in the Pacific sector of the Drake Passage over the past 400 kyr. Climate of the Past, 2022, 18, 147-166.	1.3	2
249	Morphou Bay Prehistoric Survey Preliminary Report: Pebble Tools from Orga-Kourvelia and Vasilia-Mosphilia. Tuba-ar, 0, , .	0.1	1
250	Comparison of Arctic and Southern Ocean sea ice between the last nine interglacials and the future. Climate Dynamics, 2022, 59, 519-529.	1.7	2
251	Speciation process on Brazilian continental islands, with the description of a new insular lancehead of the genus <i>Bothrops</i> (Serpentes, Viperidae). Systematics and Biodiversity, 2022, 20, 1-25.	0.5	7
252	Range expansion of tropical shallow-water marine molluscs in the NE Atlantic during the last interglacial (MIS 5e): Causes, consequences and utility of ecostratigraphic indicators for the Macaronesian archipelagos. Quaternary Science Reviews, 2022, 278, 107377.	1.4	9
253	Evolutionary and ecological drivers of local adaptation and speciation in a North American avian species complex. Molecular Ecology, 2022, 31, 2578-2593.	2.0	6
254	Middle Pleistocene fluid infiltration with 10–15Âka recurrence within the seismic cycle of the active Monte Morrone Fault System (central Apennines, Italy). Tectonophysics, 2022, 827, 229269.	0.9	6
255	Biomarker proxy records of Arctic climate change during the Mid-Pleistocene transition from Lake El'gygytgyn (Far East Russia). Climate of the Past, 2022, 18, 559-577.	1.3	5
256	Arctic marine forest distribution models showcase potentially severe habitat losses for cryophilic species under climate change. Global Change Biology, 2022, 28, 3711-3727.	4.2	11
257	Trace fossil characterization during Termination V and MIS 11 at the western Mediterranean: Connection between surface conditions and deep environment. Marine Geology, 2022, 446, 106774.	0.9	1
258	Reliability assessment and paleo-oceanographic signals of geochemical and isotopic indicators in the North Pacific Subtropical Gyre. Marine Geology, 2022, 446, 106777.	0.9	0
259	Magnetic minerals in Mid-Pleistocene sediments on the Caiwei Guyot, Northwest Pacific and their response to the Mid-Brunhes climate event. Acta Oceanologica Sinica, 2021, 40, 1-11.	0.4	13
260	Comparison of temperature and humidity during MIS 11 and MIS 5e interglacials with the Holocene using stable isotopes in tufa deposits from northern France. Quaternary Research, 2022, 107, 147-158.	1.0	2

