Myocardial apoptosis in heart disease: does the empero

Basic Research in Cardiology 111, 31

DOI: 10.1007/s00395-016-0549-2

Citation Report

#	Article	IF	CITATIONS
1	New Treatment Strategies for Alcohol-Induced Heart Damage. International Journal of Molecular Sciences, 2016, 17, 1651.	4.1	32
2	Icariin attenuated oxidative stress induced-cardiac apoptosis by mitochondria protection and ERK activation. Biomedicine and Pharmacotherapy, 2016, 83, 1089-1094.	5.6	59
3	Why So Few New Cardiovascular Drugs Translate to the Clinics. Circulation Research, 2016, 119, 714-717.	4.5	15
4	Circulating microRNA-150-5p as a novel biomarker for advanced heart failure: A genome-wide prospective study. Journal of Heart and Lung Transplantation, 2017, 36, 616-624.	0.6	70
5	Exposure to particulate matter induces cardiomyocytes apoptosis after myocardial infarction through NFήB activation. Biochemical and Biophysical Research Communications, 2017, 488, 224-231.	2.1	38
6	Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovascular Research, 2017, 113, 564-585.	3.8	278
7	MiR-486 regulates cardiomyocyte apoptosis by p53-mediated BCL-2 associated mitochondrial apoptotic pathway. BMC Cardiovascular Disorders, 2017, 17, 119.	1.7	44
8	PPARÎ ³ Alleviates Right Ventricular Failure Secondary to Pulmonary Arterial Hypertension in Rats. International Heart Journal, 2017, 58, 948-956.	1.0	10
9	3,3′-Diindolylmethane attenuates cardiomyocyte hypoxia by modulating autophagy in H9c2 cells. Molecular Medicine Reports, 2017, 16, 9553-9560.	2.4	10
10	Anti-apoptotic effect of Suxiao Jiuxin Pills against hypoxia-induced injury through PI3K/Akt/GSK3β pathway in HL-1 cardiomyocytes. Journal of the Chinese Medical Association, 2018, 81, 816-824.	1.4	14
11	Prdx1 alleviates cardiomyocyte apoptosis through ROS-activated MAPK pathway during myocardial ischemia/reperfusion injury. International Journal of Biological Macromolecules, 2018, 112, 608-615.	7.5	64
12	Programmed necrosis in heart disease: Molecular mechanisms and clinical implications. Journal of Molecular and Cellular Cardiology, 2018, 116, 125-134.	1.9	85
13	Stat5-dependent cardioprotection in late remote ischaemia preconditioning. Cardiovascular Research, 2018, 114, 679-689.	3.8	32
14	Substance P Attenuates Hypoxia/Reoxygenation-Induced Apoptosis via the Akt Signalling Pathway and the NK1-Receptor in H9C2Cells. Heart Lung and Circulation, 2018, 27, 1498-1506.	0.4	10
15	Resident fibroblast expansion during cardiac growth and remodeling. Journal of Molecular and Cellular Cardiology, 2018, 114, 161-174.	1.9	110
16	Possible mechanisms behind cardiac troponin elevations. Biomarkers, 2018, 23, 725-734.	1.9	95
17	Renal denervation improves cardiac function by attenuating myocardiocyte apoptosis in dogs after myocardial infarction. BMC Cardiovascular Disorders, 2018, 18, 86.	1.7	6
18	Anti-apoptosis in nonmyocytes and pro-autophagy in cardiomyocytes: two strategies against postinfarction heart failure through regulation of cell death/degeneration. Heart Failure Reviews, 2018, 23, 759-772.	3.9	52

