Building energy metering and environmental monitoring directions for future research

Energy and Buildings 120, 85-102

DOI: 10.1016/j.enbuild.2016.03.059

Citation Report

#	Article	IF	CITATIONS
1	The potential effect of endâ€users on energy conservation in office buildings. Facilities, 2007, 25, 329-339.	0.8	25
2	Investigation and analysis of power consumption in convenience stores in Taiwan. Energy and Buildings, 2016, 133, 670-687.	3.1	15
3	A home energy monitoring and control system based on ZigBee technology. International Journal of Green Energy, 2016, 13, 1615-1623.	2.1	14
4	Low-cost energy meter calibration method for measurement and verification. Applied Energy, 2017, 188, 563-575.	5.1	15
5	A review on house design with energy saving system in the UK. Renewable and Sustainable Energy Reviews, 2017, 71, 29-52.	8.2	16
6	Analysis and optimization of carbon trading mechanism for renewable energy application in buildings. Renewable and Sustainable Energy Reviews, 2017, 73, 435-451.	8.2	30
7	Smart Meters and Smart Devices in Buildings: a Review of Recent Progress and Influence on Electricity Use and Peak Demand. Current Sustainable/Renewable Energy Reports, 2017, 4, 1-7.	1.2	28
8	Application analyze of a ground source heat pump system in a nearly zero energy building in China. Energy, 2017, 125, 140-151.	4.5	29
9	Technical-economic feasibility of CHP systems in large hospitals through the Energy Hub method: The case of Cagliari AOB. Energy and Buildings, 2017, 147, 101-112.	3.1	51
10	Trees vs Neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energy and Buildings, 2017, 147, 77-89.	3.1	630
11	User engaging practices for energy saving in buildings: Critical review and new enhanced procedure. Energy and Buildings, 2017, 148, 74-88.	3.1	30
12	IEA EBC Annex 66: Definition and simulation of occupant behavior in buildings. Energy and Buildings, 2017, 156, 258-270.	3.1	296
13	Proposed integration of a photovoltaic solar energy system and energy efficient technologies in the lighting system of the UTA-Ecuador. Energy Procedia, 2017, 134, 296-305.	1.8	9
14	Office building plug and light loads: Comparison of a multi-tenant office tower to conventional assumptions. Energy and Buildings, 2017, 153, 461-475.	3.1	20
15	Thermal performance and service life of vacuum insulation panels with aerogel composite cores. Energy and Buildings, 2017, 154, 606-617.	3.1	96
16	Towards a unified approach for Distributed Measurement System technologies. , 2017, , .		O
17	Intelligent homes' technologies to optimize the energy performance for the net zero energy home. Energy and Buildings, 2017, 153, 262-274.	3.1	84
18	Numerical and experimental investigation of an insulation layer with phase change materials (PCMs). Energy and Buildings, 2017, 153, 231-240.	3.1	66

#	Article	IF	Citations
19	A business ecosystem driven market analysis: The bright green building market potential. , 2017, , .		12
20	Analysis of basic building performance data for identification of performance issues. Facilities, 2017, 35, 801-817.	0.8	10
21	Remote controlâ€based energy management for energy savings in a central heating system. Environmental Progress and Sustainable Energy, 2017, 36, 600-609.	1.3	4
22	Design and implementation of an IoT assisted real-time ZigBee mesh WSN based AMR system for deployment in smart cities. , 2017 , , .		9
23	Challenges in developing a generic monitoring framework for pan European energy usage and environmental monitoring. , $2017, , .$		0
24	Ethical issues of monitoring sensor networks for energy efficiency in smart buildings: a case study. Energy Procedia, 2017, 134, 337-345.	1.8	7
25	Building monitoring system in a large social housing intervention in Northern Italy. Energy Procedia, 2017, 140, 386-397.	1.8	15
26	Smart Heating Systems for Cost-Effective Retrofitting. , 2017, , 279-304.		6
27	Modeling and Analysis of a DC Electrical System and Controllers for Implementation of a Grid-Interactive Building. Energies, 2017, 10, 427.	1.6	6
28	Data Sensing Approaches to Monitoring Building Energy Use and Occupant Behavior., 2017,,.		1
29	A Fast Evaluation Method for Energy Building Consumption Based on the Design of Experiments. IOP Conference Series: Earth and Environmental Science, 2017, 83, 012025.	0.2	3
30	Energy savings through implementation of a multi-state Time Control Program (TCP) in demand-controlled ventilation of commercial buildings. Energy and Buildings, 2018, 164, 33-47.	3.1	6
31	The carbon impact of a UK safari park – Application of the GHG protocol using measured energy data. Energy, 2018, 153, 256-264.	4.5	6
32	Two new methods for the in-situ measurement of the overall thermal transmittance of cold frame lightweight steel-framed walls. Energy and Buildings, 2018, 170, 183-194.	3.1	29
33	Holistic modelling techniques for the operational optimisation of multi-vector energy systems. Energy and Buildings, 2018, 169, 397-416.	3.1	29
34	Integrated intelligent water-energy metering systems and informatics: Visioning a digital multi-utility service provider. Environmental Modelling and Software, 2018, 105, 94-117.	1.9	71
35	Multi-Source Energy Harvesting and Storage for Floating Wireless Sensor Network Nodes With Long Range Communication Capability. IEEE Transactions on Industry Applications, 2018, 54, 2606-2615.	3.3	85
36	Towards improving throughput and reducing latency: A simplified protocol conversion mechanism in distributed energy resources network. Applied Energy, 2018, 213, 45-55.	5.1	2

