High-resolution mapping of global surface water and its

Nature 540, 418-422

DOI: 10.1038/nature20584

Citation Report

#	Article	IF	CITATIONS
3	The dynamics of Earth's surface water. Nature, 2016, 540, 348-349.	13.7	40
4	Modeling multidecadal surface water inundation dynamics and key drivers on large river basin scale using multiple time series of ⟨scp⟩E⟨/scp⟩arthâ€observation and river flow data. Water Resources Research, 2017, 53, 1251-1269.	1.7	41
5	A Global Dynamic Long-Term Inundation Extent Dataset at High Spatial Resolution Derived through Downscaling of Satellite Observations. Journal of Hydrometeorology, 2017, 18, 1305-1325.	0.7	62
6	RivaMap: An automated river analysis and mapping engine. Remote Sensing of Environment, 2017, 202, 88-97.	4.6	95
7	Continued decrease of open surface water body area in Oklahoma during 1984–2015. Science of the Total Environment, 2017, 595, 451-460.	3.9	118
8	Lake volume and groundwater storage variations in Tibetan Plateau's endorheic basin. Geophysical Research Letters, 2017, 44, 5550-5560.	1.5	305
9	Extraction of Glacial Lake Outlines in Tibet Plateau Using Landsat 8 Imagery and Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 4002-4009.	2.3	80
10	Grand challenges for research in the Laurentian Great Lakes. Limnology and Oceanography, 2017, 62, 2510-2523.	1.6	55
11	The changing water cycle: Burabay National Nature Park, Northern Kazakhstan. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1227.	2.8	13
12	A MODIS-based automated flood monitoring system for southeast asia. International Journal of Applied Earth Observation and Geoinformation, 2017, 61, 104-117.	1.4	45
13	A highâ€accuracy map of global terrain elevations. Geophysical Research Letters, 2017, 44, 5844-5853.	1.5	772
14	Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover monitoring. Remote Sensing of Environment, 2017, 202, 64-74.	4.6	160
15	A national scale flood hazard mapping methodology: The case of Greece – Protection and adaptation policy approaches. Science of the Total Environment, 2017, 601-602, 441-452.	3.9	76
16	Extensive and drastically different alpine lake changes on Asia's high plateaus during the past four decades. Geophysical Research Letters, 2017, 44, 252-260.	1.5	223
17	Classification and prediction of river network ephemerality and its relevance for waterborne disease epidemiology. Advances in Water Resources, 2017, 110, 263-278.	1.7	28
18	Potential for natural evaporation as a reliable renewable energy resource. Nature Communications, 2017, 8, 617.	5.8	141
19	A remote sensing method for estimating regional reservoir area and evaporative loss. Journal of Hydrology, 2017, 555, 213-227.	2.3	52
20	Development and evaluation of a lookup-table-based approach to data fusion for seasonal wetlands monitoring: An integrated use of AMSR series, MODIS, and Landsat. Remote Sensing of Environment, 2017, 199, 370-388.	4.6	24

#	Article	IF	Citations
21	Surface Water Mapping by Deep Learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 4909-4918.	2.3	188
22	Identifying changes in irrigation return flow with gradually intensified water-saving technology using HYDRUS for regional water resources management. Agricultural Water Management, 2017, 194, 33-47.	2.4	57
23	Updating Landsat time series of surface-reflectance composites and forest change products with new observations. International Journal of Applied Earth Observation and Geoinformation, 2017, 63, 104-111.	1.4	32
24	Groundwater nitrate response to sustainable nitrogen management. Scientific Reports, 2017, 7, 8566.	1.6	152
25	Annual Irrigation Dynamics in the U.S. Northern High Plains Derived from Landsat Satellite Data. Geophysical Research Letters, 2017, 44, 9350-9360.	1.5	101
26	Methane emissions from global wetlands: An assessment of the uncertainty associated with various wetland extent data sets. Atmospheric Environment, 2017, 165, 310-321.	1.9	44
27	Validation of a 30 m resolution flood hazard model of the conterminous <scp>U</scp> nited <scp>S</scp> tates. Water Resources Research, 2017, 53, 7968-7986.	1.7	206
28	Recent dynamics of alpine lakes on the endorheic Changtang Plateau from multi-mission satellite data. Journal of Hydrology, 2017, 552, 633-645.	2.3	47
29	The freshwater landscape: lake, wetland, and stream abundance and connectivity at macroscales. Ecosphere, 2017, 8, e01911.	1.0	52
30	Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning. Nutrient Cycling in Agroecosystems, 2017, 109, 77-102.	1.1	195
31	Full Issue PDF, Volume 42, Issue 10. Fisheries, 2017, 42, 493-560.	0.6	2
32	CubeSats in Hydrology: Ultrahighâ€Resolution Insights Into Vegetation Dynamics and Terrestrial Evaporation. Water Resources Research, 2017, 53, 10017-10024.	1.7	60
33	Enhanced Recent Local Moisture Recycling on the Northwestern Tibetan Plateau Deduced From Ice Core Deuterium Excess Records. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,541.	1.2	39
34	Organic carbon burial in global lakes and reservoirs. Nature Communications, 2017, 8, 1694.	5.8	307
35	Integrated Land Cover and Change Classifications. , 2017, , 295-308.		14
36	Expected Advances in a Rapidly Developing Work Area. , 2017, , 309-318.		0
37	Satellite and Airborne Remote Sensing Applications for Freshwater Fisheries. Fisheries, 2017, 42, 526-537.	0.6	27
38	Climate Engine: Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding. Bulletin of the American Meteorological Society, 2017, 98, 2397-2410.	1.7	201

#	Article	IF	Citations
39	Global Wetland Datasets: a Review. Wetlands, 2017, 37, 807-817.	0.7	65
40	Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 2017, 202, 18-27.	4.6	6,916
41	Spatial Big Data Science. , 2017, , .		31
42	Long-term dynamics of a floodplain shallow lake in the Pantanal wetland: Is it all about climate?. Science of the Total Environment, 2017, 605-606, 527-540.	3.9	26
43	Estimating Global Ecosystem Isohydry/Anisohydry Using Active and Passive Microwave Satellite Data. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3306-3321.	1.3	34
44	Application of Landsat Imagery to Investigate Lake Area Variations and Relict Gull Habitat in Hongjian Lake, Ordos Plateau, China. Remote Sensing, 2017, 9, 1019.	1.8	18
45	Inundation extent monitoring with smap data for carbon studies., 2017,,.		2
46	Large-Scale Assessment of Coastal Aquaculture Ponds with Sentinel-1 Time Series Data. Remote Sensing, 2017, 9, 440.	1.8	72
47	From Open Data to Open Analysesâ€"New Opportunities for Environmental Applications?. Environments - MDPI, 2017, 4, 32.	1.5	19
48	Essentials of Endorheic Basins and Lakes: A Review in the Context of Current and Future Water Resource Management and Mitigation Activities in Central Asia. Water (Switzerland), 2017, 9, 798.	1.2	66
49	Mapping Seasonal Inundation Frequency (1985–2016) along the St-John River, New Brunswick, Canada using the Landsat Archive. Remote Sensing, 2017, 9, 143.	1.8	26
50	Multi-Decadal Surface Water Dynamics in North American Tundra. Remote Sensing, 2017, 9, 497.	1.8	41
51	Landsat-Based Trend Analysis of Lake Dynamics across Northern Permafrost Regions. Remote Sensing, 2017, 9, 640.	1.8	110
52	LACO-Wiki: A New Online Land Cover Validation Tool Demonstrated Using GlobeLand30 for Kenya. Remote Sensing, 2017, 9, 754.	1.8	31
53	Automated Quantification of Surface Water Inundation in Wetlands Using Optical Satellite Imagery. Remote Sensing, 2017, 9, 807.	1.8	91
54	A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States. Remote Sensing, 2017, 9, 863.	1.8	167
55	Irrigation-Induced Environmental Changes around the Aral Sea: An Integrated View from Multiple Satellite Observations. Remote Sensing, 2017, 9, 900.	1.8	33
56	Tracking Dynamic Northern Surface Water Changes with High-Frequency Planet CubeSat Imagery. Remote Sensing, 2017, 9, 1306.	1.8	144

#	ARTICLE	IF	CITATIONS
57	Big Data and Multiple Methods for Mapping Small Reservoirs: Comparing Accuracies for Applications in Agricultural Landscapes. Remote Sensing, 2017, 9, 1307.	1.8	22
58	A Review of Wetland Remote Sensing. Sensors, 2017, 17, 777.	2.1	279
59	CryoSat-2 Altimetry Applications over Rivers and Lakes. Water (Switzerland), 2017, 9, 211.	1.2	48
60	Open Surface Water Mapping Algorithms: A Comparison of Water-Related Spectral Indices and Sensors. Water (Switzerland), 2017, 9, 256.	1.2	147
61	Mapping Dynamic Water Fraction under the Tropical Rain Forests of the Amazonian Basin from SMOS Brightness Temperatures. Water (Switzerland), 2017, 9, 350.	1.2	34
62	Spatial Downscaling of Suomi NPP–VIIRS Image for Lake Mapping. Water (Switzerland), 2017, 9, 834.	1.2	9
63	On the Direct Calculation of Snow Water Balances Using Snow Cover Information. Water (Switzerland), 2017, 9, 848.	1.2	9
64	AÂsystematic examination of the relationships between CDOM and DOC in inland waters in China. Hydrology and Earth System Sciences, 2017, 21, 5127-5141.	1.9	28
65	Google Earth Engine, Open-Access Satellite Data, and Machine Learning in Support of Large-Area Probabilistic Wetland Mapping. Remote Sensing, 2017, 9, 1315.	1.8	178
66	Ecosystem sentinels for climate change? Evidence of wetland cover changes over the last 30 years in the tropical Andes. PLoS ONE, 2017, 12, e0175814.	1.1	80
67	Spatial-Temporal Characteristics and Climatic Responses of Water Level Fluctuations of Global Major Lakes from 2002 to 2010. Remote Sensing, 2017, 9, 150.	1.8	34
68	Barest Pixel Composite for Agricultural Areas Using Landsat Time Series. Remote Sensing, 2017, 9, 1245.	1.8	127
69	Compilation and Validation of SAR and Optical Data Products for a Complete and Global Map of Inland/Ocean Water Tailored to the Climate Modeling Community. Remote Sensing, 2017, 9, 36.	1.8	74
70	A Comparison of Terrain Indices toward Their Ability in Assisting Surface Water Mapping from Sentinel-1 Data. ISPRS International Journal of Geo-Information, 2017, 6, 140.	1.4	33
71	An examination of the potential wetland development landscape around managed reservoirs in the central U.S. Great Plains. Applied Geography, 2018, 93, 16-24.	1.7	2
72	Spectral matching based on discrete particle swarm optimization: A new method for terrestrial water body extraction using multi-temporal Landsat 8 images. Remote Sensing of Environment, 2018, 209, 1-18.	4.6	55
73	A simple automated dynamic threshold extraction method for the classification of large water bodies from landsat-8 OLI water index images. International Journal of Remote Sensing, 2018, 39, 3429-3451.	1.3	50
74	On the merging of optical and SAR satellite imagery for surface water mapping applications. Results in Physics, 2018, 9, 275-277.	2.0	60

#	Article	IF	Citations
75	Combining global tree cover loss data with historical national forest cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. Biological Conservation, 2018, 222, 189-197.	1.9	261
76	The extent of temporary water bodies increased in the drylands of northern China: a multiscale analysis based on MODIS data. Environmental Monitoring and Assessment, 2018, 190, 296.	1.3	1
77	A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 139, 255-271.	4.9	89
78	Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska. Environmental Research Letters, 2018, 13, 035002.	2.2	78
79	A global network for operational flood risk reduction. Environmental Science and Policy, 2018, 84, 149-158.	2.4	89
80	A spatial ensemble approach for broad-area mapping of land surface properties. Remote Sensing of Environment, 2018, 210, 473-489.	4.6	9
81	Editorial: Freshwater biodiversity conservation: The role of artificial ponds in the 21st century. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 264-269.	0.9	61
82	Analysis of optimal thresholds for identification of open water using MODIS-derived spectral indices for two coastal wetland systems in Mexico. International Journal of Applied Earth Observation and Geoinformation, 2018, 70, 13-24.	1.4	12
83	High-Pressure Evolution of Crystal Bonding Structures and Properties of FeOOH. Journal of Physical Chemistry Letters, 2018, 9, 2181-2185.	2.1	69
84	Monitoring Hydro Temporal Variability in Alberta, Canada with Multi-Temporal Sentinel-1 SAR Data. Canadian Journal of Remote Sensing, 2018, 44, 1-10.	1.1	29
85	Mapping Monthly Water Scarcity in Global Transboundary Basins at Country-Basin Mesh Based Spatial Resolution. Scientific Reports, 2018, 8, 2144.	1.6	59
86	An automated method for glacial lake mapping in High Mountain Asia using Landsat 8 imagery. Journal of Mountain Science, 2018, 15, 13-24.	0.8	24
87	Inferring elevation variation of lakes and reservoirs from areal extents: Calibrating with altimeter and in situ data. Remote Sensing Applications: Society and Environment, 2018, 9, 116-125.	0.8	5
88	Flood hazard reduction from automatically applied landscaping measures in RiverScape, a Python package coupled to a two-dimensional flow model. Environmental Modelling and Software, 2018, 101, 102-116.	1.9	13
89	Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake BeyÅŸehir. Science of the Total Environment, 2018, 621, 802-816.	3.9	97
90	Successful conservation of global waterbird populations depends on effective governance. Nature, 2018, 553, 199-202.	13.7	164
91	Remote observation of water clarity patterns in Three Gorges Reservoir and Dongting Lake of China and their probable linkage to the Three Gorges Dam based on Landsat 8 imagery. Science of the Total Environment, 2018, 625, 1554-1566.	3.9	71
92	Modelling surfaceâ€water depression storage in a Prairie Pothole Region. Hydrological Processes, 2018, 32, 462-479.	1.1	18

#	Article	IF	CITATIONS
93	A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature, 2018, 553, 333-336.	13.7	672
94	Addressing spatio-temporal resolution constraints in Landsat and MODIS-based mapping of large-scale floodplain inundation dynamics. Remote Sensing of Environment, 2018, 211, 307-320.	4.6	34
95	Quantifying shorebird habitat in managed wetlands by modeling shallow water depth dynamics. Ecological Applications, 2018, 28, 1534-1545.	1.8	15
96	The State of the World's Beaches. Scientific Reports, 2018, 8, 6641.	1.6	549
97	The challenge of assaying landscape connectivity in a changing world: A 27-year case study in the southern Great Plains (USA) playa network. Ecological Indicators, 2018, 91, 607-616.	2.6	19
98	Quantifying Australia's dryland vegetation response to flooding and drought at sub-continental scale. Remote Sensing of Environment, 2018, 212, 60-78.	4.6	29
99	Impacts of climate change and irrigation on lakes in arid northwest China. Journal of Arid Environments, 2018, 154, 34-39.	1.2	44
100	Mapping Mediterranean Wetlands With Remote Sensing: A Good-Looking Map Is Not Always a Good Map. Advances in Ecological Research, 2018, 58, 243-277.	1.4	34
101	Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3810-3815.	3.3	199
102	Quantifying CDOM and DOC in major Arctic rivers during ice-free conditions using Landsat TM and ETM+ data. Remote Sensing of Environment, 2018, 209, 395-409.	4.6	85
103	Difficult to map regions in 30 m global land cover mapping determined with a common validation dataset. International Journal of Remote Sensing, 2018, 39, 4077-4087.	1.3	14
104	Utilizing publicly available satellite data for urban research: Mapping built-up land cover and land use in Ho Chi Minh City, Vietnam. Development Engineering, 2018, 3, 83-99.	1.4	52
105	Monitoring thirty years of small water reservoirs proliferation in the southern Brazilian Amazon with Landsat time series. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145, 225-237.	4.9	39
106	A multiple dataset approach for 30-m resolution land cover mapping: a case study of continental Africa. International Journal of Remote Sensing, 2018, 39, 3926-3938.	1.3	25
107	Multidecadal Changes and Interannual Variation in Springtime Phenology of North American Temperate and Boreal Deciduous Forests. Geophysical Research Letters, 2018, 45, 2679-2687.	1.5	33
108	Effective water surface mapping in macrophyte-covered reservoirs in NE Brazil based on TerraSAR-X time series. International Journal of Applied Earth Observation and Geoinformation, 2018, 69, 41-55.	1.4	12
109	Does the severity of nonâ€flow periods influence ecosystem structure and function of temporary streams? A mesocosm study. Freshwater Biology, 2018, 63, 613-625.	1.2	11
110	Semantic and syntactic interoperability in online processing of big Earth observation data. International Journal of Digital Earth, 2018, 11, 95-112.	1.6	29

#	Article	IF	CITATIONS
111	Global Estimates of Ecosystem Service Value and Change: Taking Into Account Uncertainties in Satellite-based Land Cover Data. Ecological Economics, 2018, 143, 227-235.	2.9	58
112	Lake dynamics and its relationship to climate change on the Tibetan Plateau over the last four decades. Regional Environmental Change, 2018, 18, 477-487.	1.4	21
113	Monitoring African water bodies from twice-daily MODIS observation. GIScience and Remote Sensing, 2018, 55, 130-153.	2.4	13
114	A Hybrid of Optical Remote Sensing and Hydrological Modeling Improves Water Balance Estimation. Journal of Advances in Modeling Earth Systems, 2018, 10, 2-17.	1.3	31
115	A versatile data-intensive computing platform for information retrieval from big geospatial data. Future Generation Computer Systems, 2018, 81, 30-40.	4.9	102
116	Monitoring the spatiotemporal dynamics of waterlogged area in southwestern Bangladesh using time series Landsat imagery. Remote Sensing Applications: Society and Environment, 2018, 9, 52-59.	0.8	16
117	Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sensing of Environment, 2018, 205, 253-275.	4.6	146
118	Monitoring the dynamics of surface water fraction from MODIS time series in a Mediterranean environment. International Journal of Applied Earth Observation and Geoinformation, 2018, 66, 135-145.	1.4	22
119	The role of satellite remote sensing in structured ecosystem risk assessments. Science of the Total Environment, 2018, 619-620, 249-257.	3.9	93
120	Temporary freshwater wetlands floristics in central Mexico highlands. Botanical Sciences, 2018, 96, 138-156.	0.3	6
121	Impacts of Climate Change and Intensive Lesser Snow Goose (Chen caerulescens caerulescens) Activity on Surface Water in High Arctic Pond Complexes. Remote Sensing, 2018, 10, 1892.	1.8	8
122	The sign, magnitude and potential drivers of change in surface water extent in Canadian tundra. Environmental Research Letters, 2018, 13, 045009.	2.2	9
123	Impacts of environmental factors on zooplankton taxonomic diversity in coastal lagoons in Turkey. Turkish Journal of Zoology, 2018, 42, 68-78.	0.4	11
124	Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ, 2018, 6, e5518.	0.9	469
125	Changes in Climate and Land Use Over the Amazon Region: Current and Future Variability and Trends. Frontiers in Earth Science, 2018, 6, .	0.8	259
126	Global water cycle and remote sensing big data: overview, challenge, and opportunities. Big Earth Data, 2018, 2, 282-297.	2.0	25
127	Technical Methodology for ASTER Global Water Body Data Base. Remote Sensing, 2018, 10, 1860.	1.8	9
128	Geospatial Model to Estimate Wind Energy Resource Potential in Remote Locations. , 2018, , .		0

#	Article	IF	CITATIONS
129	Implications of Pixel Quality Flags on the Observation Density of a Continental Landsat Archive. Remote Sensing, 2018, 10, 1570.	1.8	12
130	Development of an Automatic Dynamic Global Water Mask Using Landsat-8 Images. , 2018, , .		1
131	Dynamic Monitoring of the Lake Area in the Middle and Lower Reaches of the Yangtze River Using MODIS Images Between 2000 and 2016. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 4690-4700.	2.3	10
132	Lake Surface Water Temperature Derived from 35 Years of AVHRR Sensor Data for European Lakes. Remote Sensing, 2018, 10, 990.	1.8	34
133	Satellite-Based Water Consumption Dynamics Monitoring in an Extremely Arid Area. Remote Sensing, 2018, 10, 1399.	1.8	14
134	Deforestation risks posed by oil palm expansion in the Peruvian Amazon. Environmental Research Letters, 2018, 13, 114010.	2.2	41
135	Soil Property and Class Maps of the Conterminous United States at 100â€Meter Spatial Resolution. Soil Science Society of America Journal, 2018, 82, 186-201.	1.2	166
136	SWAF-HR: A High Spatial and Temporal Resolution Water Surface Extent Product Over the Amazon Basin. , 2018 , , .		1
137	Multi-Spectral Water Index (MuWI): A Native 10-m Multi-Spectral Water Index for Accurate Water Mapping on Sentinel-2. Remote Sensing, 2018, 10, 1643.	1.8	57
138	Mapping High Mountain Lakes Using Space-Borne Near-Nadir SAR Observations. Remote Sensing, 2018, 10, 1418.	1.8	9
139	Harnessing the Temporal Dimension to Improve Object-Based Image Analysis Classification of Wetlands. Remote Sensing, 2018, 10, 1467.	1.8	22
140	Remote Sensing of Floodpath Lakes and Wetlands: A Challenging Frontier in the Monitoring of Changing Environments. Remote Sensing, 2018, 10, 1955.	1.8	28
141	Data and tools to integrate climate and environmental information into public health. Infectious Diseases of Poverty, 2018, 7, 126.	1.5	28
142	Variability among autumn migration patterns of Mongolian Common Shelducks (Tadorna tadorna). Avian Research, 2018, 9, .	0.5	8
143	Landsat-satellite-based analysis of spatial–temporal dynamics and drivers of CyanoHABs in the plateau Lake Dianchi. International Journal of Remote Sensing, 2018, 39, 8552-8571.	1.3	11
144	LakeTime: Automated Seasonal Scene Selection for Global Lake Mapping Using Landsat ETM+ and OLI. Remote Sensing, 2018, 10, 54.	1.8	12
145	Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review. Remote Sensing, 2018, 10, 2038.	1.8	95
146	Forest Cover and Vegetation Degradation Detection in the Kavango Zambezi Transfrontier Conservation Area Using BFAST Monitor. Remote Sensing, 2018, 10, 1850.	1.8	25

#	Article	IF	CITATIONS
147	Construction of the 500â€m Resolution Daily Global Surface Water Change Database (2001–2016). Water Resources Research, 2018, 54, 10,270.	1.7	69
148	Lake Level and Surface Topography Measured With Spaceborne GNSSâ€Reflectometry From CYGNSS Mission: Example for the Lake Qinghai. Geophysical Research Letters, 2018, 45, 13,332.	1.5	71
149	Potential Disruption of Flood Dynamics in the Lower Mekong River Basin Due to Upstream Flow Regulation. Scientific Reports, 2018, 8, 17767.	1.6	71
150	Inversion of Surface Soil Moisture from Radar Altimetry Backscattering in Semi-Arid Environments. , 2018, , .		0
151	Recent global decline in endorheic basin water storages. Nature Geoscience, 2018, 11, 926-932.	5.4	282
152	Precise Delineation of Small Water Bodies from Sentinel-1 Data using Support Vector Machine Classification. Canadian Journal of Remote Sensing, 2018, 44, 179-190.	1.1	16
153	Analysis of the Dynamic Changes of the Baiyangdian Lake Surface Based on a Complex Water Extraction Method. Water (Switzerland), 2018, 10, 1616.	1.2	31
154	Investigation on Perceptron Learning for Water Region Estimation Using Large-Scale Multispectral Images. Sensors, 2018, 18, 4333.	2.1	7
155	Evolutionary Roots of Plant Microbiomes and Biogeochemical Impacts of Nonvascular Autotroph-Microbiome Systems over Deep Time. International Journal of Plant Sciences, 2018, 179, 505-522.	0.6	10
156	New global high-resolution centerlines dataset of selected river systems. Data in Brief, 2018, 20, 1552-1555.	0.5	3
157	Combining Landsat observations with hydrological modelling for improved surface water monitoring of small lakes. Journal of Hydrology, 2018, 566, 109-121.	2.3	20
158	Identifying Wetland Consolidation Using Remote Sensing in the North Dakota Prairie Pothole Region. Water Resources Research, 2018, 54, 7478-7494.	1.7	12
159	Retrieving river baseflow from SWOT spaceborne mission. Remote Sensing of Environment, 2018, 218, 44-54.	4.6	11
160	Lake storage variation on the endorheic Tibetan Plateau and its attribution to climate change since the new millennium. Environmental Research Letters, 2018, 13, 064011.	2.2	106
161	Google Earth as a Powerful Tool for Archaeological and Cultural Heritage Applications: A Review. Remote Sensing, 2018, 10, 1558.	1.8	60
162	Implications of Simulating Global Digital Elevation Models for Flood Inundation Studies. Water Resources Research, 2018, 54, 7910-7928.	1.7	45
163	Monitoring the Impact of Land Cover Change on Surface Urban Heat Island through Google Earth Engine: Proposal of a Global Methodology, First Applications and Problems. Remote Sensing, 2018, 10, 1488.	1.8	77
164	Characterizing the Spatial and Temporal Availability of Very High Resolution Satellite Imagery in Google Earth and Microsoft Bing Maps as a Source of Reference Data. Land, 2018, 7, 118.	1.2	48

#	Article	IF	Citations
165	Discharge estimation in high-mountain regions with improved methods using multisource remote sensing: A case study of the Upper Brahmaputra River. Remote Sensing of Environment, 2018, 219, 115-134.	4.6	101
166	Book Review—GIS Tutorial 1 ArcGIS PRO: A Platform Workbook. Photogrammetric Engineering and Remote Sensing, 2018, 84, 598-598.	0.3	2
167	A National Assessment of Wetland Status and Trends for Canada's Forested Ecosystems Using 33 Years of Earth Observation Satellite Data. Remote Sensing, 2018, 10, 1623.	1.8	42
168	Long-Term Surface Water Dynamics Analysis Based on Landsat Imagery and the Google Earth Engine Platform: A Case Study in the Middle Yangtze River Basin. Remote Sensing, 2018, 10, 1635.	1.8	101
169	Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery. Remote Sensing of Environment, 2018, 219, 259-270.	4.6	117
170	Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Dataâ€Poor Regions. Water Resources Research, 2018, 54, 9724-9758.	1.7	247
171	The importance of small artificial water bodies as sources of methane emissions in Queensland, Australia. Hydrology and Earth System Sciences, 2018, 22, 5281-5298.	1.9	53
172	Integrating cloud-based workflows in continental-scale cropland extent classification. Remote Sensing of Environment, 2018, 219, 162-179.	4.6	40
173	Developing and applying a multi-purpose land cover validation dataset for Africa. Remote Sensing of Environment, 2018, 219, 298-309.	4.6	45
174	Towards Global-Scale Seagrass Mapping and Monitoring Using Sentinel-2 on Google Earth Engine: The Case Study of the Aegean and Ionian Seas. Remote Sensing, 2018, 10, 1227.	1.8	113
175	Multilevel Building Detection Framework in Remote Sensing Images Based on Convolutional Neural Networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 3688-3700.	2.3	39
176	Enhancing digital elevation models for hydraulic modelling using flood frequency detection. Remote Sensing of Environment, 2018, 217, 506-522.	4.6	28
177	Impact of land degradation from mining activities on the sediment fluxes in two large rivers of <scp>French Guiana</scp> . Land Degradation and Development, 2018, 29, 4323-4336.	1.8	17
178	Surface water monitoring in small water bodies: potential and limits of multi-sensor Landsat time series. Hydrology and Earth System Sciences, 2018, 22, 4349-4380.	1.9	73
179	Deriving three dimensional reservoir bathymetry from multi-satellite datasets. Remote Sensing of Environment, 2018, 217, 366-374.	4.6	45
180	Global long-term observations of coastal erosion and accretion. Scientific Reports, 2018, 8, 12876.	1.6	373
181	Monitoring and assessment of seasonal land cover changes using remote sensing: a 30-year (1987–2016) case study of Hamoun Wetland, Iran. Environmental Monitoring and Assessment, 2018, 190, 356.	1.3	52
182	The study of carbon in inland waters—from isolated ecosystems to players in the global carbon cycle. Limnology and Oceanography Letters, 2018, 3, 41-48.	1.6	118

#	Article	IF	Citations
183	Breeding to adapt agriculture to climate change: affordable phenotyping solutions. Current Opinion in Plant Biology, 2018, 45, 237-247.	3 . 5	100
184	Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review. Reviews of Geophysics, 2018, 56, 333-360.	9.0	402
185	Long-term surface water changes and driving cause in Xiong'an, China: from dense Landsat time series images and synthetic analysis. Science Bulletin, 2018, 63, 708-716.	4.3	62
186	Validation of Jason-3 tracking modes over French rivers. Remote Sensing of Environment, 2018, 209, 77-89.	4.6	42
187	Globally scalable alpine snow metrics. Remote Sensing of Environment, 2018, 213, 61-72.	4.6	33
188	Effect of southern climate modes and variations in river discharge on lake surface area in Patagonia. Inland Waters, 2018, 8, 341-355.	1.1	7
189	Quantification of surface water volume changes in the Mackenzie Delta using satellite multi-mission data. Hydrology and Earth System Sciences, 2018, 22, 1543-1561.	1.9	31
190	Long-term monitoring of citrus orchard dynamics using time-series Landsat data: a case study in southern China. International Journal of Remote Sensing, 2018, 39, 8271-8292.	1.3	17
191	Global extent of rivers and streams. Science, 2018, 361, 585-588.	6.0	436
192	Deduction of reservoir operating rules for application in global hydrological models. Hydrology and Earth System Sciences, 2018, 22, 831-851.	1.9	38
193	<scp>Remap</scp> : An online remote sensing application for land cover classification and monitoring. Methods in Ecology and Evolution, 2018, 9, 2019-2027.	2.2	33
194	The Third Pole. , 0, , 339-377.		1
195	Introduction to Remote Sensing for Conservation Practitioners. , 0, , 26-53.		0
196	Satellite Remote Sensing for the Conservation of East Asia's Coastal Wetlands. , 0, , 54-81.		1
197	Operational Conservation Remote Sensing. , 0, , 301-317.		1
198	Historical and Operational Monitoring of Surface Sediments in the Lower Mekong Basin Using Landsat and Google Earth Engine Cloud Computing. Remote Sensing, 2018, 10, 909.	1.8	49
199	Dynamic Change Analysis of Surface Water in the Yangtze River Basin Based on MODIS Products. Remote Sensing, 2018, 10, 1025.	1.8	33
200	Extreme drought boosts CO ₂ and CH ₄ emissions from reservoir drawdown areas. Inland Waters, 2018, 8, 329-340.	1.1	44

#	Article	IF	Citations
201	Why Are Some Rocky Mountain Lakes Ephemeral?. Water Resources Research, 2018, 54, 5245-5263.	1.7	13
202	Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. International Journal of Geographical Information Science, 2018, 32, 2294-2316.	2.2	177
203	Metazoan Parasite Vaccines: Present Status and Future Prospects. Frontiers in Cellular and Infection Microbiology, 2018, 8, 67.	1.8	59
204	Regional Crop Gross Primary Productivity and Yield Estimation Using Fused Landsat-MODIS Data. Remote Sensing, 2018, 10, 372.	1.8	92
205	Coastal and river flood risk analyses for guiding economically optimal flood adaptation policies: a country-scale study for Mexico. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170329.	1.6	25
206	Integrated Participatory and Collaborative Risk Mapping for Enhancing Disaster Resilience. ISPRS International Journal of Geo-Information, 2018, 7, 68.	1.4	41
207	Water Loss Due to Increasing Planted Vegetation over the Badain Jaran Desert, China. Remote Sensing, 2018, 10, 134.	1.8	12
208	Hue-Angle Product for Low to Medium Spatial Resolution Optical Satellite Sensors. Remote Sensing, 2018, 10, 180.	1.8	72
209	Surface Freshwater Limitation Explains Worst Rice Production Anomaly in India in 2002. Remote Sensing, 2018, 10, 244.	1.8	26
210	The Use of Sentinel-1 Time-Series Data to Improve Flood Monitoring in Arid Areas. Remote Sensing, 2018, 10, 583.	1.8	79
211	Lake Area Changes and Their Influence on Factors in Arid and Semi-Arid Regions along the Silk Road. Remote Sensing, 2018, 10, 595.	1.8	35
212	Assessing the Spatial and Occupation Dynamics of the Brazilian Pasturelands Based on the Automated Classification of MODIS Images from 2000 to 2016. Remote Sensing, 2018, 10, 606.	1.8	47
213	Multilayer Perceptron Neural Network for Surface Water Extraction in Landsat 8 OLI Satellite Images. Remote Sensing, 2018, 10, 755.	1.8	77
214	Comparing Landsat and RADARSAT for Current and Historical Dynamic Flood Mapping. Remote Sensing, 2018, 10, 780.	1.8	20
215	Spatiotemporal Analysis of Landsat-8 and Sentinel-2 Data to Support Monitoring of Dryland Ecosystems. Remote Sensing, 2018, 10, 791.	1.8	39
216	Challenges in Complementing Data from Ground-Based Sensors with Satellite-Derived Products to Measure Ecological Changes in Relation to Climate—Lessons from Temperate Wetland-Upland Landscapes. Sensors, 2018, 18, 880.	2.1	8
217	Recent Surface Water Extent of Lake Chad from Multispectral Sensors and GRACE. Sensors, 2018, 18, 2082.	2.1	43
218	Glacial Lake Detection from GaoFen-2 Multispectral Imagery Using an Integrated Nonlocal Active Contour Approach: A Case Study of the Altai Mountains, Northern Xinjiang Province. Water (Switzerland), 2018, 10, 455.	1.2	9

#	Article	IF	Citations
219	Surface Water Dynamics in the North America Arctic Based on 2000–2016 Landsat Data. Water (Switzerland), 2018, 10, 824.	1.2	13
220	Extent, regional distribution and changes in area of different classes of wetland. Marine and Freshwater Research, 2018, 69, 1525.	0.7	98
221	Recent ecological change in ancient lakes. Limnology and Oceanography, 2018, 63, 2277-2304.	1.6	68
222	Comparison of visible and multi-satellite global inundation datasets at high-spatial resolution. Remote Sensing of Environment, 2018, 216, 427-441.	4.6	42
223	Assessing global surface water inundation dynamics using combined satellite information from SMAP, AMSR2 and Landsat. Remote Sensing of Environment, 2018, 213, 1-17.	4.6	51
224	Exploiting big earth data from space – first experiences with the timescan processing chain. Big Earth Data, 2018, 2, 36-55.	2.0	36
225	Evolution of river-routing schemes in macro-scale models and their potential for watershed management. Hydrological Sciences Journal, 2018, 63, 1062-1077.	1.2	8
226	Surface Water. , 2018, , 258-294.		1
227	Automated Extraction of Surface Water Extent from Sentinel-1 Data. Remote Sensing, 2018, 10, 797.	1.8	150
228	Exploiting ConvNet Diversity for Flooding Identification. IEEE Geoscience and Remote Sensing Letters, 2018, 15, 1446-1450.	1.4	51
229	Assessing the effectiveness of riparian restoration projects using Landsat and precipitation data from the cloud-computing application ClimateEngine.org. Ecological Engineering, 2018, 120, 432-440.	1.6	36
230	Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors, 2018, 18, 2580.	2.1	175
231	Big earth observation time series analysis for monitoring Brazilian agriculture. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145, 328-339.	4.9	100
232	Steps to the digital Silk Road. Nature, 2018, 554, 25-27.	13.7	86
233	Integration of satellite remote sensing data in ecosystem modelling at local scales: Practices and trends. Methods in Ecology and Evolution, 2018, 9, 1810-1821.	2.2	48
234	Artificial Aquatic Ecosystems. Water (Switzerland), 2018, 10, 1096.	1.2	42
235	Mapping up-to-Date Paddy Rice Extent at 10 M Resolution in China through the Integration of Optical and Synthetic Aperture Radar Images. Remote Sensing, 2018, 10, 1200.	1.8	79
236	Global extent and distribution of wetlands: trends and issues. Marine and Freshwater Research, 2018, 69, 620.	0.7	181

#	Article	IF	CITATIONS
237	The Digital Belt and Road program in support of regional sustainability. International Journal of Digital Earth, 2018, 11, 657-669.	1.6	28
238	The Dynamic Changes in the Storage of the Danjiangkou Reservoir and the Influence of the South-North Water Transfer Project. Scientific Reports, 2018, 8, 8710.	1.6	25
239	How will climate change affect endangered Mediterranean waterbirds?. PLoS ONE, 2018, 13, e0192702.	1.1	31
240	Hydroclimatic changes of Lake Bosten in Northwest China during the last decades. Scientific Reports, 2018, 8, 9118.	1.6	35
241	Green, Blue and Grey Bioenergy Water Footprints, a Comparison of Feedstocks for Bioenergy Supply in 2040. Environmental Processes, 2018, 5, 167-180.	1.7	23
242	Automatic Correction of Contaminated Images for Assessment of Reservoir Surface Area Dynamics. Geophysical Research Letters, 2018, 45, 6092-6099.	1.5	79
243	Exploring the temporal density of Landsat observations for cropland mapping: experiments from Egypt, Ethiopia, and South Africa. International Journal of Remote Sensing, 2018, 39, 7328-7349.	1.3	7
244	Automatic sub-pixel coastline extraction based on spectral mixture analysis using EO-1 Hyperion data. Frontiers of Earth Science, 2019, 13, 478-494.	0.9	13
245	Spatiotemporal remote sensing of ecosystem change and causation across Alaska. Global Change Biology, 2019, 25, 1171-1189.	4.2	91
246	A Survey on Spatial Prediction Methods. IEEE Transactions on Knowledge and Data Engineering, 2019, 31, 1645-1664.	4.0	48
247	How war, drought, and dam management impact water supply in the Tigris and Euphrates Rivers. Ambio, 2019, 48, 264-279.	2.8	21
248	Automated global delineation of human settlements from 40 years of Landsat satellite data archives. Big Earth Data, 2019, 3, 140-169.	2.0	106
249	Changes in Water Surface Area during 1989–2017 in the Huai River Basin using Landsat Data and Google Earth Engine. Remote Sensing, 2019, 11, 1824.	1.8	66
250	Information Services of Big Remote Sensing Data. Lecture Notes in Computer Science, 2019, , 16-31.	1.0	0
251	Summer Redox Dynamics in a Eutrophic Reservoir and Sensitivity to a Summer's End Drawdown Event. Ecosystems, 2019, 22, 1618-1632.	1.6	10
252	The NSERC Canadian Lake Pulse Network: A national assessment of lake health providing science for water management in a changing climate. Science of the Total Environment, 2019, 695, 133668.	3.9	68
253	Constructing long-term high-frequency time series of global lake and reservoir areas using Landsat imagery. Remote Sensing of Environment, 2019, 232, 111210.	4.6	102
254	Spectral mixture analysis in Google Earth Engine to model and delineate fire scars over a large extent and a long time-series in a rainforest-savanna transition zone. Remote Sensing of Environment, 2019, 232, 111340.	4.6	35

#	Article	IF	Citations
255	A semi-analytical approach for remote sensing of trophic state in inland waters: Bio-optical mechanism and application. Remote Sensing of Environment, 2019, 232, 111349.	4.6	48
256	River Discharge Estimation based on Satellite Water Extent and Topography: An Application over the Amazon. Journal of Hydrometeorology, 2019, 20, 1851-1866.	0.7	9
257	Carbon dioxide emission from drawdown areas of a Brazilian reservoir is linked to surrounding land cover. Aquatic Sciences, 2019, 81, 1.	0.6	25
258	The Role of African Emerging Space Agencies in Earth Observation Capacity Building for Facilitating the Implementation and Monitoring of the African Development Agenda: The Case of African Earth Observation Program. ISPRS International Journal of Geo-Information, 2019, 8, 292.	1.4	19
259	Monitoring Green Infrastructure for Natural Water Retention Using Copernicus Global Land Products. Remote Sensing, 2019, 11, 1583.	1.8	18
260	RFim: A Real-Time Inundation Extent Model for Large Floodplains Based on Remote Sensing Big Data and Water Level Observations. Remote Sensing, 2019, 11, 1585.	1.8	9
261	Inundation mapping by remote sensing techniques., 2019,, 289-315.		1
262	Impacts of the decreased freeze-up period on primary production in Qinghai Lake. International Journal of Applied Earth Observation and Geoinformation, 2019, 83, 101915.	1.4	7
263	Greater Water Surface Variability Revealed by New Congo River Field Data: Implications for Satellite Altimetry Measurements of Large Rivers. Geophysical Research Letters, 2019, 46, 8093-8101.	1.5	30
264	Assessing the pasturelands and livestock dynamics in Brazil, from 1985 to 2017: A novel approach based on high spatial resolution imagery and Google Earth Engine cloud computing. Remote Sensing of Environment, 2019, 232, 111301.	4.6	89
265	An Automatic Extraction Method for Lakes and Reservoirs Using Satellite Images. IEEE Access, 2019, 7, 62443-62456.	2.6	7
266	Evaluation of Earth Observation Solutions for Namibia's SDG Monitoring System. Remote Sensing, 2019, 11, 1612.	1.8	15
267	Toward processâ€based conservation prioritizations for freshwater ecosystems. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 1149-1160.	0.9	52
268	High-Resolution Vegetation Mapping Using eXtreme Gradient Boosting Based on Extensive Features. Remote Sensing, 2019, 11, 1505.	1.8	24
269	A method for downscaling daily evapotranspiration based on 30-m surface resistance. Journal of Hydrology, 2019, 577, 123882.	2.3	11
270	$\langle i \rangle 110$ th Anniversary $\langle i \rangle$: Carbon Dioxide and Chemical Looping: Current Research Trends. Industrial & Looping: Engineering Chemistry Research, 2019, 58, 16235-16257.	1.8	39
271	Semantic Earth Observation Data Cubes. Data, 2019, 4, 102.	1.2	47
272	The impact of reach averaging Manning's equation for an in-situ dataset of water surface elevation, width, and slope. Journal of Hydrology, 2019, 578, 123866.	2.3	24

#	Article	IF	CITATIONS
273	Using Landsat observations (1988–2017) and Google Earth Engine to detect vegetation cover changes in rangelands - A first step towards identifying degraded lands for conservation. Remote Sensing of Environment, 2019, 232, 111317.	4.6	68
274	Spatio-Temporal Patterns of Coastal Aquaculture Derived from Sentinel-1 Time Series Data and the Full Landsat Archive. Remote Sensing, 2019, 11, 1707.	1.8	37
275	Global Reconstruction of Naturalized River Flows at 2.94 Million Reaches. Water Resources Research, 2019, 55, 6499-6516.	1.7	175
276	Giving Ecological Meaning to Satellite-Derived Fire Severity Metrics across North American Forests. Remote Sensing, 2019, 11, 1735.	1.8	63
277	Increasing Outbreak of Cyanobacterial Blooms in Large Lakes and Reservoirs under Pressures from Climate Change and Anthropogenic Interferences in the Middle–Lower Yangtze River Basin. Remote Sensing, 2019, 11, 1754.	1.8	24
278	Modelling inundation patterns and sediment dynamics in the extensive floodplain along the Tonle Sap River. River Research and Applications, 2019, 35, 1387-1401.	0.7	4
279	Surface Water Body Detection in Polarimetric SAR Data Using Contextual Complex Wishart Classification. Water Resources Research, 2019, 55, 7047-7059.	1.7	20
280	Deriving High-Resolution Reservoir Bathymetry From ICESat-2 Prototype Photon-Counting Lidar and Landsat Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 7883-7893.	2.7	66
281	Climate change leads to a doubling of turbidity in a rapidly expanding Tibetan lake. Science of the Total Environment, 2019, 688, 952-959.	3.9	24
282	Continuous Monitoring of the Spatio-Temporal Patterns of Surface Water in Response to Land Use and Land Cover Types in a Mediterranean Lagoon Complex. Remote Sensing, 2019, 11, 1425.	1.8	12
283	Acoustic and camera surveys inform models of current and future vertebrate distributions in a changing desert ecosystem. Diversity and Distributions, 2019, 25, 1441-1456.	1.9	13
284	Extent Changes in the Perennial Snowfields of Gates of the Arctic National Park and Preserve, Alaska. Hydrology, 2019, 6, 53.	1.3	3
285	Assessment of Water Storage Change in China's Lakes and Reservoirs over the Last Three Decades. Remote Sensing, 2019, 11, 1467.	1.8	28
286	Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine. Science of the Total Environment, 2019, 689, 366-380.	3.9	116
287	Water-Carbon Dynamics in Eastern Siberia. Ecological Studies, 2019, , .	0.4	6
288	Using the Landsat archive to map crop cover history across the United States. Remote Sensing of Environment, 2019, 232, 111286.	4.6	52
289	Remote sensing of cyanobacterial blooms in inland waters: present knowledge and future challenges. Science Bulletin, 2019, 64, 1540-1556.	4.3	103
290	Adaptation and sustainability of water management for rice agriculture in temperate regions: The Italian caseâ€study. Land Degradation and Development, 2019, 30, 2033-2047.	1.8	26

#	Article	IF	CITATIONS
291	Remote Sensing of Terrestrial Water. Ecological Studies, 2019, , 253-277.	0.4	0
292	Malaria risk assessment and mapping using satellite imagery and boosted regression trees in the Peruvian Amazon. Scientific Reports, 2019, 9, 15173.	1.6	26
293	Estimation of hydrological vulnerability in river basins of Argentinean plains. International Journal of River Basin Management, 2019 , , $1-13$.	1.5	2
294	Remote Sensing of Environmental Changes in Cold Regions: Methods, Achievements and Challenges. Remote Sensing, 2019, 11, 1952.	1.8	34
295	High Spatio-Temporal Resolution CYGNSS Soil Moisture Estimates Using Artificial Neural Networks. Remote Sensing, 2019, 11, 2272.	1.8	113
296	From woody cover to woody canopies: How Sentinel-1 and Sentinel-2 data advance the mapping of woody plants in savannas. Remote Sensing of Environment, 2019, 234, 111465.	4.6	60
297	Mapping three decades of annual irrigation across the US High Plains Aquifer using Landsat and Google Earth Engine. Remote Sensing of Environment, 2019, 233, 111400.	4.6	109
298	A novel approach to monitoring wetland dynamics using CYGNSS: Everglades case study. Remote Sensing of Environment, 2019, 233, 111417.	4.6	74
299	Flooding and Land Use Change in Southeast Sulawesi, Indonesia. Land, 2019, 8, 139.	1.2	4
300	A Modular Processing Chain for Automated Flood Monitoring from Multi-Spectral Satellite Data. Remote Sensing, 2019, 11, 2330.	1.8	56
301	Application of Machine Learning to Model Wetland Inundation Patterns Across a Large Semiarid Floodplain. Water Resources Research, 2019, 55, 8765-8778.	1.7	27
302	AquaSat: A Data Set to Enable Remote Sensing of Water Quality for Inland Waters. Water Resources Research, 2019, 55, 10012-10025.	1.7	78
303	Connecting research infrastructures, scientific and sectorial networks to support integrated management of Mediterranean coastal and rural areas. Environmental Research Letters, 2019, 14, 115001.	2.2	8
304	Study on tensile fracture behavior of Mg-11.21Gd-1.74Y-0.38Zr alloy. Materials Research Express, 2019, 6, 1065g1.	0.8	4
305	Long-Term Dynamic of Poyang Lake Surface Water: A Mapping Work Based on the Google Earth Engine Cloud Platform. Remote Sensing, 2019, 11, 313.	1.8	71
306	Determinants of tree cover in tropical floodplains. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191755.	1.2	10
307	Water storage estimation in ungauged small reservoirs with the TanDEM-X DEM and multi-source satellite observations. Remote Sensing of Environment, 2019, 235, 111437.	4.6	31
308	A Decade of Water Storage Changes Across the Contiguous United States From GPS and Satellite Gravity. Geophysical Research Letters, 2019, 46, 13006-13015.	1.5	41

