3D-printing technologies for electrochemical applicatio

Chemical Society Reviews 45, 2740-2755

DOI: 10.1039/c5cs00714c

Citation Report

#	Article	IF	CITATIONS
1	Rapid prototyping of electrolyzer flow field plates. Energy and Environmental Science, 2016, 9, 3417-3423.	15.6	49
2	3Dâ€Printed Structural Pseudocapacitors. Advanced Materials Technologies, 2016, 1, 1600167.	3.0	32
3	<i>In situ</i> UV curable 3D printing of multi-material tri-legged soft bot with spider mimicked multi-step forward dynamic gait. Smart Materials and Structures, 2016, 25, 115009.	1.8	42
4	Evolution of 3D printed soft actuators. Sensors and Actuators A: Physical, 2016, 250, 258-272.	2.0	232
5	3D Printing of Highly Conductive Nanocomposites for the Functional Optimization of Liquid Sensors. Small, 2016, 12, 6076-6082.	5.2	91
6	Preparation of monolithic catalysts using 3D printed templates for oxidative coupling of methane. Journal of Materials Chemistry A, 2016, 4, 18753-18756.	5.2	60
7	Inkjet-Printed Graphene Oxide Thin Layers on Love Wave Devices for Humidity and Vapor Detection. IEEE Sensors Journal, 2016, 16, 7620-7627.	2.4	42
8	From the Junkyard to the Power Grid: Ambient Processing of Scrap Metals into Nanostructured Electrodes for Ultrafast Rechargeable Batteries. ACS Energy Letters, 2016, 1, 1034-1041.	8.8	9
9	Nano/Microrobots Meet Electrochemistry. Advanced Functional Materials, 2017, 27, 1604759.	7.8	67
10	Printing assembly and structural regulation of graphene towards three-dimensional flexible micro-supercapacitors. Journal of Materials Chemistry A, 2017, 5, 16281-16288.	5.2	116
11	The impact of nozzle and bed temperatures on the fracture resistance of FDM printed materials. Proceedings of SPIE, 2017, , .	0.8	9
12	Current scenario in organophosphates detection using electrochemical biosensors. TrAC - Trends in Analytical Chemistry, 2017, 92, 62-85.	5.8	67
13	Emerging 3Dâ€Printed Electrochemical Energy Storage Devices: A Critical Review. Advanced Energy Materials, 2017, 7, 1700127.	10.2	300
14	Printed microfluidic filter for heparinized blood. Biomicrofluidics, 2017, 11, 034101.	1.2	9
15	SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chemical Reviews, 2017, 117, 7910-7963.	23.0	467
16	Threeâ€dimensional Printing for Catalytic Applications: Current Status and Perspectives. Advanced Functional Materials, 2017, 27, 1701134.	7.8	170
17	High through-plane thermal conductivity of polymer based product with vertical alignment of graphite flakes achieved via 3D printing. Composites Science and Technology, 2017, 145, 55-61.	3.8	133
18	Carbazole Scaffold Based Photoinitiator/Photoredox Catalysts: Toward New High Performance Photoinitiating Systems and Application in LED Projector 3D Printing Resins. Macromolecules, 2017, 50, 2747-2758.	2.2	121

#	ARTICLE	IF	CITATIONS
19	3D-printed porous electrodes for advanced electrochemical flow reactors: A Ni/stainless steel electrode and its mass transport characteristics. Electrochemistry Communications, 2017, 77, 133-137.	2.3	93
20	Fracture resistance measurement of fused deposition modeling 3D printed polymers. Polymer Testing, 2017, 60, 94-101.	2.3	188
21	Fundamentals and applications of 3D printing for novel materials. Applied Materials Today, 2017, 7, 120-133.	2.3	925
22	How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review. Analytica Chimica Acta, 2017, 959, 15-42.	2.6	133
23	3D Bioprinting for Organ Regeneration. Advanced Healthcare Materials, 2017, 6, 1601118.	3.9	385
24	DNA biosensing with 3D printing technology. Analyst, The, 2017, 142, 279-283.	1.7	82
25	Atmospheric-Pressure Plasma Jet Processed Carbon-Based Electrochemical Sensor Integrated with a 3D-Printed Microfluidic Channel. Journal of the Electrochemical Society, 2017, 164, B534-B541.	1.3	14
26	Recent advances in printable secondary batteries. Journal of Materials Chemistry A, 2017, 5, 22442-22458.	5.2	50
27	Connecting Biology to Electronics: Molecular Communication via Redox Modality. Advanced Healthcare Materials, 2017, 6, 1700789.	3.9	40
28	Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks. ACS Applied Materials & Interfaces, 2017, 9, 37136-37145.	4.0	148
29	Soft tubular microfluidics for 2D and 3D applications. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10590-10595.	3.3	63
30	3D printed device including disk-based solid-phase extraction for the automated speciation of iron using the multisyringe flow injection analysis technique. Talanta, 2017, 175, 463-469.	2.9	39
31	Additive Manufacturing: Unlocking the Evolution of Energy Materials. Advanced Science, 2017, 4, 1700187.	5.6	173
32	3Dâ€Printed Conical Arrays of TiO ₂ Electrodes for Enhanced Photoelectrochemical Water Splitting. Advanced Energy Materials, 2017, 7, 1701060.	10.2	75
33	Characterization of residual stress and deformation in additively manufactured ABS polymer and composite specimens. Composites Science and Technology, 2017, 150, 102-110.	3.8	94
34	3Dâ€printed Metal Electrodes for Heavy Metals Detection by Anodic Stripping Voltammetry. Electroanalysis, 2017, 29, 2444-2453.	1.5	67
35	3D Printed Electrodes for Detection of Nitroaromatic Explosives and Nerve Agents. Analytical Chemistry, 2017, 89, 8995-9001.	3.2	73
36	3Dâ€Printed Polypropylene Continuousâ€Flow Column Reactors: Exploration of Reactor Utility in S _N Ar Reactions and the Synthesis of Bicyclic and Tetracyclic Heterocycles. European Journal of Organic Chemistry, 2017, 2017, 6499-6504.	1.2	41

#	Article	IF	CITATIONS
37	3D-printed metal electrodes for electrochemical detection of phenols. Applied Materials Today, 2017, 9, 212-219.	2.3	59
38	3D-Printed Hierarchical Porous Frameworks for Sodium Storage. ACS Applied Materials & Samp; Interfaces, 2017, 9, 41871-41877.	4.0	67
40	Rayleigh Instability-Assisted Satellite Droplets Elimination in Inkjet Printing. ACS Applied Materials & Long Ramp; Interfaces, 2017, 9, 41521-41528.	4.0	25
41	Photopolymerization processes of thick films and in shadow areas: a review for the access to composites. Polymer Chemistry, 2017, 8, 7088-7101.	1.9	145
42	3D printed functional nanomaterials for electrochemical energy storage. Nano Today, 2017, 15, 107-120.	6.2	302
43	A novel 3D-printed head phantom with anatomically realistic geometry and continuously varying skull resistivity distribution for electrical impedance tomography. Scientific Reports, 2017, 7, 4608.	1.6	30
44	Combining additive manufacturing and catalysis: a review. Catalysis Science and Technology, 2017, 7, 3421-3439.	2.1	96
45	Laserless Additive Manufacturing of Membrane Electrode Assemblies. ChemElectroChem, 2017, 4, 2760-2763.	1.7	6
46	Recent Advances in Analytical Chemistry by 3D Printing. Analytical Chemistry, 2017, 89, 57-70.	3.2	260
47	Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. Journal of Membrane Science, 2017, 523, 596-613.	4.1	310
48	Preparation, morphology and superior performances of biobased thermoplastic elastomer by in situ dynamical vulcanization for 3D-printed materials. Polymer, 2017, 108, 11-20.	1.8	60
49	High performance, low cost carbon nanotube yarn based 3D printed electrodes compatible with a conventional screen printed electrode system., 2017, 2017, 100-105.		5
50	Fabrication and Characterization of 3D-Printed Highly-Porous 3D LiFePO4 Electrodes by Low Temperature Direct Writing Process. Materials, 2017, 10, 934.	1.3	59
51	Resistivity and Its Anisotropy Characterization of 3D-Printed Acrylonitrile Butadiene Styrene Copolymer (ABS)/Carbon Black (CB) Composites. Applied Sciences (Switzerland), 2017, 7, 20.	1.3	82
52	3D printing of photopolymers. Polymer Chemistry, 2018, 9, 1530-1540.	1.9	260
53	Anodic stripping voltammetric determination of zinc at a 3-D printed carbon nanofiber–graphite–polystyrene electrode using a carbon pseudo-reference electrode. Sensors and Actuators B: Chemical, 2018, 267, 476-482.	4.0	62
54	3D-Printed Graphene/Polylactic Acid Electrodes Promise High Sensitivity in Electroanalysis. Analytical Chemistry, 2018, 90, 5753-5757.	3.2	205
55	(Bio)Analytical chemistry enabled by 3D printing: Sensors and biosensors. TrAC - Trends in Analytical Chemistry, 2018, 103, 110-118.	5.8	166

#	ARTICLE	IF	CITATIONS
56	Density dependent structural phase transition for confined copper: origin of the layering. Physical Chemistry Chemical Physics, 2018, 20, 9337-9342.	1.3	8
57	Multifaceted polymeric materials in threeâ€dimensional processing (3DP) technologies: Current progress and prospects. Polymers for Advanced Technologies, 2018, 29, 1586-1602.	1.6	8
58	Rapid fabrication of semiellipsoid microlenses using 3D-printing and roll-to-roll imprinting process. Microsystem Technologies, 2018, 24, 3437-3441.	1.2	5
59	Fabrication of fine metal patterns using an additive material extrusion process with a molten metal. Microelectronic Engineering, 2018, 191, 10-15.	1.1	6
60	3Dâ€printed Electrodes for Sensing of Biologically Active Molecules. Electroanalysis, 2018, 30, 1319-1326.	1.5	50
61	Galvanic exchange platinization reveals laser-inscribed pattern in 3D-LAM-printed steel. Journal of Solid State Electrochemistry, 2018, 22, 1755-1762.	1.2	1
62	Selective electroplating of 3D printed parts. Additive Manufacturing, 2018, 20, 164-172.	1.7	52
63	3D Printing of Artificial Leaf with Tunable Hierarchical Porosity for CO ₂ Photoreduction. Chemistry of Materials, 2018, 30, 799-806.	3.2	66
64	Continuous emulsion copolymerization processes at mild conditions in a 3D-printed tubular bended reactor. Chemical Engineering Journal, 2018, 338, 311-322.	6.6	20
65	Recent advances in direct ink writing of electronic components and functional devices. Progress in Additive Manufacturing, 2018, 3, 65-86.	2.5	67
66	3D printing of Zr-based bulk metallic glasses with complex geometries and enhanced catalytic properties. Intermetallics, 2018, 94, 22-28.	1.8	75
67	Additive manufacturing of electrochemical interfaces: Simultaneous detection of biomarkers. Applied Materials Today, 2018, 12, 43-50.	2.3	36
68	Three-Dimensional Printing of Polyaniline/Reduced Graphene Oxide Composite for High-Performance Planar Supercapacitor. ACS Applied Materials & Samp; Interfaces, 2018, 10, 10437-10444.	4.0	175
69	Selfâ€Contained Polymer/Metal 3D Printed Electrochemical Platform for Tailored Water Splitting. Advanced Functional Materials, 2018, 28, 1700655.	7.8	98
70	Three-dimensional carbon architectures for electrochemical capacitors. Journal of Colloid and Interface Science, 2018, 509, 529-545.	5.0	67
71	Design and Preparation of Microfluidics Device. Integrated Analytical Systems, 2018, , 1-42.	0.4	1
72	Three-dimensional printing of shape memory hydrogels with internal structure for drug delivery. Materials Science and Engineering C, 2018, 84, 44-51.	3.8	69
73	3D-Printed Electrolyzer for the Conversion of Glycerol into Tartronate on Pd Nanocubes. ACS Sustainable Chemistry and Engineering, 2018, 6, 1202-1207.	3.2	36