#	Article	IF	CITATIONS
37	Assessment of existing buildings performance using system dynamics technique. Applied Energy, 2018, 211, 1308-1323.	5.1	15
38	Environmental monitoring system based on an Open Source Platform and the Internet of Things for a building energy retrofit. Automation in Construction, 2018, 87, 201-214.	4.8	86
39	The Study of Historic Indoor Microclimate. , 2018, , 85-117.		1
40	Measurement uncertainty in energy monitoring: Present state of the art. Renewable and Sustainable Energy Reviews, 2018, 82, 2791-2805.	8.2	26
42	Poster abstract: Big Data beats engineering in residential energy performance assessmentâ€"a case study. Computer Science - Research and Development, 2018, 33, 235-236.	2.7	0
43	Simple electric utility platform: A hardware/software solution for operating emergent microgrids. Applied Energy, 2018, 210, 748-763.	5.1	25
44	Deep Highway Networks and Tree-Based Ensemble for Predicting Short-Term Building Energy Consumption. Energies, 2018, 11, 3408.	1.6	20
45	Design of Wireless Sensor Networks for Intelligent Building Energy Management. , 2018, , .		1
46	Energy Diagnosis of University Buildings: Renewable Energy Institute from UNAM. Buildings, 2018, 8, 136.	1.4	3
47	HyTube: A Novel Middleware Layer for Smart Building Systems. , 2018, , .		0
49	On the Evolution and Application of the Thermal Network Method for Energy Assessments in Buildings. Energies, 2018, 11, 890.	1.6	21
50	Efficient Energy Management System Using Pir Sensor. , 2018, , .		4
51	Greenhouse gas emission reduction by the selection of efficient lighting systems. IOP Conference Series: Earth and Environmental Science, 0, 188, 012068.	0.2	2
52	Building Electricity Consumption as an Indicator of Indirect Carbon Dioxide Emissions. IOP Conference Series: Materials Science and Engineering, 2018, 358, 012012.	0.3	1
53	On Occupant Behavior and Innovation Studies Towards High Performance Buildings: A Transdisciplinary Approach. Sustainability, 2018, 10, 3567.	1.6	7
54	A Real-Time Energy Management Platform for Multi-vector District Energy Systems. IFIP Advances in Information and Communication Technology, 2018, , 560-568.	0.5	0
55	Aggregator of Demand Response for Renewable Integration and Customer Engagement: Strengths, Weaknesses, Opportunities, and Threats. Energies, 2018, 11, 2391.	1.6	47
56	Building energy audit, thermal comfort, and IAQ assessment of a school building: A case study. Building and Environment, 2018, 145, 62-76.	3.0	64