#	Article	IF	CITATIONS
309	River-ice and water velocities using the Planet optical cubesat constellation. Hydrology and Earth System Sciences, 2019, 23, 4233-4247.	1.9	37
310	Towards Global Hydrological Drought Monitoring Using Remotely Sensed Reservoir Surface Area. Geophysical Research Letters, 2019, 46, 13027-13035.	1.5	16
311	Continuous Dynamics Monitoring of Multi-Lake Water Extent Using a Spatial and Temporal Adaptive Fusion Method Based on Two Sets of MODIS Products. Sensors, 2019, 19, 4873.	2.1	2
312	Tibetan Plateau's Lake Level and Volume Changes From NASA's ICESat/ICESatâ€⊋ and Landsat Missions. Geophysical Research Letters, 2019, 46, 13107-13118.	1.5	114
313	Flood Inundation Generation Mechanisms and Their Changes in 1953–2004 in Global Major River Basins. Journal of Geophysical Research D: Atmospheres, 2019, 124, 11672-11692.	1.2	18
314	Changing Arctic River Dynamics Cause Localized Permafrost Thaw. Journal of Geophysical Research F: Earth Surface, 2019, 124, 2324-2344.	1.0	27
315	How can flood modelling advance in the "big data―age?. Journal of Flood Risk Management, 2019, 12, e12560.	1.6	5
316	Comparing Discharge Estimates Made via the BAM Algorithm in Highâ€Order Arctic Rivers Derived Solely From Optical CubeSat, Landsat, and Sentinelâ€2 Data. Water Resources Research, 2019, 55, 7753-7771.	1.7	47
317	Landsat-Based Estimation of Seasonal Water Cover and Change in Arid and Semi-Arid Central Asia (2000–2015). Remote Sensing, 2019, 11, 1323.	1.8	16
318	Introducing WIW for Detecting the Presence of Water in Wetlands with Landsat and Sentinel Satellites. Remote Sensing, 2019, 11, 2210.	1.8	39
319	Quantifying Trends of Land Change in Qinghai-Tibet Plateau during 2001–2015. Remote Sensing, 2019, 11, 2435.	1.8	34
320	Upgraded global mapping information for earth system modelling: an application to surface water depth at the ECMWF. Hydrology and Earth System Sciences, 2019, 23, 4051-4076.	1.9	16
321	Coexist WiFi for ZigBee Networks With Fine-Grained Frequency Approach. IEEE Access, 2019, 7, 135363-135376.	2.6	13
322	Remote Sensing in Environmental Justice Research—A Review. ISPRS International Journal of Geo-Information, 2019, 8, 20.	1.4	38
323	ORCHIDEE MICT-LEAK (r5459), a global model for the production, transport, and transformation of dissolved organic carbon from Arctic permafrost regions â€" Part 1: Rationale, model description, and simulation protocol. Geoscientific Model Development, 2019, 12, 3503-3521.	1.3	12
324	Are There Sufficient Landsat Observations for Retrospective and Continuous Monitoring of Land Cover Changes in China?. Remote Sensing, 2019, 11, 1808.	1.8	20
325	Time Series of Landsat Imagery Shows Vegetation Recovery in Two Fragile Karst Watersheds in Southwest China from 1988 to 2016. Remote Sensing, 2019, 11, 2044.	1.8	26
326	Land-Cover Classification of Coastal Wetlands Using the RF Algorithm for Worldview-2 and Landsat 8 Images. Remote Sensing, 2019, 11, 1927.	1.8	62

#	Article	IF	CITATIONS
327	Overview of the Monsoon-influenced Ayeyarwady River delta, and delta shoreline mobility in response to changing fluvial sediment supply. Marine Geology, 2019, 417, 106038.	0.9	27
328	Volumetric Analysis of Reservoirs in Drought-Prone Areas Using Remote Sensing Products. Remote Sensing, 2019, 11, 1974.	1.8	18
330	A new dense 18-year time series of surface water fraction estimates from MODIS for the Mediterranean region. Hydrology and Earth System Sciences, 2019, 23, 3037-3056.	1.9	21
331	Capacitive Deionization of Saline Water by Using MoS ₂ –Graphene Hybrid Electrodes with High Volumetric Adsorption Capacity. Environmental Science & Environmental	4.6	162
332	Global-scale human pressure evolution imprints on sustainability of river systems. Hydrology and Earth System Sciences, 2019, 23, 3933-3944.	1.9	13
333	Surface water connectivity of seasonal isolated lakes in a dynamic lake-floodplain system. Journal of Hydrology, 2019, 579, 124154.	2.3	27
334	Long-Term Changes of Open-Surface Water Bodies in the Yangtze River Basin Based on the Google Earth Engine Cloud Platform. Remote Sensing, 2019, 11, 2213.	1.8	90
335	An Effective Low-Cost Remote Sensing Approach to Reconstruct the Long-Term and Dense Time Series of Area and Storage Variations for Large Lakes. Sensors, 2019, 19, 4247.	2.1	12
336	Integration of Machine Learning and Open Access Geospatial Data for Land Cover Mapping. Remote Sensing, 2019, 11, 1907.	1.8	14
337	A High-Resolution Airborne Color-Infrared Camera Water Mask for the NASA ABoVE Campaign. Remote Sensing, 2019, 11, 2163.	1.8	26
338	Water Conservation, Recycling and Reuse: Issues and Challenges. , 2019, , .		4
340	Potential of Earth Observation (EO) technologies for seagrass ecosystem service assessments. International Journal of Applied Earth Observation and Geoinformation, 2019, 77, 15-29.	1.4	34
341	Status, trends, and future dynamics of freshwater ecosystems in Europe and Central Asia. Inland Waters, 2019, 9, 78-94.	1.1	52
342	Pressure-induced phase transitions for goethite investigated by Raman spectroscopy and electrical conductivity. High Pressure Research, 2019, 39, 106-116.	0.4	13
343	Atlas of Ecosystem Services. , 2019, , .		28
344	Variations of Surface and Subsurface Water Storage in the Lower Mekong Basin (Vietnam and) Tj ETQq1 1 0.784	1314 rgBT 1.2	Oyerlock 1
345	Assessing the Potential of the Surface Water and Ocean Topography Mission for Reservoir Monitoring in the Mekong River Basin. Water Resources Research, 2019, 55, 444-461.	1.7	44
346	FORCE—Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sensing, 2019, 11, 1124.	1.8	153

#	Article	IF	Citations
347	Estimating Dynamics of Terminal Lakes in the Second Largest Endorheic River Basin of Northwestern China from 2000 to 2017 with Landsat Imagery. Remote Sensing, 2019, 11, 1164.	1.8	7
348	Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network. Remote Sensing of Environment, 2019, 230, 111203.	4.6	126
349	Assessing long-term urban surface water changes using multi-year satellite images: A tale of two cities, Dhaka and Hong Kong. Journal of Environmental Management, 2019, 243, 287-298.	3.8	19
350	A framework estimating cumulative impact of damming on downstream water availability. Journal of Hydrology, 2019, 575, 612-627.	2.3	16
351	Utility of Normalized Difference Water Index and GIS for Mapping Surface Water Dynamics in Sub-Upper Krishna Basin. Journal of the Indian Society of Remote Sensing, 2019, 47, 1431-1442.	1.2	10
352	Spatial and temporal variations of tap water 170-excess in China. Geochimica Et Cosmochimica Acta, 2019, 260, 1-14.	1.6	30
353	Mapping bamboo with regional phenological characteristics derived from dense Landsat time series using Google Earth Engine. International Journal of Remote Sensing, 2019, 40, 9541-9555.	1.3	34
354	Carbon dioxide fluxes of air-exposed sediments and desiccating ponds. Biogeochemistry, 2019, 144, 165-180.	1.7	10
355	Multi-Index Image Differencing Method (MINDED) for Flood Extent Estimations. Remote Sensing, 2019, 11, 1305.	1.8	14
356	Detecting cloud contamination in passive microwave satellite measurements over land. Atmospheric Measurement Techniques, 2019, 12, 1531-1543.	1.2	6
357	Fusion of Sentinel-1 and Sentinel-2 image time series for permanent and temporary surface water mapping. International Journal of Remote Sensing, 0, , 1-24.	1.3	28
358	Inundation Extent Mapping by Synthetic Aperture Radar: A Review. Remote Sensing, 2019, 11, 879.	1.8	153
359	Tracking spatial–temporal landscape changes of impervious surface areas, bare lands, and inundation areas in China during 2001–2017. Land Degradation and Development, 2019, 30, 1802-1812.	1.8	6
360	MERIT Hydro: A Highâ€Resolution Global Hydrography Map Based on Latest Topography Dataset. Water Resources Research, 2019, 55, 5053-5073.	1.7	396
361	Remote sensing and geospatial technologies in support of a normative land system science: status and prospects. Current Opinion in Environmental Sustainability, 2019, 38, 44-52.	3.1	45
362	Reduced mosquito survival in metal-roof houses may contribute to a decline in malaria transmission in sub-Saharan Africa. Scientific Reports, 2019, 9, 7770.	1.6	38
363	Cloud Data and Computing Services Allow Regional Environmental Assessment: A Case Study of Macquarie-Castlereagh Basin, Australia. Chinese Geographical Science, 2019, 29, 394-404.	1.2	1
364	Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery. Remote Sensing of Environment, 2019, 231, 111205.	4.6	248

#	Article	IF	CITATIONS
365	Comparing Thresholding with Machine Learning Classifiers for Mapping Complex Water. Remote Sensing, 2019, 11, 1351.	1.8	89
366	High resolution mapping of inundation area in the Amazon basin from a combination of L-band passive microwave, optical and radar datasets. International Journal of Applied Earth Observation and Geoinformation, 2019, 81, 58-71.	1.4	34
367	Saline lakes of Northern Kazakhstan: Geochemical correlations of elements and controls on their accumulation in water and bottom sediments. Applied Geochemistry, 2019, 107, 8-18.	1.4	14
368	High-efficient extraction of drainage networks from digital elevation models constrained by enhanced flow enforcement from known river maps. Geomorphology, 2019, 340, 184-201.	1.1	39
369	Effects of broad bandwidth on the remote sensing of inland waters: Implications for high spatial resolution satellite data applications. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 153, 110-122.	4.9	46
370	Regional trends in remotely sensed water clarity over 18 years in the Rotorua Lakes, New Zealand. New Zealand Journal of Marine and Freshwater Research, 2019, 53, 513-535.	0.8	6
371	A review: UAV-based Remote Sensing. IOP Conference Series: Materials Science and Engineering, 0, 490, 062014.	0.3	17
372	On the Feasibility of Water Surface Mapping with Single Photon LiDAR. ISPRS International Journal of Geo-Information, 2019, 8, 188.	1.4	10
373	Monitoring Reservoir Drought Dynamics with Landsat and Radar/Lidar Altimetry Time Series in Persistently Cloudy Eastern Brazil. Remote Sensing, 2019, 11, 827.	1.8	22
374	Potential of SWOT for Monitoring Water Volumes in Sahelian Ponds and Lakes. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 2541-2549.	2.3	19
375	Permanent disappearance and seasonal fluctuation of urban lake area in Wuhan, China monitored with long time series remotely sensed images from 1987 to 2016. International Journal of Remote Sensing, 2019, 40, 8484-8505.	1.3	11
376	Content-based search of earth observation data archives using open-access multitemporal land cover and terrain products. International Journal of Applied Earth Observation and Geoinformation, 2019, 81, 13-26.	1.4	5
377	Hydrologic Lag Effects on Wetland Greenhouse Gas Fluxes. Atmosphere, 2019, 10, 269.	1.0	20
378	Comparison of Surface Water Volume Estimation Methodologies that Couple Surface Reflectance Data and Digital Terrain Models. Water (Switzerland), 2019, 11, 780.	1.2	20
379	Climate-related uncertainties in urban exposure to sea level rise and storm surge flooding: a multi-temporal and multi-scenario analysis. Cities, 2019, 92, 230-246.	2.7	21
380	Automatic Detection of Open and Vegetated Water Bodies Using Sentinel 1 to Map African Malaria Vector Mosquito Breeding Habitats. Remote Sensing, 2019, 11, 593.	1.8	55
381	Integrating LiDAR data and multi-temporal aerial imagery to map wetland inundation dynamics using Google Earth Engine. Remote Sensing of Environment, 2019, 228, 1-13.	4.6	108
382	Automated mapping of rice fields using multi-year training sample normalization. International Journal of Remote Sensing, 2019, 40, 7252-7271.	1.3	8

#	Article	IF	CITATIONS
383	Automated Extraction of Consistent Time-Variable Water Surfaces of Lakes and Reservoirs Based on Landsat and Sentinel-2. Remote Sensing, 2019, 11, 1010.	1.8	60
384	Assessment of Surface Water Resources in the Big Sunflower River Watershed Using Coupled SWAT–MODFLOW Model. Water (Switzerland), 2019, 11, 528.	1.2	33
385	Activeâ€Passive Surface Water Classification: A New Method for Highâ€Resolution Monitoring of Surface Water Dynamics. Geophysical Research Letters, 2019, 46, 4694-4704.	1.5	15
386	A long-term dataset of lake surface water temperature over the Tibetan Plateau derived from AVHRR 1981–2015. Scientific Data, 2019, 6, 48.	2.4	26
387	Spatial typology for targeted food and nutrition security interventions. World Development, 2019, 120, 62-75.	2.6	10
388	Mapping Plantations in Myanmar by Fusing Landsat-8, Sentinel-2 and Sentinel-1 Data along with Systematic Error Quantification. Remote Sensing, 2019, 11, 831.	1.8	94
389	Multi-decadal variations in delta shorelines and their relationship to river sediment supply: An assessment and review. Earth-Science Reviews, 2019, 193, 199-219.	4.0	131
390	Coastline extraction from repeat high resolution satellite imagery. Remote Sensing of Environment, 2019, 229, 260-270.	4.6	43
391	Multisource and Multitemporal Data Fusion in Remote Sensing: A Comprehensive Review of the State of the Art. IEEE Geoscience and Remote Sensing Magazine, 2019, 7, 6-39.	4.9	302
392	Identification of a Threshold Minimum Area for Reflectance Retrieval from Thermokarst Lakes and Ponds Using Full-Pixel Data from Sentinel-2. Remote Sensing, 2019, 11, 657.	1.8	16
393	Assessment of basin-scale soil erosion within the Congo River Basin: A review. Catena, 2019, 178, 64-76.	2.2	44
394	Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya. Nature Climate Change, 2019, 9, 379-383.	8.1	146
395	Developing a resilience assessment framework for the Urban Land–Water System. Land Degradation and Development, 2019, 30, 1107-1120.	1.8	13
396	A Novel Unsupervised Sample Collection Method for Urban Land-Cover Mapping Using Landsat Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 3933-3951.	2.7	15
397	Ecological indicator values reveal missing predictors of species distributions. Scientific Reports, 2019, 9, 3061.	1.6	44
398	Identifying historic river ice breakup timing using MODIS and Google Earth Engine in support of operational flood monitoring in Northern Ontario. Remote Sensing of Environment, 2019, 224, 352-364.	4.6	34
399	The potential role of very high-resolution imagery to characterise lake, wetland and stream systems across the Prairie Pothole Region, United States. International Journal of Remote Sensing, 2019, 40, 5768-5798.	1.3	17
400	Changing Lake Dynamics Indicate a Drier Arctic in Western Greenland. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 870-883.	1.3	33

#	Article	IF	CITATIONS
401	Surface water classification from GF-4 images using a time series water index. International Journal of Remote Sensing, 2019, 40, 6336-6364.	1.3	1
402	Artificial water catchments influence wildlife distribution in the Mojave Desert. Journal of Wildlife Management, 2019, 83, 855-865.	0.7	21
403	Current status of Landsat program, science, and applications. Remote Sensing of Environment, 2019, 225, 127-147.	4.6	586
404	Surface Water Microwave Product Series Version 3: A Near-Real Time and 25-Year Historical Global Inundated Area Fraction Time Series From Active and Passive Microwave Remote Sensing. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 1402-1406.	1.4	34
405	Sustained growth of high mountain lakes in the headwaters of the Syr Darya River, Central Asia. Global and Planetary Change, 2019, 176, 84-99.	1.6	29
406	Comparisons of three recent moderate resolution African land cover datasets: CGLS-LC100, ESA-S2-LC20, and FROM-GLC-Africa30. International Journal of Remote Sensing, 2019, 40, 6185-6202.	1.3	43
407	Sensor web - Enabled flood event process detection and instant service. Environmental Modelling and Software, 2019, 117, 29-42.	1.9	10
408	Estimating reservoir evaporation losses for the United States: Fusing remote sensing and modeling approaches. Remote Sensing of Environment, 2019, 226, 109-124.	4.6	97
409	Landsat 4, 5 and 7 (1982 to 2017) Analysis Ready Data (ARD) Observation Coverage over the Conterminous United States and Implications for Terrestrial Monitoring. Remote Sensing, 2019, 11, 447.	1.8	37
410	Are the patterns of zooplankton community structure different between lakes and reservoirs? A local and regional assessment across tropical ecosystems. Aquatic Ecology, 2019, 53, 335-346.	0.7	5
411	Extracting aquaculture ponds from natural water surfaces around inland lakes on medium resolution multispectral images. International Journal of Applied Earth Observation and Geoinformation, 2019, 80, 13-25.	1.4	21
412	Droughts in East Africa: Causes, impacts and resilience. Earth-Science Reviews, 2019, 193, 146-161.	4.0	210
413	Remote Sensing and Historical Morphodynamics of Alluvial Plains. The 1909 Indus Flood and the City of Dera Ghazi Khan (Province of Punjab, Pakistan). Geosciences (Switzerland), 2019, 9, 21.	1.0	22
414	Improved Automated Detection of Subpixel-Scale Inundationâ€"Revised Dynamic Surface Water Extent (DSWE) Partial Surface Water Tests. Remote Sensing, 2019, 11, 374.	1.8	122
415	Microsatellite loci transferability and genetic diversity of the aquatic plant Nymphoides fallax Ornduff (Menyanthaceae), endemic to the Mexican and Guatemalan highlands. Limnology, 2019, 20, 233-241.	0.8	5
416	Enhanced flood risk with 1.5 °C global warming in the Ganges–Brahmaputra–Meghna basin. Environmental Research Letters, 2019, 14, 074031.	2.2	33
417	Effects of reclamation and natural changes on coastal wetlands bordering China's Yellow Sea from 1984 to 2015. Land Degradation and Development, 2019, 30, 1533-1544.	1.8	38
418	Mapping Wetland Dynamics With SAR-Based Change Detection in the Cloud. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 1536-1539.	1.4	11

#	ARTICLE	IF	CITATIONS
419	Long-Term Annual Surface Water Change in the Brazilian Amazon Biome: Potential Links with Deforestation, Infrastructure Development and Climate Change. Water (Switzerland), 2019, 11, 566.	1.2	28
420	Impact of Climate Variabilities and Human Activities on Surface Water Extents in Reservoirs of Yongding River Basin, China, from 1985 to 2016 Based on Landsat Observations and Time Series Analysis. Remote Sensing, 2019, 11, 560.	1.8	34
421	AltEx: An open source web application and toolkit for accessing and exploring altimetry datasets. Environmental Modelling and Software, 2019, 117, 164-175.	1.9	12
422	From waste to resource: Cost-benefit analysis of reservoir sediment reuse for soil fertilization in a semiarid catchment. Science of the Total Environment, 2019, 670, 158-169.	3.9	38
423	Navigating the complexities of coordinated conservation along the river Nile. Science Advances, 2019, 5, eaau7668.	4.7	25
424	Spatiotemporal evaluation of inundated areas using MODIS imagery at a catchment scale. Journal of Hydrology, 2019, 573, 952-963.	2.3	15
425	A highly automated algorithm for wetland detection using multi-temporal optical satellite data. Remote Sensing of Environment, 2019, 224, 333-351.	4.6	68
426	Supraglacial Streams and Rivers. Annual Review of Earth and Planetary Sciences, 2019, 47, 421-452.	4.6	32
427	Quantifying net water consumption of Norwegian hydropower reservoirs and related aquatic biodiversity impacts in Life Cycle Assessment. Environmental Impact Assessment Review, 2019, 76, 36-46.	4.4	22
428	Arcticâ€Boreal Lake Dynamics Revealed Using CubeSat Imagery. Geophysical Research Letters, 2019, 46, 2111-2120.	1.5	87
429	Size Distributions of Arctic Waterbodies Reveal Consistent Relations in Their Statistical Moments in Space and Time. Frontiers in Earth Science, 2019, 7, .	0.8	25
430	Finding water: Reliability of remote-sensing methods in searching for water bodies within diverse landscapes. Ecohydrology and Hydrobiology, 2019, 19, 383-392.	1.0	1
431	A Global Assessment of Terrestrial Evapotranspiration Increase Due to Surface Water Area Change. Earth's Future, 2019, 7, 266-282.	2.4	60
432	Decentralized water supply by reservoir network reduces power demand for water distribution in a semi-arid basin. Hydrological Sciences Journal, 2019, 64, 80-91.	1.2	9
433	A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrology and Earth System Sciences, 2019, 23, 669-690.	1.9	164
434	Mapping inundation dynamics in a heterogeneous floodplain: Insights from integrating observations and modeling approach. Journal of Hydrology, 2019, 572, 148-159.	2.3	24
435	Benefits of the free and open Landsat data policy. Remote Sensing of Environment, 2019, 224, 382-385.	4.6	291
436	Water Debt Indicator Reveals Where Agricultural Water Use Exceeds Sustainable Levels. Water Resources Research, 2019, 55, 2464-2477.	1.7	43

#	Article	IF	CITATIONS
437	A Global MODIS Water Vapor Database for the Operational Atmospheric Correction of Historic and Recent Landsat Imagery. Remote Sensing, 2019, 11, 257.	1.8	11
438	Solving the mystery of vanishing rivers in China. National Science Review, 2019, 6, 1239-1246.	4.6	12
439	Deep learning and process understanding for data-driven Earth system science. Nature, 2019, 566, 195-204.	13.7	2,176
440	Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sensing of Environment, 2019, 224, 104-118.	4.6	195
441	Can regional to continental river hydrodynamic models be locally relevant? A cross-scale comparison. Journal of Hydrology X, 2019, 3, 100027.	0.8	56
442	Water, Ecosystem Dynamics and Human Livelihoods in the Okavango River Basin (ORB): Competing Needs or Balanced Use? A Review. , 2019, , .		1
443	High-frequency Monitoring of Inland Lakes Water Extent Using Time-Series Sentinel-1 SAR Data. , 2019, , .		3
444	Spatio-Temporal Variations in Precipitation Extremes in the Endorheic Hongjian Lake Basin in the Ordos Plateau, China. Water (Switzerland), 2019, 11, 1981.	1.2	6
445	A generalized supervised classification scheme to produce provincial wetland inventory maps: an application of Google Earth Engine for big geo data processing. Big Earth Data, 2019, 3, 378-394.	2.0	62
446	Linking Earth Observations for Assessing the Food Security Situation in Vietnam: A Landscape Approach. Frontiers in Environmental Science, 2019, 7, .	1.5	13
447	Integrating Water Observation from Space Product and Time-Series Flow Data for Modeling Spatio-Temporal Flood Inundation Dynamics. Remote Sensing, 2019, 11, 2535.	1.8	1
448	Interannual Variability of Global Wetlands in Response to El Ni $\tilde{A}\pm o$ Southern Oscillations (ENSO) and Land-Use. Frontiers in Earth Science, 2019, 7, .	0.8	8
449	Responses of four dominant dryland plant species to climate change in the Junggar Basin, northwest China. Ecology and Evolution, 2019, 9, 13596-13607.	0.8	23
450	Characterization of Deltaic Channel Morphodynamics From Imagery Time Series Using the Channelized Response Variance. Journal of Geophysical Research F: Earth Surface, 2019, 124, 3022-3042.	1.0	10
451	Selection of Landsat 8 OLI Band Combinations for Land Use and Land Cover Classification. , 2019, , .		23
452	Space and time predictions of schistosomiasis snail host population dynamics across hydrologic regimes in Burkina Faso. Geospatial Health, 2019, 14, .	0.3	12
453	Coastal Inundation Mapping From Bitemporal and Dualâ€Polarization SAR Imagery Based on Deep Convolutional Neural Networks. Journal of Geophysical Research: Oceans, 2019, 124, 9101-9113.	1.0	51
454	A CYGNSSâ€Based Algorithm for the Detection of Inland Waterbodies. Geophysical Research Letters, 2019, 46, 12065-12072.	1.5	56

#	ARTICLE	IF	CITATIONS
455	Recent glacier and lake changes in High Mountain Asia and their relation to precipitation changes. Cryosphere, 2019, 13, 2977-3005.	1.5	64
456	Spatiotemporal Analysis of Precipitation in the Sparsely Gauged Zambezi River Basin Using Remote Sensing and Google Earth Engine. Remote Sensing, $2019, 11, 2977$.	1.8	15
457	Operational Flood Risk Index Mapping for Disaster Risk Reduction Using Earth Observations and Cloud Computing Technologies: A Case Study on Myanmar. Frontiers in Environmental Science, 2019, 7, .	1.5	32
458	People and Pixels 20Âyears later: the current data landscape and research trends blending population and environmental data. Population and Environment, 2019, 41, 209-234.	1.3	35
459	Impacts of past abrupt land change on local biodiversity globally. Nature Communications, 2019, 10, 5474.	5.8	46
460	Inland water bodies in China: Features discovered in the long-term satellite data. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25491-25496.	3.3	50
461	Influence of Surface Water Bodies on the Land Surface Temperature of Bangladesh. Sustainability, 2019, 11, 6754.	1.6	18
462	Dynamic Waterline Mapping of Inland Great Lakes Using Time-Series SAR Data From GF-3 and S-1A Satellites: A Case Study of DJK Reservoir, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 4297-4314.	2.3	9
463	Determining a Threshold to Delimit the Amazonian Forests from the Tree Canopy Cover 2000 GFC Data. Sensors, 2019, 19, 5020.	2.1	6
464	Deep Learning Model for Water/Ice/Land Classification Using Large-Scale Medium Resolution Satellite Images. , 2019, , .		15
465	Effect of Satellite Temporal Resolution on Long-Term Suspended Particulate Matter in Inland Lakes. Remote Sensing, 2019, 11, 2785.	1.8	10
466	A Method of Watershed Delineation for Flat Terrain Using Sentinel-2A Imagery and DEM: A Case Study of the Taihu Basin. ISPRS International Journal of Geo-Information, 2019, 8, 528.	1.4	21
467	A Survey of Belief Rule-Base Expert System. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 4944-4958.	5.9	78
468	Surface Water Area Mapping in Huai River Basin Over the Past Three Decades from Landsat Imagery based on Google Earth Engine. , 2019, , .		0
469	A watershed classification approach that looks beyond hydrology: application to a semi-arid, agricultural region in Canada. Hydrology and Earth System Sciences, 2019, 23, 3945-3967.	1.9	33
470	A Review of Earth Observation-Based Analyses for Major River Basins. Remote Sensing, 2019, 11, 2951.	1.8	17
471	Automated Surface Water Extraction Combining Sentinel-2 Imagery and OpenStreetMap Using Presence and Background Learning (PBL) Algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 3784-3798.	2.3	12
472	The first range-wide assessment of Saddle-billed Stork Ephippiorhynchus senegalensis distribution. Ostrich, 2019, 90, 347-357.	0.4	6

#	Article	IF	CITATIONS
473	Cloud-based typhoon-derived paddy rice flooding and lodging detection using multi-temporal Sentinel-1& Earth Science, 2019, 13, 682-694.	0.9	28
474	Sub-Pixel Waterline Extraction: Characterising Accuracy and Sensitivity to Indices and Spectra. Remote Sensing, 2019, 11, 2984.	1.8	59
475	A Comparison of Water Indices and Binary Thresholding Techniques for Water Surface Delineation for St. Croix Watershed Area. Yearbook of the Association of Pacific Coast Geographers, 2019, 81, 182-204.	0.1	0
476	Mapping Trajectories of Coastal Land Reclamation in Nine Deltaic Megacities using Google Earth Engine. Remote Sensing, 2019, 11, 2621.	1.8	32
477	Geospatial data mining for digital raster mapping. GIScience and Remote Sensing, 2019, 56, 406-429.	2.4	32
478	Influence of land surface parameters on the spatio-seasonal land surface temperature regime in rural West Bengal, India. Advances in Space Research, 2019, 63, 172-189.	1.2	12
479	Long-term groundwater storage variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in-situ observations. Science of the Total Environment, 2019, 649, 372-387.	3.9	100
480	Temporal patterns of phytoplankton phenology across high latitude lakes unveiled by long-term time series of satellite data. Remote Sensing of Environment, 2019, 221, 609-620.	4.6	28
481	Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey. Remote Sensing of Environment, 2019, 221, 583-595.	4.6	134
482	The global distribution and trajectory of tidal flats. Nature, 2019, 565, 222-225.	13.7	552
483	Highâ€Resolution Modeling of Reservoir Release and Storage Dynamics at the Continental Scale. Water Resources Research, 2019, 55, 787-810.	1.7	71
484	Physical dynamics of Lake Victoria over the past 34†years (1984†2018): Is the lake dying?. Science of the Total Environment, 2019, 658, 199-218.	3.9	44
485	Recent water level changes across Earth's largest lake system and implications for future variability. Journal of Great Lakes Research, 2019, 45, 1-3.	0.8	69
486	Remote sensing of large reservoir in the drought years: Implications on surface water change and turbidity variability of Sobradinho reservoir (Northeast Brazil). Remote Sensing Applications: Society and Environment, 2019, 13, 275-288.	0.8	18
487	Leaf litter microbial decomposition in salinized streams under intermittency. Science of the Total Environment, 2019, 653, 1204-1212.	3.9	21
488	Conflation of expert and crowd reference data to validate global binary thematic maps. Remote Sensing of Environment, 2019, 221, 235-246.	4.6	24
489	Near-real-time non-obstructed flood inundation mapping using synthetic aperture radar. Remote Sensing of Environment, 2019, 221, 302-315.	4.6	103
490	Emissions from dry inland waters are a blind spot in the global carbon cycle. Earth-Science Reviews, 2019, 188, 240-248.	4.0	93

#	Article	IF	Citations
491	Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter. Global Change Biology, 2019, 25, 1591-1611.	4.2	71
492	An ecosystem risk assessment of temperate and tropical forests of the Americas with an outlook on future conservation strategies. Conservation Letters, 2019, 12, e12623.	2.8	56
493	The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Remote Sensing, 2019, 11, 43.	1.8	190
494	Improvements to the Wetland Extent Trends (WET) index as a tool for monitoring natural and human-made wetlands. Ecological Indicators, 2019, 99, 294-298.	2.6	111
495	Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sensing of Environment, 2019, 222, 183-194.	4.6	393
496	Coupled estimation of 500†m and 8-day resolution global evapotranspiration and gross primary production in 2002†2017. Remote Sensing of Environment, 2019, 222, 165-182.	4.6	389
497	Spatiotemporal patterns and effects of climate and land use on surface water extent dynamics in a dryland region with three decades of Landsat satellite data. Science of the Total Environment, 2019, 658, 1574-1585.	3.9	42
498	Impact of time on interpretations of forest fragmentation: Three-decades of fragmentation dynamics over Canada. Remote Sensing of Environment, 2019, 222, 65-77.	4.6	43
499	Inland surface waters in protected areas globally: Current coverage and 30-year trends. PLoS ONE, 2019, 14, e0210496.	1.1	38
500	Synthesizing dam-induced land system change. Ambio, 2019, 48, 1183-1194.	2.8	12
501	Geometric accuracy of remote sensing images over oceans: The use of global offshore platforms. Remote Sensing of Environment, 2019, 222, 244-266.	4.6	25
502	Largeâ€Scale Landscape Drivers of CO ₂ , CH ₄ , DOC, and DIC in Boreal River Networks. Global Biogeochemical Cycles, 2019, 33, 125-142.	1.9	35
503	Assessment of the geometry and volumes of small surface water reservoirs by remote sensing in a semi-arid region with high reservoir density. Hydrological Sciences Journal, 2019, 64, 66-79.	1.2	26
504	Flood Hazard Mapping and Assessment on the Angkor World Heritage Site, Cambodia. Remote Sensing, 2019, 11, 98.	1.8	38
505	Application of the water-related spectral reflectance indices: A review. Ecological Indicators, 2019, 98, 68-79.	2.6	62
506	Satellite remote sensing of canopy-forming kelp on a complex coastline: A novel procedure using the Landsat image archive. Remote Sensing of Environment, 2019, 220, 41-50.	4.6	46
507	AirSWOT InSAR Mapping of Surface Water Elevations and Hydraulic Gradients Across the Yukon Flats Basin, Alaska. Water Resources Research, 2019, 55, 937-953.	1.7	29
508	Mapping tropical disturbed forests using multi-decadal 30†moptical satellite imagery. Remote Sensing of Environment, 2019, 221, 474-488.	4.6	52

#	Article	IF	CITATIONS
509	Longâ€term perspectives in aquatic research. Limnology and Oceanography, 2019, 64, S2.	1.6	21
510	Identifying migration routes and non-breeding staging sites of adult males of the globally threatened Aquatic Warbler <i>Acrocephalus paludicola </i>	0.7	9
511	Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes. Remote Sensing of Environment, 2019, 221, 386-404.	4.6	252
512	Mapping glacial lakes partially obscured by mountain shadows for time series and regional mapping applications. International Journal of Remote Sensing, 2019, 40, 615-641.	1.3	10
513	Vertical accuracy evaluation of freely available latest high-resolution (30â€m) global digital elevation models over Cameroon (Central Africa) with GPS/leveling ground control points International Journal of Digital Earth, 2019, 12, 500-524.	1.6	38
514	Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine. Remote Sensing of Environment, 2020, 238, 110987.	4.6	146
516	Big Earth data: disruptive changes in Earth observation data management and analysis?. International Journal of Digital Earth, 2020, 13, 832-850.	1.6	114
517	Assessing global Sentinel-2 coverage dynamics and data availability for operational Earth observation (EO) applications using the EO-Compass. International Journal of Digital Earth, 2020, 13, 768-784.	1.6	38
518	The Generalised Settlement Area: mapping the Earth surface in the vicinity of built-up areas. International Journal of Digital Earth, 2020, 13, 45-60.	1.6	17
519	Tracking the phenology and expansion of Spartina alterniflora coastal wetland by time series MODIS and Landsat images. Multimedia Tools and Applications, 2020, 79, 5175-5195.	2.6	11
520	Towards an automated approach to map flooded areas from Sentinel-2 MSI data and soft integration of water spectral features. International Journal of Applied Earth Observation and Geoinformation, 2020, 84, 101951.	1.4	52
521	Integrating stream gage data and Landsat imagery to complete time-series of surface water extents in Central Valley, California. International Journal of Applied Earth Observation and Geoinformation, 2020, 84, 101973.	1.4	18
522	Desiccation crisis of saline lakes: A new decision-support framework for building resilience to climate change. Science of the Total Environment, 2020, 703, 134718.	3.9	35
523	Google Earth as a data source for investigating river forms and processes: Discriminating river types using formâ€based process indicators. Earth Surface Processes and Landforms, 2020, 45, 331-344.	1.2	13
524	Hidden in plain sight: How finding a lake in the Brazilian Pantanal improves understanding of wetland hydrogeomorphology. Earth Surface Processes and Landforms, 2020, 45, 440-458.	1.2	5
525	Using Full and Partial Unmixing Algorithms to Estimate the Inundation Extent of Small, Isolated Stock Ponds in an Arid Landscape. Wetlands, 2020, 40, 563-575.	0.7	9
526	Increasing Water Levels of Global Lakes Between 2003 and 2009. IEEE Geoscience and Remote Sensing Letters, 2020, 17, 187-191.	1.4	18
527	Delineating wetland areas from the cut-and-fill method using a Digital Elevation Model (DEM). Southern African Geographical Journal, 2020, 102, 97-115.	0.9	7

#	Article	IF	CITATIONS
528	Evaluating historical trends and influences of meteorological and seasonal climate conditions on lake chlorophyll <i>a</i> using remote sensing. Lake and Reservoir Management, 2020, 36, 45-63.	0.4	9
529	Changes in China's lakes: climate and human impacts. National Science Review, 2020, 7, 132-140.	4.6	104
530	Extensive land cover change across Arctic–Boreal Northwestern North America from disturbance and climate forcing. Global Change Biology, 2020, 26, 807-822.	4.2	107
531	Physiology in ecological niche modeling: using zebra mussel's upper thermal tolerance to refine model predictions through Bayesian analysis. Ecography, 2020, 43, 270-282.	2.1	12
532	Improving atmospheric water production yield: Enabling multiple water harvesting cycles with nano sorbent. Nano Energy, 2020, 67, 104255.	8.2	203
533	Legacy of Summer Drought on Autumnal Leaf Litter Processing in a Temporary Mediterranean Stream. Ecosystems, 2020, 23, 989-1003.	1.6	18
534	Construct Channel Network Topology From Remote Sensing Images by Morphology and Graph Analysis. IEEE Geoscience and Remote Sensing Letters, 2020, 17, 1163-1167.	1.4	9
535	The relative effects of prey availability, anthropogenic pressure and environmental variables on lion () Tj ETQq1 1 0 310, 135-144.	0.784314 0.8	rgBT /Overl
536	Repeatable and standardised monitoring of threats to Key Biodiversity Areas in Africa using Google Earth Engine. Ecological Indicators, 2020, 109, 105763.	2.6	16
537	Spaceâ€Based Observations for Understanding Changes in the Arcticâ€Boreal Zone. Reviews of Geophysics, 2020, 58, e2019RG000652.	9.0	39
538	Primitives as building blocks for constructing land cover maps. International Journal of Applied Earth Observation and Geoinformation, 2020, 85, 101979.	1.4	46
539	The significant contribution of lake depth in regulating global lake diffusive methane emissions. Water Research, 2020, 172, 115465.	5.3	47
540	Trophic rewilding revives biotic resistance to shrub invasion. Nature Ecology and Evolution, 2020, 4, 712-724.	3.4	53
541	Examining the glacial lake dynamics in a warming climate and GLOF modelling in parts of Chandra basin, Himachal Pradesh, India. Science of the Total Environment, 2020, 714, 136455.	3.9	26
542	NeStRes – Model for Operation of Non-Strategic Reservoirs for Irrigation in Drylands: Model Description and Application to a Semiarid Basin. Water Resources Management, 2020, 34, 195-210.	1.9	8
543	Discriminating treed and non-treed wetlands in boreal ecosystems using time series Sentinel-1 data. International Journal of Applied Earth Observation and Geoinformation, 2020, 85, 102007.	1.4	15
544	Mapping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data: A case study in the St. Lucia wetlands, South Africa. International Journal of Applied Earth Observation and Geoinformation, 2020, 86, 102009.	1.4	98
545	The forgotten land use class: Mapping of fallow fields across the Sahel using Sentinel-2. Remote Sensing of Environment, 2020, 239, 111598.	4.6	48

#	Article	IF	CITATIONS
546	Flooding Dynamics Within an Amazonian Floodplain: Water Circulation Patterns and Inundation Duration. Water Resources Research, 2020, 56, e2019WR026081.	1.7	19
547	Surface water map of China for 2015 (SWMC-2015) derived from Landsat 8 satellite imagery. Remote Sensing Letters, 2020, 11, 265-273.	0.6	18
548	Monitoring hydropower reliability in Malawi with satellite data and machine learning. Environmental Research Letters, 2020, 15, 014011.	2.2	14
549	The past and future of global river ice. Nature, 2020, 577, 69-73.	13.7	109
550	Mapping soybean planting area in midwest Brazil with remotely sensed images and phenology-based algorithm using the Google Earth Engine platform. Computers and Electronics in Agriculture, 2020, 169, 105194.	3.7	29
551	Seeing Through the Clouds With DeepWaterMap. IEEE Geoscience and Remote Sensing Letters, 2020, 17, 1662-1666.	1.4	35
552	Remotely sensed rivers in the Anthropocene: state of the art and prospects. Earth Surface Processes and Landforms, 2020, 45, 157-188.	1.2	128
553	Surface water maps de-noising and missing-data filling using determinist spatial filters based on several a priori information. Remote Sensing of Environment, 2020, 237, 111481.	4.6	6
554	A Fusion Approach for Water Area Classification Using Visible, Near Infrared and Synthetic Aperture Radar for South Asian Conditions. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 2471-2480.	2.7	32
555	Irrigation cooling effect on land surface temperature across China based on satellite observations. Science of the Total Environment, 2020, 705, 135984.	3.9	56
556	Flood mapping under vegetation using single SAR acquisitions. Remote Sensing of Environment, 2020, 237, 111582.	4.6	79
557	Real-time extraction of water surface boundary using shipborne radar. International Journal of Remote Sensing, 2020, 41, 2739-2758.	1.3	1
558	Drought: Progress in broadening its understanding. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1407.	2.8	79
559	Lake water and glacier mass gains in the northwestern Tibetan Plateau observed from multi-sensor remote sensing data: Implication of an enhanced hydrological cycle. Remote Sensing of Environment, 2020, 237, 111554.	4.6	38
560	Horizon scan of conservation issues for inland waters in Canada. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 869-881.	0.7	10
561	Towards high resolution flood monitoring: An integrated methodology using passive microwave brightness temperatures and Sentinel synthetic aperture radar imagery. Journal of Hydrology, 2020, 582, 124377.	2.3	29
562	Predicting impacts of future climate change and hydropower development towards habitats of native and non-native fishes. Science of the Total Environment, 2020, 707, 135419.	3.9	16
563	Seasonal cycles of lakes on the Tibetan Plateau detected by Sentinel-1 SAR data. Science of the Total Environment, 2020, 703, 135563.	3.9	37

#	Article	IF	CITATIONS
564	Big geospatial data analysis for Canada's Air Pollutant Emissions Inventory (APEI): using google earth engine to estimate particulate matter from exposed mine disturbance areas. GIScience and Remote Sensing, 2020, 57, 245-257.	2.4	20
565	Spatial Agreement among Vegetation Disturbance Maps in Tropical Domains Using Landsat Time Series. Remote Sensing, 2020, 12, 2948.	1.8	9
566	Recent Abnormal Hydrologic Behavior of Tibetan Lakes Observed by Multi-Mission Altimeters. Remote Sensing, 2020, 12, 2986.	1.8	12
567	S3MPC: Improvement on Inland Water Tracking and Water Level Monitoring from the OLTC Onboard Sentinel-3 Altimeters. Remote Sensing, 2020, 12, 3055.	1.8	15
568	Combining Multi-Sensor Satellite Imagery to Improve Long-Term Monitoring of Temporary Surface Water Bodies in the Senegal River Floodplain. Remote Sensing, 2020, 12, 3157.	1.8	15
569	Abandoned cropland: Patterns and determinants within the Guangxi Karst Mountainous Area, China. Applied Geography, 2020, 122, 102245.	1.7	34
570	From Satellite to Supply Chain: New Approaches Connect Earth Observation to Economic Decisions. One Earth, 2020, 3, 5-8.	3.6	49
571	Rapid shoreline flooding enhances water turbidity by sediment resuspension: An example in a large Tibetan lake. Earth Surface Processes and Landforms, 2020, 45, 3780-3790.	1.2	3
572	South Africa's agricultural dust sources and events from MSG SEVIRI. Aeolian Research, 2020, 47, 100637.	1.1	12
573	Can we locate shrimp aquaculture areas from space? – A case study for Thailand. Remote Sensing Applications: Society and Environment, 2020, 20, 100416.	0.8	2
574	ERS-1/2 and Sentinel-1 SAR Data Mining for Flood Hazard and Risk Assessment in Lima, Peru. Applied Sciences (Switzerland), 2020, 10, 6598.	1.3	7
575	High-resolution mapping of floodplain topography from space: A case study in the Amazon. Remote Sensing of Environment, 2020, 251, 112065.	4.6	24
576	A new framework to map fine resolution cropping intensity across the globe: Algorithm, validation, and implication. Remote Sensing of Environment, 2020, 251, 112095.	4.6	46
577	Estimating lake temperature profile and evaporation losses by leveraging MODIS LST data. Remote Sensing of Environment, 2020, 251, 112104.	4.6	32
578	Flood Variability Determines the Location of Lobeâ€Scale Avulsions on Deltas: Madagascar. Geophysical Research Letters, 2020, 47, e2020GL088797.	1.5	10
579	Glacial Lakes Mapping Using Multi Satellite PlanetScope Imagery and Deep Learning. ISPRS International Journal of Geo-Information, 2020, 9, 560.	1.4	44
580	Assessing sustainable development prospects through remote sensing: A review. Remote Sensing Applications: Society and Environment, 2020, 20, 100402.	0.8	32
581	Open-Surface Water Bodies Dynamics Analysis in the Tarim River Basin (North-Western China), Based on Google Earth Engine Cloud Platform. Water (Switzerland), 2020, 12, 2822.	1.2	19