#	Article	IF	CITATIONS
74	Floating membraneless PV-electrolyzer based on buoyancy-driven product separation. International Journal of Hydrogen Energy, 2018, 43, 1224-1238.	3.8	54
75	Current Status and Challenges in Printed Batteries: Toward Form Factor-Free, Monolithic Integrated Power Sources. ACS Energy Letters, 2018, 3, 220-236.	8.8	139
76	An assessment of the effect of printing orientation, density, and filler pattern on the compressive performance of 3D printed ABS structures by fuse deposition. International Journal of Advanced Manufacturing Technology, 2018, 95, 1685-1695.	1.5	37
77	A Novel Sensing Chip for Probing Chlorine Permeation into Simulated Produce Cracks. Advanced Materials Interfaces, 2018, 5, 1800119.	1.9	1
78	Enhanced Mass Transfer and Improved Catalyst Recovery in a Stirred Reactor by Polymeric Ionic Liquids Modified 3D Printed Devices. Advanced Materials Technologies, 2019, 4, 1800515.	3.0	12
79	Physicochemical characterisation of reduced graphene oxide for conductive thin films. RSC Advances, 2018, 8, 37540-37549.	1.7	14
80	3D Printed Graphene Electrodes' Electrochemical Activation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40294-40301.	4.0	188
81	Advances in Optical Sensing and Bioanalysis Enabled by 3D Printing. ACS Sensors, 2018, 3, 2475-2491.	4.0	56
82	Multimaterial 3D-Printed Water Electrolyzer with Earth-Abundant Electrodeposited Catalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 16968-16975.	3.2	61
83	Disubstituted Aminoanthraquinone-Based Photoinitiators for Free Radical Polymerization and Fast 3D Printing under Visible Light. Macromolecules, 2018, 51, 10104-10112.	2.2	38
84	Estudo comparativo entre PETG e PLA para Impressão 3D através de caracterização térmica, quÃmica e mecânica. Revista Materia, 2018, 23, .	0.1	20
85	Disubstituted Aminoanthraquinone-Based Multicolor Photoinitiators: Photoinitiation Mechanism and Ability of Cationic Polymerization under Blue, Green, Yellow, and Red LEDs. Macromolecules, 2018, 51, 8165-8173.	2.2	31
86	Bio-Based Polymers for 3D Printing of Bioscaffolds. Polymer Reviews, 2018, 58, 668-687.	5. 3	67
87	A novel fluorescent immunochromatographic strip combined with pocket fluorescence observation instrument for rapid detection of PRV. Analytical and Bioanalytical Chemistry, 2018, 410, 7655-7661.	1.9	9
88	Ceramic Robocasting: Recent Achievements, Potential, and Future Developments. Advanced Materials, 2018, 30, e1802404.	11.1	218
89	3D printable conductive materials for the fabrication of electrochemical sensors: A mini review. Electrochemistry Communications, 2018, 96, 27-31.	2.3	161
90	Patterned Carbon Nitride–Based Hybrid Aerogel Membranes via 3D Printing for Broadband Solar Wastewater Remediation. Advanced Functional Materials, 2018, 28, 1801121.	7.8	101
91	One-step three-dimensional printing of enzyme/substrate–incorporated devices for glucose testing. Analytica Chimica Acta, 2018, 1036, 133-140.	2.6	18

#	Article	IF	CITATIONS
92	3D-printed miniaturized fluidic tools in chemistry and biology. TrAC - Trends in Analytical Chemistry, 2018, 106, 37-52.	5.8	52
93	3D Printed Adapter to Commercial Electronic Micropipettes for Electroanalysis Directly Inside Disposable Tips. Electroanalysis, 2018, 30, 2434-2439.	1.5	3
94	Trinity of Three-Dimensional (3D) Scaffold, Vibration, and 3D Printing on Cell Culture Application: A Systematic Review and Indicating Future Direction. Bioengineering, 2018, 5, 57.	1.6	39
95	Millimeter-scale lithium ion battery packaging for high-temperature sensing applications. Journal of Power Sources, 2018, 399, 179-185.	4.0	7
96	3D Printed Electrodes for Improved Gas Reactant Transport for Electrochemical Reactions. 3D Printing and Additive Manufacturing, 2018, 5, 215-219.	1.4	9
97	Co-Deposition of a Hydrogel/Calcium Phosphate Hybrid Layer on 3D Printed Poly(Lactic Acid) Scaffolds via Dip Coating: Towards Automated Biomaterials Fabrication. Polymers, 2018, 10, 275.	2.0	21
98	Peroxidase-mimicking PtNP-coated, 3D-printed multi-well plate for rapid determination of glucose and lactate in clinical samples. Sensors and Actuators B: Chemical, 2018, 269, 46-53.	4.0	5
99	Development of High-Capacity Periodate Battery with Three-Dimensional-Printed Casing Accommodating Replaceable Flexible Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 30257-30264.	4.0	16
100	Hierarchical Design of NiOOH@Amorphous Ni–P Bilayer on a 3D Mesh Substrate for High-Efficiency Oxygen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2018, 10, 30273-30282.	4.0	27
101	3D structured nanocomposites by FDM process: a novel approach for large-scale photocatalytic applications. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	32
102	Design, Construction and Evaluation of a 3D Printed Electrochemical Flow Cell for the Synthesis of Magnetite Nanoparticles. Journal of the Electrochemical Society, 2018, 165, H688-H697.	1.3	19
103	3D Printed Porous Bone Constructs. , 2018, , 57-66.		1
104	Smart Portable Devices Suitable for Cultural Heritage: A Review. Sensors, 2018, 18, 2434.	2.1	16
105	Fabrication of three-dimensional electrical patterns by swollen-off process: An evolution of the lift-off process. Current Applied Physics, 2018, 18, 1235-1239.	1.1	1
106	The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes. Scientific Reports, 2018, 8, 9135.	1.6	95
107	3D printing for electroanalysis: From multiuse electrochemical cells to sensors. Analytica Chimica Acta, 2018, 1033, 49-57.	2.6	196
108	Improvement of quality of 3D printed objects by elimination of microscopic structural defects in fused deposition modeling. PLoS ONE, 2018, 13, e0198370.	1.1	136
109	Stimuli-chromism of photoswitches in smart polymers: Recent advances and applications as chemosensors. Progress in Polymer Science, 2019, 98, 101149.	11.8	179

#	Article	IF	Citations
110	Tunable Conducting Polymers: Toward Sustainable and Versatile Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 14321-14340.	3.2	94
111	3D-Printed Low-Cost Spectroelectrochemical Cell for In Situ Raman Measurements. Analytical Chemistry, 2019, 91, 10386-10389.	3.2	32
112	Thick Electrode Batteries: Principles, Opportunities, and Challenges. Advanced Energy Materials, 2019, 9, 1901457.	10.2	407
113	Polymer Design for 3D Printing Elastomers: Recent Advances in Structure, Properties, and Printing. Progress in Polymer Science, 2019, 97, 101144.	11.8	169
114	3D-printed interdigitated graphene framework as superior support of metal oxide nanostructures for remarkable micro-pseudocapacitors. Electrochimica Acta, 2019, 319, 245-252.	2.6	44
115	3D printed microstructured Au/TiO2 catalyst for hydrogen photoproduction. Applied Materials Today, 2019, 16, 265-272.	2.3	48
116	Mechanical, electrical, and piezoresistivity behaviors of additively manufactured acrylonitrile butadiene styrene/carbon nanotube nanocomposites. Smart Materials and Structures, 2019, 28, 084004.	1.8	26
117	Robust Surface-Engineered Tape-Cast and Extrusion Methods to Fabricate Electrically-Conductive Poly(vinylidene fluoride)/Carbon Nanotube Filaments for Corrosion-Resistant 3D Printing Applications. Scientific Reports, 2019, 9, 9618.	1.6	12
118	3D Printing for Electrocatalytic Applications. Joule, 2019, 3, 1835-1849.	11.7	80
119	Preparation of Highly Porous Carbonous Electrodes by Selective Laser Sintering. ACS Applied Energy Materials, 2019, 2, 1314-1318.	2.5	19
120	Digital and lean development method for 3D-printed reactors based on CAD modeling and CFD simulation. Chemical Engineering Research and Design, 2019, 152, 71-84.	2.7	27
121	3D printing of conjugated polymers. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1592-1605.	2.4	40
122	Writing with a nano-grooved pin. Science China Technological Sciences, 2019, 62, 1649-1654.	2.0	0
123	3D Printing of Microâ€Architected Al/CuOâ€Based Nanothermite for Enhanced Combustion Performance. Advanced Engineering Materials, 2019, 21, 1900825.	1.6	34
124	3D Printed Graphene Electrodes Modified with Prussian Blue: Emerging Electrochemical Sensing Platform for Peroxide Detection. ACS Applied Materials & Emerging Electrochemical Sensing Platform for Peroxide Detection.	4.0	89
125	A 3Dâ€Printed Electrochemical Water Splitting Cell. Advanced Materials Technologies, 2019, 4, 1900433.	3.0	20
126	A 3D printing-based portable photoelectrochemical sensing device using a digital multimeter. Analyst, The, 2019, 144, 5389-5393.	1.7	13
128	Complete Additively Manufactured (3D-Printed) Electrochemical Sensing Platform. Analytical Chemistry, 2019, 91, 12844-12851.	3.2	176

#	Article	IF	CITATIONS
129	Fabrication of Soft Sensor Using Laser Processing Techniques: For the Alternative 3D Printing Process. Materials, 2019, 12, 2955.	1.3	9
130	Preserving Fine Structure Details and Dramatically Enhancing Electron Transfer Rates in Graphene 3D-Printed Electrodes via Thermal Annealing: Toward Nitroaromatic Explosives Sensing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 35371-35375.	4.0	82
131	3D Printing of Mixed Matrix Films Based on Metal–Organic Frameworks and Thermoplastic Polyamide 12 by Selective Laser Sintering for Water Applications. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40564-40574.	4.0	75
132	Low-Temperature Deposition Manufacturing: A Versatile Material Extrusion-Based 3D Printing Technology for Fabricating Hierarchically Porous Materials. Journal of Nanomaterials, 2019, 2019, 1-14.	1.5	12
133	3Dâ€printed Portable Platform for Mechanized Handling and Injection of Microvolumes Coupled to Electrochemical Detection. Electroanalysis, 2019, 31, 771-777.	1.5	22
134	3D printed electrochemical energy storage devices. Journal of Materials Chemistry A, 2019, 7, 4230-4258.	5.2	232
135	Single-operation, multi-phase additive manufacture of electro-chemical double layer capacitor devices. Additive Manufacturing, 2019, 28, 344-353.	1.7	18
136	Impurities in graphene/PLA 3D-printing filaments dramatically influence the electrochemical properties of the devices. Chemical Communications, 2019, 55, 8374-8377.	2.2	47
137	Unusual metals as electrode materials for electrochemical sensors. Current Opinion in Electrochemistry, 2019, 16, 157-163.	2.5	14
138	Insulating 3D-printed templates are turned into metallic electrodes: application as electrodes for glycerol electrooxidation. RSC Advances, 2019, 9, 15158-15161.	1.7	18
139	Recent advances on 3D printing graphene-based composites. Nano Materials Science, 2019, 1, 101-115.	3.9	143
140	Stereolithographic 3D Printing-Based Hierarchically Cellular Lattices for High-Performance Quasi-Solid Supercapacitor. Nano-Micro Letters, 2019, 11, 46.	14.4	62
141	Printed supercapacitors: materials, printing and applications. Chemical Society Reviews, 2019, 48, 3229-3264.	18.7	360
142	Metal–organic framework mixed-matrix coatings on 3D printed devices. Applied Materials Today, 2019, 16, 21-27.	2.3	54
143	Modular 3D Printed Compressed Air Driven Continuousâ€Flow Systems for Chemical Synthesis. European Journal of Organic Chemistry, 2019, 2019, 3783-3787.	1.2	26
144	Customizable 3D-printed stirrers for investigation, optimization and scale-up processes of batch emulsion copolymerizations. Chemical Engineering Science, 2019, 206, 50-62.	1.9	12
145	3D-printed Ag/AgCl pseudo-reference electrodes. Electrochemistry Communications, 2019, 103, 104-108.	2.3	66
146	MoS ₂ versatile spray-coating of 3D electrodes for the hydrogen evolution reaction. Nanoscale, 2019, 11, 9888-9895.	2.8	24

#	Article	IF	CITATIONS
147	Recent Progress on Graphene/Polyaniline Composites for High-performance Supercapacitors. Materials, 2019, 12, 1451.	1.3	40
148	Atomic-level crystallization in selective laser melting fabricated Zr-based metallic glasses. Physical Chemistry Chemical Physics, 2019, 21, 12406-12413.	1.3	20
149	Single-step fabrication of an integrated 3D-printed device for electrochemical sensing applications. Electrochemistry Communications, 2019, 103, 100-103.	2.3	99
150	Atomic Layer Deposition as a General Method Turns any 3Dâ€Printed Electrode into a Desired Catalyst: Case Study in Photoelectrochemisty. Advanced Energy Materials, 2019, 9, 1900994.	10.2	28
151	Monoliths with MFI zeolite layers prepared with the assistance of 3D printing: Characterization and performance in the gas phase isomerization of \hat{l}_{\pm} -pinene. Applied Catalysis A: General, 2019, 579, 75-85.	2.2	21
152	Comparative study on the electrochemical performance of LiFePO4 cathodes fabricated by low temperature 3D printing, direct ink writing and conventional roller coating process. Ceramics International, 2019, 45, 14188-14197.	2.3	39
153	Advances on threeâ€dimensional electrodes for microâ€supercapacitors: A miniâ€review. InformaÄnÃ-Materiály, 2019, 1, 74-84.	8.5	129
154	3D printed carbon-ceramic structures for enhancing photocatalytic properties. Ceramics International, 2019, 45, 15223-15229.	2.3	26
155	3D-printed flexible device combining sampling and detection of explosives. Sensors and Actuators B: Chemical, 2019, 292, 308-313.	4.0	82
156	Chemistry from 3D printed objects. Nature Reviews Chemistry, 2019, 3, 305-314.	13.8	93
157	Nanomaterials in Advanced, High-Performance Aerogel Composites: A Review. Polymers, 2019, 11, 726.	2.0	108
158	A versatile and membrane-less electrochemical reactor for the electrolysis of water and brine. Energy and Environmental Science, 2019, 12, 1592-1604.	15.6	80
159	One-step electrodeposition of copper on conductive 3D printed objects. Additive Manufacturing, 2019, 27, 318-326.	1.7	61
160	Surface Modification of 3D Printed PLA Objects by Fused Deposition Modeling: A Review. Colloids and Interfaces, 2019, 3, 43.	0.9	127
161	Electrolysis Activation of Fused-Filament-Fabrication 3D-Printed Electrodes for Electrochemical and Spectroelectrochemical Analysis. Analytical Chemistry, 2019, 91, 5553-5557.	3.2	91
162	Nextâ€Generation Additive Manufacturing: Tailorable Graphene/Polylactic(acid) Filaments Allow the Fabrication of 3D Printable Porous Anodes for Utilisation within Lithiumâ€ion Batteries. Batteries and Supercaps, 2019, 2, 448-453.	2.4	52
163	How aluminum changed the world: A metallurgical revolution through technological and cultural perspectives. Technological Forecasting and Social Change, 2019, 143, 101-113.	6.2	95
164	The capacitance and electron transfer of 3D-printed graphene electrodes are dramatically influenced by the type of solvent used for pre-treatment. Electrochemistry Communications, 2019, 102, 83-88.	2.3	96