#	ARTICLE	IF	Citations
57	Energy Harvesting Sources, Storage Devices and System Topologies for Environmental Wireless Sensor Networks: A Review. Sensors, 2018, 18, 2446.	2.1	159
58	Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression. Energy, 2018, 164, 465-474.	4.5	174
59	Predictive modelling for solar thermal energy systems: A comparison of support vector regression, random forest, extra trees and regression trees. Journal of Cleaner Production, 2018, 203, 810-821.	4.6	282
60	A Comparison Between NARX Neural Networks and Symbolic Regression: AnÂApplication for Energy Consumption Forecasting. Communications in Computer and Information Science, 2018, , 16-27.	0.4	2
61	Future Trends in District Heating Development. Current Sustainable/Renewable Energy Reports, 2018, 5, 172-180.	1.2	11
63	An innovative compact facility for the measurement of the thermal properties of building materials: first experimental results. Applied Thermal Engineering, 2018, 143, 947-954.	3.0	13
64	Improving the Energy Saving Process with High-Resolution Data: A Case Study in a University Building. Sensors, 2018, 18, 1606.	2.1	6
65	Emission of Volatile Organic Compounds (VOCs) from Dispersion and Cementitious Waterproofing Products. Sustainability, 2018, 10, 2178.	1.6	21
66	Monitoring Thermal Comfort with IoT Technologies: A Pilot Study in Chinese Eldercare Centers. Lecture Notes in Computer Science, 2018, , 303-314.	1.0	4
67	Building performance evaluation using OpenMath and Linked Data. Energy and Buildings, 2018, 174, 484-494.	3.1	20
68	5.15 Energy Management in Network Systems. , 2018, , 581-647.		2
69	Cooling and Energy-Saving Performance of Different Green Wall Design: A Simulation Study of a Block. Energies, 2019, 12, 2912.	1.6	44
70	Thermal Assessment of a Novel Drywall System Insulated with VIPs. Energies, 2019, 12, 2373.	1.6	7
71	Blockchain-Based Scalable and Tamper-Evident Solution for Registering Energy Data. Sensors, 2019, 19, 3033.	2.1	50
72	Building monitoring protocol development for deep energy retrofit. IOP Conference Series: Earth and Environmental Science, 2019, 329, 012038.	0.2	1
73	Comparing energy and comfort metrics for building benchmarking. Energy and Buildings, 2019, 205, 109539.	3.1	10
74	Human Comfort in Indoor Environment: A Review on Assessment Criteria, Data Collection and Data Analysis Methods. IEEE Access, 2019, 7, 119774-119786.	2.6	29
75	A combination of SOM-based operating time estimation and simplified disaggregation for SME buildings using hourly energy consumption data. Energy and Buildings, 2019, 201, 118-133.	3.1	5

#	Article	IF	Citations
76	A Smart Solution for Electrical Power Monitoring Based on MCP39F501 Sensor., 2019, , .		3
77	Technological innovations to assess and include the human dimension in the building-performance loop: A review. Energy and Buildings, 2019, 202, 109365.	3.1	38
78	The State-of-the-Art of Sensors and Environmental Monitoring Technologies in Buildings. Sensors, 2019, 19, 3648.	2.1	46
79	Elemental: An Open-Source Wireless Hardware and Software Platform for Building Energy and Indoor Environmental Monitoring and Control. Sensors, 2019, 19, 4017.	2.1	38
80	Energy performance certificates â€" New opportunities for data-enabled urban energy policy instruments?. Energy Policy, 2019, 127, 486-499.	4.2	107
81	Conflicting values in the smart electricity grid a comprehensive overview. Renewable and Sustainable Energy Reviews, 2019, 111, 184-196.	8.2	32
82	Context-Aware Automation Based Energy Conservation Techniques for IoT Ecosystem. Studies in Systems, Decision and Control, 2019, , 129-153.	0.8	7
83	Development and implementation of automated fault detection and diagnostics for building systems: A review. Automation in Construction, 2019, 104, 215-229.	4.8	86
84	Innovative Policies for Energy Efficiency and the Use of Renewables in Households. Energies, 2019, 12, 1392.	1.6	63
85	Study on the Application of Big Data Analysis on the Electric Power Meter Inspection. Advances in Intelligent Systems and Computing, 2019, , 323-329.	0.5	2
86	A method for estimating electricity consumption patterns of buildings to implement Energy Management Systems. Journal of Building Engineering, 2019, 25, 100774.	1.6	16
87	Magnitude, Causes, and Solutions of the Performance Gap of Buildings: A Review. Sustainability, 2019, 11, 937.	1.6	33
88	The responses of older adults to smart energy monitors. Energy Policy, 2019, 130, 218-226.	4.2	21
89	Linking the urban-scale building energy demands with city breathability and urban form characteristics. Sustainable Cities and Society, 2019, 49, 101460.	5.1	13
90	Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete. Construction and Building Materials, 2019, 205, 529-542.	3.2	89
91	Trends in Energy efficiency and CO2 emissions according to Bulgarian National Energy Efficiency plan. , 2019, , .		3
92	Synergy: A Smart and Scalable Energy Measurement Platform for Electricity Consumers. , 2019, , .		1
93	Gas Metering Using Optical Sensor. , 2019, , .		0