#	Article	IF	CITATIONS
582	Variations in water level, area and volume of Hongze Lake, China from 2003 to 2018. Journal of Great Lakes Research, 2020, 46, 1511-1520.	0.8	12
583	Potential and Limitations of Satellite Altimetry Constellations for Monitoring Surface Water Storage Changes—A Case Study in the Mississippi Basin. Remote Sensing, 2020, 12, 3320.	1.8	14
584	Remote Sensingâ€Based Modeling of the Bathymetry and Water Storage for Channelâ€Type Reservoirs Worldwide. Water Resources Research, 2020, 56, e2020WR027147.	1.7	23
585	Leveraging Google Earth Engine User Interface for Semiautomated Wetland Classification in the Great Lakes Basin at 10 m With Optical and Radar Geospatial Datasets. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 6008-6018.	2.3	12
586	Characterization of SWOT Water Level Errors on Seine Reservoirs and La Bassée Gravel Pits: Impacts on Water Surface Energy Budget Modeling. Remote Sensing, 2020, 12, 2911.	1.8	4
587	On the Use of Satellite Remote Sensing to Detect Floods and Droughts at Large Scales. Surveys in Geophysics, 2020, 41, 1461-1487.	2.1	33
588	Remote Sensing of Environmental Drivers Influencing the Movement Ecology of Sympatric Wild and Domestic Ungulates in Semi-Arid Savannas, a Review. Remote Sensing, 2020, 12, 3218.	1.8	4
589	Drought effects on wet soils in inland wetlands and peatlands. Earth-Science Reviews, 2020, 210, 103387.	4.0	38
590	Mapping Paddy Rice Fields by Combining Multi-Temporal Vegetation Index and Synthetic Aperture Radar Remote Sensing Data Using Google Earth Engine Machine Learning Platform. Remote Sensing, 2020, 12, 2992.	1.8	20
591	Monitoring surface water area variations of reservoirs using daily MODIS images by exploring sub-pixel information. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168, 141-152.	4.9	36
592	Automatic extraction of aquaculture ponds based on Google Earth Engine. Ocean and Coastal Management, 2020, 198, 105348.	2.0	40
593	Towards a comprehensive and consistent global aquatic land cover characterization framework addressing multiple user needs. Remote Sensing of Environment, 2020, 250, 112034.	4.6	17
594	Spatial and temporal patterns of land loss in the Lower Mississippi River Delta from 1983 to 2016. Remote Sensing of Environment, 2020, 250, 112046.	4.6	14
595	Comparison of cloud detection algorithms for Sentinel-2 imagery. Science of Remote Sensing, 2020, 2, 100010.	2.2	29
596	Crop climate suitability mapping on the cloud: a geovisualization application for sustainable agriculture. Scientific Reports, 2020, 10, 15487.	1.6	25
597	Automated surface water detection from space: a Canada-wide, open-source, automated, near-real time solution. Canadian Water Resources Journal, 2020, 45, 304-323.	0.5	3
598	Consistent habitat preference underpins the geographically divergent autumn migration of individual Mongolian common shelducks. Environmental Epigenetics, 2020, 66, 355-362.	0.9	3
599	Global lake responses to climate change. Nature Reviews Earth & Environment, 2020, 1, 388-403.	12.2	513

#	Article	IF	Citations
600	Potential of SAR-Derived Flood Maps for Hydrodynamic Model Calibration in Data Scarce Regions. Journal of Hydrologic Engineering - ASCE, 2020, 25, .	0.8	6
601	Monitoring Human-Induced Surface Water Disturbance Around Taihu Lake Since 1984 by Time Series Landsat Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 3780-3789.	2.3	7
602	Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environmental Research Letters, 2020, 15, 071002.	2.2	232
603	The impact of climate change and human activities on the Aral Sea Basin over the past 50Âyears. Atmospheric Research, 2020, 245, 105125.	1.8	62
604	Observations of water transparency in China's lakes from space. International Journal of Applied Earth Observation and Geoinformation, 2020, 92, 102187.	1.4	41
605	A Synthesizing Land-cover Classification Method Based on Google Earth Engine: A Case Study in Nzhelele and Levhuvu Catchments, South Africa. Chinese Geographical Science, 2020, 30, 397-409.	1.2	27
606	Linking the Remote Sensing of Geodiversity and Traits Relevant to Biodiversity—Part II: Geomorphology, Terrain and Surfaces. Remote Sensing, 2020, 12, 3690.	1.8	20
607	Limited Contribution of Glacier Mass Loss to the Recent Increase in Tibetan Plateau Lake Volume. Frontiers in Earth Science, 2020, 8, .	0.8	23
608	Thirty Years of Land Cover and Fraction Cover Changes over the Sudano-Sahel Using Landsat Time Series. Remote Sensing, 2020, 12, 3817.	1.8	16
609	Trends in streamflow, evapotranspiration, and groundwater storage across the Amazon Basin linked to changing precipitation and land cover. Journal of Hydrology: Regional Studies, 2020, 32, 100755.	1.0	16
610	Artificial lake expansion amplifies mercury pollution from gold mining. Science Advances, 2020, 6, .	4.7	34
611	Assessing development and climate variability impacts on water resources in the Zambezi River basin. Simulating future scenarios of climate and development. Journal of Hydrology: Regional Studies, 2020, 32, 100763.	1.0	7
612	Improved Estimates of Arctic Land Surface Phenology Using Sentinel-2 Time Series. Remote Sensing, 2020, 12, 3738.	1.8	15
613	Coastal morphological changes: Assessing long-term ecological transformations across the northern Bay of Bengal. Environmental Challenges, 2020, 1, 100001.	2.0	10
614	An Approach to High-Resolution Rice Paddy Mapping Using Time-Series Sentinel-1 SAR Data in the Mun River Basin, Thailand. Remote Sensing, 2020, 12, 3959.	1.8	18
615	Reconstruction of Spatiotemporally Continuous MODIS-Band Reflectance in East and South Asia from 2012 to 2015. Remote Sensing, 2020, 12, 3674.	1.8	1
616	Spatial and Temporal Changes in Surface Water Area of Sri Lanka over a 30-Year Period. Remote Sensing, 2020, 12, 3701.	1.8	11
617	Inland Waters. , 2020, , 293-360.		4

#	Article	IF	CITATIONS
618	Wetland Ecosystems. , 2020, , 249-291.		10
619	Comparing Sentinel-1 Surface Water Mapping Algorithms and Radiometric Terrain Correction Processing in Southeast Asia Utilizing Google Earth Engine. Remote Sensing, 2020, 12, 2469.	1.8	61
620	Inferring floodplain bathymetry using inundation frequency. Journal of Environmental Management, 2020, 273, 111138.	3.8	8
621	Can VIIRS continue the legacy of MODIS for near real-time monitoring of tropical forest disturbance?. Remote Sensing of Environment, 2020, 249, 112024.	4.6	16
622	A global map of terrestrial habitat types. Scientific Data, 2020, 7, 256.	2.4	85
623	Estimating soil moisture using Sentinel-1 and Sentinel-2 sensors for dryland and palustrine wetland areas. South African Journal of Science, 2020, 116, .	0.3	11
624	Discharge estimation for medium-sized river using multi-temporal remote sensing data: a case study in Brazil. Hydrological Sciences Journal, 2020, 65, 2402-2418.	1.2	2
625	Lake surface water temperature prediction and changing characteristics analysis - A case study of 11 natural lakes in Yunnan-Guizhou Plateau. Journal of Cleaner Production, 2020, 276, 122689.	4.6	33
627	Duration and frequency of nonâ€flow periods affect the abundance and diversity of stream meiofauna. Freshwater Biology, 2020, 65, 1906-1922.	1.2	10
628	Upward Expansion of Supra-Glacial Debris Cover in the Hunza Valley, Karakoram, During 1990 â ¹ /4 2019. Frontiers in Earth Science, 2020, 8, .	0.8	27
629	Carbon Stocks and Fluxes in Kenyan Forests and Wooded Grasslands Derived from Earth Observation and Model-Data Fusion. Remote Sensing, 2020, 12, 2380.	1.8	9
630	Automatic Extraction of Open Water Using Imagery of Landsat Series. Water (Switzerland), 2020, 12, 1928.	1.2	6
631	Legacy Effects of Hydrologic Alteration in Playa Wetland Responses to Droughts. Wetlands, 2020, 40, 2011-2024.	0.7	6
632	Methane emission from high latitude lakes: methane-centric lake classification and satellite-driven annual cycle of emissions. Scientific Reports, 2020, 10, 12465.	1.6	35
633	Application of Image Segmentation in Surface Water Extraction of Freshwater Lakes using Radar Data. ISPRS International Journal of Geo-Information, 2020, 9, 424.	1.4	24
634	Inspecting the Food–Water Nexus in the Ogallala Aquifer Region Using Satellite Remote Sensing Time Series. Remote Sensing, 2020, 12, 2257.	1.8	5
635	Lake outburst accelerated permafrost degradation on Qinghai-Tibet Plateau. Remote Sensing of Environment, 2020, 249, 112011.	4.6	68
636	Construction of High Spatial-Temporal Water Body Dataset in China Based on Sentinel-1 Archives and GEE. Remote Sensing, 2020, 12, 2413.	1.8	34

#	Article	IF	CITATIONS
637	Sen1Floods11: a georeferenced dataset to train and test deep learning flood algorithms for Sentinel-1. , 2020, , .		69
638	Anthropogenic transformation of Yangtze Plain freshwater lakes: patterns, drivers and impacts. Remote Sensing of Environment, 2020, 248, 111998.	4.6	63
639	Vector dataset for river systems originating in Eurasia to the Arctic Ocean. IOP Conference Series: Earth and Environmental Science, 2020, 502, 012035.	0.2	0
640	Microbial mat and surface sediment communities from a shallow oxbow lake in the Colorado River floodplain, Argentina. Geomicrobiology Journal, 2020, 37, 937-949.	1.0	5
641	Implementation Of Technologies in the Public Service: Geomatics in the Cloud for Monitoring Wetlands in Protected Areas. , 2020, , .		0
642	Identifying areas of wetland and wind turbine overlap in the south-central Great Plains of North America. Landscape Ecology, 2020, 35, 1995-2011.	1.9	1
643	Counting Dense Objects in Remote Sensing Images. , 2020, , .		13
644	Water clarity changes in 64 large alpine lakes on the Tibetan Plateau and the potential responses to lake expansion. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170, 192-204.	4.9	15
645	Zooplankton species distribution, richness and composition across tropical shallow lakes: A large scale assessment by biome, lake origin, and lake habitat. Annales De Limnologie, 2020, 56, 25.	0.6	5
646	Analyzing short term spatial and temporal dynamics of water presence at a basin-scale in Mexico using SAR data. GIScience and Remote Sensing, 2020, 57, 985-1004.	2.4	9
647	A shifting â€~river of sand': The profound response of Australia's Warrego River to Holocene hydroclimatic change. Geomorphology, 2020, 370, 107385.	1.1	11
648	Fine-scale heterogeneity in <i>Schistosoma mansoni</i> force of infection measured through antibody response. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23174-23181.	3.3	14
649	Mapping and navigating ontologies in water governance: the case of the Ganges. Water International, 2020, 45, 847-864.	0.4	5
650	A data-mining approach towards damage modelling for El Ni $ ilde{A}\pm 0$ events in Peru. Geomatics, Natural Hazards and Risk, 2020, 11 , 1966 - 1990 .	2.0	4
651	Cropland data fusion and correction using spatial analysis techniques and the Google Earth Engine. GIScience and Remote Sensing, 2020, 57, 1026-1045.	2.4	11
652	A Two-Step Method to Calibrate CYGNSS-Derived Land Surface Reflectivity for Accurate Soil Moisture Estimations. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	7
653	Flash Flood Detection From CYGNSS Data Using the RUSBoost Algorithm. IEEE Access, 2020, 8, 171864-171881.	2.6	13
654	Application of Semantic Segmentation with Few Labels in the Detection of Water Bodies from Perusat-1 Satellite's Images. , 2020, , .		6

#	Article	IF	CITATIONS
655	Multi-Source Remote Sensing Data Product Analysis: Investigating Anthropogenic and Naturogenic Impacts on Mangroves in Southeast Asia. Remote Sensing, 2020, 12, 2720.	1.8	23
656	Analysis of changes in rivers planforms using google earth engine. International Journal of Remote Sensing, 2020, 41, 8654-8681.	1.3	17
657	Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 5326-5350.	2.3	428
658	Methods of Rapid Quality Assessment for National-Scale Land Surface Change Monitoring. Remote Sensing, 2020, 12, 2524.	1.8	2
659	Long-Term Discharge Estimation for the Lower Mississippi River Using Satellite Altimetry and Remote Sensing Images. Remote Sensing, 2020, 12, 2693.	1.8	7
660	Introduction of Mycobacterium ulcerans disease in the Bankim Health District of Cameroon follows damming of the Mapé River. PLoS Neglected Tropical Diseases, 2020, 14, e0008501.	1.3	5
661	High-Resolution Surface Water Classifications of the Xingu River, Brazil, Pre and Post Operationalization of the Belo Monte Hydropower Complex. Data, 2020, 5, 75.	1.2	10
662	Open-Surface River Extraction Based on Sentinel-2 MSI Imagery and DEM Data: Case Study of the Upper Yellow River. Remote Sensing, 2020, 12, 2737.	1.8	21
663	On the Performance of Sentinelâ€3 Altimetry Over New Reservoirs: Approaches to Determine Onboard A Priori Elevation. Geophysical Research Letters, 2020, 47, e2020GL088770.	1.5	19
664	Fishpond Mapping by Spectral and Spatial-Based Filtering on Google Earth Engine: A Case Study in Singra Upazila of Bangladesh. Remote Sensing, 2020, 12, 2692.	1.8	17
665	High Spatiotemporal Resolution Mapping of Surface Water in the Southwest Poyang Lake and Its Responses to Climate Oscillations. Sensors, 2020, 20, 4872.	2.1	5
666	Global River Monitoring Using Semantic Fusion Networks. Water (Switzerland), 2020, 12, 2258.	1.2	4
667	Mosaicking Landsat and Sentinel-2 Data to Enhance LandTrendr Time Series Analysis in Northern High Latitude Permafrost Regions. Remote Sensing, 2020, 12, 2471.	1.8	12
668	Fully Convolutional Neural Network for Rapid Flood Segmentation in Synthetic Aperture Radar Imagery. Remote Sensing, 2020, 12, 2532.	1.8	80
669	Rapidly Accelerating Deforestation in Cambodia's Mekong River Basin: A Comparative Analysis of Spatial Patterns and Drivers. Water (Switzerland), 2020, 12, 2191.	1.2	28
670	Seventy-year long record of monthly water balance estimates for Earth's largest lake system. Scientific Data, 2020, 7, 276.	2.4	14
671	Leveraging big data for public health: Mapping malaria vector suitability in Malawi with Google Earth Engine. PLoS ONE, 2020, 15, e0235697.	1.1	11
672	North American birds require mitigation and adaptation to reduce vulnerability to climate change. Conservation Science and Practice, 2020, 2, e242.	0.9	35

#	Article	IF	CITATIONS
673	Improving Reservoir Outflow Estimation for Ungauged Basins Using Satellite Observations and a Hydrological Model. Water Resources Research, 2020, 56, e2020WR027590.	1.7	34
674	Rapid worldwide growth of glacial lakes since 1990. Nature Climate Change, 2020, 10, 939-945.	8.1	235
675	Implementation of BFASTmonitor Algorithm on Google Earth Engine to Support Large-Area and Sub-Annual Change Monitoring Using Earth Observation Data. Remote Sensing, 2020, 12, 2953.	1.8	33
676	Exploring Wetland Dynamics in Large River Floodplain Systems with Unsupervised Machine Learning: A Case Study of the Dongting Lake, China. Remote Sensing, 2020, 12, 2995.	1.8	12
677	Spatial Variability and Detection Levels for Chlorophyll-a Estimates in High Latitude Lakes Using Landsat Imagery. Remote Sensing, 2020, 12, 2898.	1.8	4
678	Review of Geospatial Technology for Infectious Disease Surveillance: Use Case on COVID-19. Journal of the Indian Society of Remote Sensing, 2020, 48, 1121-1138.	1.2	37
679	Overview of past, current, and future ecosystem and biodiversity trends of inland saline lakes of Europe and Central Asia. Inland Waters, 2020, 10, 438-452.	1.1	54
680	A Machine Learning Method for Inland Water Detection Using CYGNSS Data. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	22
681	Comparing the diversity and composition of waterbird functional traits between natural, restored, and artificial wetlands. Freshwater Biology, 2020, 65, 2196-2210.	1.2	19
682	A Method to Derive Bathymetry for Dynamic Water Bodies Using ICESat-2 and GSWD Data Sets. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	17
683	Monumental landscapes of the Holocene humid period in Northern Arabia: The mustatil phenomenon. Holocene, 2020, 30, 1767-1779.	0.9	20
684	Benchmark maps of 33 years of secondary forest age for Brazil. Scientific Data, 2020, 7, 269.	2.4	46
685	Construction of the Long-Term Global Surface Water Extent Dataset Based on Water-NDVI Spatio-Temporal Parameter Set. Remote Sensing, 2020, 12, 2675.	1.8	34
686	Earth Observation for Settlement Mapping of Amazonian Indigenous Populations to Support SDG7. Resources, 2020, 9, 97.	1.6	3
687	First Large Extent and High Resolution Cropland and Crop Type Map of Argentina. , 2020, , .		5
688	Google Earth Engine Implementation of the Floodwater Depth Estimation Tool (FwDET-GEE) for Rapid and Large Scale Flood Analysis. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	13
689	A Simple Spatio–Temporal Data Fusion Method Based on Linear Regression Coefficient Compensation. Remote Sensing, 2020, 12, 3900.	1.8	9
690	Open Data and Machine Learning to Model the Occurrence of Fire in the Ecoregion of "Llanos Colombo–Venezolanos― Remote Sensing, 2020, 12, 3921.	1.8	12

#	Article	IF	CITATIONS
691	Assessment of Spatio-Temporal Landscape Changes from VHR Images in Three Different Permafrost Areas in the Western Russian Arctic. Remote Sensing, 2020, 12, 3999.	1.8	11
692	An Ontology-Based Framework for Integrating Remote Sensing Imagery, Image Products, and In Situ Observations. Journal of Sensors, 2020, 2020, 1-12.	0.6	3
693	A Water Body Extraction Methods Comparison Based on FengYun Satellite Data: A Case Study of Poyang Lake Region, China. Remote Sensing, 2020, 12, 3875.	1.8	12
694	Verification and analysis of surface water in China based on Landsat8 OLI images. IOP Conference Series: Earth and Environmental Science, 2020, 502, 012030.	0.2	1
695	Assessing site-safeguard effectiveness and habitat preferences of Bar-headed Geese (Anser indicus) at their stopover sites within theÂQinghai-Tibet Plateau using GPS/GSM telemetry. Avian Research, 2020, 11,	0.5	5
696	Trajectory of coastal wetland vegetation in Xiangshan Bay, China, from image time series. Marine Pollution Bulletin, 2020, 160, 111697.	2.3	16
697	Monitoring and Landscape Dynamic Analysis of Alpine Wetland Area Based on Multiple Algorithms: A Case Study of Zoige Plateau. Sensors, 2020, 20, 7315.	2.1	20
698	Monitoring Annual Changes of Lake Water Levels and Volumes over 1984–2018 Using Landsat Imagery and ICESat-2 Data. Remote Sensing, 2020, 12, 4004.	1.8	22
699	On the Contribution of Satellite Altimetry-Derived Water Surface Elevation to Hydrodynamic Model Calibration in the Han River. Remote Sensing, 2020, 12, 4087.	1.8	6
700	A Remote Sensing Method to Monitor Water, Aquatic Vegetation, and Invasive Water Hyacinth at National Extents. Remote Sensing, 2020, 12, 4021.	1.8	26
701	Multitemporal optical and radar metrics for wetland mapping at national level in Albania. Heliyon, 2020, 6, e04496.	1.4	13
702	Evaluating the performance of high-resolution satellite imagery in detecting ephemeral water bodies over West Africa. International Journal of Applied Earth Observation and Geoinformation, 2020, 93, 102218.	1.4	15
703	The Global Lake Area, Climate, and Population Dataset: A New Tool for Addressing Critical Limnological Questions. Limnology and Oceanography Bulletin, 2020, 29, 110-116.	0.2	1
704	Identification of Phytoplankton That Causes Harmful Algae Blooms (Habs) in The Hurun Bay Water. Journal of Physics: Conference Series, 2020, 1467, 012062.	0.3	0
705	Monitoring the Spatial and Temporal Variations in The Water Surface and Floating Algal Bloom Areas in Dongting Lake Using a Long-Term MODIS Image Time Series. Remote Sensing, 2020, 12, 3622.	1.8	11
706	Does Ecological Water Replenishment Help Prevent a Large Wetland from Further Deterioration? Results from the Zhalong Nature Reserve, China. Remote Sensing, 2020, 12, 3449.	1.8	11
707	Assessing Po River Deltaic Vulnerability Using Earth Observation and a Bayesian Belief Network Model. Water (Switzerland), 2020, 12, 2830.	1.2	8
708	Description of the UCAR/CU Soil Moisture Product. Remote Sensing, 2020, 12, 1558.	1.8	98

#	Article	IF	Citations
709	Validation of Sentinel-3A Based Lake Level over US and Canada. Remote Sensing, 2020, 12, 2835.	1.8	16
710	SatlmNet: Structured and Harmonised Training Data for Enhanced Satellite Imagery Classification. Remote Sensing, 2020, 12, 3358.	1.8	5
711	Evaluations of Machine Learning-Based CYGNSS Soil Moisture Estimates against SMAP Observations. Remote Sensing, 2020, 12, 3503.	1.8	41
712	Dynamic Monitoring of Surface Water Area during 1989–2019 in the Hetao Plain Using Landsat Data in Google Earth Engine. Water (Switzerland), 2020, 12, 3010.	1.2	32
713	Transfer Learning With CNNs for Segmentation of PALSAR-2 Power Decomposition Components. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 6352-6361.	2.3	4
714	Behavioral modifications by a large-northern herbivore to mitigate warming conditions. Movement Ecology, 2020, 8, 39.	1.3	8
715	Retrieving the National Main Commodity Maps in Indonesia Based on High-Resolution Remotely Sensed Data Using Cloud Computing Platform. Land, 2020, 9, 377.	1.2	12
716	Modeling River Discharge Using Automated River Width Measurements Derived from Sentinel-1 Time Series. Remote Sensing, 2020, 12, 3236.	1.8	15
717	Evolution of Flood Regulation Capacity for a Large Shallow Retention Lake: Characterization, Mechanism, and Impacts. Water (Switzerland), 2020, 12, 2853.	1.2	3
718	Distributions, Relationship and Assessment of Major lons and Potentially Toxic Elements in Waters of Bosten Lake, the Former Largest Inland and Freshwater Lake of China. Water (Switzerland), 2020, 12, 2859.	1.2	2
719	Large-scale afforestation significantly increases permanent surface water in China's vegetation restoration regions. Agricultural and Forest Meteorology, 2020, 290, 108001.	1.9	38
720	Significant methane ebullition from alpine permafrost rivers on the East Qinghai–Tibet Plateau. Nature Geoscience, 2020, 13, 349-354.	5.4	85
721	A high-resolution bathymetry dataset for global reservoirs using multi-source satellite imagery and altimetry. Remote Sensing of Environment, 2020, 244, 111831.	4.6	56
722	Surface Depression and Wetland Water Storage Improves Major River Basin Hydrologic Predictions. Water Resources Research, 2020, 56, e2019WR026561.	1.7	45
723	Large weir construction causes the loss of seasonal habitat in riverine wetlands: a case study of the Four Large River Projects in South Korea. Ecological Engineering, 2020, 152, 105839.	1.6	10
724	Worldwide lake level trends and responses to background climate variation. Hydrology and Earth System Sciences, 2020, 24, 2593-2608.	1.9	23
725	Dynamics and drivers of land use and land cover changes in Bangladesh. Regional Environmental Change, 2020, 20, 1.	1.4	40
726	Predictive Analytics for Identifying Land Cover Change Hotspots in the Mekong Region. Remote Sensing, 2020, 12, 1472.	1.8	11

#	Article	lF	Citations
727	Channel Network Control on Seasonal Lake Area Dynamics in Arctic Deltas. Geophysical Research Letters, 2020, 47, e2019GL086710.	1.5	5
728	Mapping sea level rise impacts to identify climate change adaptation opportunities in the Chesapeake and Delaware Bays, USA. Wetlands Ecology and Management, 2020, 28, 527-541.	0.7	13
729	A novel water body extraction neural network (WBE-NN) for optical high-resolution multispectral imagery. Journal of Hydrology, 2020, 588, 125092.	2.3	39
7 30	Repeated Hurricanes Reveal Risks and Opportunities for Social-Ecological Resilience to Flooding and Water Quality Problems. Environmental Science & En	4.6	17
731	Impact of climate variability on the surface of Lake Tuz (Turkey), 1985–2016. Regional Environmental Change, 2020, 20, 1.	1.4	9
732	Informing hydrological models of poorly gauged river catchments – A parameter regionalization and calibration approach. Journal of Hydrology, 2020, 587, 124999.	2.3	15
733	Remote Sensing of River Discharge: A Review and a Framing for the Discipline. Remote Sensing, 2020, 12, 1107.	1.8	79
734	Improved Inference and Prediction for Imbalanced Binary Big Data Using Case-Control Sampling: A Case Study on Deforestation in the Amazon Region. Remote Sensing, 2020, 12, 1268.	1.8	1
735	Detecting Change in Forest Structure with Simulated GEDI Lidar Waveforms: A Case Study of the Hemlock Woolly Adelgid (HWA; Adelges tsugae) Infestation. Remote Sensing, 2020, 12, 1304.	1.8	25
736	A Pathway to the Automated Global Assessment of Water Level in Reservoirs with Synthetic Aperture Radar (SAR). Remote Sensing, 2020, 12, 1353.	1.8	7
737	Drought Sensitivity and Trends of Riparian Vegetation Vigor in Nevada, USA (1985–2018). Remote Sensing, 2020, 12, 1362.	1.8	23
738	Analysis of scattering characteristics from inland bodies of water observed by CYGNSS. Remote Sensing of Environment, 2020, 245, 111825.	4.6	51
739	Extraction of connected river networks from multi-temporal remote sensing imagery using a path tracking technique. Remote Sensing of Environment, 2020, 246, 111868.	4.6	16
740	Estimating inundation extent using CYGNSS data: A conceptual modeling study. Remote Sensing of Environment, 2020, 246, 111869.	4.6	52
741	Coupling high-resolution field monitoring and MODIS for reconstructing wetland historical hydroperiod at a high temporal frequency. Remote Sensing of Environment, 2020, 247, 111807.	4.6	17
742	Trace-Fe-Enhanced Capacitive Deionization of Saline Water by Boosting Electron Transfer of Electro-Adsorption Sites. Environmental Science & Electro-Adsorption Sites.	4.6	108
743	Combined use of Sentinel-2 and Landsat 8 to monitor water surface area dynamics using Google Earth Engine. Remote Sensing Letters, 2020, 11, 687-696.	0.6	38
744	35 Years of Vegetation and Lake Dynamics in the Pechora Catchment, Russian European Arctic. Remote Sensing, 2020, 12, 1863.	1.8	6

#	Article	IF	CITATIONS
745	Global beach database., 2020,, 641-658.		1
746	Evaluation of a new 18-year MODIS-derived surface water fraction dataset for constructing Mediterranean wetland open surface water dynamics. Journal of Hydrology, 2020, 587, 124956.	2.3	6
747	Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166, 95-117.	4.9	113
748	Tradeâ€Offs Between 1â€D and 2â€D Regional River Hydrodynamic Models. Water Resources Research, 2020, 56, e2019WR026812.	1.7	27
749	Influence of surface water on coarse resolution C-band backscatter: Implications for freeze/thaw retrieval from scatterometer data. Remote Sensing of Environment, 2020, 247, 111911.	4.6	7
7 50	A better Amazon road network for people and the environment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7095-7102.	3.3	64
751	Remote sensing and statistical analysis of the effects of hurricane MarÃa on the forests of Puerto Rico. Remote Sensing of Environment, 2020, 247, 111940.	4.6	36
752	China's inland water dynamics: The significance of water body types. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13876-13878.	3.3	42
753	A Novel Stereo Matching Algorithm for Digital Surface Model (DSM) Generation in Water Areas. Remote Sensing, 2020, 12, 870.	1.8	12
754	Analyzing Water Dynamics Based on Sentinel-1 Time Series—a Study for Dongting Lake Wetlands in China. Remote Sensing, 2020, 12, 1761.	1.8	19
755	Mediterranean wetland conservation in the context of climate and land cover change. Regional Environmental Change, 2020, 20, 1 .	1.4	21
756	Global Heat Uptake by Inland Waters. Geophysical Research Letters, 2020, 47, e2020GL087867.	1.5	31
757	Land surface black-sky albedo at a fixed solar zenith angle and its relation to forest structure during peak growing season based on remote sensing data. Data in Brief, 2020, 31, 105720.	0.5	4
758	Predicting wetland area and water depth of Ganges moribund deltaic parts of India. Remote Sensing Applications: Society and Environment, 2020, 19, 100338.	0.8	6
759	Freshwater use of the energy sector in Africa. Applied Energy, 2020, 270, 115171.	5.1	19
760	Lake Topography and Active Storage From Satellite Observations of Flood Frequency. Water Resources Research, 2020, 56, e2019WR026362.	1.7	16
761	Wetland Surface Water Detection from Multipath SAR Images Using Gaussian Process-Based Temporal Interpolation. Remote Sensing, 2020, 12, 1756.	1.8	8
762	Refining Urban Built-Up Area via Multi-Source Data Fusion for the Analysis of Dongting Lake Eco-Economic Zone Spatiotemporal Expansion. Remote Sensing, 2020, 12, 1797.	1.8	15

#	Article	IF	CITATIONS
763	The global lake area, climate, and population dataset. Scientific Data, 2020, 7, 174.	2.4	33
764	Development of SEEA water accounts with a hydrological model. Science of the Total Environment, 2020, 737, 140168.	3.9	13
765	Monitoring long-term shoreline dynamics and human activities in the Hangzhou Bay, China, combining daytime and nighttime EO data. Big Earth Data, 2020, 4, 242-264.	2.0	16
766	Remote Sensing Applications in Monitoring of Protected Areas. Remote Sensing, 2020, 12, 1370.	1.8	11
767	Potential of Large-Scale Inland Water Body Mapping from Sentinel-1/2 Data on the Example of Bavaria's Lakes and Rivers. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2020, 88, 271-289.	0.7	18
768	Surface water detection in the Caucasus. International Journal of Applied Earth Observation and Geoinformation, 2020, 91, 102159.	1.4	24
769	The Case for an Open Water Balance: Reâ€envisioning Network Design and Data Analysis for a Complex, Uncertain World. Water Resources Research, 2020, 56, e2019WR026699.	1.7	36
770	Satellite-derived river width and its spatiotemporal patterns in China during 1990–2015. Remote Sensing of Environment, 2020, 247, 111918.	4.6	25
771	Isolating Anthropogenic Wetland Loss by Concurrently Tracking Inundation and Land Cover Disturbance across the Mid-Atlantic Region, U.S Remote Sensing, 2020, 12, 1464.	1.8	12
772	Evaluating Simulated RADARSAT Constellation Mission (RCM) Compact Polarimetry for Open-Water and Flooded-Vegetation Wetland Mapping. Remote Sensing, 2020, 12, 1476.	1.8	17
773	Estimating Daily Inundation Probability Using Remote Sensing, Riverine Flood, and Storm Surge Models: A Case of Hurricane Harvey. Remote Sensing, 2020, 12, 1495.	1.8	7
774	Timing of Landsat Overpasses Effectively Captures Flow Conditions of Large Rivers. Remote Sensing, 2020, 12, 1510.	1.8	23
775	An Improved Cloud Detection Method for GF-4 Imagery. Remote Sensing, 2020, 12, 1525.	1.8	8
776	Monitoring Water-Related Ecosystems with Earth Observation Data in Support of Sustainable Development Goal (SDG) 6 Reporting. Remote Sensing, 2020, 12, 1634.	1.8	38
777	Land Use Simulation of Guangzhou Based on Nighttime Light Data and Planning Policies. Remote Sensing, 2020, 12, 1675.	1.8	7
778	Using GRanD Database and Surface Water Data to Constrain Area–Storage Curve of Reservoirs. Water (Switzerland), 2020, 12, 1242.	1.2	5
779	Surface Water Evolution (2001–2017) at the Cambodia/Vietnam Border in the Upper Mekong Delta Using Satellite MODIS Observations. Remote Sensing, 2020, 12, 800.	1.8	15
780	Open water detection in urban environments using high spatial resolution remote sensing imagery. Remote Sensing of Environment, 2020, 242, 111706.	4.6	55

#	ARTICLE	IF	CITATIONS
781	Hydro-climate and biogeochemical processes control watershed organic carbon inflows: Development of an in-stream organic carbon module coupled with a process-based hydrologic model. Science of the Total Environment, 2020, 718, 137281.	3.9	23
782	Temporal Analysis of Ramsar Sites via Remote Sensing Techniques – A Case Study of Meke Maar. IOP Conference Series: Materials Science and Engineering, 2020, 737, 012248.	0.3	2
783	Identification of waterlogging in Eastern China induced by mining subsidence: A case study of Google Earth Engine time-series analysis applied to the Huainan coal field. Remote Sensing of Environment, 2020, 242, 111742.	4.6	66
784	Large-scale surface water change observed by Sentinel-2 during the 2018 drought in Germany. International Journal of Remote Sensing, 2020, 41, 4742-4756.	1.3	34
785	Mapping the Land Cover of Africa at 10 m Resolution from Multi-Source Remote Sensing Data with Google Earth Engine. Remote Sensing, 2020, 12, 602.	1.8	67
786	Resilience of River Deltas in the Anthropocene. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005201.	1.0	48
787	A review of freely accessible global datasets for the study of floods, droughts and their interactions with human societies. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1424.	2.8	34
788	Automatic watershed delineation in the Tibetan endorheic basin: A lake-oriented approach based on digital elevation models. Geomorphology, 2020, 358, 107127.	1.1	22
789	Remote sensing estimation of catchment-scale reservoir water impoundment in the upper Yellow River and implications for river discharge alteration. Journal of Hydrology, 2020, 585, 124791.	2.3	23
790	Combining multisource satellite data to estimate storage variation of a lake in the Rift Valley Basin, Ethiopia. International Journal of Applied Earth Observation and Geoinformation, 2020, 89, 102095.	1.4	12
791	Copernicus Global Land Cover Layersâ€"Collection 2. Remote Sensing, 2020, 12, 1044.	1.8	382
792	Responses of Seasonal Indicators to Extreme Droughts in Southwest China. Remote Sensing, 2020, 12, 818.	1.8	22
793	Sediment modeling of a large-scale basin supported by remote sensing and in-situ observations. Catena, 2020, 190, 104535.	2.2	8
794	In Waterâ€Limited Landscapes, an Anthropocene Exchange: Trading Lakes for Irrigated Agriculture. Earth's Future, 2020, 8, e2019EF001274.	2.4	30
795	Spatiotemporal Distribution of Human–Elephant Conflict in Eastern Thailand: A Model-Based Assessment Using News Reports and Remotely Sensed Data. Remote Sensing, 2020, 12, 90.	1.8	18
796	An Aircraft Wetland Inundation Experiment Using GNSS Reflectometry. Remote Sensing, 2020, 12, 512.	1.8	2
797	Automatic Flood Duration Estimation Based on Multi-Sensor Satellite Data. Remote Sensing, 2020, 12, 643.	1.8	29
798	Numerical Approaches for Estimating Daily River Leakage from Arid Ephemeral Streams. Water (Switzerland), 2020, 12, 499.	1.2	5

#	Article	IF	CITATIONS
799	Predicting hot spots of aquatic plant biomass in a large floodplain river catchment in the Australian wet-dry tropics. Ecological Indicators, 2020, 117, 106616.	2.6	22
800	Mapping thermokarst lakes and ponds across permafrost landscapes in the Headwater Area of Yellow River on northeastern Qinghai-Tibet Plateau. International Journal of Remote Sensing, 2020, 41, 7042-7067.	1.3	23
801	Estimation of water volume in ungauged, dynamic floodplain lakes. Environmental Research Letters, 2020, 15, 054021.	2.2	18
802	Mapping and assessing the impact of smallâ€scale ephemeral water sources on wildlife in an African seasonal savannah. Ecological Applications, 2020, 30, e02203.	1.8	20
803	Expanding wetland hydroperiod data via satellite imagery for ecological applications. Frontiers in Ecology and the Environment, 2020, 18, 432-438.	1.9	16
804	Distribution of small seasonal reservoirs in semi-arid regions and associated evaporative losses. Environmental Research Communications, 2020, 2, 061002.	0.9	21
805	Comparison of Multi-Temporal PlanetScope Data with Landsat 8 and Sentinel-2 Data for Estimating Airborne LiDAR Derived Canopy Height in Temperate Forests. Remote Sensing, 2020, 12, 1876.	1.8	10
806	Using altimetry observations combined with GRACE to select parameter sets of a hydrological model in a data-scarce region. Hydrology and Earth System Sciences, 2020, 24, 3331-3359.	1.9	16
807	Brief communication: Comparing hydrological and hydrogeomorphic paradigms for global flood hazard mapping. Natural Hazards and Earth System Sciences, 2020, 20, 1415-1419.	1.5	24
808	Brief communication: Hurricane Dorian: automated near-real-time mapping of the "unprecedented― flooding in the Bahamas using synthetic aperture radar. Natural Hazards and Earth System Sciences, 2020, 20, 1463-1468.	1.5	5
809	Identifying floods and flood-affected paddy rice fields in Bangladesh based on Sentinel-1 imagery and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166, 278-293.	4.9	89
810	Integration of hyperspectral and LiDAR data for mapping small water bodies. International Journal of Applied Earth Observation and Geoinformation, 2020, 92, 102181.	1.4	15
811	Cirrus clouds that adversely affect Landsat 8 images: What are they and how to detect them?. Remote Sensing of Environment, 2020, 246, 111884.	4.6	25
812	Surface water detection and delineation using remote sensing images: a review of methods and algorithms. Sustainable Water Resources Management, 2020, 6 , 1 .	1.0	53
813	How will radar layover impact SWOT measurements of water surface elevation and slope, and estimates of river discharge?. Remote Sensing of Environment, 2020, 247, 111883.	4.6	11
814	Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Science Reviews, 2020, 208, 103269.	4.0	259
815	Approximate calculation of flash flood maximum inundation extent in small catchment with large elevation difference. Journal of Hydrology, 2020, 590, 125195.	2.3	4
816	Gainers and losers of surface and terrestrial water resources in China during 1989–2016. Nature Communications, 2020, 11, 3471.	5.8	81

#	Article	IF	CITATIONS
817	Conservation of Temporary Wetlands. , 2020, , 279-294.		9
818	Evolution of wetlands in Mediterranean region. , 2020, , 297-320.		12
819	Using landscape connectivity to predict human-wildlife conflict. Biological Conservation, 2020, 248, 108677.	1.9	35
820	Desert Conservation and Management: Biodiversity Loss. , 2020, , 193-200.		0
821	Impact of Hurricane Maria on Beach Erosion in Puerto Rico: Remote Sensing and Causal Inference. Geophysical Research Letters, 2020, 47, e2020GL087306.	1.5	9
822	Assessing vertical diffusion in a stratified lake using a threeâ€dimensional hydrodynamic model. Hydrological Processes, 2020, 34, 1131-1143.	1.1	11
823	Disappearing beaches. Nature Climate Change, 2020, 10, 188-190.	8.1	6
824	Sandy coastlines under threat of erosion. Nature Climate Change, 2020, 10, 260-263.	8.1	411
825	Multi-decadal patterns of vegetation succession after tundra fire on the Yukon-Kuskokwim Delta, Alaska. Environmental Research Letters, 2020, 15, 025003.	2.2	30
826	Long-term surface water trends and relationship with open water evaporation losses in the Namoi catchment, Australia. Journal of Hydrology, 2020, 584, 124714.	2.3	21
827	An Urban Water Extraction Method Combining Deep Learning and Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 769-782.	2.3	89
828	Next-generation geospatial-temporal information technologies for disaster management. IBM Journal of Research and Development, 2020, 64, 5:1-5:12.	3.2	10
829	Time Series Remote Sensing Data-Based Identification of the Dominant Factor for Inland Lake Surface Area Change: Anthropogenic Activities or Natural Events?. Remote Sensing, 2020, 12, 612.	1.8	13
830	Hydropower's hidden transformation of rivers in the Mekong. Environmental Research Letters, 2020, 15, 044017.	2.2	18
831	A fog-collecting surface mimicking the Namib beetle: its water collection efficiency and influencing factors. Nanoscale, 2020, 12, 6921-6936.	2.8	46
832	Spatiotemporal Variability of Modeled Watershed Scale Surfaceâ€Depression Storage and Runoff for the Conterminous United States. Journal of the American Water Resources Association, 2020, 56, 16-29.	1.0	2
833	Accounting for flow intermittency in environmental flows design. Journal of Applied Ecology, 2020, 57, 742-753.	1.9	29
834	Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery. Remote Sensing of Environment, 2020, 240, 111685.	4.6	226

#	Article	IF	CITATIONS
835	Human Activities and Climate Variability Affecting Inland Water Surface Area in a High Latitude River Basin. Water (Switzerland), 2020, 12, 382.	1.2	15
836	Determining flow directions in river channel networks using planform morphology and topology. Earth Surface Dynamics, 2020, 8, 87-102.	1.0	13
837	Small Arctic rivers mapped from Sentinel-2 satellite imagery and ArcticDEM. Journal of Hydrology, 2020, 584, 124689.	2.3	16
838	Cloud-computing and machine learning in support of country-level land cover and ecosystem extent mapping in Liberia and Gabon. PLoS ONE, 2020, 15, e0227438.	1.1	32
839	Human activities have changed the shapes of river deltas. Nature, 2020, 577, 473-474.	13.7	9
840	Global Evaluation of the Suitability of MODIS-Terra Detected Cloud Cover as a Proxy for Landsat 7 Cloud Conditions. Remote Sensing, 2020, 12, 202.	1.8	5
841	An Assessment of Surface Water Detection Methods for Water Resource Management in the Nigerien Sahel. Sensors, 2020, 20, 431.	2.1	41
842	Global satellite-based river gauging and the influence of river morphology on its application. Remote Sensing of Environment, 2020, 239, 111629.	4.6	21
843	Reconciling the water balance of large lake systems. Advances in Water Resources, 2020, 137, 103505.	1.7	14
844	Land use and cover maps for Mato Grosso State in Brazil from 2001 to 2017. Scientific Data, 2020, 7, 34.	2.4	32
845	Monitoring River Basin Development and Variation in Water Resources in Transboundary Imjin River in North and South Korea Using Remote Sensing. Remote Sensing, 2020, 12, 195.	1.8	11
846	Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping. Remote Sensing, 2020, 12, 426.	1.8	130
847	Lichen cover mapping for caribou ranges in interior Alaska and Yukon. Environmental Research Letters, 2020, 15, 055001.	2.2	26
848	Global-scale human impact on delta morphology has led to net land area gain. Nature, 2020, 577, 514-518.	13.7	241
849	Satelliteâ€Derived Global Surface Water Extent and Dynamics Over the Last 25ÂYears (GIEMSâ€2). Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030711.	1.2	57
850	Spatiotemporal dynamics of wild herbivore species richness and occupancy across a savannah rangeland: Implications for conservation. Biological Conservation, 2020, 242, 108436.	1.9	20
851	A Novel Water Change Tracking Algorithm for Dynamic Mapping of Inland Water Using Time-Series Remote Sensing Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 1661-1674.	2.3	5
852	Subpixel Mapping of Surface Water in the Tibetan Plateau with MODIS Data. Remote Sensing, 2020, 12, 1154.	1.8	13

#	Article	IF	CITATIONS
853	Use of Automated Change Detection and VGI Sources for Identifying and Validating Urban Land Use Change. Remote Sensing, 2020, 12, 1186.	1.8	13
854	Mapping and Assessing the Dynamics of Shifting Agricultural Landscapes Using Google Earth Engine Cloud Computing, a Case Study in Mozambique. Remote Sensing, 2020, 12, 1279.	1.8	23
855	Comparison of Cloud Cover Detection Algorithms on Sentinel–2 Images of the Amazon Tropical Forest. Remote Sensing, 2020, 12, 1284.	1.8	42
856	Global CO2 emissions from dry inland waters share common drivers across ecosystems. Nature Communications, 2020, 11, 2126.	5.8	73
857	Identifying threshold responses of Australian dryland rivers to future hydroclimatic change. Scientific Reports, 2020, 10, 6653.	1.6	26
858	A hybrid approach for predictive soil property mapping using conventional soil survey data. Soil Science Society of America Journal, 2020, 84, 1170-1194.	1.2	11
859	Monthly estimation of the surface water extent in France at a 10-m resolution using Sentinel-2 data. Remote Sensing of Environment, 2020, 244, 111803.	4.6	94
860	A novel cross-sensor calibration method to generate a consistent night-time lights time series dataset. International Journal of Remote Sensing, 2020, 41, 5482-5502.	1.3	12
861	Implementation of a Surface Water Extent Model in Cambodia using Cloud-Based Remote Sensing. Remote Sensing, 2020, 12, 984.	1.8	17
862	National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 164, 11-25.	4.9	197
863	Reply to Zhang et al.: Using long-term all-available Landsat data to study water bodies over large areas represents a paradigm shift. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6310-6311.	3.3	1
864	Population status, connectivity, and conservation action for the endangered Baird's tapir. Biological Conservation, 2020, 245, 108501.	1.9	5
865	Cloud services with big data provide a solution for monitoring and tracking sustainable development goals. Geography and Sustainability, 2020, 1, 25-32.	1.9	33
866	Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163, 312-326.	4.9	138
867	Bits and pieces: Forest fragmentation by linear intrusions in India. Land Use Policy, 2020, 99, 104619.	2.5	35
868	Hyperlocal mapping of urban air temperature using remote sensing and crowdsourced weather data. Remote Sensing of Environment, 2020, 242, 111791.	4.6	112
869	Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sensing of Environment, 2020, 243, 111792.	4.6	221
870	Dramatic decrease of flood frequency in the Mekong Delta due to river-bed mining and dyke construction. Science of the Total Environment, 2020, 723, 138066.	3.9	73