#	Article	IF	CITATIONS
165	Three-dimensionally printed electrochemical systems for biomedical analytical applications. Current Opinion in Electrochemistry, 2019, 14, 133-137.	2.5	35
166	3D Printed Highâ€Performance Lithium Metal Microbatteries Enabled by Nanocellulose. Advanced Materials, 2019, 31, e1807313.	11.1	226
167	Nextâ€Generation Additive Manufacturing of Complete Standalone Sodium″on Energy Storage Architectures. Advanced Energy Materials, 2019, 9, 1803019.	10.2	48
168	Cavity Carbon-Nanopipette Electrodes for Dopamine Detection. Analytical Chemistry, 2019, 91, 4618-4624.	3.2	72
169	Magnesium Nanocomposite Coatings for Protection of a Lightweight Al Alloy: Modes of Corrosion Protection, Mechanisms of Failure. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800817.	0.8	6
170	Classification of challenges in 3D printing for combined electrochemical and microfluidic applications: a review. Rapid Prototyping Journal, 2019, 25, 1328-1346.	1.6	12
171	The optimization of the production procedure in relation to the mechanical properties of additively manufactured parts. Materials Today: Proceedings, 2019, 19, 1008-1013.	0.9	4
172	Shape-driven arrest of coffee stain effect drives the fabrication of carbon-nanotube-graphene-oxide inks for printing embedded structures and temperature sensors. Nanoscale, 2019, 11, 23402-23415.	2.8	16
173	Direct 3D printing of a graphene oxide hydrogel for fabrication of a high areal specific capacitance microsupercapacitor. RSC Advances, 2019, 9, 29384-29395.	1.7	64
174	Colloidal nanoparticle inks for printing functional devices: emerging trends and future prospects. Journal of Materials Chemistry A, 2019, 7, 23301-23336.	5.2	94
175	Niâ^'Fe (Oxy)hydroxide Modified Graphene Additive Manufactured (3Dâ€Printed) Electrochemical Platforms as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 5633-5641.	1.7	32
176	Accelerating Fuel Cell Development with Additive Manufacturing Technologies: State of the Art, Opportunities and Challenges. Fuel Cells, 2019, 19, 636-650.	1.5	40
177	Double network shape memory hydrogels activated by near-infrared with high mechanical toughness, nontoxicity, and 3D printability. Chemical Engineering Journal, 2019, 356, 934-949.	6.6	40
178	3D printing using plant-derived cellulose and its derivatives: A review. Carbohydrate Polymers, 2019, 203, 71-86.	5.1	232
179	Additive Manufacturing of Biomaterials â^ The Evolution of Rapid Prototyping. Advanced Engineering Materials, 2019, 21, 1800511.	1.6	103
180	Additive manufacturing of thermoelectric materials via fused filament fabrication. Applied Materials Today, 2019, 15, 77-82.	2.3	44
181	Profiled Ion Exchange Membranes: A Comprehensible Review. International Journal of Molecular Sciences, 2019, 20, 165.	1.8	71
182	Single-step fabrication of electrochemical flow cells utilizing multi-material 3D printing. Electrochemistry Communications, 2019, 99, 56-60.	2.3	104

#	Article	IF	Citations
183	Ink-based 3D printing technologies for graphene-based materials: a review. Advanced Composites and Hybrid Materials, 2019, 2, 1-33.	9.9	136
184	Review of Emerging Additive Manufacturing Technologies in 3D Printing of Cementitious Materials in the Construction Industry. Frontiers in Built Environment, 2019, 4, .	1.2	82
185	Mechanistische Studien in der Photokatalyse. Angewandte Chemie, 2019, 131, 3768-3786.	1.6	115
186	Enhanced performance of 3D printed graphene electrodes after electrochemical pre-treatment: Role of exposed graphene sheets. Sensors and Actuators B: Chemical, 2019, 281, 837-848.	4.0	99
187	Bio-based polyesters based on 2,5-furandicarboxylic acid as 3D-printing materials: Design, preparation and performances. European Polymer Journal, 2019, 114, 476-484.	2.6	14
188	Mechanistic Studies in Photocatalysis. Angewandte Chemie - International Edition, 2019, 58, 3730-3747.	7.2	559
189	Compressive Properties of 3D Printed Polylactic Acid Matrix Composites Reinforced by Short Fibers and SiC Nanowires. Advanced Engineering Materials, 2019, 21, 1800539.	1.6	22
190	Methanol-to-olefin conversion on 3D-printed ZSM-5 monolith catalysts: Effects of metal doping, mesoporosity and acid strength. Microporous and Mesoporous Materials, 2019, 276, 1-12.	2.2	64
191	On the adoption of additive manufacturing in healthcare: a literature review. Journal of Manufacturing Technology Management, 2019, 30, 48-69.	3.3	49
192	Advanced 3D printing technologies for the aircraft industry: a fuzzy systematic approach for assessing the critical factors. International Journal of Advanced Manufacturing Technology, 2019, 105, 4059-4069.	1.5	79
193	Electrochemical Energy Storage Using Batteries, Superconductors and Hybrid Technologies. , 2020, , 248-254.		2
194	3D Printing of Carbon-Based Conductive Materials for Electrochemical Energy Storage (EES) Application. , 2020, , 884-894.		1
195	Nanomaterials., 2020,, 515-539.		3
196	Three-dimensional printing of porous carbon structures with tailorable pore sizes. Catalysis Today, 2020, 347, 2-9.	2.2	24
197	A novel all-3D-printed cell-on-a-chip device as a useful electroanalytical tool: Application to the simultaneous voltammetric determination of caffeine and paracetamol. Talanta, 2020, 208, 120388.	2.9	70
198	Development of additively manufacturable and electrically conductive graphite–polymer composites. Progress in Additive Manufacturing, 2020, 5, 153-162.	2.5	28
199	Introduction to 3D and 4D printing technology: State of the art and recent trends., 2020,, 1-24.		27
200	Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries. Applied Energy, 2020, 257, 114002.	5.1	66

#	Article	IF	CITATIONS
201	Design of novel, simple, and inexpensive 3D printingâ€based miniaturized electrochemical platform containing embedded disposable detector for analytical applications. Electrophoresis, 2020, 41, 278-286.	1.3	20
202	Development of fabrics by digital light processing three-dimensional printing technology and using a polyurethane acrylate photopolymer. Textile Reseach Journal, 2020, 90, 847-856.	1.1	12
203	3D and 4D printing of pH-responsive and functional polymers and their composites. , 2020, , 85-117.		30
204	Functional Inks for Printable Energy Storage Applications based on 2 D Materials. ChemSusChem, 2020, 13, 1330-1353.	3.6	25
205	Additively manufactured graphitic electrochemical sensing platforms. Chemical Engineering Journal, 2020, 381, 122343.	6.6	77
206	3Dâ€printable thermochromic acrylic resin with excellent mechanical performance. Journal of Applied Polymer Science, 2020, 137, 48277.	1.3	9
207	Additive Manufacturing of Batteries. Advanced Functional Materials, 2020, 30, 1906244.	7.8	176
209	3D Printing of Additive-Free 2D Ti ₃ C ₂ T _{<i>x</i>} (MXene) Ink for Fabrication of Micro-Supercapacitors with Ultra-High Energy Densities. ACS Nano, 2020, 14, 640-650.	7.3	285
210	Comparison of activation processes for 3D printed PLA-graphene electrodes: electrochemical properties and application for sensing of dopamine. Analyst, The, 2020, 145, 1207-1218.	1.7	113
211	3D-Printed electrodes for membraneless water electrolysis. Sustainable Energy and Fuels, 2020, 4, 213-225.	2.5	52
212	Electrochemically driven multi-material 3D-printing. Applied Materials Today, 2020, 18, 100530.	2.3	21
213	3D-printed graphene direct electron transfer enzyme biosensors. Biosensors and Bioelectronics, 2020, 151, 111980.	5.3	113
214	Material Extrusion-Based Additive Manufacturing with Blends of Polypropylene and Hydrocarbon Resins. ACS Applied Polymer Materials, 2020, 2, 911-921.	2.0	42
215	Direct Conversion of McDonald's Waste Cooking Oil into a Biodegradable High-Resolution 3D-Printing Resin. ACS Sustainable Chemistry and Engineering, 2020, 8, 1171-1177.	3.2	42
216	Digital light processing-stereolithography three-dimensional printing of yttria-stabilized zirconia. Ceramics International, 2020, 46, 8745-8753.	2.3	53
217	Miniaturization and 3D Printing of Bioreactors: A Technological Mini Review. Micromachines, 2020, 11, 853.	1.4	6
218	Fabrication of 3D Ordered Structures with Multiple Materials via Macroscopic Supramolecular Assembly. Advanced Science, 2020, 7, 2002025.	5.6	25
219	Metal-plated 3D-printed electrode for electrochemical detection of carbohydrates. Electrochemistry Communications, 2020, 120, 106827.	2.3	46

#	Article	IF	CITATIONS
220	3D printing pen using conductive filaments to fabricate affordable electrochemical sensors for trace metal monitoring. Journal of Electroanalytical Chemistry, 2020, 876, 114701.	1.9	27
221	Surface modified 3D printed carbon bioelectrodes for glucose/O2 enzymatic biofuel cell: Comparison and optimization. Sustainable Energy Technologies and Assessments, 2020, 42, 100811.	1.7	13
222	3D-printing for electrolytic processes and electrochemical flow systems. Journal of Materials Chemistry A, 2020, 8, 21902-21929.	5.2	37
223	3D Printing of Highâ€Performance Isocyanate Ester Thermosets. Macromolecular Materials and Engineering, 2020, 305, 2000397.	1.7	16
224	A 3D Image Encryption Algorithm Based on the Chaotic System and the Image Segmentation. IEEE Access, 2020, 8, 145995-146005.	2.6	19
225	3D-printed electrochemical sensors: A new horizon for measurement of biomolecules. Current Opinion in Electrochemistry, 2020, 20, 78-81.	2.5	71
226	A Review on New 3-D Printed Materials' Geometries for Catalysis and Adsorption: Paradigms from Reforming Reactions and CO2 Capture. Nanomaterials, 2020, 10, 2198.	1.9	22
227	Uranium detection by 3D-printed titanium structures: Towards decentralized nuclear forensic applications. Applied Materials Today, 2020, 21, 100881.	2.3	2
228	Advancements in Therapeutics via 3D Printed Multifunctional Architectures from Dispersed 2D Nanomaterial Inks. Small, 2020, 16, e2004900.	5.2	17
229	3D printed hybrid-dimensional electrodes for flexible micro-supercapacitors with superior electrochemical behaviours. Virtual and Physical Prototyping, 2020, 15, 511-519.	5.3	43
230	Biomedical Implants for Regenerative Therapies. , 2020, , .		2
231	3D printing of metal-based materials for renewable energy applications. Nano Research, 2021, 14, 2105-2132.	5.8	31
232	Customizable Heterogeneous Catalysts: Nonchanneled Advanced Monolithic Supports Manufactured by 3D-Printing for Improved Active Phase Coating Performance. ACS Applied Materials & Diterfaces, 2020, 12, 54573-54584.	4.0	31
233	A comparative experimental study of additive manufacturing feasibility faced to injection molding process for polymeric parts. International Journal of Advanced Manufacturing Technology, 2020, 109, 2663-2677.	1.5	11
234	Surface Etching of 3D Printed Poly(lactic acid) with NaOH: A Systematic Approach. Polymers, 2020, 12, 1711.	2.0	29
235	Preparation of polycarbonate/poly(lactic acid) with improved printability and processability for fused deposition modeling. Polymers for Advanced Technologies, 2020, 31, 2848-2862.	1.6	19
236	Identification of digital technologies and digitalisation trends in the mining industry. International Journal of Mining Science and Technology, 2020, 30, 747-757.	4.6	77
237	Inkjet and Extrusion Printing for Electrochemical Energy Storage: A Minireview. Advanced Materials Technologies, 2020, 5, .	3.0	51