#	Article	IF	CITATIONS
19	Neural mechanisms in remote ischaemic conditioning in the heart and brain: mechanistic and translational aspects. Basic Research in Cardiology, 2018, 113, 25.	5.9	59
20	Different signalling in infarcted and nonâ€infarcted areas of rat failing hearts: A role of necroptosis and inflammation. Journal of Cellular and Molecular Medicine, 2019, 23, 6429-6441.	3.6	25
21	<p>Micelles Loaded With Puerarin And Modified With Triphenylphosphonium Cation Possess Mitochondrial Targeting And Demonstrate Enhanced Protective Effect Against Isoprenaline-Induced H9c2 Cells Apoptosis</p> . International Journal of Nanomedicine, 2019, Volume 14, 8345-8360.	6.7	33
22	NADPH Oxidase Hyperactivity Contributes to Cardiac Dysfunction and Apoptosis in Rats with Severe Experimental Pancreatitis through ROS-Mediated MAPK Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-18.	4.0	39
23	The Guizhi Gancao Decoction Attenuates Myocardial Ischemia-Reperfusion Injury by Suppressing Inflammation and Cardiomyocyte Apoptosis. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-11.	1.2	14
24	MicroRNA-29b-3p Targets SPARC Gene to Protect Cardiocytes against Autophagy and Apoptosis in Hypoxic-Induced H9c2 Cells. Journal of Cardiovascular Translational Research, 2019, 12, 358-365.	2.4	29
25	Multitarget Strategies to Reduce Myocardial Ischemia/Reperfusion Injury. Journal of the American College of Cardiology, 2019, 73, 89-99.	2.8	484
26	LncRNA MALAT1 protects cardiomyocytes from isoproterenolâ€induced apoptosis through sponging miRâ€558 to enhance ULK1â€mediated protective autophagy. Journal of Cellular Physiology, 2019, 234, 10842-10854.	4.1	65
27	Zinc Finger Protein ZBTB20 protects against cardiac remodelling postâ€myocardial infarction via ROS‶NFα/ASK1/JNK pathway regulation. Journal of Cellular and Molecular Medicine, 2020, 24, 13383-13396.	3 . 6	16
28	Silencing TTTY15 mitigates hypoxia-induced mitochondrial energy metabolism dysfunction and cardiomyocytes apoptosis via TTTY15/let-7i-5p and TLR3/NF-κB pathways. Cellular Signalling, 2020, 76, 109779.	3.6	15
29	Two novel anticancer compounds with minimum cardiotoxic property. BMC Pharmacology & Samp; Toxicology, 2020, 21, 79.	2.4	1
30	Protective effect of lncRNA CRNDE on myocardial cell apoptosis in heart failure by regulating HMGB1 cytoplasm translocation through PARP-1. Archives of Pharmacal Research, 2020, 43, 1325-1334.	6.3	8
31	Crosstalk between cardiomyocytes and noncardiomyocytes is essential to prevent cardiomyocyte apoptosis induced by proteasome inhibition. Cell Death and Disease, 2020, 11, 783.	6.3	4
32	Aging Promotes Mitochondria-Mediated Apoptosis in Rat Hearts. Life, 2020, 10, 178.	2.4	13
33	Programmed Cell Death in the Left and Right Ventricle of the Late Phase of Post-Infarction Heart Failure. International Journal of Molecular Sciences, 2020, 21, 7782.	4.1	5
34	Mitochondrial and mitochondrialâ€independent pathways of myocardial cell death during ischaemia and reperfusion injury. Journal of Cellular and Molecular Medicine, 2020, 24, 3795-3806.	3 . 6	118
35	Cocoa Flavonoids Reduce Inflammation and Oxidative Stress in a Myocardial Ischemia-Reperfusion Experimental Model. Antioxidants, 2020, 9, 167.	5.1	20
36	Combination of melatonin and irisin ameliorates lipopolysaccharideâ€induced cardiac dysfunction through suppressing the Mst1–JNK pathways. Journal of Cellular Physiology, 2020, 235, 6647-6659.	4.1	36

