Mechanisms of Bacterial Transcription Termination: Al

Annual Review of Biochemistry 85, 319-347 DOI: 10.1146/annurev-biochem-060815-014844

Citation Report

#	Article	IF	CITATIONS
1	Characterization of molecular interactions between <i>Escherichia coli </i> <scp>RNA</scp> polymerase and topoisomerase I by molecular simulations. FEBS Letters, 2016, 590, 2844-2851.	2.8	14
2	What Really Rigs Up RIG-I?. Journal of Innate Immunity, 2016, 8, 429-436.	3.8	25
3	Widespread formation of alternative 3′ UTR isoforms via transcription termination in archaea. Nature Microbiology, 2016, 1, 16143.	13.3	58
4	Consensus architecture of promoters and transcription units in Escherichia coli: design principles for synthetic biology. Molecular BioSystems, 2017, 13, 665-676.	2.9	9
5	Competitive folding of RNA structures at a termination–antitermination site. Rna, 2017, 23, 721-734.	3.5	3
6	LoaP is a broadly conserved antiterminator protein that regulates antibiotic gene clusters in Bacillus amyloliquefaciens. Nature Microbiology, 2017, 2, 17003.	13.3	45
7	Deep sequencing approaches for the analysis of prokaryotic transcriptional boundaries and dynamics. Methods, 2017, 120, 76-84.	3.8	10
8	A Screen for <i>rfaH</i> Suppressors Reveals a Key Role for a Connector Region of Termination Factor Rho. MBio, 2017, 8, .	4.1	23
9	Role of the terminator hairpin in the biogenesis of functional Hfq-binding sRNAs. Rna, 2017, 23, 1419-1431.	3.5	24
10	Long-Range Interactions in Riboswitch Control of Gene Expression. Annual Review of Biophysics, 2017, 46, 455-481.	10.0	65
11	Cystoviral RNA-directed RNA polymerases: Regulation of RNA synthesis on multiple time and length scales. Virus Research, 2017, 234, 135-152.	2.2	6
12	Achieving large dynamic range control of gene expression with a compact RNA transcription–translation regulator. Nucleic Acids Research, 2017, 45, 5614-5624.	14.5	43
13	Spt5 Plays Vital Roles in the Control of Sense and Antisense Transcription Elongation. Molecular Cell, 2017, 66, 77-88.e5.	9.7	90
14	Genome-wide Analysis of RNA Polymerase II Termination at Protein-Coding Genes. Molecular Cell, 2017, 66, 38-49.e6.	9.7	100
15	Transcription control engineering and applications in synthetic biology. Synthetic and Systems Biotechnology, 2017, 2, 176-191.	3.7	70
16	Computational design of small transcription activating RNAs for versatile and dynamic gene regulation. Nature Communications, 2017, 8, 1051.	12.8	113
17	Trigger loop dynamics can explain stimulation of intrinsic termination by bacterial RNA polymerase without terminator hairpin contact. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9233-E9242.	7.1	19
18	Binding of NAD ⁺ -Glycohydrolase to Streptolysin O Stabilizes Both Toxins and Promotes Virulence of Group A <i>Streptococcus</i> . MBio, 2017, 8, .	4.1	36