#	Article	IF	CITATIONS
94	Energy and Water Monitoring for a Large Social Housing Intervention in Northern Italy. Frontiers in Energy Research, 2019, 7, .	1.2	6
95	Evaluation of building and systems performance for a deep domestic retrofit. Journal of Physics: Conference Series, 2019, 1343, 012176.	0.3	1
96	Application of MCDM Method for Technologies Selection to Support Energy Management. Procedia Manufacturing, 2019, 39, 1289-1296.	1.9	2
97	Drivers for Pursuing Sustainability through IoT Technology within High-End Hotelsâ€"An Exploratory Study. Sustainability, 2019, 11, 5372.	1.6	19
98	A review of operating performance in green buildings: Energy use, indoor environmental quality and occupant satisfaction. Energy and Buildings, 2019, 183, 500-514.	3.1	196
99	Numerical modeling of the gas-contributed thermal conductivity of aerogels. International Journal of Heat and Mass Transfer, 2019, 131, 217-225.	2.5	26
100	Identifying temporal properties of building components and indoor environment for building performance assessment. Building and Environment, 2020, 168, 106506.	3.0	9
101	Energy performance gap of a nearly Zero Energy Building (nZEB) in Denmark: the influence of occupancy modelling. Building Research and Information, 2020, 48, 899-921.	2.0	30
102	Wireless sensor network for estimating building performance. Automation in Construction, 2020, 111, 103043.	4.8	32
103	Swarm Decision Table and Ensemble Search Methods in Fog Computing Environment: Case of Day-Ahead Prediction of Building Energy Demands Using IoT Sensors. IEEE Internet of Things Journal, 2020, 7, 2321-2342.	5.5	12
104	Harnessing smart meter data for a Multitiered Energy Management Performance Indicators (MEMPI) framework: A facility manager informed approach. Applied Energy, 2020, 276, 115435.	5.1	7
105	Open data and energy analytics - An analysis of essential information for energy system planning, design and operation. Energy, 2020, 213, 118803.	4.5	53
106	Solid-State Circuit Breaker based Smart Distribution Board with IoT Integration. , 2020, , .		2
107	Evaluation of Thermal Comfort and Energy Consumption of Water Flow Glazing as a Radiant Heating and Cooling System: A Case Study of an Office Space. Sustainability, 2020, 12, 7596.	1.6	15
108	A review of data collection and analysis requirements for certified green buildings. Energy and Buildings, 2020, 226, 110367.	3.1	19
109	Reduction and transformation of energy use data for end-user group categorization in dormitory buildings. Journal of Building Engineering, 2020, 32, 101524.	1.6	4
110	Leveraging Fine-Grained Occupancy Estimation Patterns for Effective HVAC Control., 2020,,.		2
111	Feature Extraction from Building Submetering Networks Using Deep Learning. Sensors, 2020, 20, 3665.	2.1	5