#	ARTICLE	IF	CITATIONS
238	Reversible Structure Engineering of Bioinspired Anisotropic Surface for Droplet Recognition and Transportation. Advanced Science, 2020, 7, 2001650.	5.6	37
239	Direct ink writing advances in multi-material structures for a sustainable future. Journal of Materials Chemistry A, 2020, 8, 15646-15657.	5 . 2	167
240	Sustainable Printed Electrochemical Platforms for Greener Analytics. Frontiers in Chemistry, 2020, 8, 644.	1.8	29
241	Recent progresses of 3D printing technologies for structural energy storage devices. Materials Today Nano, 2020, 12, 100094.	2.3	42
242	Production of 3D-printed disposable electrochemical sensors for glucose detection using a conductive filament modified with nickel microparticles. Analytica Chimica Acta, 2020, 1132, 1-9.	2.6	58
243	Smart Manufacturing Process of Carbon-Based Low-Dimensional Structures and Fiber-Reinforced Polymer Composites for Engineering Applications. Journal of Materials Engineering and Performance, 2020, 29, 4162-4186.	1.2	14
244	Simultaneous determination of lead and antimony in gunshot residue using a 3D-printed platform working as sampler and sensor. Analytica Chimica Acta, 2020, 1130, 126-136.	2.6	31
245	Metal 3D printing technology for functional integration of catalytic system. Nature Communications, 2020, 11, 4098.	5 . 8	82
246	Manufacturing Strategies for Solid Electrolyte in Batteries. Frontiers in Energy Research, 2020, 8, .	1.2	38
247	Additive Manufacturing of Piezoelectric Materials. Advanced Functional Materials, 2020, 30, 2005141.	7.8	195
248	Implementing FDM 3D Printing Strategies Using Natural Fibers to Produce Biomass Composite. Materials, 2020, 13, 4065.	1.3	64
249	Graphitic carbon nitride nanotubes: a new material for emerging applications. RSC Advances, 2020, 10, 34059-34087.	1.7	35
250	Selfâ€Adaptive Magnetic Photonic Nanochain Cilia Arrays. Advanced Functional Materials, 2020, 30, 2005243.	7.8	28
251	Stereolithography Three-Dimensional Printing Solid Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. Nano Letters, 2020, 20, 7136-7143.	4.5	79
252	Structural Innovations in Printed, Flexible, and Stretchable Electronics. Advanced Materials Technologies, 2020, 5, .	3.0	57
253	Voltammetric Determination of Pb(II) by a Ca-MOF-Modified Carbon Paste Electrode Integrated in a 3D-Printed Device. Sensors, 2020, 20, 4442.	2.1	12
254	Development of 3D-Printed Layered PLGA Films for Drug Delivery and Evaluation of Drug Release Behaviors. AAPS PharmSciTech, 2020, 21, 256.	1.5	21
255	Three-Dimensional Architectures in Electrochemical Capacitor Applications – Insights, Opinions, and Perspectives. Frontiers in Energy Research, 2020, 8, .	1.2	10

#	Article	IF	CITATIONS
256	Chemical Compatibility of Battery Electrolytes with Rapid Prototyping Materials and Adhesives. Industrial & Engineering Chemistry Research, 2020, 59, 15948-15954.	1.8	1
257	3D-Printed Immunosensor Arrays for Cancer Diagnostics. Sensors, 2020, 20, 4514.	2.1	32
258	Fabrication of a 3D-Printed Porous Junction for Ag AgCl gel-KCl Reference Electrode. Chemosensors, 2020, 8, 130.	1.8	9
259	Voltammetric pH Measurements in Unadulterated Foodstuffs, Urine, and Serum with 3D-Printed Graphene/Poly(Lactic Acid) Electrodes. Analytical Chemistry, 2020, 92, 14999-15006.	3.2	25
260	Current progress on the 3D printing of thermosets. Advanced Composites and Hybrid Materials, 2020, 3, 462-472.	9.9	57
261	Inherent Impurities in Graphene/Polylactic Acid Filament Strongly Influence on the Capacitive Performance of 3Dâ€Printed Electrode. Chemistry - A European Journal, 2020, 26, 15746-15753.	1.7	34
262	3D Printed Fully Recycled TiO2-Polystyrene Nanocomposite Photocatalysts for Use against Drug Residues. Nanomaterials, 2020, 10, 2144.	1.9	23
263	Influence of Internal Innovative Architecture on the Mechanical Properties of 3D Polymer Printed Parts. Polymers, 2020, 12, 1129.	2.0	13
264	Emerging Applications of Additive Manufacturing in Biosensors and Bioanalytical Devices. Advanced Materials Technologies, 2020, 5, .	3.0	27
265	Nanoâ€silica modification of UVâ€curable EVA resin for additive manufacturing. Polymer Engineering and Science, 2020, 60, 1579-1587.	1.5	2
266	Direct Ink Writing of Graphene–Cobalt Ferrite Hybrid Nanomaterial for Supercapacitor Electrodes. Journal of Electronic Materials, 2020, 49, 4671-4679.	1.0	16
267	Greener Routes to Biomass Waste Valorization: Lignin Transformation Through Electrocatalysis for Renewable Chemicals and Fuels Production. ChemSusChem, 2020, 13, 4214-4237.	3.6	123
268	Metal–organic-frameworks on 3D-printed electrodes: <i>iin situ</i> electrochemical transformation towards the oxygen evolution reaction. Sustainable Energy and Fuels, 2020, 4, 3732-3738.	2.5	15
269	Recent Progress in 3D Printing of 2D Materialâ€Based Macrostructures. Advanced Materials Technologies, 2020, 5, 1901066.	3.0	27
270	3D-printed biosensors for electrochemical and optical applications. TrAC - Trends in Analytical Chemistry, 2020, 128, 115933.	5.8	92
271	Electrochemical analysis of organic compounds in solid-state: applications of voltammetry of immobilized microparticles in bioanalysis and cultural heritage science. Journal of Solid State Electrochemistry, 2020, 24, 2633-2652.	1.2	6
272	ABS and PLA sub-terahertz absorbers for 3D-printing technology. Journal of Physics: Conference Series, 2020, 1499, 012008.	0.3	1
273	On 4D printing as a revolutionary fabrication technique for smart structures. Smart Materials and Structures, 2020, 29, 083001.	1.8	41

#	Article	IF	CITATIONS
274	Tunable Roomâ€Temperature Synthesis of ReS ₂ Bicatalyst on 3D―and 2Dâ€Printed Electrodes for Photo―and Electrochemical Energy Applications. Advanced Functional Materials, 2020, 30, 1910193.	7.8	45
275	3D printing of cellular materials for advanced electrochemical energy storage and conversion. Nanoscale, 2020, 12, 7416-7432.	2.8	56
276	Micro-Computed Tomography to Assess the Processing Quality of the Additive Manufacturing of Spiral Microcoils. 3D Printing and Additive Manufacturing, 2020, 7, 70-77.	1.4	2
277	Versatile additively manufactured (3D printed) wall-jet flow cell for high performance liquid chromatography-amperometric analysis: application to the detection and quantification of new psychoactive substances (NBOMes). Analytical Methods, 2020, 12, 2152-2165.	1.3	22
278	Intensifying Diffusion-Limited Reactions by Using Static Mixer Electrodes in a Novel Electrochemical Flow Cell. Journal of the Electrochemical Society, 2020, 167, 063502.	1.3	7
279	On mechanical and thermal properties of cryo-milled primary recycled ABS. Sadhana - Academy Proceedings in Engineering Sciences, 2020, 45, 1.	0.8	9
280	Design and development of 3D printed catalytically-active stirrers for chemical synthesis. Reaction Chemistry and Engineering, 2020, 5, 853-858.	1.9	24
281	Additive-manufactured sensors for biofuel analysis: copper determination in bioethanol using a 3D-printed carbon black/polylactic electrode. Analytical and Bioanalytical Chemistry, 2020, 412, 2755-2762.	1.9	39
282	Trace manganese detection <i>via</i> differential pulse cathodic stripping voltammetry using disposable electrodes: additively manufactured nanographite electrochemical sensing platforms. Analyst, The, 2020, 145, 3424-3430.	1.7	32
283	Ligninâ€Based Direct Ink Printed Structural Scaffolds. Small, 2020, 16, e1907212.	5.2	45
284	3D-printed lab-in-a-syringe voltammetric cell based on a working electrode modified with a highly efficient Ca-MOF sorbent for the determination of Hg(II). Sensors and Actuators B: Chemical, 2020, 321, 128508.	4.0	43
285	3D Pen: A low-cost and portable tool for manufacture of 3D-printed sensors. Sensors and Actuators B: Chemical, 2020, 321, 128528.	4.0	35
286	3D printed solution flow type microdroplet cell for simultaneous area selective anodizing. Journal of Advanced Research, 2020, 26, 43-51.	4.4	4
287	Smart polymers and nanocomposites for 3D and 4D printing. Materials Today, 2020, 40, 215-245.	8.3	144
288	Accounts in 3Dâ€Printed Electrochemical Sensors: Towards Monitoring of Environmental Pollutants. ChemElectroChem, 2020, 7, 3404-3413.	1.7	43
289	A review of flexible force sensors for human health monitoring. Journal of Advanced Research, 2020, 26, 53-68.	4.4	99
290	Printable Ink Design towards Customizable Miniaturized Energy Storage Devices., 2020, 2, 1041-1056.		45
291	Materials, design, and fabrication of shape programmable polymers. Multifunctional Materials, 2020, 3, 032002.	2.4	17

#	Article	IF	CITATIONS
292	Residual alignment and its effect on weld strength in material-extrusion 3D-printing of polylactic acid. Additive Manufacturing, 2020, 36, 101415.	1.7	23
293	Smartdust 3Dâ€Printed Grapheneâ€Based Al/Ga Robots for Photocatalytic Degradation of Explosives. Small, 2020, 16, 2002111.	5.2	22
294	3D Assembly of Graphene Nanomaterials for Advanced Electronics. Advanced Intelligent Systems, 2020, 2, 1900151.	3.3	10
295	3Dâ€Structured Monoliths of Nanoporous Polymers by Additive Manufacturing. Chemie-Ingenieur-Technik, 2020, 92, 525-531.	0.4	14
296	The potentials of additive manufacturing for mass production of electrochemical energy systems. Current Opinion in Electrochemistry, 2020, 20, 54-59.	2.5	15
297	Electrochemical Engineering Assessment of a Novel 3D-Printed Filter-Press Electrochemical Reactor for Multipurpose Laboratory Applications. ACS Sustainable Chemistry and Engineering, 2020, 8, 3896-3905.	3.2	30
298	3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering Reports, 2020, 140, 100543.	14.8	494
299	3D printing for aqueous and non-aqueous redox flow batteries. Current Opinion in Electrochemistry, 2020, 20, 28-35.	2.5	28
300	Plasmonic enhanced photoelectrochemical aptasensor with D-A F8BT/g-C3N4 heterojunction and AuNPs on a 3D-printed device. Sensors and Actuators B: Chemical, 2020, 310, 127874.	4.0	78
301	3D-Printed Strain-Gauge Micro Force Sensors. IEEE Sensors Journal, 2020, 20, 6971-6978.	2.4	18
302	3D printed UV/VIS detection systems constructed from transparent filaments and immobilised enzymes. Additive Manufacturing, 2020, 33, 101094.	1.7	4
303	Microfabricated electrochemical sensing devices. Lab on A Chip, 2020, 20, 1358-1389.	3.1	62
304	3D Printing for Electrochemical Energy Applications. Chemical Reviews, 2020, 120, 2783-2810.	23.0	255
305	Improved electrochemical detection of metals in biological samples using 3D-printed electrode: Chemical/electrochemical treatment exposes carbon-black conductive sites. Electrochimica Acta, 2020, 335, 135688.	2.6	97
306	3D Vertically Aligned Li Metal Anodes with Ultrahigh Cycling Currents and Capacities of 10 mA cm ^{â^2} /20 mAh cm ^{â^2} Realized by Selective Nucleation within Microchannel Walls. Advanced Energy Materials, 2020, 10, 1903753.	10.2	62
307	Critical Review—The Versatile Plane Parallel Electrode Geometry: An Illustrated Review. Journal of the Electrochemical Society, 2020, 167, 023504.	1.3	41
308	Miniature 3D-printed integrated electrochemical cell for trace voltammetric Hg(II) determination. Sensors and Actuators B: Chemical, 2020, 308, 127715.	4.0	62
309	Cyclodextrin-based superparamagnetic host vesicles as ultrasensitive nanobiocarriers for electrosensing. Nanoscale, 2020, 12, 9884-9889.	2.8	6

#	Article	IF	CITATIONS
310	3D-printed electrodes for the detection of mycotoxins in food. Electrochemistry Communications, 2020, 115, 106735.	2.3	28
311	Electrochemical behavior of 5-type phosphodiesterase inhibitory drugs in solid state by voltammetry of immobilized microparticles. Journal of Solid State Electrochemistry, 2020, 24, 1999-2010.	1.2	7
312	Additive-manufactured (3D-printed) electrochemical sensors: A critical review. Analytica Chimica Acta, 2020, 1118, 73-91.	2.6	265
313	3D printing of structured electrodes for rechargeable batteries. Journal of Materials Chemistry A, 2020, 8, 10670-10694.	5.2	95
314	Inkjet Printing for Manufacturing Solid Oxide Fuel Cells. ACS Energy Letters, 2020, 5, 1586-1592.	8.8	36
315	Aerogels: promising nanostructured materials for energy conversion and storage applications. Materials for Renewable and Sustainable Energy, 2020, 9, 1.	1.5	82
316	A robust 3D printed multilayer conductive graphene/polycaprolactone composite electrode. Materials Chemistry Frontiers, 2020, 4, 1664-1670.	3.2	18
317	Advances in modeling transport phenomena in material-extrusion additive manufacturing: Coupling momentum, heat, and mass transfer. Progress in Additive Manufacturing, 2021, 6, 3-17.	2.5	27
318	Sensing of L-methionine in biological samples through fully 3D-printed electrodes. Analytica Chimica Acta, 2021, 1142, 135-142.	2.6	36
319	Robust <scp>threeâ€dimensionally</scp> printed polypropylene/highly sulfonated polysulfone composites for potential applications in fuel cells. International Journal of Energy Research, 2021, 45, 4224-4238.	2.2	5
320	Dip-coating of MXene and transition metal dichalcogenides on 3D-printed nanocarbon electrodes for the hydrogen evolution reaction. Electrochemistry Communications, 2021, 122, 106890.	2.3	36
321	Engineered two-dimensional nanomaterials: an emerging paradigm for water purification and monitoring. Materials Horizons, 2021, 8, 758-802.	6.4	92
322	Crude black pepper phytochemical 3D printed cell based miniaturized hydrazine electrochemical sensing platform. Journal of Electroanalytical Chemistry, 2021, 880, 114761.	1.9	6
323	3D-printed electrode as a new platform for electrochemical immunosensors for virus detection. Analytica Chimica Acta, 2021, 1147, 30-37.	2.6	56
324	Reprintable Polymers for Digital Light Processing 3D Printing. Advanced Functional Materials, 2021, 31, 2007173.	7.8	38
325	Recent advances of 3D printing in analytical chemistry: Focus on microfluidic, separation, and extraction devices. TrAC - Trends in Analytical Chemistry, 2021, 135, 116151.	5.8	76
326	Ready-to-use 3D-printed electrochemical cell for in situ voltammetry of immobilized microparticles and Raman spectroscopy. Analytica Chimica Acta, 2021, 1141, 57-62.	2.6	14
327	Fused deposition modeling (FDM) based 3D printing of microelectrodes and multi-electrode probes. Electrochimica Acta, 2021, 365, 137279.	2.6	20