	CITATION	Report	
#	Article	IF	CITATIONS
19	Rho Protein: Roles and Mechanisms. Annual Review of Microbiology, 2017, 71, 687-709.	7.3	109
20	Factor-dependent archaeal transcription termination. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6767-E6773.	7.1	35
21	Adaptive Mutations in RNA Polymerase and the Transcriptional Terminator Rho Have Similar Effects on Escherichia coli Gene Expression. Molecular Biology and Evolution, 2017, 34, 2839-2855.	8.9	27
22	Distributed biotin–streptavidin transcription roadblocks for mapping cotranscriptional RNA folding. Nucleic Acids Research, 2017, 45, e109-e109.	14.5	38
23	Global transcriptional landscape and promoter mapping of the gut commensal Bifidobacterium breve UCC2003. BMC Genomics, 2017, 18, 991.	2.8	24
24	RNA secondary structures regulate three steps of Rho-dependent transcription termination within a bacterial mRNA leader. Nucleic Acids Research, 2017, 45, 631-642.	14.5	15
25	Allosteric regulation of Csx1, a type IIIB-associated CARF domain ribonuclease by RNAs carrying a tetraadenylate tail. Nucleic Acids Research, 2017, 45, 10740-10750.	14.5	43
26	Genome-wide relationship between R-loop formation and antisense transcription in Escherichia coli. Nucleic Acids Research, 2018, 46, 3400-3411.	14.5	30
28	Evaluating the Effect of Small RNAs and Associated Chaperones on Rho-Dependent Termination of Transcription In Vitro. Methods in Molecular Biology, 2018, 1737, 99-118.	0.9	5
29	Requirement or exclusion of inverted repeat sequences with cruciform-forming potential in Escherichia coli revealed by genome-wide analyses. Current Genetics, 2018, 64, 945-958.	1.7	11
30	High-resolution RNA 3′-ends mapping of bacterial Rho-dependent transcripts. Nucleic Acids Research, 2018, 46, 6797-6805.	14.5	88
31	The transcription-repair coupling factor Mfd associates with RNA polymerase in the absence of exogenous damage. Nature Communications, 2018, 9, 1570.	12.8	55
32	Pausing controls branching between productive and non-productive pathways during initial transcription in bacteria. Nature Communications, 2018, 9, 1478.	12.8	61
33	A Bacteriophage Capsid Protein Is an Inhibitor of a Conserved Transcription Terminator of Various Bacterial Pathogens. Journal of Bacteriology, 2018, 200, .	2.2	33
34	Helicases as transcription termination factors: Different solutions for a common problem. Transcription, 2018, 9, 152-158.	3.1	4
35	Design of a Temperature-Responsive Transcription Terminator. ACS Synthetic Biology, 2018, 7, 613-621.	3.8	18
36	Small Regulatory RNAs in the Enterobacterial Response to Envelope Damage and Oxidative Stress. , 0, , 211-228.		5
37	NETSeq reveals heterogeneous nucleotide incorporation by RNA polymerase I. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11633-E11641.	7.1	22

#	Article	IF	CITATIONS
38	Transcription apparatus of the yeast virus-like elements: Architecture, function, and evolutionary origin. PLoS Pathogens, 2018, 14, e1007377.	4.7	13
39	Inhibition of Rho Activity Increases Expression of SaeRS-Dependent Virulence Factor Genes in Staphylococcus aureus, Showing a Link between Transcription Termination, Antibiotic Action, and Virulence. MBio, 2018, 9, .	4.1	16
40	A Bacterial Chromosome Structuring Protein Binds Overtwisted DNA to Stimulate Type II Topoisomerases and Enable DNA Replication. Cell, 2018, 175, 583-597.e23.	28.9	53
41	SMRT-Cappable-seq reveals complex operon variants in bacteria. Nature Communications, 2018, 9, 3676.	12.8	80
42	Processive Antitermination. Microbiology Spectrum, 2018, 6, .	3.0	23
43	Processive Antitermination. , 2018, , 117-131.		1
44	Complex Control of a Genomic Island Governing Biofilm and Rugose Colony Development in Vibrio vulnificus. Journal of Bacteriology, 2018, 200, .	2.2	21
45	Distinct mechanisms coordinate transcription and translation under carbon and nitrogen starvation in Escherichia coli. Nature Microbiology, 2018, 3, 741-748.	13.3	65
46	A multivariate prediction model for Rho-dependent termination of transcription. Nucleic Acids Research, 2018, 46, 8245-8260.	14.5	30
47	Determining the Transcription Rates Yielding Steady-State Production of mRNA in the Lac Genetic Switch of <i>Escherichia coli</i> . Journal of Computational Biology, 2018, 25, 1023-1039.	1.6	6
48	Pause sequences facilitate entry into long-lived paused states by reducing RNA polymerase transcription rates. Nature Communications, 2018, 9, 2930.	12.8	42
49	Assessment of Bona Fide sRNAs in Staphylococcus aureus. Frontiers in Microbiology, 2018, 9, 228.	3.5	31
50	RNA-binding proteins in bacteria. Nature Reviews Microbiology, 2018, 16, 601-615.	28.6	200
51	Extensive reshaping of bacterial operons by programmed mRNA decay. PLoS Genetics, 2018, 14, e1007354.	3.5	60
52	Small Regulatory RNAs in the Enterobacterial Response to Envelope Damage and Oxidative Stress. Microbiology Spectrum, 2018, 6, .	3.0	48
54	An Introduction to the Structure and Function of the Catalytic Core Enzyme of <i>Escherichia coli</i> RNA Polymerase. EcoSal Plus, 2018, 8, .	5.4	44
55	Reaction Mechanisms of Pol IV, RDR2, and DCL3 Drive RNA Channeling in the siRNA-Directed DNA Methylation Pathway. Molecular Cell, 2019, 75, 576-589.e5.	9.7	93
56	DUETT quantitatively identifies known and novel events in nascent RNA structural dynamics from chemical probing data. Bioinformatics, 2019, 35, 5103-5112.	4.1	4