#	ARTICLE	IF	CITATIONS
871	Ions Tune Interfacial Water Structure and Modulate Hydrophobic Interactions at Silica Surfaces. Journal of the American Chemical Society, 2020, 142, 6991-7000.	6.6	53
872	Determining Bathymetry of Shallow and Ephemeral Desert Lakes Using Satellite Imagery and Altimetry. Geophysical Research Letters, 2020, 47, e2020GL087367.	1.5	36
873	Are China's water bodies (lakes) underestimated?. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6308-6309.	3.3	8
874	ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD). Remote Sensing, 2020, 12, 1156.	1.8	158
875	Machine Learning-Based CYGNSS Soil Moisture Estimates over ISMN sites in CONUS. Remote Sensing, 2020, 12, 1168.	1.8	82
876	Differences of Regulative Flexibility between Hydrological Isolated and Connected Lakes in a Large Floodplain: Insight from Inundation Dynamics and Landscape Heterogeneity. Water (Switzerland), 2020, 12, 991.	1.2	9
877	Global-scale benefit–cost analysis of coastal flood adaptation to different flood risk drivers using structural measures. Natural Hazards and Earth System Sciences, 2020, 20, 1025-1044.	1.5	80
878	Tropical Wetland (TropWet) Mapping Tool: The Automatic Detection of Open and Vegetated Waterbodies in Google Earth Engine for Tropical Wetlands. Remote Sensing, 2020, 12, 1182.	1.8	31
879	Accounting for Training Data Error in Machine Learning Applied to Earth Observations. Remote Sensing, 2020, 12, 1034.	1.8	49
880	Vehicle and Vessel Detection on Satellite Imagery: A Comparative Study on Single-Shot Detectors. Remote Sensing, 2020, 12, 1217.	1.8	19
881	Addressing the Water–Energy Nexus by Coupling the Hydrological Model with a New Energy LISENGY Model: A Case Study in the Iberian Peninsula. Water (Switzerland), 2020, 12, 762.	1.2	1
882	Understanding the drivers of mortality in African savannah elephants. Ecological Applications, 2020, 30, e02131.	1.8	8
883	Mapping the world's coral reefs using a global multiscale earth observation framework. Remote Sensing in Ecology and Conservation, 2020, 6, 557-568.	2.2	73
884	Changes in area and water volume of the Aral Sea in the arid Central Asia over the period of 1960–2018 and their causes. Catena, 2020, 191, 104566.	2.2	83
885	Quantification of lake clarity in China using Landsat OLI imagery data. Remote Sensing of Environment, 2020, 243, 111800.	4.6	74
886	High Resolution Modeling of Riverâ€Floodplainâ€Reservoir Inundation Dynamics in the Mekong River Basin. Water Resources Research, 2020, 56, e2019WR026449.	1.7	52
887	Global Wetting by Seasonal Surface Water Over the Last Decades. Earth's Future, 2020, 8, e2019EF001449.	2.4	17
888	Land Cover Change in the Central Region of the Lower Yangtze River Based on Landsat Imagery and the Google Earth Engine: A Case Study in Nanjing, China. Sensors, 2020, 20, 2091.	2.1	29

#	Article	IF	CITATIONS
889	Human responses to climate and ecosystem change in ancient Arabia. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8263-8270.	3.3	77
890	Indus river water level monitoring using satellite radar altimetry. Advances in Space Research, 2021, 68, 641-651.	1.2	10
891	A Survey on Global Thresholding Methods for Mapping OpenÂWater Body Using Sentinel-2 Satellite Imagery and Normalized Difference Water Index. Archives of Computational Methods in Engineering, 2021, 28, 1335-1347.	6.0	39
892	A cloud computing-based approach to mapping mangrove erosion and progradation: Case studies from the Sundarbans and French Guiana. Estuarine, Coastal and Shelf Science, 2021, 248, 106798.	0.9	27
893	Surface-Water-Level Changes During 2003–2019 in Australia Revealed by ICESat/ICESat-2 Altimetry and Landsat Imagery. IEEE Geoscience and Remote Sensing Letters, 2021, 18, 1129-1133.	1.4	11
894	Long and shortâ€term assessment of surface area changes in saline and freshwater lakes via remote sensing. Water and Environment Journal, 2021, 35, 107-122.	1.0	10
895	Spatiotemporal change in the surface temperature of Himalayan lake and its inter-relation with water quality and growth in aquatic vegetation. Geocarto International, 2021, 36, 241-261.	1.7	6
896	Visualisation of flooding along an unvegetated, ephemeral river using Google Earth Engine: Implications for assessment of channel-floodplain dynamics in a time of rapid environmental change. Journal of Environmental Management, 2021, 278, 111559.	3.8	16
897	Counting From Sky: A Large-Scale Data Set for Remote Sensing Object Counting and a Benchmark Method. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 3642-3655.	2.7	31
898	Living with floating vegetation invasions. Ambio, 2021, 50, 125-137.	2.8	22
899	Continues monitoring of subsidence water in mining area from the eastern plain in China from 1986 to 2018 using Landsat imagery and Google Earth Engine. Journal of Cleaner Production, 2021, 279, 123610.	4.6	39
900	Estimating inundation of small waterbodies with subâ€pixel analysis of Landsat imagery: longâ€term trends in surface water area and evaluation of common drought indices. Remote Sensing in Ecology and Conservation, 2021, 7, 109-124.	2.2	14
901	Distinguishing different subclasses of water bodies for long-term and large-scale statistics of lakes: a case study of the Yangtze River basin from 2008 to 2018. International Journal of Digital Earth, 2021, 14, 202-230.	1.6	6
902	Denitrification in wetlands: A review towards a quantification at global scale. Science of the Total Environment, 2021, 754, 142398.	3.9	77
903	Benefits of protected areas for nonbreeding waterbirds adjusting their distributions under climate warming. Conservation Biology, 2021, 35, 834-845.	2.4	18
904	Fluvial gravel bar mapping with spectral signal mixture analysis. European Journal of Remote Sensing, 2021, 54, 31-46.	1.7	3
905	Regional morphodynamics of supraglacial lakes in the Everest Himalaya. Science of the Total Environment, 2021, 751, 141586.	3.9	11
906	Wetland changes in the Amur River Basin: Differing trends and proximate causes on the Chinese and Russian sides. Journal of Environmental Management, 2021, 280, 111670.	3.8	35

#	Article	IF	CITATIONS
907	Ecophysiological models for global invaders: Is Europe a big playground for the African clawed frog?. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2021, 335, 158-172.	0.9	5
908	Applications of Google Earth Engine in fluvial geomorphology for detecting river channel change. Wiley Interdisciplinary Reviews: Water, 2021, 8, e21496.	2.8	68
909	Automatic water detection from multidimensional hierarchical clustering for Sentinel-2 images and a comparison with Level 2A processors. Remote Sensing of Environment, 2021, 253, 112209.	4.6	54
910	The Color of Rivers. Geophysical Research Letters, 2021, 48, .	1.5	57
911	Sulphate in freshwater ecosystems: A review of sources, biogeochemical cycles, ecotoxicological effects and bioremediation. Earth-Science Reviews, 2021, 212, 103446.	4.0	82
912	Climate- and human-driven variations in lake area and number in North Xinjiang, China. International Journal of Remote Sensing, 2021, 42, 469-485.	1.3	13
913	Extraction of built-up area using multi-sensor data—A case study based on Google earth engine in Zhejiang Province, China. International Journal of Remote Sensing, 2021, 42, 389-404.	1.3	18
914	Mapping past landscapes using landsat data: Upper Paran \tilde{A}_i River Basin in 1985. Remote Sensing Applications: Society and Environment, 2021, 21, 100436.	0.8	1
915	Evaluating mangrove conservation and sustainability through spatiotemporal (1990–2020) mangrove cover change analysis in Pakistan. Estuarine, Coastal and Shelf Science, 2021, 249, 107128.	0.9	39
916	Modeling the dynamics and walking accessibility of urban open spaces under various policy scenarios. Landscape and Urban Planning, 2021, 207, 103993.	3.4	18
917	OC-SMART: A machine learning based data analysis platform for satellite ocean color sensors. Remote Sensing of Environment, 2021, 253, 112236.	4.6	60
918	Estimating seasonal water budgets in global lakes by using multi-source remote sensing measurements. Journal of Hydrology, 2021, 593, 125781.	2.3	37
919	Mapping the Dynamics of the South Asian Monsoon Using CYGNSS's Level-1 Signal Coherency. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 1111-1119.	2.3	6
920	Spatial Patterns and Drivers of Nonperennial Flow Regimes in the Contiguous United States. Geophysical Research Letters, 2021, 48, e2020GL090794.	1.5	54
921	Beneficial synergy of adsorption–intercalation–conversion mechanisms in Nb ₂ O ₅ @nitrogen-doped carbon frameworks for promoted removal of metal ions <i>via</i>) hybrid capacitive deionization. Environmental Science: Nano, 2021, 8, 122-130.	2,2	27
922	Wheat yield predictions at a county and field scale with deep learning, machine learning, and google earth engine. European Journal of Agronomy, 2021, 123, 126204.	1.9	82
923	Tracking lake surface elevations with proportional hypsometric relationships, Landsat imagery, and multiple DEMs. Water Resources Research, 2021, 57, .	1.7	12
924	Two <scp><i>Brassica napus</i></scp> cultivars differ in gene expression, but not in their response to submergence. Physiologia Plantarum, 2021, 171, 400-415.	2.6	7

#	Article	IF	CITATIONS
925	The seasonality of macroinvertebrate \hat{l}^2 diversity along the gradient of hydrological connectivity in a dynamic river-floodplain system. Ecological Indicators, 2021, 121, 107112.	2.6	23
926	Future impacts of climate change on inland Ramsar wetlands. Nature Climate Change, 2021, 11, 45-51.	8.1	103
927	An Algorithm for Detecting Coherence in Cyclone Global Navigation Satellite System Mission Level-1 Delay-Doppler Maps. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 4454-4463.	2.7	41
928	Usage of long-term river discharge data in water balance model for assessment of trends in basin storages. Modeling Earth Systems and Environment, 2021, 7, 953-966.	1.9	4
929	Benefits of the Open-Loop Tracking Command (OLTC): Extending conventional nadir altimetry to inland waters monitoring. Advances in Space Research, 2021, 68, 843-852.	1.2	22
930	Ebinur Lake wetland identification and its spatio-temporal dynamic changes. Journal of Natural Resources, 2021, 36, 1949.	0.4	1
931	Detecting and Mapping Gas Emission Craters on the Yamal and Gydan Peninsulas, Western Siberia. Geosciences (Switzerland), 2021, 11, 21.	1.0	8
932	Change Detection From Very-High-Spatial-Resolution Optical Remote Sensing Images: Methods, applications, and future directions. IEEE Geoscience and Remote Sensing Magazine, 2021, 9, 68-101.	4.9	85
933	O-LCMapping: a Google Earth Engine-based web toolkit for supporting online land cover classification. Earth Science Informatics, 2021, 14, 529-541.	1.6	10
934	Natural Pans as an Important Surface Water Resource in the Cuvelai Basin—Metrics for Storage Volume Calculations and Identification of Potential Augmentation Sites. Water (Switzerland), 2021, 13, 177.	1.2	7
935	Improving waterbird monitoring and conservation in the Sahel using remote sensing: a case study with the International Waterbird Census in Sudan. Ibis, 2021, 163, 607-622.	1.0	1
936	Flood Mapping with Passive Microwave Remote Sensing: Current Capabilities and Directions for Future Development., 2021,, 39-60.		4
938	Dynamic Mapping of Subarctic Surface Water by Fusion of Microwave and Optical Satellite Data Using Conditional Adversarial Networks. Remote Sensing, 2021, 13, 175.	1.8	5
939	PRODUCTION AND FUNDAMENTAL VALIDATION OF GLOBAL SURFACE WATER MAP USING MULTIPLE MICROWAVE RADIOMETERS. Journal of Japan Society of Civil Engineers, 2021, 9, 205-211.	0.1	0
940	Lake Level Reconstructed From DEM-Based Virtual Station: Comparison of Multisource DEMs With Laser Altimetry and UAV-LiDAR Measurements. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	3
941	Narrow River Extraction From SAR Images Using Exogenous Information. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 5720-5734.	2.3	9
942	River Flood Modeling and Remote Sensing Across Scales: Lessons from Brazil., 2021,, 61-103.		4
943	Satellite Flood Inundation Assessment and Forecast Using SMAP and Landsat. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 6707-6715.	2.3	20

#	Article	IF	CITATIONS
944	Wetland Change Analysis in Alberta, Canada Using Four Decades of Landsat Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 10314-10335.	2.3	25
945	Assessment of Interpolation Errors of CYGNSS Soil Moisture Estimations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, , 1-1.	2.3	2
946	Is Alaska's Yukon–Kuskokwim Delta Greening or Browning? Resolving Mixed Signals of Tundra Vegetation Dynamics and Drivers in the Maritime Arctic. Earth Interactions, 2021, 25, 76-93.	0.7	7
947	Reliability Evaluation and Migration of Wetland Samples. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 8089-8099.	2.3	6
948	Mapping Center Pivot Irrigation Systems in the Southern Amazon from Sentinel-2 Images. Water (Switzerland), 2021, 13, 298.	1.2	14
949	Generation of Synthetic Elevation Models and Realistic Surface Images of River Deltas and Coastal Terrains Using cGANs. IEEE Access, 2021, 9, 2975-2985.	2.6	6
950	Regulation of CO2 fluxes along gradients of water saturation in irrigation canal sediments. Aquatic Sciences, 2021, 83, 1.	0.6	2
951	A Comparison of Machine Learning Approaches to Improve Free Topography Data for Flood Modelling. Remote Sensing, 2021, 13, 275.	1.8	14
952	The relationship between land surface temperature and artificial impervious surface fraction in 682 global cities: spatiotemporal variations and drivers. Environmental Research Letters, 2021, 16, 024032.	2.2	56
953	Remote Sensing of Turbidity for Lakes in Northeast China Using Sentinel-2 Images With Machine Learning Algorithms. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 9132-9146.	2.3	31
954	Hydrologic classification of Tanzanian rivers to support national water resource policy. Ecohydrology, 2021, 14, e2282.	1.1	5
955	Simulation of irrigation-induced groundwater recharge in an arid area of China. Hydrogeology Journal, 2021, 29, 525-540.	0.9	9
956	Simple Method to Extract Lake Ice Condition From Landsat Images. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-10.	2.7	4
957	Water Resilience in a Changing Urban Context:  Africa's Challenge and Pathways for Action. , 0, , .		0
958	Phase Coherence of GPS Signal Land Reflections and its Dependence on Surface Characteristics. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	12
959	An Analysis of Bare Soil Occurrence in Arable Croplands for Remote Sensing Topsoil Applications. Remote Sensing, 2021, 13, 474.	1.8	21
960	Remote Sensing of Aeolian Processes. , 2022, , 84-119.		2
962	The Green Revolution from space: Mapping the historic dynamics of main rice types in one of the world's food bowls. Remote Sensing Applications: Society and Environment, 2021, 21, 100460.	0.8	5

#	Article	IF	Citations
963	Constructing Reservoir Area–Volume–Elevation Curve from TanDEM-X DEM Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 2249-2257.	2.3	12
964	Fusion and Correction of Multi-Source Land Cover Products Based on Spatial Detection and Uncertainty Reasoning Methods in Central Asia. Remote Sensing, 2021, 13, 244.	1.8	12
965	Study on Relationship of Land Cover Changes and Ecohydrological Processes of the Tuul River Basin. Sustainability, 2021, 13, 1153.	1.6	8
966	MorphEst: An Automated Toolbox for Measuring Estuarine Planform Geometry from Remotely Sensed Imagery and Its Application to the South Korean Coast. Remote Sensing, 2021, 13, 330.	1.8	5
967	Impacts of Climate and Land Use Change on Surface Water Content and Quality in Low-Lying Coastal Areas of Bangladesh., 2021, , 1-28.		0
968	Satellite-Based Monitoring of Annual Coastal Reclamation in Shenzhen and Hong Kong since the 21st Century: A Comparative Study. Journal of Marine Science and Engineering, 2021, 9, 48.	1.2	9
969	Surface Water Extraction and Dynamic Analysis of Baiyangdian Lake Based on the Google Earth Engine Platform Using Sentinel-1 for Reporting SDG 6.6.1 Indicators. Water (Switzerland), 2021, 13, 138.	1.2	21
970	Key technologies and equipment for contaminated surface/groundwater environment in the rural river network area of China: integrated remediation. Environmental Sciences Europe, 2021, 33, .	2.6	7
971	Use of Time-Series NDWI to Monitor Emerging Archaeological Sites: Case Studies from Iraqi Artificial Reservoirs. Remote Sensing, 2021, 13, 786.	1.8	17
972	Regional assessment of the potential risks of rapid lake expansion impacting on the Tibetan human living environment. Environmental Earth Sciences, 2021, 80, 1.	1.3	7
973	A novel surface water index using local background information for long term and large-scale Landsat images. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 172, 59-78.	4.9	39
975	An integrated assessment of surface water dynamics in the Irtysh River Basin during 1990–2019 and exploratory factor analyses. Journal of Hydrology, 2021, 593, 125905.	2.3	32
977	Integrating the JRC Monthly Water History Dataset and Geostatistical Analysis Approach to Quantify Surface Hydrological Connectivity Dynamics in an Ungauged Multi-Lake System. Water (Switzerland), 2021, 13, 497.	1.2	4
978	Analysis of ecological quality in Lhasa Metropolitan Area during 1990–2017 based on remote sensing and Google Earth Engine platform. Journal of Chinese Geography, 2021, 31, 265-280.	1.5	47
979	Achieving global malaria eradication in changing landscapes. Malaria Journal, 2021, 20, 69.	0.8	42
980	The implications of future climate change on the blue water footprint of hydropower in the contiguous US [*] . Environmental Research Letters, 2021, 16, 034003.	2.2	10
982	Dataset of Georeferenced Dams in South AmericaÂ(DDSA). Earth System Science Data, 2021, 13, 213-229.	3.7	10
983	Integrating a Three-Level GIS Framework and a Graph Model to Track, Represent, and Analyze the Dynamic Activities of Tidal Flats. ISPRS International Journal of Geo-Information, 2021, 10, 61.	1.4	8

#	Article	IF	CITATIONS
984	Centuryâ€Scale Reconstruction of Water Storage Changes of the Largest Lake in the Inner Mongolia Plateau Using a Machine Learning Approach. Water Resources Research, 2021, 57, e2020WR028831.	1.7	37
985	What drives the rapid water-level recovery of the largest lake (Qinghai Lake) of China over the past half century?. Journal of Hydrology, 2021, 593, 125921.	2.3	36
986	Machine Learning Classification of Mediterranean Forest Habitats in Google Earth Engine Based on Seasonal Sentinel-2 Time-Series and Input Image Composition Optimisation. Remote Sensing, 2021, 13, 586.	1.8	109
988	Climate Influence Vs. Local Drivers in Surface Water-Groundwater Interactions in Eight Ponds of Do $\tilde{A}\pm$ ana National Park (Southern Spain). Wetlands, 2021, 41, 1.	0.7	12
989	A novel causal structure-based framework for comparing a basin-wide water–energy–food–ecology nexus applied to the data-limited Amu Darya and Syr Darya river basins. Hydrology and Earth System Sciences, 2021, 25, 901-925.	1.9	26
990	Automated estimation of daily surface water fraction from MODIS and Landsat images using Gaussian process regression. International Journal of Remote Sensing, 2021, 42, 4261-4283.	1.3	9
991	Capacitive Removal of Heavy Metal lons from Wastewater <i>via</i> an Electro-Adsorption and Electro-Reaction Coupling Process. Environmental Science &	4.6	129
993	Mega-dams and extreme rainfall: Disentangling the drivers of extensive impacts of a large flooding event on Amazon Forests. PLoS ONE, 2021, 16, e0245991.	1.1	3
994	Hydrological Dynamics of the Congo Basin From Water Surfaces Based on Lâ€Band Microwave. Water Resources Research, 2021, 57, e2020WR027259.	1.7	7
995	Estimation of Water Coverage in Permanent and Temporary Shallow Lakes and Wetlands by Combining Remote Sensing Techniques and Genetic Programming: Application to the Mediterranean Basin of the Iberian Peninsula. Remote Sensing, 2021, 13, 652.	1.8	11
996	The albedo–climate penalty of hydropower reservoirs. Nature Energy, 2021, 6, 372-377.	19.8	27
997	Small Hydropower Plants' Proliferation Would Negatively Affect Local Herpetofauna. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	11
998	The contribution of wetland flora to regional floristic diversity across a wide range of climatic conditions in southern Africa. Biodiversity and Conservation, 2021, 30, 575-596.	1.2	5
999	NASA's MODIS/VIIRS Global Water Reservoir Product Suite from Moderate Resolution Remote Sensing Data. Remote Sensing, 2021, 13, 565.	1.8	12
1000	Assessment of Landsat Based Deep-Learning Membership Analysis for Development of from–to Change Time Series in the Prairie Region of Canada from 1984 to 2018. Remote Sensing, 2021, 13, 634.	1.8	3
1001	Countrywide Monitoring of Ground Deformation Using InSAR Time Series: A Case Study from Qatar. Remote Sensing, 2021, 13, 702.	1.8	14
1002	Interannual and Seasonal Variations of Hydrological Connectivity in a Large Shallow Wetland of North China Estimated from Landsat 8 Images. Remote Sensing, 2021, 13, 1214.	1.8	19
1003	Delineation of water body from Sentinel 2 MSI imagery – A comparative study. IOP Conference Series: Materials Science and Engineering, 2021, 1114, 012029.	0.3	2

#	Article	IF	CITATIONS
1004	Ramsar Wetlands of International Importance–Improving Conservation Outcomes. Frontiers in Environmental Science, 2021, 9, .	1.5	40
1005	On-farm reservoir monitoring using Landsat inundation datasets. Agricultural Water Management, 2021, 246, 106694.	2.4	13
1006	Super-Resolution Surface Water Mapping on the Canadian Shield Using Planet CubeSat Images and a Generative Adversarial Network. Canadian Journal of Remote Sensing, 2021, 47, 261-275.	1.1	7
1007	Basin-scale high-resolution extraction of drainage networks using 10-m Sentinel-2 imagery. Remote Sensing of Environment, 2021, 255, 112281.	4.6	21
1008	Monitoring Variations in Lake Water Storage with Satellite Imagery and Citizen Science. Water (Switzerland), 2021, 13, 949.	1.2	9
1009	Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Science Advances, 2021, 7, .	4.7	162
1010	Coastal Wetland Resilience, Accelerated Seaâ€Level Rise, and the Importance of Timescale. AGU Advances, 2021, 2, e2020AV000334.	2.3	46
1011	Long-Term Sediment, Carbon, and Nitrogen Accumulation Rates in Coastal Wetlands Impacted by Sea Level Rise. Estuaries and Coasts, 2021, 44, 2142.	1.0	7
1012	Satelliteâ€Based Drought Reporting on the Navajo Nation. Journal of the American Water Resources Association, 2021, 57, 675.	1.0	1
1013	Long-Term Dynamics of Different Surface Water Body Types and Their Possible Driving Factors in China. Remote Sensing, 2021, 13, 1154.	1.8	6
1014	Salinity shapes food webs of lakes in semiarid climate zones: a stable isotope approach. Inland Waters, 2021, 11, 476-491.	1,1	19
1016	Spatial search and a three level model based water layer extraction from C-band SAR image. Annals of GIS, 2021, 27, 163-176.	1.4	1
1017	Trends in Satellite Earth Observation for Permafrost Related Analyses—A Review. Remote Sensing, 2021, 13, 1217.	1.8	26
1018	Towards global flood mapping onboard low cost satellites with machine learning. Scientific Reports, 2021, 11, 7249.	1.6	76
1019	Palaeofloods at ancient Loulan, northwest China: Geoarchaeological perspectives on burial practices. Quaternary International, 2021, 577, 131-138.	0.7	3
1020	Estimating the frequency of coincidental spatial associations between Clovis artifacts and proboscidean remains in North America. Quaternary Research, 2021, 103, 182-192.	1.0	5
1021	The Decrease in Lake Numbers and Areas in Central Asia Investigated Using a Landsat-Derived Water Dataset. Remote Sensing, 2021, 13, 1032.	1.8	14
1022	Winter Habitat Indices (WHIs) for the contiguous US and their relationship with winter bird diversity. Remote Sensing of Environment, 2021, 255, 112309.	4.6	14

#	ARTICLE	IF	CITATIONS
1023	River body extraction from sentinel-2A/B MSI images based on an adaptive multi-scale region growth method. Remote Sensing of Environment, 2021, 255, 112297.	4.6	23
1024	Parametrization of a lake water dynamics model MLake in the ISBA-CTRIP land surface system (SURFEX) Tj ETQq1	1.378431 -	.4 rgBT /Ove
1025	Temporal unmixing-based cloud removal algorithm for optically complex water images. International Journal of Remote Sensing, 2021, 42, 4415-4440.	1.3	1
1026	Eleven Years of Mangrove–Mudflat Dynamics on the Mud Volcano-Induced Prograding Delta in East Java, Indonesia: Integrating UAV and Satellite Imagery. Remote Sensing, 2021, 13, 1084.	1.8	14
1027	Mapping Land Use/Cover Dynamics of the Yellow River Basin from 1986 to 2018 Supported by Google Earth Engine. Remote Sensing, 2021, 13, 1299.	1.8	31
1028	Global-scale changes in the area of atoll islands during the 21st century. Anthropocene, 2021, 33, 100282.	1.6	15
1029	Utilization of Multi-Temporal Sentinel-1 Satellite Imagery for Detecting Aquatic Vegetation Change in Lake Rawapening, Central Java, Indonesia. Papers in Applied Geography, 2021, 7, 316-330.	0.8	6
1030	Remote sensing estimation of water clarity for various lakes in China. Water Research, 2021, 192, 116844.	5.3	70
1031	Mapping the Dynamics of Winter Wheat in the North China Plain from Dense Landsat Time Series (1999) Tj ETQqQ) 0 0 rgBT 1.8	/Overlock 1
1032	Substantial decrease in CO2 emissions from Chinese inland waters due to global change. Nature Communications, 2021, 12, 1730.	5.8	71
1033	Coupled hydrology-crop growth model incorporating an improved evapotranspiration module. Agricultural Water Management, 2021, 246, 106691.	2.4	15
1034	Finer-Resolution Mapping of Global Land Cover: Recent Developments, Consistency Analysis, and Prospects. Journal of Remote Sensing, 2021, 2021, .	3.2	75
1035	Human alteration of global surface water storage variability. Nature, 2021, 591, 78-81.	13.7	188
1036	Effects of Using High Resolution Satelliteâ€Based Inundation Time Series to Estimate Methane Fluxes From Forested Wetlands. Geophysical Research Letters, 2021, 48, e2021GL092556.	1.5	20
1037	Evaluating the Performance of Sentinel-1A and Sentinel-2 in Small Waterbody Mapping over Urban and Mountainous Regions. Water (Switzerland), 2021, 13, 945.	1.2	11
1038	The role of anthropogenic habitats in freshwater mussel conservation. Global Change Biology, 2021, 27, 2298-2314.	4.2	24
1039	Inventory of dams in Germany. Earth System Science Data, 2021, 13, 731-740.	3.7	10
1040	Water bodies changes in Tigris and Euphrates basin has impacted dust storms phenomena. Aeolian Research, 2021, 50, 100698.	1.1	30

#	Article	IF	CITATIONS
1041	Annual 30 m dataset for glacial lakes in High Mountain Asia from 2008 to 2017. Earth System Science Data, 2021, 13, 741-766.	3.7	97
1042	National framework for ranking lakes by potential for anthropogenic hydro-alteration. Ecological Indicators, 2021, 122, 107241.	2.6	6
1043	African soil properties and nutrients mapped at 30Âm spatial resolution using two-scale ensemble machine learning. Scientific Reports, 2021, 11, 6130.	1.6	103
1044	The Effects of Lake Representation on the Regional Hydroclimate in the ECMWF Reanalyses. Monthly Weather Review, 2021, , .	0.5	2
1045	Drought and Flood Characterization and Connection to Climate Variability in the Pearl River Basin in Southern China Using Long-Term GRACE and Reanalysis Data. Journal of Climate, 2021, 34, 2053-2078.	1.2	24
1046	A Large-Scale Deep-Learning Approach for Multi-Temporal Aqua and Salt-Culture Mapping. Remote Sensing, 2021, 13, 1415.	1.8	10
1047	Automated Global Shallow Water Bathymetry Mapping Using Google Earth Engine. Remote Sensing, 2021, 13, 1469.	1.8	40
1048	A Submonthly Surface Water Classification Framework via Gap-Fill Imputation and Random Forest Classifiers of Landsat Imagery. Remote Sensing, 2021, 13, 1742.	1.8	6
1049	Rapid deforestation of a coastal landscape driven by seaâ€level rise and extreme events. Ecological Applications, 2021, 31, e02339.	1.8	52
1050	Spatio-Temporal Changes of Vegetation Net Primary Productivity and Its Driving Factors on the Qinghai-Tibetan Plateau from 2001 to 2017. Remote Sensing, 2021, 13, 1566.	1.8	31
1051	A method to include reservoir operations in catchment hydrological models using SHETRAN. Environmental Modelling and Software, 2021, 138, 104980.	1.9	4
1052	Predictive mapping of aquatic ecosystems by means of support vector machines and random forests. Journal of Hydrology, 2021, 595, 126026.	2.3	15
1053	Juxtaposing the spatiotemporal drivers of sediment CO2, CH4, and N2O effluxes along ecoregional, wet-dry, and diurnal gradients. Atmospheric Pollution Research, 2021, 12, 160-171.	1.8	2
1054	Mapping Arctic Lake Ice Backscatter Anomalies Using Sentinel-1 Time Series on Google Earth Engine. Remote Sensing, 2021, 13, 1626.	1.8	1
1055	Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience, 2021, 14, 225-230.	5.4	388
1056	VEdge_Detector: automated coastal vegetation edge detection using a convolutional neural network. International Journal of Remote Sensing, 2021, 42, 4805-4835.	1.3	12
1057	Unpacking some of the linkages between uncertainties in observational data and the simulation of different hydrological processes using the Pitman model in the data scarce Zambezi River basin. Hydrological Processes, 2021, 35, e14141.	1.1	3
1058	Time-series snowmelt detection over the Antarctic using Sentinel-1 SAR images on Google Earth Engine. Remote Sensing of Environment, 2021, 256, 112318.	4.6	33

#	Article	IF	Citations
1059	Evaluation of historic and operational satellite radar altimetry missions for constructing consistent long-term lake water level records. Hydrology and Earth System Sciences, 2021, 25, 1643-1670.	1.9	23
1060	LCZ Generator: A Web Application to Create Local Climate Zone Maps. Frontiers in Environmental Science, 2021, 9, .	1.5	91
1061	High-resolution satellite-derived river network map reveals small Arctic river hydrography. Environmental Research Letters, 2021, 16, 054015.	2.2	5
1062	ADHI: the African Database of Hydrometric Indices (1950–2018). Earth System Science Data, 2021, 13, 1547-1560.	3.7	18
1064	Heuristic assessment of choices for risk network control. Scientific Reports, 2021, 11, 7645.	1.6	1
1065	Mapping and Monitoring the Multi-Decadal Dynamics of Australia's Open Waterbodies Using Landsat. Remote Sensing, 2021, 13, 1437.	1.8	15
1066	Declining greenness in Arctic-boreal lakes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	25
1067	Research and Application of Big Earth Data Distribution and Sharing System. , 2021, , .		1
1068	Convolutional neural networks for water segmentation using sentinel-2 red, green, blue (RGB) composites and derived spectral indices. International Journal of Remote Sensing, 2021, 42, 5338-5365.	1.3	27
1069	An Optical and SAR Based Fusion Approach for Mapping Surface Water Dynamics over Mainland China. Remote Sensing, 2021, 13, 1663.	1.8	26
1070	Spatial-Temporal Distribution of the Freeze–Thaw Cycle of the Largest Lake (Qinghai Lake) in China Based on Machine Learning and MODIS from 2000 to 2020. Remote Sensing, 2021, 13, 1695.	1.8	5
1071	Ensembles of multiple spectral water indices for improving surface water classification. International Journal of Applied Earth Observation and Geoinformation, 2021, 96, 102278.	1.4	3
1072	Remotely sensed mapping of the intertidal zone: A Sentinel-2 and Google Earth Engine methodology. Remote Sensing Applications: Society and Environment, 2021, 22, 100499.	0.8	10
1073	Variance Based Sensitivity Analysis of FLake Lake Model for Global Land Surface Modeling. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2019JD031928.	1.2	3
1074	A large-scale 2005–2012 flood map record derived from ENVISAT-ASAR data: United Kingdom as a test case. Remote Sensing of Environment, 2021, 256, 112338.	4.6	14
1076	Monitoring the Spatiotemporal Dynamics of Aeolian Desertification Using Google Earth Engine. Remote Sensing, 2021, 13, 1730.	1.8	9
1077	Measuring Changes in Snowpack SWE Continuously on a Landscape Scale Using Lake Water Pressure. Journal of Hydrometeorology, 2021, 22, 795-811.	0.7	1
1078	Fishers' response to temperature change reveals the importance of integrating human behavior in climate change analysis. Science Advances, 2021, 7, .	4.7	10

#	Article	IF	CITATIONS
1079	Interactions of Asian mineral dust with Indian summer monsoon: Recent advances and challenges. Earth-Science Reviews, 2021, 215, 103562.	4.0	67
1080	Long-term changes in evapotranspiration over China and attribution to climatic drivers during 1980–2010. Journal of Hydrology, 2021, 595, 126037.	2.3	40
1081	The tree cover and temperature disparity in US urbanized areas: Quantifying the association with income across 5,723 communities. PLoS ONE, 2021, 16, e0249715.	1.1	47
1082	Refined estimation of lake water level and storage changes on the Tibetan Plateau from ICESat/ICESat-2. Catena, 2021, 200, 105177.	2.2	36
1083	Alteration of flood pulses by damming the Nenjiang River, China – Implication for the need to identify a hydrograph-based inundation threshold for protecting floodplain wetlands. Ecological Indicators, 2021, 124, 107406.	2.6	16
1084	Deriving Planform Morphology and Vegetation Coverage From Remote Sensing to Support River Management Applications. Frontiers in Environmental Science, 2021, 9, .	1.5	27
1085	Temporal and spatial variations in the terrestrial water storage across Central Asia based on multiple satellite datasets and global hydrological models. Journal of Hydrology, 2021, 596, 126013.	2.3	42
1086	Priority list of biodiversity metrics to observe from space. Nature Ecology and Evolution, 2021, 5, 896-906.	3.4	101
1087	Land surface thermal alteration and pattern simulation based on influencing factors of rural landscape. Geocarto International, 2022, 37, 5278-5306.	1.7	5
1088	Global land mask for satellite ocean color remote sensing. Remote Sensing of Environment, 2021, 257, 112356.	4.6	6
1089	A simple cloud-filling approach for remote sensing water cover assessments. Hydrology and Earth System Sciences, 2021, 25, 2373-2386.	1.9	9
1090	Multi-Decadal Deltaic Land-Surface Changes: Gauging the Vulnerability of a Selection of Mediterranean and Black Sea River Deltas. Journal of Marine Science and Engineering, 2021, 9, 512.	1.2	5
1091	Monitoring changes in South Africa's surface water extent for reporting Sustainable Development Goal sub-indicator 6.6.1.a. South African Journal of Science, 2021, 117, .	0.3	3
1092	Toward Improved Comparisons Between Landâ€Surfaceâ€Waterâ€Area Estimates From a Global River Model and Satellite Observations. Water Resources Research, 2021, 57, e2020WR029256.	1.7	9
1093	Estimation of reservoir evaporation losses for China. Journal of Hydrology, 2021, 596, 126142.	2.3	26
1094	Remote Estimation of Trophic State Index for Inland Waters Using Landsat-8 OLI Imagery. Remote Sensing, 2021, 13, 1988.	1.8	12
1095	Surface Water Changes in Dongting Lake from 1975 to 2019 Based on Multisource Remote-Sensing Images. Remote Sensing, 2021, 13, 1827.	1.8	13
1096	Duration of water flow interruption drives the structure and functional diversity of stream benthic diatoms. Science of the Total Environment, 2021, 770, 144675.	3.9	15

#	Article	IF	CITATIONS
1097	Pseudocapacitive desalination via valence engineering with spindle-like manganese oxide/carbon composites. Nano Research, 2021, 14, 4878-4884.	5.8	21
1098	Comprehensive bathymetry and intertidal topography of the Amazon estuary. Earth System Science Data, 2021, 13, 2275-2291.	3.7	12
1099	Surface water dynamics analysis based on sentinel imagery and Google Earth Engine Platform: a case study of Jayakwadi dam. Sustainable Water Resources Management, 2021, 7, 1.	1.0	46
1100	The spatial extent of hydrological and landscape changes across the mountains and prairies of Canada in the Mackenzie and Nelson River basins based on data from a warm-season time window. Hydrology and Earth System Sciences, 2021, 25, 2513-2541.	1.9	3
1101	Assessing Landsat Images Availability and Its Effects on Phenological Metrics. Forests, 2021, 12, 574.	0.9	5
1102	Sustainable Management, Conservation, and Restoration of the Amazon River Delta and Amazon-Influenced Guianas Coast: A Review. Water (Switzerland), 2021, 13, 1371.	1.2	12
1103	Stakeholders' interactions in managing water resources conflicts: a case of Lake Naivasha, Kenya. Zeitschrift Fur Wirtschaftsgeographie, 2021, .	0.7	2
1104	Regional differences in surface air temperature changing patterns from 1960 to 2016 of China. Climate Dynamics, 2021, 57, 1733-1749.	1.7	4
1105	A High-Resolution Flood Inundation Archive (2016–the Present) from Sentinel-1 SAR Imagery over CONUS. Bulletin of the American Meteorological Society, 2021, 102, E1064-E1079.	1.7	25
1106	Global carbon budget of reservoirs is overturned by the quantification of drawdown areas. Nature Geoscience, 2021, 14, 402-408.	5.4	70
1107	Sentinel-1 SAR Backscatter Analysis Ready Data Preparation in Google Earth Engine. Remote Sensing, 2021, 13, 1954.	1.8	111
1108	Incorporating abiotic controls on animal movements in metacommunities. Ecology, 2021, 102, e03365.	1.5	17
1109	RECOG RL01: correcting GRACE total water storage estimates for global lakes/reservoirs and earthquakes. Earth System Science Data, 2021, 13, 2227-2244.	3.7	11
1110	Selective Capacitive Removal of Heavy Metal Ions from Wastewater over Lewis Base Sites of S-Doped Fe–N–C Cathodes ⟨i⟩via⟨i⟩ an Electro-Adsorption Process. Environmental Science & Environmental	4.6	68
1111	The ecohydrological impact of water resource developments through inundation regime analysis of a large semi-arid floodplain. Journal of Hydrology, 2021, 596, 126127.	2.3	7
1112	Metacommunity resilience against simulated gradients of wildfire: disturbance intensity and species dispersal ability determine landscape recover capacity. Ecography, 2021, 44, 1022-1034.	2.1	16
1113	The CYGNSS Mission: On-Going Science Team Investigations. Remote Sensing, 2021, 13, 1814.	1.8	15
1114	Development of the global dataset of Wetland Area and Dynamics for Methane Modeling (WAD2M). Earth System Science Data, 2021, 13, 2001-2023.	3.7	47

#	Article	IF	CITATIONS
1116	Sources of sediment in tidal flats off Zhejiang coast, southeast China. Journal of Oceanology and Limnology, 2021, 39, 1245.	0.6	0
1117	A Colourimetric Approach to Ecological Remote Sensing: Case Study for the Rainforests of South-Eastern Australia. Remote Sensing, 2021, 13, 2544.	1.8	3
1118	Global land characterisation using land cover fractions at 100Âm resolution. Remote Sensing of Environment, 2021, 259, 112409.	4.6	25
1119	Semi-automated extraction of surface water based on ZhuHai-1 hyperspectral satellite images. Remote Sensing Letters, 2021, 12, 750-756.	0.6	0
1120	Remote Sensing Methods for the Biophysical Characterization of Protected Areas Globally: Challenges and Opportunities. ISPRS International Journal of Geo-Information, 2021, 10, 384.	1.4	3
1121	An Effective Water Body Extraction Method with New Water Index for Sentinel-2 Imagery. Water (Switzerland), 2021, 13, 1647.	1.2	43
1122	Production of global daily seamless data cubes and quantification of global land cover change from 1985 to 2020 - iMap World 1.0. Remote Sensing of Environment, 2021, 258, 112364.	4.6	80
1123	Attributes of Drying Define the Structure and Functioning of Microbial Communities in Temperate Riverbed Sediment. Frontiers in Microbiology, 2021, 12, 676615.	1.5	9
1124	Exploring annual lake dynamics in Xinjiang (China): spatiotemporal features and driving climate factors from 2000 to 2019. Climatic Change, 2021, 166, 1.	1.7	16
1125	Towards a global Reservoir Assessment Tool for predicting hydrologic impacts and operating patterns of existing and planned reservoirs. Environmental Modelling and Software, 2021, 140, 105043.	1.9	24
1126	SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil, 2021, 7, 217-240.	2.2	511
1127	Drainage basin reorganization and endorheic-exorheic transition triggered by climate change and human intervention. Global and Planetary Change, 2021, 201, 103494.	1.6	19
1128	A review of scientific advancements in datasets derived from big data for monitoring the Sustainable Development Goals. Sustainability Science, 2021, 16, 1701-1716.	2.5	28
1129	Satellite Observations and Malaria: New Opportunities for Research and Applications. Trends in Parasitology, 2021, 37, 525-537.	1.5	34
1130	First pan-Arctic assessment of dissolved organic carbon in lakes of the permafrost region. Biogeosciences, 2021, 18, 3917-3936.	1.3	12
1131	The RapeseedMap10 database: annual maps of rapeseed at a spatial resolution of 10 m based on multi-source data. Earth System Science Data, 2021, 13, 2857-2874.	3.7	24
1132	How green can Amazon hydropower be? Net carbon emission from the largest hydropower plant in Amazonia. Science Advances, 2021, 7, .	4.7	18
1133	Comprehensive estimation of lake volume changes on the Tibetan Plateau during 1976–2019 and basin-wide glacier contribution. Science of the Total Environment, 2021, 772, 145463.	3.9	70

#	Article	IF	CITATIONS
1134	Upstream flows drive the productivity of floodplain ecosystems in tropical Queensland. Ecological Indicators, 2021, 125, 107546.	2.6	26
1135	Augmented Normalized Difference Water Index for improved surface water monitoring. Environmental Modelling and Software, 2021, 140, 105030.	1.9	38
1136	Accurate extraction of surface water in complex environment based on Google Earth Engine and Sentinel-2. PLoS ONE, 2021, 16, e0253209.	1.1	18
1137	Inland water level measurement from spaceborne laser altimetry: Validation and comparison of three missions over the Great Lakes and lower Mississippi River. Journal of Hydrology, 2021, 597, 126312.	2.3	21
1138	Urban megaprojects and water justice in Southeast Asia: Between global economies and community transitions. Cities, 2021, 113, 103068.	2.7	11
1139	Human footprint and protected areas shape elephant range across Africa. Current Biology, 2021, 31, 2437-2445.e4.	1.8	48
1140	Effects of seasonal inundation on methane fluxes from forested freshwater wetlands. Environmental Research Letters, 2021, 16, 084016.	2.2	19
1141	Genomic data support multiple introductions and explosive demographic expansions in a highly invasive aquatic insect. Molecular Ecology, 2021, 30, 4189-4203.	2.0	8
1142	Towards Wind Vector and Wave Height Retrievals Over Inland Waters Using CYGNSS. Earth and Space Science, 2021, 8, e2020EA001506.	1.1	6
1143	Body size and digestive system shape resource selection by ungulates: A crossâ€ŧaxa test of the forage maturation hypothesis. Ecology Letters, 2021, 24, 2178-2191.	3.0	19
1144	Global Estimation and Assessment of Monthly Lake/Reservoir Water Level Changes Using ICESat-2 ATL13 Products. Remote Sensing, 2021, 13, 2744.	1.8	32
1145	Characterizing the Up-To-Date Land-Use and Land-Cover Change in Xiong'an New Area from 2017 to 2020 Using the Multi-Temporal Sentinel-2 Images on Google Earth Engine. ISPRS International Journal of Geo-Information, 2021, 10, 464.	1.4	14
1146	Development of a Flash Flood Confidence Index from Disaster Reports and Geophysical Susceptibility. Remote Sensing, 2021, 13, 2764.	1.8	14
1147	Geomorphology from Earth orbit 1957–2000. Geological Society Memoir, 2022, 58, 19-30.	0.9	3
1148	Altimetry for the future: Building on 25 years of progress. Advances in Space Research, 2021, 68, 319-363.	1,2	119
1149	Contribution of meandering rivers to natural carbon fluxes: Evidence from the Ucayali River, Peruvian Amazonia. Science of the Total Environment, 2021, 776, 146056.	3.9	10
1150	Large Seasonal and Habitat Differences in Methane Ebullition on the Amazon Floodplain. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005911.	1.3	7
1151	Analysis of the Temporal Changes of Inland Ramsar Sites in Turkey Using Google Earth Engine. ISPRS International Journal of Geo-Information, 2021, 10, 521.	1.4	13

#	Article	IF	CITATIONS
1152	Spatio-temporal dynamics of hydrologic changes in the Himalayan river basins of Nepal using high-resolution hydrological-hydrodynamic modeling. Journal of Hydrology, 2021, 598, 126209.	2.3	9
1153	Improving CyGNSS-Based Land Remote Sensing: Track-Wise Data Calibration Schemes. Remote Sensing, 2021, 13, 2844.	1.8	2
1155	Towards Monitoring Waterlogging with Remote Sensing for Sustainable Irrigated Agriculture. Remote Sensing, 2021, 13, 2929.	1.8	15
1156	The sustainability assessment of CO2 capture, utilization and storage (CCUS) and the conversion of cropland to forestland program (CCFP) in the Water–Energy–Food (WEF) framework towards China's carbon neutrality by 2060. Environmental Earth Sciences, 2021, 80, 1.	1.3	23
1157	AlgaeMAp: Algae Bloom Monitoring Application for Inland Waters in Latin America. Remote Sensing, 2021, 13, 2874.	1.8	20
1158	Revealing the widespread potential of forests to increase low level cloud cover. Nature Communications, 2021, 12, 4337.	5.8	45
1159	Mapping of Flood Areas Using Landsat with Google Earth Engine Cloud Platform. Atmosphere, 2021, 12, 866.	1.0	19
1160	The Beautiful and the Dammed: Defining Multi-Stressor Disturbance Regimes in an Atlantic River Floodplain Wetland. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
1161	Multi-Scenario Model of Plastic Waste Accumulation Potential in Indonesia Using Integrated Remote Sensing, Statistic and Socio-Demographic Data. ISPRS International Journal of Geo-Information, 2021, 10, 481.	1.4	30
1162	Assessing Climate Change Trends and Their Relationships with Alpine Vegetation and Surface Water Dynamics in the Everest Region, Nepal. Atmosphere, 2021, 12, 987.	1.0	3
1164	Enhanced capacitive deionization boosted by Co and N co-doping in carbon materials. Separation and Purification Technology, 2021, 266, 118590.	3.9	17
1165	River Extraction under Bankfull Discharge Conditions Based on Sentinel-2 Imagery and DEM Data. Remote Sensing, 2021, 13, 2650.	1.8	13
1166	Fine temporal resolution satellite sensors with global coverage: an opportunity for landscape ecologists. Landscape Ecology, 2021, 36, 2199-2213.	1.9	7
1167	A spatially based quantile regression forest model for mapping rural land values. Journal of Environmental Management, 2021, 289, 112509.	3.8	15
1168	Applying Remotely Sensed Environmental Information to Model Mosquito Populations. Sustainability, 2021, 13, 7655.	1.6	3
1169	Systematic Water Fraction Estimation for a Global and Daily Surface Water Time-Series. Remote Sensing, 2021, 13, 2675.	1.8	2
1170	Land degradation modeling of dust storm sources using MODIS and meteorological time series data. Journal of Arid Environments, 2021, 190, 104507.	1,2	13
1171	Large-Scale River Mapping Using Contrastive Learning and Multi-Source Satellite Imagery. Remote Sensing, 2021, 13, 2893.	1.8	8