#	Article	IF	CITATIONS
261	Early–Middle Pleistocene Magnetostratigraphic and Rock Magnetic Records of the Dolynske Section (Lower Danube, Ukraine) and Their Application to the Correlation of Loess–Palaeosol Sequences in Eastern and South-Eastern Europe. Quaternary, 2021, 4, 43.	1.0	5
262	The marine δ180 record overestimates continental ice volume during Marine Isotope Stage 3. Global and Planetary Change, 2022, 212, 103814.	1.6	10
265	River Response to Melting Cryosphere Since Late Quaternary in the Pir Panjal Range of NW Himalaya. Frontiers in Water, 2022, 4, .	1.0	2
266	Inarticulate past: similarity properties of the ice–climate system and their implications for paleo-record attribution. Earth System Dynamics, 2022, 13, 879-884.	2.7	1
267	Reorganization of Atlantic Waters at sub-polar latitudes linked to deep-water overflow in both glacial and interglacial climate states. Climate of the Past, 2022, 18, 989-1009.	1.3	0
268	Reappraisal of the Glaciation of Northeastern Kansas. Transactions of the Kansas Academy of Science, 2022, 125, .	0.0	0
269	Dust correlation and oxygen isotope stratigraphy in the Southern Ocean over the last 450 kyrs: An Indian sector perspective. Quaternary Science Reviews, 2022, 286, 107508.	1.4	0
270	Assessing evolutionary history and species boundaries in a polymorphic tropical lizard, the <i>Aspidoscelis lineattissimus</i> species complex (Squamata, Teiidae). Zoologica Scripta, 2022, 51, 533-549.	0.7	0
271	Geochronological Evidence Inferring Carbonate Compensation Depth Shoaling in the Philippine Sea after the Mid-Brunhes Event. Journal of Marine Science and Engineering, 2022, 10, 745.	1.2	3
273	Southern hemisphere forced millennial scale Indian summer monsoon variability during the late Pleistocene. Scientific Reports, 2022, 12, .	1.6	2
274	The importance of Canadian Arctic Archipelago gateways for glacial expansion in Scandinavia. Nature Geoscience, 2022, 15, 482-488.	5.4	6
275	A review of orbital-scale monsoon variability and dynamics in East Asia during the Quaternary. Quaternary Science Reviews, 2022, 288, 107593.	1.4	13
276	Earth's Climate History from 4.5 Billion Years to One Minute. Atmosphere - Ocean, 2022, 60, 188-232.	0.6	3
277	Intensified atmospheric branch of the hydrological cycle over the Tibetan Plateau during the Last Interglacial from a dynamical downscaling perspective. Journal of Geophysical Research D: Atmospheres, 0, , .	1.2	0
278	An Ecological Profile of Hydropsyche alternans (Trichoptera: Hydropsychidae) in Lake Superior, the Last Stronghold of a Once-Dominant Great Lakes Surf Zone Caddisfly. Insects, 2022, 13, 659.	1.0	2
279	Estimating sediment transport diffusion coefficients from reconstructed rifted margin architecture: measurements in the Ogooué and Zambezi deltas. Basin Research, 0, , .	1.3	1
280	Compression complexity with ordinal patterns for robust causal inference in irregularly sampled time series. Scientific Reports, 2022, 12, .	1.6	2
281	Environmental changes in southeastern Europe over the last 450 ka: Magnetic and pedologic study of a loess-paleosol profile from Kaolinovo (Bulgaria). Quaternary Science Reviews, 2022, 292, 107671.	1.4	2

#	Article	IF	CITATIONS
282	The magnetic susceptibility of Pleistocene paleosols as a martian paleoenvironment analog. Icarus, 2022, 387, 115210.	1.1	0
283	Late Quaternary aeolian environments, luminescence chronology and climate change for the Monahans dune field, Winkler County, West Texas, USA. Aeolian Research, 2022, 58, 100828.	1.1	1
284	Cold-water coral mounds in the western Mediterranean Sea: New insights into their initiation and development since the Mid-Pleistocene in response to changes of African hydroclimate. Quaternary Science Reviews, 2022, 293, 107723.	1.4	7
285	Mammoth evolution in the late Middle Pleistocene: The Mammuthus trogontherii-primigenius transition in Europe. Quaternary Science Reviews, 2022, 294, 107693.	1.4	4
286	Multiple Equilibria in a Coupled Climate–Carbon Model. Journal of Climate, 2023, 36, 547-564.	1.2	2
287	Insolation evolution and ice volume legacies determine interglacial and glacial intensity. Climate of the Past, 2022, 18, 1983-1996.	1.3	2
288	Genomic insights into rapid speciation within the world's largest tree genus Syzygium. Nature Communications, 2022, 13, .	5.8	13
289	A Middle Pleistocene Glaciation Record from Lacustrine Sediments in the Western Tibetan Plateau and Discussion on Climate Change. Acta Geologica Sinica, 0, , .	0.8	0
290	A Middle Pleistocene Butchery Site at Great Yeldham, Essex, UK: Identifying Butchery Strategies and Implications for Mammalian Faunal History. Journal of Paleolithic Archaeology, 2022, 5, .	0.7	0
291	Late Quaternary tephrostratigraphy and pollen stratigraphy of Uwa Formation, Shikoku Island, SW Japan: Reconsidering the MIS 11 super-interglacial horizon. Quaternary Geochronology, 2022, 73, 101383.	0.6	2
292	Population structure and demographic history of the gastropod <i>Thaisella chocolata</i> (Duclos,) Tj ETQq0 0 0 Evolution, 2022, 12, .	rgBT /Ove 0.8	
293	Strong Asymmetry of Interhemispheric Ice Volume During MIS 11, MIS 9, and MIS 7 Drives Heterogeneity of Interglacial Precipitation Intensity Over Asia. Geophysical Research Letters, 2022, 49, .	1.5	5
295	Whole genome population structure of North Atlantic kelp confirms highâ€latitude glacial refugia. Molecular Ecology, 2022, 31, 6473-6488.	2.0	5
296	The Fucino 250–170 ka tephra record: New insights on peri-Tyrrhenian explosive volcanism, central mediterranean tephrochronology, and timing of the MIS 8-6 climate variability. Quaternary Science Reviews, 2022, 296, 107797.	1.4	4
297	Sub-millennial climate variability from high-resolution water isotopes in the EPICA Dome C ice core. Climate of the Past, 2022, 18, 2289-2301.	1.3	4
298	High interstadial sea levels over the past 420ka from the Huon Peninsula, Papua New Guinea. Communications Earth & Environment, 2022, 3, .	2.6	9
299	Drivers of Late Miocene Tropical Sea Surface Cooling: A New Perspective From the Equatorial Indian Ocean. Paleoceanography and Paleoclimatology, 2022, 37, .	1.3	6
301	The Mid-Pleistocene Transition: a delayed response to an increasing positive feedback?. Climate Dynamics, 0, , .	1.7	1