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
57	Mechanisms of Transcriptional Pausing in Bacteria. Journal of Molecular Biology, 2019, 431, 4007-4029.	4.2	70
58	Transcription of Bacterial Chromatin. Journal of Molecular Biology, 2019, 431, 4040-4066.	4.2	51
59	Full-length RNA profiling reveals pervasive bidirectional transcription terminators in bacteria. Nature Microbiology, 2019, 4, 1907-1918.	13.3	87
60	Structural basis for transcription antitermination at bacterial intrinsic terminator. Nature Communications, 2019, 10, 3048.	12.8	18
61	The enigmatic role of Mfd in replication-transcription conflicts in bacteria. DNA Repair, 2019, 81, 102659.	2.8	9
62	Riboswitches: choosing the best platform. Biochemical Society Transactions, 2019, 47, 1091-1099.	3.4	10
63	Structural basis of Q-dependent transcription antitermination. Nature Communications, 2019, 10, 2925.	12.8	41
64	Regulation of Bacterial Gene Expression by Transcription Attenuation. Microbiology and Molecular Biology Reviews, 2019, 83, .	6.6	47
65	Transcription of Genes. , 2019, , 332-361.		0
66	The Transcription Unit Architecture of Streptomyces lividans TK24. Frontiers in Microbiology, 2019, 10, 2074.	3.5	25
67	NusG prevents transcriptional invasion of H-NS-silenced genes. PLoS Genetics, 2019, 15, e1008425.	3.5	16
68	Exploiting phage strategies to modulate bacterial transcription. Transcription, 2019, 10, 222-230.	3.1	6
69	Control of RNA Pol II Speed by PNUTS-PP1 and Spt5 Dephosphorylation Facilitates Termination by a "Sitting Duck Torpedo―Mechanism. Molecular Cell, 2019, 76, 896-908.e4.	9.7	133
70	A fluorescent assay for the genetic dissection of the RNA polymerase II termination machinery. Methods, 2019, 159-160, 124-128.	3.8	1
71	Organization and regulation of gene transcription. Nature, 2019, 573, 45-54.	27.8	431
72	R-loop-dependent replication and genomic instability in bacteria. DNA Repair, 2019, 84, 102693.	2.8	24
74	<p>Phage therapy as a renewed therapeutic approach to mycobacterial infections: a comprehensive review</p> . Infection and Drug Resistance, 2019, Volume 12, 2943-2959.	2.7	59
75	The Rho-Independent Transcription Terminator for the <i>porA</i> Gene Enhances Expression of the Major Outer Membrane Protein and Campylobacter jejuni Virulence in Abortion Induction. Infection and Immunity, 2019, 87, .	2.2	4

#	Article	IF	CITATIONS
76	SraL sRNA interaction regulates the terminator by preventing premature transcription termination of <i>rho</i> mRNA. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3042-3051.	7.1	37
77	Biosynthesis and growth. , 2019, , 115-184.		0
78	Two Old Dogs, One New Trick: A Review of RNA Polymerase and Ribosome Interactions during Transcription-Translation Coupling. International Journal of Molecular Sciences, 2019, 20, 2595.	4.1	20
79	Regulation of Transcription Termination of Small RNAs and by Small RNAs: Molecular Mechanisms and Biological Functions. Frontiers in Cellular and Infection Microbiology, 2019, 9, 201.	3.9	61
80	A DEAD-box protein regulates ribosome assembly through control of ribosomal protein synthesis. Nucleic Acids Research, 2019, 47, 8193-8206.	14.5	8
81	Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes and Development, 2019, 33, 960-982.	5.9	373
82	Identification of novel genes associated with anti-phagocytic functions in Streptococcus equi subsp. zooepidemicus. Veterinary Microbiology, 2019, 233, 28-38.	1.9	12
83	Structural basis for the function of SuhB as a transcription factor in ribosomal RNA synthesis. Nucleic Acids Research, 2019, 47, 6488-6503.	14.5	15
84	Time-Course Proteomic Analysis of Pseudomonas putida KT2440 during Mcl-Polyhydroxyalkanoate Synthesis under Nitrogen Deficiency. Polymers, 2019, 11, 748.	4.5	11
85	Transcriptional noise and exaptation as sources for bacterial sRNAs. Biochemical Society Transactions, 2019, 47, 527-539.	3.4	38
86	Ancient Transcription Factors in the News. MBio, 2019, 10, .	4.1	23
87	RNA polymerase III subunits C37/53 modulate rU:dA hybrid 3′ end dynamics during transcription termination. Nucleic Acids Research, 2019, 47, 310-327.	14.5	24
88	RhoTermPredict: an algorithm for predicting Rho-dependent transcription terminators based on Escherichia coli, Bacillus subtilis and Salmonella enterica databases. BMC Bioinformatics, 2019, 20, 117.	2.6	32
89	Rho-dependent transcription termination in bacteria recycles RNA polymerases stalled at DNA lesions. Nature Communications, 2019, 10, 1207.	12.8	23
90	Mechanisms of Bacterial Transcription Termination. Journal of Molecular Biology, 2019, 431, 4030-4039.	4.2	111
91	Expanding the Toolbox of Broad Host-Range Transcriptional Terminators for Proteobacteria through Metagenomics. ACS Synthetic Biology, 2019, 8, 647-654.	3.8	21
92	Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiology Reviews, 2019, 43, 304-339.	8.6	111
93	Xenogeneic Regulation of the Bacterial Transcription Machinery. Journal of Molecular Biology, 2019, 431, 4078-4092.	4.2	21