#	Article	IF	CITATIONS
1172	Thermokarst Lagoons: A Core-Based Assessment of Depositional Characteristics and an Estimate of Carbon Pools on the Bykovsky Peninsula. Frontiers in Earth Science, 2021, 9, .	0.8	7
1173	Projections of Global Delta Land Loss From Seaâ€Level Rise in the 21st Century. Geophysical Research Letters, 2021, 48, e2021GL093368.	1.5	23
1174	Recent changes in cropland area and productivity indicate unsustainable cropland expansion in Malawi. Environmental Research Letters, 2021, 16, 084052.	2.2	14
1175	Monitoring of dynamic wetland changes using NDVI and NDWI based landsat imagery. Remote Sensing Applications: Society and Environment, 2021, 23, 100547.	0.8	18
1176	Shrub decline and expansion of wetland vegetation revealed by very high resolution land cover change detection in the Siberian lowland tundra. Science of the Total Environment, 2021, 782, 146877.	3.9	19
1177	Sentinel-1&2 Multitemporal Water Surface Detection Accuracies, Evaluated at Regional and Reservoirs Level. Remote Sensing, 2021, 13, 3279.	1.8	11
1178	Satellite imaging reveals increased proportion of population exposed to floods. Nature, 2021, 596, 80-86.	13.7	402
1179	A high-resolution life cycle impact assessment model for continental freshwater habitat change due to water consumption. Science of the Total Environment, 2021, 782, 146664.	3.9	11
1180	Rapidly declining surface and terrestrial water resources in Central Asia driven by socio-economic and climatic changes. Science of the Total Environment, 2021, 784, 147193.	3.9	71
1182	A hybrid correlativeâ€mechanistic approach for modeling winter distributions of North American bat species. Journal of Biogeography, 2021, 48, 2429-2444.	1.4	4
1183	Model cascade from meteorological drivers to river flood hazard: flood-cascade v1.0. Geoscientific Model Development, 2021, 14, 4865-4890.	1.3	4
1184	Time-Series Remote Sensing Study to Detect Surface Water Seasonality and Local Water Management at Upper Reaches of Southwestern Bengal Delta from 1972 to 2020. Sustainability, 2021, 13, 9798.	1.6	2
1185	Towards an open and synergistic framework for mapping global land cover. PeerJ, 2021, 9, e11877.	0.9	7
1186	Determining Temporal Uncertainty of a Global Inland Surface Water Time Series. Remote Sensing, 2021, 13, 3454.	1.8	3
1187	Capacitive Removal of Fluoride Ions via Creating Multiple Capture Sites in a Modulatory Heterostructure. Environmental Science & Environmental Science	4.6	54
1188	Inventory and evolution of glacial lakes since the Little Ice Age: Lessons from the case of Switzerland. Earth Surface Processes and Landforms, 2021, 46, 2551-2564.	1.2	18
1189	Contributions of dry rivers to human well-being: A global review for future research. Ecosystem Services, 2021, 50, 101307.	2.3	11
1191	Modeling satellite-based open water fraction via flexible Beta regression: An application to wetlands in the north-western Pacific coast of Mexico. , 2021, , .		0

#	Article	IF	CITATIONS
1192	100Âyears of lake evolution over the Qinghai–Tibet Plateau. Earth System Science Data, 2021, 13, 3951-3966.	3.7	32
1193	The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth System Science Data, 2021, 13, 3907-3925.	3.7	738
1194	Spatially and Temporally Resolved Monitoring of Glacial Lake Changes in Alps During the Recent Two Decades. Frontiers in Earth Science, 2021, 9, .	0.8	7
1195	Permafrost dynamics and their hydrologic impacts over the Russian Arctic drainage basin. Advances in Climate Change Research, 2021, 12, 482-498.	2.1	20
1196	Songhua River basin's improving water quality since 2005 based on Landsat observation of water clarity. Environmental Research, 2021, 199, 111299.	3.7	12
1197	Using Google Earth Engine development environment for remote sensing image analysis, Al Shuwija marsh case study. Journal of Physics: Conference Series, 2021, 1973, 012192.	0.3	3
1198	Monitoring Drought through the Lens of Landsat: Drying of Rivers during the California Droughts. Remote Sensing, 2021, 13, 3423.	1.8	3
1201	Using Multisource Satellite Data to Investigate Lake Area, Water Level, and Water Storage Changes of Terminal Lakes in Ungauged Regions. Remote Sensing, 2021, 13, 3221.	1.8	10
1202	Hydroclimatic analysis of rising water levels in the Great rift Valley Lakes of Kenya. Journal of Hydrology: Regional Studies, 2021, 36, 100857.	1.0	17
1203	Comparison of GRACE and GNSS Seasonal Load Displacements Considering Regional Averages and Discrete Points. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021775.	1.4	16
1205	The concept, approach, and future research of hydrological connectivity and its assessment at multiscales. Environmental Science and Pollution Research, 2021, 28, 52724-52743.	2.7	33
1206	Inland Water Body Mapping Using CYGNSS Coherence Detection. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 7385-7394.	2.7	31
1207	Climate change and coastal archaeology in the Middle East and North Africa: assessing past impacts and future threats. Journal of Island and Coastal Archaeology, 2023, 18, 251-283.	0.6	20
1208	Hydrological contraction patterns and duration of drying period shape microbial-mediated litter decomposition. Science of the Total Environment, 2021, 785, 147312.	3.9	4
1210	Sediment Organic Carbon Sequestration of Balkhash Lake in Central Asia. Sustainability, 2021, 13, 9958.	1.6	0
1211	GPS Constraints on Droughtâ€Induced Groundwater Loss Around Great Salt Lake, Utah, With Implications for Seismicity Modulation. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022020.	1.4	6
1212	Integrating Remote Sensing and Numerical Modeling to Quantify the Water Balance of Climateâ€Induced Intermittent Wetlands. Water Resources Research, 2021, 57, e2020WR029310.	1.7	7
1213	Satellite Constraints on the Latitudinal Distribution and Temperature Sensitivity of Wetland Methane Emissions. AGU Advances, 2021, 2, e2021AV000408.	2.3	31

#	Article	IF	CITATIONS
1214	Efficiency Enhancement of Electro-Adsorption Desalination Using Iron Oxide Nanoparticle-Incorporated Activated Carbon Nanocomposite. Micromachines, 2021, 12, 1148.	1.4	3
1215	Using Remote Sensing Techniques to Improve Hydrological Predictions in a Rapidly Changing World. Remote Sensing, 2021, 13, 3865.	1.8	2
1216	Remote Sensing of Wetlands in the Prairie Pothole Region of North America. Remote Sensing, 2021, 13, 3878.	1.8	15
1217	Towards High-Resolution Land-Cover Classification of Greenland: A Case Study Covering Kobbefjord, Disko and Zackenberg. Remote Sensing, 2021, 13, 3559.	1.8	3
1219	Hydraulic Model Calibration Using CryoSatâ€2 Observations in the Zambezi Catchment. Water Resources Research, 2021, 57, e2020WR029261.	1.7	7
1220	Highâ€Resolution Mapping of Ice Cover Changes in Over 33,000 Lakes Across the North Temperate Zone. Geophysical Research Letters, 2021, 48, e2021GL095614.	1.5	9
1221	Topographic Asymmetry Across the Arctic. Geophysical Research Letters, 2021, 48, e2021GL094895.	1.5	1
1222	A Framework for Calculating Peak Discharge and Flood Inundation in Ungauged Urban Watersheds Using Remotely Sensed Precipitation Data: A Case Study in Freetown, Sierra Leone. Remote Sensing, 2021, 13, 3806.	1.8	5
1223	Volume and uncertainty estimates of on-farm reservoirs using surface reflectance and LiDAR data. Environmental Modelling and Software, 2021, 143, 105095.	1.9	5
1224	Mapping dynamic non-perennial stream networks using high-resolution distributed hydrologic simulation: A case study in the upper blue river basin. Journal of Hydrology, 2021, 600, 126522.	2.3	11
1225	Spatiotemporal Analysis of Land Cover and the Effects on Ecosystem Service Values in Rupandehi, Nepal from 2005 to 2020. ISPRS International Journal of Geo-Information, 2021, 10, 635.	1.4	4
1226	Surface composition of debris-covered glaciers across the Himalaya using linear spectral unmixing of Landsat 8 OLI imagery. Cryosphere, 2021, 15, 4557-4588.	1.5	9
1227	Latin American cities with higher socioeconomic status are greening from a lower baseline: evidence from the SALURBAL project. Environmental Research Letters, 2021, 16, 104052.	2.2	13
1228	Multidimensional Assessment of Lake Water Ecosystem Services Using Remote Sensing. Remote Sensing, 2021, 13, 3540.	1.8	4
1229	Examining rice distribution and cropping intensity in a mixed single- and double-cropping region in South China using all available Sentinel 1/2 images. International Journal of Applied Earth Observation and Geoinformation, 2021, 101, 102351.	1.4	25
1230	Forest loss in Indonesian New Guinea (2001–2019): Trends, drivers and outlook. Biological Conservation, 2021, 261, 109225.	1.9	22
1231	On the human appropriation of wetland primary production. Science of the Total Environment, 2021, 785, 147097.	3.9	13
1232	Greening vs browning? Surface water cover mediates how tundra and boreal ecosystems respond to climate warming. Environmental Research Letters, 2021, 16, 104004.	2.2	6

#	Article	IF	Citations
1233	Shrinking thermokarst lakes and ponds on the northeastern Qinghaiâ€√libet plateau over the past three decades. Permafrost and Periglacial Processes, 2021, 32, 601-617.	1.5	17
1234	Using interview surveys and multispecies occupancy models to inform vertebrate conservation. Conservation Biology, 2022, 36, .	2.4	5
1235	Chlorophyll and Suspended Solids Estimation in Portuguese Reservoirs (Aguieira and Alqueva) from Sentinel-2 Imagery. Water (Switzerland), 2021, 13, 2479.	1.2	8
1236	Making Landsat 5, 7 and 8 reflectance consistent using MODIS nadir-BRDF adjusted reflectance as reference. Remote Sensing of Environment, 2021, 262, 112517.	4.6	12
1237	Vulnerability of an arid zone coastal wetland landscape to sea level rise and intense storms. Limnology and Oceanography, 2021, 66, 3976-3989.	1.6	7
1238	High-accuracy continuous mapping of surface water dynamics using automatic update of training samples and temporal consistency modification based on Google Earth Engine: A case study from Huizhou, China. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 179, 66-80.	4.9	19
1239	An Improved Eutrophication Assessment Algorithm of Estuaries and Coastal Waters in Liaodong Bay. Remote Sensing, 2021, 13, 3867.	1.8	2
1240	Fluvial carbon dioxide emission from the Lena River basin during the spring flood. Biogeosciences, 2021, 18, 4919-4936.	1.3	19
1241	Impacts of water resources management on land water storage in the North China Plain: Insights from multi-mission earth observations. Journal of Hydrology, 2021, 603, 126933.	2.3	17
1242	Towards user-adaptive remote sensing: Knowledge-driven automatic classification of Sentinel-2 time series. Remote Sensing of Environment, 2021, 264, 112615.	4.6	12
1243	Monitoring desertification in Mongolia based on Landsat images and Google Earth Engine from 1990 to 2020. Ecological Indicators, 2021, 129, 107908.	2.6	50
1244	From narratives to numbers: Spatial downscaling and quantification of future water, food & mp; energy security requirements in the Indus basin. Futures, 2021, 133, 102831.	1.4	10
1245	Detecting cocoa plantations in Côte d'Ivoire and Ghana and their implications on protected areas. Ecological Indicators, 2021, 129, 107863.	2.6	23
1246	Mapping inter- and intra-annual dynamics in water surface area of the Tonle Sap Lake with Landsat time-series and water level data. Journal of Hydrology, 2021, 601, 126644.	2.3	16
1247	Deep learning approach for Sentinel-1 surface water mapping leveraging Google Earth Engine. ISPRS Open Journal of Photogrammetry and Remote Sensing, 2021, 2, 100005.	1.3	29
1248	Precise inland surface altimetry (PISA) with nadir specular echoes from Sentinel-3: Algorithm and performance assessment. Remote Sensing of Environment, 2021, 264, 112580.	4.6	4
1249	Synthesizing social and environmental sensing to monitor the impact of large-scale infrastructure development. Environmental Science and Policy, 2021, 124, 527-540.	2.4	8
1250	Water clarity changes in Lake Taihu over 36Âyears based on Landsat TM and OLI observations. International Journal of Applied Earth Observation and Geoinformation, 2021, 102, 102457.	1.4	13

#	Article	IF	CITATIONS
1251	Pre- and within-season crop type classification trained with archival land cover information. Remote Sensing of Environment, 2021, 264, 112576.	4.6	55
1252	Exploring Sentinel-1 and Sentinel-2 diversity for flood inundation mapping using deep learning. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 180, 163-173.	4.9	56
1253	Mapping regional surface water volume variation in reservoirs in northeastern Brazil during 2009–2017 using high-resolution satellite images. Science of the Total Environment, 2021, 789, 147711.	3.9	5
1254	Recovery of an endorheic lake after a decade of conservation efforts: Mediating the water conflict between agriculture and ecosystems. Agricultural Water Management, 2021, 256, 107107.	2.4	14
1255	Water clarity response to climate warming and wetting of the Inner Mongolia-Xinjiang Plateau: A remote sensing approach. Science of the Total Environment, 2021, 796, 148916.	3.9	11
1256	High-resolution urban change modeling and flood exposure estimation at a national scale using open geospatial data: A case study of the Philippines. Computers, Environment and Urban Systems, 2021, 90, 101704.	3.3	7
1257	Deriving exclusion maps from C-band SAR time-series in support of floodwater mapping. Remote Sensing of Environment, 2021, 265, 112668.	4.6	13
1258	Mapping floodplain bathymetry in the middle-lower Amazon River using inundation frequency and field control. Geomorphology, 2021, 392, 107937.	1.1	7
1259	Validation of the U.S. Geological Survey's Land Change Monitoring, Assessment and Projection (LCMAP) Collection 1.0 annual land cover products 1985–2017. Remote Sensing of Environment, 2021, 265, 112646.	4.6	38
1260	Precipitation events determine the spatiotemporal distribution of playa surface salinity in arid regions: evidence from satellite data fused via the enhanced spatial and temporal adaptive reflectance fusion model. Catena, 2021, 206, 105546.	2.2	12
1261	A new method for describing the inundation status of floodplain wetland. Ecological Indicators, 2021, 131, 108144.	2.6	6
1262	Conservation conundrum – Red listing of subtropical-temperate coastal forested wetlands of South Africa. Ecological Indicators, 2021, 130, 108077.	2.6	3
1263	Monitoring high spatiotemporal water dynamics by fusing MODIS, Landsat, water occurrence data and DEM. Remote Sensing of Environment, 2021, 265, 112680.	4.6	33
1264	On the land emissivity assumption and Landsat-derived surface urban heat islands: A global analysis. Remote Sensing of Environment, 2021, 265, 112682.	4.6	48
1265	Determination of Mucilage in The Sea of Marmara Using Remote Sensing Techniques with Google Earth Engine. International Journal of Environment and Geoinformatics, 2021, 8, 423-434.	0.5	22
1266	The effect of agricultural intensification and water-locking on the world's largest coastal lagoonal system. Science of the Total Environment, 2021, 801, 149664.	3.9	11
1267	The rise of West Nile Virus in Southern and Southeastern Europe: A spatial–temporal analysis investigating the combined effects of climate, land use and economic changes. One Health, 2021, 13, 100315.	1.5	21
1268	A remote sensing-based area dataset for approximately 40Âyears that reveals the hydrological asynchrony of Lake Chad based on Google Earth Engine. Journal of Hydrology, 2021, 603, 126934.	2.3	13

#	Article	IF	CITATIONS
1269	From parcel to continental scale – A first European crop type map based on Sentinel-1 and LUCAS Copernicus in-situ observations. Remote Sensing of Environment, 2021, 266, 112708.	4.6	74
1270	Retrieving dynamics of the surface water extent in the upper reach of Yellow River. Science of the Total Environment, 2021, 800, 149348.	3.9	16
1271	An applicable and automatic method for earth surface water mapping based on multispectral images. International Journal of Applied Earth Observation and Geoinformation, 2021, 103, 102472.	1.4	8
1272	A novel Landsat-based automated mapping of marsh wetland in the headwaters of the Brahmaputra, Ganges and Indus Rivers, southwestern Tibetan Plateau. International Journal of Applied Earth Observation and Geoinformation, 2021, 103, 102481.	1.4	3
1273	Evolution of the hydro-ecological environment and its natural and anthropogenic causes during 1985–2019 in the Nenjiang River basin. Science of the Total Environment, 2021, 799, 149256.	3.9	15
1274	Mapping water bodies under cloud cover using remotely sensed optical images and a spatiotemporal dependence model. International Journal of Applied Earth Observation and Geoinformation, 2021, 103, 102470.	1.4	9
1275	Mapping hierarchical urban boundaries for global urban settlements. International Journal of Applied Earth Observation and Geoinformation, 2021, 103, 102480.	1.4	8
1276	Mismatches between vegetation greening and primary productivity trends in South Asia – A satellite evidence. International Journal of Applied Earth Observation and Geoinformation, 2021, 104, 102561.	1.4	9
1277	A novel automatic phenology learning (APL) method of training sample selection using multiple datasets for time-series land cover mapping. Remote Sensing of Environment, 2021, 266, 112670.	4.6	19
1278	Satellite and UAV-based remote sensing for assessing the flooding risk from Tibetan lake expansion and optimizing the village relocation site. Science of the Total Environment, 2022, 802, 149928.	3.9	14
1279	Multi-hazard susceptibility and exposure assessment of the Hindu Kush Himalaya. Science of the Total Environment, 2022, 804, 150039.	3.9	39
1280	Impacts of meander migration on the Amazon riverine communities using Landsat time series and cloud computing. Science of the Total Environment, 2022, 806, 150449.	3.9	17
1281	Remote sensing of wetland evolution in predicting shallow groundwater arsenic distribution in two typical inland basins. Science of the Total Environment, 2022, 806, 150496.	3.9	20
1282	Development of spontaneous vegetation on reclaimed land in Singapore measured by NDVI. PLoS ONE, 2021, 16, e0245220.	1.1	7
1283	Assessing the impact of bridge construction on the land use/cover and socio-economic indicator time series: A case study of Hangzhou Bay Bridge. GIScience and Remote Sensing, 2021, 58, 199-216.	2.4	6
1284	Strengthening Flood and Drought Risk Management Tools for the Lake Chad Basin. , 2021, , 387-405.		2
1285	Pervasive cropland in protected areas highlight trade-offs between conservation and food security. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38
1286	Long Time Series Water Extent Analysis for SDG 6.6.1 Based on the GEE Platform: A Case Study of Dongting Lake. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 490-503.	2.3	19

#	Article	IF	CITATIONS
1287	A Spatially Weighted Neural Network Based Water Quality Assessment Method for Large-Scale Coastal Areas. Environmental Science & Environmental Science	4.6	25
1288	Input imagery, classifiers, and cloud computing: Insights from multi-temporal LULC mapping in the Cambodian Mekong Delta. European Journal of Remote Sensing, 2021, 54, 398-416.	1.7	18
1290	Water chemistry in the biological studies by using nuclear analytical techniques., 2021,, 133-156.		0
1291	Small Waterbody Extraction With Improved U-Net Using Zhuhai-1 Hyperspectral Remote Sensing Images. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	17
1292	Implementation of an Improved Water Change Tracking (IWCT) Algorithm: Monitoring the Water Changes in Tianjin over 1984–2019 Using Landsat Time-Series Data. Remote Sensing, 2021, 13, 493.	1.8	4
1294	Geomorphological and Climatic Drivers of Thermokarst Lake Area Increase Trend (1999–2018) in the Kolyma Lowland Yedoma Region, North-Eastern Siberia. Remote Sensing, 2021, 13, 178.	1.8	40
1295	Analysis of the causes of wetland landscape patterns and hydrological connectivity changes in Momoge National Nature Reserve based on the Google Earth Engine Platform. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	26
1296	Sentinel-3 radar altimetry for river monitoring – a catchment-scale evaluation of satellite water surface elevation from Sentinel-3A and Sentinel-3B. Hydrology and Earth System Sciences, 2021, 25, 333-357.	1.9	44
1297	Asymmetric Siamese Networks for Semantic Change Detection in Aerial Images. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-18.	2.7	39
1298	Changes in China's water resources in the early 21st century. Frontiers in Ecology and the Environment, 2020, 18, 188-193.	1.9	22
1299	The Complexity and Challenges of Central Asia's Water-Energy-Food Systems. Landscape Series, 2020, , 71-85.	0.1	4
1300	Ecosystem Services from Inland Waters and Their Aquatic Ecosystems. , 2019, , 191-195.		16
1301	Annual 30-m land use/land cover maps of China for 1980–2015 from the integration of AVHRR, MODIS and Landsat data using the BFAST algorithm. Science China Earth Sciences, 2020, 63, 1390-1407.	2.3	64
1302	Complex causes and consequences of rangeland greening in South America – multiple interacting natural and anthropogenic drivers and simultaneous ecosystem degradation and recovery trends. Geography and Sustainability, 2020, 1, 304-316.	1.9	8
1303	Dryland communities find little refuge from grazing due to long-term changes in water availability. Journal of Arid Environments, 2020, 176, 104098.	1.2	3
1304	Satellite monitoring of surface water variability in the drought prone Western Cape, South Africa. Physics and Chemistry of the Earth, 2021, 124, 102914.	1.2	4
1305	Quantitative analysis of the links between forest structure and land surface albedo on a global scale. Remote Sensing of Environment, 2020, 246, 111854.	4.6	33
1306	Space eye on flying aircraft: From Sentinel-2 MSI parallax to hybrid computing. Remote Sensing of Environment, 2020, 246, 111867.	4.6	16

#	Article	IF	CITATIONS
1307	Monitoring cropland abandonment with Landsat time series. Remote Sensing of Environment, 2020, 246, 111873.	4.6	93
1308	Progradation Rates Measured at Modern River Outlets: A Firstâ€Order Constraint on the Pace of Deltaic Deposition. Journal of Geophysical Research F: Earth Surface, 2019, 124, 347-364.	1.0	7
1309	GFPLAIN250m, a global high-resolution dataset of Earth's floodplains. Scientific Data, 2019, 6, 180309.	2.4	92
1310	Quantifying surface severity of the 2014 and 2015 fires in the Great Slave Lake area of Canada. International Journal of Wildland Fire, 2020, 29, 892.	1.0	7
1311	Predicting long-term dynamics of soil salinity and sodicity on a global scale. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33017-33027.	3.3	177
1312	Vulnerability of the Caspian Sea shoreline to changes in hydrology and climate. Environmental Research Letters, 2020, 15, 115002.	2.2	24
1313	The bioclimatic extent and pattern of the cold edge of the boreal forest: the circumpolar taiga-tundra ecotone. Environmental Research Letters, 2020, 15, 105019.	2.2	13
1314	Periglacial vegetation dynamics in Arctic Russia: decadal analysis of tundra regeneration on landslides with time series satellite imagery. Environmental Research Letters, 2020, 15, 105020.	2.2	22
1315	Changes in land use/land cover and net primary productivity in the transboundary Ili-Balkhash basin of Central Asia, 1995–2015. Environmental Research Communications, 2020, 2, 011006.	0.9	15
1322	Analysis and Selection Criteria of Lakes and Dams of Pakistan for Floating Photovoltaic Capabilities. Journal of Solar Energy Engineering, Transactions of the ASME, 2020, 142, .	1.1	15
1323	Landsat TM/ETM+ and machine-learning algorithms for limnological studies and algal bloom management of inland lakes. Journal of Applied Remote Sensing, 2018, 12, 1.	0.6	23
1324	Land-use and land-cover classification using Sentinel-2 data and machine-learning algorithms: operational method and its implementation for a mountainous area of Nepal. Journal of Applied Remote Sensing, 2019, 13, 1.	0.6	23
1325	Using the modified two-mode method to identify surface water in Gaofen-1 images. Journal of Applied Remote Sensing, 2018, 13, 1.	0.6	8
1326	Potential of global thresholding methods for the identification of surface water resources using Sentinel-2 satellite imagery and normalized difference water index. Journal of Applied Remote Sensing, 2019, 13, 1.	0.6	11
1327	GEE4FLOOD: rapid mapping of flood areas using temporal Sentinel-1 SAR images with Google Earth Engine cloud platform. Journal of Applied Remote Sensing, 2020, 14, 1.	0.6	30
1328	Mapping small and medium-sized water reservoirs using Sentinel-1A: a case study in Chiapas, Mexico. Journal of Applied Remote Sensing, 2020, 14, 1.	0.6	3
1329	On water surface delineation in rivers using Landsat-8, Sentinel-1 and Sentinel-2 data., 2018,,.		4
1330	Index-based methods for water body extraction in satellite data. , 2019, , .		6

#	Article	IF	CITATIONS
1331	Recurrent feedback CNN for water region estimation from multitemporal satellite images. , 2019, , .		2
1332	Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Science Advances, 2020, 6, .	4.7	82
1333	The spatiotemporal changes of \hat{A} marshland and the driving forces in the Sanjiang Plain, Northeast China from 1980 to 2016. Ecological Processes, 2020, 9, .	1.6	17
1334	Spatiotemporal variation and climatic response of water level of major lakes in China, Mongolia, and Russia. Open Geosciences, 2020, 12, 1200-1211.	0.6	2
1335	Automatic Ex-post Flood Assessment Using Long Time Series of Optical Earth Observation Images. $GI_Forum, 0, 1, 217-227.$	0.2	6
1336	Deciphering the many maps of the Xingu River Basin – an assessment of land cover classifications at multiple scales. Proceedings of the Academy of Natural Sciences of Philadelphia, 2020, 166, .	1.3	6
1337	geemap: A Python package for interactive mapping with Google Earth Engine. Journal of Open Source Software, 2020, 5, 2305.	2.0	107
1338	USING OPTICAL SATELLITE AND AERIAL IMAGERY FOR AUTOMATIC COASTLINE MAPPING. Geographia Technica, 2020, 15, 171-190.	0.2	8
1339	A review on the driving forces of water decline and its impacts on the environment in Poyang Lake, China. Journal of Water and Climate Change, 2021, 12, 1370-1391.	1.2	16
1342	Lake Sevan Shoreline Change Assessment Using Multi-Temporal Landsat Images. Geography, Environment, Sustainability, 2019, 12, 212-229.	0.6	12
1343	The use of satellite images for assessment of lakes morphometric characteristics and for development of lake network density and lake percentage maps. Regional Ecology, 2019, 56, 43.	0.1	1
1344	Detecting the Dynamics of Urban Growth in Africa Using DMSP/OLS Nighttime Light Data. Land, 2021, 10, 13.	1.2	9
1345	Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data. Remote Sensing, 2019, 11, 51.	1.8	51
1346	Next Generation Mapping: Combining Deep Learning, Cloud Computing, and Big Remote Sensing Data. Remote Sensing, 2019, 11, 2881.	1.8	42
1347	Automatic Extraction of Water Inundation Areas Using Sentinel-1 Data for Large Plain Areas. Remote Sensing, 2020, 12, 243.	1.8	16
1348	Automatic Surface Water Mapping Using Polarimetric SAR Data for Long-Term Change Detection. Water (Switzerland), 2020, 12, 872.	1.2	21
1349	Análisis espacio temporal y climático del humedal altoandino de Chalhuanca (Perú) durante el periodo 1986-2016. Revista De Teledeteccion, 2020, , 105.	0.6	6
1350	Exploring constraints on a wetland methane emission ensemble (WetCHARTs) using GOSAT observations. Biogeosciences, 2020, 17, 5669-5691.	1.3	16

#	Article	IF	CITATIONS
1351	Hydromorphological attributes for all Australian river reaches derived from Landsat dynamic inundation remote sensing. Earth System Science Data, 2019, 11, 1003-1015.	3.7	19
1352	Time series of the Inland Surface Water Dataset in China (ISWDC) for 2000–2016 derived from MODIS archives. Earth System Science Data, 2019, 11, 1099-1108.	3.7	24
1353	High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth System Science Data, 2019, 11, 1603-1627.	3.7	112
1354	Multi-source global wetland maps combining surface water imagery and groundwater constraints. Earth System Science Data, 2019, 11, 189-220.	3.7	72
1355	A dataset of 30 m annual vegetation phenology indicators (1985–2015) in urban areas of the conterminous United States. Earth System Science Data, 2019, 11, 881-894.	3.7	54
1356	Satellite-based remote sensing data set of global surface water storage change from 1992 to 2018. Earth System Science Data, 2020, 12, 1141-1151.	3.7	35
1357	Annual dynamics of global land cover and its long-term changes from 1982 to 2015. Earth System Science Data, 2020, 12, 1217-1243.	3.7	170
1358	The Global Methane Budget 2000–2017. Earth System Science Data, 2020, 12, 1561-1623.	3.7	1,199
1359	Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth System Science Data, 2020, 12, 1625-1648.	3.7	161
1360	Earth transformed: detailed mapping of global human modification from 1990 to 2017. Earth System Science Data, 2020, 12, 1953-1972.	3.7	96
1362	Dominant process zones in a mixed fluvial–tidal delta are morphologically distinct. Earth Surface Dynamics, 2020, 8, 809-824.	1.0	6
1363	DATA PROCESSING ARCHITECTURES FOR MONITORING FLOODS USING SENTINEL-1. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 0, V-3-2020, 641-648.	0.0	11
1364	EXTRACTION OF RIVERS AND LAKES ON TIBETAN PLATEAU BASED ON GOOGLE EARTH ENGINE. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2/W13, 1797-1801.	0.2	5
1365	Comparison of estimates of global flood models for flood hazard and exposed gross domestic product: a China case study. Natural Hazards and Earth System Sciences, 2020, 20, 3245-3260.	1.5	22
1366	Oblique geographic coordinates as covariates for digital soil mapping. Soil, 2020, 6, 269-289.	2.2	39
1367	Monitoring monthly surface water dynamics of Dongting Lake using Sentinal-1 data at 10 m. PeerJ, 2018, 6, e4992.	0.9	36
1368	Global mapping of potential natural vegetation: an assessment of machine learning algorithms for estimating land potential. PeerJ, 2018, 6, e5457.	0.9	94
1369	Neither heat pulse, nor multigenerational exposure to a modest increase in water temperature, alters the susceptibility of Guadeloupean <i>Biomphalaria glabrata</i> to <i>Schistosoma mansoni</i> infection. PeerJ, 2020, 8, e9059.	0.9	6

#	Article	IF	CITATIONS
1370	The Influence of Land Cover Changes on Landscape Hydric Potential and River Flows: Upper Vistula, Western Carpathians. SSRN Electronic Journal, 0, , .	0.4	0
1371	Agricultural Land Abandonment and Retirement Mapping in the Northern China Crop-Pasture Band Using Temporal Consistency Check and Trajectory-Based Change Detection Approach. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12.	2.7	10
1372	Monitoring the spatiotemporal dynamics of surface water body of the Xiaolangdi Reservoir using Landsat-5/7/8 imagery and Google Earth Engine. Open Geosciences, 2021, 13, 1290-1302.	0.6	7
1373	Genetic Algorithm for Improved Transfer Learning Through Bagging Color-Adjusted Models., 2021,,.		O
1374	Surface Water Detection from Sentinel-1., 2021, , .		2
1375	State of the Art in GNSS-R Capabilities Over Inland Waters. , 2021, , .		5
1376	High-Resolution Mapping of Rainwater Harvesting System Capacity from Satellite Derived Products in South India. , $2021, \dots$		2
1377	Canada's Emergency Geomatics Service Near Real-Time Flood Mapping from Multi-Source Data. , 2021, , .		0
1378	Mapping Surface Water Extent in Mainland Alaska Using VIIRS Surface Reflectance., 2021,,.		2
1379	High-Resolution Land Cover Change Detection Using Low-Resolution Labels via a Semi-Supervised Deep Learning Approach - 2021 IEEE Data Fusion Contest Track MSD. , 2021, , .		4
1380	Texture Is Important in Improving the Accuracy of Mapping Photovoltaic Power Plants: A Case Study of Ningxia Autonomous Region, China. Remote Sensing, 2021, 13, 3909.	1.8	20
1381	Changes in Mesopotamian Wetlands: Investigations Using Diverse Remote Sensing Datasets. Wetlands, 2021, 41, 1.	0.7	5
1382	A basin-scale inventory and hydrodynamics of floodplain wetlands based on time-series of remote sensing data. Remote Sensing Letters, 2022, 13, 1-13.	0.6	8
1383	Data Science—Algorithms and Applications in Earth Observation. Studies in Big Data, 2022, , 3-30.	0.8	0
1384	A unified model for high resolution mapping of global lake (>1Âha) clarity using Landsat imagery data. Science of the Total Environment, 2022, 810, 151188.	3.9	19
1385	Simulation of Crop Water Demand and Consumption Considering Irrigation Effects Based on Coupled Hydrologyâ€Crop Growth Model. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002360.	1.3	9
1386	Enhancing Animal Movement Analyses: Spatiotemporal Matching of Animal Positions with Remotely Sensed Data Using Google Earth Engine and R. Remote Sensing, 2021, 13, 4154.	1.8	10
1387	Growing Spatial Overlap Between Dam-Related Flooding, Cropland and Domestic Water Points: A Water–Energy–Food Nexus Management Challenge in Malawi and Ghana. Frontiers in Water, 2021, 3, .	1.0	3

#	Article	IF	CITATIONS
1388	A New Conceptual Framework for Integrating Earth Observation in Large-scale Wetland Management in East Africa. Wetlands, $2021, 41, 1$.	0.7	9
1389	Comparison of Hydrological Patterns between Glacier-Fed and Non-Glacier-Fed Lakes on the Southeastern Tibetan Plateau. Remote Sensing, 2021, 13, 4024.	1.8	1
1390	Mapping Global Urban Impervious Surface and Green Space Fractions Using Google Earth Engine. Remote Sensing, 2021, 13, 4187.	1.8	15
1392	Assessing a Prototype Database for Comprehensive Global Aquatic Land Cover Mapping. Remote Sensing, 2021, 13, 4012.	1.8	2
1393	Combined climatic and anthropogenic stress threaten resilience of important wetland sites in an arid region. Science of the Total Environment, 2022, 806, 150806.	3.9	10
1394	Surface Water Storage in Rivers and Wetlands Derived from Satellite Observations: A Review of Current Advances and Future Opportunities for Hydrological Sciences. Remote Sensing, 2021, 13, 4162.	1.8	26
1395	Sentinelâ€Based Inventory of Thermokarst Lakes and Ponds Across Permafrost Landscapes on the Qinghaiâ€Tibet Plateau. Earth and Space Science, 2021, 8, e2021EA001950.	1.1	31
1396	Testing a Generalizable Machine Learning Workflow for Aquatic Invasive Species on Rainbow Trout (Oncorhynchus mykiss) in Northwest Montana. Frontiers in Big Data, 2021, 4, 734990.	1.8	6
1397	A Future Study of an Environment Driving Force (EDR): The Impacts of Urmia Lake Water-Level Fluctuations on Human Settlements. Sustainability, 2021, 13, 11495.	1.6	10
1398	Achieving Breakthroughs in Global Hydrologic Science by Unlocking the Power of Multisensor, Multidisciplinary Earth Observations. AGU Advances, 2021, 2, e2021AV000455.	2.3	10
1399	Global Dam Watch: curated data and tools for management and decision making. Environmental Research: Infrastructure and Sustainability, 2021, 1, 033003.	0.9	7
1400	Divergent trends of water bodies and their driving factors in a high-latitude water tower, Changbai Mountain. Journal of Hydrology, 2021, 603, 127094.	2.3	10
1401	Climate Signatures on Lake And Wetland Size Distributions in Arctic Deltas. Geophysical Research Letters, 2021, 48, e2021GL094437.	1.5	4
1402	Amazon Hydrology From Space: Scientific Advances and Future Challenges. Reviews of Geophysics, 2021, 59, e2020RG000728.	9.0	53
1403	Translating habitat class to land cover to map area of habitat of terrestrial vertebrates. Conservation Biology, 2022, 36, .	2.4	13
1404	Machine Learning Approaches and Sentinel-2 Data in Crop Type Mapping. Studies in Big Data, 2022, , 161-180.	0.8	2
1405	Deforestation-induced surface warming is influenced by the fragmentation and spatial extent of forest loss in Maritime Southeast Asia. Environmental Research Letters, 2021, 16, 114018.	2.2	9
1406	Efficient measurement of large-scale decadal shoreline change with increased accuracy in tide-dominated coastal environments with Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 181, 385-399.	4.9	27

#	Article	IF	CITATIONS
1407	A novel method for detecting lake ice cover using optical satellite data. International Journal of Applied Earth Observation and Geoinformation, 2021, 104, 102566.	1.4	1
1408	Refining and densifying the water inundation area and storage estimates of Poyang Lake by integrating Sentinel-1/2 and bathymetry data. International Journal of Applied Earth Observation and Geoinformation, 2021, 105, 102601.	1.4	3
1409	Drivers and extent of surface water occurrence in the Selenga River Delta, Russia. Journal of Hydrology: Regional Studies, 2021, 38, 100945.	1.0	5
1410	Machine learning with high-resolution aerial imagery and data fusion to improve and automate the detection of wetlands. International Journal of Applied Earth Observation and Geoinformation, 2021, 105, 102581.	1.4	7
1411	Spatiotemporal variability of global river extent and the natural driving factors revealed by decades of Landsat observations, GRACE gravimetry observations, and land surface model simulations. Remote Sensing of Environment, 2021, 267, 112725.	4.6	10
1412	Automatic mapping of national surface water with OpenStreetMap and Sentinel-2 MSI data using deep learning. International Journal of Applied Earth Observation and Geoinformation, 2021, 104, 102571.	1.4	10
1413	Using the Google Earth Engine to rapidly monitor impacts of geohazards on ecological quality in highly susceptible areas. Ecological Indicators, 2021, 132, 108258.	2.6	26
1414	Generation and analysis of stage-fall-discharge laws from coupled hydrological-hydraulic river network model integrating sparse multi-satellite data. Journal of Hydrology, 2021, 603, 126993.	2.3	7
1415	Detecting unknown dams from high-resolution remote sensing images: A deep learning and spatial analysis approach. International Journal of Applied Earth Observation and Geoinformation, 2021, 104, 102576.	1.4	9
1416	Overview of Earth Imagery Classification. , 2017, , 47-56.		1
1417	Fusion of radar and optical data for mapping and monitoring of water bodies., 2017,,.		1
1418	PRODUCTION OF GLOBAL SURFACE WATER MAP BY MULTIPLE MICROWAVE RADIOMETERS AND ITS FUNDAMENTAL VALIDATION. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2018, 74, I_67-I_72.	0.0	1
1419	Frontiers in Hydrology and Water Resources Research. Suimon Mizu Shigen Gakkaishi, 2018, 31, 509-540.	0.1	1
1420	A NOVEL METHOD FOR WATER AND WATER CANAL EXTRACTION FROM LANDSAT-8 OLI IMAGERY. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-5, 323-328.	0.2	2
1421	DETECTION OF INUNDATION AND PRODUCTION OF HIGH-SPATIAL-RESOLUTION SURFACE WATER MAP USING MICROWAVE RADIOMETERS. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2019, 75, I_1093-I_1098.	0.0	0
1422	Assessment of the effectiveness of supervised and unsupervised methods: maximizing land-cover classification accuracy with spectral indices data. Journal of Applied Remote Sensing, 2019, 13, 1.	0.6	6
1423	Assessing density of the lakes in West Siberian Plain basing on the Global Surface Water data. Geodeziya I Kartografiya, 2019, 942, 8-21.	0.2	1
1424	APPLICATION OF REMOTE SENSING AND GIS TO WATER TRANSPARENCY ESTIMATION IN RESERVOIRS. Carpathian Journal of Earth and Environmental Sciences, 2019, 14, 353-366.	0.2	1

#	Article	IF	Citations
1425	Spatial and Temporal Change Monitoring in Water Surface Area of Atikhisar Reservoir (\tilde{A} ‡anakkale,) Tj ETQq 0 0 Bilimleri Dergisi, 0 , , .	0 rgBT /Ον 0.1	erlock 10 Tf : 6
1426	Plankton biodiversity in various typologies of inundation in Paminggir peatland, South Kalimantan, Indonesia on dry season. Biodiversitas, 2020, 21, .	0.2	2
1427	Estimation of suspended sediment concentrations in the Rhine River using Landsat Satellite Images. IOP Conference Series: Earth and Environmental Science, 0, 451, 012079.	0.2	1
1430	Denitrification and associated nitrous oxide and carbon dioxide emissions from the Amazonian wetlands. Biogeosciences, 2020, 17, 4297-4311.	1.3	9
1431	Scale and Landscape Features Matter for Understanding Waterbird Habitat Selection. Remote Sensing, 2021, 13, 4397.	1.8	7
1432	A Preliminary Global Automatic Burned-Area Algorithm at Medium Resolution in Google Earth Engine. Remote Sensing, 2021, 13, 4298.	1.8	17
1433	The normalised Sentinel-1 Global Backscatter Model, mapping Earth's land surface with C-band microwaves. Scientific Data, 2021, 8, 277.	2.4	30
1434	Combining ground-based and remotely sensed snow data in a linear regression model for real-time estimation of snow water equivalent. Advances in Water Resources, 2022, 160, 104075.	1.7	13
1435	Geomorphology of the Congaree River floodplain: Implications for the inundation continuum. Water Resources Research, 2021, 57, e2020WR029456.	1.7	4
1436	Water clarity in Brazilian water assessed using Sentinel-2 and machine learning methods. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 182, 134-152.	4.9	42
1437	Assessing the effects of irrigated agricultural expansions on Lake Urmia using multi-decadal Landsat imagery and a sample migration technique within Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 2021, 105, 102607.	1.4	13
1438	Utilizing unsupervised learning, multi-view imaging, and CNN-based attention facilitates cost-effective wetland mapping. Remote Sensing of Environment, 2021, 267, 112757.	4.6	12
1440	Lake surface changes of the Osa River catchment, (northern Poland), 1900–2010. Journal of Maps, 2021, 17, 18-29.	1.0	5
1441	Physical Dynamics of the Lake: Is It Dying?., 2021,, 141-177.		0
1442	Aquatic habitat changes within the channelized and impounded Arkansas River, Arkansas, <scp>USA</scp> . River Research and Applications, 2021, 37, 462-474.	0.7	1
1443	Integrating dynamic processes into waterfowl conservation prioritization tools. Diversity and Distributions, 2021, 27, 585-601.	1.9	8
1444	Assessing the capabilities of the Surface Water and Ocean Topography (SWOT) mission for large lake water surface elevation monitoring under different wind conditions. Hydrology and Earth System Sciences, 2020, 24, 5985-6000.	1.9	6
1445	Flood Mapping from Multi-Sensor EO Data for Near Real-Time Infrastructure Impact Assessment: Lessons Learned from the 2017 Spring Flood in Eastern Canada. Springer Remote Sensing/photogrammetry, 2021, , 275-289.	0.4	O

#	Article	IF	CITATIONS
1446	Constraining the contribution of glacier mass balance to the Tibetan lake growth in the early 21st century. Remote Sensing of Environment, 2022, 268, 112779.	4.6	21
1447	Water Resource Management. Advances in Geospatial Technologies Book Series, 2022, , 197-218.	0.1	0
1448	Ferroferric oxide@titanium carbide MXene heterostructure with enhanced sodium storage ability for efficient hybrid capacitive deionization. Desalination, 2022, 522, 115420.	4.0	58
1449	Remote sensing annual dynamics of rapid permafrost thaw disturbances with LandTrendr. Remote Sensing of Environment, 2022, 268, 112752.	4.6	47
1450	Upstream migration of avulsion sites on lowland deltas with river-mouth retreat. Earth and Planetary Science Letters, 2022, 577, 117270.	1.8	9
1451	Detection of thermokarst lake drainage events in the northern Alaska permafrost region. Science of the Total Environment, 2022, 807, 150828.	3.9	9
1453	Lake hydrology in China: Advances and prospects. Hupo Kexue/Journal of Lake Sciences, 2020, 32, 1360-1379.	0.3	10
1454	The response of submerged plants to different environmental factors and hydrologic regime in West Lake Dongting. Hupo Kexue/Journal of Lake Sciences, 2020, 32, 1736-1748.	0.3	3
1455	Where We Need to Be. , 2020, , 109-144.		0
1456	Basic approaches to geoinformation modeling of ecological state of the Lake Baikal basin. InterCarto InterGIS, 2020, 26, 46-59.	0.1	0
1457	Progress in remote sensing study on lake hydrologic regime. Hupo Kexue/Journal of Lake Sciences, 2020, 32, 1406-1420.	0.3	8
1459	Impacts of Climate and Land Use Change on Surface Water Content and Quality in Low-Lying Coastal Areas of Bangladesh., 2021,, 2961-2987.		0
1461	Dear Authors and Colleagues. Annals of Coloproctology, 2020, 36, 63-63.	0.5	0
1462	Groundwater in Southern Vietnam: Understanding geochemical processes to better preserve the critical water resource. Science of the Total Environment, 2022, 807, 151345.	3.9	12
1463	Hydroclimatological Patterns and Limnological Characteristics of Unique Wetland Systems on the Argentine High Andean Plateau. Hydrology, 2021, 8, 164.	1.3	8
1464	The Boreal–Arctic Wetland and Lake Dataset (BAWLD). Earth System Science Data, 2021, 13, 5127-5149.	3.7	46
1465	Spatial and Temporal Dynamics of Surface Water in China from the 1980s to 2015 Based on Remote Sensing Monitoring. Chinese Geographical Science, 2022, 32, 174-188.	1.2	7
1466	Fully coupled hydrological–hydrodynamic modeling of a basin–river–lake transboundary system in Southern South America. Journal of Hydroinformatics, 2022, 24, 93-112.	1.1	7