#	Article	IF	CITATIONS
112	Implementing an IoT Energy Monitoring System Using the Challenge-based Learning Model., 2020,,.		3
113	Computer Vision-based Reader for analogue Energy/Water Meters in low-cost embedded System: a Case Study in an Office Building in Scotland. E3S Web of Conferences, 2020, 172, 25006.	0.2	0
114	Application of IoT and BEMS to Visualise the Environmental Performance of an Educational Building. Energies, 2020, 13, 4009.	1.6	10
115	Measurement and Verification of Zero Energy Settlements: Lessons Learned from Four Pilot Cases in Europe. Sustainability, 2020, 12, 9783.	1.6	6
116	Smart Grids and Their Role in Transforming Human Activities—A Systematic Literature Review. Sustainability, 2020, 12, 8662.	1.6	6
117	An Event-Driven Approach for Changing User Behaviour towards an Enhanced Building's Energy Efficiency. Buildings, 2020, 10, 183.	1.4	3
118	A methodology to improve energy efficiency and comfort conditions with low-cost ICTs in rural public buildings. Sustainable Cities and Society, 2020, 60, 102156.	5.1	6
119	Intelligent buildings: An overview. Energy and Buildings, 2020, 223, 110192.	3.1	65
120	Qatar Green Schools Initiative: Energy Management System with Cost-Efficient and Lightweight Networked IoT., 2020,,.		5
121	Energy efficiency of end-user groups for personalized HVAC control in multi-zone buildings. Energy, 2020, 206, 118116.	4.5	29
122	Building information modeling–based cyber-physical platform for building performance monitoring. International Journal of Distributed Sensor Networks, 2020, 16, 155014772090817.	1.3	23
123	Long-term monitoring for indoor climate assessment – The association between objective and subjective data. Building and Environment, 2020, 179, 106978.	3.0	6
124	Energy Infrastructure of the Factory as a Virtual Power Plant: Smart Energy Management. , 0, , .		4
125	Assessment of black globe thermometers employing various sensors and alternative materials. Agricultural and Forest Meteorology, 2020, 284, 107891.	1.9	12
126	Attitudes and Opinions of Social Media Users Towards Smart Meters' Rollout in Turkey. Energies, 2020, 13, 732.	1.6	14
127	In-situ monitoring of occupant behavior in residential buildings ‒ a timely review. Energy and Buildings, 2020, 212, 109811.	3.1	27
128	Solar energy as a tool of renovating soviet-type multi apartment buildings. Solar Energy, 2020, 198, 93-100.	2.9	11
129	Life cycle environmental impacts of food away from home and mitigation strategies—a review. Journal of Environmental Management, 2020, 265, 110471.	3.8	25

#	Article	IF	CITATIONS
130	Proxy zone-level energy use estimation in a commercial building with a variable air volume system. Journal of Building Engineering, 2021, 33, 101498.	1.6	1
131	A review of building parameters' roles in conserving energy versus maintaining comfort. Journal of Building Engineering, 2021, 35, 102087.	1.6	13
132	Development of a virtual fan airflow meter for electronically commutated motor fan systems. Science and Technology for the Built Environment, 2021, 27, 341-350.	0.8	3
133	Monitoring, Predicting, and Optimizing Energy Consumptions. , 2021, , 20-47.		1
134	Towards a Service-Oriented Architecture for the Energy Efficiency of Buildings: A Systematic Review. IEEE Access, 2021, 9, 26119-26137.	2.6	12
135	Evaluation results of combined labelling of dwellings located in different countries. E3S Web of Conferences, 2021, 246, 13002.	0.2	1
136	A Prediction Accuracy Weighted Voting Ensemble Method for Thermal Sensation Evaluation. Sustainable Development Goals Series, 2021, , 249-267.	0.2	0
137	Optimal thermal sensors placement based on indoor thermal environment characterization by using CFD model. Journal of Applied Engineering Science, 2021, 19, 628-641.	0.4	2
138	Hierarchical Temporal Memory Continuous Learning Algorithms for Fire State Determination. Fire Technology, 2021, 57, 2905-2928.	1.5	8
139	Experimental Implementation and Performance Evaluation of an IoT Access Gateway for the Modbus Extension. Sensors, 2021, 21, 246.	2.1	12
140	Ventilative Cooling and Control Systems. PoliTO Springer Series, 2021, , 125-138.	0.3	1
141	Optimizing the velocity of ring shape parameter for designing the nozzles using CFD. Journal of Applied Engineering Science, 2021, 19, 618-627.	0.4	0
142	A Framework for the Automatic Integration and Diagnosis of Building Energy Consumption Data. Sensors, 2021, 21, 1395.	2.1	5
143	Study of the energy intensity by built areas in a medium-sized Spanish hospital. Energy Efficiency, 2021, 14, 1.	1.3	4
144	Power and energy measurement devices: A review, comparison, discussion, and the future of research. Measurement: Journal of the International Measurement Confederation, 2021, 172, 108961.	2.5	14
145	Proposal for a new layer for energy cloud management: The regulatory layer. International Journal of Energy Research, 2021, 45, 9780-9799.	2.2	5
146	A review of machine learning in building load prediction. Applied Energy, 2021, 285, 116452.	5.1	259
147	Energy Blockchain for Public Energy Communities. Applied Sciences (Switzerland), 2021, 11, 3457.	1.3	10