#	Article	IF	Citations
302	Environmental and climate evolution in the Southwest USA since the last interglacial deduced from the pollen record from Stoneman lake, Arizona. Quaternary Science Reviews, 2023, 300, 107883.	1.4	3
303	Earlier Onset and Shortened Meiyu Season During the Last Interglacial Based on Dynamical Downscaling Simulations. Geophysical Research Letters, 2022, 49, .	1.5	1
304	Introduction: Processes and Palaeo-Environmental Changes in the Arctic from Past to Present (PalaeoArc) special issue. Arctic, Antarctic, and Alpine Research, 2022, 54, 640-647.	0.4	0
305	Multiproxy reconstruction of late quaternary upper ocean temperature in the subtropical southwestern Atlantic. Quaternary Science Reviews, 2023, 307, 108044.	1.4	O
306	Deep genome-wide divergences among species in White Cloud Mountain minnow Tanichthys albonubes (Cypriniformes: Tanichthyidae) complex: Conservation and species management implications. Molecular Phylogenetics and Evolution, 2023, 182, 107734.	1.2	1
307	Foraminiferal sandy contourite of the Limpopo Corridor (Mozambique margin): Facies characterization and paleoceanographic record. Marine Geology, 2023, 459, 107031.	0.9	0
308	Geomorphological evolution and mapping of the littoral of Asturias and Cantabria (Northern Spain) in the area of El Pindal Cave: relations between coastline and karstic morphologies. Journal of Maps, 2023, 19, .	1.0	1
309	Nature and origin of variations in pelagic carbonate production in the tropical ocean since the mid-Miocene (ODP Site 927). Biogeosciences, 2023, 20, 597-618.	1.3	1
310	Mechanisms and Impacts of Earth System Tipping Elements. Reviews of Geophysics, 2023, 61, .	9.0	10
311	Response of diatom assemblages to orbital―and millennialâ€scale climatic variability since the penultimate glacial maximum in the northern limit of the Neotropics. Journal of Quaternary Science, 2023, 38, 750-766.	1.1	0
312	The deterministic excitation paradigm and the late Pleistocene glacial terminations. Chaos, 2023, 33, 033108.	1.0	0
313	Global warming leads to habitat loss and genetic erosion of alpine biodiversity. Journal of Biogeography, 2023, 50, 961-975.	1.4	7
314	Laurentide Ice Sheet persistence during Pleistocene interglacials. Geology, 2023, 51, 496-499.	2.0	2
315	A gradual change is more likely to have caused the Mid-Pleistocene Transition than an abrupt event. Communications Earth & Environment, 2023, 4, .	2.6	4
316	Atmospheric CO2 forcing on Mediterranean biomes during the past 500 kyrs. Nature Communications, 2023, 14 , .	5.8	5
317	Centennial-millennial scale ocean-climate variability in the northeastern Atlantic across the last three terminations. Global and Planetary Change, 2023, 223, 104100.	1.6	1
318	Seasonal climatic instability in the western Chinese Loess Plateau during Marine Isotope Stages 12–10. Scientific Reports, 2023, 13, .	1.6	1
342	Antarctic climate records through water isotopes. , 2023, , .		0

CITATION REPORT

#	Article	IF	CITATIONS
343	Quaternary interglacials. , 2024, , 37-49.		0
358	Health and Pollution Challenges of Fossil Fuels Utilization. , 2024, , .		O