#	Article	IF	CITATIONS
1467	Airborne observations of arctic-boreal water surface elevations from AirSWOT Ka-Band InSAR and LVIS LiDAR. Environmental Research Letters, 2020, 15, 105005.	2.2	14
1468	Multitemporal image encoding for monitoring spatiotemporal variations of water bodies using LandsatÂ8 Operational Land Imager (OLI) data. Journal of Applied Remote Sensing, 2020, 14, .	0.6	0
1471	The Operation of the Three Gorges Dam Alters Wetlands in the Middle and Lower Reaches of the Yangtze River. Frontiers in Environmental Science, 2020, 8, .	1.5	12
1472	The Copernicus EMS Validation service as a vector for improving the emergency mapping based on Sentinel data. Revista De Teledeteccion, 2020, , 23.	0.6	1
1474	Decrease in the residents' accessibility of summer cooling services due to green space loss in Chinese cities. Environment International, 2022, 158, 107002.	4.8	34
1475	Sub-continental-scale mapping of tidal wetland composition for East Asia: A novel algorithm integrating satellite tide-level and phenological features. Remote Sensing of Environment, 2022, 269, 112799.	4.6	53
1476	Investigating the Effects of Meteorological Data Rainfall and Temperature on GNSS-R Soil Moisture Inversion. , $2021, \ldots$		0
1478	Synergistic Use of Geospatial Data for Water Body Extraction from Sentinel-1 Images for Operational Flood Monitoring across Southeast Asia Using Deep Neural Networks. Remote Sensing, 2021, 13, 4759.	1.8	8
1479	The Potential of Moonlight Remote Sensing: A Systematic Assessment with Multi-Source Nightlight Remote Sensing Data. Remote Sensing, 2021, 13, 4639.	1.8	2
1482	Estimating the Impact of Ecological Migrants on the South-to-North Water Diversion in China. International Journal of Environmental Research and Public Health, 2021, 18, 12295.	1.2	0
1483	Water Quality Index (WQI) as a Potential Proxy for Remote Sensing Evaluation of Water Quality in Arid Areas. Water (Switzerland), 2021, 13, 3250.	1.2	11
1484	Monitoring global reservoirs using ICESat-2: Assessment on spatial coverage and application potential. Journal of Hydrology, 2022, 604, 127257.	2.3	16
1485	A dynamic connectivity metric for complex river wetlands. Journal of Hydrology, 2021, 603, 127163.	2.3	9
1486	A multi-sensor satellite imagery approach to monitor on-farm reservoirs. Remote Sensing of Environment, 2022, 270, 112796.	4.6	12
1487	Improving Representation of Tropical Wetland Methane Emissions With CYGNSS Inundation Maps. Global Biogeochemical Cycles, 2021, 35, e2020GB006890.	1.9	17
1488	Exploring the potential of SCAT-SAR SWI for soil moisture retrievals at selected COSMOS-UK sites. International Journal of Remote Sensing, 2021, 42, 9155-9169.	1.3	6
1489	Automated Training Data Generation from Spectral Indexes for Mapping Surface Water Extent with Sentinel-2 Satellite Imagery at 10 m and 20 m Resolutions. Remote Sensing, 2021, 13, 4531.	1.8	5
1490	A Multidecadal Analysis of Reservoir Storage Change in Developing Regions. Journal of Hydrometeorology, 2022, 23, 71-85.	0.7	3

#	Article	IF	CITATIONS
1491	Analysis of the Spatial and Temporal Changes of NDVI and Its Driving Factors in the Wei and Jing River Basins. International Journal of Environmental Research and Public Health, 2021, 18, 11863.	1.2	18
1492	Predicting Playa Inundation Using a Long Shortâ€√erm Memory Neural Network. Water Resources Research, 2021, 57, e2020WR029009.	1.7	4
1493	Cross-continental importance of CH4 emissions from dry inland-waters. Science of the Total Environment, 2022, 814, 151925.	3.9	13
1494	Mapping and analyzing the annual dynamics of tidal flats in the conterminous United States from 1984 to 2020 using Google Earth Engine. Environmental Advances, 2022, 7, 100147.	2.2	7
1495	Mapping the Caspian Sea's North Coast Soils: Transformation and Degradation. Innovations in Landscape Research, 2022, , 717-736.	0.2	0
1496	Landsat-Derived Annual Maps of Agricultural Greenhouse in Shandong Province, China from 1989 to 2018. Remote Sensing, 2021, 13, 4830.	1.8	8
1497	Enhanced index for water body delineation and area calculation using Google Earth Engine: a case study of the Manchar Lake. Journal of Water and Climate Change, 2022, 13, 557-573.	1.2	10
1498	The influence of land cover changes on landscape hydric potential and river flows: Upper Vistula, Western Carpathians. Catena, 2022, 210, 105878.	2.2	5
1499	Grasslands halfâ€full: investigating drivers of spatial heterogeneity in ungulate occurrence in Indian Terai. Journal of Zoology, 2022, 316, 139-153.	0.8	4
1500	Temporal and Spatial Variation of NDVI and Its Driving Factors in Qinling Mountain. Water (Switzerland), 2021, 13, 3154.	1.2	5
1501	Divergent Causes of Terrestrial Water Storage Decline Between Drylands and Humid Regions Globally. Geophysical Research Letters, 2021, 48, .	1.5	23
1502	Seasonal trends and cycles of lake-level variations over the Tibetan Plateau using multi-sensor altimetry data. Journal of Hydrology, 2022, 604, 127251.	2.3	20
1503	Estimation of the value of regional ecosystem services of an archipelago using satellite remote sensing technology: A case study of Zhoushan Archipelago, China. International Journal of Applied Earth Observation and Geoinformation, 2021, 105, 102616.	1.4	21
1504	Continuous Detection of Forest Loss in Vietnam, Laos, and Cambodia Using Sentinel-1 Data. Remote Sensing, 2021, 13, 4877.	1.8	13
1506	The Energy and Mass Balance of Peruvian Glaciers. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034911.	1.2	11
1507	Spaceborne River Discharge From a Nonparametric Stochastic Quantile Mapping Function. Water Resources Research, 2021, 57, e2021WR030277.	1.7	9
1508	Ongoing Drainage Reorganization Driven by Rapid Lake Growths on the Tibetan Plateau. Geophysical Research Letters, 2021, 48, e2021GL095795.	1.5	21
1509	HIGH-RESOLUTION SURFACE WATER MAP OVER JAPAN AND ESTIMATION OF INUNDATION AREA CAUSED BY TYPHOON HAGIBIS. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2020, 76, I_613-I_618.	0.0	3

#	Article	IF	CITATIONS
1510	Inland Water Body Mapping Using Multitemporal Sentinel-1 SAR Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 11789-11799.	2.3	10
1512	Monitoring of Inland Water Levels by Satellite Altimetry and Deep Learning. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	2.7	2
1513	Spatiotemporal Variations in Surface Water and its Significance to Desertification in China from 2000 to 2019. SSRN Electronic Journal, 0, , .	0.4	0
1514	Human-wildlife conflicts with crocodilians, cetaceans and otters in the tropics and subtropics. PeerJ, 2022, 9, e12688.	0.9	9
1515	Drought Cycle Analysis to Evaluate the Influence of a Dense Network of Small Reservoirs on Drought Evolution. Water Resources Research, 2022, 58, .	1.7	14
1516	A Framework for Multivariate Analysis of Land Surface Dynamics and Driving Variables—A Case Study for Indo-Gangetic River Basins. Remote Sensing, 2022, 14, 197.	1.8	4
1517	A Modular Generative Approach for Realistic River Deltas: When L-Systems and cGANs Meet. IEEE Access, 2022, 10, 5753-5767.	2.6	6
1518	Sedimentary and geomorphic evidence of Saharan megalakes: A synthesis. Quaternary Science Reviews, 2022, 276, 107318.	1.4	15
1519	Sand Dams for Sustainable Water Management: Challenges and Future Opportunities. SSRN Electronic Journal, 0, , .	0.4	0
1520	Size-Fractionated Microbiome Structure in Subarctic Rivers and a Coastal Plume Across DOC and Salinity Gradients. Frontiers in Microbiology, 2021, 12, 760282.	1.5	9
1521	The RADARSAT Constellation Mission Core Applications: First Results. Remote Sensing, 2022, 14, 301.	1.8	8
1522	Systematic method for mapping fine-resolution water cover types in China based on time series Sentinel-1 and 2 images. International Journal of Applied Earth Observation and Geoinformation, 2022, 106, 102656.	1.4	11
1523	Spatiotemporal analysis of interactions between seasonal water, climate, land use, policy, and socioeconomic changes: Hulun-Buir Steppe as a Case Study. Water Research, 2022, 209, 117937.	5.3	10
1524	Ecological restoration intensifies evapotranspiration in the Kubuqi Desert. Ecological Engineering, 2022, 175, 106504.	1.6	15
1525	Increasing shrinkage risk of endorheic lakes in the middle of farming-pastoral ecotone of Northern China. Ecological Indicators, 2022, 135, 108523.	2.6	8
1526	A platform for land use and land cover data integration and trajectory analysis. International Journal of Applied Earth Observation and Geoinformation, 2022, 106, 102655.	1.4	7
1527	Impacts of agricultural expansion on floodplain water and sediment budgets in the Mekong River. Journal of Hydrology, 2022, 605, 127296.	2.3	13
1528	An open science and open data approach for the statistically robust estimation of forest disturbance areas. International Journal of Applied Earth Observation and Geoinformation, 2022, 106, 102663.	1.4	9

#	Article	IF	CITATIONS
1529	The variation of net primary productivity and underlying mechanisms vary under different drought stress in Central Asia from 1990 to 2020. Agricultural and Forest Meteorology, 2022, 314, 108767.	1.9	13
1530	Transboundary water treaty design for poverty reduction and climate adaptation. Journal of Hydrology, 2022, 606, 127409.	2.3	0
1531	Accelerated change in the glaciated environments of western Canada revealed through trend analysis of optical satellite imagery. Remote Sensing of Environment, 2022, 270, 112862.	4.6	15
1532	River levels from multi mission altimetry, a statistical approach. Remote Sensing of Environment, 2022, 270, 112876.	4.6	12
1533	Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations. Remote Sensing of Environment, 2022, 270, 112853.	4.6	47
1534	Geomorphological diversity of rivers in the Amazon Basin. Geomorphology, 2022, 400, 108078.	1.1	4
1535	Increasing fragmentation and squeezing of coastal wetlands: Status, drivers, and sustainable protection from the perspective of remote sensing. Science of the Total Environment, 2022, 811, 152339.	3.9	32
1536	Vegetation recovery and recent degradation in different karst landforms of southwest China over the past two decades using GEE satellite archives. Ecological Informatics, 2022, 68, 101555.	2.3	18
1537	Reliability Evaluation of Wetland Samples Based on Historical Thematic Maps. , 2020, , .		1
1538	GPS Signal Land Reflection Coherence Dependence on Water Extent and Surface Topography using Cygnss Measurements. , 2020, , .		2
1539	Simulation Study of Cygnss Observability of Dynamic Inundation Events. , 2020, , .		1
1540	Validation of Sentinel 3A Altimetry Data for River Level Monitoring at Two Locations Along the Lower Indus River. , 2020, , .		0
1541	Global Weekly Inland Surface Water Dynamics from L-Band Microwave., 2020,,.		2
1542	Detecting Floods Caused by Tropical Cyclone Using CYGNSS Data. , 2020, , .		2
1543	Reservoir Water Surface Area Detection using Satellite observations for synthetic SWOT data simulation. , 2020, , .		0
1544	Detection of Surface Water from Satellite Imagery Using Deep Learning with Indirect Proxy Based Label Collection Method., 2020,,.		0
1545	Enhanced adsorption-based atmospheric water harvesting using a photothermal cotton rod for freshwater production in cold climates. RSC Advances, 2021, 11, 35695-35702.	1.7	9
1546	Archaeological Context and Archival Content: Historical Archaeology and Medieval Period Donative Practices on the Raichur Doab, Southern India. Medieval History Journal, 2021, 24, 17-55.	0.2	2

#	Article	IF	Citations
1547	Flood Mapping and Classification Jointly Using MuWI and Machine Learning Techniques., 2021,,.		2
1548	Recovery of temporary pond alpha and beta diversity after wildfire disturbance: the role of dispersal and recolonization processes. Inland Waters, 2021, 11, 522-537.	1.1	3
1549	A Schematic of Track-wisely Calibrating CyGNSS Data., 2021,,.		0
1550	Who Walks for Water? Water Consumption and Labor Supply Response to Rainfall Scarcity in Uganda. SSRN Electronic Journal, 0, , .	0.4	0
1551	Global assessment of urban trees' cooling efficiency based on satellite observations. Environmental Research Letters, 2022, 17, 034029.	2.2	12
1552	Remote Sensing Big Data for Water Environment Monitoring: Current Status, Challenges, and Future Prospects. Earth's Future, 2022, 10, .	2.4	47
1553	Investigation of Long and Short-Term Water Surface Area Changes in Coastal Ramsar Sites in Turkey with Google Earth Engine. ISPRS International Journal of Geo-Information, 2022, 11, 46.	1.4	10
1554	Multi-Temporal Surface Water Classification for Four Major Rivers from the Peruvian Amazon. Data, 2022, 7, 6.	1.2	3
1555	River Slope Observation From Spaceborne GNSS-R Carrier Phase Measurements: A Case Study. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	1.4	10
1556	Mapping active paddy rice area over monsoon asia using time-series Sentinel – 2 images in Google earth engine; a case study over lower gangetic plain. Geocarto International, 2022, 37, 10254-10277.	1.7	8
1557	Spatial-temporal changes to GRACE-derived terrestrial water storage in response to climate change in arid Northwest China. Hydrological Sciences Journal, 2022, 67, 535-549.	1.2	10
1558	Satellite-derived cyanobacteria frequency and magnitude in headwaters & mp; near-dam reservoir surface waters of the Southern U.S Science of the Total Environment, 2022, 822, 153568.	3.9	3
1559	Seasonal Amplitude of Water Storage Variations of the Yangtze–Huai Plain Lake Group: Implicaion for Floodwater Storage Capacity. Frontiers in Environmental Science, 2022, 10, .	1.5	1
1560	Phenology is the dominant control of methane emissions in a tropical non-forested wetland. Nature Communications, 2022, 13, 133.	5.8	14
1561	Hydrological Basis of Different Budyko Equations: The Spatial Variability of Available Water for Evaporation. Water Resources Research, 2022, 58, .	1.7	6
1562	Integrating remote sensing and social sensing for flood mapping. Remote Sensing Applications: Society and Environment, 2022, 25, 100697.	0.8	14
1563	The Outcome of the 2021 IEEE GRSS Data Fusion Contestâ€"Track MSD: Multitemporal Semantic Change Detection. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 1643-1655.	2.3	13
1564	Physical geography, isolation by distance and environmental variables shape genomic variation of wild barley (Hordeum vulgare L. ssp. spontaneum) in the Southern Levant. Heredity, 2022, 128, 107-119.	1,2	10

#	Article	IF	Citations
1565	Assessment of impacts to the sequence of the tropical cyclone Nisarga and monsoon events in shoreline changes and vegetation damage in the coastal zone of Maharashtra, India. Marine Pollution Bulletin, 2022, 174, 113262.	2.3	12
1566	Using Data from Earth Observation to Support Sustainable Development Indicators: An Analysis of the Literature and Challenges for the Future. Sustainability, 2022, 14, 1191.	1.6	10
1567	Multitemporal Spatial Analysis of Land Use and Land Cover Changes in the Lower Jaguaribe Hydrographic Sub-Basin, Cear \tilde{A}_i , Northeast Brazil. Land, 2022, 11, 103.	1.2	2
1568	Classifying Forest Types over a Mountainous Area in Southwest China with Landsat Data Composites and Multiple Environmental Factors. Forests, 2022, 13, 135.	0.9	6
1569	Incorporating Aleatoric Uncertainties in Lake Ice Mapping Using RADARSAT–2 SAR Images and CNNs. Remote Sensing, 2022, 14, 644.	1.8	5
1570	Future Scenarios for Olive Tree and Grapevine Potential Yields in the World Heritage Côa Region, Portugal. Agronomy, 2022, 12, 350.	1.3	8
1571	Global divergent trends of algal blooms detected by satellite during 1982–2018. Global Change Biology, 2022, 28, 2327-2340.	4.2	51
1572	Spatiotemporal change analysis of long time series inland water in Sri Lanka based on remote sensing cloud computing. Scientific Reports, 2022, 12, 766.	1.6	3
1573	Recent Changes in Groundwater and Surface Water in Large Pan-Arctic River Basins. Remote Sensing, 2022, 14, 607.	1.8	7
1574	A Landsat-derived annual inland water clarity dataset of China between 1984 and 2018. Earth System Science Data, 2022, 14, 79-94.	3.7	11
1575	Progress of hydrological process researches in lake wetland: A review. Hupo Kexue/Journal of Lake Sciences, 2022, 34, 18-37.	0.3	6
1576	Assessment of the Usability of SAR and Optical Satellite Data for Monitoring Spatio-Temporal Changes in Surface Water: Bodrog River Case Study. Water (Switzerland), 2022, 14, 299.	1.2	12
1577	A Simple Cloud-Native Spectral Transformation Method to Disentangle Optically Shallow and Deep Waters in Sentinel-2 Images. Remote Sensing, 2022, 14, 590.	1.8	4
1578	Scaling relations reveal global and regional differences in morphometry of reservoirs and natural lakes. Science of the Total Environment, 2022, 822, 153510.	3.9	7
1579	Improvement of Flood Extent Representation With Remote Sensing Data and Data Assimilation. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-22.	2.7	10
1580	Making the leap from ponds to landscapes: Integrating field-based monitoring of amphibians and wetlands with satellite observations. Ecological Indicators, 2022, 135, 108559.	2.6	8
1581	Maximizing Multiâ€Decadal Water Surface Elevation Estimates With Landsat Imagery and Elevation/Bathymetry Datasets. Water Resources Research, 2022, 58, .	1.7	2
1582	Monitoring Post-Flood Recovery of Croplands Using the Integrated Sentinel-1/2 Imagery in the Yangtze-Huai River Basin. Remote Sensing, 2022, 14, 690.	1.8	9

#	Article	IF	CITATIONS
1583	Satellite Laser Altimetry Reveals a Net Water Mass Gain in Global Lakes With Spatial Heterogeneity in the Early 21st Century. Geophysical Research Letters, 2022, 49, .	1.5	22
1584	Climatic factors dominate the spatial patterns of urban green space coverage in the contiguous United States. International Journal of Applied Earth Observation and Geoinformation, 2022, 107, 102691.	1.4	3
1585	Sentinel-1 based Inland water dynamics Mapping System (SIMS). Environmental Modelling and Software, 2022, 149, 105305.	1.9	9
1586	High Cadence Monitoring of Reservoir Volume Fluctuations Using PlanetScope Imagery. Journal of Hydrology, 2022, 606, 127456.	2.3	2
1587	Time series analysis for global land cover change monitoring: A comparison across sensors. Remote Sensing of Environment, 2022, 271, 112905.	4.6	30
1588	Long-term spatiotemporal changes of surface water and its influencing factors in the mainstream of Han River, China. Journal of Hydrology: Regional Studies, 2022, 40, 101009.	1.0	6
1589	Detecting landslide-dammed lakes on Sentinel-2 imagery and monitoring their spatio-temporal evolution following the KaikÅura earthquake in New Zealand. Science of the Total Environment, 2022, 820, 153335.	3.9	6
1590	Monitoring and evaluation Al-Razzaza lake changes in Iraq using GIS and remote sensing technology. Egyptian Journal of Remote Sensing and Space Science, 2022, 25, 313-321.	1.1	9
1591	Research into Cryolithozone Spatial Pattern Changes Based on the Mathematical Morphology of Landscapes. Energies, 2022, 15, 1218.	1.6	1
1592	Implementation of species distribution models in Google Earth Engine. Diversity and Distributions, 2022, 28, 904-916.	1.9	17
1593	Recently constructed hydropower dams were associated with reduced economic production, population, and greenness in nearby areas. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	23
1594	Contextualising sediment trapping and phosphorus removal regulating services: a critical review of the influence of spatial and temporal variability in geomorphic processes in alluvial wetlands in drylands. Wetlands Ecology and Management, 2022, 30, 737-770.	0.7	5
1595	Ecological Water Demand of Taitema Lake in the Lower Reaches of the Tarim River and the Cherchen River. Remote Sensing, 2022, 14, 832.	1.8	12
1597	Aerial surveys reveal biotic drivers of mangrove expansion along a Thai salt flat ecotone. Restoration Ecology, 0, , .	1.4	0
1598	Influence of Urban Areas on Surface Water Loss in the Contiguous United States. AGU Advances, 2022, 3, .	2.3	3
1599	Global mapping reveals increase in lacustrine algal blooms over the past decade. Nature Geoscience, 2022, 15, 130-134.	5.4	158
1600	Estimating Reservoir Release Using Multi-Source Satellite Datasets and Hydrological Modeling Techniques. Remote Sensing, 2022, 14, 815.	1.8	3
1601	Temporal and spatial variation of coastline using remote sensing images for Zhoushan archipelago, China. International Journal of Applied Earth Observation and Geoinformation, 2022, 107, 102711.	1.4	18

#	Article	IF	CITATIONS
1602	Can we detect more ephemeral floods with higher density harmonized Landsat Sentinel 2 data compared to Landsat 8 alone?. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 185, 232-246.	4.9	25
1603	High-resolution mapping of water photovoltaic development in China through satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 2022, 107, 102707.	1.4	1
1604	Remote sensing-based biomass estimation of dry deciduous tropical forest using machine learning and ensemble analysis. Journal of Environmental Management, 2022, 308, 114639.	3.8	19
1605	Application of Spectral Index-Based Logistic Regression to Detect Inland Water in the South Caucasus. Remote Sensing, 2021, 13, 5099.	1.8	4
1606	Regional matters: On the usefulness of regional landâ€cover datasets in times of global change. Remote Sensing in Ecology and Conservation, 2022, 8, 272-283.	2.2	20
1607	Tipping point dynamics in global land use. Environmental Research Letters, 2021, 16, 125012.	2.2	23
1608	A Pixel-Based Vegetation Greenness Trend Analysis over the Russian Tundra with All Available Landsat Data from 1984 to 2018. Remote Sensing, 2021, 13, 4933.	1.8	15
1609	Long-Term Lake Area Change and Its Relationship with Climate in the Endorheic Basins of the Tibetan Plateau. Remote Sensing, 2021, 13, 5125.	1.8	10
1611	OmbriaNetâ€"Supervised Flood Mapping via Convolutional Neural Networks Using Multitemporal Sentinel-1 and Sentinel-2 Data Fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 2341-2356.	2.3	19
1613	Spatial Analyses of Cyclone Amphan Induced Flood Inundation Mapping Using Sentinel-1A SAR Images Through GEE Cloud. Algorithms for Intelligent Systems, 2022, , 65-83.	0.5	1
1615	Sentinel-1-Based Water and Flood Mapping: Benchmarking Convolutional Neural Networks Against an Operational Rule-Based Processing Chain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 2023-2036.	2.3	22
1616	DSWEmod — The Production of Highâ€Frequency Surface Water Map Composites from Daily MODIS Images. Journal of the American Water Resources Association, 2022, 58, 248-268.	1.0	6
1617	Identification of Hazardous Glacial Lakes in the Yarlung Zangbo River Basin Based on Lakes Changes Determined Using Google Earth Engine. Frontiers in Earth Science, 2022, 10, .	0.8	2
1618	EcoDes-DK15: high-resolution ecological descriptors of vegetation and terrain derived from Denmark's national airborne laser scanning data set. Earth System Science Data, 2022, 14, 823-844.	3.7	5
1619	A New Adaptive Remote Sensing Extraction Algorithm for Complex Muddy Coast Waterline. Remote Sensing, 2022, 14, 861.	1.8	11
1620	Spatio-temporal assessment of natural lakes in Turkey. Earth Science Informatics, 2022, 15, 951-964.	1.6	12
1621	Automated determination of landslide locations after large trigger events: advantages and disadvantages compared to manual mapping. Natural Hazards and Earth System Sciences, 2022, 22, 481-508.	1.5	7
1622	Development of a Multi-Index Method Based on Landsat Reflectance Data to Map Open Water in a Complex Environment. Remote Sensing, 2022, 14, 1158.	1.8	7

#	Article	IF	CITATIONS
1623	Monitoring surface water dynamics in the Prairie Pothole Region of North Dakota using dual-polarised Sentinel-1 synthetic aperture radar (SAR) time series. Hydrology and Earth System Sciences, 2022, 26, 841-860.	1.9	7
1626	Water Resources of Natural and Artificial Water Bodies in Europe. Water Resources, 2022, 49, 1-9.	0.3	1
1627	Decadal Lake Volume Changes (2003–2020) and Driving Forces at a Global Scale. Remote Sensing, 2022, 14, 1032.	1.8	13
1628	Monitoring the Storage Volume of Water Reservoirs Using Google Earth Engine. Water Resources Research, 2022, 58, .	1.7	9
1629	What Drive Regional Changes in the Number and Surface Area of Lakes Across the Yangtze River Basin During 2000–2019: Human or Climatic Factors?. Water Resources Research, 2022, 58, .	1.7	11
1630	Satellite observations document trends consistent with a boreal forest biome shift. Global Change Biology, 2022, 28, 3275-3292.	4.2	52
1631	Assessing Surface Water Losses and Gains under Rapid Urbanization for SDG 6.6.1 Using Long-Term Landsat Imagery in the Guangdong-Hong Kong-Macao Greater Bay Area, China. Remote Sensing, 2022, 14, 881.	1.8	10
1632	Coupled CH ₄ production and oxidation support CO ₂ supersaturation in a tropical flood pulse lake (Tonle Sap Lake, Cambodia). Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
1633	Analysis of surface temperature variation of lakes in China using MODIS land surface temperature data. Scientific Reports, 2022, 12, 2415.	1.6	16
1634	Economic growth dominates rising potential flood risk in the Yangtze River and benefits of raising dikes from 1991 to 2015. Environmental Research Letters, 2022, 17, 034046.	2.2	10
1635	Effects of Climate and Anthropogenic Drivers on Surface Water Area in the Southeastern United States. Water Resources Research, 2022, 58, .	1.7	8
1636	A Novel Method for Mapping Lake Bottom Topography Using the GSW Dataset and Measured Water Level. Remote Sensing, 2022, 14, 1423.	1.8	4
1637	TimeSpec4LULC: a global multispectral time series database for training LULC mapping models with machine learning. Earth System Science Data, 2022, 14, 1377-1411.	3.7	3
1638	Il respiro del Sahel. Rappresentazioni di uno spazio in movimento. Rivista Geographica Italiana, 2022, , 32-59.	0.1	0
1639	Highway(s) overhead: Strong differences in wetland connectivity and protected status challenge waterbird migration along the four Palearcticâ€Afrotropical flyways. Diversity and Distributions, 2022, 28, 1067-1080.	1.9	3
1640	How dynamic is the Brahmaputra? Understanding the process–form–vegetation interactions for hierarchies of energy dissipation. Ecohydrology, 2022, 15, .	1.1	9
1642	Increased flooded area and exposure in the White Volta river basin in Western Africa, identified from multi-source remote sensing data. Scientific Reports, 2022, 12, 3701.	1.6	12
1643	Previous Shoreline Dynamics Determine Future Susceptibility to Cyclone Impact in the Sundarban Mangrove Forest. Frontiers in Marine Science, 2022, 9, .	1.2	8

#	Article	IF	CITATIONS
1644	Streamflow Prediction in Highly Regulated, Transboundary Watersheds Using Multiâ€Basin Modeling and Remote Sensing Imagery. Water Resources Research, 2022, 58, .	1.7	10
1645	Development of a Reservoir Flood Control Scheme for Global Flood Models. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	7
1646	Spatio-Temporal Extraction of Surface Waterbody and Its Response of Extreme Climate along the Upper Huaihe River. Sustainability, 2022, 14, 3223.	1.6	4
1647	Validation of weather reanalysis datasets and geospatial and techno-economic viability and potential assessment of concentrated solar power plants. Energy Conversion and Management, 2022, 256, 115366.	4.4	7
1648	Towards Synoptic Water Monitoring Systems: A Review of Al Methods for Automating Water Body Detection and Water Quality Monitoring Using Remote Sensing. Sensors, 2022, 22, 2416.	2.1	21
1649	Buffering the impacts of extreme climate variability in the highly engineered Tigris Euphrates river system. Scientific Reports, 2022, 12, 4178.	1.6	13
1650	A Fusion Method for Multisource Land Cover Products Based on Superpixels and Statistical Extraction for Enhancing Resolution and Improving Accuracy. Remote Sensing, 2022, 14, 1676.	1.8	5
1651	Flood-Pulse Variability and Climate Change Effects Increase Uncertainty in Fish Yields: Revisiting Narratives of Declining Fish Catches in India's Ganga River. Hydrology, 2022, 9, 53.	1.3	4
1652	Characterizing surface water changes across the Tibetan Plateau based on Landsat time series and LandTrendr algorithm. European Journal of Remote Sensing, 2022, 55, 251-262.	1.7	7
1653	AHSWFM: Automated and Hierarchical Surface Water Fraction Mapping for Small Water Bodies Using Sentinel-2 Images. Remote Sensing, 2022, 14, 1615.	1.8	7
1654	Drivers of zooplankton beta diversity in natural shallow lakes and artificial reservoirs in the Neotropics. Hydrobiologia, 0, , 1.	1.0	1
1655	Phytoplankton taxonomic and functional diversity in two shallow alluvial lakes with contrasting river connectivity. Aquatic Sciences, 2022, 84, 1.	0.6	1
1656	Spatiotemporal changes of eco-environmental quality based on remote sensing-based ecological index in the Hotan Oasis, Xinjiang. Journal of Arid Land, 2022, 14, 262-283.	0.9	18
1657	Predicting future community-level ocular Chlamydia trachomatis infection prevalence using serological, clinical, molecular, and geospatial data. PLoS Neglected Tropical Diseases, 2022, 16, e0010273.	1.3	5
1658	Evaluating a new method of remote sensing for flood mapping in the urban and peri-urban areas: Applied to Addis Ababa and the Akaki catchment in Ethiopia. Natural Hazards Research, 2022, 2, 97-110.	2.0	13
1659	The Dynamic Changes of Lake Issyk-Kul from 1958 to 2020 Based on Multi-Source Satellite Data. Remote Sensing, 2022, 14, 1575.	1.8	12
1660	Seasonality of inundation in geographically isolated wetlands across the United States. Environmental Research Letters, 2022, 17, 054005.	2.2	5
1661	A Strategy of Parallel SLIC Superpixels for Handling Large-Scale Images over Apache Spark. Remote Sensing, 2022, 14, 1568.	1.8	2

#	Article	IF	CITATIONS
1662	Predicting wildlife corridors for multiple species in an East African ungulate community. PLoS ONE, 2022, 17, e0265136.	1.1	6
1663	Seasonal Distributions of Methane in a Populous Urban Coastal Sea Area. Frontiers in Marine Science, 2022, 9, .	1.2	0
1664	Linking paleoecology with paleolimnology: evaluating ecological shifts, human impacts and monsoon climate from sediment signals in East Asia. Journal of Paleolimnology, 2022, 68, 1-6.	0.8	2
1665	Use of ECOSTRESS data for measurements of the surface water temperature: Significance of data filtering in accuracy assessment. Remote Sensing Applications: Society and Environment, 2022, 26, 100739.	0.8	1
1666	Global seasonal dynamics of inland open water and ice. Remote Sensing of Environment, 2022, 272, 112963.	4.6	18
1667	Mapping Tidal Flats of the Bohai and Yellow Seas Using Time Series Sentinel-2 Images and Google Earth Engine. Remote Sensing, 2022, 14, 1789.	1.8	14
1668	Characterizing stream morphological features important for fish habitat using airborne laser scanning data. Remote Sensing of Environment, 2022, 272, 112948.	4.6	6
1669	Satellite Detection of Surface Water Extent: A Review of Methodology. Water (Switzerland), 2022, 14, 1148.	1.2	25
1670	Investigating different timescales of terrestrial water storage changes in the northeastern Tibetan Plateau. Journal of Hydrology, 2022, 608, 127608.	2.3	9
1671	Water clarity mapping of global lakes using a novel hybrid deep-learning-based recurrent model with Landsat OLI images. Water Research, 2022, 215, 118241.	5. 3	24
1672	Classifying diurnal changes of cyanobacterial blooms in Lake Taihu to identify hot patterns, seasons and hotspots based on hourly GOCI observations. Journal of Environmental Management, 2022, 310, 114782.	3.8	25
1673	Rapid surface water expansion due to increasing artificial reservoirs and aquaculture ponds in North China Plain. Journal of Hydrology, 2022, 608, 127637.	2.3	21
1674	Water body classification from high-resolution optical remote sensing imagery: Achievements and perspectives. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 187, 306-327.	4.9	31
1675	Merging Landsat and airborne LiDAR observations for continuous monitoring of floodplain water extent, depth and volume. Journal of Hydrology, 2022, 609, 127684.	2.3	6
1676	Integrating MODIS and Landsat imagery to monitor the small water area variations of reservoirs. Science of Remote Sensing, 2022, 5, 100045.	2.2	4
1677	Spatiotemporal variations in surface water and its significance to desertification in China from 2000 to 2019. Catena, 2022, 213, 106182.	2.2	6
1678	An Overview of Flood Concepts, Challenges, and Future Directions. Journal of Hydrologic Engineering - ASCE, 2022, 27, .	0.8	36
1679	Seasonal flooding wetland expansion would strongly affect soil and sediment organic carbon storage and carbon-nutrient stoichiometry. Science of the Total Environment, 2022, 828, 154427.	3.9	7

#	ARTICLE	IF	Citations
1680	Integrated scheduling–assessing system for drought mitigation in the river–connected lake. Journal of Environmental Management, 2022, 313, 114999.	3.8	4
1681	Unraveling the invisible leptospirosis in mainland Southeast Asia and its fate under climate change. Science of the Total Environment, 2022, 832, 155018.	3.9	8
1682	Automatic Determination, Feature-extraction, and Classification of Tidal-courses through Remote-sensing Images: Preliminary Studies., 2021,,.		1
1683	Temporal and spatial patterns of common hippopotamus populations in the Okavango Delta, Botswana. Freshwater Biology, 2022, 67, 630-642.	1.2	1
1684	The Global Water Body Layer from TanDEM-X Interferometric SAR Data. Remote Sensing, 2021, 13, 5069.	1.8	7
1685	Remote sensing's role in improving transboundary water regulation and compliance: The Murray-Darling Basin, Australia. Journal of Hydrology X, 2021, 13, 100112.	0.8	5
1686	Remote study of thermokarst lakes in the arctic tundra of the taimyr. Yugra State University Bulletin, 2021, 60, 62-71.	0.0	0
1687	Harnessing Machine Learning Techniques for Mapping Aquaculture Waterbodies in Bangladesh. Remote Sensing, 2021, 13, 4890.	1.8	7
1688	Enhanced Warming in Global Dryland Lakes and Its Drivers. Remote Sensing, 2022, 14, 86.	1.8	5
1689	Modelling Dynamic Hydrological Connectivity in the Zoig \tilde{A}^a Area (China) Based on Multi-Temporal Surface Water Observation. Remote Sensing, 2022, 14, 145.	1.8	4
1691	Landsat-based Irrigation Dataset (LANID): 30 m resolution maps of irrigation distribution, frequency, and change for the US, 1997–2017. Earth System Science Data, 2021, 13, 5689-5710.	3.7	20
1692	Functional Lakeâ€toâ€Channel Connectivity Impacts Lake Ice in the Colville Delta, Alaska. Journal of Geophysical Research F: Earth Surface, 2021, 126, .	1.0	1
1693	Wetland Change Mapping Using Machine Learning Algorithms, and Their Link with Climate Variation and Economic Growth: A Case Study of Guangling County, China. Sustainability, 2022, 14, 439.	1.6	8
1694	Surface Flooding as a Key Driver of Groundwater Arsenic Contamination in Southeast Asia. Environmental Science & Environmental	4.6	25
1695	An Adaptive Thresholding Approach toward Rapid Flood Coverage Extraction from Sentinel-1 SAR Imagery. Remote Sensing, 2021, 13, 4899.	1.8	10
1696	Evaluating Trends of Land Productivity Change and Their Causes in the Han River Basin, China: In Support of SDG Indicator 15.3.1. Sustainability, 2021, 13, 13664.	1.6	1
1697	Distribution and Evolution of Supraglacial Lakes in Greenland during the 2016–2018 Melt Seasons. Remote Sensing, 2022, 14, 55.	1.8	8
1698	Diversity in the observed functionality of dams and reservoirs. Environmental Research: Infrastructure and Sustainability, 2021, 1, 031003.	0.9	3

#	Article	IF	CITATIONS
1699	Integrating SAR and Optical Remote Sensing for Conservation-Targeted Wetlands Mapping. Remote Sensing, 2022, 14, 159.	1.8	20
1700	Life at the borderline: Responses of Ganges river dolphins to dryâ€season flow regulation of river and canal habitats by the Farakka barrage. Aquatic Conservation: Marine and Freshwater Ecosystems, 2022, 32, 294-308.	0.9	6
1702	Global Mangrove Watch: Updated 2010 Mangrove Forest Extent (v2.5). Remote Sensing, 2022, 14, 1034.	1.8	35
1703	U.S. National Wildlife Refuge System likely to see regional and seasonal species turnover in bird assemblages under a 2°C warming scenario. Condor, 2022, 124, .	0.7	3
1704	Determination of the appropriate zone on dam surface for floating photovoltaic system installation using RS and GISc technologies. International Journal of Engineering and Geosciences, 2023, 8, 63-75.	1.8	6
1705	ä¸å>½å°åž‹æ°´ä½"空间å^†å¸f特å¾åŠå½±å"å»ç´. SCIENTIA SINICA Terrae, 2022, , .	0.1	1
1706	Increasing Arctic Tundra Flooding Threatens Wildlife Habitat and Survival: Impacts on the Critically Endangered Siberian Crane (Grus leucogeranus). Frontiers in Conservation Science, 2022, 3, .	0.9	3
1707	An Overview of the Applications of Earth Observation Satellite Data: Impacts and Future Trends. Remote Sensing, 2022, 14, 1863.	1.8	61
1708	Protected areas have a mixed impact on waterbirds, but management helps. Nature, 2022, 605, 103-107.	13.7	73
1709	Alteration of River Flow and Flood Dynamics by Existing and Planned Hydropower Dams in the Amazon River Basin. Water Resources Research, 2022, 58, .	1.7	20
1710	The Spatiotemporal Characteristics and Interactions between Urban Expansion and Tidal Flat Dynamics: A Case Study of Three Highly Urbanized Coastal Counties in the Southeastern United States. Earth, 2022, 3, 557-576.	0.9	2
1711	Annual 30-m big Lake Maps of the Tibetan Plateau in 1991–2018. Scientific Data, 2022, 9, 164.	2.4	14
1712	Water Resources in Africa under Global Change: Monitoring Surface Waters from Space. Surveys in Geophysics, 2023, 44, 43-93.	2.1	38
1713	Human-elephant conflict risk assessment under coupled climatic and anthropogenic changes in Thailand. Science of the Total Environment, 2022, 834, 155174.	3.9	8
1714	Evaluation of low-resolution remotely sensed datasets for burned area assessment within the wildland-urban interface. Remote Sensing Applications: Society and Environment, 2022, 26, 100752.	0.8	3
1715	A combined use of in situ and satellite-derived observations to characterize surface hydrology and its variability in the Congo River basin. Hydrology and Earth System Sciences, 2022, 26, 1857-1882.	1.9	10
1716	Trade-off between tree planting and wetland conservation in China. Nature Communications, 2022, 13, 1967.	5.8	32
1717	Recent Evolution of Glaciers in the Manaslu Region of Nepal From Satellite Imagery and UAV Data (1970–2019). Frontiers in Earth Science, 2022, 9, .	0.8	8

#	Article	IF	CITATIONS
1718	Acoustic Mapping of Gas Stored in Sediments of Shallow Aquatic Systems Linked to Methane Production and Ebullition Patterns. Frontiers in Environmental Science, 2022, 10, .	1.5	7
1719	GeoDAR: georeferenced global dams and reservoirs dataset for bridging attributes and geolocations. Earth System Science Data, 2022, 14, 1869-1899.	3.7	58
1720	A review on the research progress of lake water volume estimation methods. Journal of Environmental Management, 2022, 314, 115057.	3.8	8
1721	Quasi-global machine learning-based soil moisture estimates at high spatio-temporal scales using CYGNSS and SMAP observations. Remote Sensing of Environment, 2022, 276, 113041.	4.6	28
1726	Influence of Ion Exchange Membrane Arrangement on Dual-Channel Flow Electrode Capacitive Deionization: Theoretical Analysis and Experimentations. SSRN Electronic Journal, 0, , .	0.4	0
1727	Dam Reservoir Extraction From Remote Sensing Imagery Using Tailored Metric Learning Strategies. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-14.	2.7	5
1728	Global Cross-Sensor Transformation Functions for Landsat-8 and Sentinel-2 Top of Atmosphere and Surface Reflectance Products Within Google Earth Engine. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-9.	2.7	2
1729	Mapping the Surface Water Using Convolution Neural Networks for Remote Sensing Technology. , 2022, , .		0
1730	Water Body Super-Resolution Mapping Based on Multiple Endmember Spectral Mixture Analysis and Multiscale Spatio-Temporal Dependence. Remote Sensing, 2022, 14, 2050.	1.8	5
1731	Transcriptional Response of Two Brassica napus Cultivars to Short-Term Hypoxia in the Root Zone. Frontiers in Plant Science, 2022, 13, 897673.	1.7	8
1732	Enhancing the adsorption function of F- by iron and zirconium doped zeolite: Characterization and parameter optimization. Environmental Engineering Research, 2023, 28, 220010-0.	1.5	2
1733	Satellite Analyses Unravel the Multi-Decadal Impact of Dam Management on Tropical Floodplain Vegetation. Frontiers in Environmental Science, 2022, 10, .	1.5	3
1734	Satellite observations reveal 13 years of reservoir filling strategies, operating rules, and hydrological alterations in the Upper Mekong River basin. Hydrology and Earth System Sciences, 2022, 26, 2345-2364.	1.9	12
1735	Analyzing large-scale Data Cubes with user-defined algorithms: A cloud-native approach. International Journal of Applied Earth Observation and Geoinformation, 2022, 109, 102784.	0.9	7
1736	Continuous Monitoring of the Surface Water Area in the Yellow River Basin during 1986–2019 Using Available Landsat Imagery and the Google Earth Engine. ISPRS International Journal of Geo-Information, 2022, 11, 305.	1.4	6
1737	A Multi-Method Approach to Flood Mapping: Reconstructing Inundation Changes in the Cambodian Upper Mekong Delta. Journal of Hydrology, 2022, 610, 127902.	2.3	1
1738	Detection of Flood Extent Using Sentinel-1A/B Synthetic Aperture Radar: An Application for Hurricane Harvey, Houston, TX. Remote Sensing, 2022, 14, 2261.	1.8	7
1739	Near real-time surface water extraction from GOES-16 geostationary satellite ABI images by constructing and sharpening the green-like band. Science of Remote Sensing, 2022, 5, 100055.	2.2	1

#	Article	IF	CITATIONS
1740	Toward accurate mapping of 30-m time-series global impervious surface area (GISA). International Journal of Applied Earth Observation and Geoinformation, 2022, 109, 102787.	0.9	13
1741	Large-Scale Surface Water Mapping Based on Landsat and Sentinel-1 Images. Water (Switzerland), 2022, 14, 1454.	1.2	22
1742	Mapping riverbed sediment size from Sentinelâ€2 satellite data. Earth Surface Processes and Landforms, 2022, 47, 2544-2559.	1,2	12
1743	High-resolution bathymetry models for the Lena Delta and Kolyma Gulf coastal zones. Earth System Science Data, 2022, 14, 2279-2301.	3.7	4
1744	Temporal characterization of sand and dust storm activity and its climatic and terrestrial drivers in the Aral Sea region. Atmospheric Research, 2022, 275, 106242.	1.8	6
1745	Investigation of Long-Term Roving Artisanal and Small-Scale Gold Mining Activities Using Time-Series Sentinel-1 and Global Surface Water Datasets. International Journal of Environmental Research and Public Health, 2022, 19, 5530.	1.2	8
1746	A widthâ€based approach to estimating historical changes in coarse sediment fluxes at river reach and network scales. Earth Surface Processes and Landforms, 2022, 47, 2560-2579.	1.2	3
1747	An effective superpixel-based graph convolutional network for small waterbody extraction from remotely sensed imagery. International Journal of Applied Earth Observation and Geoinformation, 2022, 109, 102777.	0.9	3
1748	Location alternatives generation and elimination of floatovoltaics with virtual power plant designs. Renewable Energy, 2022, 193, 1150-1163.	4.3	6
1749	Global forest management data for 2015 at a 100 m resolution. Scientific Data, 2022, 9, 199.	2.4	30
1750	Assessing Amazon rainforest regrowth with GEDI and ICESat-2 data. Science of Remote Sensing, 2022, 5, 100051.	2.2	8
1751	Assessing degradation of lake wetlands in Bashang Plateau, China based on long-term time series Landsat images using wetland degradation index. Ecological Indicators, 2022, 139, 108903.	2.6	14
1752	Prairie wetlands as sources or sinks of nitrous oxide: Effects of land use and hydrology. Agricultural and Forest Meteorology, 2022, 320, 108968.	1.9	6
1753	Longterm multisource satellite data fusion reveals dynamic expansion of lake water area and storage in a hyperarid basin of China. Journal of Hydrology, 2022, 610, 127888.	2.3	5
1754	Hyperspectral reconstruction method for optically complex inland waters based on bio-optical model and sparse representing. Remote Sensing of Environment, 2022, 276, 113045.	4.6	8
1755	Spatiotemporal differences in pond evolution under different regional development patterns: A remote sensing-based perspective. Journal of Cleaner Production, 2022, 359, 132129.	4.6	0
1756	Capacitive heavy metal ion removal of 3D self-supported nitrogen-doped carbon-encapsulated titanium nitride nanorods via the synergy of faradic-reaction and electro-adsorption. Chemical Engineering Journal, 2022, 443, 136542.	6.6	18
1757	Automatic Extraction of Mountain River Surface and Width Based on Multisource High-Resolution Satellite Images. Remote Sensing, 2022, 14, 2370.	1.8	11