	CITATION	LPORT	
#	Article	IF	CITATIONS
94	Tuning the sequence specificity of a transcription terminator. Current Genetics, 2019, 65, 729-733.	1.7	12
95	Structural Basis for the Action of an All-Purpose Transcription Anti-termination Factor. Molecular Cell, 2019, 74, 143-157.e5.	9.7	86
96	Processing generates 3′ ends of RNA masking transcription termination events in prokaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4440-4445.	7.1	37
97	Rapid generation of sequence-diverse terminator libraries and their parameterization using quantitative Term-Seq. Synthetic Biology, 2019, 4, ysz026.	2.2	11
98	H-NS uses an autoinhibitory conformational switch for environment-controlled gene silencing. Nucleic Acids Research, 2019, 47, 2666-2680.	14.5	45
99	A Fluorogenic Assay To Monitor Rho-Dependent Termination of Transcription. Biochemistry, 2019, 58, 865-874.	2.5	3
100	Mechanisms of antibiotics inhibiting bacterial RNA polymerase. Biochemical Society Transactions, 2019, 47, 339-350.	3.4	25
102	Optimization and validation of in-situ derivatization and headspace solid-phase microextraction for gas chromatography–mass spectrometry analysis of 3-MCPD esters, 2-MCPD esters and glycidyl esters in edible oils via central composite design. Food Chemistry, 2020, 307, 125542.	8.2	20
103	Antitermination protein P7 of bacteriophage Xp10 distinguishes different types of transcriptional pausing by bacterial RNA polymerase. Biochimie, 2020, 170, 57-64.	2.6	0
104	Small RNA Mcr11 requires the transcription factor AbmR for stable expression and regulates genes involved in the central metabolism of <i>Mycobacterium tuberculosis</i> . Molecular Microbiology, 2020, 113, 504-520.	2.5	17
105	The Rho-Dependent Transcription Termination Is Involved in Broad-Spectrum Antibiotic Susceptibility in Escherichia coli. Frontiers in Microbiology, 2020, 11, 605305.	3.5	11
106	Integrator-Dependent and Allosteric/Intrinsic Mechanisms Ensure Efficient Termination of snRNA Transcription. Cell Reports, 2020, 33, 108319.	6.4	17
107	Genome-Scale Transcription-Translation Mapping Reveals Features of Zymomonas mobilis Transcription Units and Promoters. MSystems, 2020, 5, .	3.8	19
108	Rho factor mediates flagellum and toxin phase variation and impacts virulence in Clostridioides difficile. PLoS Pathogens, 2020, 16, e1008708.	4.7	27
109	Archaeal transcription. Transcription, 2020, 11, 199-210.	3.1	12
110	UvrD helicase–RNA polymerase interactions are governed by UvrD's carboxy-terminal Tudor domain. Communications Biology, 2020, 3, 607.	4.4	18
111	Real-time monitoring of single ZTP riboswitches reveals a complex and kinetically controlled decision landscape. Nature Communications, 2020, 11, 4531.	12.8	36
112	The conserved ribonuclease aCPSF1 triggers genome-wide transcription termination of Archaea via a 3′-end cleavage mode. Nucleic Acids Research, 2020, 48, 9589-9605.	14.5	31