#	Article	IF	CITATIONS
328	Architectured graphene and its composites: Manufacturing and structural applications. Composites Part A: Applied Science and Manufacturing, 2021, 140, 106177.	3.8	22
329	Realization of Superhydrophobic Surfaces Based on Three-Dimensional Printing Technology. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 47-55.	2.7	22
330	Three-Dimensional Printing of Nanocellulose-Based Hydrogels. Gels Horizons: From Science To Smart Materials, 2021, , 1-20.	0.3	0
331	Research on Online Monitoring Technology of 3D Printing Faults in Fused Deposition Molding. Mechanisms and Machine Science, 2021, , 91-99.	0.3	0
332	How normalisation factors influence the interpretations of 3D-printed sensors for electroanalysis. Journal of Electroanalytical Chemistry, 2021, 881, 114937.	1.9	6
333	A novel all-3D-printed thread-based microfluidic device with an embedded electrochemical detector: first application in environmental analysis of nitrite. Analytical Methods, 2021, 13, 1349-1357.	1.3	19
334	3D printing of biphasic inks: beyond single-scale architectural control. Journal of Materials Chemistry C, 2021, 9, 12489-12508.	2.7	14
335	Force-controlled robotic systems for mechanical stimulation of Drosophila larvae., 2021,, 363-379.		0
336	Combining 3D printing and screen-printing in miniaturized, disposable sensors with carbon paste electrodes. Journal of Materials Chemistry C, 2021, 9, 5633-5642.	2.7	25
337	Recent progress of conductive 3D-printed electrodes based upon polymers/carbon nanomaterials using a fused deposition modelling (FDM) method as emerging electrochemical sensing devices. RSC Advances, 2021, 11, 16557-16571.	1.7	48
338	Recent advancements in solid electrolytes integrated into all-solid-state 2D and 3D lithium-ion microbatteries. Journal of Materials Chemistry A, 2021, 9, 15140-15178.	5.2	39
339	Design and Manufacture of 3D-Printed Batteries. Joule, 2021, 5, 89-114.	11.7	137
340	Rapid diagnosis of SARS-CoV-2 using potential point-of-care electrochemical immunosensor: Toward the future prospects. International Reviews of Immunology, 2021, 40, 126-142.	1.5	57
341	High resolution electrochemical additive manufacturing of microstructured active materials: case study of MoS _{<i>x</i>} as a catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 22072-22081.	5.2	7
342	3D-printing for forensic chemistry: voltammetric determination of cocaine on additively manufactured graphene–polylactic acid electrodes. Analytical Methods, 2021, 13, 1788-1794.	1.3	21
343	3D Printed Nanocarbon Frameworks for Li″on Battery Cathodes. Advanced Functional Materials, 2021, 31, 2007285.	7.8	37
344	Printed aerogels: chemistry, processing, and applications. Chemical Society Reviews, 2021, 50, 3842-3888.	18.7	128
345	3D-Reactive printing of engineered alginate inks. Soft Matter, 2021, 17, 8105-8117.	1.2	17

#	Article	IF	CITATIONS
346	3D Printing Technology in the Environment. Environmental and Microbial Biotechnology, 2021, , 131-160.	0.4	2
347	Catalytic Conversion of Carbon Dioxide to Methanol: Current Status and Future Perspective. Frontiers in Energy Research, 2021, 8, .	1.2	36
348	Importance of Polymer Rheology on Material Extrusion Additive Manufacturing: Correlating Process Physics to Print Properties. ACS Applied Polymer Materials, 2021, 3, 1218-1249.	2.0	116
349	Steroid Eluting Esophageal-Targeted Drug Delivery Devices for Treatment of Eosinophilic Esophagitis. Polymers, 2021, 13, 557.	2.0	6
352	Fabrication of reduced graphene oxide/manganese oxide ink for 3D-printing technology on the application of high-performance supercapacitors. Journal of Materials Science, 2021, 56, 8102-8114.	1.7	10
354	Antimicrobial 3D Printed Objects in the Fight Against Pandemics. 3D Printing and Additive Manufacturing, 2021, 8, 79-86.	1.4	9
355	Chiral Protein–Covalent Organic Framework 3D-Printed Structures as Chiral Biosensors. Analytical Chemistry, 2021, 93, 5277-5283.	3.2	61
356	3D printing of high-performance micro-supercapacitors with patterned exfoliated graphene/carbon nanotube/silver nanowire electrodes. Science China Technological Sciences, 2021, 64, 1065-1073.	2.0	21
357	High throughput electrochemically driven metal microprinting with multicapillary droplet cell. Materials Today Communications, 2021, 26, 102053.	0.9	3
358	Design and optimization of projection stereolithography additive manufacturing system with multi-pass scanning. Rapid Prototyping Journal, 2021, 27, 636-642.	1.6	6
359	The emerging role of 3D printing in the fabrication of detection systems. TrAC - Trends in Analytical Chemistry, 2021, 136, 116177.	5.8	63
360	Fabrication and mechanical properties of Al–Si-based alloys by selective laser melting process. Powder Metallurgy, 2021, 64, 198-205.	0.9	3
361	Manufactured Flexible Electrodes for Dopamine Detection: Integration of Conducting Polymer in 3Dâ€Printed Polylactic Acid. Advanced Engineering Materials, 2021, 23, 2100002.	1.6	10
362	3Dâ€Printing to Mitigate COVIDâ€19 Pandemic. Advanced Functional Materials, 2021, 31, 2100450.	7.8	43
363	A flexible image encryption algorithm based on 3D CTBCS and DNA computing. Multimedia Tools and Applications, 2021, 80, 25711.	2.6	6
364	Understanding and mitigating mechanical degradation in lithium–sulfur batteries: additive manufacturing of Li2S composites and nanomechanical particle compressions. Journal of Materials Research, 2021, 36, 3656-3666.	1.2	6
365	3D-printing of a complete modular ion mobility spectrometer. Materials Today, 2021, 44, 58-68.	8.3	7
366	Additive manufacturing of structural materials. Materials Science and Engineering Reports, 2021, 145, 100596.	14.8	254

#	Article	IF	Citations
368	Highly Sensitive and Interference-Free Electrochemical Nitrite Detection in a 3D Printed Miniaturized Device. IEEE Transactions on Nanobioscience, 2021, 20, 175-182.	2.2	13
369	Direct Ink Writing of Materials for Electronics-Related Applications: A Mini Review. Frontiers in Materials, 2021, 8, .	1.2	63
370	Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices. Additive Manufacturing, 2021, 40, 101911.	1.7	73
371	3D-printed nanocarbon sensors for the detection of chlorophenols and nitrophenols: Towards environmental applications of additive manufacturing. Electrochemistry Communications, 2021, 125, 106984.	2.3	11
372	Color-Changeable Four-Dimensional Printing Enabled with Ultraviolet-Curable and Thermochromic Shape Memory Polymers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 18120-18127.	4.0	39
373	Additive Manufacturing for Automotive Applications: Mechanical and Weathering Durability of Vat Photopolymerization Materials. 3D Printing and Additive Manufacturing, 2021, 8, 302-314.	1.4	9
374	Morphological Effects of Various Silica Nanostructures on the Mechanical Properties of Printed Parts in Digital Light Projection 3D Printing. ACS Applied Nano Materials, 2021, 4, 4522-4531.	2.4	6
375	Performance Improvement of Acid Pretreated 3Dâ€printing Composite for the Heavy Metal Ions Analysis. Electroanalysis, 2021, 33, 1707-1714.	1.5	4
376	3D printed ceramics as solid supports for enzyme immobilization: an automated DoE approach for applications in continuous flow. Journal of Flow Chemistry, 2021, 11, 675-689.	1.2	15
377	Green activation using reducing agents of carbon-based 3D printed electrodes: Turning good electrodes to great. Carbon, 2021, 175, 413-419.	5.4	47
378	Highly Thermally Conductive 3D Printed Graphene Filled Polymer Composites for Scalable Thermal Management Applications. ACS Nano, 2021, 15, 6917-6928.	7.3	143
379	3D Printing Temperature Tailors Electrical and Electrochemical Properties through Changing Inner Distribution of Graphite/Polymer. Small, 2021, 17, e2101233.	5.2	26
380	3D-printed interdigital electrodes for electrochemical energy storage devices. Journal of Materials Research, 2021, 36, 4489-4507.	1.2	11
381	Review of 3D-Printed functionalized devices for chemical and biochemical analysis. Analytica Chimica Acta, 2021, 1158, 338348.	2.6	28
382	Fully integrated 3D-printed electrochemical cell with a modified inkjet-printed Ag electrode for voltammetric nitrate analysis. Analytica Chimica Acta, 2021, 1160, 338430.	2.6	20
383	Additive manufacturing enabled, microarchitected, hierarchically porous polylactic-acid/lithium iron phosphate/carbon nanotube nanocomposite electrodes for high performance Li-Ion batteries. Journal of Power Sources, 2021, 494, 229625.	4.0	36
384	Electrochemiluminescence at 3D Printed Titanium Electrodes. Frontiers in Chemistry, 2021, 9, 662810.	1.8	7
385	Single-Step Fabrication Method toward 3D Printing Composite Diamond–Titanium Interfaces for Neural Applications. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31474-31484.	4.0	6

#	Article	IF	CITATIONS
386	The effect of a superhydrophobic coating on moisture absorption and tensile strength of 3D-printed carbon-fibre/polyamide. Composites Part A: Applied Science and Manufacturing, 2021, 145, 106380.	3.8	13
387	3D Printing—A "Touch-Button―Approach to Manufacture Microneedles for Transdermal Drug Delivery. Pharmaceutics, 2021, 13, 924.	2.0	16
388	Optimization of the Projection Microstereolithography Process for a Photocurable Biomass-Based Resin. 3D Printing and Additive Manufacturing, 2021, 8, 293-301.	1.4	2
389	3D Printed Reactionware for Synthetic Electrochemistry with Hydrogen Fluoride Reagents. ChemElectroChem, 2021, 8, 2070-2074.	1.7	8
390	3D Printed Electrochemical Sensors. Annual Review of Analytical Chemistry, 2021, 14, 47-63.	2.8	25
391	Additive Manufacturing of Conducting Polymers: Recent Advances, Challenges, and Opportunities. ACS Applied Polymer Materials, 2021, 3, 2865-2883.	2.0	62
392	A 3D Printer Guide for the Development and Application of Electrochemical Cells and Devices. Frontiers in Chemistry, 2021, 9, 684256.	1.8	31
393	Development of highly sensitive electrochemical sensor using new graphite/acrylonitrile butadiene styrene conductive composite and 3D printing-based alternative fabrication protocol. Analytica Chimica Acta, 2021, 1167, 338566.	2.6	17
394	Recent Studies on Dispersion of Graphene–Polymer Composites. Polymers, 2021, 13, 2375.	2.0	32
395	Nanomaterial-enhanced 3D-printed sensor platform for simultaneous detection of atrazine and acetochlor. Biosensors and Bioelectronics, 2021, 184, 113238.	5.3	56
396	Catalyst Formation and <i>In Operando</i> Monitoring of the Electrocatalytic Activity in Flow Reactors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 35777-35784.	4.0	8
397	3D-Printed Templates Converted into Graphite, Ruthenium, or Copper Are Used as Monolithic Sensors. ACS Applied Electronic Materials, 2021, 3, 3482-3488.	2.0	9
398	How 3D printing can boost advances in analytical and bioanalytical chemistry. Mikrochimica Acta, 2021, 188, 265.	2.5	21
399	Current scenario and prospects in manufacture strategies for glass, quartz, polymers and metallic microreactors: A comprehensive review. Chemical Engineering Research and Design, 2021, 171, 13-35.	2.7	26
400	3D Printed Microâ€Electrochemical Energy Storage Devices: From Design to Integration. Advanced Functional Materials, 2021, 31, 2104909.	7.8	66
401	Additive manufacturing (3D printing) for analytical chemistry. Talanta Open, 2021, 3, 100036.	1.7	49
402	3D-printing in forensic electrochemistry: Atropine determination in beverages using an additively manufactured graphene-polylactic acid electrode. Microchemical Journal, 2021, 167, 106324.	2.3	26
403	A Rapid Design and Fabrication Method for a Capacitive Accelerometer Based on Machine Learning and 3D Printing Techniques. IEEE Sensors Journal, 2021, 21, 17695-17702.	2.4	8