#	Article	IF	CITATIONS
1758	Desiccation of the Transboundary Hamun Lakes between Iran and Afghanistan in Response to Hydro-climatic Droughts and Anthropogenic Activities. Journal of Great Lakes Research, 2022, 48, 876-889.	0.8	18
1760	Quantitative Stress Test of Compound Coastalâ€Fluvial Floods in China's Pearl River Delta. Earth's Future, 2022, 10, .	2.4	15
1761	Towards a global seasonal and permanent reference water product from Sentinel-1/2 data for improved flood mapping. Remote Sensing of Environment, 2022, 278, 113077.	4.6	23
1762	When water returns: Drying history shapes respiration and nutrients release of intermittent river sediment. Science of the Total Environment, 2022, 838, 155950.	3.9	7
1763	Applying Google earth engine for flood mapping and monitoring in the downstream provinces of Mekong river. Progress in Disaster Science, 2022, 14, 100235.	1.4	17
1764	Surface Water Dynamics from Space: A Round Robin Intercomparison of Using Optical and SAR High-Resolution Satellite Observations for Regional Surface Water Detection. Remote Sensing, 2022, 14, 2410.	1.8	14
1766	Improving the Prediction of Soil Organic Matter in Arable Land Using Human Activity Factors. Water (Switzerland), 2022, 14, 1668.	1.2	3
1767	Long-term dense Landsat observations reveal detailed waterbody dynamics and temporal changes of the size-abundance relationship. Journal of Hydrology: Regional Studies, 2022, 41, 101111.	1.0	6
1768	Tracing surface water change from 1990 to 2020 in China's Shandong Province using Landsat series images. Ecological Indicators, 2022, 140, 108993.	2.6	6
1769	Investigating the spatial variability of water security risk and its driving mechanisms in China using machine learning. Journal of Cleaner Production, 2022, 362, 132303.	4.6	4
1770	Global coastal geomorphology – integrating earth observation and geospatial data. Remote Sensing of Environment, 2022, 278, 113082.	4.6	15
1771	Sand dams for sustainable water management: Challenges and future opportunities. Science of the Total Environment, 2022, 838, 156126.	3.9	5
1772	Flood Susceptibility Zones and Their Relations to Public Perceived Flood Risk Areas. SSRN Electronic Journal, 0, , .	0.4	0
1774	Influence of natural and anthropogenic controls on runoff in the Keriya River, central Tarim Basin, China. PLoS ONE, 2022, 17, e0269132.	1.1	2
1775	Natural and anthropogenic controls on lake waterâ€level decline and evaporationâ€toâ€inflow ratio in the conterminous United States. Limnology and Oceanography, 2022, 67, 1484-1501.	1.6	4
1776	Decline of suspended particulate matter concentrations in Lake Taihu from 1984 to 2020: observations from Landsat TM and OLI. Optics Express, 2022, 30, 22572.	1.7	6
1778	Artificial and Natural Water Bodies Change in China, 2000–2020. Water (Switzerland), 2022, 14, 1756.	1.2	2
1779	HydroSat: geometric quantities of the global water cycle from geodetic satellites. Earth System Science Data, 2022, 14, 2463-2486.	3.7	13

#	ARTICLE	IF	CITATIONS
1780	Monitoring and Analysis of Water Level Changes in Mekong River from ICESat-2 Spaceborne Laser Altimetry. Water (Switzerland), 2022, 14, 1613.	1.2	8
1781	Where rivers jump course. Science, 2022, 376, 987-990.	6.0	22
1782	Remote Sensing of Surface Water Dynamics in the Context of Global Change—A Review. Remote Sensing, 2022, 14, 2475.	1.8	13
1783	Meandering Characteristics of the Yimin River in Hulun Buir Grassland, Inner Mongolia, China. Remote Sensing, 2022, 14, 2696.	1.8	О
1784	Developing a Spatially Explicit Flood Susceptibility Index for Critical Infrastructure in US Cities. , 2022, , .		0
1785	A second-order attention network for glacial lake segmentation from remotely sensed imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 189, 289-301.	4.9	11
1786	Improving the characterization of global aquatic land cover types using multi-source earth observation data. Remote Sensing of Environment, 2022, 278, 113103.	4.6	5
1787	Climate-driven range shifts of a rare specialist bee, Macropis nuda (Melittidae), and its host plant, Lysimachia ciliata (Primulaceae). Global Ecology and Conservation, 2022, 37, e02180.	1.0	1
1788	Using remote sensing to identify liquid manure applications in eastern North Carolina. Journal of Environmental Management, 2022, 317, 115334.	3.8	9
1789	How much inundation occurs in the Amazon River basin?. Remote Sensing of Environment, 2022, 278, 113099.	4.6	18
1793	MRSE-Net: Multiscale Residuals and SE-Attention Network for Water Body Segmentation From Satellite Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 5049-5064.	2.3	14
1794	A simple, fast, and accurate method for land cover mapping in Mongolia. Geocarto International, 0 , , $1\text{-}19$.	1.7	2
1795	Quality Assessment of Ecological Environment Based on Google Earth Engine: A Case Study of the Zhoushan Islands. Frontiers in Ecology and Evolution, 0, 10 , .	1.1	7
1796	Global Flood Mapper: a novel Google Earth Engine application for rapid flood mapping using Sentinel-1 SAR. Natural Hazards, 2022, 114, 1341-1363.	1.6	17
1797	A 30 m annual maize phenology dataset from 1985 to 2020 in China. Earth System Science Data, 2022, 14, 2851-2864.	3.7	10
1798	A map of global peatland extent created using machine learning (Peat-ML). Geoscientific Model Development, 2022, 15, 4709-4738.	1.3	19
1799	The Importance of Lake Emergent Aquatic Vegetation for Estimating Arcticâ€Boreal Methane Emissions. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	11
1800	Analysis of Surface Water Trends for the Conterminous United States Using MODIS Satellite Data, 2003–2019. Water Resources Research, 2022, 58, .	1.7	4

#	Article	IF	CITATIONS
1801	Continuous Loss of Global Lake Ice Across Two Centuries Revealed by Satellite Observations and Numerical Modeling. Geophysical Research Letters, 2022, 49, .	1.5	4
1802	Globally, Freshwater Ecosystems Emit More CO2 Than the Burning of Fossil Fuels. Frontiers in Environmental Science, $0,10,.$	1.5	1
1803	Estimating Lake Water Volume With Regression and Machine Learning Methods. Frontiers in Water, 0, 4, .	1.0	2
1805	Long-Term and Bimonthly Estimation of Lake Water Extent Using Google Earth Engine and Landsat Data. Remote Sensing, 2022, 14, 2893.	1.8	1
1806	Retrieving Inland Reservoir Water Quality Parameters Using Landsat 8-9 OLI and Sentinel-2 MSI Sensors with Empirical Multivariate Regression. International Journal of Environmental Research and Public Health, 2022, 19, 7725.	1.2	8
1807	Comprehensively evaluating the performance of species distributionÂmodelsÂacross clades and resolutions: choosing the right tool for the job. Landscape Ecology, 2022, 37, 2045-2063.	1.9	3
1808	Gridded maps of wetlands dynamics over mid-low latitudes for 1980–2020 based on TOPMODEL. Scientific Data, 2022, 9, .	2.4	7
1809	The Outburst of a Lake and Its Impacts on Redistribution of Surface Water Bodies in High-Altitude Permafrost Region. Remote Sensing, 2022, 14, 2918.	1.8	7
1810	A Global Analysis of the Spatial and Temporal Variability of Usable Landsat Observations at the Pixel Scale. Frontiers in Remote Sensing, 0, 3, .	1.3	11
1811	Global hydro-environmental lake characteristics at high spatial resolution. Scientific Data, 2022, 9, .	2.4	20
1812	ReaLSAT, a global dataset of reservoir and lake surface area variations. Scientific Data, 2022, 9, .	2.4	17
1813	Seeing Our Planet Anew: Fifty Years of Landsat. Photogrammetric Engineering and Remote Sensing, 2022, 88, 429-436.	0.3	3
1814	Linking species distribution and territorial planning to the management of the endangered Gonopterodendron sarmientoi in native forests of the Chaco region, Argentina. Journal for Nature Conservation, 2022, 68, 126220.	0.8	0
1815	Distinction of driver contributions to wetland decline and their associated basin hydrology around Iran. Journal of Hydrology: Regional Studies, 2022, 42, 101126.	1.0	5
1816	Multi-temporal Landsat-derived NDVI for vegetation cover degradation for the period 1984-2018 in part of the Arganeraie Biosphere Reserve (Morocco). Remote Sensing Applications: Society and Environment, 2022, 27, 100800.	0.8	3
1817	Deep learning reveals one of Earth's largest landslide terrain in Patagonia. Earth and Planetary Science Letters, 2022, 593, 117642.	1.8	6
1818	Consensus-Based Fuzzy Group Decision-Making Framework for Tailoring Good Water Governance to the Context: A Case Study of Sistan, Iran. Journal of Water Resources Planning and Management - ASCE, 2022, 148, .	1.3	1
1819	Dynamic surface water maps of Canada from 1984 to 2019 Landsat satellite imagery. Remote Sensing of Environment, 2022, 279, 113121.	4.6	16

#	ARTICLE	IF	CITATIONS
1820	Identification of temporary livestock enclosures in Kenya from multi-temporal PlanetScope imagery. Remote Sensing of Environment, 2022, 279, 113110.	4.6	3
1821	Flood inundation in the Lancang-Mekong River Basin: Assessing the role of summer monsoon. Journal of Hydrology, 2022, 612, 128075.	2.3	5
1822	Cloud-Based Geospatial Analysis. , 2022, , 73-95.		1
1824	Extraction of Waterbody Using Object-Based Image Analysis and XGBoost. Lecture Notes in Electrical Engineering, 2022, , 341-350.	0.3	1
1825	Fusing Landsat-8, Sentinel-1, and Sentinel-2 Data for River Water Mapping Using Multidimensional Weighted Fusion Method. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12.	2.7	0
1827	Hotspots of ÂClimatic Influence. , 2022, , 629-688.		2
1828	Optical Remote Sensing Systems. , 2022, , 35-52.		1
1830	Remote Sensing Hydrology., 2022,, 3-17.		3
1831	Interpolation, Machine Learning, or Meteorological Simulation? A Comparison Analysis for Spatio-Temporal Estimation of Meso-Scale Urban Air Temperature. SSRN Electronic Journal, 0, , .	0.4	0
1832	Hydrological connectivity research in Lake Taihu Basin: Status, progress and future challenges. Hupo Kexue/Journal of Lake Sciences, 2022, 34, 1055-1074.	0.3	2
1833	A Novel Approach for Automatic Urban Surface Water Mapping with Land Surface Temperature (AUSWM). Remote Sensing, 2022, 14, 3060.	1.8	1
1834	Monitoring the water surface of wetlands in Iran and their relationship with air pollution in nearby cities. Environmental Monitoring and Assessment, 2022, 194, .	1.3	4
1835	Medium Spatial Resolution Mapping of Global Land Cover and Land Cover Change Across Multiple Decades From Landsat. Frontiers in Remote Sensing, 0, 3, .	1.3	22
1836	Evaporative water loss of 1.42 million global lakes. Nature Communications, 2022, 13, .	5.8	49
1837	Monitoring and Predicting Channel Morphology of the Tongtian River, Headwater of the Yangtze River Using Landsat Images and Lightweight Neural Network. Remote Sensing, 2022, 14, 3107.	1.8	1
1838	A New Clustering Method to Generate Training Samples for Supervised Monitoring of Long-Term Water Surface Dynamics Using Landsat Data through Google Earth Engine. Sustainability, 2022, 14, 8046.	1.6	24
1839	Hydrokinetic energy conversion: A global riverine perspective. Journal of Renewable and Sustainable Energy, 2022, 14, .	0.8	1
1840	Applying a Wavelet Transform Technique to Optimize General Fitting Models for SM Analysis: A Case Study in Downscaling over the Qinghai–Tibet Plateau. Remote Sensing, 2022, 14, 3063.	1.8	9

#	Article	IF	CITATIONS
1841	Insights into Variations and Potential Long-Range Transport of Atmospheric Aerosols from the Aral Sea Basin in Central Asia. Remote Sensing, 2022, 14, 3201.	1.8	4
1842	Long-term water clarity patterns of lakes across China using Landsat series imagery fromÂ1985 toÂ2020. Hydrology and Earth System Sciences, 2022, 26, 3517-3536.	1.9	5
1843	Progress of big geodata. Science Bulletin, 2022, 67, 1739-1742.	4.3	6
1844	An open compute and data federation as an alternative to monolithic infrastructures for big Earth data analytics. Big Earth Data, 0, , 1-19.	2.0	1
1845	A New Coherence Detection Method for Mapping Inland Water Bodies Using CYGNSS Data. Remote Sensing, 2022, 14, 3195.	1.8	7
1846	A Deep-Learning Approach to Soil Moisture Estimation with GNSS-R. Remote Sensing, 2022, 14, 3299.	1.8	8
1847	Assessment of spatial–temporal changes in water bodies and its influencing factors using remote sensing and GIS – a model study in the southeast coast of India. Environmental Monitoring and Assessment, 2022, 194, .	1.3	0
1848	Climate change is predicted to reduce sympatry among North American wood-warblers. Condor, 2022, 124, .	0.7	3
1849	How Do Vulnerable People in Bangladesh Experience Environmental Stress From Sedimentation in the Haor Wetlands? An Exploratory Study. Water Resources Research, 2022, 58, .	1.7	6
1850	Assessment of Changes in Key Ecosystem Factors and Water Conservation with Remote Sensing in the Zoige. Diversity, 2022, 14, 552.	0.7	6
1851	Multi-Category Segmentation of Sentinel-2 Images Based on the Swin UNet Method. Remote Sensing, 2022, 14, 3382.	1.8	15
1852	Impacts of Coastal Shrimp Ponds on Saltwater Intrusion and Submarine Groundwater Discharge. Water Resources Research, 2022, 58, .	1.7	20
1853	Monitoring of water resources and vegetation in the Helmand Basin using satellite image time-series and border hydro-political challenges. Water Policy, 0, , .	0.7	0
1854	Structural-optimized sequential deep learning methods for surface soil moisture forecasting, case study Quebec, Canada. Neural Computing and Applications, 2022, 34, 19895-19921.	3.2	4
1855	Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review. Remote Sensing, 2022, 14, 3253.	1.8	62
1856	Remotely sensed reservoir water storage dynamicsÂ(1984–2015) and the influence of climate variability and management at a global scale. Hydrology and Earth System Sciences, 2022, 26, 3785-3803.	1.9	15
1857	Relic Groundwater and Prolonged Drought Confound Interpretations of Water Sustainability and Lithium Extraction in Arid Lands. Earth's Future, 2022, 10, .	2.4	10
1858	A Low-Cost Approach for Lake Volume Estimation on the Tibetan Plateau: Coupling the Lake Hypsometric Curve and Bottom Elevation. Frontiers in Earth Science, 0, 10, .	0.8	0

#	Article	IF	CITATIONS
1859	Measuring and analysing urban growth pattern using spatial metrics in Bengaluru, India. Geocarto International, 2024, 37, 15714-15735.	1.7	1
1860	Rapid Extreme Tropical Precipitation and Flood Inundation Mapping Framework (RETRACE): Initial Testing for the 2021–2022 Malaysia Flood. ISPRS International Journal of Geo-Information, 2022, 11, 378.	1.4	8
1861	FROM-GLC Plus: toward near real-time and multi-resolution land cover mapping. GIScience and Remote Sensing, 2022, 59, 1026-1047.	2.4	29
1862	Using a surrogate-assisted Bayesian framework to calibrate the runoff-generation scheme in the Energy Exascale Earth System Model (E3SM) v1. Geoscientific Model Development, 2022, 15, 5021-5043.	1.3	3
1863	Assessment of Large-Scale Seasonal River Morphological Changes in Ayeyarwady River Using Optical Remote Sensing Data. Remote Sensing, 2022, 14, 3393.	1.8	2
1864	Small water bodies in China: Spatial distribution and influencing factors. Science China Earth Sciences, 0, , .	2.3	3
1865	The Global Surface Area Variations of Lakes and Reservoirs as Seen From Satellite Remote Sensing. Geophysical Research Letters, 2022, 49, .	1.5	5
1866	Variation of satellite-derived total suspended matter in large lakes with four types of water storage across the Tibetan Plateau, China. Science of the Total Environment, 2022, 846, 157328.	3.9	8
1867	Detecting Streamflow in Dryland Rivers Using CubeSats. Geophysical Research Letters, 2022, 49, .	1.5	4
1868	AUnet: A Deep Learning Framework for Surface Water Channel Mapping Using Large-Coverage Remote Sensing Images and Sparse Scribble Annotations from OSM Data. Remote Sensing, 2022, 14, 3283.	1.8	7
1869	Detecting, extracting, and mapping of inland surface water using Landsat 8 Operational Land Imager: A case study of Pune district, India. F1000Research, 0, 11, 774.	0.8	1
1870	Time-series surface water gap filling based on spatiotemporal neighbourhood similarity. International Journal of Applied Earth Observation and Geoinformation, 2022, 112, 102882.	0.9	3
1871	Analysis of the water color transitional change in Qinghai Lake during the past 35 years observed from Landsat and MODIS. Journal of Hydrology: Regional Studies, 2022, 42, 101154.	1.0	6
1872	Spatio-temporal characterization of surface water dynamics with Landsat in endorheic Cuvelai-Etosha Basin (1990–2021). ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 191, 68-84.	4.9	7
1873	Coupled socio-ecological changes in response to soybean expansion along the 2001–2010 decade in Argentina. Anthropocene, 2022, 39, 100343.	1.6	4
1874	Long-term detection and spatiotemporal variation analysis of open-surface water bodies in the Yellow River Basin from 1986 to 2020. Science of the Total Environment, 2022, 845, 157152.	3.9	8
1875	Forest tree species distribution for Europe 2000–2020: mapping potential and realized distributions using spatiotemporal machine learning. PeerJ, 0, 10, e13728.	0.9	13
1876	Challenges and Evolution of Water Level Monitoring towards a Comprehensive, World-Scale Coverage with Remote Sensing. Remote Sensing, 2022, 14, 3513.	1.8	2

#	Article	IF	CITATIONS
1877	Anthropogenically driven climate and landscape change effects on inland water carbon dynamics: What have we learned and where are we going?. Global Change Biology, 2022, 28, 5601-5629.	4.2	24
1878	Spatially Explicit Seagrass Extent Mapping Across the Entire Mediterranean. Frontiers in Marine Science, 0, 9, .	1.2	14
1879	Lakes in Hot Water: The Impacts of a Changing Climate on Aquatic Ecosystems. BioScience, 2022, 72, 1050-1061.	2,2	59
1880	Satellite-Derived Trends in Inundation Frequency Reveal the Fate of Saltmarshes. Frontiers in Marine Science, 0, 9, .	1.2	0
1881	Dynamic Analysis in Surface Water Area and Its Driving Factors in Northeast China from 1988 to 2020. Water (Switzerland), 2022, 14, 2296.	1.2	1
1882	Monitoring water level and volume changes of lakes and reservoirs in the Yellow River Basin using ICESat-2 laser altimetry and Google Earth Engine. Journal of Hydro-Environment Research, 2022, 44, 53-64.	1.0	14
1883	Methane Emission From Global Lakes: New Spatiotemporal Data and Observationâ€Driven Modeling of Methane Dynamics Indicates Lower Emissions. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	33
1884	Removing miscellaneous heavy metals by all-in-one ion exchange-nanofiltration membrane. Water Research, 2022, 222, 118888.	5.3	57
1885	Accurate water extraction using remote sensing imagery based on normalized difference water index and unsupervised deep learning. Journal of Hydrology, 2022, 612, 128202.	2.3	25
1886	Multi-faceted analyses of seasonal trends and drivers of land surface variables in Indo-Gangetic river basins. Science of the Total Environment, 2022, 847, 157515.	3.9	4
1887	High-resolution global water body datasets underestimate the extent of small rivers. International Journal of Remote Sensing, 2022, 43, 4315-4330.	1.3	3
1888	Deep Temporal Iterative Clustering for Satellite Image Time Series Land Cover Analysis. Remote Sensing, 2022, 14, 3635.	1.8	2
1889	Use of big data for official environment statistics: The measurement of extent and quality of freshwater ecosystems 1. Statistical Journal of the IAOS, 2022, 38, 957-972.	0.2	2
1890	Creating a Detailed Wetland Inventory with Sentinel-2 Time-Series Data and Google Earth Engine in the Prairie Pothole Region of Canada. Remote Sensing, 2022, 14, 3401.	1.8	5
1891	Monitoring Surface Water Inundation of Poyang Lake and Dongting Lake in China Using Sentinel-1 SAR Images. Remote Sensing, 2022, 14, 3473.	1.8	4
1892	A high-resolution inland surface water body dataset for the tundra and boreal forests of North America. Earth System Science Data, 2022, 14, 3349-3363.	3.7	9
1893	Mangroves Cover Change Trajectories 1984-2020: The Gradual Decrease of Mangroves in Colombia. Frontiers in Marine Science, 0, 9, .	1.2	3
1894	Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sensing, 2022, 14, 3657.	1.8	83

#	Article	IF	CITATIONS
1895	Estimation of the Madeira floodplain dynamics from 2008 to 2018. Frontiers in Water, 0, 4, .	1.0	1
1896	How Have Global River Widths Changed Over Time?. Water Resources Research, 2022, 58, .	1.7	9
1897	Adaptive neuro fuzzy inference system (ANFIS) machine learning algorithm for assessing environmental and socio-economic vulnerability to drought: a study in Godavari middle sub-basin, India. Stochastic Environmental Research and Risk Assessment, 2023, 37, 233-259.	1.9	8
1898	Satellite Observational Evidence of Contrasting Changes in Northern Eurasian Wildfires from 2003 to 2020. Remote Sensing, 2022, 14, 4180.	1.8	2
1899	Estimating Gridded Monthly Baseflow From 1981 to 2020 for the Contiguous US Using Long Shortâ€√erm Memory (LSTM) Networks. Water Resources Research, 2022, 58, .	1.7	6
1900	Development of Landâ€River Twoâ€Way Hydrologic Coupling for Floodplain Inundation in the Energy Exascale Earth System Model. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	8
1901	Monitoring Cropland Abandonment in Hilly Areas with Sentinel-1 and Sentinel-2 Timeseries. Remote Sensing, 2022, 14, 3806.	1.8	8
1902	Water Occurrence in the Two Largest Lakes in China Based on Long-Term Landsat Images: Spatiotemporal Changes, Ecological Impacts, and Influencing Factors. Remote Sensing, 2022, 14, 3875.	1.8	3
1903	New techniques for old fires: Using deep learning to augment fire maps from the early satellite era. Frontiers in Environmental Science, $0,10,10$	1.5	1
1904	High-resolution surface water dynamics in Earth's small and medium-sized reservoirs. Scientific Reports, 2022, 12, .	1.6	16
1906	Drivers of Warming in Lake Nam Co on Tibetan Plateau Over the Past 40ÂYears. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	4
1907	A comprehensive data set of physical and human-dimensional attributes for China's lake basins. Scientific Data, 2022, 9, .	2.4	4
1908	Balancing future renewable energy infrastructure siting and associated habitat loss for migrating whooping cranes. Frontiers in Ecology and Evolution, 0, 10 , .	1.1	2
1909	The size-distribution of earth $\widehat{a}\in \mathbb{R}^{m}$ lakes and ponds: Limits to power-law behavior. Frontiers in Environmental Science, 0, 10, .	1.5	1
1910	Remote sensing modeling of environmental influences on lake fish resources by machine learning: A practice in the largest freshwater lake of China. Frontiers in Environmental Science, 0 , 10 , .	1.5	0
1911	Lessons from a lakebed: unpicking hydrological change and early human landscape use in the Makgadikgadi basin, Botswana. Quaternary Science Reviews, 2022, 291, 107662.	1.4	12
1912	Monitoring Lake Volume Variation from Space Using Satellite Observations—A Case Study in Thac Mo Reservoir (Vietnam). Remote Sensing, 2022, 14, 4023.	1.8	6
1913	Mapping the distribution and extent of India's semiâ€arid open natural ecosystems. Journal of Biogeography, 2023, 50, 1377-1387.	1.4	10

#	Article	IF	CITATIONS
1914	CHLNET: A novel hybrid 1D CNN-SVR algorithm for estimating ocean surface chlorophyll-a. Frontiers in Marine Science, $0, 9, .$	1.2	2
1915	Cloud-based storage and computing for remote sensing big data: a technical review. International Journal of Digital Earth, 2022, 15, 1417-1445.	1.6	11
1916	Spatiotemporal water dynamic modelling of Ramsar-listed lakes on the Victorian Volcanic Plains using Landsat, ICESat-2 and airborne LiDAR data. Ecological Informatics, 2022, 71, 101789.	2.3	1
1917	Improved maps of surface water bodies, large dams, reservoirs, and lakes in China. Earth System Science Data, 2022, 14, 3757-3771.	3.7	20
1919	Dam Extraction from High-Resolution Satellite Images Combined with Location Based on Deep Transfer Learning and Post-Segmentation with an Improved MBI. Remote Sensing, 2022, 14, 4049.	1.8	1
1920	A bankfull geometry dataset for major exorheic rivers on the Qinghai-Tibet Plateau. Scientific Data, 2022, 9, .	2.4	2
1921	Estimation of surface water bodies dynamics in Lake Ladoga catchment area according to the project Global Surface Water. Geodeziya I Kartografiya, 2022, 985, 39-48.	0.2	0
1922	The ecological role of permanent ponds in Europe: a review of dietary linkages to terrestrial ecosystems via emerging insects. Inland Waters, 2023, 13, 30-46.	1.1	6
1923	Monitoring drought in ungauged areas using satellite altimetry: The Standardized River Stage Index. Journal of Hydrology, 2022, 612, 128308.	2.3	5
1924	Spatiotemporal dynamics of lake wetland in the Wanjiang Plain of the Yangtze River basin, China during the recent century. Ecological Indicators, 2022, 142, 109295.	2.6	11
1925	Historical mapping of rice fields in Japan using phenology and temporally aggregated Landsat images in Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 191, 277-289.	4.9	12
1926	Monitoring spatial and temporal dynamics of wetland vegetation and their response to hydrological conditions in a large seasonal lake with time series Landsat data. Ecological Indicators, 2022, 142, 109283.	2.6	9
1927	Changes in extent of open-surface water bodies in China's Yellow River Basin (2000–2020) using Google Earth Engine cloud platform. Anthropocene, 2022, 39, 100346.	1.6	11
1928	Fifty years of Landsat science and impacts. Remote Sensing of Environment, 2022, 280, 113195.	4.6	149
1929	Riverbed morphology and hydrodynamics in the confluence of complex mega rivers - A study in the Branco and Negro rivers, Amazon basin. Journal of South American Earth Sciences, 2022, 118, 103969.	0.6	1
1930	Changes of total and artificial water bodies in inland China over the past three decades. Journal of Hydrology, 2022, 613, 128344.	2.3	4
1931	Multiscale spatial analysis of headwater vulnerability in South-Central Chile reveals a high threat due to deforestation and climate change. Science of the Total Environment, 2022, 849, 157930.	3.9	9
1932	Westerlies-Monsoon interaction drives out-of-phase precipitation and asynchronous lake level changes between Central and East Asia over the last millennium. Catena, 2022, 218, 106568.	2.2	10

#	Article	IF	Citations
1933	Evolution of agricultural development and land-water-food nexus in Central Asia. Agricultural Water Management, 2022, 273, 107874.	2.4	7
1934	Predicting water quality from geospatial lake, catchment, and buffer zone characteristics in temperate lowland lakes. Science of the Total Environment, 2022, 851, 158090.	3.9	1
1935	Automated extraction of aquaculture ponds from Sentinel-2 seasonal imagery – A validated case study in central Thailand. Science of Remote Sensing, 2022, 6, 100063.	2.2	0
1936	Statistical Analysis of CyGNSS Speckle and Its Applications to Surface Water Mapping. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15.	2.7	5
1937	Brief communication: Western Europe flood in 2021 – mapping agriculture flood exposure from synthetic aperture radar (SAR). Natural Hazards and Earth System Sciences, 2022, 22, 2921-2927.	1.5	3
1938	Using Sentinel-2 Imagery and Machine Learning Algorithms to Assess the Inundation Status of Nebraska Conservation Easements during 2018–2021. Remote Sensing, 2022, 14, 4382.	1.8	9
1939	Long-Term Changes of Land Use and Land Cover in the Yangtze River Basin from 1990–2020 Landsat Data. Photogrammetric Engineering and Remote Sensing, 2022, 88, 573-582.	0.3	0
1940	Impact of flooding on microbiological contamination of domestic water sources: a longitudinal study in northern Ghana. Applied Water Science, 2022, 12, .	2.8	2
1941	Precipitation, vegetation productivity, and human impacts control home range size of elephants in dryland systems in northern Namibia. Ecology and Evolution, 2022, 12, .	0.8	4
1942	Spectral index-driven FCN model training for water extraction from multispectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 192, 344-360.	4.9	9
1943	Remote sensing of broad-scale controls on large river anabranching. Remote Sensing of Environment, 2022, 281, 113243.	4.6	6
1944	Characterizing ecosystem change in wetlands using dense earth observation time series. Remote Sensing of Environment, 2022, 281, 113267.	4. 6	11
1945	Sentinel-2 high-resolution data for river discharge monitoring. Remote Sensing of Environment, 2022, 281, 113255.	4.6	8
1946	Associations of parks, greenness, and blue space with cardiovascular and respiratory disease hospitalization in the US Medicare cohort. Environmental Pollution, 2022, 312, 120046.	3.7	7
1947	Linking Land Use Land Cover change to global groundwater storage. Science of the Total Environment, 2022, 853, 158618.	3.9	8
1948	Time for decisive actions to protect freshwater ecosystems from global changes. Knowledge and Management of Aquatic Ecosystems, 2022, , 19.	0.5	8
1949	Hidden Path Selection Network for Semantic Segmentation of Remote Sensing Images. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15.	2.7	5
1950	UNet Combined With Attention Mechanism Method for Extracting Flood Submerged Range. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 6588-6597.	2.3	6

#	Article	IF	Citations
1951	Deep Learning-Based Soil Moisture Retrieval in CONUS Using CYGNSS Delay–Doppler Maps. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 6867-6881.	2.3	18
1952	Spatial–Temporal Variation Characteristics of Water Bodies and Their Climatic Drivers Over the Qinghai–Tibet Plateau in 2002-2020. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 7913-7928.	2.3	1
1953	A new approach towards temporal densification of river discharge estimates by filling cloud- and stripe-gaps using Landsat and Sentinel-2 images. International Journal of Remote Sensing, 2022, 43, 4682-4707.	1.3	0
1954	Flood Monitoring with X-Band and C-Band SAR: A Case Study of the 2021 British Columbia Floods. , 2022, , .		0
1955	CYGNSS GNSS-R Data for Inundation Monitoring in the Brazilian Pantanal Wetland., 2022,,.		2
1956	The determining factors of sediment nutrient content and stoichiometry along profile depth in seasonal water. Science of the Total Environment, 2023, 856, 158972.	3.9	1
1957	A Deep Learning-Based Soil Moisture Estimation in Conus Region Using Cygnss Delay Doppler Maps. , 2022, , .		1
1958	A Probabilistic Approach to Mapping Inland Water Bodies with GNSS-R. , 2022, , .		0
1959	Application of Flood Disaster Monitoring Based on Dual Polarization of Gaofen-3 SAR Image. , 2022, , .		0
1960	Class-Aware Regularized Self-Distillation Learning Method for Land Cover Classification. , 2022, , .		1
1961	Spatial assessment of coastal flood risk due to sea level rise in China's coastal zone through the 21st century. Frontiers in Marine Science, 0, 9, .	1.2	3
1962	A Batch Pixel-Based Algorithm to Composite Landsat Time Series Images. Remote Sensing, 2022, 14, 4252.	1.8	0
1963	A Comparison of Different Water Indices and Band Downscaling Methods for Water Bodies Mapping from Sentinel-2 Imagery at 10-M Resolution. Water (Switzerland), 2022, 14, 2696.	1.2	11
1964	Mapping Dynamic Turbidity Maximum Zone of the Yellow River Estuary from 38 Years of Landsat Imagery. Remote Sensing, 2022, 14, 3782.	1.8	3
1965	Future scenarios of land use change in the Gran Chaco: how far is zero-deforestation?. Regional Environmental Change, 2022, 22, .	1.4	3
1966	High-resolution global maps of tidal flat ecosystems from 1984 to 2019. Scientific Data, 2022, 9, .	2.4	14
1967	A globally relevant change taxonomy and evidenceâ€based change framework for land monitoring. Global Change Biology, 2022, 28, 6293-6317.	4.2	7
1968	Seeing the System from Above: The Use and Potential of Remote Sensing for Studying Ecosystem Dynamics. Ecosystems, 2022, 25, 1719-1737.	1.6	14

#	ARTICLE	IF	CITATIONS
1969	Area Changes and Influencing Factors of Large Inland Lakes in Recent 20 Years: A Case Study of Sichuan Province, China. Water (Switzerland), 2022, 14, 2816.	1.2	1
1971	WaterMaskAnalyzer (WMA)—A User-Friendly Tool to Analyze and Visualize Temporal Dynamics of Inland Water Body Extents. Remote Sensing, 2022, 14, 4485.	1.8	2
1972	Monitoring Long-Term Spatiotemporal Changes in Iran Surface Waters Using Landsat Imagery. Remote Sensing, 2022, 14, 4491.	1.8	8
1973	Automated Small River Mapping (ASRM) for the Qinghai-Tibet Plateau Based on Sentinel-2 Satellite Imagery and MERIT DEM. Remote Sensing, 2022, 14, 4693.	1.8	2
1974	Improved forest cover mapping by harmonizing multiple land cover products over China. GIScience and Remote Sensing, 2022, 59, 1570-1597.	2.4	4
1975	Climate and land management accelerate the Brazilian water cycle. Nature Communications, 2022, 13, .	5.8	38
1976	A surface water mapping framework combining optical and radar remote sensing and its application in China. Geocarto International, 2024, 37, 17547-17564.	1.7	0
1977	Urbanizing the floodplain: global changes of imperviousness in flood-prone areas. Environmental Research Letters, 2022, 17, 104024.	2.2	15
1978	A method to detect abrupt shifts in river channel position using a Landsatâ€derived water occurrence record. Earth Surface Processes and Landforms, 2022, 47, 3546-3557.	1.2	1
1979	A national-scale land cover reference dataset from local crowdsourcing initiatives in Indonesia. Scientific Data, 2022, 9, .	2.4	2
1980	Controls on Alpine Lake Dynamics, Tien Shan, Central Asia. Remote Sensing, 2022, 14, 4698.	1.8	2
1981	The Effects of Lake Level and Area Changes of Poyang Lake on the Local Weather. Atmosphere, 2022, 13, 1490.	1.0	5
1982	Time-series land cover mapping and urban expansion analysis using OpenStreetMap data and remote sensing big data: A case study of Guangdong-Hong Kong-Macao Greater Bay Area, China. International Journal of Applied Earth Observation and Geoinformation, 2022, 113, 103001.	0.9	6
1983	A 10 m resolution urban green space map for major Latin American cities from Sentinel-2 remote sensing images and OpenStreetMap. Scientific Data, 2022, 9 , .	2.4	11
1984	Characterizing the river migration process based on migration events of individual bends: a case study of the lower Yellow River, China. Geocarto International, 2024, 37, 17288-17306.	1.7	1
1985	Structural Characteristics of Endorheic Rivers in the Tarim Basin. Remote Sensing, 2022, 14, 4502.	1.8	4
1986	Future Food Security in Africa Under Climate Change. Earth's Future, 2022, 10, .	2.4	7
1987	Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 2022, 113, 103010.	0.9	4

#	ARTICLE	IF	CITATIONS
1988	Link Ecological and Social Composite Systems to Construct Sustainable Landscape Patterns: A New Framework Based on Ecosystem Service Flows. Remote Sensing, 2022, 14, 4663.	1.8	11
1989	Large-Scale Extraction and Mapping of Small Surface Water Bodies Based on Very High-Spatial-Resolution Satellite Images: A Case Study in Beijing, China. Water (Switzerland), 2022, 14, 2889.	1.2	4
1990	Population dynamics of Amazonian floodplain forest species support spatial variation on genetic diversity but not range expansions through time. Journal of Biogeography, 2022, 49, 1891-1901.	1.4	3
1991	Expansion of typical lakes in Xinjiang under the combined effects of climate change and human activities. Frontiers in Environmental Science, 0, 10, .	1.5	1
1992	On the Use of Sentinel-2 NDVI Time Series and Google Earth Engine to Detect Land-Use/Land-Cover Changes in Fire-Affected Areas. Remote Sensing, 2022, 14, 4723.	1.8	11
1993	A comprehensive geospatial database of nearly 100 000 reservoirs in China. Earth System Science Data, 2022, 14, 4017-4034.	3.7	33
1994	Climate change and water security in the northern slope of the Tianshan Mountains. Geography and Sustainability, 2022, 3, 246-257.	1.9	3
1995	Mapping global lake dynamics reveals the emerging roles of small lakes. Nature Communications, 2022, 13, .	5.8	53
1996	Large deltas, small deltas: Toward a more rigorous understanding of coastal marine deltas. Global and Planetary Change, 2022, 218, 103958.	1.6	24
1997	A typological framework of non-floodplain wetlands for global collaborative research and sustainable use. Environmental Research Letters, 2022, 17, 113002.	2.2	1
1998	Hydro-economic model framework for achieving groundwater, food, and economy trade-offs by optimizing crop patterns. Water Research, 2022, 226, 119199.	5.3	4
1999	Reservoir Assessment Tool 2.0: Stakeholder driven improvements to satellite remote sensing based reservoir monitoring. Environmental Modelling and Software, 2022, 157, 105533.	1.9	6
2000	Mapping African wetlands for 2020 using multiple spectral, geo-ecological features and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 193, 252-268.	4.9	12
2001	Global maps of 3D built-up patterns for urban morphological analysis. International Journal of Applied Earth Observation and Geoinformation, 2022, 114, 103048.	0.9	5
2002	Remote sensing of land change: A multifaceted perspective. Remote Sensing of Environment, 2022, 282, 113266.	4.6	36
2003	Deep learning models for river classification at sub-meter resolutions from multispectral and panchromatic commercial satellite imagery. Remote Sensing of Environment, 2022, 282, 113279.	4.6	9
2004	A deep learning-based method for mapping alpine intermittent rivers and ephemeral streams of the Tibetan Plateau from Sentinel-1 time series and DEMs. Remote Sensing of Environment, 2022, 282, 113271.	4.6	6
2005	Analysis of CYGNSS coherent reflectivity over land for the characterization of pan-tropical inundation dynamics. Remote Sensing of Environment, 2022, 282, 113278.	4.6	5

#	Article	IF	CITATIONS
2006	A timely efficient and robust multi-source and multitemporal routine for determination of surface water area in large water reservoirs. International Journal of Hydrology, 2022, 6, 202-206.	0.2	0
2007	The Challenge of Surface Type Changes Over the Aral Sea for Satellite Remote Sensing of Precipitation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 8650-8655.	2.3	0
2008	Comparison of the Effective Isotropic Radiated Power Parameter in CYGNSS v2.1 and v3.0 Level 1 Data and Its Impact on Soil Moisture Estimation. International Association of Geodesy Symposia, 2022, , .	0.2	0
2009	Soil moisture retrieval using space-borne GNSS reflectometry: a comprehensive review. International Journal of Remote Sensing, 2022, 43, 5173-5203.	1.3	3
2010	Where Do Humans Build Levees? A Case Study on the Contiguous United States. , 2022, , .		0
2011	The Potential of Using Dynamic Surface Water Products for Drought Monitoring. , 2022, , .		0
2012	Single Collect Flood Mapping from VHR X-Band Data Supervised Solely by Ancillary Data., 2022,,.		1
2013	Leveraging convolutional neural networks for semantic segmentation of global floods with PlanetScope imagery. , 2022, , .		1
2014	Probabilistic Tracking of Annual Cropland Changes over Large, Complex Agricultural Landscapes Using Google Earth Engine. Remote Sensing, 2022, 14, 4896.	1.8	5
2015	Study on the change monitoring of typical estuarine wetland and its effect on ecological factors in Bohai Rim region, China. Frontiers in Ecology and Evolution, 0, 10, .	1.1	0
2016	Google Earth Engine as Multi-Sensor Open-Source Tool for Monitoring Stream Flow in the Transboundary River Basin: Doosti River Dam. ISPRS International Journal of Geo-Information, 2022, 11, 535.	1.4	2
2017	Sediment and carbon dynamics during an episodic flood in an intermittent river. Ecosphere, 2022, 13, .	1.0	1
2018	Headwater streams and inland wetlands: Status and advancements of geospatial datasets and maps across the United States. Earth-Science Reviews, 2022, , 104230.	4.0	5
2019	Flood Hazard and Management in Cambodia: A Review of Activities, Knowledge Gaps, and Research Direction. Climate, 2022, 10, 162.	1.2	3
2020	Carbon fluxes and soil carbon dynamics along a gradient of biogeomorphic succession in alpine wetlands of Tibetan Plateau. Fundamental Research, 2023, 3, 151-159.	1.6	5
2021	Breeding and migration performance metrics highlight challenges for White-naped Cranes. Scientific Reports, 2022, 12, .	1.6	O
2022	Mapping of small water bodies with integrated spatial information for time series images of optical remote sensing. Journal of Hydrology, 2022, 614, 128580.	2.3	1
2023	Paleolithic occupation of arid Central Asia in the Middle Pleistocene. PLoS ONE, 2022, 17, e0273984.	1.1	4

#	Article	IF	CITATIONS
2024	Combining SAR images with land cover products for rapid urban flood mapping. Frontiers in Environmental Science, $0,10,.$	1.5	1
2025	A function-based typology for Earth's ecosystems. Nature, 2022, 610, 513-518.	13.7	86
2026	Dynamic Monitoring and Ecological Risk Analysis of Lake Inundation Areas in Tibetan Plateau. Sustainability, 2022, 14, 13332.	1.6	3
2027	Tracking transient boreal wetland inundation with Sentinel-1 SAR: Peace-Athabasca Delta, Alberta and Yukon Flats, Alaska. GIScience and Remote Sensing, 2022, 59, 1767-1792.	2.4	3
2028	Hydrological Connectivity Improves the Water-Related Environment in a Typical Arid Inland River Basin in Xinjiang, China. Remote Sensing, 2022, 14, 4977.	1.8	3
2029	Downscaling SMAP Brightness Temperatures to 3 km Using CYGNSS Reflectivity Observations: Factors That Affect Spatial Heterogeneity. Remote Sensing, 2022, 14, 5262.	1.8	0
2030	Lake volume variation in the endorheic basin of the Tibetan Plateau from 1989 to 2019. Scientific Data, 2022, 9, .	2.4	2
2031	Mapping Coastal Aquaculture Ponds of China Using Sentinel SAR Images in 2020 and Google Earth Engine. Remote Sensing, 2022, 14, 5372.	1.8	6
2032	GLOBMAP SWF: a global annual surface water cover frequency dataset during 2000–2020. Earth System Science Data, 2022, 14, 4505-4523.	3.7	1
2033	Waterbody loss due to urban expansion of large Chinese cities in last three decades. Scientific Reports, 2022, 12, .	1.6	6
2034	Prolonged coastal inundation detected with synthetic aperture radar significantly retarded functional recovery of mangroves after major hurricanes. Landscape Ecology, 2023, 38, 169-183.	1.9	3
2035	Assessment of human-induced effects in the Sultan marshes (Ramsar Protection), Kayseri (Turkey). Environmental Monitoring and Assessment, 2022, 194, .	1.3	0
2036	Hydrography90m: a new high-resolution global hydrographic dataset. Earth System Science Data, 2022, 14, 4525-4550.	3.7	18
2037	Export of dietary lipids via emergent insects from eutrophic fishponds. Hydrobiologia, 2023, 850, 3241-3256.	1.0	3
2038	What Controls Lake Contraction and Then Expansion in Tibetan Plateau's Endorheic Basin Over the Past Half Century?. Geophysical Research Letters, 2022, 49, .	1.5	9
2040	ecochange: An Râ€package to derive ecosystem change indicators from freely available earth observation products. Methods in Ecology and Evolution, 2022, 13, 2379-2388.	2.2	1
2041	Interannual and Monthly Variability of Typical Inland Lakes on the Tibetan Plateau Located in Three Different Climatic Zones. Remote Sensing, 2022, 14, 5015.	1.8	7
2042	Analysis of Spatio-Temporal Dynamics of Chinese Inland Water Clarity at Multiple Spatial Scales between 1984 and 2018. Remote Sensing, 2022, 14, 5091.	1.8	0

#	Article	IF	CITATIONS
2043	ExtractEO, a Pipeline for Disaster Extent Mapping in the Context of Emergency Management. Remote Sensing, 2022, 14, 5253.	1.8	2
2044	Ecological Effects of Surface Water Evolution in the Yellow River Delta. Sustainability, 2022, 14, 13544.	1.6	3
2045	Regressive Erosion at River Coca in Northeast Ecuador: Landslide Monitoring with Sentinel-1 to Support Disaster Risk Management. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 0, , .	0.7	0
2046	Assessing the 2022 Flood Impacts in Queensland Combining Daytime and Nighttime Optical and Imaging Radar Data. Remote Sensing, 2022, 14, 5009.	1.8	8
2047	Flood mapping and damage assessment due to the super cyclone Yaas using Google Earth Engine in Purba Medinipur, West Bengal, India. Environmental Monitoring and Assessment, 2022, 194, .	1.3	1
2048	Active water management brings possibility restoration to degraded lakes in dryland regions: a case study of Lop Nur, China. Scientific Reports, 2022, 12, .	1.6	1
2049	Detection of surface water temperature variations of Mongolian lakes benefiting from the spatially and temporally gap-filled MODIS data. International Journal of Applied Earth Observation and Geoinformation, 2022, 114, 103073.	0.9	0
2050	Spatiotemporal variation in vegetation net primary productivity and its relationship with meteorological factors in the Tarim River Basin of China from 2001 to 2020 based on the Google Earth Engine. Journal of Arid Land, 2022, 14, 1377-1394.	0.9	3
2051	Mapping coastal upwelling in the Baltic Sea from 2002 to 2020 using remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 2022, 114, 103061.	0.9	3
2052	Deciphering human influence on annual maximum flood extent at the global level. Communications Earth & Environment, 2022, 3, .	2.6	6
2053	Impacts of the Desiccation of the Aral Sea on the Central Asian Dust Lifeâ€Cycle. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	9
2054	Unravelling lake water storage change in Central Asia: Rapid decrease in tail-end lakes and increasing risks to water supply. Journal of Hydrology, 2022, 614, 128546.	2.3	13
2055	Inferring volumetric changes at a shallow lake from subpixel satellite-derived shorelines. Applied Geography, 2022, 149, 102792.	1.7	3
2056	Mapping water clarity in North American lakes and reservoirs using Landsat images on the GEE platform with the RGRB model. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 194, 39-57.	4.9	9
2057	Coastal wetland area change for two freshwater diversions in the Mississippi River Delta. Ecological Engineering, 2023, 186, 106819.	1.6	5
2058	Mapping Surface Water Extents Using High-Rate Coherent Spaceborne GNSS-R Measurements. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-15.	2.7	6
2059	Geo-Spatial Assessment of Irrigation-Induced Groundwater Depletion and Groundwater Prospect in an Alluvial River Basin of West Bengal. , 2022, , 403-434.		0
2060	Benefits of pairing floating solar photovoltaics with hydropower reservoirs in Europe. Renewable and Sustainable Energy Reviews, 2023, 171, 112989.	8.2	27