#	Article	IF	CITATIONS
113	Dual-level autoregulation of the <i>E. coli</i> DeaD RNA helicase via mRNA stability and Rho-dependent transcription termination. Rna, 2020, 26, 1160-1169.	3.5	9
114	RNA-binding activity and regulatory functions of the emerging sRNA-binding protein ProQ. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194596.	1.9	36
115	A high-resolution map of bacteriophage ϕX174 transcription. Virology, 2020, 547, 47-56.	2.4	17
116	Termination of Transcription by RNA Polymerase II: BOOM!. Trends in Genetics, 2020, 36, 664-675.	6.7	49
117	Evaluating Terminator Strength Based on Differentiating Effects on Transcription and Translation. ChemBioChem, 2020, 21, 2067-2072.	2.6	13
118	High-resolution modeling of the selection on local mRNA folding strength in coding sequences across the tree of life. Genome Biology, 2020, 21, 63.	8.8	24
119	Prevalence of small base-pairing RNAs derived from diverse genomic loci. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194524.	1.9	66
120	New sequencing methodologies reveal interplay between multiple RNA-binding proteins and their RNAs. Current Genetics, 2020, 66, 713-717.	1.7	16
121	Plastic Circuits: Regulatory Flexibility in Fine Tuning Pathogen Success. Trends in Microbiology, 2020, 28, 360-371.	7.7	8
122	FttA is a CPSF73 homologue that terminates transcription in Archaea. Nature Microbiology, 2020, 5, 545-553.	13.3	23
123	Riboswitch regulation mechanisms: RNA, metabolites and regulatory proteins. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194501.	1.9	58
124	Identification of RNA 3´ ends and termination sites in <i>Haloferax volcanii</i> . RNA Biology, 2020, 17, 663-676.	3.1	16
125	Regulatory interplay between small RNAs and transcription termination factor Rho. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194546.	1.9	22
126	Keeping Up with RNA-Based Regulation in Bacteria: New Roles for RNA Binding Proteins. Trends in Genetics, 2021, 37, 86-97.	6.7	12
127	Pre-termination Transcription Complex: Structure and Function. Molecular Cell, 2021, 81, 281-292.e8.	9.7	62
128	Basic mechanisms and kinetics of pause-interspersed transcript elongation. Nucleic Acids Research, 2021, 49, 15-24.	14.5	9
129	Beyond Plug and Pray: Context Sensitivity and <i>in silico</i> Design of Artificial Neomycin Riboswitches. RNA Biology, 2021, 18, 457-467.	3.1	6
130	Transcription Transcription Termination. , 2021, , 435-442.		0

#	Article	IF	CITATIONS
131	Computational identification of potential lead molecules targeting rho receptor of <i>Neisseria gonorrhoeae</i> . Journal of Biomolecular Structure and Dynamics, 2022, 40, 6415-6425.	3.5	2
132	Nascent RNA sequencing identifies a widespread sigma70-dependent pausing regulated by Gre factors in bacteria. Nature Communications, 2021, 12, 906.	12.8	11
133	A translational riboswitch coordinates nascent transcription–translation coupling. Proceedings of the United States of America, 2021, 118, .	7.1	38
134	NusG is an intrinsic transcription termination factor that stimulates motility and coordinates gene expression with NusA. ELife, 2021, 10, .	6.0	27
135	A novel bipartite antitermination system widespread in conjugative elements of Gram-positive bacteria. Nucleic Acids Research, 2021, 49, 5553-5567.	14.5	5
137	Data-Driven and in Silico-Assisted Design of Broad Host-Range Minimal Intrinsic Terminators Adapted for Bacteria. ACS Synthetic Biology, 2021, 10, 1438-1450.	3.8	14
139	RNA Sequence and Structure Determinants of Pol III Transcriptional Termination in Human Cells. Journal of Molecular Biology, 2021, 433, 166978.	4.2	4
140	Elucidating the Regulatory Elements for Transcription Termination and Posttranscriptional Processing in the Streptomyces clavuligerus Genome. MSystems, 2021, 6, .	3.8	6
141	A NusG Specialized Paralog That Exhibits Specific, High-Affinity RNA-Binding Activity. Journal of Molecular Biology, 2021, 433, 167100.	4.2	1
142	A navigation guide of synthetic biology tools for Pseudomonas putida. Biotechnology Advances, 2021, 49, 107732.	11.7	48
143	The Role of RNA Secondary Structure in Regulation of Gene Expression in Bacteria. International Journal of Molecular Sciences, 2021, 22, 7845.	4.1	14
144	A Large Insertion Domain in the Rho Factor From a Low GÂ+ÂC, Gram-negative Bacterium is Critical for RNA Binding and Transcription Termination Activity. Journal of Molecular Biology, 2021, 433, 167060.	4.2	8
145	Clusters of hairpins induce intrinsic transcription termination in bacteria. Scientific Reports, 2021, 11, 16194.	3.3	4
146	Quantitative Control for Stoichiometric Protein Synthesis. Annual Review of Microbiology, 2021, 75, 243-267.	7.3	14
147	Probing steps in DNA transcription using single-molecule methods. Journal of Biological Chemistry, 2021, 297, 101086.	3.4	6
148	β-CASP proteins removing RNA polymerase from DNA: when a torpedo is needed to shoot a sitting duck. Nucleic Acids Research, 2021, 49, 10221-10234.	14.5	3
149	Transcription RNA Polymerase Structure, Bacterial. , 2021, , 365-378.		0
150	A Single-Molecule View on Cellular and Viral RNA Synthesis. Biological and Medical Physics Series, 2019, , 109-141.	0.4	5