#	Article	IF	Citations
404	3D printing of Portland cement-containing bodies. Rapid Prototyping Journal, 2022, 28, 197-203.	1.6	14
405	Helium-assisted, solvent-free electro-activation of 3D printed conductive carbon-polylactide electrodes by pulsed laser ablation. Applied Surface Science, 2021, 556, 149788.	3.1	19
406	In-situ selective surface engineering of graphene micro-supercapacitor chips. Nano Research, 2022, 15, 1492-1499.	5.8	19
407	Direct ink writing of dehydrofluorinated Poly(Vinylidene Difluoride) for microfiltration membrane fabrication. Journal of Membrane Science, 2021, 632, 119347.	4.1	10
408	3D-printed monolithic catalyst of Mn-Ce-Fe/attapulgite for selective catalytic reduction of nitric oxide with ammonia at low temperature. Journal of Environmental Chemical Engineering, 2021, 9, 105753.	3.3	9
409	Current and future trends of additive manufacturing for chemistry applications: a review. Journal of Materials Science, 2021, 56, 16824-16850.	1.7	22
410	Three-Dimensional-Printed Silica Aerogels for Thermal Insulation by Directly Writing Temperature-Induced Solidifiable Inks. ACS Applied Materials & Samp; Interfaces, 2021, 13, 40964-40975.	4.0	33
411	Extrusionâ€Based 3Dâ€Printed Supercapacitors: Recent Progress and Challenges. Energy and Environmental Materials, 2022, 5, 800-822.	7. 3	24
412	The innovative contribution of additive manufacturing towards revolutionizing fuel cell fabrication for clean energy generation: A comprehensive review. Renewable and Sustainable Energy Reviews, 2021, 148, 111369.	8.2	23
413	Posttreatment of 3Dâ€printed surfaces for electrochemical applications: A critical review on proposed protocols. Electrochemical Science Advances, 2022, 2, e2100136.	1.2	26
414	All-in-Fiber Electrochemical Sensing. ACS Applied Materials & Electrochemical Sensing.	4.0	7
415	3D-printed hybrid-carbon-based electrodes for electroanalytical sensing applications. Electrochemistry Communications, 2021, 130, 107098.	2.3	26
416	3D-printed transmembrane glycoprotein cancer biomarker aptasensor. Applied Materials Today, 2021, 24, 101153.	2.3	9
417	Smart Energy Bricks: Ti ₃ C ₂ @Polymer Electrochemical Energy Storage inside Bricks by 3D Printing. Advanced Functional Materials, 2021, 31, 2106990.	7.8	26
418	Single-Layer 4D Printing System Using Focused Light: A Tool for Untethered Microrobot Applications. Chemistry of Materials, 2021, 33, 7703-7712.	3.2	12
419	Threeâ€dimensional printing of grapheneâ€based materials for energy storage and conversion. SusMat, 2021, 1, 304-323.	7.8	78
420	Recent advances in 3D printing technologies for wearable (bio)sensors. Additive Manufacturing, 2021, 46, 102088.	1.7	66
421	Pharmaceutical applications of powder-based binder jet 3D printing process – A review. Advanced Drug Delivery Reviews, 2021, 177, 113943.	6.6	53

#	Article	IF	Citations
422	Fully 3D printing of carbon black-thermoplastic hybrid materials and fast activation for development of highly stable electrochemical sensors. Sensors and Actuators B: Chemical, 2021, 349, 130721.	4.0	24
423	Reagentless and sub-minute laser-scribing treatment to produce enhanced disposable electrochemical sensors via additive manufacture. Chemical Engineering Journal, 2021, 425, 130594.	6.6	41
424	Additive manufacturing for electrochemical labs: An overview and tutorial note on the production of cells, electrodes and accessories. Talanta Open, 2021, 4, 100051.	1.7	46
425	3D-Printed COVID-19 immunosensors with electronic readout. Chemical Engineering Journal, 2021, 425, 131433.	6.6	54
426	Oxygen evolution catalysts under proton exchange membrane conditions in a conventional three electrode cell $\langle i \rangle vs. \langle i \rangle$ electrolyser device: a comparison study and a 3D-printed electrolyser for academic labs. Journal of Materials Chemistry A, 2021, 9, 9113-9123.	5.2	24
427	A 3Dâ€Printed Open Access Photoreactor Designed for Versatile Applications in Photoredox―and Photoelectrochemical Synthesis**. ChemPhotoChem, 2021, 5, 431-437.	1.5	32
429	Atomic Layer Deposition of Electrocatalytic Insulator Al ₂ O ₃ on Three-Dimensional Printed Nanocarbons. ACS Nano, 2021, 15, 686-697.	7.3	28
430	Mehr als nur ein Netzwerk: Strukturierung retikulÃÆr Materialien im Nanoâ€, Meso―und Volumenbereich. Angewandte Chemie, 2020, 132, 22534-22556.	1.6	8
431	Beyond Frameworks: Structuring Reticular Materials across Nanoâ€, Mesoâ€, and Bulk Regimes. Angewandte Chemie - International Edition, 2020, 59, 22350-22370.	7.2	60
432	Trace Analysis of Heavy Metals (Cd, Pb, Hg) Using Native and Modified 3D Printed Graphene/Poly(Lactic) Tj ETQq1	1.0.7843 1.5	14 rgBT /O
433	Catalyst coating of 3D printed structures via electrochemical deposition: Case of the transition metal chalcogenide MoSx for hydrogen evolution reaction. Applied Materials Today, 2020, 20, 100654.	2.3	35
434	Tailoring capacitance of 3D-printed graphene electrodes by carbonisation temperature. Nanoscale, 2020, 12, 19673-19680.	2.8	28
435	Widely accessible 3D printing technologies in chemistry, biochemistry and pharmaceutics: applications, materials and prospects. Russian Chemical Reviews, 2020, 89, 1507-1561.	2.5	32
436	Design and fabrication of an electrothermal MEMS micro-actuator with 3D printing technology. Materials Research Express, 2020, 7, 075015.	0.8	25
437	4D printing of shape memory polymer via liquid crystal display (LCD) stereolithographic 3D printing. Materials Research Express, 2020, 7, 105305.	0.8	36
438	Printability of photo-sensitive nanocomposites using two-photon polymerization. Nanotechnology Reviews, 2020, 9, 418-426.	2.6	24
439	3D printing in analytical chemistry: current state and future. Pure and Applied Chemistry, 2020, 92, 1341-1355.	0.9	51
440	Bioprinting and stem cells: the new frontier of tissue engineering and regenerative medicine. Journal of Stem Cell Research & Therapeutics, 2018, 4, .	0.1	2

#	Article	lF	Citations
441	The Fabrication of Micro Beam from Photopolymer by Digital Light Processing 3D Printing Technology. Micromachines, 2020, 11, 518.	1.4	22
442	Fabrication of Intragastric Floating, Controlled Release 3D Printed Theophylline Tablets Using Hot-Melt Extrusion and Fused Deposition Modeling. Pharmaceutics, 2020, 12, 77.	2.0	64
443	Microstructures and Characterization of Al-Si-Mg Alloy Processed by Selective Laser Melting with Post-Heat-treatment. Journal of Korean Powder Metallurgy Institute, 2019, 26, 138-145.	0.2	3
444	Durability Study of Automotive Additive Manufactured Specimens. , 0, , .		2
445	The Recent Tendency of Fashion Textiles by 3D Printing. Fashion & Textile Research Journal, 2018, 20, 117-127.	0.1	8
446	Sensing Materials: Electrochemical Sensors Enabled by 3D Printing. , 2023, , 73-88.		2
447	3D printing of advanced lithium batteries: a designing strategy of electrode/electrolyte architectures. Journal of Materials Chemistry A, 2021, 9, 25237-25257.	5.2	50
448	Multi-Material Integrated Three-Dimensional Printing of Cylindrical Li-Ion Battery. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2022, 144, .	1.3	O
449	Postâ€extrusion process for the robust preparation of highly uniform multiphase polymeric <scp>3D</scp> printing filaments. Polymer Engineering and Science, 2022, 62, 66-74.	1.5	2
450	Three-phase interface-assisted advanced electrochemistry-related applications. Cell Reports Physical Science, 2021, 2, 100602.	2.8	18
451	Cost-Effective 3D-Printed-Enabled Fluidic Electrochemical Sensing Platform for Quantitative Electroanalytical Applications. Journal of the Electrochemical Society, 2021, 168, 117504.	1.3	6
452	Lab-made 3D-printed accessories for spectroscopy and spectroelectrochemistry: a proof of concept to investigate dynamic interfacial and surface phenomena. Mikrochimica Acta, 2021, 188, 394.	2.5	7
453	Additively manufactured carbon/black-integrated polylactic acid 3Dprintedsensor for simultaneous quantification of uric acid and zinc in sweat. Mikrochimica Acta, 2021, 188, 388.	2.5	13
454	Printed Flexible Electrochemical Energy Storage Devices. Springer Series in Materials Science, 2022, , 433-521.	0.4	1
455	A flow-rate-controlled double-nozzles approach for electrochemical additive manufacturing. Virtual and Physical Prototyping, 2022, 17, 52-68.	5.3	9
456	Analysis and Study of 3D Printing Speed and Molding Room Temperature on Mechanical Properties of PCB Epoxy Resin Substrate. , 2016 , , .		0
457	Design and Realization of a Support Bracket for Medical Test Tubes Based on 3D Printing. Lecture Notes in Electrical Engineering, 2019, , 513-520.	0.3	1
458	Towards New Production Technologies: 3D Printing of Scintillators. Springer Proceedings in Physics, 2019, , 99-112.	0.1	1

#	Article	IF	CITATIONS
459	Investigation on Interfacial Microstructures of Stainless Steel/Inconel Bonded by Directed Energy Deposition of alloy Powders. Journal of Korean Powder Metallurgy Institute, 2020, 27, 219-225.	0.2	0
460	Prototyping of a Low-Cost Stroboscope to Be Applied in Condition Maintenance: An Open Hardware and Software Approach. Lecture Notes in Electrical Engineering, 2021, , 762-772.	0.3	0
461	Electrodeposition of NiCu bimetal on 3D printed electrodes for hydrogen evolution reactions in alkaline media. International Journal of Hydrogen Energy, 2022, 47, 12136-12146.	3.8	29
462	The recent development of vat photopolymerization: A review. Additive Manufacturing, 2021, 48, 102423.	1.7	67
463	Additive manufacturing for adsorptionâ€related applicationsâ€"A review. Journal of Advanced Manufacturing and Processing, 2022, 4, .	1.4	13
464	Effect of material ratio on the performances in 3D cement printing and its optimization. AIP Advances, 2020, 10, 125012.	0.6	0
465	Pore-scale modeling of complex transport phenomena in porous media. Progress in Energy and Combustion Science, 2022, 88, 100968.	15.8	139
466	Artificial leaf for light-driven CO2 reduction: Basic concepts, advanced structures and selective solar-to-chemical products. Chemical Engineering Journal, 2022, 430, 133031.	6.6	48
467	Novel sensing materials and manufacturing approaches. , 2020, , 73-98.		0
468	Influence of Powder Size on Properties of Selectively Laser-Melted- AlSi10Mg Alloys. Journal of Korean Powder Metallurgy Institute, 2020, 27, 103-110.	0.2	2
469	Additive manufacturing of novel 3D ceramic electrodes for highâ€powerâ€density batteries. International Journal of Applied Ceramic Technology, 2022, 19, 979-991.	1.1	1
470	3D Printing for Solidâ€State Energy Storage. Small Methods, 2021, 5, e2100877.	4.6	24
472	Additively manufactured electrodes for supercapacitors: A review. Applied Materials Today, 2022, 26, 101220.	2.3	9
473	Simple, fast, and instrumentless fabrication of paper analytical devices by novel contact stamping method based on acrylic varnish and 3D printing. Mikrochimica Acta, 2021, 188, 437.	2.5	8
474	Progress in additive manufacturing of MoS2-based structures for energy storage applications – A review. Materials Science in Semiconductor Processing, 2022, 139, 106331.	1.9	24
475	Recent advances on quasi-solid-state electrolytes for supercapacitors. Journal of Energy Chemistry, 2022, 67, 697-717.	7.1	46
476	3D printing of metasurface-based dual-linear polarization converter. Flexible and Printed Electronics, 0, , .	1.5	1
477	A critical review and commentary on recent progress of additive manufacturing and its impact on membrane technology. Journal of Membrane Science, 2022, 645, 120041.	4.1	38