#	Article	IF	Citations
148	A systematic review of the smart energy conservation system: From smart homes to sustainable smart cities. Renewable and Sustainable Energy Reviews, 2021, 140, 110755.	8.2	168
149	Economic vs environmental isocost and isoperformance curves for the seismic and energy improvement of buildings considering Life Cycle Assessment. Engineering Structures, 2021, 233, 111923.	2.6	15
150	Energy Transition at Home: A Survey on the Data and Practices That Lead to a Change in Household Energy Behavior. Sustainability, 2021, 13, 5268.	1.6	14
151	A More Efficient Technique to Power Home Monitoring Systems Using Controlled Battery Charging. Energies, 2021, 14, 3846.	1.6	3
152	Enhancing environmental and energy monitoring of residential buildings through IoT. Automation in Construction, 2021, 126, 103662.	4.8	30
153	A Framework for Edge Intelligent Smart Distribution Grids via Federated Learning. , 2021, , .		10
154	Propuesta de implementación de sistema de sensorización y monitorización para la mejora de edificios públicos = Implementing a monitoring system's proposal for the improvement of public buildings. Anales De Edificación, 2021, 6, 35.	0.1	1
155	Analyzing Renewable and Nonrenewable Energy Sources for Environmental Quality: Dynamic Investigation in Developing Countries. Mathematical Problems in Engineering, 2021, 2021, 1-12.	0.6	29
156	Pedagogical Approaches for Sustainable Development in Building in Higher Education. Sustainability, 2021, 13, 10203.	1.6	9
157	Methods for performance metering of indoor units in variable refrigerant flow systems based on built-in sensors. Applied Thermal Engineering, 2021, 196, 117268.	3.0	7
158	In search of optimal consumption: A review of causes and solutions to the Energy Performance Gap in residential buildings. Energy and Buildings, 2021, 249, 111253.	3.1	46
159	Techno-economic analysis and energy modelling as a key enablers for smart energy services and technologies in buildings. Renewable and Sustainable Energy Reviews, 2021, 150, 111490.	8.2	41
160	A survey-based electricity demand profiling method for developing countries: The case of urban households in Bangladesh. Journal of Building Engineering, 2021, 42, 102507.	1.6	7
161	Sensor impacts on building and HVAC controls: A critical review for building energy performance. Advances in Applied Energy, 2021, 4, 100068.	6.6	56
162	Linking data model and formula to automate KPI calculation for building performance benchmarking. Energy Reports, 2021, 7, 1326-1337.	2.5	12
163	Monitoring, Predicting, and Optimizing Energy Consumptions. , 2022, , 1409-1436.		0
164	Energy Management in Smart Buildings and Homes: Current Approaches, a Hypothetical Solution, and Open Issues and Challenges. IEEE Access, 2021, 9, 94132-94148.	2.6	21
165	Artificial Intelligence and Internet of Things readiness: inclination for hotels to support a sustainable environment., 2021,, 327-353.		1

#	Article	IF	CITATIONS
166	Energy Modelling and Analytics in the Built Environmentâ€"A Review of Their Role for Energy Transitions in the Construction Sector. Energies, 2021, 14, 679.	1.6	35
167	Post-occupancy Evaluation Parameters in Multi-objective Optimization–Based Design Process. , 2019, , 463-470.		1
169	On the Use of LoRaWAN for the Monitoring and Control of Distributed Energy Resources in a Smart Campus. Applied Sciences (Switzerland), 2020, 10, 320.	1.3	32
170	A Review of Performance-Oriented Architectural Design and Optimization in the Context of Sustainability: Dividends and Challenges. Sustainability, 2020, 12, 1427.	1.6	35
171	Effects of Positioning of Multi-Sensor Devices on Occupancy and Indoor Environmental Monitoring in Single-Occupant Offices. Energies, 2021, 14, 6296.	1.6	7
172	Experimental Data Acquisition. SpringerBriefs in Energy, 2018, , 47-61.	0.2	0
173	Developing Energy Control and Optimisation Methodology for Built Environment of the Future. Innovative Renewable Energy, 2020, , 567-577.	0.2	1
174	Design and realization of motion detector system for house security. Telkomnika (Telecommunication) Tj ETQq1	1 8.78431	4.rgBT /Ove
175	University Building Energy Consumption and Indoor Environment Quality: A Review of Optimization Strategies. Environmental Science and Engineering, 2020, , 1045-1052.	0.1	0
176	AMI and Its Wireless Communication Security Aspects with QOS: A Review. Advances in Intelligent Systems and Computing, 2021, , 1-13.	0.5	0
177	A transfer function model of lighting heat dissipation for detecting time-delay effect and dynamic cooling demand during the real-time operation of buildings. Energy and Buildings, 2022, 254, 111538.	3.1	4
178	Towards a smart water city: A comprehensive review of applications, data requirements, and communication technologies for integrated management. Sustainable Cities and Society, 2022, 76, 103442.	5.1	67
179	Monitoring, Predicting, and Optimizing Energy Consumptions. Advances in Computational Intelligence and Robotics Book Series, 2020, , 80-107.	0.4	1
180	Performance Evaluation of No-Pairing ECC-Based KPABE on IoT Platforms. , 2020, , .		1
181	A Novel Strategy for Energy Optimal Designs of IoT and WSNs. Algorithms for Intelligent Systems, 2021, , 603-610.	0.5	1
182	Big Data Architecture for Building Energy Management Systems. IEEE Transactions on Industrial Informatics, 2022, 18, 5738-5747.	7.2	6
183	Precision improvement method for onsite performance measurement of variable refrigerant flow system. Building and Environment, 2022, 208, 108626.	3.0	7
184	Virtual energy-saving environmental protection building design and implementation. International Journal of Systems Assurance Engineering and Management, 0 , 1 .	1.5	1