#	Article	IF	CITATIONS
151	Mfd regulates RNA polymerase association with hard-to-transcribe regions in vivo, especially those with structured RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	20
157	Mechanisms of Theta Plasmid Replication in Enterobacteria and Implications for Adaptation to Its Host. EcoSal Plus, 2020, 9, .	5.4	7
158	Quantitative analysis of asynchronous transcription-translation and transcription processivity in Bacillus subtilis under various growth conditions. IScience, 2021, 24, 103333.	4.1	9
159	Structural insights into RNA polymerase III-mediated transcription termination through trapping poly-deoxythymidine. Nature Communications, 2021, 12, 6135.	12.8	19
161	A Global Characterisation of the Archaeal Transcription Machinery. Nucleic Acids and Molecular Biology, 2017, , 1-26.	0.2	2
165	Molecular Mechanisms of an All-Purpose Transcription Anti-Termination Factor. SSRN Electronic Journal, 0, , .	0.4	0
175	Transcription complexes as RNA chaperones. Transcription, 2021, 12, 126-155.	3.1	4
178	Monitoring RNA dynamics in native transcriptional complexes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
183	A Simple Fluorescence Microplate Assay to Monitor RNA-DNA Hybrid Unwinding by the Bacterial Transcription Termination Factor Rho. Methods in Molecular Biology, 2021, 2209, 143-161.	0.9	0
184	Dynamic competition between a ligand and transcription factor NusA governs riboswitch-mediated transcription regulation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	20
186	Genome-scale analysis of genetic regulatory elements in Streptomyces avermitilis MA-4680 using transcript boundary information. BMC Genomics, 2022, 23, 68.	2.8	2
187	Structural characterization of the ANTAR antiterminator domain bound to RNA. Nucleic Acids Research, 2022, 50, 2889-2904.	14.5	2
188	Cryo-EM structure of transcription termination factor Rho from Mycobacterium tuberculosis reveals bicyclomycin resistance mechanism. Communications Biology, 2022, 5, 120.	4.4	7
189	An in vitro Assay of mRNA 3' end Using the E. coli cell-free Expression System. Bio-protocol, 2022, 12, e4333.	0.4	2
190	Synthetic 3′-UTR valves for optimal metabolic flux control in <i>Escherichia coli</i> . Nucleic Acids Research, 2022, 50, 4171-4186.	14.5	3
192	Internal Transcription Terminators Control Stoichiometry of ABC Transporters in Cellulolytic Clostridia. Microbiology Spectrum, 2022, , e0165621.	3.0	3
194	Conjugation Operons in Gram-Positive Bacteria with and without Antitermination Systems. Microorganisms, 2022, 10, 587.	3.6	2
195	Roles of zinc-binding domain of bacterial RNA polymerase in transcription. Trends in Biochemical Sciences, 2022, 47, 710-724.	7.5	9