#	Article	IF	CITATIONS
478	Additive manufacturing technology of polymeric materials for customized products: recent developments and future prospective. RSC Advances, 2021, 11, 36398-36438.	1.7	39
479	Direct Ink Writing of Gypsum: Developing a Printable Gypsum Paste. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2022, 37, 338.	0.6	1
480	Novel 3D grid porous Li4Ti5O12 thick electrodes fabricated by 3D printing for high performance lithium-ion batteries. Journal of Advanced Ceramics, 2022, 11, 295-307.	8.9	48
481	Electrochemical monitoring the effect of drug intervention on PC12Âcell damage model cultured on paper-PLA 3D printed device. Analytica Chimica Acta, 2022, 1194, 339409.	2.6	4
482	Biosensing strategies for diagnosis of prostate specific antigen. Journal of Pharmaceutical and Biomedical Analysis, 2022, 209, 114535.	1.4	21
483	Recent advances in 3D printing for catalytic applications. Chemical Engineering Journal, 2022, 433, 134341.	6.6	70
484	Resonance properties of 3D-printing hexagonal structures at Sub-THz frequency range., 2020,,.		0
485	Wind Tunnel Experiments on an Aircraft Model Fabricated Using a 3D Printing Technique. Journal of Manufacturing and Materials Processing, 2022, 6, 12.	1.0	7
486	Recent advances and perspectives of 3D printed micro-supercapacitors: from design to smart integrated devices. Chemical Communications, 2022, 58, 2075-2095.	2.2	34
487	Recent Development and Applications of Advanced Materials via Direct Ink Writing. Advanced Materials Technologies, 2022, 7, .	3.0	26
488	Trained laser-patterned carbon as high-performance mechanical sensors. Npj Flexible Electronics, 2022, 6, .	5.1	5
489	Internet of thingsâ€enabled photomultiplier tube―and smartphoneâ€based electrochemiluminescence platform to detect choline and dopamine using 3Dâ€printed closed bipolar electrodes. Luminescence, 2022, 37, 357-365.	1.5	24
490	Comparing electrochemical pre-treated 3D printed native and mechanically polished electrode surfaces for analytical sensing. Journal of Electroanalytical Chemistry, 2022, 905, 115994.	1.9	15
491	Low-Cost 3D Printer Drawn Optical Microfibers for Smartphone Colorimetric Detection. Biosensors, 2022, 12, 54.	2.3	5
492	New conductive filament ready-to-use for 3D-printing electrochemical (bio)sensors: Towards the detection of SARS-CoV-2. Analytica Chimica Acta, 2022, 1191, 339372.	2.6	62
493	3Dâ€Printed Acidic Monolithic Catalysts for Liquidâ€Phase Catalysis with Enhanced Mass Transfer Properties. ChemCatChem, 2022, 14, .	1.8	9
494	A dynamic slicing algorithm for conformal additive manufacturing. Additive Manufacturing, 2022, 51, 102622.	1.7	5
495	Developing reactors for electrifying bio-methanation: a perspective from bio-electrochemistry. Sustainable Energy and Fuels, 2022, 6, 1249-1263.	2.5	3

#	Article	IF	CITATIONS
496	Topology Optimization and Additive Manufacturing for Improving a High-Pressure Electrolyzer Design. Journal of Materials Engineering and Performance, 2022, 31, 6246-6255.	1.2	1
497	Fully metallic copper 3D-printed electrodes via sintering for electrocatalytic biosensing. Applied Materials Today, 2021, 25, 101253.	2.3	20
498	3D-Printed Electrochemical Devices for Sensing and Biosensing of Biomarkers. , 2022, , 121-136.		5
499	Laser additive manufacturing of SiC ceramics. , 2022, , 41-67.		2
500	Advances in 3d Printed-Based (Bio)Sensors for Food Analysis. SSRN Electronic Journal, 0, , .	0.4	1
501	One-step side-by-side 3D printing constructing linear full batteries. Chemical Communications, 2022, 58, 5241-5244.	2.2	3
502	Batch injection analysis in tandem with electrochemical detection: the recent trends and an overview of the latest applications (2015–2020). Monatshefte FÃ1⁄4r Chemie, 2022, 153, 985-1000.	0.9	13
503	Digital Light Processing of Dynamic Bottlebrush Materials. Advanced Functional Materials, 2022, 32, .	7.8	22
504	3Dâ€Printed SARSâ€CoVâ€2 RNA Genosensing Microfluidic System. Advanced Materials Technologies, 2022, 7, 2101121.	3.0	31
505	Electrochemical (Bio)Sensors Enabled by Fused Deposition Modeling-Based 3D Printing: A Guide to Selecting Designs, Printing Parameters, and Post-Treatment Protocols. Analytical Chemistry, 2022, 94, 6417-6429.	3.2	72
507	Application of polyfunctional nanomaterials for <scp>3D</scp> printing. Polymer Composites, 2022, 43, 3116-3123.	2.3	5
508	Graphene-Oxide-Based Fluoro- and Chromo-Genic Materials and Their Applications. Molecules, 2022, 27, 2018.	1.7	5
509	Highly Anisotropic Thermal Conductivity of Three-Dimensional Printed Boron Nitride-Filled Thermoplastic Polyurethane Composites: Effects of Size, Orientation, Viscosity, and Voids. ACS Applied Materials & Samp; Interfaces, 2022, 14, 14568-14578.	4.0	26
510	Graphene Oxide and Biomolecules for the Production of Functional 3D Graphene-Based Materials. Frontiers in Molecular Biosciences, 2022, 9, 774097.	1.6	12
511	Carbon-Black Integrated Polylactic Acid Electrochemical Sensor for Chloramphenicol Determination in Milk and Water Samples. Journal of the Electrochemical Society, 2022, 169, 047517.	1.3	12
512	Hybrid microfabrication of 3D pyrolytic carbon electrodes by photolithography and additive manufacturing. Micro and Nano Engineering, 2022, 15, 100124.	1.4	4
513	On the way to raising the technology readiness level of diamond electrolysis. Current Opinion in Electrochemistry, 2022, 33, 100928.	2.5	1
514	Fabrication of metal-organic framework architectures with macroscopic size: A review. Coordination Chemistry Reviews, 2022, 462, 214520.	9.5	26

#	ARTICLE	IF	CITATIONS
515	Design of Dual-Linear Polarization Converter in X-Band Using 3-D Printing Technique. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2021, 32, 1039-1044.	0.0	0
517	Inkjet 3D-printing of functional layers of solid oxide electrochemical reactors: a review. Reaction Chemistry and Engineering, 2022, 7, 1692-1712.	1.9	11
518	Direct-ink writing 3D printed energy storage devices: From material selectivity, design and optimization strategies to diverse applications. Materials Today, 2022, 54, 110-152.	8.3	66
519	Direct ink writing of conductive materials for emerging energy storage systems. Nano Research, 2022, 15, 6091-6111.	5.8	11
520	Freestanding Metal–Organic Frameworks and Their Derivatives: An Emerging Platform for Electrochemical Energy Storage and Conversion. Chemical Reviews, 2022, 122, 10087-10125.	23.0	126
521	Controlled local orientation of 2D nanomaterials in 3D devices: methods and prospects for multifunctional designs and enhanced performance. Journal of Materials Chemistry A, 2022, 10, 19129-19168.	5.2	9
522	Processing Quality Inspection of Additive-Manufactured Microspiral Inductors Based on Micro-Computed Tomography Data. Journal of Materials Engineering and Performance, 0, , .	1.2	0
523	Low-Cost Microplate Reader with 3D Printed Parts for under 500 USD. Sensors, 2022, 22, 3242.	2.1	4
524	3D printed hierarchical spinel monolithic catalysts for highly efficient semi-hydrogenation of acetylene. Nano Research, 2022, 15, 6010-6018.	5.8	8
525	Advances in 3D printed sensors for food analysis. TrAC - Trends in Analytical Chemistry, 2022, 154, 116672.	5.8	15
526	Applicability of Selected 3D Printing Materials in Electrochemistry. Biosensors, 2022, 12, 308.	2.3	8
527	Scalable production of high-quality carbon nanotube dispersion in aqueous solution using cellulose as dispersant by a freezing/thawing process. Journal of Colloid and Interface Science, 2022, 623, 1200-1209.	5.0	8
528	Direct Ink Writing of Carbon-Doped Polymeric Composite Ink: A Review on Its Requirements and Applications. 3D Printing and Additive Manufacturing, 2023, 10, 828-854.	1.4	9
529	Electrochemical multi-sensors obtained by applying an electric discharge treatment to 3D-printed poly(lactic acid). Applied Surface Science, 2022, 597, 153623.	3.1	13
530	Using multi-material fused deposition modeling (FDM) for one-step 3D printing of microfluidic capillary electrophoresis with integrated electrodes for capacitively coupled contactless conductivity detection. Sensors and Actuators B: Chemical, 2022, 365, 131959.	4.0	29
531	Additive manufacturing of 3D batteries: a perspective. Journal of Materials Research, 2022, 37, 1535-1546.	1.2	6
532	3D Printing: An Emerging Technology for Biocatalyst Immobilization. Macromolecular Bioscience, 2022, 22, e2200110.	2.1	14
533	3D-printed electrochemical platform with multi-purpose carbon black sensing electrodes. Mikrochimica Acta, 2022, 189, .	2.5	15

#	Article	IF	CITATIONS
534	A comprehensive review on 3D printing advancements in polymer composites: technologies, materials, and applications. International Journal of Advanced Manufacturing Technology, 2022, 121, 127-169.	1.5	23
535	Photo-Responsive Doped 3D-Printed Copper Electrodes for Water Splitting: Refractory One-Pot Doping Dramatically Enhances the Performance. Journal of Physical Chemistry C, 2022, 126, 9016-9026.	1.5	10
536	3D-printed electrode an affordable sensor for sulfanilamide monitoring in breast milk, synthetic urine, and pharmaceutical formulation samples. Talanta, 2022, 247, 123610.	2.9	13
537	3D printing of graphene polymer composites. , 2022, , 247-281.		1
538	3D printed interdigitated supercapacitor using reduced graphene oxide-MnO _{<i>x</i>} /Mn ₃ O ₄ based electrodes. RSC Advances, 2022, 12, 17321-17329.	1.7	9
539	A facile technique to develop conductive paper based bioelectrodes for microbial fuel cell applications. Biosensors and Bioelectronics, 2022, , 114479.	5.3	1
540	Methods and Techniques of Solid-State Batteries. ACS Symposium Series, 0, , 39-89.	0.5	0
541	Additive manufacturing of functional devices for environmental applications: A review. Journal of Environmental Chemical Engineering, 2022, 10, 108049.	3.3	11
542	Al ₂ O ₃ /Covalent Organic Framework on 3D-Printed Nanocarbon Electrodes for Enhanced Biomarker Detection. ACS Applied Nano Materials, 2022, 5, 9719-9727.	2.4	5
543	Different Applications of 3D Printing in The Biological, Chemical, and Pharmaceutical Fields. International Journal of Innovative Technology and Exploring Engineering, 2022, 11, 59-63.	0.2	1
544	Influence of the single-screw extruder nozzle diameter on pellet-based filaments for additive manufacturing. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, .	0.8	4
545	3D-printing design for continuous flow catalysis. Trends in Chemistry, 2022, 4, 739-753.	4.4	5
546	Periodic porous 3D boron-doped diamond electrode for enhanced perfluorooctanoic acid degradation. Separation and Purification Technology, 2022, 297, 121556.	3.9	9
547	Design of bimetallic 3D-printed electrocatalysts via galvanic replacement to enhance energy conversion systems. Applied Catalysis B: Environmental, 2022, 316, 121609.	10.8	8
548	Multi-electrode platform for selective electrochemical sensing: 3D-printed insulating plastic is turned into a five-electrodes chip. Talanta, 2022, 250, 123705.	2.9	2
549	Classification of 3D printing methods. , 2022, , 23-34.		3
550	Digital light processing 3D printing of hydrogels: a minireview. Molecular Systems Design and Engineering, 2022, 7, 1017-1029.	1.7	22
551	Application of 3D printing. , 2022, , 51-62.		1

#	Article	IF	CITATIONS
552	3Dâ€printed Electrochemical Sensor for Organophosphate Nerve Agents. Electroanalysis, 2023, 35, .	1.5	2
553	Conductive printable electrodes tuned by boron-doped nanodiamond foil additives for nitroexplosive detection. Mikrochimica Acta, 2022, 189, .	2.5	6
554	Review of 3D printing in photocatalytic substrates and catalysts. Materials Today Energy, 2022, 29, 101100.	2.5	7
555	Challenges of 3D printing in LIB electrodes: Emphasis on material-design properties, and performance of 3D printed Si-based LIB electrodes. Journal of Power Sources, 2022, 543, 231840.	4.0	9
556	3D Printing to Enable Self-Breathing Fuel Cells. 3D Printing and Additive Manufacturing, 2024, 11, 68-77.	1.4	2
557	Electrochemical activation for sensing of threeâ€dimensionalâ€printed poly(lactic acid) using lowâ€pressure plasma. Plasma Processes and Polymers, 2022, 19, .	1.6	5
558	Additive manufacturing (3D printing) of electrically conductive polymers and polymer nanocomposites and their applications. EScience, 2022, 2, 365-381.	25.0	54
559	Electrodeposition onto Conductive Additive-Impregnated 3D Printed Polylactic Acid Electrodes. Journal of the Electrochemical Society, 2022, 169, 082514.	1.3	2
560	3D printing quasi-solid-state micro-supercapacitors with ultrahigh areal energy density based on high concentration MXene sediment. Chemical Engineering Journal, 2023, 451, 138686.	6.6	18
561	Sequential process optimization for a digital light processing system to minimize trial and error. Scientific Reports, 2022, 12, .	1.6	8
562	Recent Advances in 3D Printed Sensors: Materials, Design, and Manufacturing. Advanced Materials Technologies, 2023, 8, .	3.0	24
563	Bioprinting: from Technique to Application in Tissue Engineering and Regenerative Medicine. Current Molecular Medicine, 2022, 23, .	0.6	2
564	Cyclic square-wave voltammetric discrimination of the amphetamine-type stimulants MDA and MDMA in real-world forensic samples by 3D-printed carbon electrodes. Electrochimica Acta, 2022, 429, 141002.	2.6	18
565	High-performance LiFePO4 and SiO@C/graphite interdigitated full lithium-ion battery fabricated via low temperature direct write 3D printing. Materials Today Energy, 2022, 29, 101098.	2.5	10
566	Ultra-fast programmable human-machine interface enabled by 3D printed degradable conductive hydrogel. Materials Today Physics, 2022, 27, 100794.	2.9	17
567	Multi-walled Carbon Nanotube/Acrylonitrile Butadiene Styrene Nanocomposite Filaments for Fused Deposition Modelling Type 3D Printing. Chemistry Africa, 2022, 5, 2259-2269.	1.2	1
568	Intensification of catalytic reactors: A synergic effort of Multiscale Modeling, Machine Learning and Additive Manufacturing. Chemical Engineering and Processing: Process Intensification, 2022, 181, 109148.	1.8	15
569	Materials for Additive Manufacturing. AIMS Materials Science, 2022, 9, 785-790.	0.7	5