#	Article	IF	CITATIONS
2061	Causes & Description of Catchment-Estuary-Coastal systems. Science of the Total Environment, 2023, 858, 160045.	3.9	2
2062	Climate-driven decoupling of wetland and upland biomass trends on the mid-Atlantic coast. Nature Geoscience, 2022, 15, 913-918.	5.4	19
2063	Integrating Hydrological Connectivity in a Process–Response Framework for Restoration and Monitoring Prioritisation of Floodplain Wetlands in the Ramganga Basin, India. Water (Switzerland), 2022, 14, 3520.	1.2	1
2064	Assessing runoff sensitivity of North American Prairie Pothole Region basins to wetland drainage using a basin classification-based virtual modelling approach. Hydrology and Earth System Sciences, 2022, 26, 5555-5575.	1.9	4
2065	Screening of Mercury pollution sources to European inland waters using high resolution earth surface data. Frontiers in Environmental Science, 0, 10, .	1.5	2
2066	Irrigation water use driving desiccation of Earthâ \in [™] s endorheic lakes and seas. Australian Journal of Water Resources, 0, , 1-12.	1.6	3
2067	Long term monitoring of rainwater harvesting tanks: Is multiâ€years management possible in crystalline South Indian aquifers?. Hydrological Processes, 2022, 36, .	1.1	1
2068	Comparison between Sentinel-2 and WorldView-3 sensors in mapping wetland vegetation communities of the Grassland Biome of South Africa, for monitoring under climate change. Remote Sensing Applications: Society and Environment, 2022, 28, 100875.	0.8	1
2069	Rice and Greenhouse Identification in Plateau Areas Incorporating Sentinel-1/2 Optical and Radar Remote Sensing Data from Google Earth Engine. Remote Sensing, 2022, 14, 5727.	1.8	2
2070	Generating annual high resolution land cover products for 28 metropolises in China based on a deep super-resolution mapping network using Landsat imagery. GIScience and Remote Sensing, 2022, 59, 2036-2067.	2.4	42
2071	River Deltas and Sea-Level Rise. Annual Review of Earth and Planetary Sciences, 2023, 51, 79-104.	4.6	12
2072	Tracking a blue wave of ephemeral water across arid southern Africa. Environmental Research Letters, 2022, 17, 114063.	2.2	2
2073	Dam-mediated flooding impact on outpatient attendance and diarrhoea cases in northern Ghana: a mixed methods study. BMC Public Health, 2022, 22, .	1.2	3
2074	Landscape dynamics of a vectorâ€borne disease in the western <scp>US</scp> : How vector–habitat relationships inform disease hotspots. Ecosphere, 2022, 13, .	1.0	0
2075	Firstâ€Order River Delta Morphology Is Explained by the Sediment Flux Balance From Rivers, Waves, and Tides. Geophysical Research Letters, 2022, 49, .	1.5	5
2076	Geospatial Machine Learning Prediction of Arsenic Distribution in the Groundwater of Murshidabad District, West Bengal, India: Analyzing Spatiotemporal Patterns to Understand Human Health Risk. ACS ES&T Water, 2022, 2, 2409-2421.	2.3	1
2077	A highâ€accuracy vegetation restoration potential mapping model integrating similar habitat and machine learning. Land Degradation and Development, 2023, 34, 1208-1224.	1.8	2
2078	Projections of coastal flooding under different RCP scenarios over the 21st century: A case study of China's coastal zone. Estuarine, Coastal and Shelf Science, 2022, 279, 108155.	0.9	7

#	Article	IF	CITATIONS
2079	Sentinel2GlobalLULC: A Sentinel-2 RGB image tile dataset for global land use/cover mapping with deep learning. Scientific Data, 2022, 9, .	2.4	11
2080	Precise Wetland Mapping in Southeast Asia for the Ramsar Strategic Plan 2016–24. Remote Sensing, 2022, 14, 5730.	1.8	0
2081	Analyzing Satellite-Derived 3D Building Inventories and Quantifying Urban Growth towards Active Faults: A Case Study of Bishkek, Kyrgyzstan. Remote Sensing, 2022, 14, 5790.	1.8	3
2082	Vegetation shadow casts impact remotely sensed reflectance from permafrost thaw ponds in the subarctic forest-tundra zone. Environmental Earth Sciences, 2022, 81, .	1.3	0
2083	Global mapping of the landside clustering of aquaculture ponds from dense time-series 10Âm Sentinel-2 images on Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 2022, 115, 103100.	0.9	4
2084	Surface Water Extent Mapping in Denmark: Comparing Airborne Thermal Imagery and Satellite Earth Observation. Water (Switzerland), 2022, 14, 3742.	1.2	0
2085	Iron Oxide Nanoparticle-Based Ferro-Nanofluids for Advanced Technological Applications. Molecules, 2022, 27, 7931.	1.7	21
2086	Satellite-based agricultural water consumption assessment in the ungauged and transboundary Helmand Basin between Iran and Afghanistan. Remote Sensing Letters, 2022, 13, 1236-1248.	0.6	2
2087	Environmental controllers for carbon emission and concentration patterns in Siberian rivers during different seasons. Science of the Total Environment, 2023, 859, 160202.	3.9	4
2088	The Status and Influencing Factors of Surface Water Dynamics on the Qinghai-Tibet Plateau During 2000–2020. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-14.	2.7	3
2089	Inland Water Mapping Based on GA-LinkNet From CyGNSS Data. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 1-5.	1.4	6
2090	Naive Bayes classification-based surface water gap-filling from partially contaminated optical remote sensing image. Journal of Hydrology, 2023, 616, 128791.	2.3	3
2091	River pattern discriminant method based on Rough Set theory. Journal of Hydrology: Regional Studies, 2023, 45, 101285.	1.0	2
2092	Can we estimate the lake mean depth and volume from the deepest record and auxiliary geospatial parameters?. Journal of Hydrology, 2023, 617, 128958.	2.3	7
2093	Evaluation of Landsat image compositing algorithms. Remote Sensing of Environment, 2023, 285, 113375.	4.6	11
2094	Three-dimensional observations of particulate organic carbon in shallow eutrophic lakes from space. Water Research, 2023, 229, 119519.	5.3	3
2095	Laser-induced 3D porous flower-like Fe2O3/reduced graphene oxide modified nickel foam electrode for enhanced capacitive deionization. Desalination, 2023, 548, 116286.	4.0	9
2096	Flow regime changes in the Lancang River, revealed by integrated modeling with multiple Earth observation datasets. Science of the Total Environment, 2023, 862, 160656.	3.9	7

#	Article	IF	CITATIONS
2097	Surface water and aerosol spatiotemporal dynamics and influence mechanisms over drylands. Geoscience Frontiers, 2023, 14, 101524.	4.3	2
2098	Examining human disturbances and inundation dynamics in China's marsh wetlands by using time series remote sensing data. Science of the Total Environment, 2023, 863, 160961.	3.9	4
2099	Análise Multitemporal do Espelho d'água do Açude Jaburu I por Meio de Ferramentas de Sensoriamento Remoto nos Anos de 2013 a 2020. Revista Brasileira De Meteorologia, 2022, 37, 233-241.	0.2	0
2101	The Influence of River Morphology on the Remote Sensing Based Discharge Estimation: Implications for Satellite Virtual Gauge Establishment. Water (Switzerland), 2022, 14, 3854.	1.2	1
2102	Agricultural Drought Assessment in a Typical Plain Region Based on Coupled Hydrology–Crop Growth Model and Remote Sensing Data. Remote Sensing, 2022, 14, 5994.	1.8	0
2103	Application Research on Water Body Extraction of Gaofen-3 Polarimetric SAR Based on Deep Learning. Lecture Notes in Electrical Engineering, 2023, , 274-283.	0.3	0
2104	GEE-Based Spatial-Temporal Dynamics in a Ramsar Wetland, Honghe National Nature Reserve, Northeast China from 1985 to 2021. Land, 2022, 11, 2137.	1,2	6
2105	Research on Lake Changes in China Over the Past 50 Years Based on Satellite Remote Sensing Technology. Lecture Notes in Electrical Engineering, 2023, , 404-410.	0.3	0
2106	Characterization of Hydrologic Sand and Dust Storm Sources in the Middle East. Sustainability, 2022, 14, 15352.	1.6	9
2107	Run-Length-Based River Skeleton Line Extraction from High-Resolution Remote Sensed Image. Remote Sensing, 2022, 14, 5852.	1.8	0
2108	Quantifying the Spatio-Temporal Variations and Impacts of Factors on Vegetation Water Use Efficiency Using STL Decomposition and Geodetector Method. Remote Sensing, 2022, 14, 5926.	1.8	3
2109	Freshwater mussel conservation: A global horizon scan of emerging threats and opportunities. Global Change Biology, 2023, 29, 575-589.	4.2	21
2110	Outbreak of Moroccan Locust in Sardinia (Italy): A Remote Sensing Perspective. Remote Sensing, 2022, 14, 6050.	1.8	2
2111	High-resolution synthetic population mapping for quantifying disparities in disaster impacts: An application in the Bangladesh Coastal Zone. Frontiers in Environmental Science, 0, 10, .	1.5	3
2112	Mapping Area Changes of Glacial Lakes Using Stacks of Optical Satellite Images. Remote Sensing, 2022, 14, 5973.	1.8	4
2113	Does plant ecosystem thermoregulation occur? An extratropical assessment at different spatial and temporal scales. New Phytologist, 2023, 238, 1004-1018.	3.5	5
2114	Retrieving time series of river water extent from global inland water data sets. Journal of Hydrology, 2023, 617, 128880.	2.3	2
2115	Associations of Greenness, Parks, and Blue Space With Neurodegenerative Disease Hospitalizations Among Older US Adults. JAMA Network Open, 2022, 5, e2247664.	2.8	6

#	Article	IF	CITATIONS
2116	Exploring the Influences of Stream Network Structure and Connectivity on Water Environment Risk in China. Water (Switzerland), 2022, 14, 4007.	1.2	1
2117	Urban surface water bodies mapping using the automatic k-means based approach and sentinel-2 imagery. Geocarto International, 2023, 38, .	1.7	10
2118	Evaluating the Performance of Seven Ongoing Satellite Altimetry Missions for Measuring Inland Water Levels of the Great Lakes. Sensors, 2022, 22, 9718.	2.1	3
2119	Soil moisture estimates over sporadically flooded farmlands: synergies and biases of remote sensing and in situ sources. International Journal of Remote Sensing, 2022, 43, 6979-7001.	1.3	1
2121	Carbon emission and export from the Ket River, western Siberia. Biogeosciences, 2022, 19, 5859-5877.	1.3	3
2122	Urban Blue-Green Conundrum: A 10-City Study on the Impacts of Urbanization on Natural Infrastructure in India. , 0, , .		0
2123	A framework for fine classification of urban wetlands based on random forest and knowledge rules: taking the wetland cities of Haikou and Yinchuan as examples. GIScience and Remote Sensing, 2022, 59, 2144-2163.	2.4	10
2124	Characterization of the impacts of hydro-dams on wetland inundations in Southeast Asia. Science of the Total Environment, 2023, 864, 160941.	3.9	6
2125	Time-series surface water reconstruction method (TSWR) based on spatial distance relationship of multi-stage water boundaries. International Journal of Digital Earth, 2022, 15, 2335-2354.	1.6	2
2127	River extraction from Gaofen-1 Satellite images combined with relative total variation and stroke width transform. Journal of Applied Remote Sensing, 2022, 16, .	0.6	0
2128	Data Type and Data Sources for Agricultural Big Data and Machine Learning. Sustainability, 2022, 14, 16131.	1.6	6
2129	Natural resource system size can be used for managing recreational use. Ecological Indicators, 2022, 145, 109711.	2.6	3
2130	Disconnectivity matters: the outsized role of small ephemeral wetlands in landscape-scale nutrient retention. Environmental Research Letters, 2023, 18, 024018.	2.2	9
2131	CloudSEN12, a global dataset for semantic understanding of cloud and cloud shadow in Sentinel-2. Scientific Data, 2022, 9, .	2.4	9
2132	Deep attentive fusion network for flood detection on uni-temporal Sentinel-1 data. Frontiers in Remote Sensing, 0, 3, .	1.3	4
2133	A Remote Sensing-Based Inventory of West Africa Tropical Forest Patches: A Basis for Enhancing Their Conservation and Sustainable Use. Remote Sensing, 2022, 14, 6251.	1.8	1
2134	Water Level Change of Qinghai Lake from ICESat and ICESat-2 Laser Altimetry. Remote Sensing, 2022, 14, 6212.	1.8	3
2135	Flocking to fire: How climate and natural hazards shape human migration across the United States. Frontiers in Human Dynamics, 0, 4, .	1.0	6

#	Article	IF	CITATIONS
2136	A snap-shot assessment of carbon emission and export in a pristine river draining permafrost peatlands (Taz River, Western Siberia). Frontiers in Environmental Science, 0, 10, .	1.5	2
2137	High-resolution water level and storage variation datasets for 338 reservoirs in China during 2010–2021. Earth System Science Data, 2022, 14, 5671-5694.	3.7	9
2138	Research on the Impact of Water Conservancy Projects on Downstream Floodplain Wetlands—Taking Yimin River as an Example. Water (Switzerland), 2022, 14, 4064.	1.2	0
2139	Multi-objective optimization of concentrated solar power plants from an energy-water-environment nexus perspective under distinct climatic conditions $\hat{a} \in \text{Part B}$: Environ-economic analysis. Journal of Cleaner Production, 2023, 385, 135689.	4.6	12
2140	Pondscape or waterscape? The effect on the diversity of dispersal along different freshwater ecosystems. Hydrobiologia, 2023, 850, 3211-3223.	1.0	7
2141	Assessing the Relative Performance of GNSS-R Flood Extent Observations: Case Study in South Sudan. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-13.	2.7	6
2142	Lake dynamics in Tibetan Plateau during 1990–2020 and exploratory factor analyses using Google Earth Engine. Environmental Science and Pollution Research, 0, , .	2.7	0
2143	Spatiotemporal graph-based analysis of land cover evolution using remote sensing time series data. International Journal of Geographical Information Science, 2023, 37, 1009-1040.	2.2	1
2144	Pollution and Climatic Influence on Trees in the Siberian Arctic Wetlands. Water (Switzerland), 2023, 15, 215.	1.2	2
2145	Earth Map: A Novel Tool for Fast Performance of Advanced Land Monitoring and Climate Assessment. Journal of Remote Sensing, 2023, 3, .	3.2	2
2146	A Comparison between Supervised Classification Methods: Study Case on Land Cover Change Detection Caused by a Hydroelectric Complex Installation in the Brazilian Amazon. Sustainability, 2023, 15, 1309.	1.6	1
2147	GWL_FCS30: a global 30 m wetland map with a fine classification system using multi-sourced and time-series remote sensing imagery in 2020. Earth System Science Data, 2023, 15, 265-293.	3.7	30
2148	Spatiotemporal variations and overflow risk analysis of the Salt Lake in the Hoh Xil Region using machine learning methods. Frontiers in Earth Science, 0, 10, .	0.8	0
2149	High Capacitive Removal of Pb ²⁺ from Wastewater and Mechanism Study over MoO ₂ @N-Doped Hollow Carbon Sphere Anodes. ACS ES&T Water, 2023, 3, 429-437.	2.3	4
2150	Contemporary channel adjustment and geomorphic sensitivity of the lower Mara River and its floodplain wetlands, Tanzania. Geomorphology, 2023, , 108583.	1.1	1
2151	Deep Feature and Domain Knowledge Fusion Network for Mapping Surface Water Bodies by Fusing Google Earth RGB and Sentinel-2 Images. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 1-5.	1.4	1
2152	Water extraction from optical high-resolution remote sensing imagery: a multi-scale feature extraction network with contrastive learning. GIScience and Remote Sensing, 2023, 60, .	2.4	5
2153	Frameworks for mapping lake ecosystem services. An example from Lithuania. MethodsX, 2023, 10, 102015.	0.7	1

#	Article	IF	CITATIONS
2154	$<\!$ scp>lakeCoSTR $<\!$ /scp>: A tool to facilitate use of Landsat Collection 2 to estimate lake surface water temperatures. Ecosphere, 2023, 14, .	1.0	5
2155	Global change and plant-ecosystem functioning in freshwaters. Trends in Plant Science, 2023, 28, 646-660.	4.3	6
2156	Glucoseâ€derived superabsorbent hydrogel materials based on mechanicallyâ€interlocked slideâ€ring and triblock copolymer topologies. Journal of Polymer Science, 2023, 61, 937-950.	2.0	3
2157	Valley-scale controls and hydrogeomorphic processes driving channel breakdown in a dynamic floodplain wetland system: The Mara River, Tanzania. Geomorphology, 2023, 424, 108584.	1.1	1
2158	Semantic segmentation of water bodies in very high-resolution satellite and aerial images. Remote Sensing of Environment, 2023, 287, 113452.	4.6	20
2159	A novel remote sensing index for brine shrimp (Artemia) slick detection in salt lakes. Remote Sensing of Environment, 2023, 286, 113428.	4.6	5
2160	Combining historical maps and landsat images to delineate the centennial-scale changes of lake wetlands in Taihu Lake Basin, China. Journal of Environmental Management, 2023, 329, 117110.	3.8	7
2161	Monitoring Continental Wetland Dynamics and Drivers of Changes Using Google Earth Engine. Impact of Meat Consumption on Health and Environmental Sustainability, 2022, , 1-11.	0.4	0
2162	GLOBAL COMPARISON OF WATER SURFACE AREA VARIABILITY BETWEEN NATURAL LAKES AND RESERVOIRS. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2022, 78, I_505-I_510.	0.0	0
2163	Identifying river changes by river pattern events: a case study of the Lower Yellow River, China. Geocarto International, 2023, 38, .	1.7	0
2164	The Use of Sentinel-1 in Response to Sequences of Natural Disasters in Indonesia: The South Kalimantan Floods and The Mamuju-Majene Earthquake. IOP Conference Series: Earth and Environmental Science, 2023, 1127, 012008.	0.2	1
2165	Fast Flood Extent Monitoring With SAR Change Detection Using Google Earth Engine. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-19.	2.7	14
2166	Dense Attention Fusion Network for Object Counting in IoT System. Mobile Networks and Applications, 2023, 28, 359-368.	2.2	5
2167	Geospatial Environmental Data for Planetary Health Applications. Atmosphere, Earth, Ocean & Space, 2023, , 123-141.	0.4	0
2168	Racial, Ethnic, and Socioeconomic Disparities in Multiple Measures of Blue and Green Spaces in the United States. Environmental Health Perspectives, 2023, 131, .	2.8	18
2169	Source Identification and Ecological Risk of Potentially Harmful Trace Elements in Lacustrine Sediments from the Middle and Lower Reaches of Huaihe River. Water (Switzerland), 2023, 15, 544.	1.2	1
2170	Investigation of lake shrinkage attributed to climate change over the past 33Âyears in Inner Mongolia, China. Climatic Change, 2023, 176, .	1.7	4
2171	Hydroclimate and vegetation variability of high Andean ecosystems. Frontiers in Plant Science, $0,13,.$	1.7	4

#	Article	IF	CITATIONS
2172	Digital Soil Texture Maps of Argentina and Their Relationship to Soil-Forming Factors and Processes., 2023, , 263-281.		3
2173	Global Surface Water Density Masks to Refine Sentinel 3 Data Acquisitions. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 1-5.	1.4	0
2174	Deep Convolutional Neural Networks-Based Coastal Inundation Mapping from SAR Imagery: with One Application Case for Bangladesh, a UN-defined Least Developed Country., 2023,, 227-251.		0
2175	Estimation of Lacustrine Groundwater Discharge (LGD) to an urban Himalayan lake using environmental tracers (222Rn, δ180, EC). Journal of Hydrology, 2023, 618, 129145.	2.3	1
2176	Monitoring of 35-Year Mangrove Wetland Change Dynamics and Agents in the Sundarbans Using Temporal Consistency Checking. Remote Sensing, 2023, 15, 625.	1.8	7
2177	National Scale Land Cover Classification Using the Semiautomatic High-Quality Reference Sample Generation (HRSG) Method and an Adaptive Supervised Classification Scheme. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 1858-1870.	2.3	4
2178	A Framework to Assess Remote Sensing Algorithms for Satellite-Based Flood Index Insurance. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 2589-2604.	2.3	10
2179	River ecosystem metabolism and carbon biogeochemistry in a changing world. Nature, 2023, 613, 449-459.	13.7	82
2180	Deep Hierarchical Pyramid Network With High- Frequency -Aware Differential Architecture for Super-Resolution Mapping. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-15.	2.7	12
2181	Role of dry watercourses of an arid watershed in carbon and nitrogen processing along an agricultural impact gradient. Journal of Environmental Management, 2023, 333, 117462.	3.8	2
2182	Remote Sensing Object Counting Through Regression Ensembles and Learning to Rank. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-17.	2.7	2
2183	Satellite-based Optical Water Type Classification of Inland Waters Bodies of India. , 2023, , .		0
2185	Spatio-temporal change monitoring for surface water on the Qinghai-Tibet Plateau from 1990 to 2020 using remote sensing. Frontiers in Earth Science, $0,11,1$	0.8	0
2186	Comparing Water Indices for Landsat Data for Automated Surface Water Body Extraction under Complex Ground Background: A Case Study in Jilin Province. Remote Sensing, 2023, 15, 1678.	1.8	2
2187	Continental-scale wetland mapping: A novel algorithm for detailed wetland types classification based on time series Sentinel-1/2 images. Ecological Indicators, 2023, 148, 110113.	2.6	12
2188	Diagnosing modeling errors in global terrestrial water storage interannual variability. Hydrology and Earth System Sciences, 2023, 27, 1531-1563.	1.9	0
2190	Eco-morphodynamic carbon pumping by the largest rivers in the Neotropics. Scientific Reports, 2023, 13, .	1.6	2
2191	Increase in chlorophyll-a concentration in Lake Taihu from 1984 to 2021 based on Landsat observations. Science of the Total Environment, 2023, 873, 162168.	3.9	9

#	Article	IF	CITATIONS
2192	Mapping floods from remote sensing data and quantifying the effects of surface obstruction by clouds and vegetation. Remote Sensing of Environment, 2023, 291, 113556.	4.6	8
2193	Long-term river extent dynamics and transition detection using remote sensing: Case studies of Mekong and Ganga River. Science of the Total Environment, 2023, 876, 162774.	3.9	4
2194	Chironomid-based reconstruction of 500-year water-level changes in Daihai Lake, northern China. Catena, 2023, 227, 107122.	2.2	2
2195	LULC changes to riverine flooding: A case study on the Jamuna River, Bangladesh using the multilayer perceptron model. Results in Engineering, 2023, 18, 101079.	2.2	7
2196	Assessing the changeability of precipitation patterns using multiple remote sensing data and an efficient uncertainty method over different climate regions of Iran. Expert Systems With Applications, 2023, 221, 119788.	4.4	5
2197	Wetlands Insight Tool: Characterising the Surface Water and Vegetation Cover Dynamics of Individual Wetlands Using Multidecadal Landsat Satellite Data. Wetlands, 2023, 43, .	0.7	2
2199	Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts. Agricultural Water Management, 2023, 282, 108266.	2.4	6
2200	Sustainable aquifer management for food security. Agricultural Water Management, 2023, 281, 108073.	2.4	3
2201	Remotely sensed lake area changes in permafrost regions of the Arctic and the Tibetan Plateau between 1987 and 2017. Science of the Total Environment, 2023, 880, 163355.	3.9	6
2202	High-temporal-resolution monitoring of reservoir water storage of the Lancang-Mekong River. Remote Sensing of Environment, 2023, 292, 113575.	4.6	9
2203	Application of Geospatial Technology in Seasonal Flood Hazard Event in Dhemaji District of Assam. Springer Climate, 2022, , 247-269.	0.3	1
2204	Using Historical Disturbance Identified with LandTrendr in Google Earth Engine for Land Cover Mapping of Oil Palm Landscapes. , 2022, , 237-274.		0
2205	A machine learning method for Arctic lakes detection in the permafrost areas of Siberia. European Journal of Remote Sensing, 2023, 56, .	1.7	3
2206	Tracking changes in coastal land cover in the Yellow Sea, East Asia, using Sentinel-1 and Sentinel-2 time-series images and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 196, 429-444.	4.9	8
2207	Leaving a plastic legacy: Current and future scenarios for mismanaged plastic waste in rivers. Science of the Total Environment, 2023, 869, 161821.	3.9	11
2208	Flood Event Detection from Sentinel 1 and Sentinel 2 Data: Does Land Use Matter for Performance of U-Net based Flood Segmenters?. , 2022, , .		3
2209	Global water resources and the role of groundwater in a resilient water future. Nature Reviews Earth & Environment, 2023, 4, 87-101.	12.2	119
2210	Global Observations of Riverbank Erosion and Accretion From Landsat Imagery. Journal of Geophysical Research F: Earth Surface, 2023, 128, .	1.0	13

#	Article	IF	CITATIONS
2211	Evaluation of Sentinel-3A altimetry over Songhua river Basin. Journal of Hydrology, 2023, 618, 129197.	2.3	2
2212	A multivariate approach for mapping a soil quality index and its uncertainty in southern France. European Journal of Soil Science, 2023, 74, .	1.8	2
2213	A satellite-based monitoring system for quantifying surface water and mesic vegetation dynamics in a semi-arid region. Ecological Indicators, 2023, 147, 109965.	2.6	8
2214	The pan-Arctic catchment database (ARCADE). Earth System Science Data, 2023, 15, 541-554.	3.7	4
2216	Climate and Human Impacts on Hydrological Processes and Flood Risk in Southern Louisiana. Water Resources Research, 2023, 59, .	1.7	2
2217	Inversion of river discharge from remotely sensed river widths: A critical assessment at three-thousand global river gauges. Remote Sensing of Environment, 2023, 287, 113489.	4.6	2
2218	Operational forecasting inundation extents using REOF analysis (FIER) over lower Mekong and its potential economic impact on agriculture. Environmental Modelling and Software, 2023, 162, 105643.	1.9	5
2219	Continuous Intra-Annual Changes of Lake Water Level and Water Storage from 2000 to 2018 on the Tibetan Plateau. Remote Sensing, 2023, 15, 893.	1.8	1
2220	A fully automatic and high-accuracy surface water mapping framework on Google Earth Engine using Landsat time-series. International Journal of Digital Earth, 2023, 16, 210-233.	1.6	6
2221	Increased floodplain inundation in the Amazon since 1980. Environmental Research Letters, 2023, 18, 034024.	2.2	5
2222	Extensive global wetland loss over the past three centuries. Nature, 2023, 614, 281-286.	13.7	140
2223	Surface water changes in China's Yangtze River Delta over the past forty years. Sustainable Cities and Society, 2023, 91, 104458.	5.1	5
2224	Flood Impact and Damage Assessment Based on the Sentitnel-1 SAR Data Using Google Earth Engine. Springer Climate, 2023, , 483-502.	0.3	5
2225	Extracting a Connected River Network from DEM by Incorporating Surface River Occurrence Data and Sentinel-2 Imagery in the Danjiangkou Reservoir Area. Remote Sensing, 2023, 15, 1014.	1.8	3
2226	Spatio-temporal variation in surface water in Punjab, Pakistan from 1985 to 2020 using machine-learning methods with time-series remote sensing data and driving factors. Agricultural Water Management, 2023, 280, 108228.	2.4	22
2227	Dynamic Evolution of Land Use/Land Cover and Its Socioeconomic Driving Forces in Wuhan, China. International Journal of Environmental Research and Public Health, 2023, 20, 3316.	1.2	3
2228	Long-term water surface monitoring using multi-temporal Landsat satellite data at Singkarak lake. AIP Conference Proceedings, 2023, , .	0.3	0
2229	Research on lake water level and its response to watershed climate change in Qinghai Lake from 1961 to 2019. Frontiers in Environmental Science, 0, 11, .	1.5	4

#	Article	IF	CITATIONS
2230	An Account of the Flood History in the Ghatal Region of West Bengal, India. Springer Geography, 2023, , 351-363.	0.3	0
2231	High-frequency time series comparison of Sentinel-1 and Sentinel-2 satellites for mapping open and vegetated water across the United States (2017–2021). Remote Sensing of Environment, 2023, 288, 113498.	4.6	11
2232	Less extreme and earlier outbursts of ice-dammed lakes since 1900. Nature, 2023, 614, 701-707.	13.7	11
2233	An Innovative Scheme to Confront the Tradeâ€Off Between Water Conservation and Heat Alleviation With Environmental Justice for Urban Sustainability: The Case of Phoenix, Arizona. AGU Advances, 2023, 4, .	2.3	0
2234	High Spatiotemporal Flood Monitoring Associated with Rapid Lake Shrinkage Using Planet Smallsat and Sentinel-1 Data. Remote Sensing, 2023, 15, 1099.	1.8	4
2235	Socio-ecological factors shape the distribution of a cultural keystone species in Malaysian Borneo. , 2023, 2, .		2
2236	Largeâ€scale modelling of highly braided and laterally confined reach of a sandâ€bed river. Earth Surface Processes and Landforms, 2023, 48, 1557-1572.	1.2	3
2237	Monitoring and Analyzing the Seasonal Wetland Inundation Dynamics in the Everglades from 2002 to 2021 Using Google Earth Engine. Geographies, 2023, 3, 161-177.	0.6	3
2238	Analysis of the evolution and driving forces of tidal wetlands at the estuary of the Yellow River and Laizhou Bay based on remote sensing data cube. Ocean and Coastal Management, 2023, 237, 106535.	2.0	7
2239	Spatial-temporal changes and driving factors of eco-environmental quality in the Three-North region of China. Journal of Arid Land, 2023, 15, 231-252.	0.9	12
2240	Athabasca River Avulsion Underway in the Peaceâ€Athabasca Delta, Canada. Water Resources Research, 2023, 59, .	1.7	2
2241	Toward Improved Parameterizations of Reservoir Operation in Ungauged Basins: A Synergistic Framework Coupling Satellite Remote Sensing, Hydrologic Modeling, and Conceptual Operation Schemes. Water Resources Research, 2023, 59, .	1.7	8
2242	Global Dam Tracker: A database of more than 35,000 dams with location, catchment, and attribute information. Scientific Data, 2023, 10, .	2.4	21
2243	LuoJiaAl: A cloud-based artificial intelligence platform for remote sensing image interpretation. Geo-Spatial Information Science, 2023, 26, 218-241.	2.4	2
2244	An Adaptive Method for the Estimation of Snow-Covered Fraction with Error Propagation for Applications from Local to Global Scales. Remote Sensing, 2023, 15, 1231.	1.8	1
2245	Dynamic and attribution analysis of sandy lands in theBeijing-Tianjin sandstorm source region during 2000& 2000. Chinese Science Bulletin, 2023, , .	0.4	1
2246	Environmental changes associated with drying climate are expected to affect functional groups of pro- and microeukaryotes differently in temporary saline waters. Scientific Reports, 2023, 13, .	1.6	2
2247	A Random Forest-Based Multi-Index Classification (RaFMIC) Approach to Mapping Three-Decadal Inundation Dynamics in Dryland Wetlands Using Google Earth Engine. Remote Sensing, 2023, 15, 1263.	1.8	3

#	ARTICLE	IF	CITATIONS
2248	Contribution of Land Cover Classification Results Based on Sentinel-1 and 2 to the Accreditation of Wetland Cities. Remote Sensing, 2023, 15, 1275.	1.8	4
2249	Defining paleoclimatic routes and opportunities for hominin dispersals across Iran. PLoS ONE, 2023, 18, e0281872.	1.1	5
2250	Longâ€ŧerm and seasonal variation of openâ€surface water bodies in the <scp>Yellow River Basin</scp> during 1990–2020. Hydrological Processes, 2023, 37, .	1.1	1
2251	Large increases in methane emissions expected from North America's largest wetland complex. Science Advances, 2023, 9, .	4.7	6
2252	Characteristics of Remotely Sensed Urban Pollution Island (UPI) & Department of the Companies of Remotely Sensed Urban Heat Island (SUHI) over Eastern India. Aerosol Science and Engineering, 2023, 7, 220-236.	1.1	2
2253	Investigating high methane emissions from urban areas detected by TROPOMI and their association with untreated wastewater. Environmental Research Letters, 2023, 18, 044004.	2.2	7
2254	River hydraulic modeling with ICESat-2 land and water surface elevation. Hydrology and Earth System Sciences, 2023, 27, 1011-1032.	1.9	4
2255	Hydroâ€geomorphological and sedimentological processes along the major fluvialâ€lacustrine delta of the Paraná River (Argentina): Their role in floodplain construction. Earth Surface Processes and Landforms, 2023, 48, 1599-1614.	1.2	0
2256	BIRDIE: A data pipeline to inform wetland and waterbird conservation at multiple scales. Frontiers in Ecology and Evolution, $0,11,.$	1.1	0
2257	Spatiotemporal Evolution of Residential Exposure to Green Space in Beijing. Remote Sensing, 2023, 15, 1549.	1.8	2
2258	Permafrost Monitoring from Space. Surveys in Geophysics, 2023, 44, 1579-1613.	2.1	5
2259	Spatial-temporal pattern of desertification in the Selenge River Basin of Mongolia from 1990 to 2020. Frontiers in Environmental Science, $0,11,.$	1.5	2
2260	A global topography- and hydrography-based floodability index for the downscaling, analysis, and data-fusion of surface water. Journal of Hydrology, 2023, 620, 129406.	2.3	0
2261	Variation of surface water extent in the great Sebkha of Oran (NW of Algeria), using Landsat data 1987–2019: Interaction of natural factors and anthropogenic impacts. Remote Sensing Applications: Society and Environment, 2023, 30, 100953.	0.8	1
2262	Analyzing the variations in the water surface area of Taleqan Dam of Iran using ground-based and satellite observations. , 2023, , .		0
2263	Study of Land Cover Change in the City with the Fastest Economic Growth in China (Hefei) from 2000 to 2020 Based on Google Earth Engine Platform. Remote Sensing, 2023, 15, 1604.	1.8	1
2264	Remote sensing of laboratory rivers. Earth Surface Processes and Landforms, 2024, 49, 58-81.	1.2	0
2265	Evaluating Enhanced Reservoir Evaporation Losses From CMIP6â€Based Future Projections in the Contiguous United States. Earth's Future, 2023, 11, .	2.4	5

#	Article	IF	CITATIONS
2266	Impacted fluvial and coastal sediment connectivity in the Mediterranean: a brief review and implications in the context of global environmental change. $0, 5-15$.		0
2267	Developing an intelligent cloud attention network to support global urban green spaces mapping. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 198, 197-209.	4.9	13
2268	Not only climate: The importance of biotic interactions in shaping species distributions at macro scales. Ecology and Evolution, $2023,13,.$	0.8	2
2269	Satellites reveal hotspots of global river extent change. Nature Communications, 2023, 14, .	5 . 8	19
2270	RadWet: An Improved and Transferable Mapping of Open Water and Inundated Vegetation Using Sentinel-1. Remote Sensing, 2023, 15, 1705.	1.8	2
2271	Lake surface temperature retrieved from Landsat satellite series (1984 to 2021) for the North Slave Region. Earth System Science Data, 2023, 15, 1329-1355.	3.7	4
2272	Impacts of Water Resources Management on Land Water Storage in the Lower Lancang River Basin: Insights from Multi-Mission Earth Observations. Remote Sensing, 2023, 15, 1747.	1.8	2
2273	Multiâ€Source Mapping of Peatland Types Using Sentinelâ€1, Sentinelâ€2, and Terrain Derivatives—A Comparison Between Five Highâ€Latitude Landscapes. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	1.3	O
2274	On the Performance of Sentinel-3 Altimetry over High Mountain and Cascade Reservoirs Basins: Case of the Lancang and Nu River Basins. Remote Sensing, 2023, 15, 1769.	1.8	3
2275	Methane emissions from Arctic landscapes during 2000–2015: an analysis with land and lake biogeochemistry models. Biogeosciences, 2023, 20, 1181-1193.	1.3	1
2276	Reduced Tropical Climate Land Area Under Global Warming. Geophysical Research Letters, 2023, 50, .	1.5	2
2277	Automatic extraction of surface water based on lightweight convolutional neural network. Ecotoxicology and Environmental Safety, 2023, 256, 114843.	2.9	0
2278	Predicting micronutrient deficiency with publicly available satellite data. Al Magazine, 2023, 44, 30-40.	1.4	0
2279	Calculating Indicators From Global Geospatial Data Sets for Benchmarking and Tracking Change in the Urban Environment. , 0, , .		0
2280	Long-Term Changes in Water Body Area Dynamic and Driving Factors in the Middle-Lower Yangtze Plain Based on Multi-Source Remote Sensing Data. Remote Sensing, 2023, 15, 1816.	1.8	4
2281	Integrating Satellite Imagery and Ground-Based Measurements with a Machine Learning Model for Monitoring Lake Dynamics over a Semi-Arid Region. Hydrology, 2023, 10, 78.	1.3	3
2282	A 29-year time series of annual 300 m resolution plant-functional-type maps for climate models. Earth System Science Data, 2023, 15, 1465-1499.	3.7	9
2283	Using Highâ€Resolution Satellite Imagery and Deep Learning to Track Dynamic Seasonality in Small Water Bodies. Geophysical Research Letters, 2023, 50, .	1.5	6

#	Article	IF	CITATIONS
2284	Rapid mapping and spatial analysis on the distribution of photovoltaic power stations with Sentinel-1& power stations with Sentinel-1& amp; 2 images in Chinese coastal provinces. International Journal of Applied Earth Observation and Geoinformation, 2023, 118, 103280.	0.9	1
2285	A New Framework of 17 Hydrological Ecosystem Services (HESS17) for Supporting River Basin Planning and Environmental Monitoring. Sustainability, 2023, 15, 6182.	1.6	4
2286	River Delta Morphotypes Emerge From Multiscale Characterization of Shorelines. Geophysical Research Letters, 2023, 50, .	1.5	0
2287	Influence of Land Surface Temperature and Rainfall on Surface Water Change: An Innovative Machine Learning Approach. Water Resources Management, 2023, 37, 3013-3035.	1.9	0
2288	High-spatiotemporal-resolution dynamic water monitoring using LightGBM model and Sentinel-2 MSI data. International Journal of Applied Earth Observation and Geoinformation, 2023, 118, 103278.	0.9	2
2289	Long-Term Change of Lake Water Storage and Its Response to Climate Change for Typical Lakes in Arid Xinjiang, China. Water (Switzerland), 2023, 15, 1444.	1.2	3
2290	Sub-Pixel Surface Water Mapping for Heterogeneous Areas from Sentinel-2 Images: A Case Study in the Jinshui Basin, China. Water (Switzerland), 2023, 15, 1446.	1.2	3
2291	Extraction of Cotton Information with Optimized Phenology-Based Features from Sentinel-2 Images. Remote Sensing, 2023, 15, 1988.	1.8	2
2292	A robust large-scale surface water mapping framework with high spatiotemporal resolution based on the fusion of multi-source remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 2023, 118, 103288.	0.9	1
2293	Spatial-temporal variations of stage-area hysteretic relationships in large heterogeneous lake–floodplain systems. Journal of Hydrology, 2023, 620, 129507.	2.3	3
2294	An Improved Method for Water Body Removal in Spaceborne GNSS-R Soil Moisture Retrieval. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-8.	2.7	0
2295	Holistic Reduction to Compare and Create New Indices for Global Inter-Seasonal Monitoring: Case Study for High Resolution Surface Water Mapping. Remote Sensing, 2023, 15, 2063.	1.8	1
2296	Environmental predictors of lake fish diversity across gradients in lake age and spatial scale. Freshwater Biology, 2023, 68, 1122-1135.	1.2	1
2297	Indicator of Flood-Irrigated Crops From SMOS and SMAP Soil Moisture Products in Southern India. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 1-5.	1.4	1
2298	Applications and Contemporary Issues with Adsorption for Water Monitoring and Remediation: A Facile Review. Topics in Catalysis, 2024, 67, 140-155.	1.3	0
2299	GEDI: A New LiDAR Altimetry to Obtain the Water Levels of More Lakes on the Tibetan Plateau. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, , 1-16.	2.3	0
2300	Delimitation of water areas using remote sensing in Brazil's semiarid region. Brazilian Journal of Environmental Sciences (Online), 2023, 58, 20-29.	0.1	0
2301	A comparative analysis of changes in surface water resources in dry and wet areas of Zimbabwe between 1990 and 2020., 2023, , 123-146.		0

#	ARTICLE	IF	CITATIONS
2302	Remotely sensed surface water variations during drought and deluge conditions in a Northern Great Plains terminal lake basin. Journal of Hydrology: Regional Studies, 2023, 47, 101392.	1.0	2
2303	A Transformer-based method to reduce cloud shadow interference in automatic lake water surface extraction from Sentinel-2 imagery. Journal of Hydrology, 2023, 620, 129561.	2.3	2
2347	Surface and canopy-layer urban heat island intensities in Europe – Quantifying differences in the diurnal cycle for three summer periods. , 2023, , .		0
2367	Improvement of groundwater abstraction through application of ground vibration. AIP Conference Proceedings, 2023, , .	0.3	0
2405	Stochastic Planning for ASV Navigation Using Satellite Images. , 2023, , .		1
2418	Assessment of River Water Dynamics and Optically Active Water Quality Parameters Over Punjab, Based on Cloud Computing Approach. Advances in Geographical and Environmental Sciences, 2023, , 39-64.	0.4	0
2419	Estimating the Water Level and Bathymetry of Lake Yahuarcocha, Ecuador Using ICESat-2/ATL13 Satellite Laser Altimetry, System Dynamics Model, and Machine Learning. Communications in Computer and Information Science, 2023, , 98-111.	0.4	0
2464	Prioritizing Areas Prone to Critical Soil Erosion by Using Multiple Criteria Decision Analysis and GIS Techniques. Lecture Notes in Civil Engineering, 2023, , 349-365.	0.3	0
2465	Rapid onset shocks. , 2023, , 221-244.		0
2470	The distribution of the world's internationally important wetlands and their contribution to global protected area goals and Aichi Biodiversity Target 11., 2023, , 115-152.		1
2471	The extent and distribution of the world's wetlands. , 2023, , 91-114.		0
2473	What's happening to the world's wetlands?. , 2023, , 219-235.		0
2487	Organic Carbon Cycling and Ecosystem Metabolism. , 2024, , 939-997.		0
2503	Toward impact-based monitoring of drought and its cascading hazards. Nature Reviews Earth & Environment, 2023, 4, 582-595.	12.2	3
2539	Rivers and Lakesâ€"Their Distribution, Origins, and Forms. , 2024, , 25-56.		0
2550	Understanding the Anthropocene. Springer Climate, 2023, , 3-22.	0.3	0
2551	Satellite Hydrology Programmes: Capabilities and Benefits. Springer Climate, 2023, , 81-133.	0.3	0
2552	Hydro-Climatic Extremes: Climate Change and Human Influence. Springer Climate, 2023, , 25-55.	0.3	0

#	Article	IF	CITATIONS
2553	Remote Sensing of the Environment. Springer Climate, 2023, , 181-219.	0.3	0
2555	River Morphology. , 2024, , 925-952.		0
2556	Surface Water Mapping. , 2024, , 899-923.		0
2557	Heat Islands. , 2024, , 745-771.		O
2561	Delineation of Surface Water Bodies from SAR Imagery Based on Improved MRF and CNN Model. , 2023, , .		0
2581	Retrieving Chlorophyll-A Concentration For Lake Balaton With Landsat Based On GEE. , 2023, , .		0
2582	Enabling Global Processing of Reference Water Products for Flood Mapping using Kubernetes and STAC., 2023,,.		0
2583	Detection of Surface Water Using Spire Grazing-Angle GNSS-R Data., 2023, , .		O
2584	Opera Dynamic Surface Water Extents for Harmonized Landsat Sentinel-2 (DSWX-HLS) Validation Activities. , 2023, , .		0
2585	Incidence Angle Normalization of Spaceborne GNSS-R Surface Reflectivity for Soil Moisture Retrieval., 2023, , .		0
2586	Graph-Based Active Learning for Surface Water and Sediment Detection in Multispectral Images. , 2023, , .		1
2587	Improved Flood Mapping for Efficient Policy Design by Fusion of Sentinel-1, Sentinel-2 and Landsat-9 Imagery to Identify Population and Infrastructure Exposed to Floods., 2023,,.		0
2588	Using a Sensorweb for High-Resolution Flood Monitoring on a Global Scale. , 2023, , .		0
2589	Monitoring Surface Water Content and Biogeochemical Responses In The Area Surrounding River Mouths Using Multi-Source Satellite Remote Sensing. , 2023, , .		0
2590	On The Relationship Between The GNSS-R Signal SNR and Coherency With Surface Water: A Case Study Over Lake Okeechobee. , 2023, , .		0
2591	Assessment of Performance of Tree-Based Algorithms to Reduce Errors of Omisssion and Commission in Change Detection. , 2023, , .		0
2592	Copernicus Global Land Service: Back on Two Years Evolution of the Water Bodies Global Monitoring Using Sentinel-2., 2023,,.		1
2593	Imaging the World During Dry and Wet Seasons, Global Satellite Image Mosaics at Meter-Scale Resolution. , 2023, , .		0

#	Article	IF	CITATIONS
2594	Mapping and Monitoring Inland Water Bodies: a Case Study of Madurai, Tamil Nadu., 2023, , .		0
2595	SEN2DWATER: A Novel Multispectral and Multitemporal Dataset and Deep Learning Benchmark for Water Resources Analysis., 2023,,.		0
2596	Deep Learning Based Urban Flood Mapping From High Resolution Capella Space Sar Imagery. , 2023, , .		0
2600	Surface Water Extent and Volume in the Inner Niger Delta (IND) Over 2000-2022 Using Multispectral Imagery and Radar Altimetry. , 2023, , .		0
2601	Unsupervised Burned Area Mapping in Greece: Investigating the Impact of Precipitation, Pre- and Post-Processing of Sentinel-1 Data in Google Earth Engine., 2023,,.		0
2608	Class Hexapoda: general introduction. , 2024, , 225-281.		0
2617	Practical Guide to Measuring Wetland Carbon Pools and Fluxes. Wetlands, 2023, 43, .	0.7	2
2663	Coastal Systems: The Dynamic Interface Between Land and Sea. Advances in Geographical and Environmental Sciences, 2023, , 207-229.	0.4	0
2805	Earth Observation Data for Sustainable Management of Water Resources to Inform Spatial Planning Strategies. Lecture Notes in Civil Engineering, 2024, , 24-35.	0.3	0
2834	Long-Term Surface Water Variability in Chilika Lake Using Archival Remote Sensing Data., 0,,.		0