#	Article	IF	CITATIONS
196	Disrupting Transcription and Folate Biosynthesis Leads to Synergistic Suppression of <i>Escherichia coli</i> Growth. ChemMedChem, 2022, 17, .	3.2	5
197	QRNAstruct: a method for extracting secondary structural features of RNA via regression with biological activity. Nucleic Acids Research, 2022, , .	14.5	0
198	aCPSF1 cooperates with terminator U-tract to dictate archaeal transcription termination efficacy. ELife, 2021, 10, .	6.0	12
199	Regulation of Gene Expression Through Effector-dependent Conformational Switching by Cobalamin Riboswitches. Journal of Molecular Biology, 2022, 434, 167585.	4.2	8
207	Functional Cooperation between Intrinsic and Rho-Dependent Termination in Mycobacteria and Escherichia Coli. SSRN Electronic Journal, 0, , .	0.4	2
208	InÂvivo regulation of bacterial Rho-dependent transcription termination by the nascent RNA. Journal of Biological Chemistry, 2022, 298, 102001.	3.4	8
209	Mapping the Complex Transcriptional Landscape of the Phytopathogenic Bacterium Dickeya dadantii. MBio, 2022, 13, e0052422.	4.1	4
210	Site-specific photolabile roadblocks for the study of transcription elongation in biologically complex systems. Communications Biology, 2022, 5, 457.	4.4	4
211	Evolution of the RNA Cleavage Subunit C11/RPC10, and Recycling by RNA Polymerase III. , 2022, 4, .		0
213	How does RNA fold dynamically?. Journal of Molecular Biology, 2022, 434, 167665.	4.2	23
214	Engineering Toehold-Mediated Switches for Native RNA Detection and Regulation in Bacteria. Journal of Molecular Biology, 2022, 434, 167689.	4.2	3
215	Failure of Translation Initiation of the Next Gene Decouples Transcription at Intercistronic Sites and the Resultant mRNA Generation. MBio, 2022, 13, .	4.1	5
216	Sequence and thermodynamic characteristics of terminators revealed by FlowSeq and the discrimination of terminators strength. Synthetic and Systems Biotechnology, 2022, 7, 1046-1055.	3.7	1
217	Development and Application of Transcription Terminators for Polyhydroxylkanoates Production in Halophilic Halomonas bluephagenesis TD01. Frontiers in Microbiology, 0, 13, .	3.5	2
218	Posttranscriptional Regulation by Copper with a New Upstream Open Reading Frame. MBio, 2022, 13, .	4.1	9
219	Inverse folding based pre-training for the reliable identification of intrinsic transcription terminators. PLoS Computational Biology, 2022, 18, e1010240.	3.2	1
220	Structural basis of AlpA-dependent transcription antitermination. Nucleic Acids Research, 0, , .	14.5	4
222	3′ Untranslated Regions Are Modular Entities That Determine Polyadenylation Profiles. Molecular and Cellular Biology, 2022, 42, .	2.3	7

#	Article	IF	CITATIONS
223	Alkaline pH has an unexpected effect on transcriptional pausing during synthesis of the Escherichia coli pH-responsive riboswitch. Journal of Biological Chemistry, 2022, 298, 102302.	3.4	1
225	In transcription antitermination by Qλ, NusA induces refolding of Qλ to form a nozzle that extends the RNA polymerase RNA-exit channel. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	3
226	Factor-stimulated intrinsic termination: getting by with a little help from some friends. Transcription, 2022, 13, 96-108.	3.1	4
229	Analysis of a Cell Wall Mutant Highlights Rho-Dependent Genome Amplification Events in Staphylococcus aureus. Microbiology Spectrum, 0, , .	3.0	0
231	Comprehensive transcription terminator atlas for Bacillus subtilis. Nature Microbiology, 2022, 7, 1918-1931.	13.3	13
232	Identification of Attenuators of Transcriptional Termination: Implications for RNA Regulation in Escherichia coli. MBio, 2022, 13, .	4.1	1
233	Minimization and optimization of $\hat{l}\pm$ -amylase terminator for heterologous protein production in Bacillus licheniformis. Bioresources and Bioprocessing, 2022, 9, .	4.2	1
235	M. tuberculosis Transcription Machinery: A Review on the Mycobacterial RNA Polymerase and Drug Discovery Efforts. Life, 2022, 12, 1774.	2.4	4
236	Genetic and metabolic engineering of Methanococcus spp. Current Research in Biotechnology, 2023, 5, 100115.	3.7	2
238	Autoinduction Expression Modules for Regulating Gene Expression in <i>Bacillus subtilis</i> . ACS Synthetic Biology, 2022, 11, 4220-4225.	3.8	1
239	Knowing when to stop: Transcription termination on protein-coding genes by eukaryotic RNAPII. Molecular Cell, 2023, 83, 404-415.	9.7	14
240	Identification of a Rho-Dependent Termination Site <i>In Vivo</i> Using Synthetic Small RNA. Microbiology Spectrum, 2023, 11, .	3.0	2
241	Structural basis for intrinsic transcription termination. Nature, 2023, 613, 783-789.	27.8	12
242	Role of transcription termination factor Rho in anti-tuberculosis drug discovery. Drug Discovery Today, 2023, 28, 103490.	6.4	0
243	Protein structure terminates doubt about how transcription stops. Nature, 2023, 614, 237-238.	27.8	2
244	Structural basis of Rho-dependent transcription termination. Nature, 2023, 614, 367-374.	27.8	29
245	Premature termination of transcription is shaped by Rho and translated uORFS in Mycobacterium tuberculosis. IScience, 2023, 26, 106465.	4.1	7
246	Termination factor Rho mediates transcriptional reprogramming of Bacillus subtilis stationary phase. PLoS Genetics, 2023, 19, e1010618.	3.5	4