#	Article	IF	CITATIONS
185	Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial–temporal proximity data from Build2Vec. Building and Environment, 2022, 207, 108532.	3.0	35
186	Sensing, Communication with Efficient and Sustainable Energy: An IoT Framework for Smart Cities. Green Energy and Technology, 2022, , 53-86.	0.4	1
187	Application of AI Image Recognition in the Omnidirectional Monitoring System for Power Transmission Lines. Advances in Multimedia, 2021, 2021, 1-7.	0.2	2
188	A review on buildings energy information: Trends, end-uses, fuels and drivers. Energy Reports, 2022, 8, 626-637.	2.5	213
189	Exploring Deep Learning and Tree-Based Ensemble Models for Chiller Energy Consumption Predictions. , 2021, , .		1
190	The Evolution of Knowledge and Trends within the Building Energy Efficiency Field of Knowledge. Energies, 2022, 15, 691.	1.6	4
191	Hospitality Industry 4.0 and Climate Change. Circular Economy and Sustainability, 2022, 2, 1043-1063.	3.3	20
192	EE-WCA: Energy Efficient Weighted Clustering Algorithm to Regulate Application's Quality of Service Requirements. Wireless Personal Communications, 2022, 124, 3647-3660.	1.8	3
193	Collection and Utilization of Indoor Environmental Quality Information Using Affordable Image Sensing Technology. Energies, 2022, 15, 921.	1.6	5
194	Particularities of Exergy Analysis in Air Conditioning Systems. Nauka I Tehnika, 2022, 21, 42-49.	0.1	0
195	The Impact of Sustainable Transformational Leadership on Sustainable Innovation Ambidexterity: Empirical Evidence From Green Building Industries of China. Frontiers in Public Health, 2022, 10, 814690.	1.3	5
196	User-friendly fault detection method for building chilled water flowmeters: Field data validation. Science and Technology for the Built Environment, 0 , , 1 -22.	0.8	2
197	Thermal comfort in a tropical savanna climate: The case of home occupants in Darwin, Australia. Energy and Buildings, 2022, 266, 112074.	3.1	4
198	A review on architectural guidelines to safely reopen buildings in light of COVID-19 in the United States: establishing future research opportunities. Architectural Science Review, 0, , 1-15.	1.1	2
199	Enhancing Building Monitoring and Control for District Energy Systems: Technology Selection and Installation within the Living Lab Energy Campus. Applied Sciences (Switzerland), 2022, 12, 3305.	1.3	4
200	Iterative Optimization of a Social Inmotics-Based Method in Order to Make Buildings Smart and Resilient. Sustainable Cities and Society, 2022, 82, 103876.	5.1	5
201	Spatio-temporal heterogeneity analysis of energy use in residential buildings. Journal of Cleaner Production, 2022, 352, 131422.	4.6	11
202	REVIEW OF IMPROVING ENERGY EFFICIENCY TECHNOLOGIES. Journal of Environmental Science, 2021, 50, 239-286.	0.0	0