#	ARTICLE	IF	CITATIONS
37	Hydrogen sulfideâ€loaded microbubbles combined with ultrasound mediate thrombolysis and simultaneously mitigate ischemiaâ€reperfusion injury in a rat hindlimb model. Journal of Thrombosis and Haemostasis, 2021, 19, 738-752.	3.8	9
38	Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted <i>cdip1</i> silencing to improve angiogenesis following myocardial infarction. Theranostics, 2021, 11, 268-291.	10.0	87
39	Triterpenoid saponins from Ilex cornuta protect H9c2 cardiomyocytes against H2O2-induced apoptosis by modulating Ezh2 phosphorylation. Journal of Ethnopharmacology, 2021, 269, 113691.	4.1	9
40	Mangiferin prevents myocardial infarctionâ€induced apoptosis and heart failure in mice by activating the Sirt1/FoxO3a pathway. Journal of Cellular and Molecular Medicine, 2021, 25, 2944-2955.	3.6	33
41	Promoting roles of KLF5 in myocardial infarction in mice involving microRNA-27a suppression and the following GFPT2/TGF-β/Smad2/3 axis activation. Cell Cycle, 2021, 20, 874-893.	2.6	8
42	PTEN mediates serum deprivation-induced cytotoxicity in H9c2 cells via the PI3K/AKT signaling pathway. Toxicology in Vitro, 2021, 73, 105131.	2.4	5
43	Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy. Acta Pharmaceutica Sinica B, 2022, 12, 1-17.	12.0	39
44	Mechanistic Role of Thioredoxin 2 in Heart Failure. Advances in Experimental Medicine and Biology, 2017, 982, 265-276.	1.6	8
45	Epigallocatechin-3-gallate protects cardiomyocytes from hypoxia-reoxygenation damage via raising autophagy related 4C expression. Bioengineered, 2021, 12, 9496-9506.	3.2	12
46	Palmitate impairs the autophagic flux to induce p62-dependent apoptosis through the upregulation of CYLD in NRCMs. Toxicology, 2022, 465, 153032.	4.2	5
47	Programmed Cell Death: Complex Regulatory Networks in Cardiovascular Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 794879.	3.7	13
48	A Protein-Centric Perspective of Autophagy and Apoptosis Signaling and Crosstalk in Health and Disease. , 2022, , 1-22.		1
49	NDRG4 Alleviates Myocardial Infarction-Induced Apoptosis through the JAK2/STAT3 Pathway. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-13.	1.3	5
50	Interplay of Oxidative Stress and Necrosis-like Cell Death in Cardiac Ischemia/Reperfusion Injury: A Focus on Necroptosis. Biomedicines, 2022, 10, 127.	3.2	19
51	Therapeutic Peptides to Treat Myocardial Ischemia-Reperfusion Injury. Frontiers in Cardiovascular Medicine, 2022, 9, 792885.	2.4	14
52	MIAT, a potent CVD-promoting IncRNA. Cellular and Molecular Life Sciences, 2022, 79, 1.	5.4	12
53	Dapagliflozin Improves Cardiac Function, Remodeling, Myocardial Apoptosis, and Inflammatory Cytokines in Mice with Myocardial Infarction. Journal of Cardiovascular Translational Research, 2022, 15, 786-796.	2.4	15
55	Indole-3-Carbinol (I3C) Protects the Heart From Ischemia/Reperfusion Injury by Inhibiting Oxidative Stress, Inflammation, and Cellular Apoptosis in Mice. Frontiers in Pharmacology, 0, 13, .	3.5	4

#	Article	IF	CITATIONS
56	Appropriate Dose of Dapagliflozin Improves Cardiac Outcomes by Normalizing Mitochondrial Fission and Reducing Cardiomyocyte Apoptosis After Acute Myocardial Infarction. Drug Design, Development and Therapy, 0, Volume 16, 2017-2030.	4.3	6
57	Contribution of Myocyte Apoptosis to Myocardial Injury in an <i>in Vivo</i> Rabbit Preparation of Ischemia-Reperfusion. World Journal of Cardiovascular Diseases, 2022, 12, 426-438.	0.2	1
58	The Effect of Metformin on Bad, Bak, and Bim Pro-apoptotic Factors: A Molecular Dynamic Simulation Study. Current Cancer Therapy Reviews, 2023, 19, 74-81.	0.3	1
59	TRIM21 aggravates cardiac injury after myocardial infarction by promoting M1 macrophage polarization. Frontiers in Immunology, 0, 13, .	4.8	0
60	Modified Linggui Zhugan Decoction protects against ventricular remodeling through ameliorating mitochondrial damage in post-myocardial infarction rats. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	0
61	Interdependent Nuclear Co-Trafficking of ASPP1 and p53 Aggravates Cardiac Ischemia/Reperfusion Injury. Circulation Research, 2023, 132, 208-222.	4.5	7
63	Non-coding RNA mediates endoplasmic reticulum stress-induced apoptosis in heart disease. Heliyon, 2023, 9, e16246.	3.2	1
64	Apoptosis and myocardial infarction: role of ncRNAs and exosomal ncRNAs. Epigenomics, 2023, 15, 307-334.	2.1	3
65	Bio-inspired nanoparticles mediated from plant extract biomolecules and their therapeutic application in cardiovascular diseases: A review. International Journal of Biological Macromolecules, 2023, 242, 125025.	7.5	1
66	Sphingosylphosphorylcholine alleviates pressure overload-induced myocardial remodeling in mice via inhibiting CaM-JNK/p38 signaling pathway. Acta Pharmacologica Sinica, 0, , .	6.1	0
67	Ferroptosis in cardiovascular diseases: role and mechanism. Cell and Bioscience, 2023, 13, .	4.8	0
68	Prognostic significance of serum dynamin‑related protein 1 in patients with heart failure: Findings from a prospective observational study. Experimental and Therapeutic Medicine, 2024, 27, .	1.8	O