#	Article	IF	CITATIONS
247	Transcriptional pause extension benefits the stand-by rather than catch-up Rho-dependent termination. Nucleic Acids Research, 2023, 51, 2778-2789.	14.5	4
248	The Mfd protein is the transcription-repair coupling factor (TRCF) in Mycobacterium smegmatis. Journal of Biological Chemistry, 2023, 299, 103009.	3.4	1
249	Head-on and co-directional RNA polymerase collisions orchestrate bidirectional transcription termination. Molecular Cell, 2023, 83, 1153-1164.e4.	9.7	9
252	Modelling and simulation of lac-operon gene expression using heterogeneous parallel platforms. International Journal of Information Technology (Singapore), 0, , .	2.7	0
256	Extraordinary long-stem confers resistance of intrinsic terminators to processive antitermination. Nucleic Acids Research, 2023, 51, 6073-6086.	14.5	0
257	Structural basis for control of bacterial RNA polymerase pausing by a riboswitch and its ligand. Nature Structural and Molecular Biology, 2023, 30, 902-913.	8.2	10
258	Regulation of the macrolide resistance ABC-F translation factor MsrD. Nature Communications, 2023, 14, .	12.8	5
259	Recycling of bacterial RNA polymerase by the Swi2/Snf2 ATPase RapA. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	2
260	A transient intermediate RNA structure underlies the regulatory function of the <i>E. coli thiB</i> TPP translational riboswitch. Rna, 2023, 29, 1658-1672.	3.5	1
261	Internal transcription termination widely regulates differential expression of operon-organized genes including ribosomal protein and RNA polymerase genes in an archaeon. Nucleic Acids Research, 0, , .	14.5	0
262	DNA-dependent RNA polymerases in plants. Plant Cell, 2023, 35, 3641-3661.	6.6	1
263	Domains and residues of the <i>Saccharomyces cerevisiae</i> hnRNP protein Hrp1 important for transcriptional autoregulation and noncoding RNA termination. Genetics, 2023, 225, .	2.9	1
265	DNA-directed termination of RNA polymerase II transcription. Molecular Cell, 2023, 83, 3253-3267.e7.	9.7	3
267	Rotation manipulation of single-molecule magnetic trapping and gene transcription regulation dynamics. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 218701.	0.5	0
268	How is polyadenylation restricted to $3 \widehat{a} \in \widehat{a} $ untranslated regions?. Yeast, 0, , .	1.7	0
270	Reporter Gene-Based qRT-PCR Assay for Rho-Dependent Termination In Vivo. Cells, 2023, 12, 2596.	4.1	1
272	Utilization of gene manipulation system for advancing the biotechnological potential of halophiles: A review. Biotechnology Advances, 2024, 70, 108302.	11.7	0
273	Regulation of bacterial gene expression by non-coding RNA: It is all about time!. Cell Chemical Biology, 2024, 31, 71-85.	5.2	0

#	Article	IF	CITATIONS
274	Direct and indirect control of Rho-dependent transcription termination by the <i>Escherichia coli lysC</i> riboswitch. Rna, 2024, 30, 381-391.	3.5	0
277	Transcription Needs Translation Initiation of the Downstream Gene to Continue Downstream at Intercistronic Junctions in E. Coli. Current Microbiology, 2024, 81, .	2.2	0
278	Flipping the script: Understanding riboswitches from an alternative perspective. Journal of Biological Chemistry, 2024, 300, 105730.	3.4	0
279	Single-molecule tracking reveals the functional allocation, inÂvivo interactions, and spatial organization of universal transcription factor NusG. Molecular Cell, 2024, 84, 926-937.e4.	9.7	0
280	Transcriptome fine-mapping in <i>Fusobacterium nucleatum</i> reveals FoxJ, a new Ïf ^E -dependent small RNA with unusual mRNA activation activity. MBio, 2024, 15, .	4.1	0
282	Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis. Nature, 2024, 628, 186-194.	27.8	0