#	Article	IF	CITATIONS
570	Material Extrusion and Vat Photopolymerization—Principles, Opportunities and Challenges. , 2022, , 53-76.		2
571	Anion-exchange membranes with internal microchannels for water control in CO ₂ electrolysis. Sustainable Energy and Fuels, 2022, 6, 5077-5088.	2.5	7
572	Emerging Technological Applications of Additive Manufacturing., 2022, , 169-238.		2
573	Exploring the coating of 3D-printed insulating substrates with conductive composites: a simple, cheap and versatile strategy to prepare customized high-performance electrochemical sensors. Analytical Methods, 2022, 14, 3345-3354.	1.3	2
574	Electrochemical Properties of the 3D Printed Graphite/Nylon Electrodes Manufactured by Selective Laser Sintering. SSRN Electronic Journal, 0, , .	0.4	0
575	3D printed tetrakis(triphenylphosphine)palladium (0) impregnated stirrer devices for Suzuki–Miyaura cross-coupling reactions. Reaction Chemistry and Engineering, 2023, 8, 752-757.	1.9	5
576	Quantitative detection of malachite green in sediment by a time-resolved immunofluorescence method combined with a portable 3D printing equipment platform. Science of the Total Environment, 2023, 855, 158897.	3.9	5
577	3-D Printing: A Review of Manufacturing Methods, Materials, Scope and Challenges, and Applications. Lecture Notes in Mechanical Engineering, 2023, , 243-256.	0.3	O
578	An overview of additive manufacturing methods, materials, and applications for flexible structures. Journal of Industrial Textiles, 2022, 52, 152808372211146.	1.1	5
579	Catalytic Materials by 3D Printing: A Mini Review. Catalysts, 2022, 12, 1081.	1.6	6
580	Tailoring 3D-Printed Electrodes for Enhanced Water Splitting. ACS Applied Materials & Samp; Interfaces, 2022, 14, 42153-42170.	4.0	22
581	Fused Deposition Modeling PEEK Implants for Personalized Surgical Application: From Clinical Need to Biofabrication. International Journal of Bioprinting, 2022, 8, 615.	1.7	7
582	Multimaterial 3D Printing Technique for Electronic Circuitry Using Photopolymer and Selective Metallization. Advanced Engineering Materials, 2022, 24, .	1.6	2
583	Additively Manufactured Rotating Disk Electrodes and Experimental Setup. Analytical Chemistry, 2022, 94, 13540-13548.	3.2	10
584	Direct ink writing 3D printing of polydimethylsiloxane-based soft and composite materials: a mini review. Oxford Open Materials Science, 2022, 2, .	0.5	3
585	Perspectives on strategies and techniques for building robust thick electrodes for lithium-ion batteries. Journal of Power Sources, 2022, 551, 232176.	4.0	19
586	Tailored Polypeptide Star Copolymers for 3D Printing of Bacterial Composites Via Direct Ink Writing. Advanced Materials, 2023, 35, .	11.1	9
587	3D printing and its applications in spectroelectrochemistry. Microchemical Journal, 2022, 183, 108083.	2.3	3

#	Article	IF	CITATIONS
588	Three-dimensional printed carbon-based microbatteries: progress on technologies, materials and applications. New Carbon Materials, 2022, 37, 898-917.	2.9	1
589	New carbon black-based conductive filaments for the additive manufacture of improved electrochemical sensors by fused deposition modeling. Mikrochimica Acta, 2022, 189, .	2.5	32
590	An Overview of Various Additive Manufacturing Technologies and Materials for Electrochemical Energy Conversion Applications. ACS Omega, 2022, 7, 40638-40658.	1.6	4
591	Cellulose-Based Printed Power Sources. Nanoscience and Technology, 2023, , 267-300.	1.5	0
592	3D-Printed Soft Wearable Electronics: Techniques, Materials, and Applications. , 2023, , 1-49.		0
593	An efficient thermal interface material with anisotropy orientation and high through-plane thermal conductivity. Composites Science and Technology, 2023, 231, 109784.	3.8	21
594	金属有机框架集æ̂尰打åºå™¨ä»¶çš"最æ−°èį›å±•åŠå…¶åº"用. Science China Materials, 2023	, 6 6, 5441-	469.
595	On the Evolution of Additive Manufacturing (3D/4D Printing) Technologies: Materials, Applications, and Challenges. Polymers, 2022, 14, 4698.	2.0	23
596	Polyoxometalateâ€Enhanced 3Dâ€Printed Supercapacitors. ChemSusChem, 2022, 15, .	3.6	5
597	3D Printing Technology Toward Stateâ€Ofâ€Theâ€Art Photoelectric Devices. Advanced Materials Technologies, 2023, 8, .	3.0	1
598	Application of 3D Printing Technology in Construction of Electrochemical Sensing Device. Advances in Analytical Chemistry, 2022, 12, 360-369.	0.1	0
599	Porous Magn \tilde{A} \otimes li phase obtained from 3D printing for efficient anodic oxidation process. Chemical Engineering Journal, 2023, 456, 141047.	6.6	3
600	Electrochemical properties of graphite/nylon electrodes additively manufactured by laser powder bed fusion. Electrochimica Acta, 2023, 440, 141732.	2.6	2
601	Progress and opportunities in additive manufacturing of electrically conductive polymer composites. Materials Today Advances, 2023, 17, 100333.	2.5	17
602	Tissue Engineering Applied to Skeletal Muscle: Strategies and Perspectives. Bioengineering, 2022, 9, 744.	1.6	3
603	Vitamins as Active Agents for Highly Emissive and Stable Nanostructured Halide Perovskite Inks and 3D Composites Fabricated by Additive Manufacturing. Advanced Functional Materials, 2023, 33, .	7.8	4
604	Polymer Nanohybrid-Based Smart Platforms for Controlled Delivery and Wound Management., 2023,, 171-199.		0
605	Adjusting the Connection Length of Additively Manufactured Electrodes Changes the Electrochemical and Electroanalytical Performance. Sensors, 2022, 22, 9521.	2.1	9

#	ARTICLE	IF	CITATIONS
607	Impact of Porous Microstructure on Performance of Redox Flow Batteries: A Modeling Study. Journal of the Electrochemical Society, 2022, 169, 120511.	1.3	4
608	Multi-objective optimization of actuation waveform for high-precision drop-on-demand inkjet printing. Physics of Fluids, 2023, 35, .	1.6	6
611	Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare. Progress in Materials Science, 2023, 134, 101072.	16.0	32
612	Advances in Carbon-Based Resistance Strain Sensors. ACS Applied Electronic Materials, 2023, 5, 674-689.	2.0	11
613	Field-Controlled Microrobots Fabricated by Photopolymerization. Cyborg and Bionic Systems, 2023, 4,	3.7	3
614	CHARACTERIZATION OF BICOMPONENT 3D PRINTING TECHNOLOGIES OF BIODEGRADABLE MATERIALS. , 2022, 2, 18-37.		O
615	A review on fabrication and in vivo applications of piezoelectric nanocomposites for energy harvesting. Journal of the Taiwan Institute of Chemical Engineers, 2023, 148, 104651.	2.7	4
616	The perceptions of prospective ICT teachers towards the integration of 3D printing into education and their views on the 3D modeling and printing course. Education and Information Technologies, 2023, 28, 10151-10181.	3.5	4
617	Influence of instrument parameters on the electrochemical activity of 3D printed carbon thermoplastic electrodes. Scientific Reports, 2023, 13 , .	1.6	7
618	3D-printed sensor decorated with nanomaterials by CO2 laser ablation and electrochemical treatment for non-enzymatic tyrosine detection. Mikrochimica Acta, 2023, 190, .	2.5	11
619	Wire arc additive manufacturing: A comprehensive review on methodologies and processes to overcome challenges with metallic alloys., 2023,, 191-258.		0
620	3D printing of 2D nano-inks for multifarious applications. , 2023, , 91-124.		2
621	Recent advances in 3D printed electrode materials for electrochemical energy storage devices. Journal of Energy Chemistry, 2023, 81, 272-312.	7.1	16
622	Spherical covalent organic framework and gold nanoparticles modified 3D-printed nanocarbon electrode for the sensor of acetaminophen. Microchemical Journal, 2023, 189, 108547.	2.3	3
623	Implementation of 3D printing technologies to electrochemical and optical biosensors developed for biomedical and pharmaceutical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2023, 230, 115385.	1.4	6
624	A review on 3D printed piezoelectric energy harvesters: Materials, 3D printing techniques, and applications. Materials Today Communications, 2023, 35, 105541.	0.9	4
625	Magnetic filler alignment of single graphene nanoplatelets modified by Fe3O4 to improve the thermal conductivity of the epoxy composite. Journal of Industrial and Engineering Chemistry, 2023, 122, 68-78.	2.9	2
626	Additive manufactured microfluidic device for electrochemical detection of carbendazim in honey samples. Talanta Open, 2023, 7, 100213.	1.7	7

#	Article	IF	CITATIONS
627	Applications of thread-based microfluidics: Approaches and options for detection. TrAC - Trends in Analytical Chemistry, 2023, 161, 117001.	5.8	6
628	Improving treatment of VOCs by integration of absorption columns into electrochemical cells using 3-D printing technology. Electrochimica Acta, 2023, 451, 142298.	2.6	1
629	Advances in Designing 3Dâ€Printed Systems for CO ₂ Reduction. Advanced Materials Interfaces, 2023, 10, .	1.9	5
630	Advance Biodegradable Polymer Composite Materials for Biomedical Additive Manufacturing Applications. Advances in Chemical and Materials Engineering Book Series, 2023, , 107-129.	0.2	0
631	Enhancement of 3D Printability by FDM and Electrical Conductivity of PLA/MWCNT Filaments Using Lignin as Bio-Dispersant. Polymers, 2023, 15, 999.	2.0	7
632	Joint process of laser shock polishing and imprinting for metallic nanostructure fabrication. Materials and Design, 2023, 227, 111743.	3.3	1
633	3D direct ink printed materials for chemical conversion and environmental remediation applications: a review. Journal of Materials Chemistry A, 2023, 11, 5408-5426.	5.2	5
634	All-Printed 3D Solid-State Rechargeable Zinc-Air Microbatteries. ACS Applied Materials & Samp; Interfaces, 2023, 15, 13073-13085.	4.0	3
635	Recycling 3D Printed Residues for the Development of Disposable Paper-Based Electrochemical Sensors. ACS Applied Materials & Development of Disposable Paper-Based Electrochemical Sensors.	4.0	3
636	Photoâ€Stimuliâ€Responsive Dualâ€Emitting Luminescence of a Spiropyranâ€Encapsulating Metal–Organic Framework for Dynamic Information Encryption. Advanced Materials, 2023, 35, .	11.1	39
637	Fabrication of a simple 3D-printed microfluidic device with embedded electrochemiluminescence detection for rapid determination of sibutramine in dietary supplements. Mikrochimica Acta, 2023, 190, .	2.5	2
638	Twoâ€Photon Polymerization Lithography for Optics and Photonics: Fundamentals, Materials, Technologies, and Applications. Advanced Functional Materials, 2023, 33, .	7.8	39
639	Improving performance of proton-exchange membrane (PEM) electro-ozonizers using 3D printing. Chemical Engineering Journal, 2023, 464, 142688.	6.6	6
640	The Biomodified Lignin Platform: A Review. Polymers, 2023, 15, 1694.	2.0	11
641	Multiscale architected porous materials for renewable energy conversion and storage. Energy Storage Materials, 2023, 59, 102768.	9.5	6
653	An Effective Development of Residual Stresses in Fused Deposit Modelling (FDM): An Overview. , 2023, , 245-258.		0
670	3D printing electrodes for energy conversion. , 2023, , 1-22.		0
671	Electrochemistry at additively manufactured electrodes. , 2023, , 504-516.		0

#	Article	IF	CITATIONS
683	Additive manufacturing techniques, their challenges, and additively manufactured composites for advanced engineering applications. , 2023 , , .		0
684	Electrochemical nitration for organic C–N bond formation: a current view on possible N-sources, mechanisms, and technological feasibility. Green Chemistry, 0, , .	4.6	0
686	3D Printing of Supercapacitor. Materials Horizons, 2024, , 177-196.	0.3	0
689	3D shape morphing of stimuli-responsive composite hydrogels. Materials Chemistry Frontiers, 2023, 7, 5989-6034.	3.2	2
700	3D-Printed Electrochemical (bio)sensors. Advances in Material Research and Technology, 2023, , 275-288.	0.3	0
703	Printed Solid-State Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	1
708	Particle-Reinforced Polymer Matrix Composites (PMC) Fabricated by 3D Printing. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33, 3732-3749.	1.9	7
717	Sensing techniques for environmental pollutants. , 2024, , 201-236.		0
721	Integrating additive manufacturing approaches in electrochemistry for enhanced systems — a mini review. Ionics, 2024, 30, 677-687.	1.2	0
727	3D printed honeycomb matrix as photocatalyst substrate for water remediation application. AIP Conference Proceedings, 2023, , .	0.3	0
740	Emerging 3D Printed Polymers and Composites for Water Quality Preservation. , 2024, , .		1
748	A Comprehensive Review on Additive Manufacturing and Its Applications in Biomimetics. Impact of Meat Consumption on Health and Environmental Sustainability, 2024, , 499-520.	0.4	0
761	Emerging 3D printing of MOFs and their derivatives. , 2024, , 367-389.		0