#	Article	IF	CITATIONS
203	Construction 4.0 technologies and applications: a systematic literature review of trends and potential areas for development. Construction Innovation, 2023, 23, 961-993.	1.5	19
204	Statistical Analysis of the Variability of Energy Efficiency Indicators for a Multi-Family Residential Building. Energies, 2022, 15, 5042.	1.6	1
205	Subsurface heat island across the Chicago Loop district: Analysis of localized drivers. Urban Climate, 2022, 44, 101211.	2.4	6
206	A Review of Using IoT for Energy Efficient Buildings and Cities: A Built Environment Perspective. Energies, 2022, 15, 5991.	1.6	28
207	Machine Learning and Deep Learning Methods for Enhancing Building Energy Efficiency and Indoor Environmental Quality – A Review. Energy and Al, 2022, 10, 100198.	5.8	54
208	Data-driven prediction of building energy consumption using an adaptive multi-model fusion approach. Applied Soft Computing Journal, 2022, 129, 109616.	4.1	8
209	A data collection and supplementary control platform of a modern building for smart energy applications. Sustainable Energy, Grids and Networks, 2022, 32, 100928.	2.3	2
210	Comparative Evaluation of the Performance of ZigBee and LoRa Wireless Networks in Building Environment. Electronics (Switzerland), 2022, 11, 3560.	1.8	8
211	Honeycomb: An open-source distributed system for smart buildings. Patterns, 2022, 3, 100605.	3.1	7
212	Design and implementation of water consumption measurement system using M-bus protocol. AIP Conference Proceedings, 2022, , .	0.3	0
213	Large scale energy labelling with models: The EU TABULA model versus machine learning with open data. Energy, 2023, 264, 126175.	4.5	2
214	Energy efficiency in shared buildings: Quantification of the potential at multiple scales. Energy Reports, 2023, 9, 84-95.	2.5	4
215	Identifying the influence of user behaviour on building energy consumption based on model-based analysis of in-situ monitoring data. Journal of Building Engineering, 2023, 64, 105717.	1.6	3
216	Development of a Self-Calibrated Embedded System for Energy Management in Low Voltage. Energies, 2022, 15, 8707.	1.6	3
217	Energy Performance of Buildings Directive implementation in Southern European countries: A review. Energy and Buildings, 2023, 281, 112751.	3.1	7
218	Unveiling the Potential of Machine Learning Applications in Urban Planning Challenges. Land, 2023, 12, 83.	1.2	6
219	Multiplex-gas detection based on non-dispersive infrared technique: A review. Sensors and Actuators A: Physical, 2023, 356, 114318.	2.0	10
220	Novel prediction of thermal conductivities for nano-aerogel and its composites as vacuum insulation panel core. International Journal of Thermal Sciences, 2023, 189, 108277.	2.6	2

#	Article	IF	CITATIONS
221	Exploring driving force factors of building energy use and GHG emission using a spatio-temporal regression method. Energy, 2023, 269, 126747.	4.5	3
222	Conducting smart energy audits of buildings with the use of building information modelling. Energy and Buildings, 2023, 285, 112884.	3.1	10
223	A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022). Sustainability, 2023, 15, 4303.	1.6	3
224	Evaluation of thermostat location for multizone commercial building performance. Journal of Building Engineering, 2023, 70, 106212.	1.6	1
225	An inquiry into the effect of thermal energy meter density and configuration on load disaggregation accuracy. Science and Technology for the Built Environment, 0 , , 1 -19.	0.8	0
229	Design of DC house photovoltaic control system based on internet of things (IoT). AIP Conference Proceedings, 2023, , .	0.3	0
231	Embedded Sensors, Ubiquitous Connectivity and Tracking. Palgrave Studies in Digital Business & Enabling Technologies, 2023, , 23-38.	1.3	0
233	Performance Comparison of Zigbee and LoRa Wireless Networks in a Building Environment., 2023,,.		0
234	Communication of energy data in modular production. , 2023, , .		1
235	Effect of Thermal Energy Meter Density and Configuration on Disaggregation Accuracy. Environmental Science and Engineering, 2023, , 1467-1476.	0.1	1
239	Research and Application of Smart Water Meter Monitoring System Based on NB-IoT., 2023, , .		0
243	Using Internet to Improve Ecological as well as Energy Surveillance in Houses: A Smart Computer Integration., 2023,,.		О